-/* IBM RS/6000 host-dependent code for GDB, the GNU debugger.
- Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
-
-This file is part of GDB.
-
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-#include "defs.h"
-#include "frame.h"
-#include "inferior.h"
-#include "symtab.h"
-#include "target.h"
-
-#include <sys/param.h>
-#include <sys/dir.h>
-#include <sys/user.h>
-#include <signal.h>
-#include <sys/ioctl.h>
-#include <fcntl.h>
-
-#include <sys/ptrace.h>
-#include <sys/reg.h>
-
-#include <a.out.h>
-#include <sys/file.h>
-#include <sys/stat.h>
-#include <sys/core.h>
-#include <sys/ldr.h>
-#include <sys/utsname.h>
-
-extern int errno;
-extern int attach_flag;
-
-/* Conversion from gdb-to-system special purpose register numbers.. */
-
-static int special_regs[] = {
- IAR, /* PC_REGNUM */
- MSR, /* PS_REGNUM */
- CR, /* CR_REGNUM */
- LR, /* LR_REGNUM */
- CTR, /* CTR_REGNUM */
- XER, /* XER_REGNUM */
- MQ /* MQ_REGNUM */
-};
-
-
-/* Nonzero if we just simulated a single step break. */
-extern int one_stepped;
-
-extern char register_valid[];
-extern struct obstack frame_cache_obstack;
-
-\f
-void
-fetch_inferior_registers (regno)
- int regno;
-{
- int ii;
- extern char registers[];
-
- if (regno < 0) { /* for all registers */
-
- /* read 32 general purpose registers. */
-
- for (ii=0; ii < 32; ++ii)
- *(int*)®isters[REGISTER_BYTE (ii)] =
- ptrace (PT_READ_GPR, inferior_pid, ii, 0, 0);
-
- /* read general purpose floating point registers. */
-
- for (ii=0; ii < 32; ++ii)
- ptrace (PT_READ_FPR, inferior_pid,
- (int*)®isters [REGISTER_BYTE (FP0_REGNUM+ii)], FPR0+ii, 0);
-
- /* read special registers. */
- for (ii=0; ii <= LAST_SP_REGNUM-FIRST_SP_REGNUM; ++ii)
- *(int*)®isters[REGISTER_BYTE (FIRST_SP_REGNUM+ii)] =
- ptrace (PT_READ_GPR, inferior_pid, special_regs[ii], 0, 0);
-
- registers_fetched ();
- return;
- }
-
- /* else an individual register is addressed. */
-
- else if (regno < FP0_REGNUM) { /* a GPR */
- *(int*)®isters[REGISTER_BYTE (regno)] =
- ptrace (PT_READ_GPR, inferior_pid, regno, 0, 0);
- }
- else if (regno <= FPLAST_REGNUM) { /* a FPR */
- ptrace (PT_READ_FPR, inferior_pid,
- (int*)®isters [REGISTER_BYTE (regno)], (regno-FP0_REGNUM+FPR0), 0);
- }
- else if (regno <= LAST_SP_REGNUM) { /* a special register */
- *(int*)®isters[REGISTER_BYTE (regno)] =
- ptrace (PT_READ_GPR, inferior_pid,
- special_regs[regno-FIRST_SP_REGNUM], 0, 0);
- }
- else
- fprintf (stderr, "gdb error: register no %d not implemented.\n", regno);
-
- register_valid [regno] = 1;
-}
-
-/* Store our register values back into the inferior.
- If REGNO is -1, do this for all registers.
- Otherwise, REGNO specifies which register (so we can save time). */
-
-void
-store_inferior_registers (regno)
- int regno;
-{
- extern char registers[];
-
- errno = 0;
-
- if (regno == -1) { /* for all registers.. */
- int ii;
-
- /* execute one dummy instruction (which is a breakpoint) in inferior
- process. So give kernel a chance to do internal house keeping.
- Otherwise the following ptrace(2) calls will mess up user stack
- since kernel will get confused about the bottom of the stack (%sp) */
-
- exec_one_dummy_insn ();
-
- /* write general purpose registers first! */
- for ( ii=GPR0; ii<=GPR31; ++ii) {
- ptrace (PT_WRITE_GPR, inferior_pid, ii,
- *(int*)®isters[REGISTER_BYTE (ii)], 0);
- if ( errno ) {
- perror ("ptrace write_gpr"); errno = 0;
- }
- }
-
- /* write floating point registers now. */
- for ( ii=0; ii < 32; ++ii) {
- ptrace (PT_WRITE_FPR, inferior_pid,
- (int*)®isters[REGISTER_BYTE (FP0_REGNUM+ii)], FPR0+ii, 0);
- if ( errno ) {
- perror ("ptrace write_fpr"); errno = 0;
- }
- }
-
- /* write special registers. */
- for (ii=0; ii <= LAST_SP_REGNUM-FIRST_SP_REGNUM; ++ii) {
- ptrace (PT_WRITE_GPR, inferior_pid, special_regs[ii],
- *(int*)®isters[REGISTER_BYTE (FIRST_SP_REGNUM+ii)], 0);
- if ( errno ) {
- perror ("ptrace write_gpr"); errno = 0;
- }
- }
- }
-
- /* else, a specific register number is given... */
-
- else if (regno < FP0_REGNUM) { /* a GPR */
-
- ptrace (PT_WRITE_GPR, inferior_pid, regno,
- *(int*)®isters[REGISTER_BYTE (regno)], 0);
- }
-
- else if (regno <= FPLAST_REGNUM) { /* a FPR */
- ptrace (PT_WRITE_FPR, inferior_pid,
- (int*)®isters[REGISTER_BYTE (regno)], regno-FP0_REGNUM+FPR0, 0);
- }
-
- else if (regno <= LAST_SP_REGNUM) { /* a special register */
-
- ptrace (PT_WRITE_GPR, inferior_pid, special_regs [regno-FIRST_SP_REGNUM],
- *(int*)®isters[REGISTER_BYTE (regno)], 0);
- }
-
- else
- fprintf (stderr, "Gdb error: register no %d not implemented.\n", regno);
-
- if ( errno ) {
- perror ("ptrace write"); errno = 0;
- }
-}
-
-void
-fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
- char *core_reg_sect;
- unsigned core_reg_size;
- int which;
- unsigned int reg_addr; /* Unused in this version */
-{
- /* fetch GPRs and special registers from the first register section
- in core bfd. */
- if (which == 0) {
-
- /* copy GPRs first. */
- bcopy (core_reg_sect, registers, 32 * 4);
-
- /* gdb's internal register template and bfd's register section layout
- should share a common include file. FIXMEmgo */
- /* then comes special registes. They are supposed to be in the same
- order in gdb template and bfd `.reg' section. */
- core_reg_sect += (32 * 4);
- bcopy (core_reg_sect, ®isters [REGISTER_BYTE (FIRST_SP_REGNUM)],
- (LAST_SP_REGNUM - FIRST_SP_REGNUM + 1) * 4);
- }
-
- /* fetch floating point registers from register section 2 in core bfd. */
- else if (which == 2)
- bcopy (core_reg_sect, ®isters [REGISTER_BYTE (FP0_REGNUM)], 32 * 8);
-
- else
- fprintf (stderr, "Gdb error: unknown parameter to fetch_core_registers().\n");
-}
-
-
-frameless_function_invocation (fi)
-struct frame_info *fi;
-{
- CORE_ADDR func_start;
- struct aix_framedata fdata;
-
- func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
-
- /* If we failed to find the start of the function, it is a mistake
- to inspect the instructions. */
-
- if (!func_start)
- return 0;
-
- function_frame_info (func_start, &fdata);
- return fdata.frameless;
-}
-
-
-/* If saved registers of frame FI are not known yet, read and cache them.
- &FDATAP contains aix_framedata; TDATAP can be NULL,
- in which case the framedata are read.
- */
-
-static void
-frame_get_cache_fsr (fi, fdatap)
- struct frame_info *fi;
- struct aix_framedata *fdatap;
-{
- int ii;
- CORE_ADDR frame_addr;
- struct aix_framedata work_fdata;
- if (fi->cache_fsr)
- return;
-
- if (fdatap = NULL) {
- fdatap = &work_fdata;
- function_frame_info (get_pc_function_start (fi->pc), fdatap);
- }
-
- fi->cache_fsr = (struct frame_saved_regs *)
- obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
- bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
-
- if (fi->prev && fi->prev->frame)
- frame_addr = fi->prev->frame;
- else
- frame_addr = read_memory_integer (fi->frame, 4);
-
- /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
- All fpr's from saved_fpr to fp31 are saved right underneath caller
- stack pointer, starting from fp31 first. */
-
- if (fdatap->saved_fpr >= 0) {
- for (ii=31; ii >= fdatap->saved_fpr; --ii)
- fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
- frame_addr -= (32 - fdatap->saved_fpr) * 8;
- }
-
- /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
- All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
- starting from r31 first. */
-
- if (fdatap->saved_gpr >= 0)
- for (ii=31; ii >= fdatap->saved_gpr; --ii)
- fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
-}
-
-/* Return the address of a frame. This is the inital %sp value when the frame
- was first allocated. For functions calling alloca(), it might be saved in
- an alloca register. */
-
-CORE_ADDR
-frame_initial_stack_address (fi)
- struct frame_info *fi;
-{
- CORE_ADDR tmpaddr;
- struct aix_framedata fdata;
- struct frame_info *callee_fi;
-
- /* if the initial stack pointer (frame address) of this frame is known,
- just return it. */
-
- if (fi->initial_sp)
- return fi->initial_sp;
-
- /* find out if this function is using an alloca register.. */
-
- function_frame_info (get_pc_function_start (fi->pc), &fdata);
-
- /* if saved registers of this frame are not known yet, read and cache them. */
-
- if (!fi->cache_fsr)
- frame_get_cache_fsr (fi, &fdata);
-
- /* If no alloca register used, then fi->frame is the value of the %sp for
- this frame, and it is good enough. */
-
- if (fdata.alloca_reg < 0) {
- fi->initial_sp = fi->frame;
- return fi->initial_sp;
- }
-
- /* This function has an alloca register. If this is the top-most frame
- (with the lowest address), the value in alloca register is good. */
-
- if (!fi->next)
- return fi->initial_sp = read_register (fdata.alloca_reg);
-
- /* Otherwise, this is a caller frame. Callee has usually already saved
- registers, but there are are exceptions (such as when the callee
- has no parameters). Find the address in which caller's alloca
- register is saved. */
-
- for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
-
- if (!callee_fi->cache_fsr)
- frame_get_cache_fsr (fi, NULL);
-
- /* this is the address in which alloca register is saved. */
-
- tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
- if (tmpaddr) {
- fi->initial_sp = read_memory_integer (tmpaddr, 4);
- return fi->initial_sp;
- }
-
- /* Go look into deeper levels of the frame chain to see if any one of
- the callees has saved alloca register. */
- }
-
- /* If alloca register was not saved, by the callee (or any of its callees)
- then the value in the register is still good. */
-
- return fi->initial_sp = read_register (fdata.alloca_reg);
-}
-
-
-
-/* aixcoff_relocate_symtab - hook for symbol table relocation.
- also reads shared libraries.. */
-
-aixcoff_relocate_symtab (pid)
-unsigned int pid;
-{
-#define MAX_LOAD_SEGS 64 /* maximum number of load segments */
-
- struct ld_info *ldi;
- int temp;
-
- ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
-
- /* According to my humble theory, aixcoff has some timing problems and
- when the user stack grows, kernel doesn't update stack info in time
- and ptrace calls step on user stack. That is why we sleep here a little,
- and give kernel to update its internals. */
-
- usleep (36000);
-
- errno = 0;
- ptrace(PT_LDINFO, pid, ldi, MAX_LOAD_SEGS * sizeof(*ldi), ldi);
- if (errno) {
- perror_with_name ("ptrace ldinfo");
- return 0;
- }
-
- vmap_ldinfo(ldi);
-
- do {
- add_text_to_loadinfo (ldi->ldinfo_textorg, ldi->ldinfo_dataorg);
- } while (ldi->ldinfo_next
- && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
-
-#if 0
- /* Now that we've jumbled things around, re-sort them. */
- sort_minimal_symbols ();
-#endif
-
- /* relocate the exec and core sections as well. */
- vmap_exec ();
-}
-
-
-/* Keep an array of load segment information and their TOC table addresses.
- This info will be useful when calling a shared library function by hand. */
-
-typedef struct {
- unsigned long textorg, dataorg, toc_offset;
-} LoadInfo;
-
-#define LOADINFOLEN 10
-
-static LoadInfo *loadInfo = NULL;
-static int loadInfoLen = 0;
-static int loadInfoTocIndex = 0;
-int aix_loadInfoTextIndex = 0;
-
-
-xcoff_init_loadinfo ()
-{
- loadInfoTocIndex = 0;
- aix_loadInfoTextIndex = 0;
-
- if (loadInfoLen == 0) {
- loadInfo = (void*) xmalloc (sizeof (LoadInfo) * LOADINFOLEN);
- loadInfoLen = LOADINFOLEN;
- }
-}
-
-
-free_loadinfo ()
-{
- if (loadInfo)
- free (loadInfo);
- loadInfo = NULL;
- loadInfoLen = 0;
- loadInfoTocIndex = 0;
- aix_loadInfoTextIndex = 0;
-}
-
-
-xcoff_add_toc_to_loadinfo (unsigned long tocaddr)
-{
- while (loadInfoTocIndex >= loadInfoLen) {
- loadInfoLen += LOADINFOLEN;
- loadInfo = (void*) xrealloc (loadInfo, sizeof(LoadInfo) * loadInfoLen);
- }
- loadInfo [loadInfoTocIndex++].toc_offset = tocaddr;
-}
-
-
-add_text_to_loadinfo (unsigned long textaddr, unsigned long dataaddr)
-{
- while (aix_loadInfoTextIndex >= loadInfoLen) {
- loadInfoLen += LOADINFOLEN;
- loadInfo = (void*) xrealloc (loadInfo, sizeof(LoadInfo) * loadInfoLen);
- }
- loadInfo [aix_loadInfoTextIndex].textorg = textaddr;
- loadInfo [aix_loadInfoTextIndex].dataorg = dataaddr;
- ++aix_loadInfoTextIndex;
-}
-
-
-unsigned long
-find_toc_address (unsigned long pc)
-{
- int ii, toc_entry, tocbase = 0;
-
- for (ii=0; ii < aix_loadInfoTextIndex; ++ii)
- if (pc > loadInfo [ii].textorg && loadInfo [ii].textorg > tocbase) {
- toc_entry = ii;
- tocbase = loadInfo [ii].textorg;
- }
-
- return loadInfo [toc_entry].dataorg + loadInfo [toc_entry].toc_offset;
-}
-
-
-/* execute one dummy breakpoint instruction. This way we give kernel
- a chance to do some housekeeping and update inferior's internal data,
- including u_area. */
-
-exec_one_dummy_insn ()
-{
-#define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
-
- unsigned long shadow;
- unsigned int status, pid;
-
- /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We assume that
- this address will never be executed again by the real code. */
-
- target_insert_breakpoint (DUMMY_INSN_ADDR, &shadow);
-
- errno = 0;
- ptrace (PT_CONTINUE, inferior_pid, DUMMY_INSN_ADDR, 0, 0);
- if (errno)
- perror ("pt_continue");
-
- do {
- pid = wait (&status);
- } while (pid != inferior_pid);
-
- target_remove_breakpoint (DUMMY_INSN_ADDR, &shadow);
-}
-
-
-/* Return the number of initial trap signals we need to ignore once the inferior
- process starts running. This will be `2' for aix-3.1, `3' for aix-3.2 */
-
-int
-aix_starting_inferior_traps ()
-{
- struct utsname unamebuf;
-
- if (uname (&unamebuf) == -1)
- fatal ("uname(3) failed.");
-
- /* Assume the future versions will behave like 3.2 and return '3' for
- anything other than 3.1x. The extra trap in 3.2 is the "trap after the
- program is loaded" signal. */
-
- if (unamebuf.version[0] == '3' && unamebuf.release[0] == '1')
- return 2;
- else
- return 3;
-}