-/* Target-machine dependent code for Hitachi H8/500, for GDB.
- Copyright (C) 1993 Free Software Foundation, Inc.
+/* Target-dependent code for Hitachi H8/500, for GDB.
+ Copyright 1993, 1994, 1995 Free Software Foundation, Inc.
This file is part of GDB.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
-Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
/*
Contributed by Steve Chamberlain
#include "gdbcmd.h"
#include "value.h"
#include "dis-asm.h"
-#include "../opcodes/h8500-opc.h"
-;
+#include "gdbcore.h"
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
-/* Shape of an H8/500 frame :
+static int code_size = 2;
+static int data_size = 2;
+
+/* Shape of an H8/500 frame :
arg-n
..
*/
-
/* an easy to debug H8 stack frame looks like:
0x6df6 push r6
0x0d76 mov.w r7,r6
*/
-#define IS_PUSH(x) ((x & 0xff00)==0x6d00)
+#define IS_PUSH(x) (((x) & 0xff00)==0x6d00)
#define IS_LINK_8(x) ((x) == 0x17)
#define IS_LINK_16(x) ((x) == 0x1f)
-#define IS_MOVE_FP(x) (x == 0x0d76)
-#define IS_MOV_SP_FP(x) (x == 0x0d76)
-#define IS_SUB2_SP(x) (x==0x1b87)
-#define IS_MOVK_R5(x) (x==0x7905)
-#define IS_SUB_R5SP(x) (x==0x1957)
+#define IS_MOVE_FP(x) ((x) == 0x0d76)
+#define IS_MOV_SP_FP(x) ((x) == 0x0d76)
+#define IS_SUB2_SP(x) ((x) == 0x1b87)
+#define IS_MOVK_R5(x) ((x) == 0x7905)
+#define IS_SUB_R5SP(x) ((x) == 0x1957)
#define LINK_8 0x17
#define LINK_16 0x1f
int minimum_mode = 1;
-CORE_ADDR examine_prologue ();
-
-void frame_find_saved_regs ();
-
-int regoff[NUM_REGS] = {0, 2, 4, 6, 8, 10, 12, 14, /* r0->r7 */
- 16, 18, /* ccr, pc */
- 20, 21, 22, 23}; /* cp, dp, ep, tp */
CORE_ADDR
h8500_skip_prologue (start_pc)
CORE_ADDR start_pc;
-
{
short int w;
if (w == LINK_8)
{
start_pc += 2;
- w = read_memory_integer (start_pc,1);
+ w = read_memory_integer (start_pc, 1);
}
if (w == LINK_16)
{
start_pc += 3;
- w = read_memory_integer (start_pc,2);
+ w = read_memory_integer (start_pc, 2);
}
return start_pc;
}
-int
-print_insn (memaddr, stream)
- CORE_ADDR memaddr;
- FILE *stream;
-{
- disassemble_info info;
- GDB_INIT_DISASSEMBLE_INFO(info, stream);
- return print_insn_h8500 (memaddr, &info);
-}
-
/* Given a GDB frame, determine the address of the calling function's frame.
This will be used to create a new GDB frame struct, and then
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
For us, the frame address is its stack pointer value, so we look up
the function prologue to determine the caller's sp value, and return it. */
-FRAME_ADDR
+CORE_ADDR
h8500_frame_chain (thisframe)
- FRAME thisframe;
+ struct frame_info *thisframe;
{
-
if (!inside_entry_file (thisframe->pc))
- return (read_memory_integer(thisframe->frame, 2) & 0xffff)
- | (read_register(SEG_T_REGNUM) << 16);
+ return (read_memory_integer (FRAME_FP (thisframe), PTR_SIZE));
else
return 0;
}
-/* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame.
-
- We cache the result of doing this in the frame_cache_obstack, since
- it is fairly expensive. */
-#if 0
-
-void
-frame_find_saved_regs (fi, fsr)
- struct frame_info *fi;
- struct frame_saved_regs *fsr;
-{
- register CORE_ADDR next_addr;
- register CORE_ADDR *saved_regs;
- register int regnum;
- register struct frame_saved_regs *cache_fsr;
- extern struct obstack frame_cache_obstack;
- CORE_ADDR ip;
- struct symtab_and_line sal;
- CORE_ADDR limit;
-
- if (!fi->fsr)
- {
- cache_fsr = (struct frame_saved_regs *)
- obstack_alloc (&frame_cache_obstack,
- sizeof (struct frame_saved_regs));
- bzero (cache_fsr, sizeof (struct frame_saved_regs));
-
- fi->fsr = cache_fsr;
-
- /* Find the start and end of the function prologue. If the PC
- is in the function prologue, we only consider the part that
- has executed already. */
-
- ip = get_pc_function_start (fi->pc);
- sal = find_pc_line (ip, 0);
- limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
-
- /* This will fill in fields in *fi as well as in cache_fsr. */
- examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
- }
-
- if (fsr)
- *fsr = *fi->fsr;
-}
-
-#endif
-
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
is not the address of a valid instruction, the address of the next
instruction beyond ADDR otherwise. *PWORD1 receives the first word
return 0;
}
-/* Examine the prologue of a function. `ip' points to the first instruction.
- `limit' is the limit of the prologue (e.g. the addr of the first
- linenumber, or perhaps the program counter if we're stepping through).
- `frame_sp' is the stack pointer value in use in this frame.
- `fsr' is a pointer to a frame_saved_regs structure into which we put
- info about the registers saved by this frame.
- `fi' is a struct frame_info pointer; we fill in various fields in it
- to reflect the offsets of the arg pointer and the locals pointer. */
-#if 0
-static CORE_ADDR
-examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
- register CORE_ADDR ip;
- register CORE_ADDR limit;
- FRAME_ADDR after_prolog_fp;
- struct frame_saved_regs *fsr;
- struct frame_info *fi;
-{
- register CORE_ADDR next_ip;
- int r;
- int i;
- int have_fp = 0;
-
- register int src;
- register struct pic_prologue_code *pcode;
- char insn[2];
- int size, offset;
- unsigned int reg_save_depth = 2; /* Number of things pushed onto
- stack, starts at 2, 'cause the
- PC is already there */
-
- unsigned int auto_depth = 0; /* Number of bytes of autos */
-
- char in_frame[8]; /* One for each reg */
-
- memset (in_frame, 1, 8);
- for (r = 0; r < 8; r++)
- {
- fsr->regs[r] = 0;
- }
- if (after_prolog_fp == 0)
- {
- after_prolog_fp = read_register (SP_REGNUM);
- }
- if (ip == 0 || ip & ~0xffffff)
- return 0;
-
- ok = NEXT_PROLOGUE_INSN (ip, limit, &insn[0]);
-
- /* Skip over any fp push instructions */
- fsr->regs[6] = after_prolog_fp;
-
- if (ok && IS_LINK_8 (insn[0]))
- {
- ip++;
-
- in_frame[6] = reg_save_depth;
- reg_save_depth += 2;
- }
-
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
-
- /* Is this a move into the fp */
- if (next_ip && IS_MOV_SP_FP (insn_word))
- {
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- have_fp = 1;
- }
-
- /* Skip over any stack adjustment, happens either with a number of
- sub#2,sp or a mov #x,r5 sub r5,sp */
-
- if (next_ip && IS_SUB2_SP (insn_word))
- {
- while (next_ip && IS_SUB2_SP (insn_word))
- {
- auto_depth += 2;
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- }
- }
- else
- {
- if (next_ip && IS_MOVK_R5 (insn_word))
- {
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- auto_depth += insn_word;
-
- next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
- auto_depth += insn_word;
-
- }
- }
- /* Work out which regs are stored where */
- while (next_ip && IS_PUSH (insn_word))
- {
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- fsr->regs[r] = after_prolog_fp + auto_depth;
- auto_depth += 2;
- }
-
- /* The args are always reffed based from the stack pointer */
- fi->args_pointer = after_prolog_fp;
- /* Locals are always reffed based from the fp */
- fi->locals_pointer = after_prolog_fp;
- /* The PC is at a known place */
- fi->from_pc = read_memory_short (after_prolog_fp + 2);
-
- /* Rememeber any others too */
- in_frame[PC_REGNUM] = 0;
-
- if (have_fp)
- /* We keep the old FP in the SP spot */
- fsr->regs[SP_REGNUM] = (read_memory_short (fsr->regs[6]));
- else
- fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
-
- return (ip);
-}
-#endif
+/* Examine the prologue of a function. `ip' points to the first
+ instruction. `limit' is the limit of the prologue (e.g. the addr
+ of the first linenumber, or perhaps the program counter if we're
+ stepping through). `frame_sp' is the stack pointer value in use in
+ this frame. `fsr' is a pointer to a frame_saved_regs structure
+ into which we put info about the registers saved by this frame.
+ `fi' is a struct frame_info pointer; we fill in various fields in
+ it to reflect the offsets of the arg pointer and the locals
+ pointer. */
/* Return the saved PC from this frame. */
CORE_ADDR
frame_saved_pc (frame)
- FRAME frame;
-{
- return read_memory_integer ((frame)->frame + 2, PTR_SIZE);
-}
-
-CORE_ADDR
-frame_locals_address (fi)
- struct frame_info *fi;
+ struct frame_info *frame;
{
- return fi->frame;
+ return read_memory_integer (FRAME_FP (frame) + 2, PTR_SIZE);
}
-/* Return the address of the argument block for the frame
- described by FI. Returns 0 if the address is unknown. */
-
-CORE_ADDR
-frame_args_address (fi)
- struct frame_info *fi;
-{
- return fi->frame;
-}
-
-void
-h8300_pop_frame ()
+void
+h8500_pop_frame ()
{
unsigned regnum;
struct frame_saved_regs fsr;
- struct frame_info *fi;
-
- FRAME frame = get_current_frame ();
+ struct frame_info *frame = get_current_frame ();
- fi = get_frame_info (frame);
- get_frame_saved_regs (fi, &fsr);
+ get_frame_saved_regs (frame, &fsr);
for (regnum = 0; regnum < 8; regnum++)
{
if (fsr.regs[regnum])
- {
- write_register (regnum, read_memory_short (fsr.regs[regnum]));
- }
+ write_register (regnum, read_memory_short (fsr.regs[regnum]));
flush_cached_frames ();
- set_current_frame (create_new_frame (read_register (FP_REGNUM),
- read_pc ()));
-
}
-
}
void
print_register_hook (regno)
+ int regno;
{
if (regno == CCR_REGNUM)
{
read_relative_register_raw_bytes (regno, b);
l = b[1];
- printf ("\t");
- printf ("I-%d - ", (l & 0x80) != 0);
+ printf_unfiltered ("\t");
+ printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
N = (l & 0x8) != 0;
Z = (l & 0x4) != 0;
V = (l & 0x2) != 0;
C = (l & 0x1) != 0;
- printf ("N-%d ", N);
- printf ("Z-%d ", Z);
- printf ("V-%d ", V);
- printf ("C-%d ", C);
+ printf_unfiltered ("N-%d ", N);
+ printf_unfiltered ("Z-%d ", Z);
+ printf_unfiltered ("V-%d ", V);
+ printf_unfiltered ("C-%d ", C);
if ((C | Z) == 0)
- printf ("u> ");
+ printf_unfiltered ("u> ");
if ((C | Z) == 1)
- printf ("u<= ");
+ printf_unfiltered ("u<= ");
if ((C == 0))
- printf ("u>= ");
+ printf_unfiltered ("u>= ");
if (C == 1)
- printf ("u< ");
+ printf_unfiltered ("u< ");
if (Z == 0)
- printf ("!= ");
+ printf_unfiltered ("!= ");
if (Z == 1)
- printf ("== ");
+ printf_unfiltered ("== ");
if ((N ^ V) == 0)
- printf (">= ");
+ printf_unfiltered (">= ");
if ((N ^ V) == 1)
- printf ("< ");
+ printf_unfiltered ("< ");
if ((Z | (N ^ V)) == 0)
- printf ("> ");
+ printf_unfiltered ("> ");
if ((Z | (N ^ V)) == 1)
- printf ("<= ");
+ printf_unfiltered ("<= ");
}
}
h8500_register_size (regno)
int regno;
{
- if (regno <= PC_REGNUM)
- return 2;
- else
- return 1;
+ switch (regno)
+ {
+ case SEG_C_REGNUM:
+ case SEG_D_REGNUM:
+ case SEG_E_REGNUM:
+ case SEG_T_REGNUM:
+ return 1;
+ case R0_REGNUM:
+ case R1_REGNUM:
+ case R2_REGNUM:
+ case R3_REGNUM:
+ case R4_REGNUM:
+ case R5_REGNUM:
+ case R6_REGNUM:
+ case R7_REGNUM:
+ case CCR_REGNUM:
+ return 2;
+
+ case PR0_REGNUM:
+ case PR1_REGNUM:
+ case PR2_REGNUM:
+ case PR3_REGNUM:
+ case PR4_REGNUM:
+ case PR5_REGNUM:
+ case PR6_REGNUM:
+ case PR7_REGNUM:
+ case PC_REGNUM:
+ return 4;
+ default:
+ abort ();
+ }
}
struct type *
case R5_REGNUM:
case R6_REGNUM:
case R7_REGNUM:
- case PC_REGNUM:
case CCR_REGNUM:
return builtin_type_unsigned_short;
+ case PR0_REGNUM:
+ case PR1_REGNUM:
+ case PR2_REGNUM:
+ case PR3_REGNUM:
+ case PR4_REGNUM:
+ case PR5_REGNUM:
+ case PR6_REGNUM:
+ case PR7_REGNUM:
+ case PC_REGNUM:
+ return builtin_type_unsigned_long;
default:
- abort();
+ abort ();
}
}
frame_find_saved_regs (frame_info, frame_saved_regs)
struct frame_info *frame_info;
struct frame_saved_regs *frame_saved_regs;
-
{
register int regnum;
register int regmask;
register CORE_ADDR pc;
unsigned char thebyte;
- bzero (frame_saved_regs, sizeof *frame_saved_regs);
+ memset (frame_saved_regs, '\0', sizeof *frame_saved_regs);
if ((frame_info)->pc >= (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4
&& (frame_info)->pc <= (frame_info)->frame)
regs using the amount of storage from the link instruction.
*/
- thebyte = read_memory_integer(pc, 1);
+ thebyte = read_memory_integer (pc, 1);
if (0x1f == thebyte)
next_addr = (frame_info)->frame + read_memory_integer (pc += 1, 2), pc += 2;
else if (0x17 == thebyte)
else
goto lose;
#if 0
- fixme steve
- /* If have an add:g.waddal #-n, sp next, adjust next_addr. */
- if ((0x0c0177777 & read_memory_integer (pc, 2)) == 0157774)
- next_addr += read_memory_integer (pc += 2, 4), pc += 4;
+ /* FIXME steve */
+ /* If have an add:g.waddal #-n, sp next, adjust next_addr. */
+ if ((0x0c0177777 & read_memory_integer (pc, 2)) == 0157774)
+ next_addr += read_memory_integer (pc += 2, 4), pc += 4;
#endif
}
- thebyte = read_memory_integer(pc, 1);
- if (thebyte == 0x12) {
- /* Got stm */
- pc++;
- regmask = read_memory_integer(pc,1);
- pc++;
- for (regnum = 0; regnum < 8; regnum ++, regmask >>=1)
- {
- if (regmask & 1)
- {
- (frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2;
- }
- }
- thebyte = read_memory_integer(pc, 1);
- }
+ thebyte = read_memory_integer (pc, 1);
+ if (thebyte == 0x12)
+ {
+ /* Got stm */
+ pc++;
+ regmask = read_memory_integer (pc, 1);
+ pc++;
+ for (regnum = 0; regnum < 8; regnum++, regmask >>= 1)
+ {
+ if (regmask & 1)
+ {
+ (frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2;
+ }
+ }
+ thebyte = read_memory_integer (pc, 1);
+ }
/* Maybe got a load of pushes */
- while (thebyte == 0xbf) {
- pc++;
- regnum = read_memory_integer(pc,1) & 0x7;
- pc++;
- (frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2;
- thebyte = read_memory_integer(pc, 1);
- }
-
- lose:;
-
+ while (thebyte == 0xbf)
+ {
+ pc++;
+ regnum = read_memory_integer (pc, 1) & 0x7;
+ pc++;
+ (frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2;
+ thebyte = read_memory_integer (pc, 1);
+ }
+
+lose:;
+
/* Remember the address of the frame pointer */
(frame_saved_regs)->regs[FP_REGNUM] = (frame_info)->frame;
(frame_saved_regs)->regs[PC_REGNUM] = (frame_info)->frame + 2;
}
-saved_pc_after_call(frame)
+CORE_ADDR
+saved_pc_after_call ()
{
int x;
- int a = read_register(SP_REGNUM);
- x = read_memory_integer (a, PTR_SIZE);
+ int a = read_register (SP_REGNUM);
+
+ x = read_memory_integer (a, code_size);
+ if (code_size == 2)
+ {
+ /* Stick current code segement onto top */
+ x &= 0xffff;
+ x |= read_register (SEG_C_REGNUM) << 16;
+ }
+ x &= 0xffffff;
return x;
}
-
+#if 0 /* never called */
/* Nonzero if instruction at PC is a return instruction. */
-about_to_return(pc)
+int
+about_to_return (pc)
+ CORE_ADDR pc;
{
- int b1 = read_memory_integer(pc,1);
+ int b1 = read_memory_integer (pc, 1);
- switch (b1)
+ switch (b1)
{
case 0x14: /* rtd #8 */
case 0x1c: /* rtd #16 */
return 1;
case 0x11:
{
- int b2 = read_memory_integer(pc+1,1);
- switch (b2)
+ int b2 = read_memory_integer (pc + 1, 1);
+ switch (b2)
{
case 0x18: /* prts */
case 0x14: /* prtd #8 */
}
return 0;
}
-
+#endif
void
h8500_set_pointer_size (newsize)
if (oldsize != newsize)
{
- printf ("pointer size set to %d bits\n", newsize);
+ printf_unfiltered ("pointer size set to %d bits\n", newsize);
oldsize = newsize;
if (newsize == 32)
{
}
}
+static void
+big_command ()
+{
+ h8500_set_pointer_size (32);
+ code_size = 4;
+ data_size = 4;
+}
-struct cmd_list_element *setmemorylist;
-
+static void
+medium_command ()
+{
+ h8500_set_pointer_size (32);
+ code_size = 4;
+ data_size = 2;
+}
static void
-segmented_command (args, from_tty)
- char *args;
- int from_tty;
+compact_command ()
{
h8500_set_pointer_size (32);
+ code_size = 2;
+ data_size = 4;
}
static void
-unsegmented_command (args, from_tty)
- char *args;
- int from_tty;
+small_command ()
{
h8500_set_pointer_size (16);
+ code_size = 2;
+ data_size = 2;
}
+static struct cmd_list_element *setmemorylist;
+
static void
set_memory (args, from_tty)
char *args;
int from_tty;
{
- printf ("\"set memory\" must be followed by the name of a memory subcommand.\n");
- help_list (setmemorylist, "set memory ", -1, stdout);
+ printf_unfiltered ("\"set memory\" must be followed by the name of a memory subcommand.\n");
+ help_list (setmemorylist, "set memory ", -1, gdb_stdout);
}
/* See if variable name is ppc or pr[0-7] */
if (name[0] != 'p')
return 0;
- if (strcmp(name+1, "pc") == 0)
+ if (strcmp (name + 1, "pc") == 0)
return 1;
if (name[1] == 'r'
return 0;
}
-PTR
+value_ptr
h8500_value_of_trapped_internalvar (var)
struct internalvar *var;
{
case 'c':
page_regnum = SEG_C_REGNUM;
break;
- case '0': case '1': case '2': case '3':
+ case '0':
+ case '1':
+ case '2':
+ case '3':
page_regnum = SEG_D_REGNUM;
break;
- case '4': case '5':
+ case '4':
+ case '5':
page_regnum = SEG_E_REGNUM;
break;
- case '6': case '7':
+ case '6':
+ case '7':
page_regnum = SEG_T_REGNUM;
break;
}
h8500_set_trapped_internalvar (var, newval, bitpos, bitsize, offset)
struct internalvar *var;
int offset, bitpos, bitsize;
- value newval;
+ value_ptr newval;
{
char *page_regnum, *regnum;
char expression[100];
struct type *type;
enum type_code newval_type_code;
- type = VALUE_TYPE (newval);
+ type = check_typedef (VALUE_TYPE (newval));
newval_type_code = TYPE_CODE (type);
if ((newval_type_code != TYPE_CODE_INT
&& newval_type_code != TYPE_CODE_PTR)
- || TYPE_LENGTH (type) != sizeof(new_regval))
- error("Illegal type (%s) for assignment to $%s\n",
- TYPE_NAME (type), var->name);
+ || TYPE_LENGTH (type) != sizeof (new_regval))
+ error ("Illegal type (%s) for assignment to $%s\n",
+ TYPE_NAME (VALUE_TYPE (newval)), var->name);
- new_regval = *(long *)VALUE_CONTENTS_RAW(newval);
+ new_regval = *(long *) VALUE_CONTENTS_RAW (newval);
regnum = var->name + 1;
case 'c':
page_regnum = "cp";
break;
- case '0': case '1': case '2': case '3':
+ case '0':
+ case '1':
+ case '2':
+ case '3':
page_regnum = "dp";
break;
- case '4': case '5':
+ case '4':
+ case '5':
page_regnum = "ep";
break;
- case '6': case '7':
+ case '6':
+ case '7':
page_regnum = "tp";
break;
}
sprintf (expression, "$%s=%d", page_regnum, new_regval >> 16);
- parse_and_eval(expression);
+ parse_and_eval (expression);
sprintf (expression, "$%s=%d", regnum, new_regval & 0xffff);
- parse_and_eval(expression);
+ parse_and_eval (expression);
+}
+
+CORE_ADDR
+h8500_read_sp ()
+{
+ return read_register (PR7_REGNUM);
+}
+
+void
+h8500_write_sp (v)
+ CORE_ADDR v;
+{
+ write_register (PR7_REGNUM, v);
}
+CORE_ADDR
+h8500_read_pc (pid)
+ int pid;
+{
+ return read_register (PC_REGNUM);
+}
+
+void
+h8500_write_pc (v, pid)
+ CORE_ADDR v;
+ int pid;
+{
+ write_register (PC_REGNUM, v);
+}
+
+CORE_ADDR
+h8500_read_fp ()
+{
+ return read_register (PR6_REGNUM);
+}
+
+void
+h8500_write_fp (v)
+ CORE_ADDR v;
+{
+ write_register (PR6_REGNUM, v);
+}
+
+void
_initialize_h8500_tdep ()
{
+ tm_print_insn = print_insn_h8500;
+
add_prefix_cmd ("memory", no_class, set_memory,
"set the memory model", &setmemorylist, "set memory ", 0,
&setlist);
- add_cmd ("segmented", class_support, segmented_command,
- "Set segmented memory model.", &setmemorylist);
- add_cmd ("unsegmented", class_support, unsegmented_command,
- "Set unsegmented memory model.", &setmemorylist);
+
+ add_cmd ("small", class_support, small_command,
+ "Set small memory model. (16 bit code, 16 bit data)", &setmemorylist);
+
+ add_cmd ("big", class_support, big_command,
+ "Set big memory model. (32 bit code, 32 bit data)", &setmemorylist);
+
+ add_cmd ("medium", class_support, medium_command,
+ "Set medium memory model. (32 bit code, 16 bit data)", &setmemorylist);
+
+ add_cmd ("compact", class_support, compact_command,
+ "Set compact memory model. (16 bit code, 32 bit data)", &setmemorylist);
}