/* Perform arithmetic and other operations on values, for GDB.
- Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
- 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
- 2010, 2011 Free Software Foundation, Inc.
+ Copyright (C) 1986-2021 Free Software Foundation, Inc.
This file is part of GDB.
#include "expression.h"
#include "target.h"
#include "language.h"
-#include "gdb_string.h"
-#include "doublest.h"
-#include "dfp.h"
-#include <math.h>
+#include "target-float.h"
#include "infcall.h"
-#include "exceptions.h"
+#include "gdbsupport/byte-vector.h"
+#include "gdbarch.h"
/* Define whether or not the C operator '/' truncates towards zero for
differently signed operands (truncation direction is undefined in C). */
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
#endif
-void _initialize_valarith (void);
-\f
-
/* Given a pointer, return the size of its target.
If the pointer type is void *, then return 1.
If the target type is incomplete, then error out.
LONGEST sz = -1;
struct type *ptr_target;
- gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
+ gdb_assert (ptr_type->code () == TYPE_CODE_PTR);
ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
- sz = TYPE_LENGTH (ptr_target);
+ sz = type_length_units (ptr_target);
if (sz == 0)
{
- if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
+ if (ptr_type->code () == TYPE_CODE_VOID)
sz = 1;
else
{
- char *name;
+ const char *name;
- name = TYPE_NAME (ptr_target);
- if (name == NULL)
- name = TYPE_TAG_NAME (ptr_target);
+ name = ptr_target->name ();
if (name == NULL)
error (_("Cannot perform pointer math on incomplete types, "
"try casting to a known type, or void *."));
type1 = check_typedef (value_type (arg1));
type2 = check_typedef (value_type (arg2));
- gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
- gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
+ gdb_assert (type1->code () == TYPE_CODE_PTR);
+ gdb_assert (type2->code () == TYPE_CODE_PTR);
if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
!= TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
"second argument is neither\n"
"an integer nor a pointer of the same type."));
- sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
+ sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1)));
if (sz == 0)
{
warning (_("Type size unknown, assuming 1. "
- "Try casting to a known type, or void *."));
+ "Try casting to a known type, or void *."));
sz = 1;
}
ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
current language supports C-style arrays, it may also be TYPE_CODE_PTR.
- To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
See comments in value_coerce_array() for rationale for reason for
doing lower bounds adjustment here rather than there.
struct value *
value_subscript (struct value *array, LONGEST index)
{
- int c_style = current_language->c_style_arrays;
+ bool c_style = current_language->c_style_arrays_p ();
struct type *tarray;
array = coerce_ref (array);
tarray = check_typedef (value_type (array));
- if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
- || TYPE_CODE (tarray) == TYPE_CODE_STRING)
+ if (tarray->code () == TYPE_CODE_ARRAY
+ || tarray->code () == TYPE_CODE_STRING)
{
- struct type *range_type = TYPE_INDEX_TYPE (tarray);
- LONGEST lowerbound, upperbound;
+ struct type *range_type = tarray->index_type ();
+ gdb::optional<LONGEST> lowerbound = get_discrete_low_bound (range_type);
+ if (!lowerbound.has_value ())
+ lowerbound = 0;
- get_discrete_bounds (range_type, &lowerbound, &upperbound);
if (VALUE_LVAL (array) != lval_memory)
- return value_subscripted_rvalue (array, index, lowerbound);
+ return value_subscripted_rvalue (array, index, *lowerbound);
- if (c_style == 0)
+ if (!c_style)
{
- if (index >= lowerbound && index <= upperbound)
- return value_subscripted_rvalue (array, index, lowerbound);
+ gdb::optional<LONGEST> upperbound
+ = get_discrete_high_bound (range_type);
+
+ if (!upperbound.has_value ())
+ upperbound = 0;
+
+ if (index >= *lowerbound && index <= *upperbound)
+ return value_subscripted_rvalue (array, index, *lowerbound);
+
/* Emit warning unless we have an array of unknown size.
An array of unknown size has lowerbound 0 and upperbound -1. */
- if (upperbound > -1)
+ if (*upperbound > -1)
warning (_("array or string index out of range"));
/* fall doing C stuff */
- c_style = 1;
+ c_style = true;
}
- index -= lowerbound;
+ index -= *lowerbound;
array = value_coerce_array (array);
}
to doubles, but no longer does. */
struct value *
-value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
+value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound)
{
struct type *array_type = check_typedef (value_type (array));
struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
- unsigned int elt_size = TYPE_LENGTH (elt_type);
- unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
- struct value *v;
-
- if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
- && elt_offs >= TYPE_LENGTH (array_type)))
- error (_("no such vector element"));
+ LONGEST elt_size = type_length_units (elt_type);
- if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
- v = allocate_value_lazy (elt_type);
- else
+ /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
+ in a byte. */
+ LONGEST stride = array_type->bit_stride ();
+ if (stride != 0)
{
- v = allocate_value (elt_type);
- value_contents_copy (v, value_embedded_offset (v),
- array, value_embedded_offset (array) + elt_offs,
- elt_size);
+ struct gdbarch *arch = elt_type->arch ();
+ int unit_size = gdbarch_addressable_memory_unit_size (arch);
+ elt_size = stride / (unit_size * 8);
}
- set_value_component_location (v, array);
- VALUE_REGNUM (v) = VALUE_REGNUM (array);
- VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
- set_value_offset (v, value_offset (array) + elt_offs);
- return v;
-}
-
-/* Return the value of BITSTRING[IDX] as (boolean) type TYPE. */
+ LONGEST elt_offs = elt_size * (index - lowerbound);
+ bool array_upper_bound_undefined
+ = array_type->bounds ()->high.kind () == PROP_UNDEFINED;
-struct value *
-value_bitstring_subscript (struct type *type,
- struct value *bitstring, LONGEST index)
-{
-
- struct type *bitstring_type, *range_type;
- struct value *v;
- int offset, byte, bit_index;
- LONGEST lowerbound, upperbound;
-
- bitstring_type = check_typedef (value_type (bitstring));
- gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
-
- range_type = TYPE_INDEX_TYPE (bitstring_type);
- get_discrete_bounds (range_type, &lowerbound, &upperbound);
- if (index < lowerbound || index > upperbound)
- error (_("bitstring index out of range"));
-
- index -= lowerbound;
- offset = index / TARGET_CHAR_BIT;
- byte = *((char *) value_contents (bitstring) + offset);
-
- bit_index = index % TARGET_CHAR_BIT;
- byte >>= (gdbarch_bits_big_endian (get_type_arch (bitstring_type)) ?
- TARGET_CHAR_BIT - 1 - bit_index : bit_index);
-
- v = value_from_longest (type, byte & 1);
+ if (index < lowerbound
+ || (!array_upper_bound_undefined
+ && elt_offs >= type_length_units (array_type))
+ || (VALUE_LVAL (array) != lval_memory && array_upper_bound_undefined))
+ {
+ if (type_not_associated (array_type))
+ error (_("no such vector element (vector not associated)"));
+ else if (type_not_allocated (array_type))
+ error (_("no such vector element (vector not allocated)"));
+ else
+ error (_("no such vector element"));
+ }
- set_value_bitpos (v, bit_index);
- set_value_bitsize (v, 1);
- set_value_component_location (v, bitstring);
- VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
+ if (is_dynamic_type (elt_type))
+ {
+ CORE_ADDR address;
- set_value_offset (v, offset + value_offset (bitstring));
+ address = value_address (array) + elt_offs;
+ elt_type = resolve_dynamic_type (elt_type, {}, address);
+ }
- return v;
+ return value_from_component (array, elt_type, elt_offs);
}
\f
return 0;
type1 = check_typedef (type1);
- if (TYPE_CODE (type1) == TYPE_CODE_REF)
+ if (TYPE_IS_REFERENCE (type1))
type1 = check_typedef (TYPE_TARGET_TYPE (type1));
- type2 = check_typedef (type1);
- if (TYPE_CODE (type2) == TYPE_CODE_REF)
+ type2 = check_typedef (type2);
+ if (TYPE_IS_REFERENCE (type2))
type2 = check_typedef (TYPE_TARGET_TYPE (type2));
- return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
- || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
+ return (type1->code () == TYPE_CODE_STRUCT
+ || type2->code () == TYPE_CODE_STRUCT);
}
/* Check to see if either argument is a structure, or a reference to
if (op == UNOP_ADDR)
return 0;
type1 = check_typedef (value_type (arg1));
- if (TYPE_CODE (type1) == TYPE_CODE_REF)
+ if (TYPE_IS_REFERENCE (type1))
type1 = check_typedef (TYPE_TARGET_TYPE (type1));
- return TYPE_CODE (type1) == TYPE_CODE_STRUCT;
+ return type1->code () == TYPE_CODE_STRUCT;
}
/* Try to find an operator named OPERATOR which takes NARGS arguments
situations or combinations thereof. */
static struct value *
-value_user_defined_cpp_op (struct value **args, int nargs, char *operator,
- int *static_memfuncp)
+value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
+ int *static_memfuncp, enum noside noside)
{
struct symbol *symp = NULL;
struct value *valp = NULL;
- find_overload_match (args, nargs, operator, BOTH /* could be method */,
- 0 /* strict match */, &args[0], /* objp */
- NULL /* pass NULL symbol since symbol is unknown */,
- &valp, &symp, static_memfuncp, 0);
+ find_overload_match (args, oper, BOTH /* could be method */,
+ &args[0] /* objp */,
+ NULL /* pass NULL symbol since symbol is unknown */,
+ &valp, &symp, static_memfuncp, 0, noside);
if (valp)
return valp;
if (symp)
{
/* This is a non member function and does not
- expect a reference as its first argument
- rather the explicit structure. */
+ expect a reference as its first argument
+ rather the explicit structure. */
args[0] = value_ind (args[0]);
return value_of_variable (symp, 0);
}
- error (_("Could not find %s."), operator);
+ error (_("Could not find %s."), oper);
}
/* Lookup user defined operator NAME. Return a value representing the
function, otherwise return NULL. */
static struct value *
-value_user_defined_op (struct value **argp, struct value **args, char *name,
- int *static_memfuncp, int nargs)
+value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
+ char *name, int *static_memfuncp, enum noside noside)
{
struct value *result = NULL;
if (current_language->la_language == language_cplus)
- result = value_user_defined_cpp_op (args, nargs, name, static_memfuncp);
+ {
+ result = value_user_defined_cpp_op (args, name, static_memfuncp,
+ noside);
+ }
else
- result = value_struct_elt (argp, args, name, static_memfuncp,
- "structure");
+ result = value_struct_elt (argp, args.data (), name, static_memfuncp,
+ "structure");
return result;
}
arg1.operator @ (arg1,arg2) and return that value (where '@' is any
binary operator which is legal for GNU C++).
- OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
+ OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
is the opcode saying how to modify it. Otherwise, OTHEROP is
unused. */
value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
enum exp_opcode otherop, enum noside noside)
{
- struct value **argvec;
char *ptr;
char tstr[13];
int static_memfuncp;
/* now we know that what we have to do is construct our
arg vector and find the right function to call it with. */
- if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
+ if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
error (_("Can't do that binary op on that type")); /* FIXME be explicit */
- argvec = (struct value **) alloca (sizeof (struct value *) * 4);
+ value *argvec_storage[3];
+ gdb::array_view<value *> argvec = argvec_storage;
+
argvec[1] = value_addr (arg1);
argvec[2] = arg2;
- argvec[3] = 0;
/* Make the right function name up. */
strcpy (tstr, "operator__");
error (_("Invalid binary operation specified."));
}
- argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
- &static_memfuncp, 2);
+ argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
+ &static_memfuncp, noside);
if (argvec[0])
{
if (static_memfuncp)
{
argvec[1] = argvec[0];
- argvec++;
+ argvec = argvec.slice (1);
+ }
+ if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
+ {
+ /* Static xmethods are not supported yet. */
+ gdb_assert (static_memfuncp == 0);
+ if (noside == EVAL_AVOID_SIDE_EFFECTS)
+ {
+ struct type *return_type
+ = result_type_of_xmethod (argvec[0], argvec.slice (1));
+
+ if (return_type == NULL)
+ error (_("Xmethod is missing return type."));
+ return value_zero (return_type, VALUE_LVAL (arg1));
+ }
+ return call_xmethod (argvec[0], argvec.slice (1));
}
if (noside == EVAL_AVOID_SIDE_EFFECTS)
{
= TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
return value_zero (return_type, VALUE_LVAL (arg1));
}
- return call_function_by_hand (argvec[0], 2 - static_memfuncp,
- argvec + 1);
+ return call_function_by_hand (argvec[0], NULL,
+ argvec.slice (1, 2 - static_memfuncp));
}
throw_error (NOT_FOUND_ERROR,
- _("member function %s not found"), tstr);
-#ifdef lint
- return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
-#endif
+ _("member function %s not found"), tstr);
}
/* We know that arg1 is a structure, so try to find a unary user
struct value *
value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
{
- struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
- struct value **argvec;
- char *ptr, *mangle_ptr;
+ struct gdbarch *gdbarch = value_type (arg1)->arch ();
+ char *ptr;
char tstr[13], mangle_tstr[13];
int static_memfuncp, nargs;
/* now we know that what we have to do is construct our
arg vector and find the right function to call it with. */
- if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
+ if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
error (_("Can't do that unary op on that type")); /* FIXME be explicit */
- argvec = (struct value **) alloca (sizeof (struct value *) * 4);
+ value *argvec_storage[3];
+ gdb::array_view<value *> argvec = argvec_storage;
+
argvec[1] = value_addr (arg1);
argvec[2] = 0;
strcpy (tstr, "operator__");
ptr = tstr + 8;
strcpy (mangle_tstr, "__");
- mangle_ptr = mangle_tstr + 2;
switch (op)
{
case UNOP_PREINCREMENT:
case UNOP_POSTINCREMENT:
strcpy (ptr, "++");
argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
- argvec[3] = 0;
nargs ++;
break;
case UNOP_POSTDECREMENT:
strcpy (ptr, "--");
argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
- argvec[3] = 0;
nargs ++;
break;
case UNOP_LOGICAL_NOT:
error (_("Invalid unary operation specified."));
}
- argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
- &static_memfuncp, nargs);
+ argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
+ &static_memfuncp, noside);
if (argvec[0])
{
if (static_memfuncp)
{
argvec[1] = argvec[0];
- nargs --;
- argvec++;
+ argvec = argvec.slice (1);
+ }
+ if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
+ {
+ /* Static xmethods are not supported yet. */
+ gdb_assert (static_memfuncp == 0);
+ if (noside == EVAL_AVOID_SIDE_EFFECTS)
+ {
+ struct type *return_type
+ = result_type_of_xmethod (argvec[0], argvec[1]);
+
+ if (return_type == NULL)
+ error (_("Xmethod is missing return type."));
+ return value_zero (return_type, VALUE_LVAL (arg1));
+ }
+ return call_xmethod (argvec[0], argvec[1]);
}
if (noside == EVAL_AVOID_SIDE_EFFECTS)
{
= TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
return value_zero (return_type, VALUE_LVAL (arg1));
}
- return call_function_by_hand (argvec[0], nargs, argvec + 1);
+ return call_function_by_hand (argvec[0], NULL,
+ argvec.slice (1, nargs));
}
throw_error (NOT_FOUND_ERROR,
- _("member function %s not found"), tstr);
-
- return 0; /* For lint -- never reached */
+ _("member function %s not found"), tstr);
}
\f
struct value *outval = NULL;
int inval1len, inval2len;
int count, idx;
- char *ptr;
char inchar;
struct type *type1 = check_typedef (value_type (arg1));
struct type *type2 = check_typedef (value_type (arg2));
to the second of the two concatenated values or the value to be
repeated. */
- if (TYPE_CODE (type2) == TYPE_CODE_INT)
+ if (type2->code () == TYPE_CODE_INT)
{
struct type *tmp = type1;
/* Now process the input values. */
- if (TYPE_CODE (type1) == TYPE_CODE_INT)
+ if (type1->code () == TYPE_CODE_INT)
{
/* We have a repeat count. Validate the second value and then
- construct a value repeated that many times. */
- if (TYPE_CODE (type2) == TYPE_CODE_STRING
- || TYPE_CODE (type2) == TYPE_CODE_CHAR)
+ construct a value repeated that many times. */
+ if (type2->code () == TYPE_CODE_STRING
+ || type2->code () == TYPE_CODE_CHAR)
{
count = longest_to_int (value_as_long (inval1));
inval2len = TYPE_LENGTH (type2);
- ptr = (char *) alloca (count * inval2len);
- if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
+ std::vector<char> ptr (count * inval2len);
+ if (type2->code () == TYPE_CODE_CHAR)
{
char_type = type2;
value_contents (inval2));
for (idx = 0; idx < count; idx++)
{
- *(ptr + idx) = inchar;
+ ptr[idx] = inchar;
}
}
else
for (idx = 0; idx < count; idx++)
{
- memcpy (ptr + (idx * inval2len), value_contents (inval2),
+ memcpy (&ptr[idx * inval2len], value_contents (inval2),
inval2len);
}
}
- outval = value_string (ptr, count * inval2len, char_type);
+ outval = value_string (ptr.data (), count * inval2len, char_type);
}
- else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
- || TYPE_CODE (type2) == TYPE_CODE_BOOL)
+ else if (type2->code () == TYPE_CODE_BOOL)
{
- error (_("unimplemented support for bitstring/boolean repeats"));
+ error (_("unimplemented support for boolean repeats"));
}
else
{
error (_("can't repeat values of that type"));
}
}
- else if (TYPE_CODE (type1) == TYPE_CODE_STRING
- || TYPE_CODE (type1) == TYPE_CODE_CHAR)
+ else if (type1->code () == TYPE_CODE_STRING
+ || type1->code () == TYPE_CODE_CHAR)
{
/* We have two character strings to concatenate. */
- if (TYPE_CODE (type2) != TYPE_CODE_STRING
- && TYPE_CODE (type2) != TYPE_CODE_CHAR)
+ if (type2->code () != TYPE_CODE_STRING
+ && type2->code () != TYPE_CODE_CHAR)
{
error (_("Strings can only be concatenated with other strings."));
}
inval1len = TYPE_LENGTH (type1);
inval2len = TYPE_LENGTH (type2);
- ptr = (char *) alloca (inval1len + inval2len);
- if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
+ std::vector<char> ptr (inval1len + inval2len);
+ if (type1->code () == TYPE_CODE_CHAR)
{
char_type = type1;
- *ptr = (char) unpack_long (type1, value_contents (inval1));
+ ptr[0] = (char) unpack_long (type1, value_contents (inval1));
}
else
{
char_type = TYPE_TARGET_TYPE (type1);
- memcpy (ptr, value_contents (inval1), inval1len);
+ memcpy (ptr.data (), value_contents (inval1), inval1len);
}
- if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
+ if (type2->code () == TYPE_CODE_CHAR)
{
- *(ptr + inval1len) =
+ ptr[inval1len] =
(char) unpack_long (type2, value_contents (inval2));
}
else
{
- memcpy (ptr + inval1len, value_contents (inval2), inval2len);
+ memcpy (&ptr[inval1len], value_contents (inval2), inval2len);
}
- outval = value_string (ptr, inval1len + inval2len, char_type);
+ outval = value_string (ptr.data (), inval1len + inval2len, char_type);
}
- else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
- || TYPE_CODE (type1) == TYPE_CODE_BOOL)
+ else if (type1->code () == TYPE_CODE_BOOL)
{
/* We have two bitstrings to concatenate. */
- if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
- && TYPE_CODE (type2) != TYPE_CODE_BOOL)
+ if (type2->code () != TYPE_CODE_BOOL)
{
- error (_("Bitstrings or booleans can only be concatenated "
+ error (_("Booleans can only be concatenated "
"with other bitstrings or booleans."));
}
- error (_("unimplemented support for bitstring/boolean concatenation."));
+ error (_("unimplemented support for boolean concatenation."));
}
else
{
}
}
-/* Integer exponentiation: V1**V2, where both arguments are
- integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
-
-static ULONGEST
-uinteger_pow (ULONGEST v1, LONGEST v2)
-{
- if (v2 < 0)
- {
- if (v1 == 0)
- error (_("Attempt to raise 0 to negative power."));
- else
- return 0;
- }
- else
- {
- /* The Russian Peasant's Algorithm. */
- ULONGEST v;
-
- v = 1;
- for (;;)
- {
- if (v2 & 1L)
- v *= v1;
- v2 >>= 1;
- if (v2 == 0)
- return v;
- v1 *= v1;
- }
- }
-}
-
-/* Obtain decimal value of arguments for binary operation, converting from
- other types if one of them is not decimal floating point. */
+/* Obtain argument values for binary operation, converting from
+ other types if one of them is not floating point. */
static void
-value_args_as_decimal (struct value *arg1, struct value *arg2,
- gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
- gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
+value_args_as_target_float (struct value *arg1, struct value *arg2,
+ gdb_byte *x, struct type **eff_type_x,
+ gdb_byte *y, struct type **eff_type_y)
{
struct type *type1, *type2;
type1 = check_typedef (value_type (arg1));
type2 = check_typedef (value_type (arg2));
- /* At least one of the arguments must be of decimal float type. */
- gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
- || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
+ /* At least one of the arguments must be of floating-point type. */
+ gdb_assert (is_floating_type (type1) || is_floating_type (type2));
- if (TYPE_CODE (type1) == TYPE_CODE_FLT
- || TYPE_CODE (type2) == TYPE_CODE_FLT)
+ if (is_floating_type (type1) && is_floating_type (type2)
+ && type1->code () != type2->code ())
/* The DFP extension to the C language does not allow mixing of
* decimal float types with other float types in expressions
* (see WDTR 24732, page 12). */
error (_("Mixing decimal floating types with "
"other floating types is not allowed."));
- /* Obtain decimal value of arg1, converting from other types
- if necessary. */
+ /* Obtain value of arg1, converting from other types if necessary. */
- if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
+ if (is_floating_type (type1))
{
- *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
- *len_x = TYPE_LENGTH (type1);
- memcpy (x, value_contents (arg1), *len_x);
+ *eff_type_x = type1;
+ memcpy (x, value_contents (arg1), TYPE_LENGTH (type1));
}
else if (is_integral_type (type1))
{
- *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
- *len_x = TYPE_LENGTH (type2);
- decimal_from_integral (arg1, x, *len_x, *byte_order_x);
+ *eff_type_x = type2;
+ if (type1->is_unsigned ())
+ target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
+ else
+ target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
}
else
- error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
- TYPE_NAME (type2));
+ error (_("Don't know how to convert from %s to %s."), type1->name (),
+ type2->name ());
- /* Obtain decimal value of arg2, converting from other types
- if necessary. */
+ /* Obtain value of arg2, converting from other types if necessary. */
- if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
+ if (is_floating_type (type2))
{
- *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
- *len_y = TYPE_LENGTH (type2);
- memcpy (y, value_contents (arg2), *len_y);
+ *eff_type_y = type2;
+ memcpy (y, value_contents (arg2), TYPE_LENGTH (type2));
}
else if (is_integral_type (type2))
{
- *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
- *len_y = TYPE_LENGTH (type1);
- decimal_from_integral (arg2, y, *len_y, *byte_order_y);
+ *eff_type_y = type1;
+ if (type2->is_unsigned ())
+ target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
+ else
+ target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
}
else
- error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
- TYPE_NAME (type2));
+ error (_("Don't know how to convert from %s to %s."), type1->name (),
+ type2->name ());
}
-/* Perform a binary operation on two operands which have reasonable
- representations as integers or floats. This includes booleans,
- characters, integers, or floats.
- Does not support addition and subtraction on pointers;
- use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
+/* Assuming at last one of ARG1 or ARG2 is a fixed point value,
+ perform the binary operation OP on these two operands, and return
+ the resulting value (also as a fixed point). */
static struct value *
-scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
+fixed_point_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
{
+ struct type *type1 = check_typedef (value_type (arg1));
+ struct type *type2 = check_typedef (value_type (arg2));
+ const struct language_defn *language = current_language;
+
+ struct gdbarch *gdbarch = type1->arch ();
struct value *val;
- struct type *type1, *type2, *result_type;
- arg1 = coerce_ref (arg1);
- arg2 = coerce_ref (arg2);
+ gdb_mpq v1, v2, res;
- type1 = check_typedef (value_type (arg1));
- type2 = check_typedef (value_type (arg2));
+ gdb_assert (is_fixed_point_type (type1) || is_fixed_point_type (type2));
+ if (op == BINOP_MUL || op == BINOP_DIV)
+ {
+ v1 = value_to_gdb_mpq (arg1);
+ v2 = value_to_gdb_mpq (arg2);
- if ((TYPE_CODE (type1) != TYPE_CODE_FLT
- && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
- && !is_integral_type (type1))
- || (TYPE_CODE (type2) != TYPE_CODE_FLT
- && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
- && !is_integral_type (type2)))
- error (_("Argument to arithmetic operation not a number or boolean."));
+ /* The code below uses TYPE1 for the result type, so make sure
+ it is set properly. */
+ if (!is_fixed_point_type (type1))
+ type1 = type2;
+ }
+ else
+ {
+ if (!is_fixed_point_type (type1))
+ {
+ arg1 = value_cast (type2, arg1);
+ type1 = type2;
+ }
+ if (!is_fixed_point_type (type2))
+ {
+ arg2 = value_cast (type1, arg2);
+ type2 = type1;
+ }
- if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
- || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
+ v1.read_fixed_point (gdb::make_array_view (value_contents (arg1),
+ TYPE_LENGTH (type1)),
+ type_byte_order (type1), type1->is_unsigned (),
+ type1->fixed_point_scaling_factor ());
+ v2.read_fixed_point (gdb::make_array_view (value_contents (arg2),
+ TYPE_LENGTH (type2)),
+ type_byte_order (type2), type2->is_unsigned (),
+ type2->fixed_point_scaling_factor ());
+ }
+
+ auto fixed_point_to_value = [type1] (const gdb_mpq &fp)
+ {
+ value *fp_val = allocate_value (type1);
+
+ fp.write_fixed_point
+ (gdb::make_array_view (value_contents_raw (fp_val),
+ TYPE_LENGTH (type1)),
+ type_byte_order (type1),
+ type1->is_unsigned (),
+ type1->fixed_point_scaling_factor ());
+
+ return fp_val;
+ };
+
+ switch (op)
{
- int len_v1, len_v2, len_v;
- enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
- gdb_byte v1[16], v2[16];
- gdb_byte v[16];
+ case BINOP_ADD:
+ mpq_add (res.val, v1.val, v2.val);
+ val = fixed_point_to_value (res);
+ break;
- /* If only one type is decimal float, use its type.
+ case BINOP_SUB:
+ mpq_sub (res.val, v1.val, v2.val);
+ val = fixed_point_to_value (res);
+ break;
+
+ case BINOP_MIN:
+ val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) < 0 ? v1 : v2);
+ break;
+
+ case BINOP_MAX:
+ val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) > 0 ? v1 : v2);
+ break;
+
+ case BINOP_MUL:
+ mpq_mul (res.val, v1.val, v2.val);
+ val = fixed_point_to_value (res);
+ break;
+
+ case BINOP_DIV:
+ if (mpq_sgn (v2.val) == 0)
+ error (_("Division by zero"));
+ mpq_div (res.val, v1.val, v2.val);
+ val = fixed_point_to_value (res);
+ break;
+
+ case BINOP_EQUAL:
+ val = value_from_ulongest (language_bool_type (language, gdbarch),
+ mpq_cmp (v1.val, v2.val) == 0 ? 1 : 0);
+ break;
+
+ case BINOP_LESS:
+ val = value_from_ulongest (language_bool_type (language, gdbarch),
+ mpq_cmp (v1.val, v2.val) < 0 ? 1 : 0);
+ break;
+
+ default:
+ error (_("Integer-only operation on fixed point number."));
+ }
+
+ return val;
+}
+
+/* A helper function that finds the type to use for a binary operation
+ involving TYPE1 and TYPE2. */
+
+static struct type *
+promotion_type (struct type *type1, struct type *type2)
+{
+ struct type *result_type;
+
+ if (is_floating_type (type1) || is_floating_type (type2))
+ {
+ /* If only one type is floating-point, use its type.
Otherwise use the bigger type. */
- if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
+ if (!is_floating_type (type1))
+ result_type = type2;
+ else if (!is_floating_type (type2))
+ result_type = type1;
+ else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
result_type = type2;
- else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
+ else
+ result_type = type1;
+ }
+ else
+ {
+ /* Integer types. */
+ if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
result_type = type1;
else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
result_type = type2;
+ else if (type1->is_unsigned ())
+ result_type = type1;
+ else if (type2->is_unsigned ())
+ result_type = type2;
else
result_type = type1;
+ }
- len_v = TYPE_LENGTH (result_type);
- byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
+ return result_type;
+}
- value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
- v2, &len_v2, &byte_order_v2);
+static struct value *scalar_binop (struct value *arg1, struct value *arg2,
+ enum exp_opcode op);
- switch (op)
- {
- case BINOP_ADD:
- case BINOP_SUB:
- case BINOP_MUL:
- case BINOP_DIV:
- case BINOP_EXP:
- decimal_binop (op, v1, len_v1, byte_order_v1,
- v2, len_v2, byte_order_v2,
- v, len_v, byte_order_v);
- break;
+/* Perform a binary operation on complex operands. */
- default:
- error (_("Operation not valid for decimal floating point number."));
- }
+static struct value *
+complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
+{
+ struct type *arg1_type = check_typedef (value_type (arg1));
+ struct type *arg2_type = check_typedef (value_type (arg2));
- val = value_from_decfloat (result_type, v);
+ struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
+ if (arg1_type->code () == TYPE_CODE_COMPLEX)
+ {
+ arg1_real = value_real_part (arg1);
+ arg1_imag = value_imaginary_part (arg1);
}
- else if (TYPE_CODE (type1) == TYPE_CODE_FLT
- || TYPE_CODE (type2) == TYPE_CODE_FLT)
+ else
{
- /* FIXME-if-picky-about-floating-accuracy: Should be doing this
- in target format. real.c in GCC probably has the necessary
- code. */
- DOUBLEST v1, v2, v = 0;
+ arg1_real = arg1;
+ arg1_imag = value_zero (arg1_type, not_lval);
+ }
+ if (arg2_type->code () == TYPE_CODE_COMPLEX)
+ {
+ arg2_real = value_real_part (arg2);
+ arg2_imag = value_imaginary_part (arg2);
+ }
+ else
+ {
+ arg2_real = arg2;
+ arg2_imag = value_zero (arg2_type, not_lval);
+ }
- v1 = value_as_double (arg1);
- v2 = value_as_double (arg2);
+ struct type *comp_type = promotion_type (value_type (arg1_real),
+ value_type (arg2_real));
+ if (!can_create_complex_type (comp_type))
+ error (_("Argument to complex arithmetic operation not supported."));
- switch (op)
- {
- case BINOP_ADD:
- v = v1 + v2;
- break;
+ arg1_real = value_cast (comp_type, arg1_real);
+ arg1_imag = value_cast (comp_type, arg1_imag);
+ arg2_real = value_cast (comp_type, arg2_real);
+ arg2_imag = value_cast (comp_type, arg2_imag);
- case BINOP_SUB:
- v = v1 - v2;
- break;
+ struct type *result_type = init_complex_type (nullptr, comp_type);
- case BINOP_MUL:
- v = v1 * v2;
- break;
+ struct value *result_real, *result_imag;
+ switch (op)
+ {
+ case BINOP_ADD:
+ case BINOP_SUB:
+ result_real = scalar_binop (arg1_real, arg2_real, op);
+ result_imag = scalar_binop (arg1_imag, arg2_imag, op);
+ break;
- case BINOP_DIV:
- v = v1 / v2;
- break;
+ case BINOP_MUL:
+ {
+ struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
+ struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
+ result_real = scalar_binop (x1, x2, BINOP_SUB);
+
+ x1 = scalar_binop (arg1_real, arg2_imag, op);
+ x2 = scalar_binop (arg1_imag, arg2_real, op);
+ result_imag = scalar_binop (x1, x2, BINOP_ADD);
+ }
+ break;
- case BINOP_EXP:
- errno = 0;
- v = pow (v1, v2);
- if (errno)
- error (_("Cannot perform exponentiation: %s"),
- safe_strerror (errno));
- break;
+ case BINOP_DIV:
+ {
+ if (arg2_type->code () == TYPE_CODE_COMPLEX)
+ {
+ struct value *conjugate = value_complement (arg2);
+ /* We have to reconstruct ARG1, in case the type was
+ promoted. */
+ arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
+
+ struct value *numerator = scalar_binop (arg1, conjugate,
+ BINOP_MUL);
+ arg1_real = value_real_part (numerator);
+ arg1_imag = value_imaginary_part (numerator);
+
+ struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
+ struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
+ arg2_real = scalar_binop (x1, x2, BINOP_ADD);
+ }
+
+ result_real = scalar_binop (arg1_real, arg2_real, op);
+ result_imag = scalar_binop (arg1_imag, arg2_real, op);
+ }
+ break;
- case BINOP_MIN:
- v = v1 < v2 ? v1 : v2;
- break;
-
- case BINOP_MAX:
- v = v1 > v2 ? v1 : v2;
- break;
+ case BINOP_EQUAL:
+ case BINOP_NOTEQUAL:
+ {
+ struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
+ struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
- default:
- error (_("Integer-only operation on floating point number."));
- }
+ LONGEST v1 = value_as_long (x1);
+ LONGEST v2 = value_as_long (x2);
- /* If only one type is float, use its type.
- Otherwise use the bigger type. */
- if (TYPE_CODE (type1) != TYPE_CODE_FLT)
- result_type = type2;
- else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
- result_type = type1;
- else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
- result_type = type2;
- else
- result_type = type1;
+ if (op == BINOP_EQUAL)
+ v1 = v1 && v2;
+ else
+ v1 = v1 || v2;
+
+ return value_from_longest (value_type (x1), v1);
+ }
+ break;
+
+ default:
+ error (_("Invalid binary operation on numbers."));
+ }
+
+ return value_literal_complex (result_real, result_imag, result_type);
+}
+
+/* Perform a binary operation on two operands which have reasonable
+ representations as integers or floats. This includes booleans,
+ characters, integers, or floats.
+ Does not support addition and subtraction on pointers;
+ use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
+
+static struct value *
+scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
+{
+ struct value *val;
+ struct type *type1, *type2, *result_type;
+
+ arg1 = coerce_ref (arg1);
+ arg2 = coerce_ref (arg2);
+
+ type1 = check_typedef (value_type (arg1));
+ type2 = check_typedef (value_type (arg2));
+
+ if (type1->code () == TYPE_CODE_COMPLEX
+ || type2->code () == TYPE_CODE_COMPLEX)
+ return complex_binop (arg1, arg2, op);
+ if ((!is_floating_value (arg1)
+ && !is_integral_type (type1)
+ && !is_fixed_point_type (type1))
+ || (!is_floating_value (arg2)
+ && !is_integral_type (type2)
+ && !is_fixed_point_type (type2)))
+ error (_("Argument to arithmetic operation not a number or boolean."));
+
+ if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
+ return fixed_point_binop (arg1, arg2, op);
+
+ if (is_floating_type (type1) || is_floating_type (type2))
+ {
+ result_type = promotion_type (type1, type2);
val = allocate_value (result_type);
- store_typed_floating (value_contents_raw (val), value_type (val), v);
+
+ struct type *eff_type_v1, *eff_type_v2;
+ gdb::byte_vector v1, v2;
+ v1.resize (TYPE_LENGTH (result_type));
+ v2.resize (TYPE_LENGTH (result_type));
+
+ value_args_as_target_float (arg1, arg2,
+ v1.data (), &eff_type_v1,
+ v2.data (), &eff_type_v2);
+ target_float_binop (op, v1.data (), eff_type_v1,
+ v2.data (), eff_type_v2,
+ value_contents_raw (val), result_type);
}
- else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
- || TYPE_CODE (type2) == TYPE_CODE_BOOL)
+ else if (type1->code () == TYPE_CODE_BOOL
+ || type2->code () == TYPE_CODE_BOOL)
{
LONGEST v1, v2, v = 0;
case BINOP_BITWISE_XOR:
v = v1 ^ v2;
- break;
-
- case BINOP_EQUAL:
- v = v1 == v2;
- break;
-
- case BINOP_NOTEQUAL:
- v = v1 != v2;
+ break;
+
+ case BINOP_EQUAL:
+ v = v1 == v2;
+ break;
+
+ case BINOP_NOTEQUAL:
+ v = v1 != v2;
break;
default:
val = allocate_value (result_type);
store_signed_integer (value_contents_raw (val),
TYPE_LENGTH (result_type),
- gdbarch_byte_order (get_type_arch (result_type)),
+ type_byte_order (result_type),
v);
}
else
if one of the operands is unsigned. */
if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
result_type = type1;
- else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
- result_type = type1;
- else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
- result_type = type2;
- else if (TYPE_UNSIGNED (type1))
- result_type = type1;
- else if (TYPE_UNSIGNED (type2))
- result_type = type2;
else
- result_type = type1;
+ result_type = promotion_type (type1, type2);
- if (TYPE_UNSIGNED (result_type))
+ if (result_type->is_unsigned ())
{
LONGEST v2_signed = value_as_long (arg2);
ULONGEST v1, v2, v = 0;
break;
case BINOP_EXP:
- v = uinteger_pow (v1, v2_signed);
+ v = uinteger_pow (v1, v2_signed);
break;
case BINOP_REM:
case BINOP_MOD:
/* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
- v1 mod 0 has a defined value, v1. */
+ v1 mod 0 has a defined value, v1. */
if (v2 == 0)
{
v = v1;
v = v1 == v2;
break;
- case BINOP_NOTEQUAL:
- v = v1 != v2;
- break;
+ case BINOP_NOTEQUAL:
+ v = v1 != v2;
+ break;
case BINOP_LESS:
v = v1 < v2;
val = allocate_value (result_type);
store_unsigned_integer (value_contents_raw (val),
TYPE_LENGTH (value_type (val)),
- gdbarch_byte_order
- (get_type_arch (result_type)),
+ type_byte_order (result_type),
v);
}
else
v = v1 / v2;
else
error (_("Division by zero"));
- break;
+ break;
case BINOP_EXP:
- v = integer_pow (v1, v2);
+ v = integer_pow (v1, v2);
break;
case BINOP_REM:
case BINOP_MOD:
/* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
- X mod 0 has a defined value, X. */
+ X mod 0 has a defined value, X. */
if (v2 == 0)
{
v = v1;
v = v1 == v2;
break;
- case BINOP_NOTEQUAL:
- v = v1 != v2;
- break;
+ case BINOP_NOTEQUAL:
+ v = v1 != v2;
+ break;
case BINOP_LESS:
v = v1 < v2;
val = allocate_value (result_type);
store_signed_integer (value_contents_raw (val),
TYPE_LENGTH (value_type (val)),
- gdbarch_byte_order
- (get_type_arch (result_type)),
+ type_byte_order (result_type),
v);
}
}
return val;
}
+/* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
+ replicating SCALAR_VALUE for each element of the vector. Only scalar
+ types that can be cast to the type of one element of the vector are
+ acceptable. The newly created vector value is returned upon success,
+ otherwise an error is thrown. */
+
+struct value *
+value_vector_widen (struct value *scalar_value, struct type *vector_type)
+{
+ /* Widen the scalar to a vector. */
+ struct type *eltype, *scalar_type;
+ struct value *val, *elval;
+ LONGEST low_bound, high_bound;
+ int i;
+
+ vector_type = check_typedef (vector_type);
+
+ gdb_assert (vector_type->code () == TYPE_CODE_ARRAY
+ && vector_type->is_vector ());
+
+ if (!get_array_bounds (vector_type, &low_bound, &high_bound))
+ error (_("Could not determine the vector bounds"));
+
+ eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
+ elval = value_cast (eltype, scalar_value);
+
+ scalar_type = check_typedef (value_type (scalar_value));
+
+ /* If we reduced the length of the scalar then check we didn't loose any
+ important bits. */
+ if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
+ && !value_equal (elval, scalar_value))
+ error (_("conversion of scalar to vector involves truncation"));
+
+ val = allocate_value (vector_type);
+ for (i = 0; i < high_bound - low_bound + 1; i++)
+ /* Duplicate the contents of elval into the destination vector. */
+ memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
+ value_contents_all (elval), TYPE_LENGTH (eltype));
+
+ return val;
+}
+
/* Performs a binary operation on two vector operands by calling scalar_binop
for each pair of vector components. */
vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
{
struct value *val, *tmp, *mark;
- struct type *type1, *type2, *eltype1, *eltype2, *result_type;
+ struct type *type1, *type2, *eltype1, *eltype2;
int t1_is_vec, t2_is_vec, elsize, i;
LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
type1 = check_typedef (value_type (val1));
type2 = check_typedef (value_type (val2));
- t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
- && TYPE_VECTOR (type1)) ? 1 : 0;
- t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
- && TYPE_VECTOR (type2)) ? 1 : 0;
+ t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
+ && type1->is_vector ()) ? 1 : 0;
+ t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
+ && type2->is_vector ()) ? 1 : 0;
if (!t1_is_vec || !t2_is_vec)
error (_("Vector operations are only supported among vectors"));
eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
elsize = TYPE_LENGTH (eltype1);
- if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2)
+ if (eltype1->code () != eltype2->code ()
|| elsize != TYPE_LENGTH (eltype2)
- || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2)
+ || eltype1->is_unsigned () != eltype2->is_unsigned ()
|| low_bound1 != low_bound2 || high_bound1 != high_bound2)
error (_("Cannot perform operation on vectors with different types"));
struct value *val;
struct type *type1 = check_typedef (value_type (arg1));
struct type *type2 = check_typedef (value_type (arg2));
- int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
- && TYPE_VECTOR (type1));
- int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
- && TYPE_VECTOR (type2));
+ int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
+ && type1->is_vector ());
+ int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
+ && type2->is_vector ());
if (!t1_is_vec && !t2_is_vec)
val = scalar_binop (arg1, arg2, op);
struct value **v = t1_is_vec ? &arg2 : &arg1;
struct type *t = t1_is_vec ? type2 : type1;
- if (TYPE_CODE (t) != TYPE_CODE_FLT
- && TYPE_CODE (t) != TYPE_CODE_DECFLOAT
+ if (t->code () != TYPE_CODE_FLT
+ && t->code () != TYPE_CODE_DECFLOAT
&& !is_integral_type (t))
error (_("Argument to operation not a number or boolean."));
- *v = value_cast (t1_is_vec ? type1 : type2, *v);
+ /* Replicate the scalar value to make a vector value. */
+ *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
+
val = vector_binop (arg1, arg2, op);
}
arg1 = coerce_array (arg1);
type1 = check_typedef (value_type (arg1));
- if (TYPE_CODE (type1) == TYPE_CODE_FLT)
- return 0 == value_as_double (arg1);
- else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
- return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
- gdbarch_byte_order (get_type_arch (type1)));
+ if (is_floating_value (arg1))
+ return target_float_is_zero (value_contents (arg1), type1);
len = TYPE_LENGTH (type1);
p = value_contents (arg1);
for (i = 0; i < len; i++)
{
if (s1[i] < s2[i])
- return -1;
+ return -1;
else if (s1[i] > s2[i])
- return 1;
+ return 1;
else
- continue;
+ continue;
}
if (len1 < len2)
type1 = check_typedef (value_type (arg1));
type2 = check_typedef (value_type (arg2));
- code1 = TYPE_CODE (type1);
- code2 = TYPE_CODE (type2);
+ code1 = type1->code ();
+ code2 = type2->code ();
is_int1 = is_integral_type (type1);
is_int2 = is_integral_type (type2);
if (is_int1 && is_int2)
return longest_to_int (value_as_long (value_binop (arg1, arg2,
BINOP_EQUAL)));
- else if ((code1 == TYPE_CODE_FLT || is_int1)
- && (code2 == TYPE_CODE_FLT || is_int2))
- {
- /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
- `long double' values are returned in static storage (m68k). */
- DOUBLEST d = value_as_double (arg1);
-
- return d == value_as_double (arg2);
- }
- else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
- && (code2 == TYPE_CODE_DECFLOAT || is_int2))
+ else if ((is_floating_value (arg1) || is_int1)
+ && (is_floating_value (arg2) || is_int2))
{
- gdb_byte v1[16], v2[16];
- int len_v1, len_v2;
- enum bfd_endian byte_order_v1, byte_order_v2;
+ struct type *eff_type_v1, *eff_type_v2;
+ gdb::byte_vector v1, v2;
+ v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
+ v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
- value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
- v2, &len_v2, &byte_order_v2);
+ value_args_as_target_float (arg1, arg2,
+ v1.data (), &eff_type_v1,
+ v2.data (), &eff_type_v2);
- return decimal_compare (v1, len_v1, byte_order_v1,
- v2, len_v2, byte_order_v2) == 0;
+ return target_float_compare (v1.data (), eff_type_v1,
+ v2.data (), eff_type_v2) == 0;
}
/* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
return value_strcmp (arg1, arg2) == 0;
}
else
- {
- error (_("Invalid type combination in equality test."));
- return 0; /* For lint -- never reached. */
- }
+ error (_("Invalid type combination in equality test."));
}
/* Compare values based on their raw contents. Useful for arrays since
type1 = check_typedef (value_type (arg1));
type2 = check_typedef (value_type (arg2));
- return (TYPE_CODE (type1) == TYPE_CODE (type2)
+ return (type1->code () == type2->code ()
&& TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
&& memcmp (value_contents (arg1), value_contents (arg2),
TYPE_LENGTH (type1)) == 0);
type1 = check_typedef (value_type (arg1));
type2 = check_typedef (value_type (arg2));
- code1 = TYPE_CODE (type1);
- code2 = TYPE_CODE (type2);
+ code1 = type1->code ();
+ code2 = type2->code ();
is_int1 = is_integral_type (type1);
is_int2 = is_integral_type (type2);
- if (is_int1 && is_int2)
+ if ((is_int1 && is_int2)
+ || (is_fixed_point_type (type1) && is_fixed_point_type (type2)))
return longest_to_int (value_as_long (value_binop (arg1, arg2,
BINOP_LESS)));
- else if ((code1 == TYPE_CODE_FLT || is_int1)
- && (code2 == TYPE_CODE_FLT || is_int2))
- {
- /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
- `long double' values are returned in static storage (m68k). */
- DOUBLEST d = value_as_double (arg1);
-
- return d < value_as_double (arg2);
- }
- else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
- && (code2 == TYPE_CODE_DECFLOAT || is_int2))
+ else if ((is_floating_value (arg1) || is_int1)
+ && (is_floating_value (arg2) || is_int2))
{
- gdb_byte v1[16], v2[16];
- int len_v1, len_v2;
- enum bfd_endian byte_order_v1, byte_order_v2;
+ struct type *eff_type_v1, *eff_type_v2;
+ gdb::byte_vector v1, v2;
+ v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
+ v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
- value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
- v2, &len_v2, &byte_order_v2);
+ value_args_as_target_float (arg1, arg2,
+ v1.data (), &eff_type_v1,
+ v2.data (), &eff_type_v2);
- return decimal_compare (v1, len_v1, byte_order_v1,
- v2, len_v2, byte_order_v2) == -1;
+ return target_float_compare (v1.data (), eff_type_v1,
+ v2.data (), eff_type_v2) == -1;
}
else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
return value_as_address (arg1) < value_as_address (arg2);
arg1 = coerce_ref (arg1);
type = check_typedef (value_type (arg1));
- if (TYPE_CODE (type) == TYPE_CODE_FLT)
- return value_from_double (type, value_as_double (arg1));
- else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
- return value_from_decfloat (type, value_contents (arg1));
- else if (is_integral_type (type))
- {
- return value_from_longest (type, value_as_long (arg1));
- }
- else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
- {
- struct value *val = allocate_value (type);
-
- memcpy (value_contents_raw (val), value_contents (arg1),
- TYPE_LENGTH (type));
- return val;
- }
+ if (is_integral_type (type) || is_floating_value (arg1)
+ || (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
+ || type->code () == TYPE_CODE_COMPLEX)
+ return value_from_contents (type, value_contents (arg1));
else
- {
- error (_("Argument to positive operation not a number."));
- return 0; /* For lint -- never reached. */
- }
+ error (_("Argument to positive operation not a number."));
}
struct value *
arg1 = coerce_ref (arg1);
type = check_typedef (value_type (arg1));
- if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
- {
- struct value *val = allocate_value (type);
- int len = TYPE_LENGTH (type);
- gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long. */
-
- memcpy (decbytes, value_contents (arg1), len);
-
- if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
- decbytes[len-1] = decbytes[len - 1] | 0x80;
- else
- decbytes[0] = decbytes[0] | 0x80;
-
- memcpy (value_contents_raw (val), decbytes, len);
- return val;
- }
- else if (TYPE_CODE (type) == TYPE_CODE_FLT)
- return value_from_double (type, -value_as_double (arg1));
- else if (is_integral_type (type))
- {
- return value_from_longest (type, -value_as_long (arg1));
- }
- else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
+ if (is_integral_type (type) || is_floating_type (type))
+ return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
+ else if (is_fixed_point_type (type))
+ return value_binop (value_zero (type, not_lval), arg1, BINOP_SUB);
+ else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
{
struct value *tmp, *val = allocate_value (type);
struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
}
return val;
}
- else
+ else if (type->code () == TYPE_CODE_COMPLEX)
{
- error (_("Argument to negate operation not a number."));
- return 0; /* For lint -- never reached. */
+ struct value *real = value_real_part (arg1);
+ struct value *imag = value_imaginary_part (arg1);
+
+ real = value_neg (real);
+ imag = value_neg (imag);
+ return value_literal_complex (real, imag, type);
}
+ else
+ error (_("Argument to negate operation not a number."));
}
struct value *
if (is_integral_type (type))
val = value_from_longest (type, ~value_as_long (arg1));
- else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
+ else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
{
struct value *tmp;
struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
val = allocate_value (type);
for (i = 0; i < high_bound - low_bound + 1; i++)
- {
- tmp = value_complement (value_subscript (arg1, i));
- memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
- value_contents_all (tmp), TYPE_LENGTH (eltype));
- }
+ {
+ tmp = value_complement (value_subscript (arg1, i));
+ memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
+ value_contents_all (tmp), TYPE_LENGTH (eltype));
+ }
+ }
+ else if (type->code () == TYPE_CODE_COMPLEX)
+ {
+ /* GCC has an extension that treats ~complex as the complex
+ conjugate. */
+ struct value *real = value_real_part (arg1);
+ struct value *imag = value_imaginary_part (arg1);
+
+ imag = value_neg (imag);
+ return value_literal_complex (real, imag, type);
}
else
error (_("Argument to complement operation not an integer, boolean."));
int
value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
{
- struct gdbarch *gdbarch = get_type_arch (type);
+ struct gdbarch *gdbarch = type->arch ();
LONGEST low_bound, high_bound;
LONGEST word;
unsigned rel_index;
- struct type *range = TYPE_INDEX_TYPE (type);
+ struct type *range = type->index_type ();
- if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
+ if (!get_discrete_bounds (range, &low_bound, &high_bound))
return -2;
if (index < low_bound || index > high_bound)
return -1;
rel_index = index - low_bound;
word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
- gdbarch_byte_order (gdbarch));
+ type_byte_order (type));
rel_index %= TARGET_CHAR_BIT;
- if (gdbarch_bits_big_endian (gdbarch))
+ if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
rel_index = TARGET_CHAR_BIT - 1 - rel_index;
return (word >> rel_index) & 1;
}
struct type *settype = check_typedef (value_type (set));
struct type *eltype = check_typedef (value_type (element));
- if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
+ if (eltype->code () == TYPE_CODE_RANGE)
eltype = TYPE_TARGET_TYPE (eltype);
- if (TYPE_CODE (settype) != TYPE_CODE_SET)
+ if (settype->code () != TYPE_CODE_SET)
error (_("Second argument of 'IN' has wrong type"));
- if (TYPE_CODE (eltype) != TYPE_CODE_INT
- && TYPE_CODE (eltype) != TYPE_CODE_CHAR
- && TYPE_CODE (eltype) != TYPE_CODE_ENUM
- && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
+ if (eltype->code () != TYPE_CODE_INT
+ && eltype->code () != TYPE_CODE_CHAR
+ && eltype->code () != TYPE_CODE_ENUM
+ && eltype->code () != TYPE_CODE_BOOL)
error (_("First argument of 'IN' has wrong type"));
member = value_bit_index (settype, value_contents (set),
value_as_long (element));
error (_("First argument of 'IN' not in range"));
return member;
}
-
-void
-_initialize_valarith (void)
-{
-}