/* Target-dependent code for Mitsubishi D10V, for GDB.
- Copyright 1996, 1997, 1998, 1999, 2000, 2001
- Free Software Foundation, Inc.
+
+ Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
+ Foundation, Inc.
This file is part of GDB.
#include "defs.h"
#include "frame.h"
-#include "obstack.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "regcache.h"
#include "floatformat.h"
-#include "sim-d10v.h"
+#include "gdb/sim-d10v.h"
+#include "sim-regno.h"
-#undef XMALLOC
-#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
+#include "gdb_assert.h"
struct frame_extra_info
{
/* These are the addresses the D10V-EVA board maps data and
instruction memory to. */
-#define DMEM_START 0x2000000
-#define IMEM_START 0x1000000
-#define STACK_START 0x0007ffe
+enum memspace {
+ DMEM_START = 0x2000000,
+ IMEM_START = 0x1000000,
+ STACK_START = 0x200bffe
+};
/* d10v register names. */
enum
{
R0_REGNUM = 0,
+ R3_REGNUM = 3,
+ _FP_REGNUM = 11,
LR_REGNUM = 13,
+ _SP_REGNUM = 15,
PSW_REGNUM = 16,
+ _PC_REGNUM = 18,
NR_IMAP_REGS = 2,
- NR_A_REGS = 2
+ NR_A_REGS = 2,
+ TS2_NUM_REGS = 37,
+ TS3_NUM_REGS = 42,
+ /* d10v calling convention. */
+ ARG1_REGNUM = R0_REGNUM,
+ ARGN_REGNUM = R3_REGNUM,
+ RET1_REGNUM = R0_REGNUM,
};
+
#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
-/* d10v calling convention. */
-
-#define ARG1_REGNUM R0_REGNUM
-#define ARGN_REGNUM 3
-#define RET1_REGNUM R0_REGNUM
-
/* Local functions */
extern void _initialize_d10v_tdep (void);
+static CORE_ADDR d10v_read_sp (void);
+
+static CORE_ADDR d10v_read_fp (void);
+
static void d10v_eva_prepare_to_trace (void);
static void d10v_eva_get_trace_data (void);
static int
d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
{
- return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
+ return (get_frame_pc (frame) > IMEM_START);
}
static CORE_ADDR
static int
d10v_use_struct_convention (int gcc_p, struct type *type)
{
- return (TYPE_LENGTH (type) > 8);
+ long alignment;
+ int i;
+ /* The d10v only passes a struct in a register when that structure
+ has an alignment that matches the size of a register. */
+ /* If the structure doesn't fit in 4 registers, put it on the
+ stack. */
+ if (TYPE_LENGTH (type) > 8)
+ return 1;
+ /* If the struct contains only one field, don't put it on the stack
+ - gcc can fit it in one or more registers. */
+ if (TYPE_NFIELDS (type) == 1)
+ return 0;
+ alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
+ for (i = 1; i < TYPE_NFIELDS (type); i++)
+ {
+ /* If the alignment changes, just assume it goes on the
+ stack. */
+ if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
+ return 1;
+ }
+ /* If the alignment is suitable for the d10v's 16 bit registers,
+ don't put it on the stack. */
+ if (alignment == 2 || alignment == 4)
+ return 0;
+ return 1;
}
-static unsigned char *
+static const unsigned char *
d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
static unsigned char breakpoint[] =
TS2_A0_REGNUM = 35
};
-static char *
+static const char *
d10v_ts2_register_name (int reg_nr)
{
static char *register_names[] =
TS3_A0_REGNUM = 32
};
-static char *
+static const char *
d10v_ts3_register_name (int reg_nr)
{
static char *register_names[] =
static int
d10v_ts2_register_sim_regno (int nr)
{
+ if (legacy_register_sim_regno (nr) < 0)
+ return legacy_register_sim_regno (nr);
if (nr >= TS2_IMAP0_REGNUM
&& nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
static int
d10v_ts3_register_sim_regno (int nr)
{
+ if (legacy_register_sim_regno (nr) < 0)
+ return legacy_register_sim_regno (nr);
if (nr >= TS3_IMAP0_REGNUM
&& nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
return 2;
}
-/* Number of bytes of storage in the program's representation
- for register N. */
-
-static int
-d10v_register_virtual_size (int reg_nr)
-{
- return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg_nr));
-}
-
/* Return the GDB type object for the "standard" data type
of data in register N. */
static struct type *
d10v_register_virtual_type (int reg_nr)
{
- if (reg_nr >= A0_REGNUM
+ if (reg_nr == PC_REGNUM)
+ return builtin_type_void_func_ptr;
+ if (reg_nr == _SP_REGNUM || reg_nr == _FP_REGNUM)
+ return builtin_type_void_data_ptr;
+ else if (reg_nr >= A0_REGNUM
&& reg_nr < (A0_REGNUM + NR_A_REGS))
return builtin_type_int64;
- else if (reg_nr == PC_REGNUM
- || reg_nr == SP_REGNUM)
- return builtin_type_int32;
else
return builtin_type_int16;
}
-/* convert $pc and $sp to/from virtual addresses */
static int
-d10v_register_convertible (int nr)
-{
- return ((nr) == PC_REGNUM || (nr) == SP_REGNUM);
-}
-
-static void
-d10v_register_convert_to_virtual (int regnum, struct type *type, char *from,
- char *to)
+d10v_daddr_p (CORE_ADDR x)
{
- ULONGEST x = extract_unsigned_integer (from, REGISTER_RAW_SIZE (regnum));
- if (regnum == PC_REGNUM)
- x = (x << 2) | IMEM_START;
- else
- x |= DMEM_START;
- store_unsigned_integer (to, TYPE_LENGTH (type), x);
+ return (((x) & 0x3000000) == DMEM_START);
}
-static void
-d10v_register_convert_to_raw (struct type *type, int regnum, char *from,
- char *to)
+static int
+d10v_iaddr_p (CORE_ADDR x)
{
- ULONGEST x = extract_unsigned_integer (from, TYPE_LENGTH (type));
- x &= 0x3ffff;
- if (regnum == PC_REGNUM)
- x >>= 2;
- store_unsigned_integer (to, 2, x);
+ return (((x) & 0x3000000) == IMEM_START);
}
-
static CORE_ADDR
d10v_make_daddr (CORE_ADDR x)
{
static CORE_ADDR
d10v_make_iaddr (CORE_ADDR x)
{
- return (((x) << 2) | IMEM_START);
+ if (d10v_iaddr_p (x))
+ return x; /* Idempotency -- x is already in the IMEM space. */
+ else
+ return (((x) << 2) | IMEM_START);
}
-static int
-d10v_daddr_p (CORE_ADDR x)
+static CORE_ADDR
+d10v_convert_iaddr_to_raw (CORE_ADDR x)
{
- return (((x) & 0x3000000) == DMEM_START);
+ return (((x) >> 2) & 0xffff);
}
-static int
-d10v_iaddr_p (CORE_ADDR x)
+static CORE_ADDR
+d10v_convert_daddr_to_raw (CORE_ADDR x)
{
- return (((x) & 0x3000000) == IMEM_START);
+ return ((x) & 0xffff);
}
+static void
+d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
+{
+ /* Is it a code address? */
+ if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
+ || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
+ {
+ store_unsigned_integer (buf, TYPE_LENGTH (type),
+ d10v_convert_iaddr_to_raw (addr));
+ }
+ else
+ {
+ /* Strip off any upper segment bits. */
+ store_unsigned_integer (buf, TYPE_LENGTH (type),
+ d10v_convert_daddr_to_raw (addr));
+ }
+}
static CORE_ADDR
-d10v_convert_iaddr_to_raw (CORE_ADDR x)
+d10v_pointer_to_address (struct type *type, const void *buf)
{
- return (((x) >> 2) & 0xffff);
+ CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
+
+ /* Is it a code address? */
+ if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
+ || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
+ || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
+ return d10v_make_iaddr (addr);
+ else
+ return d10v_make_daddr (addr);
}
+/* Don't do anything if we have an integer, this way users can type 'x
+ <addr>' w/o having gdb outsmart them. The internal gdb conversions
+ to the correct space are taken care of in the pointer_to_address
+ function. If we don't do this, 'x $fp' wouldn't work. */
static CORE_ADDR
-d10v_convert_daddr_to_raw (CORE_ADDR x)
+d10v_integer_to_address (struct type *type, void *buf)
{
- return ((x) & 0xffff);
+ LONGEST val;
+ val = unpack_long (type, buf);
+ return val;
}
/* Store the address of the place in which to copy the structure the
Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
static void
-d10v_store_return_value (struct type *type, char *valbuf)
+d10v_store_return_value (struct type *type, struct regcache *regcache,
+ const void *valbuf)
{
- write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
- valbuf,
- TYPE_LENGTH (type));
+ /* Only char return values need to be shifted right within the first
+ regnum. */
+ if (TYPE_LENGTH (type) == 1
+ && TYPE_CODE (type) == TYPE_CODE_INT)
+ {
+ bfd_byte tmp[2];
+ tmp[1] = *(bfd_byte *)valbuf;
+ regcache_cooked_write (regcache, RET1_REGNUM, tmp);
+ }
+ else
+ {
+ int reg;
+ /* A structure is never more than 8 bytes long. See
+ use_struct_convention(). */
+ gdb_assert (TYPE_LENGTH (type) <= 8);
+ /* Write out most registers, stop loop before trying to write
+ out any dangling byte at the end of the buffer. */
+ for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
+ {
+ regcache_cooked_write (regcache, RET1_REGNUM + reg,
+ (bfd_byte *) valbuf + reg * 2);
+ }
+ /* Write out any dangling byte at the end of the buffer. */
+ if ((reg * 2) + 1 == TYPE_LENGTH (type))
+ regcache_cooked_write_part (regcache, reg, 0, 1,
+ (bfd_byte *) valbuf + reg * 2);
+ }
}
/* Extract from an array REGBUF containing the (raw) register state
as a CORE_ADDR (or an expression that can be used as one). */
static CORE_ADDR
-d10v_extract_struct_value_address (char *regbuf)
+d10v_extract_struct_value_address (struct regcache *regcache)
{
- return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
- REGISTER_RAW_SIZE (ARG1_REGNUM))
- | DMEM_START);
+ ULONGEST addr;
+ regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
+ return (addr | DMEM_START);
}
static CORE_ADDR
d10v_frame_saved_pc (struct frame_info *frame)
{
- return ((frame)->extra_info->return_pc);
+ if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, 0, 0))
+ return d10v_make_iaddr (deprecated_read_register_dummy (frame->pc,
+ frame->frame,
+ PC_REGNUM));
+ else
+ return ((frame)->extra_info->return_pc);
}
/* Immediately after a function call, return the saved pc. We can't
int regnum;
char raw_buffer[8];
- fp = FRAME_FP (fi);
+ fp = get_frame_base (fi);
/* fill out fsr with the address of where each */
/* register was stored in the frame */
d10v_frame_init_saved_regs (fi);
/* now update the current registers with the old values */
for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
{
- if (fi->saved_regs[regnum])
+ if (get_frame_saved_regs (fi)[regnum])
{
- read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
- write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
+ read_memory (get_frame_saved_regs (fi)[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
+ deprecated_write_register_bytes (REGISTER_BYTE (regnum), raw_buffer,
+ REGISTER_RAW_SIZE (regnum));
}
}
for (regnum = 0; regnum < SP_REGNUM; regnum++)
{
- if (fi->saved_regs[regnum])
+ if (get_frame_saved_regs (fi)[regnum])
{
- write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
+ write_register (regnum, read_memory_unsigned_integer (get_frame_saved_regs (fi)[regnum], REGISTER_RAW_SIZE (regnum)));
}
}
- if (fi->saved_regs[PSW_REGNUM])
+ if (get_frame_saved_regs (fi)[PSW_REGNUM])
{
- write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
+ write_register (PSW_REGNUM, read_memory_unsigned_integer (get_frame_saved_regs (fi)[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
}
write_register (PC_REGNUM, read_register (LR_REGNUM));
- write_register (SP_REGNUM, fp + fi->extra_info->size);
+ write_register (SP_REGNUM, fp + get_frame_extra_info (fi)->size);
target_store_registers (-1);
flush_cached_frames ();
}
return pc;
}
-/* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
- */
+/* Given a GDB frame, determine the address of the calling function's
+ frame. This will be used to create a new GDB frame struct, and
+ then INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC will be
+ called for the new frame. */
static CORE_ADDR
d10v_frame_chain (struct frame_info *fi)
{
- d10v_frame_init_saved_regs (fi);
+ CORE_ADDR addr;
- if (fi->extra_info->return_pc == IMEM_START
- || inside_entry_file (fi->extra_info->return_pc))
- return (CORE_ADDR) 0;
+ /* A generic call dummy's frame is the same as caller's. */
+ if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, 0, 0))
+ return fi->frame;
- if (!fi->saved_regs[FP_REGNUM])
+ d10v_frame_init_saved_regs (fi);
+
+ if (get_frame_extra_info (fi)->return_pc == IMEM_START
+ || inside_entry_file (get_frame_extra_info (fi)->return_pc))
{
- if (!fi->saved_regs[SP_REGNUM]
- || fi->saved_regs[SP_REGNUM] == STACK_START)
+ /* This is meant to halt the backtrace at "_start".
+ Make sure we don't halt it at a generic dummy frame. */
+ return (CORE_ADDR) 0;
+ }
+
+ if (!get_frame_saved_regs (fi)[FP_REGNUM])
+ {
+ if (!get_frame_saved_regs (fi)[SP_REGNUM]
+ || get_frame_saved_regs (fi)[SP_REGNUM] == STACK_START)
return (CORE_ADDR) 0;
- return fi->saved_regs[SP_REGNUM];
+ return get_frame_saved_regs (fi)[SP_REGNUM];
}
- if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
- REGISTER_RAW_SIZE (FP_REGNUM)))
+ addr = read_memory_unsigned_integer (get_frame_saved_regs (fi)[FP_REGNUM],
+ REGISTER_RAW_SIZE (FP_REGNUM));
+ if (addr == 0)
return (CORE_ADDR) 0;
- return D10V_MAKE_DADDR (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
- REGISTER_RAW_SIZE (FP_REGNUM)));
+ return d10v_make_daddr (addr);
}
static int next_addr, uses_frame;
{
n = (op & 0x1E0) >> 5;
next_addr -= 2;
- fi->saved_regs[n] = next_addr;
+ get_frame_saved_regs (fi)[n] = next_addr;
return 1;
}
{
n = (op & 0x1E0) >> 5;
next_addr -= 4;
- fi->saved_regs[n] = next_addr;
- fi->saved_regs[n + 1] = next_addr + 2;
+ get_frame_saved_regs (fi)[n] = next_addr;
+ get_frame_saved_regs (fi)[n + 1] = next_addr + 2;
return 1;
}
if ((op & 0x7E1F) == 0x681E)
{
n = (op & 0x1E0) >> 5;
- fi->saved_regs[n] = next_addr;
+ get_frame_saved_regs (fi)[n] = next_addr;
return 1;
}
if ((op & 0x7E3F) == 0x3A1E)
{
n = (op & 0x1E0) >> 5;
- fi->saved_regs[n] = next_addr;
- fi->saved_regs[n + 1] = next_addr + 2;
+ get_frame_saved_regs (fi)[n] = next_addr;
+ get_frame_saved_regs (fi)[n + 1] = next_addr + 2;
return 1;
}
unsigned short op1, op2;
int i;
- fp = fi->frame;
- memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
+ fp = get_frame_base (fi);
+ memset (get_frame_saved_regs (fi), 0, SIZEOF_FRAME_SAVED_REGS);
next_addr = 0;
- pc = get_pc_function_start (fi->pc);
+ pc = get_pc_function_start (get_frame_pc (fi));
uses_frame = 0;
while (1)
/* st rn, @(offset,sp) */
short offset = op & 0xFFFF;
short n = (op >> 20) & 0xF;
- fi->saved_regs[n] = next_addr + offset;
+ get_frame_saved_regs (fi)[n] = next_addr + offset;
}
else if ((op & 0x3F1F0000) == 0x350F0000)
{
/* st2w rn, @(offset,sp) */
short offset = op & 0xFFFF;
short n = (op >> 20) & 0xF;
- fi->saved_regs[n] = next_addr + offset;
- fi->saved_regs[n + 1] = next_addr + offset + 2;
+ get_frame_saved_regs (fi)[n] = next_addr + offset;
+ get_frame_saved_regs (fi)[n + 1] = next_addr + offset + 2;
}
else
break;
op1 = (op & 0x3FFF8000) >> 15;
op2 = op & 0x7FFF;
}
- if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
+ if (!prologue_find_regs (op1, fi, pc)
+ || !prologue_find_regs (op2, fi, pc))
break;
}
pc += 4;
}
- fi->extra_info->size = -next_addr;
+ get_frame_extra_info (fi)->size = -next_addr;
if (!(fp & 0xffff))
- fp = D10V_MAKE_DADDR (read_register (SP_REGNUM));
+ fp = d10v_read_sp ();
for (i = 0; i < NUM_REGS - 1; i++)
- if (fi->saved_regs[i])
+ if (get_frame_saved_regs (fi)[i])
{
- fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
+ get_frame_saved_regs (fi)[i] = fp - (next_addr - get_frame_saved_regs (fi)[i]);
}
- if (fi->saved_regs[LR_REGNUM])
+ if (get_frame_saved_regs (fi)[LR_REGNUM])
{
- CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
- fi->extra_info->return_pc = D10V_MAKE_IADDR (return_pc);
+ CORE_ADDR return_pc
+ = read_memory_unsigned_integer (get_frame_saved_regs (fi)[LR_REGNUM],
+ REGISTER_RAW_SIZE (LR_REGNUM));
+ get_frame_extra_info (fi)->return_pc = d10v_make_iaddr (return_pc);
}
else
{
- fi->extra_info->return_pc = D10V_MAKE_IADDR (read_register (LR_REGNUM));
+ get_frame_extra_info (fi)->return_pc = d10v_make_iaddr (read_register (LR_REGNUM));
}
- /* th SP is not normally (ever?) saved, but check anyway */
- if (!fi->saved_regs[SP_REGNUM])
+ /* The SP is not normally (ever?) saved, but check anyway */
+ if (!get_frame_saved_regs (fi)[SP_REGNUM])
{
/* if the FP was saved, that means the current FP is valid, */
/* otherwise, it isn't being used, so we use the SP instead */
if (uses_frame)
- fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
+ get_frame_saved_regs (fi)[SP_REGNUM]
+ = d10v_read_fp () + get_frame_extra_info (fi)->size;
else
{
- fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
- fi->extra_info->frameless = 1;
- fi->saved_regs[FP_REGNUM] = 0;
+ get_frame_saved_regs (fi)[SP_REGNUM] = fp + get_frame_extra_info (fi)->size;
+ get_frame_extra_info (fi)->frameless = 1;
+ get_frame_saved_regs (fi)[FP_REGNUM] = 0;
}
}
}
static void
d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
- fi->extra_info = (struct frame_extra_info *)
- frame_obstack_alloc (sizeof (struct frame_extra_info));
+ frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
frame_saved_regs_zalloc (fi);
- fi->extra_info->frameless = 0;
- fi->extra_info->size = 0;
- fi->extra_info->return_pc = 0;
+ get_frame_extra_info (fi)->frameless = 0;
+ get_frame_extra_info (fi)->size = 0;
+ get_frame_extra_info (fi)->return_pc = 0;
+
+ /* If get_frame_pc (fi) is zero, but this is not the outermost frame,
+ then let's snatch the return_pc from the callee, so that
+ DEPRECATED_PC_IN_CALL_DUMMY will work. */
+ if (get_frame_pc (fi) == 0
+ && frame_relative_level (fi) != 0 && get_next_frame (fi) != NULL)
+ deprecated_update_frame_pc_hack (fi, d10v_frame_saved_pc (get_next_frame (fi)));
/* The call dummy doesn't save any registers on the stack, so we can
return now. */
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- {
- return;
- }
- else
- {
- d10v_frame_init_saved_regs (fi);
- }
+ d10v_frame_init_saved_regs (fi);
}
static void
int a;
printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
(long) read_register (PC_REGNUM),
- (long) D10V_MAKE_IADDR (read_register (PC_REGNUM)),
+ (long) d10v_make_iaddr (read_register (PC_REGNUM)),
(long) read_register (PSW_REGNUM),
(long) read_register (24),
(long) read_register (25),
char num[MAX_REGISTER_RAW_SIZE];
int i;
printf_filtered (" ");
- read_register_gen (a, (char *) &num);
+ deprecated_read_register_gen (a, (char *) &num);
for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
{
printf_filtered ("%02x", (num[i] & 0xff));
inferior_ptid = ptid;
pc = (int) read_register (PC_REGNUM);
inferior_ptid = save_ptid;
- retval = D10V_MAKE_IADDR (pc);
+ retval = d10v_make_iaddr (pc);
return retval;
}
save_ptid = inferior_ptid;
inferior_ptid = ptid;
- write_register (PC_REGNUM, D10V_CONVERT_IADDR_TO_RAW (val));
+ write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
inferior_ptid = save_ptid;
}
static CORE_ADDR
d10v_read_sp (void)
{
- return (D10V_MAKE_DADDR (read_register (SP_REGNUM)));
+ return (d10v_make_daddr (read_register (SP_REGNUM)));
}
static void
d10v_write_sp (CORE_ADDR val)
{
- write_register (SP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
-}
-
-static void
-d10v_write_fp (CORE_ADDR val)
-{
- write_register (FP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
+ write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
}
static CORE_ADDR
d10v_read_fp (void)
{
- return (D10V_MAKE_DADDR (read_register (FP_REGNUM)));
+ return (d10v_make_daddr (read_register (FP_REGNUM)));
}
/* Function: push_return_address (pc)
static CORE_ADDR
d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
- write_register (LR_REGNUM, D10V_CONVERT_IADDR_TO_RAW (CALL_DUMMY_ADDRESS ()));
+ write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
return sp;
}
static CORE_ADDR
-d10v_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
+d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
int i;
int regnum = ARG1_REGNUM;
struct stack_item *si = NULL;
+ long val;
+
+ /* If struct_return is true, then the struct return address will
+ consume one argument-passing register. No need to actually
+ write the value to the register -- that's done by
+ d10v_store_struct_return(). */
+
+ if (struct_return)
+ regnum++;
/* Fill in registers and arg lists */
for (i = 0; i < nargs; i++)
{
- value_ptr arg = args[i];
+ struct value *arg = args[i];
struct type *type = check_typedef (VALUE_TYPE (arg));
char *contents = VALUE_CONTENTS (arg);
int len = TYPE_LENGTH (type);
- /* printf ("push: type=%d len=%d\n", type->code, len); */
- if (TYPE_CODE (type) == TYPE_CODE_PTR)
+ int aligned_regnum = (regnum + 1) & ~1;
+
+ /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
+ if (len <= 2 && regnum <= ARGN_REGNUM)
+ /* fits in a single register, do not align */
{
- /* pointers require special handling - first convert and
- then store */
- long val = extract_signed_integer (contents, len);
- len = 2;
- if (TYPE_TARGET_TYPE (type)
- && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
- {
- /* function pointer */
- val = D10V_CONVERT_IADDR_TO_RAW (val);
- }
- else if (D10V_IADDR_P (val))
- {
- /* also function pointer! */
- val = D10V_CONVERT_DADDR_TO_RAW (val);
- }
- else
- {
- /* data pointer */
- val &= 0xFFFF;
- }
- if (regnum <= ARGN_REGNUM)
- write_register (regnum++, val & 0xffff);
- else
- {
- char ptr[2];
- /* arg will go onto stack */
- store_address (ptr, 2, val & 0xffff);
- si = push_stack_item (si, ptr, 2);
- }
+ val = extract_unsigned_integer (contents, len);
+ write_register (regnum++, val);
}
- else
+ else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
+ /* value fits in remaining registers, store keeping left
+ aligned */
{
- int aligned_regnum = (regnum + 1) & ~1;
- if (len <= 2 && regnum <= ARGN_REGNUM)
- /* fits in a single register, do not align */
+ int b;
+ regnum = aligned_regnum;
+ for (b = 0; b < (len & ~1); b += 2)
{
- long val = extract_unsigned_integer (contents, len);
+ val = extract_unsigned_integer (&contents[b], 2);
write_register (regnum++, val);
}
- else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
- /* value fits in remaining registers, store keeping left
- aligned */
+ if (b < len)
{
- int b;
- regnum = aligned_regnum;
- for (b = 0; b < (len & ~1); b += 2)
- {
- long val = extract_unsigned_integer (&contents[b], 2);
- write_register (regnum++, val);
- }
- if (b < len)
- {
- long val = extract_unsigned_integer (&contents[b], 1);
- write_register (regnum++, (val << 8));
- }
- }
- else
- {
- /* arg will go onto stack */
- regnum = ARGN_REGNUM + 1;
- si = push_stack_item (si, contents, len);
+ val = extract_unsigned_integer (&contents[b], 1);
+ write_register (regnum++, (val << 8));
}
}
+ else
+ {
+ /* arg will go onto stack */
+ regnum = ARGN_REGNUM + 1;
+ si = push_stack_item (si, contents, len);
+ }
}
while (si)
extract and copy its value into `valbuf'. */
static void
-d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
- char *valbuf)
+d10v_extract_return_value (struct type *type, struct regcache *regcache,
+ void *valbuf)
{
int len;
- /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
- if (TYPE_CODE (type) == TYPE_CODE_PTR
- && TYPE_TARGET_TYPE (type)
- && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
+#if 0
+ printf("RET: TYPE=%d len=%d r%d=0x%x\n", TYPE_CODE (type),
+ TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM,
+ (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM),
+ REGISTER_RAW_SIZE (RET1_REGNUM)));
+#endif
+ if (TYPE_LENGTH (type) == 1)
{
- /* pointer to function */
- int num;
- short snum;
- snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
- store_address (valbuf, 4, D10V_MAKE_IADDR (snum));
- }
- else if (TYPE_CODE (type) == TYPE_CODE_PTR)
- {
- /* pointer to data */
- int num;
- short snum;
- snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
- store_address (valbuf, 4, D10V_MAKE_DADDR (snum));
+ ULONGEST c;
+ regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
+ store_unsigned_integer (valbuf, 1, c);
}
else
{
- len = TYPE_LENGTH (type);
- if (len == 1)
+ /* For return values of odd size, the first byte is in the
+ least significant part of the first register. The
+ remaining bytes in remaining registers. Interestingly, when
+ such values are passed in, the last byte is in the most
+ significant byte of that same register - wierd. */
+ int reg = RET1_REGNUM;
+ int off = 0;
+ if (TYPE_LENGTH (type) & 1)
{
- unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
- store_unsigned_integer (valbuf, 1, c);
+ regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
+ (bfd_byte *)valbuf + off);
+ off++;
+ reg++;
}
- else if ((len & 1) == 0)
- memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
- else
+ /* Transfer the remaining registers. */
+ for (; off < TYPE_LENGTH (type); reg++, off += 2)
{
- /* For return values of odd size, the first byte is in the
- least significant part of the first register. The
- remaining bytes in remaining registers. Interestingly,
- when such values are passed in, the last byte is in the
- most significant byte of that same register - wierd. */
- memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
+ regcache_cooked_read (regcache, RET1_REGNUM + reg,
+ (bfd_byte *) valbuf + off);
}
}
}
internal_error (__FILE__, __LINE__,
"print_insn: no disassembler");
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
tm_print_insn_info.endian = BFD_ENDIAN_BIG;
else
tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
- return (*tm_print_insn) (memaddr, &tm_print_insn_info);
+ return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
}
static void
tdep = XMALLOC (struct gdbarch_tdep);
gdbarch = gdbarch_alloc (&info, tdep);
+ /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
+ ready to unwind the PC first (see frame.c:get_prev_frame()). */
+ set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
+
switch (info.bfd_arch_info->mach)
{
case bfd_mach_d10v_ts2:
set_gdbarch_read_pc (gdbarch, d10v_read_pc);
set_gdbarch_write_pc (gdbarch, d10v_write_pc);
set_gdbarch_read_fp (gdbarch, d10v_read_fp);
- set_gdbarch_write_fp (gdbarch, d10v_write_fp);
set_gdbarch_read_sp (gdbarch, d10v_read_sp);
set_gdbarch_write_sp (gdbarch, d10v_write_sp);
set_gdbarch_register_byte (gdbarch, d10v_register_byte);
set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
set_gdbarch_max_register_raw_size (gdbarch, 8);
- set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
+ set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
set_gdbarch_max_register_virtual_size (gdbarch, 8);
set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
- set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_addr_bit (gdbarch, 32);
+ set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
+ set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
+ set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
/* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
double'' is 64 bits. */
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
switch (info.byte_order)
{
- case BIG_ENDIAN:
+ case BFD_ENDIAN_BIG:
set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
break;
- case LITTLE_ENDIAN:
+ case BFD_ENDIAN_LITTLE:
set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
"d10v_gdbarch_init: bad byte order for float format");
}
- set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
set_gdbarch_call_dummy_length (gdbarch, 0);
- set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
- set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
set_gdbarch_call_dummy_p (gdbarch, 1);
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
- set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
- set_gdbarch_register_convertible (gdbarch, d10v_register_convertible);
- set_gdbarch_register_convert_to_virtual (gdbarch, d10v_register_convert_to_virtual);
- set_gdbarch_register_convert_to_raw (gdbarch, d10v_register_convert_to_raw);
-
set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
- set_gdbarch_d10v_make_daddr (gdbarch, d10v_make_daddr);
- set_gdbarch_d10v_make_iaddr (gdbarch, d10v_make_iaddr);
- set_gdbarch_d10v_daddr_p (gdbarch, d10v_daddr_p);
- set_gdbarch_d10v_iaddr_p (gdbarch, d10v_iaddr_p);
- set_gdbarch_d10v_convert_daddr_to_raw (gdbarch, d10v_convert_daddr_to_raw);
- set_gdbarch_d10v_convert_iaddr_to_raw (gdbarch, d10v_convert_iaddr_to_raw);
-
set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
- set_gdbarch_frame_args_address (gdbarch, default_frame_address);
- set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
+
set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
set_gdbarch_stack_align (gdbarch, d10v_stack_align);