-/* Target-machine dependent code for Motorola 88000 series, for GDB.
- Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
+/* Target-dependent code for the Motorola 88000 series.
-This file is part of GDB.
+ Copyright (C) 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
+ This file is part of GDB.
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
+#include "arch-utils.h"
+#include "dis-asm.h"
#include "frame.h"
-#include "inferior.h"
+#include "frame-base.h"
+#include "frame-unwind.h"
+#include "gdbcore.h"
+#include "gdbtypes.h"
+#include "regcache.h"
+#include "regset.h"
+#include "symtab.h"
+#include "trad-frame.h"
#include "value.h"
-#ifdef USG
-#include <sys/types.h>
-#endif
+#include "gdb_assert.h"
+#include "gdb_string.h"
-#include <sys/param.h>
-#include <sys/dir.h>
-#include <signal.h>
-#include "gdbcore.h"
-#include <sys/user.h>
-#ifndef USER /* added to support BCS ptrace_user */
+#include "m88k-tdep.h"
-#define USER ptrace_user
-#endif
-#include <sys/ioctl.h>
-#include <fcntl.h>
+/* Fetch the instruction at PC. */
-#include <sys/file.h>
-#include <sys/stat.h>
-
-#include "symtab.h"
-#include "setjmp.h"
-#include "value.h"
+static unsigned long
+m88k_fetch_instruction (CORE_ADDR pc)
+{
+ return read_memory_unsigned_integer (pc, 4);
+}
-void frame_find_saved_regs ();
+/* Register information. */
+/* Return the name of register REGNUM. */
-/* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
+static const char *
+m88k_register_name (struct gdbarch *gdbarch, int regnum)
+{
+ static char *register_names[] =
+ {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
+ "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
+ "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
+ };
+
+ if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
+ return register_names[regnum];
+
+ return NULL;
+}
- For us, the frame address is its stack pointer value, so we look up
- the function prologue to determine the caller's sp value, and return it. */
+/* Return the GDB type object for the "standard" data type of data in
+ register REGNUM. */
-FRAME_ADDR
-frame_chain (thisframe)
- FRAME thisframe;
+static struct type *
+m88k_register_type (struct gdbarch *gdbarch, int regnum)
{
+ /* SXIP, SNIP, SFIP and R1 contain code addresses. */
+ if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
+ || regnum == M88K_R1_REGNUM)
+ return builtin_type (gdbarch)->builtin_func_ptr;
- frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
- /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
- the ADDRESS, of SP_REGNUM. It also depends on the cache of
- frame_find_saved_regs results. */
- if (thisframe->fsr->regs[SP_REGNUM])
- return thisframe->fsr->regs[SP_REGNUM];
- else
- return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
+ /* R30 and R31 typically contains data addresses. */
+ if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
+ return builtin_type (gdbarch)->builtin_data_ptr;
+
+ return builtin_type_int32;
+}
+\f
+
+static CORE_ADDR
+m88k_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+ /* All instructures are 4-byte aligned. The lower 2 bits of SXIP,
+ SNIP and SFIP are used for special purposes: bit 0 is the
+ exception bit and bit 1 is the valid bit. */
+ return addr & ~0x3;
}
-int
-frameless_function_invocation (frame)
- FRAME frame;
+/* Use the program counter to determine the contents and size of a
+ breakpoint instruction. Return a pointer to a string of bytes that
+ encode a breakpoint instruction, store the length of the string in
+ *LEN and optionally adjust *PC to point to the correct memory
+ location for inserting the breakpoint. */
+
+static const gdb_byte *
+m88k_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
{
+ /* tb 0,r0,511 */
+ static gdb_byte break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
- frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
- /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
- the ADDRESS, of SP_REGNUM. It also depends on the cache of
- frame_find_saved_regs results. */
- if (frame->fsr->regs[SP_REGNUM])
- return 0; /* Frameful -- return addr saved somewhere */
- else
- return 1; /* Frameless -- no saved return address */
+ *len = sizeof (break_insn);
+ return break_insn;
}
-int
-frame_chain_valid (chain, thisframe)
- CORE_ADDR chain;
- struct frame_info *thisframe;
+static CORE_ADDR
+m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
- return (chain != 0
- && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
+ CORE_ADDR pc;
+
+ pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
+ return m88k_addr_bits_remove (gdbarch, pc);
}
-void
-init_extra_frame_info (fromleaf, fi)
- int fromleaf;
- struct frame_info *fi;
+static void
+m88k_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
- fi->fsr = 0; /* Not yet allocated */
- fi->args_pointer = 0; /* Unknown */
- fi->locals_pointer = 0; /* Unknown */
+ /* According to the MC88100 RISC Microprocessor User's Manual,
+ section 6.4.3.1.2:
+
+ "... can be made to return to a particular instruction by placing
+ a valid instruction address in the SNIP and the next sequential
+ instruction address in the SFIP (with V bits set and E bits
+ clear). The rte resumes execution at the instruction pointed to
+ by the SNIP, then the SFIP."
+
+ The E bit is the least significant bit (bit 0). The V (valid)
+ bit is bit 1. This is why we logical or 2 into the values we are
+ writing below. It turns out that SXIP plays no role when
+ returning from an exception so nothing special has to be done
+ with it. We could even (presumably) give it a totally bogus
+ value. */
+
+ regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc);
+ regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2);
+ regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2);
}
\f
-/* Examine an m88k function prologue, recording the addresses at which
- registers are saved explicitly by the prologue code, and returning
- the address of the first instruction after the prologue (but not
- after the instruction at address LIMIT, as explained below).
-
- LIMIT places an upper bound on addresses of the instructions to be
- examined. If the prologue code scan reaches LIMIT, the scan is
- aborted and LIMIT is returned. This is used, when examining the
- prologue for the current frame, to keep examine_prologue () from
- claiming that a given register has been saved when in fact the
- instruction that saves it has not yet been executed. LIMIT is used
- at other times to stop the scan when we hit code after the true
- function prologue (e.g. for the first source line) which might
- otherwise be mistaken for function prologue.
-
- The format of the function prologue matched by this routine is
- derived from examination of the source to gcc 1.95, particularly
- the routine output_prologue () in config/out-m88k.c.
- subu r31,r31,n # stack pointer update
+/* The functions on this page are intended to be used to classify
+ function arguments. */
- (st rn,r31,offset)? # save incoming regs
- (st.d rn,r31,offset)?
+/* Check whether TYPE is "Integral or Pointer". */
- (addu r30,r31,n)? # frame pointer update
+static int
+m88k_integral_or_pointer_p (const struct type *type)
+{
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_INT:
+ case TYPE_CODE_BOOL:
+ case TYPE_CODE_CHAR:
+ case TYPE_CODE_ENUM:
+ case TYPE_CODE_RANGE:
+ {
+ /* We have byte, half-word, word and extended-word/doubleword
+ integral types. */
+ int len = TYPE_LENGTH (type);
+ return (len == 1 || len == 2 || len == 4 || len == 8);
+ }
+ return 1;
+ case TYPE_CODE_PTR:
+ case TYPE_CODE_REF:
+ {
+ /* Allow only 32-bit pointers. */
+ return (TYPE_LENGTH (type) == 4);
+ }
+ return 1;
+ default:
+ break;
+ }
- (pic sequence)? # PIC code prologue
+ return 0;
+}
- (or rn,rm,0)? # Move parameters to other regs
-*/
+/* Check whether TYPE is "Floating". */
-/* Macros for extracting fields from instructions. */
+static int
+m88k_floating_p (const struct type *type)
+{
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_FLT:
+ {
+ int len = TYPE_LENGTH (type);
+ return (len == 4 || len == 8);
+ }
+ default:
+ break;
+ }
-#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
-#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
+ return 0;
+}
-/* Prologue code that handles position-independent-code setup. */
+/* Check whether TYPE is "Structure or Union". */
-struct pic_prologue_code {
- unsigned long insn, mask;
-};
+static int
+m88k_structure_or_union_p (const struct type *type)
+{
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_STRUCT:
+ case TYPE_CODE_UNION:
+ return 1;
+ default:
+ break;
+ }
-static struct pic_prologue_code pic_prologue_code [] = {
-/* FIXME -- until this is translated to hex, we won't match it... */
- 0xffffffff, 0,
- /* or r10,r1,0 (if not saved) */
- /* bsr.n LabN */
- /* or.u r25,r0,const */
- /*LabN: or r25,r25,const2 */
- /* addu r25,r25,1 */
- /* or r1,r10,0 (if not saved) */
-};
+ return 0;
+}
-/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
- is not the address of a valid instruction, the address of the next
- instruction beyond ADDR otherwise. *PWORD1 receives the first word
- of the instruction. PWORD2 is ignored -- a remnant of the original
- i960 version. */
+/* Check whether TYPE has 8-byte alignment. */
-#define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
- (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
+static int
+m88k_8_byte_align_p (struct type *type)
+{
+ if (m88k_structure_or_union_p (type))
+ {
+ int i;
-/* Read the m88k instruction at 'memaddr' and return the address of
- the next instruction after that, or 0 if 'memaddr' is not the
- address of a valid instruction. The instruction
- is stored at 'pword1'. */
+ for (i = 0; i < TYPE_NFIELDS (type); i++)
+ {
+ struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
-CORE_ADDR
-next_insn (memaddr, pword1)
- unsigned long *pword1;
- CORE_ADDR memaddr;
-{
- unsigned long buf[1];
+ if (m88k_8_byte_align_p (subtype))
+ return 1;
+ }
+ }
- read_memory (memaddr, buf, sizeof (buf));
- *pword1 = buf[0];
- SWAP_TARGET_AND_HOST (pword1, sizeof (long));
+ if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
+ return (TYPE_LENGTH (type) == 8);
- return memaddr + 4;
+ return 0;
}
-/* Read a register from frames called by us (or from the hardware regs). */
+/* Check whether TYPE can be passed in a register. */
-int
-read_next_frame_reg(fi, regno)
- FRAME fi;
- int regno;
+static int
+m88k_in_register_p (struct type *type)
{
- for (; fi; fi = fi->next) {
- if (regno == SP_REGNUM) return fi->frame;
- else if (fi->fsr->regs[regno])
- return read_memory_integer(fi->fsr->regs[regno], 4);
- }
- return read_register(regno);
-}
+ if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
+ return 1;
-/* Examine the prologue of a function. `ip' points to the first instruction.
- `limit' is the limit of the prologue (e.g. the addr of the first
- linenumber, or perhaps the program counter if we're stepping through).
- `frame_sp' is the stack pointer value in use in this frame.
- `fsr' is a pointer to a frame_saved_regs structure into which we put
- info about the registers saved by this frame.
- `fi' is a struct frame_info pointer; we fill in various fields in it
- to reflect the offsets of the arg pointer and the locals pointer. */
+ if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
+ return 1;
+
+ return 0;
+}
static CORE_ADDR
-examine_prologue (ip, limit, frame_sp, fsr, fi)
- register CORE_ADDR ip;
- register CORE_ADDR limit;
- FRAME_ADDR frame_sp;
- struct frame_saved_regs *fsr;
- struct frame_info *fi;
-{
- register CORE_ADDR next_ip;
- register int src;
- register struct pic_prologue_code *pcode;
- unsigned int insn1, insn2;
- int size, offset;
- char must_adjust[32]; /* If set, must adjust offsets in fsr */
- int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
- int fp_offset = -1; /* -1 means not set */
- CORE_ADDR frame_fp;
-
- bzero (must_adjust, sizeof (must_adjust));
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
-
- /* Accept move of incoming registers to other registers, using
- "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
- We don't have to worry about walking into the first lines of code,
- since the first line number will stop us (assuming we have symbols).
- What we have actually seen is "or r10,r0,r12". */
-
-#define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
-#define OR_MOVE_MASK 0xF800FFFF
-#define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
-#define OR_REG_MOVE1_MASK 0xFC1FFFE0
-#define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
-#define OR_REG_MOVE2_MASK 0xFC00FFFF
- while (next_ip &&
- ((insn1 & OR_MOVE_MASK) == OR_MOVE_INSN ||
- (insn1 & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
- (insn1 & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
- )
- )
+m88k_store_arguments (struct regcache *regcache, int nargs,
+ struct value **args, CORE_ADDR sp)
+{
+ int num_register_words = 0;
+ int num_stack_words = 0;
+ int i;
+
+ for (i = 0; i < nargs; i++)
{
- /* We don't care what moves to where. The result of the moves
- has already been reflected in what the compiler tells us is the
- location of these parameters. */
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
+ struct type *type = value_type (args[i]);
+ int len = TYPE_LENGTH (type);
- /* Accept an optional "subu sp,sp,n" to set up the stack pointer. */
+ if (m88k_integral_or_pointer_p (type) && len < 4)
+ {
+ args[i] = value_cast (builtin_type_int32, args[i]);
+ type = value_type (args[i]);
+ len = TYPE_LENGTH (type);
+ }
-#define SUBU_SP_INSN 0x67ff0000
-#define SUBU_SP_MASK 0xffff0007 /* Note offset must be mult. of 8 */
-#define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
- if (next_ip &&
- ((insn1 & SUBU_SP_MASK) == SUBU_SP_INSN)) /* subu r31, r31, N */
- {
- sp_offset = -SUBU_OFFSET (insn1);
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
+ if (m88k_in_register_p (type))
+ {
+ int num_words = 0;
- /* The function must start with a stack-pointer adjustment, or
- we don't know WHAT'S going on... */
- if (sp_offset == -1)
- return ip;
-
- /* Accept zero or more instances of "st rx,sp,n" or "st.d rx,sp,n".
- This may cause us to mistake the copying of a register
- parameter to the frame for the saving of a callee-saved
- register, but that can't be helped, since with the
- "-fcall-saved" flag, any register can be made callee-saved.
- This probably doesn't matter, since the ``saved'' caller's values of
- non-callee-saved registers are not relevant anyway. */
-
-#define STD_STACK_INSN 0x201f0000
-#define STD_STACK_MASK 0xfc1f0000
-#define ST_STACK_INSN 0x241f0000
-#define ST_STACK_MASK 0xfc1f0000
-#define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
-#define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
+ if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
+ num_words++;
- while (next_ip)
- {
- if ((insn1 & ST_STACK_MASK) == ST_STACK_INSN)
- size = 1;
- else if ((insn1 & STD_STACK_MASK) == STD_STACK_INSN)
- size = 2;
- else
- break;
+ num_words += ((len + 3) / 4);
+ if (num_register_words + num_words <= 8)
+ {
+ num_register_words += num_words;
+ continue;
+ }
- src = ST_SRC (insn1);
- offset = ST_OFFSET (insn1);
- while (size--)
- {
- must_adjust[src] = 1;
- fsr->regs[src++] = offset; /* Will be adjusted later */
- offset += 4;
+ /* We've run out of available registers. Pass the argument
+ on the stack. */
}
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
+
+ if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
+ num_stack_words++;
+
+ num_stack_words += ((len + 3) / 4);
}
- /* Accept an optional "addu r30,r31,n" to set up the frame pointer. */
+ /* Allocate stack space. */
+ sp = align_down (sp - 32 - num_stack_words * 4, 16);
+ num_stack_words = num_register_words = 0;
-#define ADDU_FP_INSN 0x63df0000
-#define ADDU_FP_MASK 0xffff0000
-#define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
- if (next_ip &&
- ((insn1 & ADDU_FP_MASK) == ADDU_FP_INSN)) /* addu r30, r31, N */
+ for (i = 0; i < nargs; i++)
{
- fp_offset = ADDU_OFFSET (insn1);
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
+ const bfd_byte *valbuf = value_contents (args[i]);
+ struct type *type = value_type (args[i]);
+ int len = TYPE_LENGTH (type);
+ int stack_word = num_stack_words;
- /* Accept the PIC prologue code if present. */
+ if (m88k_in_register_p (type))
+ {
+ int register_word = num_register_words;
- pcode = pic_prologue_code;
- size = sizeof (pic_prologue_code) / sizeof (*pic_prologue_code);
- /* If return addr is saved, we don't use first or last insn of PICstuff. */
- if (fsr->regs[SRP_REGNUM]) {
- pcode++;
- size-=2;
- }
+ if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
+ register_word++;
- while (size-- && next_ip && (pcode->insn == (pcode->mask & insn1)))
- {
- pcode++;
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
+ gdb_assert (len == 4 || len == 8);
- /* Accept moves of parameter registers to other registers, using
- "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
- We don't have to worry about walking into the first lines of code,
- since the first line number will stop us (assuming we have symbols).
- What gcc actually seems to produce is "or rd,r0,rs". */
-
-#define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
-#define OR_MOVE_MASK 0xF800FFFF
-#define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
-#define OR_REG_MOVE1_MASK 0xFC1FFFE0
-#define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
-#define OR_REG_MOVE2_MASK 0xFC00FFFF
- while (next_ip &&
- ((insn1 & OR_MOVE_MASK) == OR_MOVE_INSN ||
- (insn1 & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
- (insn1 & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
- )
- )
- {
- /* We don't care what moves to where. The result of the moves
- has already been reflected in what the compiler tells us is the
- location of these parameters. */
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
+ if (register_word + len / 8 < 8)
+ {
+ int regnum = M88K_R2_REGNUM + register_word;
+
+ regcache_raw_write (regcache, regnum, valbuf);
+ if (len > 4)
+ regcache_raw_write (regcache, regnum + 1, valbuf + 4);
- /* We're done with the prologue. If we don't care about the stack
- frame itself, just return. (Note that fsr->regs has been trashed,
- but the one caller who calls with fi==0 passes a dummy there.) */
-
- if (fi == 0)
- return ip;
-
- /* OK, now we have:
- sp_offset original negative displacement of SP
- fp_offset positive displacement between new SP and new FP, or -1
- fsr->regs[0..31] offset from original SP where reg is stored
- must_adjust[0..31] set if corresp. offset was set
-
- The current SP (frame_sp) might not be the original new SP as set
- by the function prologue, if alloca has been called. This can
- only occur if fp_offset is set, though (the compiler allocates an
- FP when it sees alloca). In that case, we have the FP,
- and can calculate the original new SP from the FP.
-
- Then, we figure out where the arguments and locals are, and
- relocate the offsets in fsr->regs to absolute addresses. */
-
- if (fp_offset != -1) {
- /* We have a frame pointer, so get it, and base our calc's on it. */
- frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, FP_REGNUM);
- frame_sp = frame_fp - fp_offset;
- } else {
- /* We have no frame pointer, therefore frame_sp is still the same value
- as set by prologue. But where is the frame itself? */
- if (must_adjust[SRP_REGNUM]) {
- /* Function header saved SRP (r1), the return address. Frame starts
- 4 bytes down from where it was saved. */
- frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
- fi->locals_pointer = frame_fp;
- } else {
- /* Function header didn't save SRP (r1), so we are in a leaf fn or
- are otherwise confused. */
- frame_fp = -1;
+ num_register_words = (register_word + len / 4);
+ continue;
+ }
+ }
+
+ if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
+ stack_word++;
+
+ write_memory (sp + stack_word * 4, valbuf, len);
+ num_stack_words = (stack_word + (len + 3) / 4);
}
- }
- /* The locals are relative to the FP (whether it exists as an allocated
- register, or just as an assumed offset from the SP) */
- fi->locals_pointer = frame_fp;
-
- /* The arguments are just above the SP as it was before we adjusted it
- on entry. */
- fi->args_pointer = frame_sp - sp_offset;
-
- /* Now that we know the SP value used by the prologue, we know where
- it saved all the registers. */
- for (src = 0; src < 32; src++)
- if (must_adjust[src])
- fsr->regs[src] += frame_sp;
-
- /* The saved value of the SP is always known. */
- /* (we hope...) */
- if (fsr->regs[SP_REGNUM] != 0
- && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
- fprintf(stderr, "Bad saved SP value %x != %x, offset %x!\n",
- fsr->regs[SP_REGNUM],
- frame_sp - sp_offset, sp_offset);
-
- fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
-
- return (ip);
+ return sp;
}
-/* Given an ip value corresponding to the start of a function,
- return the ip of the first instruction after the function
- prologue. */
-
-CORE_ADDR
-skip_prologue (ip)
- CORE_ADDR (ip);
+static CORE_ADDR
+m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
+ struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
+ struct value **args, CORE_ADDR sp, int struct_return,
+ CORE_ADDR struct_addr)
{
- struct frame_saved_regs saved_regs_dummy;
- struct symtab_and_line sal;
- CORE_ADDR limit;
+ /* Set up the function arguments. */
+ sp = m88k_store_arguments (regcache, nargs, args, sp);
+ gdb_assert (sp % 16 == 0);
+
+ /* Store return value address. */
+ if (struct_return)
+ regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
- sal = find_pc_line (ip, 0);
- limit = (sal.end) ? sal.end : 0xffffffff;
+ /* Store the stack pointer and return address in the appropriate
+ registers. */
+ regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
+ regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
- return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy,
- (struct frame_info *)0 ));
+ /* Return the stack pointer. */
+ return sp;
}
-/* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame.
+static struct frame_id
+m88k_dummy_id (struct gdbarch *arch, struct frame_info *this_frame)
+{
+ CORE_ADDR sp;
- We cache the result of doing this in the frame_cache_obstack, since
- it is fairly expensive. */
+ sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
+ return frame_id_build (sp, get_frame_pc (this_frame));
+}
+\f
-void
-frame_find_saved_regs (fi, fsr)
- struct frame_info *fi;
- struct frame_saved_regs *fsr;
-{
- register CORE_ADDR next_addr;
- register CORE_ADDR *saved_regs;
- register int regnum;
- register struct frame_saved_regs *cache_fsr;
- extern struct obstack frame_cache_obstack;
- CORE_ADDR ip;
- struct symtab_and_line sal;
- CORE_ADDR limit;
+/* Determine, for architecture GDBARCH, how a return value of TYPE
+ should be returned. If it is supposed to be returned in registers,
+ and READBUF is non-zero, read the appropriate value from REGCACHE,
+ and copy it into READBUF. If WRITEBUF is non-zero, write the value
+ from WRITEBUF into REGCACHE. */
- if (!fi->fsr)
+static enum return_value_convention
+m88k_return_value (struct gdbarch *gdbarch, struct type *func_type,
+ struct type *type, struct regcache *regcache,
+ gdb_byte *readbuf, const gdb_byte *writebuf)
+{
+ int len = TYPE_LENGTH (type);
+ gdb_byte buf[8];
+
+ if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
+ return RETURN_VALUE_STRUCT_CONVENTION;
+
+ if (readbuf)
{
- cache_fsr = (struct frame_saved_regs *)
- obstack_alloc (&frame_cache_obstack,
- sizeof (struct frame_saved_regs));
- bzero (cache_fsr, sizeof (struct frame_saved_regs));
- fi->fsr = cache_fsr;
-
- /* Find the start and end of the function prologue. If the PC
- is in the function prologue, we only consider the part that
- has executed already. */
-
- ip = get_pc_function_start (fi->pc);
- sal = find_pc_line (ip, 0);
- limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
-
- /* This will fill in fields in *fi as well as in cache_fsr. */
- examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
+ /* Read the contents of R2 and (if necessary) R3. */
+ regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
+ if (len > 4)
+ {
+ regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
+ gdb_assert (len == 8);
+ memcpy (readbuf, buf, len);
+ }
+ else
+ {
+ /* Just stripping off any unused bytes should preserve the
+ signed-ness just fine. */
+ memcpy (readbuf, buf + 4 - len, len);
+ }
}
- if (fsr)
- *fsr = *fi->fsr;
-}
+ if (writebuf)
+ {
+ /* Read the contents to R2 and (if necessary) R3. */
+ if (len > 4)
+ {
+ gdb_assert (len == 8);
+ memcpy (buf, writebuf, 8);
+ regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
+ }
+ else
+ {
+ /* ??? Do we need to do any sign-extension here? */
+ memcpy (buf + 4 - len, writebuf, len);
+ }
+ regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
+ }
-/* Return the address of the locals block for the frame
- described by FI. Returns 0 if the address is unknown.
- NOTE! Frame locals are referred to by negative offsets from the
- argument pointer, so this is the same as frame_args_address(). */
+ return RETURN_VALUE_REGISTER_CONVENTION;
+}
+\f
+/* Default frame unwinder. */
-CORE_ADDR
-frame_locals_address (fi)
- struct frame_info *fi;
+struct m88k_frame_cache
{
- register FRAME frame;
- struct frame_saved_regs fsr;
- CORE_ADDR ap;
+ /* Base address. */
+ CORE_ADDR base;
+ CORE_ADDR pc;
- if (fi->args_pointer) /* Cached value is likely there. */
- return fi->args_pointer;
+ int sp_offset;
+ int fp_offset;
- /* Nope, generate it. */
+ /* Table of saved registers. */
+ struct trad_frame_saved_reg *saved_regs;
+};
- get_frame_saved_regs (fi, &fsr);
+/* Prologue analysis. */
- return fi->args_pointer;
-}
+/* Macros for extracting fields from instructions. */
+
+#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
+#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
+#define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
+#define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
+#define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
+#define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
-/* Return the address of the argument block for the frame
- described by FI. Returns 0 if the address is unknown. */
+/* Possible actions to be taken by the prologue analyzer for the
+ instructions it encounters. */
-CORE_ADDR
-frame_args_address (fi)
- struct frame_info *fi;
+enum m88k_prologue_insn_action
{
- register FRAME frame;
- struct frame_saved_regs fsr;
- CORE_ADDR ap;
+ M88K_PIA_SKIP, /* Ignore. */
+ M88K_PIA_NOTE_ST, /* Note register store. */
+ M88K_PIA_NOTE_STD, /* Note register pair store. */
+ M88K_PIA_NOTE_SP_ADJUSTMENT, /* Note stack pointer adjustment. */
+ M88K_PIA_NOTE_FP_ASSIGNMENT, /* Note frame pointer assignment. */
+ M88K_PIA_NOTE_BRANCH, /* Note branch. */
+ M88K_PIA_NOTE_PROLOGUE_END /* Note end of prologue. */
+};
- if (fi->args_pointer) /* Cached value is likely there. */
- return fi->args_pointer;
+/* Table of instructions that may comprise a function prologue. */
- /* Nope, generate it. */
+struct m88k_prologue_insn
+{
+ unsigned long insn;
+ unsigned long mask;
+ enum m88k_prologue_insn_action action;
+};
- get_frame_saved_regs (fi, &fsr);
+struct m88k_prologue_insn m88k_prologue_insn_table[] =
+{
+ /* Various register move instructions. */
+ { 0x58000000, 0xf800ffff, M88K_PIA_SKIP }, /* or/or.u with immed of 0 */
+ { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP }, /* or rd,r0,rs */
+ { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP }, /* or rd,rs,r0 */
+
+ /* Various other instructions. */
+ { 0x58000000, 0xf8000000, M88K_PIA_SKIP }, /* or/or.u */
+
+ /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */
+ { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
+
+ /* Frame pointer assignment: "addu r30,r31,n". */
+ { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
+
+ /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */
+ { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST }, /* st rx,sp,n */
+ { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
+
+ /* Instructions needed for setting up r25 for pic code. */
+ { 0x5f200000, 0xffff0000, M88K_PIA_SKIP }, /* or.u r25,r0,offset_high */
+ { 0xcc000002, 0xffffffff, M88K_PIA_SKIP }, /* bsr.n Lab */
+ { 0x5b390000, 0xffff0000, M88K_PIA_SKIP }, /* or r25,r25,offset_low */
+ { 0xf7396001, 0xffffffff, M88K_PIA_SKIP }, /* Lab: addu r25,r25,r1 */
+
+ /* Various branch or jump instructions which have a delay slot --
+ these do not form part of the prologue, but the instruction in
+ the delay slot might be a store instruction which should be
+ noted. */
+ { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
+ /* br.n, bsr.n, bb0.n, or bb1.n */
+ { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
+ { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
+
+ /* Catch all. Ends prologue analysis. */
+ { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
+};
- return fi->args_pointer;
-}
+/* Do a full analysis of the function prologue at PC and update CACHE
+ accordingly. Bail out early if LIMIT is reached. Return the
+ address where the analysis stopped. If LIMIT points beyond the
+ function prologue, the return address should be the end of the
+ prologue. */
-/* Return the saved PC from this frame.
+static CORE_ADDR
+m88k_analyze_prologue (CORE_ADDR pc, CORE_ADDR limit,
+ struct m88k_frame_cache *cache)
+{
+ CORE_ADDR end = limit;
- If the frame has a memory copy of SRP_REGNUM, use that. If not,
- just use the register SRP_REGNUM itself. */
+ /* Provide a dummy cache if necessary. */
+ if (cache == NULL)
+ {
+ size_t sizeof_saved_regs =
+ (M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg);
-CORE_ADDR
-frame_saved_pc (frame)
- FRAME frame;
-{
- return read_next_frame_reg(frame, SRP_REGNUM);
-}
+ cache = alloca (sizeof (struct m88k_frame_cache));
+ cache->saved_regs = alloca (sizeof_saved_regs);
+ /* We only initialize the members we care about. */
+ cache->saved_regs[M88K_R1_REGNUM].addr = -1;
+ cache->fp_offset = -1;
+ }
-#if TARGET_BYTE_ORDER != HOST_BYTE_ORDER
-you lose
-#else /* Host and target byte order the same. */
-#define SINGLE_EXP_BITS 8
-#define DOUBLE_EXP_BITS 11
-int
-IEEE_isNAN(fp, len)
- int *fp, len;
- /* fp points to a single precision OR double precision
- * floating point value; len is the number of bytes, either 4 or 8.
- * Returns 1 iff fp points to a valid IEEE floating point number.
- * Returns 0 if fp points to a denormalized number or a NaN
- */
-{
- int exponent;
- if (len == 4)
+ while (pc < limit)
{
- exponent = *fp;
- exponent = exponent << 1 >> (32 - SINGLE_EXP_BITS - 1);
- return ((exponent == -1) || (! exponent && *fp));
+ struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
+ unsigned long insn = m88k_fetch_instruction (pc);
+
+ while ((insn & pi->mask) != pi->insn)
+ pi++;
+
+ switch (pi->action)
+ {
+ case M88K_PIA_SKIP:
+ /* If we have a frame pointer, and R1 has been saved,
+ consider this instruction as not being part of the
+ prologue. */
+ if (cache->fp_offset != -1
+ && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
+ return min (pc, end);
+ break;
+
+ case M88K_PIA_NOTE_ST:
+ case M88K_PIA_NOTE_STD:
+ /* If no frame has been allocated, the stores aren't part of
+ the prologue. */
+ if (cache->sp_offset == 0)
+ return min (pc, end);
+
+ /* Record location of saved registers. */
+ {
+ int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
+ ULONGEST offset = ST_OFFSET (insn);
+
+ cache->saved_regs[regnum].addr = offset;
+ if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
+ cache->saved_regs[regnum + 1].addr = offset + 4;
+ }
+ break;
+
+ case M88K_PIA_NOTE_SP_ADJUSTMENT:
+ /* A second stack pointer adjustment isn't part of the
+ prologue. */
+ if (cache->sp_offset != 0)
+ return min (pc, end);
+
+ /* Store stack pointer adjustment. */
+ cache->sp_offset = -SUBU_OFFSET (insn);
+ break;
+
+ case M88K_PIA_NOTE_FP_ASSIGNMENT:
+ /* A second frame pointer assignment isn't part of the
+ prologue. */
+ if (cache->fp_offset != -1)
+ return min (pc, end);
+
+ /* Record frame pointer assignment. */
+ cache->fp_offset = ADDU_OFFSET (insn);
+ break;
+
+ case M88K_PIA_NOTE_BRANCH:
+ /* The branch instruction isn't part of the prologue, but
+ the instruction in the delay slot might be. Limit the
+ prologue analysis to the delay slot and record the branch
+ instruction as the end of the prologue. */
+ limit = min (limit, pc + 2 * M88K_INSN_SIZE);
+ end = pc;
+ break;
+
+ case M88K_PIA_NOTE_PROLOGUE_END:
+ return min (pc, end);
+ }
+
+ pc += M88K_INSN_SIZE;
}
- else if (len == 8)
+
+ return end;
+}
+
+/* An upper limit to the size of the prologue. */
+const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
+
+/* Return the address of first real instruction of the function
+ starting at PC. */
+
+static CORE_ADDR
+m88k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+ struct symtab_and_line sal;
+ CORE_ADDR func_start, func_end;
+
+ /* This is the preferred method, find the end of the prologue by
+ using the debugging information. */
+ if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
{
- exponent = *(fp+1);
- exponent = exponent << 1 >> (32 - DOUBLE_EXP_BITS - 1);
- return ((exponent == -1) || (! exponent && *fp * *(fp+1)));
+ sal = find_pc_line (func_start, 0);
+
+ if (sal.end < func_end && pc <= sal.end)
+ return sal.end;
}
- else return 1;
+
+ return m88k_analyze_prologue (pc, pc + m88k_max_prologue_size, NULL);
}
-#endif /* Host and target byte order the same. */
-static int
-pushed_size (prev_words, v)
- int prev_words;
- struct value *v;
+struct m88k_frame_cache *
+m88k_frame_cache (struct frame_info *this_frame, void **this_cache)
{
- switch (TYPE_CODE (VALUE_TYPE (v)))
- {
- case TYPE_CODE_VOID: /* Void type (values zero length) */
+ struct m88k_frame_cache *cache;
+ CORE_ADDR frame_sp;
- return 0; /* That was easy! */
+ if (*this_cache)
+ return *this_cache;
- case TYPE_CODE_PTR: /* Pointer type */
- case TYPE_CODE_ENUM: /* Enumeration type */
- case TYPE_CODE_INT: /* Integer type */
- case TYPE_CODE_REF: /* C++ Reference types */
- case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
+ cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
+ cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
+ cache->fp_offset = -1;
- return 1;
+ cache->pc = get_frame_func (this_frame);
+ if (cache->pc != 0)
+ m88k_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
- case TYPE_CODE_FLT: /* Floating type */
+ /* Calculate the stack pointer used in the prologue. */
+ if (cache->fp_offset != -1)
+ {
+ CORE_ADDR fp;
+
+ fp = get_frame_register_unsigned (this_frame, M88K_R30_REGNUM);
+ frame_sp = fp - cache->fp_offset;
+ }
+ else
+ {
+ /* If we know where the return address is saved, we can take a
+ solid guess at what the frame pointer should be. */
+ if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
+ cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
+ frame_sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
+ }
- if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
- return 1;
- else
- /* Assume that it must be a double. */
- if (prev_words & 1) /* at an odd-word boundary */
- return 3; /* round to 8-byte boundary */
- else
- return 2;
+ /* Now that we know the stack pointer, adjust the location of the
+ saved registers. */
+ {
+ int regnum;
- case TYPE_CODE_STRUCT: /* C struct or Pascal record */
- case TYPE_CODE_UNION: /* C union or Pascal variant part */
+ for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
+ if (cache->saved_regs[regnum].addr != -1)
+ cache->saved_regs[regnum].addr += frame_sp;
+ }
- return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
+ /* Calculate the frame's base. */
+ cache->base = frame_sp - cache->sp_offset;
+ trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
- case TYPE_CODE_FUNC: /* Function type */
- case TYPE_CODE_SET: /* Pascal sets */
- case TYPE_CODE_RANGE: /* Range (integers within bounds) */
- case TYPE_CODE_STRING: /* String type */
- case TYPE_CODE_MEMBER: /* Member type */
- case TYPE_CODE_METHOD: /* Method type */
- /* Don't know how to pass these yet. */
+ /* Identify SXIP with the return address in R1. */
+ cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
- case TYPE_CODE_UNDEF: /* Not used; catches errors */
- default:
- abort ();
- }
+ *this_cache = cache;
+ return cache;
}
static void
-store_parm_word (address, val)
- CORE_ADDR address;
- int val;
+m88k_frame_this_id (struct frame_info *this_frame, void **this_cache,
+ struct frame_id *this_id)
{
- write_memory (address, &val, 4);
+ struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
+
+ /* This marks the outermost frame. */
+ if (cache->base == 0)
+ return;
+
+ (*this_id) = frame_id_build (cache->base, cache->pc);
}
-static int
-store_parm (prev_words, left_parm_addr, v)
- unsigned int prev_words;
- CORE_ADDR left_parm_addr;
- struct value *v;
+static struct value *
+m88k_frame_prev_register (struct frame_info *this_frame,
+ void **this_cache, int regnum)
{
- CORE_ADDR start = left_parm_addr + (prev_words * 4);
- int *val_addr = (int *)VALUE_CONTENTS(v);
+ struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
- switch (TYPE_CODE (VALUE_TYPE (v)))
+ if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
{
- case TYPE_CODE_VOID: /* Void type (values zero length) */
+ struct value *value;
+ CORE_ADDR pc;
- return 0;
+ value = trad_frame_get_prev_register (this_frame, cache->saved_regs,
+ M88K_SXIP_REGNUM);
+ pc = value_as_long (value);
+ release_value (value);
+ value_free (value);
- case TYPE_CODE_PTR: /* Pointer type */
- case TYPE_CODE_ENUM: /* Enumeration type */
- case TYPE_CODE_INT: /* Integer type */
- case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
- case TYPE_CODE_REF: /* C++ Reference types */
+ if (regnum == M88K_SFIP_REGNUM)
+ pc += 4;
- store_parm_word (start, *val_addr);
- return 1;
+ return frame_unwind_got_constant (this_frame, regnum, pc + 4);
+ }
- case TYPE_CODE_FLT: /* Floating type */
+ return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
+}
- if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
- {
- store_parm_word (start, *val_addr);
- return 1;
- }
- else
- {
- store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]);
- store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]);
- return 2 + (prev_words & 1);
- }
+static const struct frame_unwind m88k_frame_unwind =
+{
+ NORMAL_FRAME,
+ m88k_frame_this_id,
+ m88k_frame_prev_register,
+ NULL,
+ default_frame_sniffer
+};
+\f
- case TYPE_CODE_STRUCT: /* C struct or Pascal record */
- case TYPE_CODE_UNION: /* C union or Pascal variant part */
+static CORE_ADDR
+m88k_frame_base_address (struct frame_info *this_frame, void **this_cache)
+{
+ struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
- {
- unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
- unsigned int word;
+ if (cache->fp_offset != -1)
+ return cache->base + cache->sp_offset + cache->fp_offset;
- for (word = 0; word < words; word++)
- store_parm_word (start + (word * 4), val_addr[word]);
- return words;
- }
+ return 0;
+}
+
+static const struct frame_base m88k_frame_base =
+{
+ &m88k_frame_unwind,
+ m88k_frame_base_address,
+ m88k_frame_base_address,
+ m88k_frame_base_address
+};
+\f
+
+/* Core file support. */
- default:
- abort ();
+/* Supply register REGNUM from the buffer specified by GREGS and LEN
+ in the general-purpose register set REGSET to register cache
+ REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
+
+static void
+m88k_supply_gregset (const struct regset *regset,
+ struct regcache *regcache,
+ int regnum, const void *gregs, size_t len)
+{
+ const gdb_byte *regs = gregs;
+ int i;
+
+ for (i = 0; i < M88K_NUM_REGS; i++)
+ {
+ if (regnum == i || regnum == -1)
+ regcache_raw_supply (regcache, i, regs + i * 4);
}
}
- /* This routine sets up all of the parameter values needed to make a pseudo
- call. The name "push_parameters" is a misnomer on some archs,
- because (on the m88k) most parameters generally end up being passed in
- registers rather than on the stack. In this routine however, we do
- end up storing *all* parameter values onto the stack (even if we will
- realize later that some of these stores were unnecessary). */
+/* Motorola 88000 register set. */
-#define FIRST_PARM_REGNUM 2
+static struct regset m88k_gregset =
+{
+ NULL,
+ m88k_supply_gregset
+};
-void
-push_parameters (return_type, struct_conv, nargs, args)
- struct type *return_type;
- int struct_conv;
- int nargs;
- value *args;
-{
- int parm_num;
- unsigned int p_words = 0;
- CORE_ADDR left_parm_addr;
-
- /* Start out by creating a space for the return value (if need be). We
- only need to do this if the return value is a struct or union. If we
- do make a space for a struct or union return value, then we must also
- arrange for the base address of that space to go into r12, which is the
- standard place to pass the address of the return value area to the
- callee. Note that only structs and unions are returned in this fashion.
- Ints, enums, pointers, and floats are returned into r2. Doubles are
- returned into the register pair {r2,r3}. Note also that the space
- reserved for a struct or union return value only has to be word aligned
- (not double-word) but it is double-word aligned here anyway (just in
- case that becomes important someday). */
-
- switch (TYPE_CODE (return_type))
- {
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- {
- int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8;
- CORE_ADDR rv_addr;
-
- rv_addr = read_register (SP_REGNUM) - return_bytes;
-
- write_register (SP_REGNUM, rv_addr); /* push space onto the stack */
- write_register (SRA_REGNUM, rv_addr);/* set return value register */
- }
- }
-
- /* Here we make a pre-pass on the whole parameter list to figure out exactly
- how many words worth of stuff we are going to pass. */
-
- for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
- p_words += pushed_size (p_words, value_arg_coerce (args[parm_num]));
-
- /* Now, check to see if we have to round up the number of parameter words
- to get up to the next 8-bytes boundary. This may be necessary because
- of the software convention to always keep the stack aligned on an 8-byte
- boundary. */
-
- if (p_words & 1)
- p_words++; /* round to 8-byte boundary */
-
- /* Now figure out the absolute address of the leftmost parameter, and update
- the stack pointer to point at that address. */
-
- left_parm_addr = read_register (SP_REGNUM) - (p_words * 4);
- write_register (SP_REGNUM, left_parm_addr);
-
- /* Now we can go through all of the parameters (in left-to-right order)
- and write them to their parameter stack slots. Note that we are not
- really "pushing" the parameter values. The stack space for these values
- was already allocated above. Now we are just filling it up. */
-
- for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
- p_words +=
- store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num]));
-
- /* Now that we are all done storing the parameter values into the stack, we
- must go back and load up the parameter registers with the values from the
- corresponding stack slots. Note that in the two cases of (a) gaps in the
- parameter word sequence causes by (otherwise) misaligned doubles, and (b)
- slots correcponding to structs or unions, the work we do here in loading
- some parameter registers may be unnecessary, but who cares? */
-
- for (p_words = 0; p_words < 8; p_words++)
- {
- write_register (FIRST_PARM_REGNUM + p_words,
- read_memory_integer (left_parm_addr + (p_words * 4), 4));
- }
-}
+/* Return the appropriate register set for the core section identified
+ by SECT_NAME and SECT_SIZE. */
-void
-pop_frame ()
+static const struct regset *
+m88k_regset_from_core_section (struct gdbarch *gdbarch,
+ const char *sect_name, size_t sect_size)
{
- error ("Feature not implemented for the m88k yet.");
- return;
-}
+ if (strcmp (sect_name, ".reg") == 0 && sect_size >= M88K_NUM_REGS * 4)
+ return &m88k_gregset;
-void
-collect_returned_value (rval, value_type, struct_return, nargs, args)
- value *rval;
- struct type *value_type;
- int struct_return;
- int nargs;
- value *args;
-{
- char retbuf[REGISTER_BYTES];
-
- bcopy (registers, retbuf, REGISTER_BYTES);
- *rval = value_being_returned (value_type, retbuf, struct_return);
- return;
+ return NULL;
}
+\f
-#if 0
-/* Now handled in a machine independent way with CALL_DUMMY_LOCATION. */
- /* Stuff a breakpoint instruction onto the stack (or elsewhere if the stack
- is not a good place for it). Return the address at which the instruction
- got stuffed, or zero if we were unable to stuff it anywhere. */
-
-CORE_ADDR
-push_breakpoint ()
-{
- static char breakpoint_insn[] = BREAKPOINT;
- extern CORE_ADDR text_end; /* of inferior */
- static char readback_buffer[] = BREAKPOINT;
- int i;
-
- /* With a little bit of luck, we can just stash the breakpoint instruction
- in the word just beyond the end of normal text space. For systems on
- which the hardware will not allow us to execute out of the stack segment,
- we have to hope that we *are* at least allowed to effectively extend the
- text segment by one word. If the actual end of user's the text segment
- happens to fall right at a page boundary this trick may fail. Note that
- we check for this by reading after writing, and comparing in order to
- be sure that the write worked. */
+static struct gdbarch *
+m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ struct gdbarch *gdbarch;
+
+ /* If there is already a candidate, use it. */
+ arches = gdbarch_list_lookup_by_info (arches, &info);
+ if (arches != NULL)
+ return arches->gdbarch;
- write_memory (text_end, &breakpoint_insn, 4);
+ /* Allocate space for the new architecture. */
+ gdbarch = gdbarch_alloc (&info, NULL);
- /* Fill the readback buffer with some garbage which is certain to be
- unequal to the breakpoint insn. That way we can tell if the
- following read doesn't actually succeed. */
+ /* There is no real `long double'. */
+ set_gdbarch_long_double_bit (gdbarch, 64);
+ set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
- for (i = 0; i < sizeof (readback_buffer); i++)
- readback_buffer[i] = ~ readback_buffer[i]; /* Invert the bits */
+ set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
+ set_gdbarch_register_name (gdbarch, m88k_register_name);
+ set_gdbarch_register_type (gdbarch, m88k_register_type);
- /* Now check that the breakpoint insn was successfully installed. */
+ /* Register numbers of various important registers. */
+ set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
+ set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
- read_memory (text_end, readback_buffer, sizeof (readback_buffer));
- for (i = 0; i < sizeof (readback_buffer); i++)
- if (readback_buffer[i] != breakpoint_insn[i])
- return 0; /* Failed to install! */
+ /* Core file support. */
+ set_gdbarch_regset_from_core_section
+ (gdbarch, m88k_regset_from_core_section);
- return text_end;
+ set_gdbarch_print_insn (gdbarch, print_insn_m88k);
+
+ set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
+
+ /* Stack grows downward. */
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+
+ /* Call dummy code. */
+ set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
+ set_gdbarch_dummy_id (gdbarch, m88k_dummy_id);
+
+ /* Return value info */
+ set_gdbarch_return_value (gdbarch, m88k_return_value);
+
+ set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
+ set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
+ set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
+ set_gdbarch_write_pc (gdbarch, m88k_write_pc);
+
+ frame_base_set_default (gdbarch, &m88k_frame_base);
+ frame_unwind_append_unwinder (gdbarch, &m88k_frame_unwind);
+
+ return gdbarch;
+}
+\f
+
+/* Provide a prototype to silence -Wmissing-prototypes. */
+void _initialize_m88k_tdep (void);
+
+void
+_initialize_m88k_tdep (void)
+{
+ gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);
}
-#endif