/* Target-dependent code for Mitsubishi D10V, for GDB.
- Copyright (C) 1996, 1997 Free Software Foundation, Inc.
+
+ Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
+ Foundation, Inc.
This file is part of GDB.
#include "defs.h"
#include "frame.h"
-#include "obstack.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "symfile.h"
#include "objfiles.h"
#include "language.h"
+#include "arch-utils.h"
+#include "regcache.h"
+
+#include "floatformat.h"
+#include "gdb/sim-d10v.h"
+#include "sim-regno.h"
+
+#include "gdb_assert.h"
struct frame_extra_info
{
int size;
};
-/* these are the addresses the D10V-EVA board maps data */
-/* and instruction memory to. */
+struct gdbarch_tdep
+ {
+ int a0_regnum;
+ int nr_dmap_regs;
+ unsigned long (*dmap_register) (int nr);
+ unsigned long (*imap_register) (int nr);
+ };
-#define DMEM_START 0x0000000
-#define IMEM_START 0x1000000
-#define STACK_START 0x0007ffe
+/* These are the addresses the D10V-EVA board maps data and
+ instruction memory to. */
-/* d10v register naming conventions */
+enum memspace {
+ DMEM_START = 0x2000000,
+ IMEM_START = 0x1000000,
+ STACK_START = 0x200bffe
+};
-#define ARG1_REGNUM R0_REGNUM
-#define ARGN_REGNUM 3
-#define RET1_REGNUM R0_REGNUM
+/* d10v register names. */
+
+enum
+ {
+ R0_REGNUM = 0,
+ R3_REGNUM = 3,
+ _FP_REGNUM = 11,
+ LR_REGNUM = 13,
+ _SP_REGNUM = 15,
+ PSW_REGNUM = 16,
+ _PC_REGNUM = 18,
+ NR_IMAP_REGS = 2,
+ NR_A_REGS = 2,
+ TS2_NUM_REGS = 37,
+ TS3_NUM_REGS = 42,
+ /* d10v calling convention. */
+ ARG1_REGNUM = R0_REGNUM,
+ ARGN_REGNUM = R3_REGNUM,
+ RET1_REGNUM = R0_REGNUM,
+ };
+
+#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
+#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
/* Local functions */
-extern void _initialize_d10v_tdep PARAMS ((void));
+extern void _initialize_d10v_tdep (void);
-static void d10v_eva_prepare_to_trace PARAMS ((void));
+static CORE_ADDR d10v_read_sp (void);
-static void d10v_eva_get_trace_data PARAMS ((void));
+static CORE_ADDR d10v_read_fp (void);
-static int prologue_find_regs PARAMS ((unsigned short op, struct frame_info * fi, CORE_ADDR addr));
+static void d10v_eva_prepare_to_trace (void);
-extern void d10v_frame_init_saved_regs PARAMS ((struct frame_info *));
+static void d10v_eva_get_trace_data (void);
-static void do_d10v_pop_frame PARAMS ((struct frame_info * fi));
+static int prologue_find_regs (unsigned short op, struct frame_info *fi,
+ CORE_ADDR addr);
-/* FIXME */
-extern void remote_d10v_translate_xfer_address PARAMS ((CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR * rem_addr, int *rem_len));
+static void d10v_frame_init_saved_regs (struct frame_info *);
-int
-d10v_frame_chain_valid (chain, frame)
- CORE_ADDR chain;
- struct frame_info *frame; /* not used here */
+static void do_d10v_pop_frame (struct frame_info *fi);
+
+static int
+d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
{
- return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
+ return (get_frame_pc (frame) > IMEM_START);
}
+static CORE_ADDR
+d10v_stack_align (CORE_ADDR len)
+{
+ return (len + 1) & ~1;
+}
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
The d10v returns anything less than 8 bytes in size in
registers. */
-int
-d10v_use_struct_convention (gcc_p, type)
- int gcc_p;
- struct type *type;
+static int
+d10v_use_struct_convention (int gcc_p, struct type *type)
{
- return (TYPE_LENGTH (type) > 8);
+ long alignment;
+ int i;
+ /* The d10v only passes a struct in a register when that structure
+ has an alignment that matches the size of a register. */
+ /* If the structure doesn't fit in 4 registers, put it on the
+ stack. */
+ if (TYPE_LENGTH (type) > 8)
+ return 1;
+ /* If the struct contains only one field, don't put it on the stack
+ - gcc can fit it in one or more registers. */
+ if (TYPE_NFIELDS (type) == 1)
+ return 0;
+ alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
+ for (i = 1; i < TYPE_NFIELDS (type); i++)
+ {
+ /* If the alignment changes, just assume it goes on the
+ stack. */
+ if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
+ return 1;
+ }
+ /* If the alignment is suitable for the d10v's 16 bit registers,
+ don't put it on the stack. */
+ if (alignment == 2 || alignment == 4)
+ return 0;
+ return 1;
}
-unsigned char *
-d10v_breakpoint_from_pc (pcptr, lenptr)
- CORE_ADDR *pcptr;
- int *lenptr;
+static const unsigned char *
+d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
static unsigned char breakpoint[] =
{0x2f, 0x90, 0x5e, 0x00};
return breakpoint;
}
-char *
-d10v_register_name (reg_nr)
- int reg_nr;
+/* Map the REG_NR onto an ascii name. Return NULL or an empty string
+ when the reg_nr isn't valid. */
+
+enum ts2_regnums
+ {
+ TS2_IMAP0_REGNUM = 32,
+ TS2_DMAP_REGNUM = 34,
+ TS2_NR_DMAP_REGS = 1,
+ TS2_A0_REGNUM = 35
+ };
+
+static const char *
+d10v_ts2_register_name (int reg_nr)
{
static char *register_names[] =
{
return register_names[reg_nr];
}
+enum ts3_regnums
+ {
+ TS3_IMAP0_REGNUM = 36,
+ TS3_DMAP0_REGNUM = 38,
+ TS3_NR_DMAP_REGS = 4,
+ TS3_A0_REGNUM = 32
+ };
-/* Index within `registers' of the first byte of the space for
- register REG_NR. */
+static const char *
+d10v_ts3_register_name (int reg_nr)
+{
+ static char *register_names[] =
+ {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
+ "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
+ "a0", "a1",
+ "spi", "spu",
+ "imap0", "imap1",
+ "dmap0", "dmap1", "dmap2", "dmap3"
+ };
+ if (reg_nr < 0)
+ return NULL;
+ if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
+ return NULL;
+ return register_names[reg_nr];
+}
+
+/* Access the DMAP/IMAP registers in a target independent way.
+
+ Divide the D10V's 64k data space into four 16k segments:
+ 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
+ 0xc000 -- 0xffff.
-int
-d10v_register_byte (reg_nr)
- int reg_nr;
+ On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
+ 0x7fff) always map to the on-chip data RAM, and the fourth always
+ maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
+ unified memory or instruction memory, under the control of the
+ single DMAP register.
+
+ On the TS3, there are four DMAP registers, each of which controls
+ one of the segments. */
+
+static unsigned long
+d10v_ts2_dmap_register (int reg_nr)
{
- if (reg_nr > A0_REGNUM)
- return ((reg_nr - A0_REGNUM) * 8 + (A0_REGNUM * 2));
- else
- return (reg_nr * 2);
+ switch (reg_nr)
+ {
+ case 0:
+ case 1:
+ return 0x2000;
+ case 2:
+ return read_register (TS2_DMAP_REGNUM);
+ default:
+ return 0;
+ }
}
-/* Number of bytes of storage in the actual machine representation for
+static unsigned long
+d10v_ts3_dmap_register (int reg_nr)
+{
+ return read_register (TS3_DMAP0_REGNUM + reg_nr);
+}
+
+static unsigned long
+d10v_dmap_register (int reg_nr)
+{
+ return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
+}
+
+static unsigned long
+d10v_ts2_imap_register (int reg_nr)
+{
+ return read_register (TS2_IMAP0_REGNUM + reg_nr);
+}
+
+static unsigned long
+d10v_ts3_imap_register (int reg_nr)
+{
+ return read_register (TS3_IMAP0_REGNUM + reg_nr);
+}
+
+static unsigned long
+d10v_imap_register (int reg_nr)
+{
+ return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
+}
+
+/* MAP GDB's internal register numbering (determined by the layout fo
+ the REGISTER_BYTE array) onto the simulator's register
+ numbering. */
+
+static int
+d10v_ts2_register_sim_regno (int nr)
+{
+ if (legacy_register_sim_regno (nr) < 0)
+ return legacy_register_sim_regno (nr);
+ if (nr >= TS2_IMAP0_REGNUM
+ && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
+ return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
+ if (nr == TS2_DMAP_REGNUM)
+ return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
+ if (nr >= TS2_A0_REGNUM
+ && nr < TS2_A0_REGNUM + NR_A_REGS)
+ return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
+ return nr;
+}
+
+static int
+d10v_ts3_register_sim_regno (int nr)
+{
+ if (legacy_register_sim_regno (nr) < 0)
+ return legacy_register_sim_regno (nr);
+ if (nr >= TS3_IMAP0_REGNUM
+ && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
+ return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
+ if (nr >= TS3_DMAP0_REGNUM
+ && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
+ return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
+ if (nr >= TS3_A0_REGNUM
+ && nr < TS3_A0_REGNUM + NR_A_REGS)
+ return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
+ return nr;
+}
+
+/* Index within `registers' of the first byte of the space for
register REG_NR. */
-int
-d10v_register_raw_size (reg_nr)
- int reg_nr;
+static int
+d10v_register_byte (int reg_nr)
{
- if (reg_nr >= A0_REGNUM)
- return 8;
+ if (reg_nr < A0_REGNUM)
+ return (reg_nr * 2);
+ else if (reg_nr < (A0_REGNUM + NR_A_REGS))
+ return (A0_REGNUM * 2
+ + (reg_nr - A0_REGNUM) * 8);
else
- return 2;
+ return (A0_REGNUM * 2
+ + NR_A_REGS * 8
+ + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
}
-/* Number of bytes of storage in the program's representation
- for register N. */
+/* Number of bytes of storage in the actual machine representation for
+ register REG_NR. */
-int
-d10v_register_virtual_size (reg_nr)
- int reg_nr;
+static int
+d10v_register_raw_size (int reg_nr)
{
- if (reg_nr >= A0_REGNUM)
+ if (reg_nr < A0_REGNUM)
+ return 2;
+ else if (reg_nr < (A0_REGNUM + NR_A_REGS))
return 8;
- else if (reg_nr == PC_REGNUM || reg_nr == SP_REGNUM)
- return 4;
else
return 2;
}
/* Return the GDB type object for the "standard" data type
of data in register N. */
-struct type *
-d10v_register_virtual_type (reg_nr)
- int reg_nr;
+static struct type *
+d10v_register_virtual_type (int reg_nr)
{
- if (reg_nr >= A0_REGNUM)
- return builtin_type_long_long;
- else if (reg_nr == PC_REGNUM || reg_nr == SP_REGNUM)
- return builtin_type_long;
+ if (reg_nr == PC_REGNUM)
+ return builtin_type_void_func_ptr;
+ if (reg_nr == _SP_REGNUM || reg_nr == _FP_REGNUM)
+ return builtin_type_void_data_ptr;
+ else if (reg_nr >= A0_REGNUM
+ && reg_nr < (A0_REGNUM + NR_A_REGS))
+ return builtin_type_int64;
else
- return builtin_type_short;
+ return builtin_type_int16;
}
-/* convert $pc and $sp to/from virtual addresses */
-int
-d10v_register_convertible (nr)
- int nr;
+static int
+d10v_daddr_p (CORE_ADDR x)
{
- return ((nr) == PC_REGNUM || (nr) == SP_REGNUM);
+ return (((x) & 0x3000000) == DMEM_START);
}
-void
-d10v_register_convert_to_virtual (regnum, type, from, to)
- int regnum;
- struct type *type;
- char *from;
- char *to;
+static int
+d10v_iaddr_p (CORE_ADDR x)
{
- ULONGEST x = extract_unsigned_integer (from, REGISTER_RAW_SIZE (regnum));
- if (regnum == PC_REGNUM)
- x = (x << 2) | IMEM_START;
- else
- x |= DMEM_START;
- store_unsigned_integer (to, TYPE_LENGTH (type), x);
+ return (((x) & 0x3000000) == IMEM_START);
}
-void
-d10v_register_convert_to_raw (type, regnum, from, to)
- struct type *type;
- int regnum;
- char *from;
- char *to;
+static CORE_ADDR
+d10v_make_daddr (CORE_ADDR x)
{
- ULONGEST x = extract_unsigned_integer (from, TYPE_LENGTH (type));
- x &= 0x3ffff;
- if (regnum == PC_REGNUM)
- x >>= 2;
- store_unsigned_integer (to, 2, x);
+ return ((x) | DMEM_START);
}
-
-CORE_ADDR
-d10v_make_daddr (x)
- CORE_ADDR x;
+static CORE_ADDR
+d10v_make_iaddr (CORE_ADDR x)
{
- return ((x) | DMEM_START);
+ if (d10v_iaddr_p (x))
+ return x; /* Idempotency -- x is already in the IMEM space. */
+ else
+ return (((x) << 2) | IMEM_START);
}
-CORE_ADDR
-d10v_make_iaddr (x)
- CORE_ADDR x;
+static CORE_ADDR
+d10v_convert_iaddr_to_raw (CORE_ADDR x)
{
- return (((x) << 2) | IMEM_START);
+ return (((x) >> 2) & 0xffff);
}
-int
-d10v_daddr_p (x)
- CORE_ADDR x;
+static CORE_ADDR
+d10v_convert_daddr_to_raw (CORE_ADDR x)
{
- return (((x) & 0x3000000) == DMEM_START);
+ return ((x) & 0xffff);
}
-int
-d10v_iaddr_p (x)
- CORE_ADDR x;
+static void
+d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
{
- return (((x) & 0x3000000) == IMEM_START);
+ /* Is it a code address? */
+ if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
+ || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
+ {
+ store_unsigned_integer (buf, TYPE_LENGTH (type),
+ d10v_convert_iaddr_to_raw (addr));
+ }
+ else
+ {
+ /* Strip off any upper segment bits. */
+ store_unsigned_integer (buf, TYPE_LENGTH (type),
+ d10v_convert_daddr_to_raw (addr));
+ }
}
-
-CORE_ADDR
-d10v_convert_iaddr_to_raw (x)
- CORE_ADDR x;
+static CORE_ADDR
+d10v_pointer_to_address (struct type *type, const void *buf)
{
- return (((x) >> 2) & 0xffff);
+ CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
+
+ /* Is it a code address? */
+ if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
+ || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
+ || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
+ return d10v_make_iaddr (addr);
+ else
+ return d10v_make_daddr (addr);
}
-CORE_ADDR
-d10v_convert_daddr_to_raw (x)
- CORE_ADDR x;
+/* Don't do anything if we have an integer, this way users can type 'x
+ <addr>' w/o having gdb outsmart them. The internal gdb conversions
+ to the correct space are taken care of in the pointer_to_address
+ function. If we don't do this, 'x $fp' wouldn't work. */
+static CORE_ADDR
+d10v_integer_to_address (struct type *type, void *buf)
{
- return ((x) & 0xffff);
+ LONGEST val;
+ val = unpack_long (type, buf);
+ return val;
}
/* Store the address of the place in which to copy the structure the
We store structs through a pointer passed in the first Argument
register. */
-void
-d10v_store_struct_return (addr, sp)
- CORE_ADDR addr;
- CORE_ADDR sp;
+static void
+d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
write_register (ARG1_REGNUM, (addr));
}
Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
-void
-d10v_store_return_value (type, valbuf)
- struct type *type;
- char *valbuf;
+static void
+d10v_store_return_value (struct type *type, struct regcache *regcache,
+ const void *valbuf)
{
- write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
- valbuf,
- TYPE_LENGTH (type));
+ /* Only char return values need to be shifted right within the first
+ regnum. */
+ if (TYPE_LENGTH (type) == 1
+ && TYPE_CODE (type) == TYPE_CODE_INT)
+ {
+ bfd_byte tmp[2];
+ tmp[1] = *(bfd_byte *)valbuf;
+ regcache_cooked_write (regcache, RET1_REGNUM, tmp);
+ }
+ else
+ {
+ int reg;
+ /* A structure is never more than 8 bytes long. See
+ use_struct_convention(). */
+ gdb_assert (TYPE_LENGTH (type) <= 8);
+ /* Write out most registers, stop loop before trying to write
+ out any dangling byte at the end of the buffer. */
+ for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
+ {
+ regcache_cooked_write (regcache, RET1_REGNUM + reg,
+ (bfd_byte *) valbuf + reg * 2);
+ }
+ /* Write out any dangling byte at the end of the buffer. */
+ if ((reg * 2) + 1 == TYPE_LENGTH (type))
+ regcache_cooked_write_part (regcache, reg, 0, 1,
+ (bfd_byte *) valbuf + reg * 2);
+ }
}
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
-CORE_ADDR
-d10v_extract_struct_value_address (regbuf)
- char *regbuf;
+static CORE_ADDR
+d10v_extract_struct_value_address (struct regcache *regcache)
{
- return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
- REGISTER_RAW_SIZE (ARG1_REGNUM))
- | DMEM_START);
+ ULONGEST addr;
+ regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
+ return (addr | DMEM_START);
}
-CORE_ADDR
-d10v_frame_saved_pc (frame)
- struct frame_info *frame;
+static CORE_ADDR
+d10v_frame_saved_pc (struct frame_info *frame)
{
- return ((frame)->extra_info->return_pc);
-}
-
-CORE_ADDR
-d10v_frame_args_address (fi)
- struct frame_info *fi;
-{
- return (fi)->frame;
-}
-
-CORE_ADDR
-d10v_frame_locals_address (fi)
- struct frame_info *fi;
-{
- return (fi)->frame;
+ if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, 0, 0))
+ return d10v_make_iaddr (deprecated_read_register_dummy (frame->pc,
+ frame->frame,
+ PC_REGNUM));
+ else
+ return ((frame)->extra_info->return_pc);
}
/* Immediately after a function call, return the saved pc. We can't
use frame->return_pc beause that is determined by reading R13 off
the stack and that may not be written yet. */
-CORE_ADDR
-d10v_saved_pc_after_call (frame)
- struct frame_info *frame;
+static CORE_ADDR
+d10v_saved_pc_after_call (struct frame_info *frame)
{
return ((read_register (LR_REGNUM) << 2)
| IMEM_START);
/* Discard from the stack the innermost frame, restoring all saved
registers. */
-void
-d10v_pop_frame ()
+static void
+d10v_pop_frame (void)
{
generic_pop_current_frame (do_d10v_pop_frame);
}
static void
-do_d10v_pop_frame (fi)
- struct frame_info *fi;
+do_d10v_pop_frame (struct frame_info *fi)
{
CORE_ADDR fp;
int regnum;
char raw_buffer[8];
- fp = FRAME_FP (fi);
+ fp = get_frame_base (fi);
/* fill out fsr with the address of where each */
/* register was stored in the frame */
d10v_frame_init_saved_regs (fi);
/* now update the current registers with the old values */
- for (regnum = A0_REGNUM; regnum < A0_REGNUM + 2; regnum++)
+ for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
{
- if (fi->saved_regs[regnum])
+ if (get_frame_saved_regs (fi)[regnum])
{
- read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
- write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
+ read_memory (get_frame_saved_regs (fi)[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
+ deprecated_write_register_bytes (REGISTER_BYTE (regnum), raw_buffer,
+ REGISTER_RAW_SIZE (regnum));
}
}
for (regnum = 0; regnum < SP_REGNUM; regnum++)
{
- if (fi->saved_regs[regnum])
+ if (get_frame_saved_regs (fi)[regnum])
{
- write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
+ write_register (regnum, read_memory_unsigned_integer (get_frame_saved_regs (fi)[regnum], REGISTER_RAW_SIZE (regnum)));
}
}
- if (fi->saved_regs[PSW_REGNUM])
+ if (get_frame_saved_regs (fi)[PSW_REGNUM])
{
- write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
+ write_register (PSW_REGNUM, read_memory_unsigned_integer (get_frame_saved_regs (fi)[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
}
write_register (PC_REGNUM, read_register (LR_REGNUM));
- write_register (SP_REGNUM, fp + fi->extra_info->size);
+ write_register (SP_REGNUM, fp + get_frame_extra_info (fi)->size);
target_store_registers (-1);
flush_cached_frames ();
}
static int
-check_prologue (op)
- unsigned short op;
+check_prologue (unsigned short op)
{
/* st rn, @-sp */
if ((op & 0x7E1F) == 0x6C1F)
return 0;
}
-CORE_ADDR
-d10v_skip_prologue (pc)
- CORE_ADDR pc;
+static CORE_ADDR
+d10v_skip_prologue (CORE_ADDR pc)
{
unsigned long op;
unsigned short op1, op2;
return pc;
}
-/* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
- */
+/* Given a GDB frame, determine the address of the calling function's
+ frame. This will be used to create a new GDB frame struct, and
+ then INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC will be
+ called for the new frame. */
-CORE_ADDR
-d10v_frame_chain (fi)
- struct frame_info *fi;
+static CORE_ADDR
+d10v_frame_chain (struct frame_info *fi)
{
- d10v_frame_init_saved_regs (fi);
+ CORE_ADDR addr;
- if (fi->extra_info->return_pc == IMEM_START
- || inside_entry_file (fi->extra_info->return_pc))
- return (CORE_ADDR) 0;
+ /* A generic call dummy's frame is the same as caller's. */
+ if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, 0, 0))
+ return fi->frame;
- if (!fi->saved_regs[FP_REGNUM])
+ d10v_frame_init_saved_regs (fi);
+
+ if (get_frame_extra_info (fi)->return_pc == IMEM_START
+ || inside_entry_file (get_frame_extra_info (fi)->return_pc))
{
- if (!fi->saved_regs[SP_REGNUM]
- || fi->saved_regs[SP_REGNUM] == STACK_START)
+ /* This is meant to halt the backtrace at "_start".
+ Make sure we don't halt it at a generic dummy frame. */
+ return (CORE_ADDR) 0;
+ }
+
+ if (!get_frame_saved_regs (fi)[FP_REGNUM])
+ {
+ if (!get_frame_saved_regs (fi)[SP_REGNUM]
+ || get_frame_saved_regs (fi)[SP_REGNUM] == STACK_START)
return (CORE_ADDR) 0;
- return fi->saved_regs[SP_REGNUM];
+ return get_frame_saved_regs (fi)[SP_REGNUM];
}
- if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
- REGISTER_RAW_SIZE (FP_REGNUM)))
+ addr = read_memory_unsigned_integer (get_frame_saved_regs (fi)[FP_REGNUM],
+ REGISTER_RAW_SIZE (FP_REGNUM));
+ if (addr == 0)
return (CORE_ADDR) 0;
- return D10V_MAKE_DADDR (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
- REGISTER_RAW_SIZE (FP_REGNUM)));
+ return d10v_make_daddr (addr);
}
static int next_addr, uses_frame;
static int
-prologue_find_regs (op, fi, addr)
- unsigned short op;
- struct frame_info *fi;
- CORE_ADDR addr;
+prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
{
int n;
{
n = (op & 0x1E0) >> 5;
next_addr -= 2;
- fi->saved_regs[n] = next_addr;
+ get_frame_saved_regs (fi)[n] = next_addr;
return 1;
}
{
n = (op & 0x1E0) >> 5;
next_addr -= 4;
- fi->saved_regs[n] = next_addr;
- fi->saved_regs[n + 1] = next_addr + 2;
+ get_frame_saved_regs (fi)[n] = next_addr;
+ get_frame_saved_regs (fi)[n + 1] = next_addr + 2;
return 1;
}
if ((op & 0x7E1F) == 0x681E)
{
n = (op & 0x1E0) >> 5;
- fi->saved_regs[n] = next_addr;
+ get_frame_saved_regs (fi)[n] = next_addr;
return 1;
}
if ((op & 0x7E3F) == 0x3A1E)
{
n = (op & 0x1E0) >> 5;
- fi->saved_regs[n] = next_addr;
- fi->saved_regs[n + 1] = next_addr + 2;
+ get_frame_saved_regs (fi)[n] = next_addr;
+ get_frame_saved_regs (fi)[n + 1] = next_addr + 2;
return 1;
}
in the stack frame. sp is even more special: the address we return
for it IS the sp for the next frame. */
-void
-d10v_frame_init_saved_regs (fi)
- struct frame_info *fi;
+static void
+d10v_frame_init_saved_regs (struct frame_info *fi)
{
CORE_ADDR fp, pc;
unsigned long op;
unsigned short op1, op2;
int i;
- fp = fi->frame;
- memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
+ fp = get_frame_base (fi);
+ memset (get_frame_saved_regs (fi), 0, SIZEOF_FRAME_SAVED_REGS);
next_addr = 0;
- pc = get_pc_function_start (fi->pc);
+ pc = get_pc_function_start (get_frame_pc (fi));
uses_frame = 0;
while (1)
/* st rn, @(offset,sp) */
short offset = op & 0xFFFF;
short n = (op >> 20) & 0xF;
- fi->saved_regs[n] = next_addr + offset;
+ get_frame_saved_regs (fi)[n] = next_addr + offset;
}
else if ((op & 0x3F1F0000) == 0x350F0000)
{
/* st2w rn, @(offset,sp) */
short offset = op & 0xFFFF;
short n = (op >> 20) & 0xF;
- fi->saved_regs[n] = next_addr + offset;
- fi->saved_regs[n + 1] = next_addr + offset + 2;
+ get_frame_saved_regs (fi)[n] = next_addr + offset;
+ get_frame_saved_regs (fi)[n + 1] = next_addr + offset + 2;
}
else
break;
op1 = (op & 0x3FFF8000) >> 15;
op2 = op & 0x7FFF;
}
- if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
+ if (!prologue_find_regs (op1, fi, pc)
+ || !prologue_find_regs (op2, fi, pc))
break;
}
pc += 4;
}
- fi->extra_info->size = -next_addr;
+ get_frame_extra_info (fi)->size = -next_addr;
if (!(fp & 0xffff))
- fp = D10V_MAKE_DADDR (read_register (SP_REGNUM));
+ fp = d10v_read_sp ();
for (i = 0; i < NUM_REGS - 1; i++)
- if (fi->saved_regs[i])
+ if (get_frame_saved_regs (fi)[i])
{
- fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
+ get_frame_saved_regs (fi)[i] = fp - (next_addr - get_frame_saved_regs (fi)[i]);
}
- if (fi->saved_regs[LR_REGNUM])
+ if (get_frame_saved_regs (fi)[LR_REGNUM])
{
- CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
- fi->extra_info->return_pc = D10V_MAKE_IADDR (return_pc);
+ CORE_ADDR return_pc
+ = read_memory_unsigned_integer (get_frame_saved_regs (fi)[LR_REGNUM],
+ REGISTER_RAW_SIZE (LR_REGNUM));
+ get_frame_extra_info (fi)->return_pc = d10v_make_iaddr (return_pc);
}
else
{
- fi->extra_info->return_pc = D10V_MAKE_IADDR (read_register (LR_REGNUM));
+ get_frame_extra_info (fi)->return_pc = d10v_make_iaddr (read_register (LR_REGNUM));
}
- /* th SP is not normally (ever?) saved, but check anyway */
- if (!fi->saved_regs[SP_REGNUM])
+ /* The SP is not normally (ever?) saved, but check anyway */
+ if (!get_frame_saved_regs (fi)[SP_REGNUM])
{
/* if the FP was saved, that means the current FP is valid, */
/* otherwise, it isn't being used, so we use the SP instead */
if (uses_frame)
- fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
+ get_frame_saved_regs (fi)[SP_REGNUM]
+ = d10v_read_fp () + get_frame_extra_info (fi)->size;
else
{
- fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
- fi->extra_info->frameless = 1;
- fi->saved_regs[FP_REGNUM] = 0;
+ get_frame_saved_regs (fi)[SP_REGNUM] = fp + get_frame_extra_info (fi)->size;
+ get_frame_extra_info (fi)->frameless = 1;
+ get_frame_saved_regs (fi)[FP_REGNUM] = 0;
}
}
}
-void
-d10v_init_extra_frame_info (fromleaf, fi)
- int fromleaf;
- struct frame_info *fi;
+static void
+d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
- fi->extra_info = (struct frame_extra_info *)
- frame_obstack_alloc (sizeof (struct frame_extra_info));
+ frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
frame_saved_regs_zalloc (fi);
- fi->extra_info->frameless = 0;
- fi->extra_info->size = 0;
- fi->extra_info->return_pc = 0;
+ get_frame_extra_info (fi)->frameless = 0;
+ get_frame_extra_info (fi)->size = 0;
+ get_frame_extra_info (fi)->return_pc = 0;
+
+ /* If get_frame_pc (fi) is zero, but this is not the outermost frame,
+ then let's snatch the return_pc from the callee, so that
+ DEPRECATED_PC_IN_CALL_DUMMY will work. */
+ if (get_frame_pc (fi) == 0
+ && frame_relative_level (fi) != 0 && get_next_frame (fi) != NULL)
+ deprecated_update_frame_pc_hack (fi, d10v_frame_saved_pc (get_next_frame (fi)));
/* The call dummy doesn't save any registers on the stack, so we can
return now. */
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- {
- return;
- }
- else
- {
- d10v_frame_init_saved_regs (fi);
- }
+ d10v_frame_init_saved_regs (fi);
}
static void
-show_regs (args, from_tty)
- char *args;
- int from_tty;
+show_regs (char *args, int from_tty)
{
int a;
printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
(long) read_register (PC_REGNUM),
- (long) D10V_MAKE_IADDR (read_register (PC_REGNUM)),
+ (long) d10v_make_iaddr (read_register (PC_REGNUM)),
(long) read_register (PSW_REGNUM),
(long) read_register (24),
(long) read_register (25),
(long) read_register (13),
(long) read_register (14),
(long) read_register (15));
- printf_filtered ("IMAP0 %04lx IMAP1 %04lx DMAP %04lx\n",
- (long) read_register (IMAP0_REGNUM),
- (long) read_register (IMAP1_REGNUM),
- (long) read_register (DMAP_REGNUM));
- printf_filtered ("A0-A1");
- for (a = A0_REGNUM; a <= A0_REGNUM + 1; a++)
+ for (a = 0; a < NR_IMAP_REGS; a++)
+ {
+ if (a > 0)
+ printf_filtered (" ");
+ printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
+ }
+ if (NR_DMAP_REGS == 1)
+ printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
+ else
+ {
+ for (a = 0; a < NR_DMAP_REGS; a++)
+ {
+ printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
+ }
+ printf_filtered ("\n");
+ }
+ printf_filtered ("A0-A%d", NR_A_REGS - 1);
+ for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
{
char num[MAX_REGISTER_RAW_SIZE];
int i;
printf_filtered (" ");
- read_register_gen (a, (char *) &num);
+ deprecated_read_register_gen (a, (char *) &num);
for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
{
printf_filtered ("%02x", (num[i] & 0xff));
printf_filtered ("\n");
}
-CORE_ADDR
-d10v_read_pc (pid)
- int pid;
+static CORE_ADDR
+d10v_read_pc (ptid_t ptid)
{
- int save_pid;
+ ptid_t save_ptid;
CORE_ADDR pc;
CORE_ADDR retval;
- save_pid = inferior_pid;
- inferior_pid = pid;
+ save_ptid = inferior_ptid;
+ inferior_ptid = ptid;
pc = (int) read_register (PC_REGNUM);
- inferior_pid = save_pid;
- retval = D10V_MAKE_IADDR (pc);
+ inferior_ptid = save_ptid;
+ retval = d10v_make_iaddr (pc);
return retval;
}
-void
-d10v_write_pc (val, pid)
- CORE_ADDR val;
- int pid;
+static void
+d10v_write_pc (CORE_ADDR val, ptid_t ptid)
{
- int save_pid;
-
- save_pid = inferior_pid;
- inferior_pid = pid;
- write_register (PC_REGNUM, D10V_CONVERT_IADDR_TO_RAW (val));
- inferior_pid = save_pid;
-}
+ ptid_t save_ptid;
-CORE_ADDR
-d10v_read_sp ()
-{
- return (D10V_MAKE_DADDR (read_register (SP_REGNUM)));
+ save_ptid = inferior_ptid;
+ inferior_ptid = ptid;
+ write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
+ inferior_ptid = save_ptid;
}
-void
-d10v_write_sp (val)
- CORE_ADDR val;
+static CORE_ADDR
+d10v_read_sp (void)
{
- write_register (SP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
+ return (d10v_make_daddr (read_register (SP_REGNUM)));
}
-void
-d10v_write_fp (val)
- CORE_ADDR val;
+static void
+d10v_write_sp (CORE_ADDR val)
{
- write_register (FP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
+ write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
}
-CORE_ADDR
-d10v_read_fp ()
+static CORE_ADDR
+d10v_read_fp (void)
{
- return (D10V_MAKE_DADDR (read_register (FP_REGNUM)));
+ return (d10v_make_daddr (read_register (FP_REGNUM)));
}
/* Function: push_return_address (pc)
Set up the return address for the inferior function call.
Needed for targets where we don't actually execute a JSR/BSR instruction */
-CORE_ADDR
-d10v_push_return_address (pc, sp)
- CORE_ADDR pc;
- CORE_ADDR sp;
+static CORE_ADDR
+d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
- write_register (LR_REGNUM, D10V_CONVERT_IADDR_TO_RAW (CALL_DUMMY_ADDRESS ()));
+ write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
return sp;
}
void *data;
};
-static struct stack_item *push_stack_item PARAMS ((struct stack_item * prev, void *contents, int len));
+static struct stack_item *push_stack_item (struct stack_item *prev,
+ void *contents, int len);
static struct stack_item *
-push_stack_item (prev, contents, len)
- struct stack_item *prev;
- void *contents;
- int len;
+push_stack_item (struct stack_item *prev, void *contents, int len)
{
struct stack_item *si;
si = xmalloc (sizeof (struct stack_item));
return si;
}
-static struct stack_item *pop_stack_item PARAMS ((struct stack_item * si));
+static struct stack_item *pop_stack_item (struct stack_item *si);
static struct stack_item *
-pop_stack_item (si)
- struct stack_item *si;
+pop_stack_item (struct stack_item *si)
{
struct stack_item *dead = si;
si = si->prev;
- free (dead->data);
- free (dead);
+ xfree (dead->data);
+ xfree (dead);
return si;
}
-CORE_ADDR
-d10v_push_arguments (nargs, args, sp, struct_return, struct_addr)
- int nargs;
- value_ptr *args;
- CORE_ADDR sp;
- int struct_return;
- CORE_ADDR struct_addr;
+static CORE_ADDR
+d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
{
int i;
int regnum = ARG1_REGNUM;
struct stack_item *si = NULL;
+ long val;
+
+ /* If struct_return is true, then the struct return address will
+ consume one argument-passing register. No need to actually
+ write the value to the register -- that's done by
+ d10v_store_struct_return(). */
+
+ if (struct_return)
+ regnum++;
/* Fill in registers and arg lists */
for (i = 0; i < nargs; i++)
{
- value_ptr arg = args[i];
+ struct value *arg = args[i];
struct type *type = check_typedef (VALUE_TYPE (arg));
char *contents = VALUE_CONTENTS (arg);
int len = TYPE_LENGTH (type);
- /* printf ("push: type=%d len=%d\n", type->code, len); */
- if (TYPE_CODE (type) == TYPE_CODE_PTR)
+ int aligned_regnum = (regnum + 1) & ~1;
+
+ /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
+ if (len <= 2 && regnum <= ARGN_REGNUM)
+ /* fits in a single register, do not align */
{
- /* pointers require special handling - first convert and
- then store */
- long val = extract_signed_integer (contents, len);
- len = 2;
- if (TYPE_TARGET_TYPE (type)
- && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
- {
- /* function pointer */
- val = D10V_CONVERT_IADDR_TO_RAW (val);
- }
- else if (D10V_IADDR_P (val))
- {
- /* also function pointer! */
- val = D10V_CONVERT_DADDR_TO_RAW (val);
- }
- else
- {
- /* data pointer */
- val &= 0xFFFF;
- }
- if (regnum <= ARGN_REGNUM)
- write_register (regnum++, val & 0xffff);
- else
- {
- char ptr[2];
- /* arg will go onto stack */
- store_address (ptr, 2, val & 0xffff);
- si = push_stack_item (si, ptr, 2);
- }
+ val = extract_unsigned_integer (contents, len);
+ write_register (regnum++, val);
}
- else
+ else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
+ /* value fits in remaining registers, store keeping left
+ aligned */
{
- int aligned_regnum = (regnum + 1) & ~1;
- if (len <= 2 && regnum <= ARGN_REGNUM)
- /* fits in a single register, do not align */
+ int b;
+ regnum = aligned_regnum;
+ for (b = 0; b < (len & ~1); b += 2)
{
- long val = extract_unsigned_integer (contents, len);
+ val = extract_unsigned_integer (&contents[b], 2);
write_register (regnum++, val);
}
- else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
- /* value fits in remaining registers, store keeping left
- aligned */
- {
- int b;
- regnum = aligned_regnum;
- for (b = 0; b < (len & ~1); b += 2)
- {
- long val = extract_unsigned_integer (&contents[b], 2);
- write_register (regnum++, val);
- }
- if (b < len)
- {
- long val = extract_unsigned_integer (&contents[b], 1);
- write_register (regnum++, (val << 8));
- }
- }
- else
+ if (b < len)
{
- /* arg will go onto stack */
- regnum = ARGN_REGNUM + 1;
- si = push_stack_item (si, contents, len);
+ val = extract_unsigned_integer (&contents[b], 1);
+ write_register (regnum++, (val << 8));
}
}
+ else
+ {
+ /* arg will go onto stack */
+ regnum = ARGN_REGNUM + 1;
+ si = push_stack_item (si, contents, len);
+ }
}
while (si)
/* Given a return value in `regbuf' with a type `valtype',
extract and copy its value into `valbuf'. */
-void
-d10v_extract_return_value (type, regbuf, valbuf)
- struct type *type;
- char regbuf[REGISTER_BYTES];
- char *valbuf;
+static void
+d10v_extract_return_value (struct type *type, struct regcache *regcache,
+ void *valbuf)
{
int len;
- /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
- if (TYPE_CODE (type) == TYPE_CODE_PTR
- && TYPE_TARGET_TYPE (type)
- && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
- {
- /* pointer to function */
- int num;
- short snum;
- snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
- store_address (valbuf, 4, D10V_MAKE_IADDR (snum));
- }
- else if (TYPE_CODE (type) == TYPE_CODE_PTR)
+#if 0
+ printf("RET: TYPE=%d len=%d r%d=0x%x\n", TYPE_CODE (type),
+ TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM,
+ (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM),
+ REGISTER_RAW_SIZE (RET1_REGNUM)));
+#endif
+ if (TYPE_LENGTH (type) == 1)
{
- /* pointer to data */
- int num;
- short snum;
- snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
- store_address (valbuf, 4, D10V_MAKE_DADDR (snum));
+ ULONGEST c;
+ regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
+ store_unsigned_integer (valbuf, 1, c);
}
else
{
- len = TYPE_LENGTH (type);
- if (len == 1)
+ /* For return values of odd size, the first byte is in the
+ least significant part of the first register. The
+ remaining bytes in remaining registers. Interestingly, when
+ such values are passed in, the last byte is in the most
+ significant byte of that same register - wierd. */
+ int reg = RET1_REGNUM;
+ int off = 0;
+ if (TYPE_LENGTH (type) & 1)
{
- unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
- store_unsigned_integer (valbuf, 1, c);
+ regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
+ (bfd_byte *)valbuf + off);
+ off++;
+ reg++;
}
- else if ((len & 1) == 0)
- memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
- else
+ /* Transfer the remaining registers. */
+ for (; off < TYPE_LENGTH (type); reg++, off += 2)
{
- /* For return values of odd size, the first byte is in the
- least significant part of the first register. The
- remaining bytes in remaining registers. Interestingly,
- when such values are passed in, the last byte is in the
- most significant byte of that same register - wierd. */
- memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
+ regcache_cooked_read (regcache, RET1_REGNUM + reg,
+ (bfd_byte *) valbuf + off);
}
}
}
+/* Translate a GDB virtual ADDR/LEN into a format the remote target
+ understands. Returns number of bytes that can be transfered
+ starting at TARG_ADDR. Return ZERO if no bytes can be transfered
+ (segmentation fault). Since the simulator knows all about how the
+ VM system works, we just call that to do the translation. */
+
+static void
+remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
+ CORE_ADDR *targ_addr, int *targ_len)
+{
+ long out_addr;
+ long out_len;
+ out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
+ &out_addr,
+ d10v_dmap_register,
+ d10v_imap_register);
+ *targ_addr = out_addr;
+ *targ_len = out_len;
+}
+
+
/* The following code implements access to, and display of, the D10V's
instruction trace buffer. The buffer consists of 64K or more
4-byte words of data, of which each words includes an 8-bit count,
#define TRACE_BUFFER_BASE (0xf40000)
-static void trace_command PARAMS ((char *, int));
+static void trace_command (char *, int);
-static void untrace_command PARAMS ((char *, int));
+static void untrace_command (char *, int);
-static void trace_info PARAMS ((char *, int));
+static void trace_info (char *, int);
-static void tdisassemble_command PARAMS ((char *, int));
+static void tdisassemble_command (char *, int);
-static void display_trace PARAMS ((int, int));
+static void display_trace (int, int);
/* True when instruction traces are being collected. */
trace_data;
static void
-trace_command (args, from_tty)
- char *args;
- int from_tty;
+trace_command (char *args, int from_tty)
{
/* Clear the host-side trace buffer, allocating space if needed. */
trace_data.size = 0;
}
static void
-untrace_command (args, from_tty)
- char *args;
- int from_tty;
+untrace_command (char *args, int from_tty)
{
tracing = 0;
}
static void
-trace_info (args, from_tty)
- char *args;
- int from_tty;
+trace_info (char *args, int from_tty)
{
int i;
on STREAM. Returns length of the instruction, in bytes. */
static int
-print_insn (memaddr, stream)
- CORE_ADDR memaddr;
- GDB_FILE *stream;
+print_insn (CORE_ADDR memaddr, struct ui_file *stream)
{
/* If there's no disassembler, something is very wrong. */
if (tm_print_insn == NULL)
- abort ();
+ internal_error (__FILE__, __LINE__,
+ "print_insn: no disassembler");
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
tm_print_insn_info.endian = BFD_ENDIAN_BIG;
else
tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
- return (*tm_print_insn) (memaddr, &tm_print_insn_info);
+ return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
}
static void
-d10v_eva_prepare_to_trace ()
+d10v_eva_prepare_to_trace (void)
{
if (!tracing)
return;
more useful for display. */
static void
-d10v_eva_get_trace_data ()
+d10v_eva_get_trace_data (void)
{
int count, i, j, oldsize;
int trace_addr, trace_seg, trace_cnt, next_cnt;
oldsize = trace_data.size;
trace_data.size += count;
- free (tmpspace);
+ xfree (tmpspace);
if (trace_display)
display_trace (oldsize, trace_data.size);
}
static void
-tdisassemble_command (arg, from_tty)
- char *arg;
- int from_tty;
+tdisassemble_command (char *arg, int from_tty)
{
int i, count;
CORE_ADDR low, high;
}
static void
-display_trace (low, high)
- int low, high;
+display_trace (int low, int high)
{
int i, count, trace_show_source, first, suppress;
CORE_ADDR next_address;
static gdbarch_init_ftype d10v_gdbarch_init;
+
static struct gdbarch *
-d10v_gdbarch_init (info, arches)
- struct gdbarch_info info;
- struct gdbarch_list *arches;
+d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
static LONGEST d10v_call_dummy_words[] =
{0};
struct gdbarch *gdbarch;
- int d10v_num_regs = 37;
+ int d10v_num_regs;
+ struct gdbarch_tdep *tdep;
+ gdbarch_register_name_ftype *d10v_register_name;
+ gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
- /* there is only one d10v architecture */
+ /* Find a candidate among the list of pre-declared architectures. */
+ arches = gdbarch_list_lookup_by_info (arches, &info);
if (arches != NULL)
return arches->gdbarch;
- gdbarch = gdbarch_alloc (&info, NULL);
+
+ /* None found, create a new architecture from the information
+ provided. */
+ tdep = XMALLOC (struct gdbarch_tdep);
+ gdbarch = gdbarch_alloc (&info, tdep);
+
+ /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
+ ready to unwind the PC first (see frame.c:get_prev_frame()). */
+ set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
+
+ switch (info.bfd_arch_info->mach)
+ {
+ case bfd_mach_d10v_ts2:
+ d10v_num_regs = 37;
+ d10v_register_name = d10v_ts2_register_name;
+ d10v_register_sim_regno = d10v_ts2_register_sim_regno;
+ tdep->a0_regnum = TS2_A0_REGNUM;
+ tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
+ tdep->dmap_register = d10v_ts2_dmap_register;
+ tdep->imap_register = d10v_ts2_imap_register;
+ break;
+ default:
+ case bfd_mach_d10v_ts3:
+ d10v_num_regs = 42;
+ d10v_register_name = d10v_ts3_register_name;
+ d10v_register_sim_regno = d10v_ts3_register_sim_regno;
+ tdep->a0_regnum = TS3_A0_REGNUM;
+ tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
+ tdep->dmap_register = d10v_ts3_dmap_register;
+ tdep->imap_register = d10v_ts3_imap_register;
+ break;
+ }
set_gdbarch_read_pc (gdbarch, d10v_read_pc);
set_gdbarch_write_pc (gdbarch, d10v_write_pc);
set_gdbarch_read_fp (gdbarch, d10v_read_fp);
- set_gdbarch_write_fp (gdbarch, d10v_write_fp);
set_gdbarch_read_sp (gdbarch, d10v_read_sp);
set_gdbarch_write_sp (gdbarch, d10v_write_sp);
set_gdbarch_register_byte (gdbarch, d10v_register_byte);
set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
set_gdbarch_max_register_raw_size (gdbarch, 8);
- set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
+ set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
set_gdbarch_max_register_virtual_size (gdbarch, 8);
set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
- set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_addr_bit (gdbarch, 32);
+ set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
+ set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
+ set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
+ double'' is 64 bits. */
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ switch (info.byte_order)
+ {
+ case BFD_ENDIAN_BIG:
+ set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
+ set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
+ set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
+ break;
+ case BFD_ENDIAN_LITTLE:
+ set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
+ set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
+ set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
+ break;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "d10v_gdbarch_init: bad byte order for float format");
+ }
- set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
set_gdbarch_call_dummy_length (gdbarch, 0);
- set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
- set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
set_gdbarch_call_dummy_p (gdbarch, 1);
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
- set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
- set_gdbarch_register_convertible (gdbarch, d10v_register_convertible);
- set_gdbarch_register_convert_to_virtual (gdbarch, d10v_register_convert_to_virtual);
- set_gdbarch_register_convert_to_raw (gdbarch, d10v_register_convert_to_raw);
-
set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
- set_gdbarch_d10v_make_daddr (gdbarch, d10v_make_daddr);
- set_gdbarch_d10v_make_iaddr (gdbarch, d10v_make_iaddr);
- set_gdbarch_d10v_daddr_p (gdbarch, d10v_daddr_p);
- set_gdbarch_d10v_iaddr_p (gdbarch, d10v_iaddr_p);
- set_gdbarch_d10v_convert_daddr_to_raw (gdbarch, d10v_convert_daddr_to_raw);
- set_gdbarch_d10v_convert_iaddr_to_raw (gdbarch, d10v_convert_iaddr_to_raw);
-
set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
- set_gdbarch_frame_args_address (gdbarch, d10v_frame_args_address);
- set_gdbarch_frame_locals_address (gdbarch, d10v_frame_locals_address);
+
set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
+ set_gdbarch_stack_align (gdbarch, d10v_stack_align);
+
+ set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
+ set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
return gdbarch;
}
-extern void (*target_resume_hook) PARAMS ((void));
-extern void (*target_wait_loop_hook) PARAMS ((void));
+extern void (*target_resume_hook) (void);
+extern void (*target_wait_loop_hook) (void);
void
-_initialize_d10v_tdep ()
+_initialize_d10v_tdep (void)
{
register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
add_com ("regs", class_vars, show_regs, "Print all registers");
- add_com ("trace", class_support, trace_command,
+ add_com ("itrace", class_support, trace_command,
"Enable tracing of instruction execution.");
- add_com ("untrace", class_support, untrace_command,
+ add_com ("iuntrace", class_support, untrace_command,
"Disable tracing of instruction execution.");
- add_com ("tdisassemble", class_vars, tdisassemble_command,
+ add_com ("itdisassemble", class_vars, tdisassemble_command,
"Disassemble the trace buffer.\n\
Two optional arguments specify a range of trace buffer entries\n\
as reported by info trace (NOT addresses!).");
- add_info ("trace", trace_info,
+ add_info ("itrace", trace_info,
"Display info about the trace data buffer.");
- add_show_from_set (add_set_cmd ("tracedisplay", no_class,
+ add_show_from_set (add_set_cmd ("itracedisplay", no_class,
var_integer, (char *) &trace_display,
"Set automatic display of trace.\n", &setlist),
&showlist);
- add_show_from_set (add_set_cmd ("tracesource", no_class,
+ add_show_from_set (add_set_cmd ("itracesource", no_class,
var_integer, (char *) &default_trace_show_source,
"Set display of source code with trace.\n", &setlist),
&showlist);