/* Target-machine dependent code for Hitachi H8/300, for GDB.
- Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
-This file is part of GDB.
+ Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
+ 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
+ This file is part of GDB.
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
-/*
- Contributed by Steve Chamberlain
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+/*
+ Contributed by Steve Chamberlain
*/
#include "defs.h"
-#include "frame.h"
-#include "obstack.h"
-#include "symtab.h"
-#define UNSIGNED_SHORT(X) ((X) & 0xffff)
+#include "value.h"
+#include "inferior.h"
+#include "symfile.h"
+#include "arch-utils.h"
+#include "regcache.h"
+#include "gdbcore.h"
+#include "objfiles.h"
+#include "gdbcmd.h"
+#include "gdb_assert.h"
+
+/* Extra info which is saved in each frame_info. */
+struct frame_extra_info
+{
+ CORE_ADDR from_pc;
+ CORE_ADDR args_pointer;
+ CORE_ADDR locals_pointer;
+};
-/* an easy to debug H8 stack frame looks like:
-0x6df2 push r2
-0x6df3 push r3
-0x6df6 push r6
-0x mov.w r7,r6
- subs stuff,sp mov.w #x,r5
- subs r5,sp
+#define E_NUM_REGS (h8300smode ? 14 : 13)
- */
+enum
+{
+ h8300_reg_size = 2,
+ h8300h_reg_size = 4,
+ h8300_max_reg_size = 4,
+};
+#define BINWORD (h8300hmode ? h8300h_reg_size : h8300_reg_size)
+
+enum gdb_regnum
+{
+ E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
+ E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM,
+ E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
+ E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
+ E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
+ E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
+ E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
+ E_SP_REGNUM,
+ E_CCR_REGNUM,
+ E_PC_REGNUM,
+ E_CYCLES_REGNUM,
+ E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
+ E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
+ E_INSTS_REGNUM
+};
-#define IS_PUSH(x) ((x & 0xff00)==0x6d00)
-#define IS_MOVE_FP(x) (x == 0x0d76)
-#define IS_MOV_SP_FP(x) (x == 0x0d76)
+#define UNSIGNED_SHORT(X) ((X) & 0xffff)
+
+#define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
+#define IS_PUSH_FP(x) (x == 0x6df6)
+#define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
+#define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
#define IS_SUB2_SP(x) (x==0x1b87)
+#define IS_SUB4_SP(x) (x==0x1b97)
+#define IS_SUBL_SP(x) (x==0x7a37)
#define IS_MOVK_R5(x) (x==0x7905)
-CORE_ADDR examine_prologue();
+#define IS_SUB_R5SP(x) (x==0x1957)
-void frame_find_saved_regs ();
-CORE_ADDR h8300_skip_prologue(start_pc)
-CORE_ADDR start_pc;
+/* If the instruction at PC is an argument register spill, return its
+ length. Otherwise, return zero.
+ An argument register spill is an instruction that moves an argument
+ from the register in which it was passed to the stack slot in which
+ it really lives. It is a byte, word, or longword move from an
+ argument register to a negative offset from the frame pointer. */
+
+static int
+h8300_is_argument_spill (CORE_ADDR pc)
{
+ int w = read_memory_unsigned_integer (pc, 2);
- /* Skip past all push insns */
- short int w;
-
- w = read_memory_short(start_pc);
- while (IS_PUSH(w))
- {
- start_pc+=2;
- w = read_memory_short(start_pc);
- }
+ if ((w & 0xfff0) == 0x6ee0 /* mov.b Rs,@(d:16,er6) */
+ && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
+ {
+ int w2 = read_memory_integer (pc + 2, 2);
- /* Skip past a move to FP */
- if (IS_MOVE_FP(w)) {
- start_pc +=2 ;
- w = read_memory_short(start_pc);
+ /* ... and d:16 is negative. */
+ if (w2 < 0)
+ return 4;
}
+ else if (w == 0x7860)
+ {
+ int w2 = read_memory_integer (pc + 2, 2);
- return start_pc;
-
-}
+ if ((w2 & 0xfff0) == 0x6aa0) /* mov.b Rs, @(d:24,er6) */
+ {
+ LONGEST disp = read_memory_integer (pc + 4, 4);
+ /* ... and d:24 is negative. */
+ if (disp < 0 && disp > 0xffffff)
+ return 8;
+ }
+ }
+ else if ((w & 0xfff0) == 0x6fe0 /* mov.w Rs,@(d:16,er6) */
+ && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
+ {
+ int w2 = read_memory_integer (pc + 2, 2);
-int
-print_insn(memaddr, stream)
-CORE_ADDR memaddr;
-FILE *stream;
-{
- /* Nothing is bigger than 8 bytes */
- char data[8];
- read_memory (memaddr, data, sizeof(data));
- return print_insn_h8300(memaddr, data, stream);
-}
-
-
-/* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
+ /* ... and d:16 is negative. */
+ if (w2 < 0)
+ return 4;
+ }
+ else if (w == 0x78e0)
+ {
+ int w2 = read_memory_integer (pc + 2, 2);
- For us, the frame address is its stack pointer value, so we look up
- the function prologue to determine the caller's sp value, and return it. */
+ if ((w2 & 0xfff0) == 0x6ba0) /* mov.b Rs, @(d:24,er6) */
+ {
+ LONGEST disp = read_memory_integer (pc + 4, 4);
-FRAME_ADDR
-FRAME_CHAIN (thisframe)
- FRAME thisframe;
-{
+ /* ... and d:24 is negative. */
+ if (disp < 0 && disp > 0xffffff)
+ return 8;
+ }
+ }
+ else if (w == 0x0100)
+ {
+ int w2 = read_memory_integer (pc + 2, 2);
+
+ if ((w2 & 0xfff0) == 0x6fe0 /* mov.l Rs,@(d:16,er6) */
+ && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
+ {
+ int w3 = read_memory_integer (pc + 4, 2);
+
+ /* ... and d:16 is negative. */
+ if (w3 < 0)
+ return 6;
+ }
+ else if (w2 == 0x78e0)
+ {
+ int w3 = read_memory_integer (pc + 4, 2);
+
+ if ((w3 & 0xfff0) == 0x6ba0) /* mov.l Rs, @(d:24,er6) */
+ {
+ LONGEST disp = read_memory_integer (pc + 6, 4);
+
+ /* ... and d:24 is negative. */
+ if (disp < 0 && disp > 0xffffff)
+ return 10;
+ }
+ }
+ }
- frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
- return thisframe->fsr->regs[SP_REGNUM];
+ return 0;
}
-
+static CORE_ADDR
+h8300_skip_prologue (CORE_ADDR start_pc)
+{
+ short int w;
+ int adjust = 0;
-/* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame.
+ /* Skip past all push and stm insns. */
+ while (1)
+ {
+ w = read_memory_unsigned_integer (start_pc, 2);
+ /* First look for push insns. */
+ if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
+ {
+ w = read_memory_unsigned_integer (start_pc + 2, 2);
+ adjust = 2;
+ }
+
+ if (IS_PUSH (w))
+ {
+ start_pc += 2 + adjust;
+ w = read_memory_unsigned_integer (start_pc, 2);
+ continue;
+ }
+ adjust = 0;
+ break;
+ }
- We cache the result of doing this in the frame_cache_obstack, since
- it is fairly expensive. */
+ /* Skip past a move to FP, either word or long sized */
+ w = read_memory_unsigned_integer (start_pc, 2);
+ if (w == 0x0100)
+ {
+ w = read_memory_unsigned_integer (start_pc + 2, 2);
+ adjust += 2;
+ }
-void
-frame_find_saved_regs (fi, fsr)
- struct frame_info *fi;
- struct frame_saved_regs *fsr;
-{
- register CORE_ADDR next_addr;
- register CORE_ADDR *saved_regs;
- register int regnum;
- register struct frame_saved_regs *cache_fsr;
- extern struct obstack frame_cache_obstack;
- CORE_ADDR ip;
- struct symtab_and_line sal;
- CORE_ADDR limit;
-
- if (!fi->fsr)
- {
- cache_fsr = (struct frame_saved_regs *)
- obstack_alloc (&frame_cache_obstack,
- sizeof (struct frame_saved_regs));
- bzero (cache_fsr, sizeof (struct frame_saved_regs));
- fi->fsr = cache_fsr;
-
- /* Find the start and end of the function prologue. If the PC
- is in the function prologue, we only consider the part that
- has executed already. */
-
- ip = get_pc_function_start (fi->pc);
- sal = find_pc_line (ip, 0);
- limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
-
- /* This will fill in fields in *fi as well as in cache_fsr. */
- examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
- }
-
- if (fsr)
- *fsr = *fi->fsr;
+ if (IS_MOVE_FP (w))
+ {
+ start_pc += 2 + adjust;
+ w = read_memory_unsigned_integer (start_pc, 2);
+ }
+
+ /* Check for loading either a word constant into r5;
+ long versions are handled by the SUBL_SP below. */
+ if (IS_MOVK_R5 (w))
+ {
+ start_pc += 2;
+ w = read_memory_unsigned_integer (start_pc, 2);
+ }
+
+ /* Now check for subtracting r5 from sp, word sized only. */
+ if (IS_SUB_R5SP (w))
+ {
+ start_pc += 2 + adjust;
+ w = read_memory_unsigned_integer (start_pc, 2);
+ }
+
+ /* Check for subs #2 and subs #4. */
+ while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
+ {
+ start_pc += 2 + adjust;
+ w = read_memory_unsigned_integer (start_pc, 2);
+ }
+
+ /* Check for a 32bit subtract. */
+ if (IS_SUBL_SP (w))
+ start_pc += 6 + adjust;
+
+ /* Check for spilling an argument register to the stack frame.
+ This could also be an initializing store from non-prologue code,
+ but I don't think there's any harm in skipping that. */
+ for (;;)
+ {
+ int spill_size = h8300_is_argument_spill (start_pc);
+ if (spill_size == 0)
+ break;
+ start_pc += spill_size;
+ }
+
+ return start_pc;
+}
+
+static int
+gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info * info)
+{
+ if (h8300smode)
+ return print_insn_h8300s (memaddr, info);
+ else if (h8300hmode)
+ return print_insn_h8300h (memaddr, info);
+ else
+ return print_insn_h8300 (memaddr, info);
}
-
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
is not the address of a valid instruction, the address of the next
instruction beyond ADDR otherwise. *PWORD1 receives the first word
- of the instruction.*/
-
+ of the instruction. */
-CORE_ADDR
-NEXT_PROLOGUE_INSN(addr, lim, pword1)
-CORE_ADDR addr;
-CORE_ADDR lim;
-short *pword1;
+static CORE_ADDR
+h8300_next_prologue_insn (CORE_ADDR addr, CORE_ADDR lim, unsigned short* pword1)
{
- if (addr < lim+8)
- {
- read_memory (addr, pword1, sizeof(*pword1));
- SWAP_TARGET_AND_HOST (pword1, sizeof (short));
- return addr + 2;
- }
+ char buf[2];
+ if (addr < lim + 8)
+ {
+ read_memory (addr, buf, 2);
+ *pword1 = extract_signed_integer (buf, 2);
+ return addr + 2;
+ }
return 0;
-
}
/* Examine the prologue of a function. `ip' points to the first instruction.
- `limit' is the limit of the prologue (e.g. the addr of the first
+ `limit' is the limit of the prologue (e.g. the addr of the first
linenumber, or perhaps the program counter if we're stepping through).
- `frame_sp' is the stack pointer value in use in this frame.
+ `frame_sp' is the stack pointer value in use in this frame.
`fsr' is a pointer to a frame_saved_regs structure into which we put
- info about the registers saved by this frame.
+ info about the registers saved by this frame.
`fi' is a struct frame_info pointer; we fill in various fields in it
to reflect the offsets of the arg pointer and the locals pointer. */
-/* We will find two sorts of prologue, framefull and non framefull:
-
- push r2
- push r3
- push fp
- mov sp,fp
- stack_ad
-
- and
- push x
- push y
- stack_ad
-
-*/
+/* Any function with a frame looks like this
+ SECOND ARG
+ FIRST ARG
+ RET PC
+ SAVED R2
+ SAVED R3
+ SAVED FP <-FP POINTS HERE
+ LOCALS0
+ LOCALS1 <-SP POINTS HERE
+ */
static CORE_ADDR
-examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
- register CORE_ADDR ip;
- register CORE_ADDR limit;
- FRAME_ADDR after_prolog_fp;
- struct frame_saved_regs *fsr;
- struct frame_info *fi;
+h8300_examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
+ CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
+ struct frame_info *fi)
{
register CORE_ADDR next_ip;
int r;
- int i;
int have_fp = 0;
-
- register int src;
- register struct pic_prologue_code *pcode;
- INSN_WORD insn_word;
- int size, offset;
- unsigned int reg_save_depth = 2; /* Number of things pushed onto
- stack, starts at 2, 'cause the
- PC is already there */
+ unsigned short insn_word;
+ /* Number of things pushed onto stack, starts at 2/4, 'cause the
+ PC is already there */
+ unsigned int reg_save_depth = BINWORD;
unsigned int auto_depth = 0; /* Number of bytes of autos */
-
- char in_frame[NUM_REGS]; /* One for each reg */
-
- memset(in_frame, 1, NUM_REGS);
-
- if (after_prolog_fp == 0) {
- after_prolog_fp = read_register(SP_REGNUM);
- }
- if (ip == 0 || ip & ~0xffff) return 0;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
+ char in_frame[11]; /* One for each reg */
- /* Skip over any push instructions, and remember where they were saved */
+ int adjust = 0;
+ memset (in_frame, 1, 11);
+ for (r = 0; r < 8; r++)
+ {
+ fsr[r] = 0;
+ }
+ if (after_prolog_fp == 0)
+ {
+ after_prolog_fp = read_register (E_SP_REGNUM);
+ }
- while (next_ip && IS_PUSH(insn_word))
- {
- ip = next_ip;
- in_frame[insn_word & 0x7] = reg_save_depth;
- next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
- reg_save_depth +=2;
+ /* If the PC isn't valid, quit now. */
+ if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
+ return 0;
- }
-
+ next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
+
+ if (insn_word == 0x0100)
+ {
+ insn_word = read_memory_unsigned_integer (ip + 2, 2);
+ adjust = 2;
+ }
+
+ /* Skip over any fp push instructions */
+ fsr[E_FP_REGNUM] = after_prolog_fp;
+ while (next_ip && IS_PUSH_FP (insn_word))
+ {
+ ip = next_ip + adjust;
+
+ in_frame[insn_word & 0x7] = reg_save_depth;
+ next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
+ reg_save_depth += 2 + adjust;
+ }
/* Is this a move into the fp */
- if (next_ip && IS_MOV_SP_FP(insn_word))
- {
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
- have_fp = 1;
-
- }
-
+ if (next_ip && IS_MOV_SP_FP (insn_word))
+ {
+ ip = next_ip;
+ next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
+ have_fp = 1;
+ }
/* Skip over any stack adjustment, happens either with a number of
sub#2,sp or a mov #x,r5 sub r5,sp */
-
- if (next_ip && IS_SUB2_SP(insn_word))
- {
- while (next_ip && IS_SUB2_SP(insn_word))
+ if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
{
- auto_depth +=2 ;
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
+ while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
+ {
+ auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
+ ip = next_ip;
+ next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
+ }
}
- }
- else
- {
- if (next_ip && IS_MOVK_R5(insn_word))
+ else
{
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
- auto_depth += insn_word;
- ip +=4;
-
+ if (next_ip && IS_MOVK_R5 (insn_word))
+ {
+ ip = next_ip;
+ next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
+ auto_depth += insn_word;
+
+ next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word);
+ auto_depth += insn_word;
+ }
+ if (next_ip && IS_SUBL_SP (insn_word))
+ {
+ ip = next_ip;
+ auto_depth += read_memory_unsigned_integer (ip, 4);
+ ip += 4;
+
+ next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
+ }
}
- }
+ /* Now examine the push insns to determine where everything lives
+ on the stack. */
+ while (1)
+ {
+ adjust = 0;
+ if (!next_ip)
+ break;
+
+ if (insn_word == 0x0100)
+ {
+ ip = next_ip;
+ next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
+ adjust = 2;
+ }
+
+ if (IS_PUSH (insn_word))
+ {
+ auto_depth += 2 + adjust;
+ fsr[insn_word & 0x7] = after_prolog_fp - auto_depth;
+ ip = next_ip;
+ next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
+ continue;
+ }
+
+ /* Now check for push multiple insns. */
+ if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
+ {
+ int count = ((insn_word >> 4) & 0xf) + 1;
+ int start, i;
+
+ ip = next_ip;
+ next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
+ start = insn_word & 0x7;
+
+ for (i = start; i < start + count; i++)
+ {
+ auto_depth += 4;
+ fsr[i] = after_prolog_fp - auto_depth;
+ }
+ }
+ break;
+ }
-
/* The args are always reffed based from the stack pointer */
- fi->args_pointer = after_prolog_fp - auto_depth;
+ get_frame_extra_info (fi)->args_pointer = after_prolog_fp;
/* Locals are always reffed based from the fp */
- fi->locals_pointer = after_prolog_fp ;
+ get_frame_extra_info (fi)->locals_pointer = after_prolog_fp;
/* The PC is at a known place */
- fi->from_pc = read_memory_short(after_prolog_fp + reg_save_depth-2 );
-
+ get_frame_extra_info (fi)->from_pc =
+ read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
/* Rememeber any others too */
+ in_frame[E_PC_REGNUM] = 0;
- in_frame[PC_REGNUM] = 0;
-
- for (r = 0; r < NUM_REGS; r++)
- {
- if (in_frame[r] != 1)
- {
- fsr->regs[r] = after_prolog_fp + reg_save_depth - in_frame[r] -2;
- }
- else
+ if (have_fp)
+ /* We keep the old FP in the SP spot */
+ fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM], BINWORD);
+ else
+ fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;
+
+ return (ip);
+}
+
+static void
+h8300_frame_init_saved_regs (struct frame_info *fi)
+{
+ CORE_ADDR func_addr, func_end;
+
+ if (!get_frame_saved_regs (fi))
{
- fsr->regs[r] = 0;
+ frame_saved_regs_zalloc (fi);
+
+ /* Find the beginning of this function, so we can analyze its
+ prologue. */
+ if (find_pc_partial_function (get_frame_pc (fi), NULL, &func_addr, &func_end))
+ {
+ struct symtab_and_line sal = find_pc_line (func_addr, 0);
+ CORE_ADDR limit = (sal.end && sal.end < get_frame_pc (fi)) ? sal.end : get_frame_pc (fi);
+ /* This will fill in fields in fi. */
+ h8300_examine_prologue (func_addr, limit, get_frame_base (fi),
+ get_frame_saved_regs (fi), fi);
+ }
+ /* Else we're out of luck (can't debug completely stripped code).
+ FIXME. */
}
- }
- if (have_fp)
- /* We keep the old FP in the SP spot */
- fsr->regs[SP_REGNUM] = (read_memory_short(fsr->regs[6])) ;
- else
- fsr->regs[SP_REGNUM] = after_prolog_fp + reg_save_depth;
-
- return (ip);
}
-void
-init_extra_frame_info (fromleaf, fi)
- int fromleaf;
- struct frame_info *fi;
-{
- fi->fsr = 0; /* Not yet allocated */
- fi->args_pointer = 0; /* Unknown */
- fi->locals_pointer = 0; /* Unknown */
- fi->from_pc = 0;
-
+/* Given a GDB frame, determine the address of the calling function's
+ frame. This will be used to create a new GDB frame struct, and
+ then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
+ will be called for the new frame.
+
+ For us, the frame address is its stack pointer value, so we look up
+ the function prologue to determine the caller's sp value, and return it. */
+
+static CORE_ADDR
+h8300_frame_chain (struct frame_info *thisframe)
+{
+ if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
+ get_frame_base (thisframe),
+ get_frame_base (thisframe)))
+ { /* initialize the from_pc now */
+ get_frame_extra_info (thisframe)->from_pc =
+ deprecated_read_register_dummy (get_frame_pc (thisframe),
+ get_frame_base (thisframe),
+ E_PC_REGNUM);
+ return get_frame_base (thisframe);
+ }
+ return get_frame_saved_regs (thisframe)[E_SP_REGNUM];
}
+
/* Return the saved PC from this frame.
If the frame has a memory copy of SRP_REGNUM, use that. If not,
just use the register SRP_REGNUM itself. */
-CORE_ADDR
-frame_saved_pc (frame)
-FRAME frame;
-
+static CORE_ADDR
+h8300_frame_saved_pc (struct frame_info *frame)
{
- return frame->from_pc;
+ if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
+ get_frame_base (frame),
+ get_frame_base (frame)))
+ return deprecated_read_register_dummy (get_frame_pc (frame),
+ get_frame_base (frame),
+ E_PC_REGNUM);
+ else
+ return get_frame_extra_info (frame)->from_pc;
}
-
-CORE_ADDR
-frame_locals_address (fi)
- struct frame_info *fi;
+static void
+h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
- if (!fi->locals_pointer)
- {
- struct frame_saved_regs ignore;
- get_frame_saved_regs(fi, &ignore);
+ if (!get_frame_extra_info (fi))
+ {
+ frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
+ get_frame_extra_info (fi)->from_pc = 0;
+ get_frame_extra_info (fi)->args_pointer = 0; /* Unknown */
+ get_frame_extra_info (fi)->locals_pointer = 0; /* Unknown */
+
+ if (!get_frame_pc (fi))
+ {
+ if (get_next_frame (fi))
+ deprecated_update_frame_pc_hack (fi, h8300_frame_saved_pc (get_next_frame (fi)));
+ }
+ h8300_frame_init_saved_regs (fi);
+ }
+}
- }
- return fi->locals_pointer;
+static CORE_ADDR
+h8300_frame_locals_address (struct frame_info *fi)
+{
+ if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
+ get_frame_base (fi)))
+ return (CORE_ADDR) 0; /* Not sure what else to do... */
+ return get_frame_extra_info (fi)->locals_pointer;
}
/* Return the address of the argument block for the frame
described by FI. Returns 0 if the address is unknown. */
-CORE_ADDR
-frame_args_address (fi)
- struct frame_info *fi;
+static CORE_ADDR
+h8300_frame_args_address (struct frame_info *fi)
{
- if (!fi->args_pointer)
- {
- struct frame_saved_regs ignore;
- get_frame_saved_regs(fi, &ignore);
+ if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
+ get_frame_base (fi)))
+ return (CORE_ADDR) 0; /* Not sure what else to do... */
+ return get_frame_extra_info (fi)->args_pointer;
+}
- }
+/* Round N up or down to the nearest multiple of UNIT.
+ Evaluate N only once, UNIT several times.
+ UNIT must be a power of two. */
+#define round_up(n, unit) (((n) + (unit) - 1) & -(unit))
+#define round_down(n, unit) ((n) & -(unit))
+
+/* Function: push_arguments
+ Setup the function arguments for calling a function in the inferior.
+ In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
+ on the H8/300H.
+
+ There are actually two ABI's here: -mquickcall (the default) and
+ -mno-quickcall. With -mno-quickcall, all arguments are passed on
+ the stack after the return address, word-aligned. With
+ -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
+ GCC doesn't indicate in the object file which ABI was used to
+ compile it, GDB only supports the default --- -mquickcall.
+
+ Here are the rules for -mquickcall, in detail:
+
+ Each argument, whether scalar or aggregate, is padded to occupy a
+ whole number of words. Arguments smaller than a word are padded at
+ the most significant end; those larger than a word are padded at
+ the least significant end.
+
+ The initial arguments are passed in r0 -- r2. Earlier arguments go in
+ lower-numbered registers. Multi-word arguments are passed in
+ consecutive registers, with the most significant end in the
+ lower-numbered register.
+
+ If an argument doesn't fit entirely in the remaining registers, it
+ is passed entirely on the stack. Stack arguments begin just after
+ the return address. Once an argument has overflowed onto the stack
+ this way, all subsequent arguments are passed on the stack.
+
+ The above rule has odd consequences. For example, on the h8/300s,
+ if a function takes two longs and an int as arguments:
+ - the first long will be passed in r0/r1,
+ - the second long will be passed entirely on the stack, since it
+ doesn't fit in r2,
+ - and the int will be passed on the stack, even though it could fit
+ in r2.
+
+ A weird exception: if an argument is larger than a word, but not a
+ whole number of words in length (before padding), it is passed on
+ the stack following the rules for stack arguments above, even if
+ there are sufficient registers available to hold it. Stranger
+ still, the argument registers are still `used up' --- even though
+ there's nothing in them.
+
+ So, for example, on the h8/300s, if a function expects a three-byte
+ structure and an int, the structure will go on the stack, and the
+ int will go in r2, not r0.
- return fi->args_pointer;
+ If the function returns an aggregate type (struct, union, or class)
+ by value, the caller must allocate space to hold the return value,
+ and pass the callee a pointer to this space as an invisible first
+ argument, in R0.
+
+ For varargs functions, the last fixed argument and all the variable
+ arguments are always passed on the stack. This means that calls to
+ varargs functions don't work properly unless there is a prototype
+ in scope.
+
+ Basically, this ABI is not good, for the following reasons:
+ - You can't call vararg functions properly unless a prototype is in scope.
+ - Structure passing is inconsistent, to no purpose I can see.
+ - It often wastes argument registers, of which there are only three
+ to begin with. */
+
+static CORE_ADDR
+h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ int stack_align, stack_alloc, stack_offset;
+ int wordsize = BINWORD;
+ int reg;
+ int argument;
+
+ /* First, make sure the stack is properly aligned. */
+ sp = round_down (sp, wordsize);
+
+ /* Now make sure there's space on the stack for the arguments. We
+ may over-allocate a little here, but that won't hurt anything. */
+ stack_alloc = 0;
+ for (argument = 0; argument < nargs; argument++)
+ stack_alloc += round_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
+ wordsize);
+ sp -= stack_alloc;
+
+ /* Now load as many arguments as possible into registers, and push
+ the rest onto the stack. */
+ reg = E_ARG0_REGNUM;
+ stack_offset = 0;
+
+ /* If we're returning a structure by value, then we must pass a
+ pointer to the buffer for the return value as an invisible first
+ argument. */
+ if (struct_return)
+ write_register (reg++, struct_addr);
+
+ for (argument = 0; argument < nargs; argument++)
+ {
+ struct type *type = VALUE_TYPE (args[argument]);
+ int len = TYPE_LENGTH (type);
+ char *contents = (char *) VALUE_CONTENTS (args[argument]);
+
+ /* Pad the argument appropriately. */
+ int padded_len = round_up (len, wordsize);
+ char *padded = alloca (padded_len);
+
+ memset (padded, 0, padded_len);
+ memcpy (len < wordsize ? padded + padded_len - len : padded,
+ contents, len);
+
+ /* Could the argument fit in the remaining registers? */
+ if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
+ {
+ /* Are we going to pass it on the stack anyway, for no good
+ reason? */
+ if (len > wordsize && len % wordsize)
+ {
+ /* I feel so unclean. */
+ write_memory (sp + stack_offset, padded, padded_len);
+ stack_offset += padded_len;
+
+ /* That's right --- even though we passed the argument
+ on the stack, we consume the registers anyway! Love
+ me, love my dog. */
+ reg += padded_len / wordsize;
+ }
+ else
+ {
+ /* Heavens to Betsy --- it's really going in registers!
+ It would be nice if we could use write_register_bytes
+ here, but on the h8/300s, there are gaps between
+ the registers in the register file. */
+ int offset;
+
+ for (offset = 0; offset < padded_len; offset += wordsize)
+ {
+ ULONGEST word = extract_address (padded + offset, wordsize);
+ write_register (reg++, word);
+ }
+ }
+ }
+ else
+ {
+ /* It doesn't fit in registers! Onto the stack it goes. */
+ write_memory (sp + stack_offset, padded, padded_len);
+ stack_offset += padded_len;
+
+ /* Once one argument has spilled onto the stack, all
+ subsequent arguments go on the stack. */
+ reg = E_ARGLAST_REGNUM + 1;
+ }
+ }
+
+ return sp;
}
+/* Function: push_return_address
+ Setup the return address for a dummy frame, as called by
+ call_function_by_hand. Only necessary when you are using an
+ empty CALL_DUMMY, ie. the target will not actually be executing
+ a JSR/BSR instruction. */
-void h8300_pop_frame()
+static CORE_ADDR
+h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
- unsigned regnum;
- struct frame_saved_regs fsr;
- struct frame_info *fi;
+ unsigned char buf[4];
+ int wordsize = BINWORD;
+
+ sp -= wordsize;
+ store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
+ write_memory (sp, buf, wordsize);
+ return sp;
+}
+
+/* Function: h8300_pop_frame
+ Restore the machine to the state it had before the current frame
+ was created. Usually used either by the "RETURN" command, or by
+ call_function_by_hand after the dummy_frame is finished. */
- FRAME frame = get_current_frame();
- fi = get_frame_info(frame);
- get_frame_saved_regs(fi, &fsr);
+static void
+h8300_pop_frame (void)
+{
+ unsigned regno;
+ struct frame_info *frame = get_current_frame ();
- for (regnum = 0; regnum < NUM_REGS; regnum ++)
- {
- if(fsr.regs[regnum])
+ if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
+ get_frame_base (frame),
+ get_frame_base (frame)))
{
- write_register(regnum, read_memory_short (fsr.regs[regnum]));
+ generic_pop_dummy_frame ();
}
-
- flush_cached_frames();
- set_current_frame(create_new_frame(read_register(FP_REGNUM),
- read_pc()));
-
- }
+ else
+ {
+ for (regno = 0; regno < 8; regno++)
+ {
+ /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
+ actual value we want, not the address of the value we want. */
+ if (get_frame_saved_regs (frame)[regno] && regno != E_SP_REGNUM)
+ write_register (regno,
+ read_memory_integer (get_frame_saved_regs (frame)[regno],
+ BINWORD));
+ else if (get_frame_saved_regs (frame)[regno] && regno == E_SP_REGNUM)
+ write_register (regno, get_frame_base (frame) + 2 * BINWORD);
+ }
+
+ /* Don't forget to update the PC too! */
+ write_register (E_PC_REGNUM, get_frame_extra_info (frame)->from_pc);
+ }
+ flush_cached_frames ();
+}
+
+/* Function: extract_return_value
+ Figure out where in REGBUF the called function has left its return value.
+ Copy that into VALBUF. Be sure to account for CPU type. */
+
+static void
+h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
+{
+ int wordsize = BINWORD;
+ int len = TYPE_LENGTH (type);
+
+ switch (len)
+ {
+ case 1: /* (char) */
+ case 2: /* (short), (int) */
+ memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
+ break;
+ case 4: /* (long), (float) */
+ if (wordsize == 4)
+ {
+ memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
+ }
+ else
+ {
+ memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
+ memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
+ }
+ break;
+ case 8: /* (double) (doesn't seem to happen, which is good,
+ because this almost certainly isn't right. */
+ error ("I don't know how a double is returned.");
+ break;
+ }
+}
+
+/* Function: store_return_value
+ Place the appropriate value in the appropriate registers.
+ Primarily used by the RETURN command. */
+static void
+h8300_store_return_value (struct type *type, char *valbuf)
+{
+ int regval;
+ int wordsize = BINWORD;
+ int len = TYPE_LENGTH (type);
+
+ switch (len)
+ {
+ case 1: /* char */
+ case 2: /* short, int */
+ regval = extract_address (valbuf, len);
+ write_register (0, regval);
+ break;
+ case 4: /* long, float */
+ regval = extract_address (valbuf, len);
+ if (wordsize == 4)
+ {
+ write_register (0, regval);
+ }
+ else
+ {
+ write_register (0, regval >> 16);
+ write_register (1, regval & 0xffff);
+ }
+ break;
+ case 8: /* presumeably double, but doesn't seem to happen */
+ error ("I don't know how to return a double.");
+ break;
+ }
+}
+
+static struct cmd_list_element *setmachinelist;
+
+static const char *
+h8300_register_name (int regno)
+{
+ /* The register names change depending on whether the h8300h processor
+ type is selected. */
+ static char *h8300_register_names[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6",
+ "sp", "ccr","pc","cycles", "tick", "inst", ""
+ };
+ static char *h8300s_register_names[] = {
+ "er0", "er1", "er2", "er3", "er4", "er5", "er6",
+ "sp", "ccr", "pc", "cycles", "exr", "tick", "inst"
+ };
+ char **register_names =
+ h8300smode ? h8300s_register_names : h8300_register_names;
+ if (regno < 0 || regno >= E_NUM_REGS)
+ internal_error (__FILE__, __LINE__,
+ "h8300_register_name: illegal register number %d", regno);
+ else
+ return register_names[regno];
+}
+
+static void
+h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
+ struct frame_info *frame, int regno)
+{
+ ULONGEST rval;
+ long val;
+ const char *name = h8300_register_name (regno);
+
+ if (!name || !*name)
+ return;
+
+ /* FIXME: cagney/2002-10-22: The code below assumes that VAL is at
+ least 4 bytes (32 bits) in size and hence is large enough to hold
+ the largest h8300 register. Should instead be using ULONGEST and
+ the phex() functions. */
+ gdb_assert (sizeof (val) >= 4);
+ frame_read_unsigned_register (frame, regno, &rval);
+ val = rval;
+
+ fprintf_filtered (file, "%-14s ", name);
+ if (h8300hmode)
+ {
+ if (val)
+ fprintf_filtered (file, "0x%08lx %-8ld", val, val);
+ else
+ fprintf_filtered (file, "0x%-8lx %-8ld", val, val);
+ }
+ else
+ {
+ if (val)
+ fprintf_filtered (file, "0x%04lx %-4ld", val, val);
+ else
+ fprintf_filtered (file, "0x%-4lx %-4ld", val, val);
+ }
+ if (regno == E_CCR_REGNUM)
+ {
+ /* CCR register */
+ int C, Z, N, V;
+ unsigned char b[h8300h_reg_size];
+ unsigned char l;
+ frame_register_read (deprecated_selected_frame, regno, b);
+ l = b[REGISTER_VIRTUAL_SIZE (E_CCR_REGNUM) - 1];
+ fprintf_filtered (file, "\t");
+ fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
+ fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
+ fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
+ fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
+ N = (l & 0x8) != 0;
+ Z = (l & 0x4) != 0;
+ V = (l & 0x2) != 0;
+ C = (l & 0x1) != 0;
+ fprintf_filtered (file, "N-%d ", N);
+ fprintf_filtered (file, "Z-%d ", Z);
+ fprintf_filtered (file, "V-%d ", V);
+ fprintf_filtered (file, "C-%d ", C);
+ if ((C | Z) == 0)
+ fprintf_filtered (file, "u> ");
+ if ((C | Z) == 1)
+ fprintf_filtered (file, "u<= ");
+ if ((C == 0))
+ fprintf_filtered (file, "u>= ");
+ if (C == 1)
+ fprintf_filtered (file, "u< ");
+ if (Z == 0)
+ fprintf_filtered (file, "!= ");
+ if (Z == 1)
+ fprintf_filtered (file, "== ");
+ if ((N ^ V) == 0)
+ fprintf_filtered (file, ">= ");
+ if ((N ^ V) == 1)
+ fprintf_filtered (file, "< ");
+ if ((Z | (N ^ V)) == 0)
+ fprintf_filtered (file, "> ");
+ if ((Z | (N ^ V)) == 1)
+ fprintf_filtered (file, "<= ");
+ }
+ else if (regno == E_EXR_REGNUM && h8300smode)
+ {
+ /* EXR register */
+ unsigned char b[h8300h_reg_size];
+ unsigned char l;
+ frame_register_read (deprecated_selected_frame, regno, b);
+ l = b[REGISTER_VIRTUAL_SIZE (E_EXR_REGNUM) - 1];
+ fprintf_filtered (file, "\t");
+ fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
+ fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
+ fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
+ fprintf_filtered (file, "I0-%d", (l & 1) != 0);
+ }
+ fprintf_filtered (file, "\n");
+}
+
+static void
+h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
+ struct frame_info *frame, int regno, int cpregs)
+{
+ if (regno < 0)
+ for (regno = 0; regno < E_NUM_REGS; ++regno)
+ h8300_print_register (gdbarch, file, frame, regno);
+ else
+ h8300_print_register (gdbarch, file, frame, regno);
+}
+
+static CORE_ADDR
+h8300_saved_pc_after_call (struct frame_info *ignore)
+{
+ return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
+}
+
+static int
+h8300_register_byte (int regno)
+{
+ if (regno < 0 || regno >= E_NUM_REGS)
+ internal_error (__FILE__, __LINE__,
+ "h8300_register_byte: illegal register number %d", regno);
+ else
+ return regno * BINWORD;
+}
+
+static int
+h8300_register_raw_size (int regno)
+{
+ if (regno < 0 || regno >= E_NUM_REGS)
+ internal_error (__FILE__, __LINE__,
+ "h8300_register_raw_size: illegal register number %d",
+ regno);
+ else
+ return BINWORD;
+}
+
+static struct type *
+h8300_register_virtual_type (int regno)
+{
+ if (regno < 0 || regno >= E_NUM_REGS)
+ internal_error (__FILE__, __LINE__,
+ "h8300_register_virtual_type: illegal register number %d",
+ regno);
+ else
+ return h8300hmode ?
+ builtin_type_unsigned_long : builtin_type_unsigned_short;
+}
+
+static void
+h8300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
+{
+ write_register (0, addr);
+}
+
+static int
+h8300_use_struct_convention (int gcc_p, struct type *type)
+{
+ return 1;
+}
+
+static CORE_ADDR
+h8300_extract_struct_value_address (char *regbuf)
+{
+ return extract_address (regbuf + h8300_register_byte (E_ARG0_REGNUM),
+ h8300_register_raw_size (E_ARG0_REGNUM));
+}
+
+const static unsigned char *
+h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
+{
+ /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/ /* ??? */
+ static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
+
+ *lenptr = sizeof (breakpoint);
+ return breakpoint;
+}
+
+static void
+h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
+ struct frame_info *frame, const char *args)
+{
+ fprintf_filtered (file, "\
+No floating-point info available for this processor.\n");
+}
+
+static struct gdbarch *
+h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ static LONGEST call_dummy_words[1] = { 0 };
+ struct gdbarch_tdep *tdep = NULL;
+ struct gdbarch *gdbarch;
+
+ arches = gdbarch_list_lookup_by_info (arches, &info);
+ if (arches != NULL)
+ return arches->gdbarch;
+
+#if 0
+ tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
+#endif
+
+ if (info.bfd_arch_info->arch != bfd_arch_h8300)
+ return NULL;
+
+ switch (info.bfd_arch_info->mach)
+ {
+ case bfd_mach_h8300:
+ h8300smode = 0;
+ h8300hmode = 0;
+ break;
+ case bfd_mach_h8300h:
+ h8300smode = 0;
+ h8300hmode = 1;
+ break;
+ case bfd_mach_h8300s:
+ h8300smode = 1;
+ h8300hmode = 1;
+ break;
+ }
+
+ gdbarch = gdbarch_alloc (&info, 0);
+
+ /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
+ ready to unwind the PC first (see frame.c:get_prev_frame()). */
+ set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
+
+ /*
+ * Basic register fields and methods.
+ */
+
+ set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
+ set_gdbarch_num_pseudo_regs (gdbarch, 0);
+ set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
+ set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM);
+ set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
+ set_gdbarch_register_name (gdbarch, h8300_register_name);
+ set_gdbarch_register_size (gdbarch, BINWORD);
+ set_gdbarch_register_bytes (gdbarch, E_NUM_REGS * BINWORD);
+ set_gdbarch_register_byte (gdbarch, h8300_register_byte);
+ set_gdbarch_register_raw_size (gdbarch, h8300_register_raw_size);
+ set_gdbarch_deprecated_max_register_raw_size (gdbarch, h8300h_reg_size);
+ set_gdbarch_register_virtual_size (gdbarch, h8300_register_raw_size);
+ set_gdbarch_deprecated_max_register_virtual_size (gdbarch, h8300h_reg_size);
+ set_gdbarch_register_virtual_type (gdbarch, h8300_register_virtual_type);
+ set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
+ set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
+
+ /*
+ * Frame Info
+ */
+ set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, h8300_frame_init_saved_regs);
+ set_gdbarch_deprecated_init_extra_frame_info (gdbarch, h8300_init_extra_frame_info);
+ set_gdbarch_frame_chain (gdbarch, h8300_frame_chain);
+ set_gdbarch_saved_pc_after_call (gdbarch, h8300_saved_pc_after_call);
+ set_gdbarch_deprecated_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
+ set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
+ set_gdbarch_frame_args_address (gdbarch, h8300_frame_args_address);
+ set_gdbarch_frame_locals_address (gdbarch, h8300_frame_locals_address);
+
+ /*
+ * Miscelany
+ */
+ /* Stack grows up. */
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ /* PC stops zero byte after a trap instruction
+ (which means: exactly on trap instruction). */
+ set_gdbarch_decr_pc_after_break (gdbarch, 0);
+ /* This value is almost never non-zero... */
+ set_gdbarch_function_start_offset (gdbarch, 0);
+ /* This value is almost never non-zero... */
+ set_gdbarch_frame_args_skip (gdbarch, 0);
+ /* OK to default this value to 'unknown'. */
+ set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
+ set_gdbarch_frameless_function_invocation (gdbarch,
+ frameless_look_for_prologue);
+
+ /*
+ * Call Dummies
+ *
+ * These values and methods are used when gdb calls a target function. */
+ set_gdbarch_push_return_address (gdbarch, h8300_push_return_address);
+ set_gdbarch_deprecated_extract_return_value (gdbarch, h8300_extract_return_value);
+ set_gdbarch_push_arguments (gdbarch, h8300_push_arguments);
+ set_gdbarch_deprecated_pop_frame (gdbarch, h8300_pop_frame);
+ set_gdbarch_store_struct_return (gdbarch, h8300_store_struct_return);
+ set_gdbarch_deprecated_store_return_value (gdbarch, h8300_store_return_value);
+ set_gdbarch_deprecated_extract_struct_value_address (gdbarch, h8300_extract_struct_value_address);
+ set_gdbarch_use_struct_convention (gdbarch, h8300_use_struct_convention);
+ set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
+ set_gdbarch_call_dummy_start_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
+ set_gdbarch_call_dummy_length (gdbarch, 0);
+ set_gdbarch_call_dummy_p (gdbarch, 1);
+ set_gdbarch_call_dummy_words (gdbarch, call_dummy_words);
+ set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
+ set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
+ /* set_gdbarch_call_dummy_stack_adjust */
+ set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
+ set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
+
+ set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_ptr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
+ set_gdbarch_addr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
+
+ /* set_gdbarch_stack_align (gdbarch, SOME_stack_align); */
+ set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
+ set_gdbarch_believe_pcc_promotion (gdbarch, 1);
+
+ return gdbarch;
+}
+
+void
+_initialize_h8300_tdep (void)
+{
+ tm_print_insn = gdb_print_insn_h8300;
+ register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
}