# Architecture commands for GDB, the GNU debugger.
#
-# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
-# Free Software Foundation, Inc.
+# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
+# 2008, 2009, 2010 Free Software Foundation, Inc.
#
# This file is part of GDB.
#
# Make certain that the script is not running in an internationalized
# environment.
-LANG=c ; export LANG
-LC_ALL=c ; export LC_ALL
+LANG=C ; export LANG
+LC_ALL=C ; export LC_ALL
compare_new ()
# Format of the input table
-read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
+read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
do_read ()
{
fi
done
- FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
- if test "x${macro}" = "x="
- then
- # Provide a UCASE version of function (for when there isn't MACRO)
- macro="${FUNCTION}"
- elif test "${macro}" = "${FUNCTION}"
- then
- echo "${function}: Specify = for macro field" 1>&2
- kill $$
- exit 1
- fi
-
- # Check that macro definition wasn't supplied for multi-arch
- case "${class}" in
- [mM] )
- if test "${macro}" != ""
- then
- echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
- kill $$
- exit 1
- fi
- esac
-
case "${class}" in
m ) staticdefault="${predefault}" ;;
M ) staticdefault="0" ;;
# M -> multi-arch function + predicate
# hiding a multi-arch function + predicate to test function validity
- macro ) : ;;
-
- # The name of the legacy C macro by which this method can be
- # accessed. If empty, no macro is defined. If "=", a macro
- # formed from the upper-case function name is used.
-
returntype ) : ;;
# For functions, the return type; for variables, the data type
# You cannot specify both a zero INVALID_P and a POSTDEFAULT.
- # Variable declarations can refer to ``current_gdbarch'' which
+ # Variable declarations can refer to ``gdbarch'' which
# will contain the current architecture. Care should be
# taken.
# An optional expression that convers MEMBER to a value
# suitable for formatting using %s.
- # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
- # (anything else) is used.
+ # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
+ # or plongest (anything else) is used.
garbage_at_eol ) : ;;
{
# See below (DOCO) for description of each field
cat <<EOF
-i::const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
+i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
#
-i::int:byte_order:::BFD_ENDIAN_BIG
+i:int:byte_order:::BFD_ENDIAN_BIG
+i:int:byte_order_for_code:::BFD_ENDIAN_BIG
#
-i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
+i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
#
-i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
+i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
+
+# The bit byte-order has to do just with numbering of bits in debugging symbols
+# and such. Conceptually, it's quite separate from byte/word byte order.
+v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
+
# Number of bits in a char or unsigned char for the target machine.
# Just like CHAR_BIT in <limits.h> but describes the target machine.
# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
#
# Number of bits in a short or unsigned short for the target machine.
-v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
+v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
# Number of bits in an int or unsigned int for the target machine.
-v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
+v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
# Number of bits in a long or unsigned long for the target machine.
-v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
+v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
# Number of bits in a long long or unsigned long long for the target
# machine.
-v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
+v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
-# The ABI default bit-size and format for "float", "double", and "long
-# double". These bit/format pairs should eventually be combined into
-# a single object. For the moment, just initialize them as a pair.
+# The ABI default bit-size and format for "half", "float", "double", and
+# "long double". These bit/format pairs should eventually be combined
+# into a single object. For the moment, just initialize them as a pair.
# Each format describes both the big and little endian layouts (if
# useful).
-v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
-v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
-v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
-v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
-v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
-v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
+v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
+v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
+v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
+v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
+v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
+v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
+v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
+v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
# For most targets, a pointer on the target and its representation as an
# address in GDB have the same size and "look the same". For such a
# / addr_bit will be set from it.
#
# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
-# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
-# as well.
+# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
+# gdbarch_address_to_pointer as well.
#
# ptr_bit is the size of a pointer on the target
-v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
+v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
# addr_bit is the size of a target address as represented in gdb
-v::int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
+v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
+#
+# dwarf2_addr_size is the target address size as used in the Dwarf debug
+# info. For .debug_frame FDEs, this is supposed to be the target address
+# size from the associated CU header, and which is equivalent to the
+# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
+# Unfortunately there is no good way to determine this value. Therefore
+# dwarf2_addr_size simply defaults to the target pointer size.
+#
+# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
+# defined using the target's pointer size so far.
+#
+# Note that dwarf2_addr_size only needs to be redefined by a target if the
+# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
+# and if Dwarf versions < 4 need to be supported.
+v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
#
# One if \`char' acts like \`signed char', zero if \`unsigned char'.
-v::int:char_signed:::1:-1:1
+v:int:char_signed:::1:-1:1
#
-F::CORE_ADDR:read_pc:struct regcache *regcache:regcache
-F::void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
+F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
+F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
# Function for getting target's idea of a frame pointer. FIXME: GDB's
# whole scheme for dealing with "frames" and "frame pointers" needs a
# serious shakedown.
-f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
+m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
#
-M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
-M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
+M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
+M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
#
-v::int:num_regs:::0:-1
+v:int:num_regs:::0:-1
# This macro gives the number of pseudo-registers that live in the
# register namespace but do not get fetched or stored on the target.
# These pseudo-registers may be aliases for other registers,
# combinations of other registers, or they may be computed by GDB.
-v::int:num_pseudo_regs:::0:0::0
+v:int:num_pseudo_regs:::0:0::0
# GDB's standard (or well known) register numbers. These can map onto
# a real register or a pseudo (computed) register or not be defined at
# all (-1).
# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
-v::int:sp_regnum:::-1:-1::0
-v::int:pc_regnum:::-1:-1::0
-v::int:ps_regnum:::-1:-1::0
-v::int:fp0_regnum:::0:-1::0
+v:int:sp_regnum:::-1:-1::0
+v:int:pc_regnum:::-1:-1::0
+v:int:ps_regnum:::-1:-1::0
+v:int:fp0_regnum:::0:-1::0
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
-f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
+m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
-f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
-# Provide a default mapping from a DWARF register number to a gdb REGNUM.
-f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
+m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
# Convert from an sdb register number to an internal gdb register number.
-f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
-f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
-f::const char *:register_name:int regnr:regnr
+m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
+# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
+m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
+m:const char *:register_name:int regnr:regnr::0
# Return the type of a register specified by the architecture. Only
# the register cache should call this function directly; others should
# use "register_type".
-M::struct type *:register_type:int reg_nr:reg_nr
+M:struct type *:register_type:int reg_nr:reg_nr
# See gdbint.texinfo, and PUSH_DUMMY_CALL.
-M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
-# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
+M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
+# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
# deprecated_fp_regnum.
-v::int:deprecated_fp_regnum:::-1:-1::0
+v:int:deprecated_fp_regnum:::-1:-1::0
# See gdbint.texinfo. See infcall.c.
-M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
-v::int:call_dummy_location::::AT_ENTRY_POINT::0
-M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr, regcache
+M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
+v:int:call_dummy_location::::AT_ENTRY_POINT::0
+M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
-m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
-M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
-M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
+m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
+M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
+M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
# MAP a GDB RAW register number onto a simulator register number. See
# also include/...-sim.h.
-f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
-f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
-f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
+m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
+m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
+m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
# setjmp/longjmp support.
-F::int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
+F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
#
-v::int:believe_pcc_promotion:::::::
+v:int:believe_pcc_promotion:::::::
#
-f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
-f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
-f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
+m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
+f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
+f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
# Construct a value representing the contents of register REGNUM in
# frame FRAME, interpreted as type TYPE. The routine needs to
# allocate and return a struct value with all value attributes
# (but not the value contents) filled in.
-f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
+f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
#
-f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
-f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
-M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
-
-# It has been suggested that this, well actually its predecessor,
-# should take the type/value of the function to be called and not the
-# return type. This is left as an exercise for the reader.
-
-# NOTE: cagney/2004-06-13: The function stack.c:return_command uses
-# the predicate with default hack to avoid calling store_return_value
-# (via legacy_return_value), when a small struct is involved.
-
-M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
+m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
+m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
+M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
-# The deprecated methods extract_return_value, store_return_value,
-# DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
-# deprecated_use_struct_convention have all been folded into
-# RETURN_VALUE.
-
-f::void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
-f::void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
-f::int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
-
-f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
-f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
-f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
-M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
-f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
-f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
-v::CORE_ADDR:decr_pc_after_break:::0:::0
+# Return the return-value convention that will be used by FUNCTYPE
+# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
+# case the return convention is computed based only on VALTYPE.
+#
+# If READBUF is not NULL, extract the return value and save it in this buffer.
+#
+# If WRITEBUF is not NULL, it contains a return value which will be
+# stored into the appropriate register. This can be used when we want
+# to force the value returned by a function (see the "return" command
+# for instance).
+M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
+
+m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
+M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
+f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
+m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
+# Return the adjusted address and kind to use for Z0/Z1 packets.
+# KIND is usually the memory length of the breakpoint, but may have a
+# different target-specific meaning.
+m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
+M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
+m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
+m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
+v:CORE_ADDR:decr_pc_after_break:::0:::0
# A function can be addressed by either it's "pointer" (possibly a
# descriptor address) or "entry point" (first executable instruction).
# corresponds to the "function pointer" and the function's start
# corresponds to the "function entry point" - and hence is redundant.
-v::CORE_ADDR:deprecated_function_start_offset:::0:::0
+v:CORE_ADDR:deprecated_function_start_offset:::0:::0
# Return the remote protocol register number associated with this
# register. Normally the identity mapping.
-m::int:remote_register_number:int regno:regno::default_remote_register_number::0
+m:int:remote_register_number:int regno:regno::default_remote_register_number::0
# Fetch the target specific address used to represent a load module.
-F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
+F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
#
-v::CORE_ADDR:frame_args_skip:::0:::0
-M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
-M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
+v:CORE_ADDR:frame_args_skip:::0:::0
+M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
+M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
# frame-base. Enable frame-base before frame-unwind.
-F::int:frame_num_args:struct frame_info *frame:frame
+F:int:frame_num_args:struct frame_info *frame:frame
#
-M::CORE_ADDR:frame_align:CORE_ADDR address:address
-# deprecated_reg_struct_has_addr has been replaced by
-# stabs_argument_has_addr.
-F::int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
-m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
-v::int:frame_red_zone_size
+M:CORE_ADDR:frame_align:CORE_ADDR address:address
+m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
+v:int:frame_red_zone_size
#
-m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
+m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
# On some machines there are bits in addresses which are not really
# part of the address, but are used by the kernel, the hardware, etc.
# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
# being a few stray bits in the PC which would mislead us, not as some
# sort of generic thing to handle alignment or segmentation (it's
# possible it should be in TARGET_READ_PC instead).
-f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
+m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
# It is not at all clear why gdbarch_smash_text_address is not folded into
# gdbarch_addr_bits_remove.
-f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
+m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
# FIXME/cagney/2001-01-18: This should be split in two. A target method that
# indicates if the target needs software single step. An ISA method to
#
# A return value of 1 means that the software_single_step breakpoints
# were inserted; 0 means they were not.
-F::int:software_single_step:struct frame_info *frame:frame
+F:int:software_single_step:struct frame_info *frame:frame
# Return non-zero if the processor is executing a delay slot and a
# further single-step is needed before the instruction finishes.
-M::int:single_step_through_delay:struct frame_info *frame:frame
+M:int:single_step_through_delay:struct frame_info *frame:frame
# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
# disassembler. Perhaps objdump can handle it?
-f::int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
-f::CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
+f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
+f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
-# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
+# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
# evaluates non-zero, this is the address where the debugger will place
# a step-resume breakpoint to get us past the dynamic linker.
-m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
+m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
# Some systems also have trampoline code for returning from shared libs.
-f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
+m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
# A target might have problems with watchpoints as soon as the stack
# frame of the current function has been destroyed. This mostly happens
# already been invalidated regardless of the value of addr. Targets
# which don't suffer from that problem could just let this functionality
# untouched.
-m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
-# Given a vector of command-line arguments, return a newly allocated
-# string which, when passed to the create_inferior function, will be
-# parsed (on Unix systems, by the shell) to yield the same vector.
-# This function should call error() if the argument vector is not
-# representable for this target or if this target does not support
-# command-line arguments.
-# ARGC is the number of elements in the vector.
-# ARGV is an array of strings, one per argument.
-m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
-f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
-f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
-v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
-v::int:cannot_step_breakpoint:::0:0::0
-v::int:have_nonsteppable_watchpoint:::0:0::0
-F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
-M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
-M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
+m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
+f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
+f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
+v:int:cannot_step_breakpoint:::0:0::0
+v:int:have_nonsteppable_watchpoint:::0:0::0
+F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
+M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
+M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
# Is a register in a group
-m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
+m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
# Fetch the pointer to the ith function argument.
-F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
+F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
# Return the appropriate register set for a core file section with
# name SECT_NAME and size SECT_SIZE.
-M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
+M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
+
+# Supported register notes in a core file.
+v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
# core file into buffer READBUF with length LEN.
-M::LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
+M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
+
+# How the core target converts a PTID from a core file to a string.
+M:char *:core_pid_to_str:ptid_t ptid:ptid
+
+# BFD target to use when generating a core file.
+V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
# If the elements of C++ vtables are in-place function descriptors rather
# than normal function pointers (which may point to code or a descriptor),
# set this to one.
-v::int:vtable_function_descriptors:::0:0::0
+v:int:vtable_function_descriptors:::0:0::0
# Set if the least significant bit of the delta is used instead of the least
# significant bit of the pfn for pointers to virtual member functions.
-v::int:vbit_in_delta:::0:0::0
+v:int:vbit_in_delta:::0:0::0
# Advance PC to next instruction in order to skip a permanent breakpoint.
-F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
+F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
+
+# The maximum length of an instruction on this architecture.
+V:ULONGEST:max_insn_length:::0:0
+
+# Copy the instruction at FROM to TO, and make any adjustments
+# necessary to single-step it at that address.
+#
+# REGS holds the state the thread's registers will have before
+# executing the copied instruction; the PC in REGS will refer to FROM,
+# not the copy at TO. The caller should update it to point at TO later.
+#
+# Return a pointer to data of the architecture's choice to be passed
+# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
+# the instruction's effects have been completely simulated, with the
+# resulting state written back to REGS.
+#
+# For a general explanation of displaced stepping and how GDB uses it,
+# see the comments in infrun.c.
+#
+# The TO area is only guaranteed to have space for
+# gdbarch_max_insn_length (arch) bytes, so this function must not
+# write more bytes than that to that area.
+#
+# If you do not provide this function, GDB assumes that the
+# architecture does not support displaced stepping.
+#
+# If your architecture doesn't need to adjust instructions before
+# single-stepping them, consider using simple_displaced_step_copy_insn
+# here.
+M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
+
+# Return true if GDB should use hardware single-stepping to execute
+# the displaced instruction identified by CLOSURE. If false,
+# GDB will simply restart execution at the displaced instruction
+# location, and it is up to the target to ensure GDB will receive
+# control again (e.g. by placing a software breakpoint instruction
+# into the displaced instruction buffer).
+#
+# The default implementation returns false on all targets that
+# provide a gdbarch_software_single_step routine, and true otherwise.
+m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
+
+# Fix up the state resulting from successfully single-stepping a
+# displaced instruction, to give the result we would have gotten from
+# stepping the instruction in its original location.
+#
+# REGS is the register state resulting from single-stepping the
+# displaced instruction.
+#
+# CLOSURE is the result from the matching call to
+# gdbarch_displaced_step_copy_insn.
+#
+# If you provide gdbarch_displaced_step_copy_insn.but not this
+# function, then GDB assumes that no fixup is needed after
+# single-stepping the instruction.
+#
+# For a general explanation of displaced stepping and how GDB uses it,
+# see the comments in infrun.c.
+M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
+
+# Free a closure returned by gdbarch_displaced_step_copy_insn.
+#
+# If you provide gdbarch_displaced_step_copy_insn, you must provide
+# this function as well.
+#
+# If your architecture uses closures that don't need to be freed, then
+# you can use simple_displaced_step_free_closure here.
+#
+# For a general explanation of displaced stepping and how GDB uses it,
+# see the comments in infrun.c.
+m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
+
+# Return the address of an appropriate place to put displaced
+# instructions while we step over them. There need only be one such
+# place, since we're only stepping one thread over a breakpoint at a
+# time.
+#
+# For a general explanation of displaced stepping and how GDB uses it,
+# see the comments in infrun.c.
+m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
+
+# Relocate an instruction to execute at a different address. OLDLOC
+# is the address in the inferior memory where the instruction to
+# relocate is currently at. On input, TO points to the destination
+# where we want the instruction to be copied (and possibly adjusted)
+# to. On output, it points to one past the end of the resulting
+# instruction(s). The effect of executing the instruction at TO shall
+# be the same as if executing it at FROM. For example, call
+# instructions that implicitly push the return address on the stack
+# should be adjusted to return to the instruction after OLDLOC;
+# relative branches, and other PC-relative instructions need the
+# offset adjusted; etc.
+M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
# Refresh overlay mapped state for section OSECT.
-F::void:overlay_update:struct obj_section *osect:osect
+F:void:overlay_update:struct obj_section *osect:osect
+
+M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
+
+# Handle special encoding of static variables in stabs debug info.
+F:char *:static_transform_name:char *name:name
+# Set if the address in N_SO or N_FUN stabs may be zero.
+v:int:sofun_address_maybe_missing:::0:0::0
+
+# Parse the instruction at ADDR storing in the record execution log
+# the registers REGCACHE and memory ranges that will be affected when
+# the instruction executes, along with their current values.
+# Return -1 if something goes wrong, 0 otherwise.
+M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
+
+# Save process state after a signal.
+# Return -1 if something goes wrong, 0 otherwise.
+M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
+
+# Signal translation: translate inferior's signal (host's) number into
+# GDB's representation.
+m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
+# Signal translation: translate GDB's signal number into inferior's host
+# signal number.
+m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
+
+# Extra signal info inspection.
+#
+# Return a type suitable to inspect extra signal information.
+M:struct type *:get_siginfo_type:void:
+
+# Record architecture-specific information from the symbol table.
+M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
+
+# Function for the 'catch syscall' feature.
+
+# Get architecture-specific system calls information from registers.
+M:LONGEST:get_syscall_number:ptid_t ptid:ptid
+
+# True if the list of shared libraries is one and only for all
+# processes, as opposed to a list of shared libraries per inferior.
+# This usually means that all processes, although may or may not share
+# an address space, will see the same set of symbols at the same
+# addresses.
+v:int:has_global_solist:::0:0::0
+
+# On some targets, even though each inferior has its own private
+# address space, the debug interface takes care of making breakpoints
+# visible to all address spaces automatically. For such cases,
+# this property should be set to true.
+v:int:has_global_breakpoints:::0:0::0
+
+# True if inferiors share an address space (e.g., uClinux).
+m:int:has_shared_address_space:void:::default_has_shared_address_space::0
+
+# True if a fast tracepoint can be set at an address.
+m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
+
+# Return the "auto" target charset.
+f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
+# Return the "auto" target wide charset.
+f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
+
+# If non-empty, this is a file extension that will be opened in place
+# of the file extension reported by the shared library list.
+#
+# This is most useful for toolchains that use a post-linker tool,
+# where the names of the files run on the target differ in extension
+# compared to the names of the files GDB should load for debug info.
+v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
+
+# If true, the target OS has DOS-based file system semantics. That
+# is, absolute paths include a drive name, and the backslash is
+# considered a directory separator.
+v:int:has_dos_based_file_system:::0:0::0
EOF
}
/* Dynamic architecture support for GDB, the GNU debugger.
- Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
- Free Software Foundation, Inc.
+ Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
+ 2007, 2008, 2009 Free Software Foundation, Inc.
This file is part of GDB.
struct obstack;
struct bp_target_info;
struct target_desc;
-
-extern struct gdbarch *current_gdbarch;
+struct displaced_step_closure;
+struct core_regset_section;
+struct syscall;
+
+/* The architecture associated with the connection to the target.
+
+ The architecture vector provides some information that is really
+ a property of the target: The layout of certain packets, for instance;
+ or the solib_ops vector. Etc. To differentiate architecture accesses
+ to per-target properties from per-thread/per-frame/per-objfile properties,
+ accesses to per-target properties should be made through target_gdbarch.
+
+ Eventually, when support for multiple targets is implemented in
+ GDB, this global should be made target-specific. */
+extern struct gdbarch *target_gdbarch;
EOF
# function typedef's
printf "\n"
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
- if test -n "${macro}"
- then
- printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
- printf "#error \"Non multi-arch definition of ${macro}\"\n"
- printf "#endif\n"
- printf "#if !defined (${macro})\n"
- printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
- printf "#endif\n"
- fi
fi
done
if class_is_predicate_p
then
- if test -n "${macro}"
- then
- printf "\n"
- printf "#if defined (${macro})\n"
- printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
- printf "#if !defined (${macro}_P)\n"
- printf "#define ${macro}_P() (1)\n"
- printf "#endif\n"
- printf "#endif\n"
- fi
printf "\n"
printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
- if test -n "${macro}"
- then
- printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
- printf "#error \"Non multi-arch definition of ${macro}\"\n"
- printf "#endif\n"
- printf "#if !defined (${macro}_P)\n"
- printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
- printf "#endif\n"
- fi
fi
if class_is_variable_p
then
printf "\n"
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
- if test -n "${macro}"
- then
- printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
- printf "#error \"Non multi-arch definition of ${macro}\"\n"
- printf "#endif\n"
- printf "#if !defined (${macro})\n"
- printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
- printf "#endif\n"
- fi
fi
if class_is_function_p
then
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
fi
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
- if test -n "${macro}"
- then
- printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
- printf "#error \"Non multi-arch definition of ${macro}\"\n"
- printf "#endif\n"
- if [ "x${actual}" = "x" ]
- then
- d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
- elif [ "x${actual}" = "x-" ]
- then
- d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
- else
- d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
- fi
- printf "#if !defined (${macro})\n"
- if [ "x${actual}" = "x" ]
- then
- printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
- elif [ "x${actual}" = "x-" ]
- then
- printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
- else
- printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
- fi
- printf "#endif\n"
- fi
fi
done
# close it off
cat <<EOF
+/* Definition for an unknown syscall, used basically in error-cases. */
+#define UNKNOWN_SYSCALL (-1)
+
extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
of all the previously created architures for this architecture
family. The (possibly NULL) ARCHES->gdbarch can used to access
values from the previously selected architecture for this
- architecture family. The global \`\`current_gdbarch'' shall not be
- used.
+ architecture family.
The INIT function shall return any of: NULL - indicating that it
doesn't recognize the selected architecture; an existing \`\`struct
/* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
int byte_order;
+ int byte_order_for_code;
+
/* Use default: NULL (ZERO). */
bfd *abfd;
set, and then finished using gdbarch_info_fill.
Returns the corresponding architecture, or NULL if no matching
- architecture was found. "current_gdbarch" is not updated. */
+ architecture was found. */
extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
-/* Helper function. Set the global "current_gdbarch" to "gdbarch".
+/* Helper function. Set the global "target_gdbarch" to "gdbarch".
FIXME: kettenis/20031124: Of the functions that follow, only
gdbarch_from_bfd is supposed to survive. The others will
multi-arch. However, for now we're still stuck with the concept of
a single active architecture. */
-extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
+extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
/* Register per-architecture data-pointer.
#include "gdb_assert.h"
#include "gdb_string.h"
-#include "gdb-events.h"
#include "reggroups.h"
#include "osabi.h"
#include "gdb_obstack.h"
+#include "observer.h"
+#include "regcache.h"
/* Static function declarations */
return format[0]->name;
}
+static const char *
+pstring (const char *string)
+{
+ if (string == NULL)
+ return "(null)";
+ return string;
+}
+
EOF
# gdbarch open the gdbarch object
/* startup_gdbarch() */
};
-struct gdbarch *current_gdbarch = &startup_gdbarch;
+struct gdbarch *target_gdbarch = &startup_gdbarch;
EOF
# Create a new gdbarch struct
gdbarch_alloc (const struct gdbarch_info *info,
struct gdbarch_tdep *tdep)
{
- /* NOTE: The new architecture variable is named \`\`current_gdbarch''
- so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
- the current local architecture and not the previous global
- architecture. This ensures that the new architectures initial
- values are not influenced by the previous architecture. Once
- everything is parameterised with gdbarch, this will go away. */
- struct gdbarch *current_gdbarch;
+ struct gdbarch *gdbarch;
/* Create an obstack for allocating all the per-architecture memory,
then use that to allocate the architecture vector. */
struct obstack *obstack = XMALLOC (struct obstack);
obstack_init (obstack);
- current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
- memset (current_gdbarch, 0, sizeof (*current_gdbarch));
- current_gdbarch->obstack = obstack;
+ gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
+ memset (gdbarch, 0, sizeof (*gdbarch));
+ gdbarch->obstack = obstack;
- alloc_gdbarch_data (current_gdbarch);
+ alloc_gdbarch_data (gdbarch);
- current_gdbarch->tdep = tdep;
+ gdbarch->tdep = tdep;
EOF
printf "\n"
function_list | while do_read
do
if class_is_info_p
then
- printf " current_gdbarch->${function} = info->${function};\n"
+ printf " gdbarch->${function} = info->${function};\n"
fi
done
printf "\n"
then
if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
then
- printf " current_gdbarch->${function} = ${predefault};\n"
+ printf " gdbarch->${function} = ${predefault};\n"
fi
fi
done
cat <<EOF
/* gdbarch_alloc() */
- return current_gdbarch;
+ return gdbarch;
}
EOF
gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
{
void *data = obstack_alloc (arch->obstack, size);
+
memset (data, 0, size);
return data;
}
gdbarch_free (struct gdbarch *arch)
{
struct obstack *obstack;
+
gdb_assert (arch != NULL);
gdb_assert (!arch->initialized_p);
obstack = arch->obstack;
/* Ensure that all values in a GDBARCH are reasonable. */
-/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
- just happens to match the global variable \`\`current_gdbarch''. That
- way macros refering to that variable get the local and not the global
- version - ulgh. Once everything is parameterised with gdbarch, this
- will go away. */
-
static void
-verify_gdbarch (struct gdbarch *current_gdbarch)
+verify_gdbarch (struct gdbarch *gdbarch)
{
struct ui_file *log;
struct cleanup *cleanups;
- long dummy;
+ long length;
char *buf;
+
log = mem_fileopen ();
cleanups = make_cleanup_ui_file_delete (log);
/* fundamental */
- if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
+ if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
fprintf_unfiltered (log, "\n\tbyte-order");
- if (current_gdbarch->bfd_arch_info == NULL)
+ if (gdbarch->bfd_arch_info == NULL)
fprintf_unfiltered (log, "\n\tbfd_arch_info");
/* Check those that need to be defined for the given multi-arch level. */
EOF
elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
then
printf " if (${invalid_p})\n"
- printf " current_gdbarch->${function} = ${postdefault};\n"
+ printf " gdbarch->${function} = ${postdefault};\n"
elif [ -n "${predefault}" -a -n "${postdefault}" ]
then
- printf " if (current_gdbarch->${function} == ${predefault})\n"
- printf " current_gdbarch->${function} = ${postdefault};\n"
+ printf " if (gdbarch->${function} == ${predefault})\n"
+ printf " gdbarch->${function} = ${postdefault};\n"
elif [ -n "${postdefault}" ]
then
- printf " if (current_gdbarch->${function} == 0)\n"
- printf " current_gdbarch->${function} = ${postdefault};\n"
+ printf " if (gdbarch->${function} == 0)\n"
+ printf " gdbarch->${function} = ${postdefault};\n"
elif [ -n "${invalid_p}" ]
then
printf " if (${invalid_p})\n"
printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
elif [ -n "${predefault}" ]
then
- printf " if (current_gdbarch->${function} == ${predefault})\n"
+ printf " if (gdbarch->${function} == ${predefault})\n"
printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
fi
fi
done
cat <<EOF
- buf = ui_file_xstrdup (log, &dummy);
+ buf = ui_file_xstrdup (log, &length);
make_cleanup (xfree, buf);
- if (strlen (buf) > 0)
+ if (length > 0)
internal_error (__FILE__, __LINE__,
_("verify_gdbarch: the following are invalid ...%s"),
buf);
cat <<EOF
/* Print out the details of the current architecture. */
-/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
- just happens to match the global variable \`\`current_gdbarch''. That
- way macros refering to that variable get the local and not the global
- version - ulgh. Once everything is parameterised with gdbarch, this
- will go away. */
-
void
-gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
+gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
{
- const char *gdb_xm_file = "<not-defined>";
const char *gdb_nm_file = "<not-defined>";
- const char *gdb_tm_file = "<not-defined>";
-#if defined (GDB_XM_FILE)
- gdb_xm_file = GDB_XM_FILE;
-#endif
- fprintf_unfiltered (file,
- "gdbarch_dump: GDB_XM_FILE = %s\\n",
- gdb_xm_file);
+
#if defined (GDB_NM_FILE)
gdb_nm_file = GDB_NM_FILE;
#endif
fprintf_unfiltered (file,
"gdbarch_dump: GDB_NM_FILE = %s\\n",
gdb_nm_file);
-#if defined (GDB_TM_FILE)
- gdb_tm_file = GDB_TM_FILE;
-#endif
- fprintf_unfiltered (file,
- "gdbarch_dump: GDB_TM_FILE = %s\\n",
- gdb_tm_file);
EOF
-function_list | sort -t: -k 4 | while do_read
+function_list | sort -t: -k 3 | while do_read
do
# First the predicate
if class_is_predicate_p
then
- if test -n "${macro}"
- then
- printf "#ifdef ${macro}_P\n"
- printf " fprintf_unfiltered (file,\n"
- printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
- printf " \"${macro}_P()\",\n"
- printf " XSTRING (${macro}_P ()));\n"
- printf "#endif\n"
- fi
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
- printf " gdbarch_${function}_p (current_gdbarch));\n"
- fi
- # Print the macro definition.
- if test -n "${macro}"
- then
- printf "#ifdef ${macro}\n"
- if class_is_function_p
- then
- printf " fprintf_unfiltered (file,\n"
- printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
- printf " \"${macro}(${actual})\",\n"
- printf " XSTRING (${macro} (${actual})));\n"
- else
- printf " fprintf_unfiltered (file,\n"
- printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
- printf " XSTRING (${macro}));\n"
- fi
- printf "#endif\n"
+ printf " gdbarch_${function}_p (gdbarch));\n"
fi
# Print the corresponding value.
if class_is_function_p
then
printf " fprintf_unfiltered (file,\n"
- printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
- printf " (long) current_gdbarch->${function});\n"
+ printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
+ printf " host_address_to_string (gdbarch->${function}));\n"
else
# It is a variable
case "${print}:${returntype}" in
:CORE_ADDR )
- fmt="0x%s"
- print="paddr_nz (current_gdbarch->${function})"
+ fmt="%s"
+ print="core_addr_to_string_nz (gdbarch->${function})"
;;
:* )
fmt="%s"
- print="paddr_d (current_gdbarch->${function})"
+ print="plongest (gdbarch->${function})"
;;
* )
fmt="%s"
fi
done
cat <<EOF
- if (current_gdbarch->dump_tdep != NULL)
- current_gdbarch->dump_tdep (current_gdbarch, file);
+ if (gdbarch->dump_tdep != NULL)
+ gdbarch->dump_tdep (gdbarch, file);
}
EOF
gdbarch_data_post_init_ftype *post_init)
{
struct gdbarch_data_registration **curr;
- /* Append the new registraration. */
+
+ /* Append the new registration. */
for (curr = &gdbarch_data_registry.registrations;
(*curr) != NULL;
curr = &(*curr)->next);
{
/* Accumulate a list of names based on the registed list of
architectures. */
- enum bfd_architecture a;
int nr_arches = 0;
const char **arches = NULL;
struct gdbarch_registration *rego;
+
for (rego = gdbarch_registry;
rego != NULL;
rego = rego->next)
{
struct gdbarch_registration **curr;
const struct bfd_arch_info *bfd_arch_info;
+
/* Check that BFD recognizes this architecture */
bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
if (bfd_arch_info == NULL)
}
/* log it */
if (gdbarch_debug)
- fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
+ fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
bfd_arch_info->printable_name,
- (long) init);
+ host_address_to_string (init));
/* Append it */
(*curr) = XMALLOC (struct gdbarch_registration);
(*curr)->bfd_architecture = bfd_architecture;
/* Find an architecture that matches the specified INFO. Create a new
- architecture if needed. Return that new architecture. Assumes
- that there is no current architecture. */
+ architecture if needed. Return that new architecture. */
-static struct gdbarch *
-find_arch_by_info (struct gdbarch_info info)
+struct gdbarch *
+gdbarch_find_by_info (struct gdbarch_info info)
{
struct gdbarch *new_gdbarch;
struct gdbarch_registration *rego;
- /* The existing architecture has been swapped out - all this code
- works from a clean slate. */
- gdb_assert (current_gdbarch == NULL);
-
/* Fill in missing parts of the INFO struct using a number of
sources: "set ..."; INFOabfd supplied; and the global
defaults. */
if (gdbarch_debug)
{
fprintf_unfiltered (gdb_stdlog,
- "find_arch_by_info: info.bfd_arch_info %s\n",
+ "gdbarch_find_by_info: info.bfd_arch_info %s\n",
(info.bfd_arch_info != NULL
? info.bfd_arch_info->printable_name
: "(null)"));
fprintf_unfiltered (gdb_stdlog,
- "find_arch_by_info: info.byte_order %d (%s)\n",
+ "gdbarch_find_by_info: info.byte_order %d (%s)\n",
info.byte_order,
(info.byte_order == BFD_ENDIAN_BIG ? "big"
: info.byte_order == BFD_ENDIAN_LITTLE ? "little"
: "default"));
fprintf_unfiltered (gdb_stdlog,
- "find_arch_by_info: info.osabi %d (%s)\n",
+ "gdbarch_find_by_info: info.osabi %d (%s)\n",
info.osabi, gdbarch_osabi_name (info.osabi));
fprintf_unfiltered (gdb_stdlog,
- "find_arch_by_info: info.abfd 0x%lx\n",
- (long) info.abfd);
+ "gdbarch_find_by_info: info.abfd %s\n",
+ host_address_to_string (info.abfd));
fprintf_unfiltered (gdb_stdlog,
- "find_arch_by_info: info.tdep_info 0x%lx\n",
- (long) info.tdep_info);
+ "gdbarch_find_by_info: info.tdep_info %s\n",
+ host_address_to_string (info.tdep_info));
}
/* Find the tdep code that knows about this architecture. */
if (rego == NULL)
{
if (gdbarch_debug)
- fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
+ fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
"No matching architecture\n");
return 0;
}
if (new_gdbarch == NULL)
{
if (gdbarch_debug)
- fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
+ fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
"Target rejected architecture\n");
return NULL;
}
struct gdbarch_list **list;
struct gdbarch_list *this;
if (gdbarch_debug)
- fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
- "Previous architecture 0x%08lx (%s) selected\n",
- (long) new_gdbarch,
+ fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
+ "Previous architecture %s (%s) selected\n",
+ host_address_to_string (new_gdbarch),
new_gdbarch->bfd_arch_info->printable_name);
/* Find the existing arch in the list. */
for (list = ®o->arches;
/* It's a new architecture. */
if (gdbarch_debug)
- fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
- "New architecture 0x%08lx (%s) selected\n",
- (long) new_gdbarch,
+ fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
+ "New architecture %s (%s) selected\n",
+ host_address_to_string (new_gdbarch),
new_gdbarch->bfd_arch_info->printable_name);
/* Insert the new architecture into the front of the architecture
return new_gdbarch;
}
-struct gdbarch *
-gdbarch_find_by_info (struct gdbarch_info info)
-{
- struct gdbarch *new_gdbarch;
-
- /* Save the previously selected architecture, setting the global to
- NULL. This stops things like gdbarch->init() trying to use the
- previous architecture's configuration. The previous architecture
- may not even be of the same architecture family. The most recent
- architecture of the same family is found at the head of the
- rego->arches list. */
- struct gdbarch *old_gdbarch = current_gdbarch;
- current_gdbarch = NULL;
-
- /* Find the specified architecture. */
- new_gdbarch = find_arch_by_info (info);
-
- /* Restore the existing architecture. */
- gdb_assert (current_gdbarch == NULL);
- current_gdbarch = old_gdbarch;
-
- return new_gdbarch;
-}
-
/* Make the specified architecture current. */
void
-deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
+deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
{
gdb_assert (new_gdbarch != NULL);
- gdb_assert (current_gdbarch != NULL);
gdb_assert (new_gdbarch->initialized_p);
- current_gdbarch = new_gdbarch;
- architecture_changed_event ();
- reinit_frame_cache ();
+ target_gdbarch = new_gdbarch;
+ observer_notify_architecture_changed (new_gdbarch);
+ registers_changed ();
}
extern void _initialize_gdbarch (void);
void
_initialize_gdbarch (void)
{
- struct cmd_list_element *c;
-
add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
Set architecture debugging."), _("\\
Show architecture debugging."), _("\\