-/* Copyright (C) 1990 Free Software Foundation, Inc.
-
+/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
+ Copyright 1990, 1991, 1992 Free Software Foundation, Inc.
+
This file is part of GDB.
-GDB is free software; you can redistribute it and/or modify
+This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 1, or (at your option)
-any later version.
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
-GDB is distributed in the hope that it will be useful,
+This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
-along with GDB; see the file COPYING. If not, write to
-the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+
+#include "defs.h"
-/*
-** symbol definitions
-*/
#include <sys/types.h>
+#include <signal.h>
#include <string.h>
#include <link.h>
-#include "defs.h"
-#include "param.h"
+#include <sys/param.h>
+#include <fcntl.h>
+
+#ifndef SVR4_SHARED_LIBS
+ /* SunOS shared libs need the nlist structure. */
+#include <a.out.h>
+#endif
+
#include "symtab.h"
+#include "bfd.h"
+#include "symfile.h"
+#include "objfiles.h"
#include "gdbcore.h"
#include "command.h"
+#include "target.h"
+#include "frame.h"
+#include "regex.h"
+#include "inferior.h"
+
+#define MAX_PATH_SIZE 256 /* FIXME: Should be dynamic */
+
+/* On SVR4 systems, for the initial implementation, use main() as the
+ "startup mapping complete" breakpoint address. The models for SunOS
+ and SVR4 dynamic linking debugger support are different in that SunOS
+ hits one breakpoint when all mapping is complete while using the SVR4
+ debugger support takes two breakpoint hits for each file mapped, and
+ there is no way to know when the "last" one is hit. Both these
+ mechanisms should be tied to a "breakpoint service routine" that
+ gets automatically executed whenever one of the breakpoints indicating
+ a change in mapping is hit. This is a future enhancement. (FIXME) */
+
+#define BKPT_AT_MAIN 1
+
+/* local data declarations */
+
+#ifndef SVR4_SHARED_LIBS
+
+#define DEBUG_BASE "_DYNAMIC"
+#define LM_ADDR(so) ((so) -> lm.lm_addr)
+#define LM_NEXT(so) ((so) -> lm.lm_next)
+#define LM_NAME(so) ((so) -> lm.lm_name)
+static struct link_dynamic dynamic_copy;
+static struct link_dynamic_2 ld_2_copy;
+static struct ld_debug debug_copy;
+static CORE_ADDR debug_addr;
+static CORE_ADDR flag_addr;
+
+#else /* SVR4_SHARED_LIBS */
+
+#define DEBUG_BASE "_r_debug"
+#define LM_ADDR(so) ((so) -> lm.l_addr)
+#define LM_NEXT(so) ((so) -> lm.l_next)
+#define LM_NAME(so) ((so) -> lm.l_name)
+static struct r_debug debug_copy;
+char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
+
+#endif /* !SVR4_SHARED_LIBS */
-/*
-** local data declarations
-*/
-#define MAX_PATH_SIZE 256
struct so_list {
- struct link_map inferior_lm; /* inferior link map */
- struct link_map *inferior_lm_add;
- long ld_text;
- char inferior_so_name[MAX_PATH_SIZE]; /* Shared Object Library Name */
- struct so_list *next; /* Next Structure */
- int symbols_loaded;
+ struct so_list *next; /* next structure in linked list */
+ struct link_map lm; /* copy of link map from inferior */
+ struct link_map *lmaddr; /* addr in inferior lm was read from */
+ CORE_ADDR lmend; /* upper addr bound of mapped object */
+ char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
+ char symbols_loaded; /* flag: symbols read in yet? */
+ char from_tty; /* flag: print msgs? */
+ bfd *so_bfd; /* bfd for so_name */
+ struct objfile *objfile; /* objfile for loaded lib */
+ struct section_table *sections;
+ struct section_table *sections_end;
+ struct section_table *textsection;
};
-static struct so_list *so_list_head = 0;
-
-/*=======================================================================*/
-
-/* find_solib
-**
-**Description:
-**
-** This module contains the routine which finds the names of any loaded
-** "images" in the current process. The argument in must be NULL on the
-** first call, and then the returned value must be passed in on
-** subsequent calls. This provides the capability to "step" down the
-** list of loaded objects. On the last object, a NULL value is returned.
-** The arg and return value are "struct link_map" pointers, as defined
-** in <link.h>.
-**
-** NOTE: This only works under SunOS4.0.
+static struct so_list *so_list_head; /* List of known shared objects */
+static CORE_ADDR debug_base; /* Base of dynamic linker structures */
+static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
+
+extern int
+fdmatch PARAMS ((int, int)); /* In libiberty */
+
+/* Local function prototypes */
+
+static void
+special_symbol_handling PARAMS ((struct so_list *));
+
+static void
+sharedlibrary_command PARAMS ((char *, int));
+
+static int
+enable_break PARAMS ((void));
+
+static int
+disable_break PARAMS ((void));
+
+static void
+info_sharedlibrary_command PARAMS ((char *, int));
+
+static int
+symbol_add_stub PARAMS ((char *));
+
+static struct so_list *
+find_solib PARAMS ((struct so_list *));
+
+static struct link_map *
+first_link_map_member PARAMS ((void));
+
+static CORE_ADDR
+locate_base PARAMS ((void));
+
+static void
+solib_map_sections PARAMS ((struct so_list *));
+
+#ifdef SVR4_SHARED_LIBS
+
+static int
+look_for_base PARAMS ((int, CORE_ADDR));
+
+static CORE_ADDR
+bfd_lookup_symbol PARAMS ((bfd *, char *));
+
+#else
+
+static void
+solib_add_common_symbols PARAMS ((struct rtc_symb *, struct objfile *));
+
+#endif
+
+/*
+
+LOCAL FUNCTION
+
+ solib_map_sections -- open bfd and build sections for shared lib
+
+SYNOPSIS
+
+ static void solib_map_sections (struct so_list *so)
+
+DESCRIPTION
+
+ Given a pointer to one of the shared objects in our list
+ of mapped objects, use the recorded name to open a bfd
+ descriptor for the object, build a section table, and then
+ relocate all the section addresses by the base address at
+ which the shared object was mapped.
+
+FIXMES
+
+ In most (all?) cases the shared object file name recorded in the
+ dynamic linkage tables will be a fully qualified pathname. For
+ cases where it isn't, do we really mimic the systems search
+ mechanism correctly in the below code (particularly the tilde
+ expansion stuff?).
+ */
+
+static void
+solib_map_sections (so)
+ struct so_list *so;
+{
+ char *filename;
+ char *scratch_pathname;
+ int scratch_chan;
+ struct section_table *p;
+
+ filename = tilde_expand (so -> so_name);
+ make_cleanup (free, filename);
+
+ scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
+ &scratch_pathname);
+ if (scratch_chan < 0)
+ {
+ scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
+ O_RDONLY, 0, &scratch_pathname);
+ }
+ if (scratch_chan < 0)
+ {
+ perror_with_name (filename);
+ }
+
+ so -> so_bfd = bfd_fdopenr (scratch_pathname, NULL, scratch_chan);
+ if (!so -> so_bfd)
+ {
+ error ("Could not open `%s' as an executable file: %s",
+ scratch_pathname, bfd_errmsg (bfd_error));
+ }
+ if (!bfd_check_format (so -> so_bfd, bfd_object))
+ {
+ error ("\"%s\": not in executable format: %s.",
+ scratch_pathname, bfd_errmsg (bfd_error));
+ }
+ if (build_section_table (so -> so_bfd, &so -> sections, &so -> sections_end))
+ {
+ error ("Can't find the file sections in `%s': %s",
+ exec_bfd -> filename, bfd_errmsg (bfd_error));
+ }
+
+ for (p = so -> sections; p < so -> sections_end; p++)
+ {
+ /* Relocate the section binding addresses as recorded in the shared
+ object's file by the base address to which the object was actually
+ mapped. */
+ p -> addr += (CORE_ADDR) LM_ADDR (so);
+ p -> endaddr += (CORE_ADDR) LM_ADDR (so);
+ so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
+ if (strcmp (p -> sec_ptr -> name, ".text") == 0)
+ {
+ so -> textsection = p;
+ }
+ }
+}
+
+/* Read all dynamically loaded common symbol definitions from the inferior
+ and add them to the minimal symbol table for the shared library objfile. */
+
+#ifndef SVR4_SHARED_LIBS
+
+static void
+solib_add_common_symbols (rtc_symp, objfile)
+ struct rtc_symb *rtc_symp;
+ struct objfile *objfile;
+{
+ struct rtc_symb inferior_rtc_symb;
+ struct nlist inferior_rtc_nlist;
+ int len;
+ char *name;
+ char *origname;
+
+ init_minimal_symbol_collection ();
+ make_cleanup (discard_minimal_symbols, 0);
+
+ while (rtc_symp)
+ {
+ read_memory ((CORE_ADDR) rtc_symp,
+ (char *) &inferior_rtc_symb,
+ sizeof (inferior_rtc_symb));
+ read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
+ (char *) &inferior_rtc_nlist,
+ sizeof(inferior_rtc_nlist));
+ if (inferior_rtc_nlist.n_type == N_COMM)
+ {
+ /* FIXME: The length of the symbol name is not available, but in the
+ current implementation the common symbol is allocated immediately
+ behind the name of the symbol. */
+ len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
+
+ origname = name = xmalloc (len);
+ read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
+
+ /* Don't enter the symbol twice if the target is re-run. */
+
+#ifdef NAMES_HAVE_UNDERSCORE
+ if (*name == '_')
+ {
+ name++;
+ }
+#endif
+ /* FIXME: Do we really want to exclude symbols which happen
+ to match symbols for other locations in the inferior's
+ address space, even when they are in different linkage units? */
+ if (lookup_minimal_symbol (name, (struct objfile *) NULL) == NULL)
+ {
+ name = obsavestring (name, strlen (name),
+ &objfile -> symbol_obstack);
+ prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
+ mst_bss);
+ }
+ free (origname);
+ }
+ rtc_symp = inferior_rtc_symb.rtc_next;
+ }
+
+ /* Install any minimal symbols that have been collected as the current
+ minimal symbols for this objfile. */
+
+ install_minimal_symbols (objfile);
+}
+
+#endif /* SVR4_SHARED_LIBS */
+
+#ifdef SVR4_SHARED_LIBS
+
+/*
+
+LOCAL FUNCTION
+
+ bfd_lookup_symbol -- lookup the value for a specific symbol
+
+SYNOPSIS
+
+ CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
+
+DESCRIPTION
+
+ An expensive way to lookup the value of a single symbol for
+ bfd's that are only temporary anyway. This is used by the
+ shared library support to find the address of the debugger
+ interface structures in the shared library.
+
+ Note that 0 is specifically allowed as an error return (no
+ such symbol).
+
+ FIXME: See if there is a less "expensive" way of doing this.
+ Also see if there is already another bfd or gdb function
+ that specifically does this, and if so, use it.
*/
-struct so_list *find_solib(so_list_ptr)
-struct so_list *so_list_ptr; /* so_list_head position ptr */
-{
-struct so_list *so_list_next = 0;
-CORE_ADDR inferior_dynamic_ptr = 0;
-struct link_map *inferior_lm = 0;
-struct link_dynamic inferior_dynamic_cpy;
-struct link_dynamic_2 inferior_ld_2_cpy;
-struct so_list *new;
-int i;
-
- if (!so_list_ptr) {
- if (!(so_list_next = so_list_head)) {
- for (i = 0; i < misc_function_count; i++) {
- if (!strcmp (misc_function_vector[i].name, "_DYNAMIC")) {
- inferior_dynamic_ptr = misc_function_vector[i].address;
- break;
- }
- }
- if (inferior_dynamic_ptr) {
- read_memory(inferior_dynamic_ptr, &inferior_dynamic_cpy, sizeof(struct link_dynamic));
- if (inferior_dynamic_cpy.ld_version == 3) {
- read_memory((CORE_ADDR)inferior_dynamic_cpy.ld_un.ld_2,
- &inferior_ld_2_cpy,
- sizeof(struct link_dynamic_2));
- inferior_lm = inferior_ld_2_cpy.ld_loaded;
- }
- }
- }
- } else {
- /*
- ** Advance to next local abbreviated load_map structure
- */
- if (!(inferior_lm = so_list_ptr->inferior_lm.lm_next)) {
- /*
- ** See if any were added
- */
- read_memory((CORE_ADDR)so_list_ptr->inferior_lm_add,
- &so_list_ptr->inferior_lm,
- sizeof(struct link_map));
- inferior_lm = so_list_ptr->inferior_lm.lm_next;
- }
- so_list_next = so_list_ptr->next;
- }
- if ((!so_list_next) && inferior_lm) {
- /*
- ** Get Next LM Structure from inferior image and build
- ** an local abbreviated load_map structure
- */
- new = (struct so_list *) xmalloc(sizeof(struct so_list));
- new->inferior_lm_add = inferior_lm;
- read_memory((CORE_ADDR)inferior_lm,
- &new->inferior_lm,
- sizeof(struct link_map));
-
- read_memory((CORE_ADDR)new->inferior_lm.lm_name,
- new->inferior_so_name,
- MAX_PATH_SIZE - 1);
- new->inferior_so_name[MAX_PATH_SIZE - 1] = 0;
- /* Zero everything after the first terminating null */
- strncpy(new->inferior_so_name, new->inferior_so_name, MAX_PATH_SIZE);
-
- read_memory((CORE_ADDR)new->inferior_lm.lm_ld,
- &inferior_dynamic_cpy,
- sizeof(struct link_dynamic));
- read_memory((CORE_ADDR)inferior_dynamic_cpy.ld_un.ld_2,
- &inferior_ld_2_cpy,
- sizeof(struct link_dynamic_2));
- new->ld_text = inferior_ld_2_cpy.ld_text;
-
- new->next = 0;
- new->symbols_loaded = 0;
- if (so_list_ptr)
- so_list_ptr->next = new;
- else
- so_list_head = new;
- so_list_next = new;
- }
- return(so_list_next);
-}
-/*=======================================================================*/
-
-static void solib_add(arg_string, from_tty)
-char *arg_string;
-int from_tty;
-{
- register struct so_list *so = 0; /* link map state variable */
- char *val;
- int sz;
-
- if (arg_string == 0)
- re_comp (".");
- else if (val = (char *) re_comp (arg_string)) {
- error ("Invalid regexp: %s", val);
- }
-
- printf_filtered ("All shared libraries");
- if (arg_string)
- printf_filtered (" matching regular expresion \"%s\"", arg_string);
- printf_filtered (":\n");
-
- dont_repeat();
-
- while (so = find_solib(so)) {
- if (re_exec(so->inferior_so_name)) {
- if (so->symbols_loaded) {
- printf("Symbols already loaded for %s\n", so->inferior_so_name);
- } else {
- /* File Name String Freed by processing */
- sz = strlen(so->inferior_so_name) + 1;
- val = (char *) xmalloc(sz);
- bcopy(so->inferior_so_name, val, sz);
- symbol_file_add (val, from_tty,
- (unsigned int)so->inferior_lm.lm_addr, 0);
- so->symbols_loaded = 1;
+static CORE_ADDR
+bfd_lookup_symbol (abfd, symname)
+ bfd *abfd;
+ char *symname;
+{
+ unsigned int storage_needed;
+ asymbol *sym;
+ asymbol **symbol_table;
+ unsigned int number_of_symbols;
+ unsigned int i;
+ struct cleanup *back_to;
+ CORE_ADDR symaddr = 0;
+
+ storage_needed = get_symtab_upper_bound (abfd);
+
+ if (storage_needed > 0)
+ {
+ symbol_table = (asymbol **) xmalloc (storage_needed);
+ back_to = make_cleanup (free, (PTR)symbol_table);
+ number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
+
+ for (i = 0; i < number_of_symbols; i++)
+ {
+ sym = *symbol_table++;
+ if (strcmp (sym -> name, symname) == 0)
+ {
+ symaddr = sym -> value;
+ break;
+ }
+ }
+ do_cleanups (back_to);
+ }
+ return (symaddr);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ look_for_base -- examine file for each mapped address segment
+
+SYNOPSYS
+
+ static int look_for_base (int fd, CORE_ADDR baseaddr)
+
+DESCRIPTION
+
+ This function is passed to proc_iterate_over_mappings, which
+ causes it to get called once for each mapped address space, with
+ an open file descriptor for the file mapped to that space, and the
+ base address of that mapped space.
+
+ Our job is to find the symbol DEBUG_BASE in the file that this
+ fd is open on, if it exists, and if so, initialize the dynamic
+ linker structure base address debug_base.
+
+ Note that this is a computationally expensive proposition, since
+ we basically have to open a bfd on every call, so we specifically
+ avoid opening the exec file.
+ */
+
+static int
+look_for_base (fd, baseaddr)
+ int fd;
+ CORE_ADDR baseaddr;
+{
+ bfd *interp_bfd;
+ CORE_ADDR address;
+
+ /* If the fd is -1, then there is no file that corresponds to this
+ mapped memory segment, so skip it. Also, if the fd corresponds
+ to the exec file, skip it as well. */
+
+ if ((fd == -1) || fdmatch (fileno ((FILE *)(exec_bfd -> iostream)), fd))
+ {
+ return (0);
+ }
+
+ /* Try to open whatever random file this fd corresponds to. Note that
+ we have no way currently to find the filename. Don't gripe about
+ any problems we might have, just fail. */
+
+ if ((interp_bfd = bfd_fdopenr ("unnamed", NULL, fd)) == NULL)
+ {
+ return (0);
+ }
+ if (!bfd_check_format (interp_bfd, bfd_object))
+ {
+ bfd_close (interp_bfd);
+ return (0);
+ }
+
+ /* Now try to find our DEBUG_BASE symbol in this file, which we at
+ least know to be a valid ELF executable or shared library. */
+
+ if ((address = bfd_lookup_symbol (interp_bfd, DEBUG_BASE)) == 0)
+ {
+ bfd_close (interp_bfd);
+ return (0);
+ }
+
+ /* Eureka! We found the symbol. But now we may need to relocate it
+ by the base address. If the symbol's value is less than the base
+ address of the shared library, then it hasn't yet been relocated
+ by the dynamic linker, and we have to do it ourself. FIXME: Note
+ that we make the assumption that the first segment that corresponds
+ to the shared library has the base address to which the library
+ was relocated. */
+
+ if (address < baseaddr)
+ {
+ address += baseaddr;
+ }
+ debug_base = address;
+ bfd_close (interp_bfd);
+ return (1);
+}
+
+#endif
+
+/*
+
+LOCAL FUNCTION
+
+ locate_base -- locate the base address of dynamic linker structs
+
+SYNOPSIS
+
+ CORE_ADDR locate_base (void)
+
+DESCRIPTION
+
+ For both the SunOS and SVR4 shared library implementations, if the
+ inferior executable has been linked dynamically, there is a single
+ address somewhere in the inferior's data space which is the key to
+ locating all of the dynamic linker's runtime structures. This
+ address is the value of the symbol defined by the macro DEBUG_BASE.
+ The job of this function is to find and return that address, or to
+ return 0 if there is no such address (the executable is statically
+ linked for example).
+
+ For SunOS, the job is almost trivial, since the dynamic linker and
+ all of it's structures are statically linked to the executable at
+ link time. Thus the symbol for the address we are looking for has
+ already been added to the minimal symbol table for the executable's
+ objfile at the time the symbol file's symbols were read, and all we
+ have to do is look it up there. Note that we explicitly do NOT want
+ to find the copies in the shared library.
+
+ The SVR4 version is much more complicated because the dynamic linker
+ and it's structures are located in the shared C library, which gets
+ run as the executable's "interpreter" by the kernel. We have to go
+ to a lot more work to discover the address of DEBUG_BASE. Because
+ of this complexity, we cache the value we find and return that value
+ on subsequent invocations. Note there is no copy in the executable
+ symbol tables.
+
+ Note that we can assume nothing about the process state at the time
+ we need to find this address. We may be stopped on the first instruc-
+ tion of the interpreter (C shared library), the first instruction of
+ the executable itself, or somewhere else entirely (if we attached
+ to the process for example).
+
+ */
+
+static CORE_ADDR
+locate_base ()
+{
+
+#ifndef SVR4_SHARED_LIBS
+
+ struct minimal_symbol *msymbol;
+ CORE_ADDR address = 0;
+
+ /* For SunOS, we want to limit the search for DEBUG_BASE to the executable
+ being debugged, since there is a duplicate named symbol in the shared
+ library. We don't want the shared library versions. */
+
+ msymbol = lookup_minimal_symbol (DEBUG_BASE, symfile_objfile);
+ if ((msymbol != NULL) && (msymbol -> address != 0))
+ {
+ address = msymbol -> address;
+ }
+ return (address);
+
+#else /* SVR4_SHARED_LIBS */
+
+ /* Check to see if we have a currently valid address, and if so, avoid
+ doing all this work again and just return the cached address. If
+ we have no cached address, ask the /proc support interface to iterate
+ over the list of mapped address segments, calling look_for_base() for
+ each segment. When we are done, we will have either found the base
+ address or not. */
+
+ if (debug_base == 0)
+ {
+ proc_iterate_over_mappings (look_for_base);
+ }
+ return (debug_base);
+
+#endif /* !SVR4_SHARED_LIBS */
+
+}
+
+static struct link_map *
+first_link_map_member ()
+{
+ struct link_map *lm = NULL;
+
+#ifndef SVR4_SHARED_LIBS
+
+ read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
+ if (dynamic_copy.ld_version >= 2)
+ {
+ /* It is a version that we can deal with, so read in the secondary
+ structure and find the address of the link map list from it. */
+ read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
+ sizeof (struct link_dynamic_2));
+ lm = ld_2_copy.ld_loaded;
+ }
+
+#else /* SVR4_SHARED_LIBS */
+
+ read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
+ lm = debug_copy.r_map;
+
+#endif /* !SVR4_SHARED_LIBS */
+
+ return (lm);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ find_solib -- step through list of shared objects
+
+SYNOPSIS
+
+ struct so_list *find_solib (struct so_list *so_list_ptr)
+
+DESCRIPTION
+
+ This module contains the routine which finds the names of any
+ loaded "images" in the current process. The argument in must be
+ NULL on the first call, and then the returned value must be passed
+ in on subsequent calls. This provides the capability to "step" down
+ the list of loaded objects. On the last object, a NULL value is
+ returned.
+
+ The arg and return value are "struct link_map" pointers, as defined
+ in <link.h>.
+ */
+
+static struct so_list *
+find_solib (so_list_ptr)
+ struct so_list *so_list_ptr; /* Last lm or NULL for first one */
+{
+ struct so_list *so_list_next = NULL;
+ struct link_map *lm = NULL;
+ struct so_list *new;
+
+ if (so_list_ptr == NULL)
+ {
+ /* We are setting up for a new scan through the loaded images. */
+ if ((so_list_next = so_list_head) == NULL)
+ {
+ /* We have not already read in the dynamic linking structures
+ from the inferior, lookup the address of the base structure. */
+ debug_base = locate_base ();
+ if (debug_base > 0)
+ {
+ /* Read the base structure in and find the address of the first
+ link map list member. */
+ lm = first_link_map_member ();
}
}
}
+ else
+ {
+ /* We have been called before, and are in the process of walking
+ the shared library list. Advance to the next shared object. */
+ if ((lm = LM_NEXT (so_list_ptr)) == NULL)
+ {
+ /* We have hit the end of the list, so check to see if any were
+ added, but be quiet if we can't read from the target any more. */
+ int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lmaddr,
+ (char *) &(so_list_ptr -> lm),
+ sizeof (struct link_map));
+ if (status == 0)
+ {
+ lm = LM_NEXT (so_list_ptr);
+ }
+ else
+ {
+ lm = NULL;
+ }
+ }
+ so_list_next = so_list_ptr -> next;
+ }
+ if ((so_list_next == NULL) && (lm != NULL))
+ {
+ /* Get next link map structure from inferior image and build a local
+ abbreviated load_map structure */
+ new = (struct so_list *) xmalloc (sizeof (struct so_list));
+ (void) memset ((char *) new, 0, sizeof (struct so_list));
+ new -> lmaddr = lm;
+ /* Add the new node as the next node in the list, or as the root
+ node if this is the first one. */
+ if (so_list_ptr != NULL)
+ {
+ so_list_ptr -> next = new;
+ }
+ else
+ {
+ so_list_head = new;
+ }
+ so_list_next = new;
+ read_memory ((CORE_ADDR) lm, (char *) &(new -> lm),
+ sizeof (struct link_map));
+ /* For the SVR4 version, there is one entry that has no name
+ (for the inferior executable) since it is not a shared object. */
+ if (LM_NAME (new) != 0)
+ {
+ if (!target_read_string((CORE_ADDR) LM_NAME (new), new -> so_name,
+ MAX_PATH_SIZE - 1))
+ error ("find_solib: Can't read pathname for load map\n");
+ new -> so_name[MAX_PATH_SIZE - 1] = 0;
+ solib_map_sections (new);
+ }
+ }
+ return (so_list_next);
}
-/*=======================================================================*/
-static void solib_info()
+/* A small stub to get us past the arg-passing pinhole of catch_errors. */
+
+static int
+symbol_add_stub (arg)
+ char *arg;
{
-register struct so_list *so = 0; /* link map state variable */
+ register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
+
+ so -> objfile = symbol_file_add (so -> so_name, so -> from_tty,
+ (unsigned int) so -> textsection -> addr,
+ 0, 0, 0);
+ return (1);
+}
+
+/*
+
+GLOBAL FUNCTION
- while (so = find_solib(so)) {
- if (so == so_list_head) {
- printf(" Address Range Symbols Shared Object Library\n");
+ solib_add -- add a shared library file to the symtab and section list
+
+SYNOPSIS
+
+ void solib_add (char *arg_string, int from_tty,
+ struct target_ops *target)
+
+DESCRIPTION
+
+*/
+
+void
+solib_add (arg_string, from_tty, target)
+ char *arg_string;
+ int from_tty;
+ struct target_ops *target;
+{
+ register struct so_list *so = NULL; /* link map state variable */
+ char *re_err;
+ int count;
+ int old;
+
+ if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
+ {
+ error ("Invalid regexp: %s", re_err);
+ }
+
+ /* Getting new symbols may change our opinion about what is
+ frameless. */
+ reinit_frame_cache ();
+
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> so_name[0] && re_exec (so -> so_name))
+ {
+ if (so -> symbols_loaded)
+ {
+ if (from_tty)
+ {
+ printf ("Symbols already loaded for %s\n", so -> so_name);
+ }
+ }
+ else
+ {
+ catch_errors (symbol_add_stub, (char *) so,
+ "Error while reading shared library symbols:\n");
+
+ special_symbol_handling (so);
+ so -> symbols_loaded = 1;
+ so -> from_tty = from_tty;
+ }
}
- printf(" 0x%08x - 0x%08x %s %s\n",
- so->inferior_lm.lm_addr,
- so->inferior_lm.lm_addr + so->ld_text - 1,
- (so->symbols_loaded ? "Yes" : "No "),
- so->inferior_so_name);
}
- if (!so_list_head) {
- printf("No shared libraries loaded at this time.\n");
+
+ /* Now add the shared library sections to the section table of the
+ specified target, if any. */
+ if (target)
+ {
+ /* Count how many new section_table entries there are. */
+ so = NULL;
+ count = 0;
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> so_name[0])
+ {
+ count += so -> sections_end - so -> sections;
+ }
+ }
+
+ if (count)
+ {
+ /* Reallocate the target's section table including the new size. */
+ if (target -> to_sections)
+ {
+ old = target -> to_sections_end - target -> to_sections;
+ target -> to_sections = (struct section_table *)
+ realloc ((char *)target -> to_sections,
+ (sizeof (struct section_table)) * (count + old));
+ }
+ else
+ {
+ old = 0;
+ target -> to_sections = (struct section_table *)
+ malloc ((sizeof (struct section_table)) * count);
+ }
+ target -> to_sections_end = target -> to_sections + (count + old);
+
+ /* Add these section table entries to the target's table. */
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> so_name[0])
+ {
+ count = so -> sections_end - so -> sections;
+ (void) memcpy ((char *) (target -> to_sections + old),
+ so -> sections,
+ (sizeof (struct section_table)) * count);
+ old += count;
+ }
+ }
+ }
}
}
/*
-** Called by Insert Breakpoint to see if Address is Shared Library Address
+
+LOCAL FUNCTION
+
+ info_sharedlibrary_command -- code for "info sharedlibrary"
+
+SYNOPSIS
+
+ static void info_sharedlibrary_command ()
+
+DESCRIPTION
+
+ Walk through the shared library list and print information
+ about each attached library.
*/
+
+static void
+info_sharedlibrary_command (ignore, from_tty)
+ char *ignore;
+ int from_tty;
+{
+ register struct so_list *so = NULL; /* link map state variable */
+ int header_done = 0;
+
+ if (exec_bfd == NULL)
+ {
+ printf ("No exec file.\n");
+ return;
+ }
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> so_name[0])
+ {
+ if (!header_done)
+ {
+ printf("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
+ "Shared Object Library");
+ header_done++;
+ }
+ printf ("%-12s", local_hex_string_custom ((int) LM_ADDR (so), "08"));
+ printf ("%-12s", local_hex_string_custom (so -> lmend, "08"));
+ printf ("%-12s", so -> symbols_loaded ? "Yes" : "No");
+ printf ("%s\n", so -> so_name);
+ }
+ }
+ if (so_list_head == NULL)
+ {
+ printf ("No shared libraries loaded at this time.\n");
+ }
+}
+
+/*
+
+GLOBAL FUNCTION
+
+ solib_address -- check to see if an address is in a shared lib
+
+SYNOPSIS
+
+ int solib_address (CORE_ADDR address)
+
+DESCRIPTION
+
+ Provides a hook for other gdb routines to discover whether or
+ not a particular address is within the mapped address space of
+ a shared library. Any address between the base mapping address
+ and the first address beyond the end of the last mapping, is
+ considered to be within the shared library address space, for
+ our purposes.
+
+ For example, this routine is called at one point to disable
+ breakpoints which are in shared libraries that are not currently
+ mapped in.
+ */
+
int
-solib_address(address)
+solib_address (address)
CORE_ADDR address;
{
-register struct so_list *so = 0; /* link map state variable */
+ register struct so_list *so = 0; /* link map state variable */
+
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> so_name[0])
+ {
+ if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
+ (address < (CORE_ADDR) so -> lmend))
+ {
+ return (1);
+ }
+ }
+ }
+ return (0);
+}
+
+/* Called by free_all_symtabs */
+
+void
+clear_solib()
+{
+ struct so_list *next;
+
+ while (so_list_head)
+ {
+ if (so_list_head -> sections)
+ {
+ free ((PTR)so_list_head -> sections);
+ }
+ if (so_list_head -> so_bfd)
+ {
+ bfd_close (so_list_head -> so_bfd);
+ }
+ next = so_list_head -> next;
+ free((PTR)so_list_head);
+ so_list_head = next;
+ }
+ debug_base = 0;
+}
+
+/*
+
+LOCAL FUNCTION
+
+ disable_break -- remove the "mapping changed" breakpoint
+
+SYNOPSIS
+
+ static int disable_break ()
+
+DESCRIPTION
+
+ Removes the breakpoint that gets hit when the dynamic linker
+ completes a mapping change.
+
+*/
+
+static int
+disable_break ()
+{
+ int status = 1;
+
+#ifndef SVR4_SHARED_LIBS
+
+ int in_debugger = 0;
+
+ /* Read the debugger structure from the inferior to retrieve the
+ address of the breakpoint and the original contents of the
+ breakpoint address. Remove the breakpoint by writing the original
+ contents back. */
- while (so = find_solib(so)) {
- if ((address >= (CORE_ADDR) so->inferior_lm.lm_addr) &&
- (address < (CORE_ADDR) so->inferior_lm.lm_addr + so->ld_text))
- return 1;
+ read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
+
+ /* Set `in_debugger' to zero now. */
+
+ write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
+
+ breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
+ write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
+ sizeof (debug_copy.ldd_bp_inst));
+
+#else /* SVR4_SHARED_LIBS */
+
+ /* Note that breakpoint address and original contents are in our address
+ space, so we just need to write the original contents back. */
+
+ if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
+ {
+ status = 0;
}
- return 0;
+
+#endif /* !SVR4_SHARED_LIBS */
+
+ /* For the SVR4 version, we always know the breakpoint address. For the
+ SunOS version we don't know it until the above code is executed.
+ Grumble if we are stopped anywhere besides the breakpoint address. */
+
+ if (stop_pc != breakpoint_addr)
+ {
+ warning ("stopped at unknown breakpoint while handling shared libraries");
+ }
+
+ return (status);
}
/*
-** Called by free_all_symtabs
+
+LOCAL FUNCTION
+
+ enable_break -- arrange for dynamic linker to hit breakpoint
+
+SYNOPSIS
+
+ int enable_break (void)
+
+DESCRIPTION
+
+ Both the SunOS and the SVR4 dynamic linkers have, as part of their
+ debugger interface, support for arranging for the inferior to hit
+ a breakpoint after mapping in the shared libraries. This function
+ enables that breakpoint.
+
+ For SunOS, there is a special flag location (in_debugger) which we
+ set to 1. When the dynamic linker sees this flag set, it will set
+ a breakpoint at a location known only to itself, after saving the
+ original contents of that place and the breakpoint address itself,
+ in it's own internal structures. When we resume the inferior, it
+ will eventually take a SIGTRAP when it runs into the breakpoint.
+ We handle this (in a different place) by restoring the contents of
+ the breakpointed location (which is only known after it stops),
+ chasing around to locate the shared libraries that have been
+ loaded, then resuming.
+
+ For SVR4, the debugger interface structure contains a member (r_brk)
+ which is statically initialized at the time the shared library is
+ built, to the offset of a function (_r_debug_state) which is guaran-
+ teed to be called once before mapping in a library, and again when
+ the mapping is complete. At the time we are examining this member,
+ it contains only the unrelocated offset of the function, so we have
+ to do our own relocation. Later, when the dynamic linker actually
+ runs, it relocates r_brk to be the actual address of _r_debug_state().
+
+ The debugger interface structure also contains an enumeration which
+ is set to either RT_ADD or RT_DELETE prior to changing the mapping,
+ depending upon whether or not the library is being mapped or unmapped,
+ and then set to RT_CONSISTENT after the library is mapped/unmapped.
*/
+
+static int
+enable_break ()
+{
+
+#ifndef SVR4_SHARED_LIBS
+
+ int j;
+ int in_debugger;
+
+ /* Get link_dynamic structure */
+
+ j = target_read_memory (debug_base, (char *) &dynamic_copy,
+ sizeof (dynamic_copy));
+ if (j)
+ {
+ /* unreadable */
+ return (0);
+ }
+
+ /* Calc address of debugger interface structure */
+
+ debug_addr = (CORE_ADDR) dynamic_copy.ldd;
+
+ /* Calc address of `in_debugger' member of debugger interface structure */
+
+ flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
+ (char *) &debug_copy);
+
+ /* Write a value of 1 to this member. */
+
+ in_debugger = 1;
+
+ write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
+
+#else /* SVR4_SHARED_LIBS */
+
+#ifdef BKPT_AT_MAIN
+
+ struct minimal_symbol *msymbol;
+
+ msymbol = lookup_minimal_symbol ("main", symfile_objfile);
+ if ((msymbol != NULL) && (msymbol -> address != 0))
+ {
+ breakpoint_addr = msymbol -> address;
+ }
+ else
+ {
+ return (0);
+ }
+
+ if (target_insert_breakpoint (breakpoint_addr, shadow_contents) != 0)
+ {
+ return (0);
+ }
+
+#else /* !BKPT_AT_MAIN */
+
+ struct symtab_and_line sal;
+
+ /* Read the debugger interface structure directly. */
+
+ read_memory (debug_base, (char *) &debug_copy, sizeof (debug_copy));
+
+ /* Set breakpoint at the debugger interface stub routine that will
+ be called just prior to each mapping change and again after the
+ mapping change is complete. Set up the (nonexistent) handler to
+ deal with hitting these breakpoints. (FIXME). */
+
+ warning ("'%s': line %d: missing SVR4 support code", __FILE__, __LINE__);
+
+#endif /* BKPT_AT_MAIN */
+
+#endif /* !SVR4_SHARED_LIBS */
+
+ return (1);
+}
+
+/*
+
+GLOBAL FUNCTION
+
+ solib_create_inferior_hook -- shared library startup support
+
+SYNOPSIS
+
+ void solib_create_inferior_hook()
+
+DESCRIPTION
+
+ When gdb starts up the inferior, it nurses it along (through the
+ shell) until it is ready to execute it's first instruction. At this
+ point, this function gets called via expansion of the macro
+ SOLIB_CREATE_INFERIOR_HOOK.
+
+ For both SunOS shared libraries, and SVR4 shared libraries, we
+ can arrange to cooperate with the dynamic linker to discover the
+ names of shared libraries that are dynamically linked, and the
+ base addresses to which they are linked.
+
+ This function is responsible for discovering those names and
+ addresses, and saving sufficient information about them to allow
+ their symbols to be read at a later time.
+
+FIXME
+
+ Between enable_break() and disable_break(), this code does not
+ properly handle hitting breakpoints which the user might have
+ set in the startup code or in the dynamic linker itself. Proper
+ handling will probably have to wait until the implementation is
+ changed to use the "breakpoint handler function" method.
+
+ Also, what if child has exit()ed? Must exit loop somehow.
+ */
+
void
-clear_solib()
+solib_create_inferior_hook()
+{
+
+ if ((debug_base = locate_base ()) == 0)
+ {
+ /* Can't find the symbol or the executable is statically linked. */
+ return;
+ }
+
+ if (!enable_break ())
+ {
+ warning ("shared library handler failed to enable breakpoint");
+ return;
+ }
+
+ /* Now run the target. It will eventually hit the breakpoint, at
+ which point all of the libraries will have been mapped in and we
+ can go groveling around in the dynamic linker structures to find
+ out what we need to know about them. */
+
+ clear_proceed_status ();
+ stop_soon_quietly = 1;
+ stop_signal = 0;
+ do
+ {
+ target_resume (0, stop_signal);
+ wait_for_inferior ();
+ }
+ while (stop_signal != SIGTRAP);
+ stop_soon_quietly = 0;
+
+ /* We are now either at the "mapping complete" breakpoint (or somewhere
+ else, a condition we aren't prepared to deal with anyway), so adjust
+ the PC as necessary after a breakpoint, disable the breakpoint, and
+ add any shared libraries that were mapped in. */
+
+ if (DECR_PC_AFTER_BREAK)
+ {
+ stop_pc -= DECR_PC_AFTER_BREAK;
+ write_register (PC_REGNUM, stop_pc);
+ }
+
+ if (!disable_break ())
+ {
+ warning ("shared library handler failed to disable breakpoint");
+ }
+
+ solib_add ((char *) 0, 0, (struct target_ops *) 0);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ special_symbol_handling -- additional shared library symbol handling
+
+SYNOPSIS
+
+ void special_symbol_handling (struct so_list *so)
+
+DESCRIPTION
+
+ Once the symbols from a shared object have been loaded in the usual
+ way, we are called to do any system specific symbol handling that
+ is needed.
+
+ For Suns, this consists of grunging around in the dynamic linkers
+ structures to find symbol definitions for "common" symbols and
+ adding them to the minimal symbol table for the corresponding
+ objfile.
+
+*/
+
+static void
+special_symbol_handling (so)
+struct so_list *so;
{
-struct so_list *next;
+#ifndef SVR4_SHARED_LIBS
+ int j;
- while (so_list_head) {
- next = so_list_head->next;
- free(so_list_head);
- so_list_head = next;
- }
-
+ if (debug_addr == 0)
+ {
+ /* Get link_dynamic structure */
+
+ j = target_read_memory (debug_base, (char *) &dynamic_copy,
+ sizeof (dynamic_copy));
+ if (j)
+ {
+ /* unreadable */
+ return;
+ }
+
+ /* Calc address of debugger interface structure */
+ /* FIXME, this needs work for cross-debugging of core files
+ (byteorder, size, alignment, etc). */
+
+ debug_addr = (CORE_ADDR) dynamic_copy.ldd;
+ }
+
+ /* Read the debugger structure from the inferior, just to make sure
+ we have a current copy. */
+
+ j = target_read_memory (debug_addr, (char *) &debug_copy,
+ sizeof (debug_copy));
+ if (j)
+ return; /* unreadable */
+
+ /* Get common symbol definitions for the loaded object. */
+
+ if (debug_copy.ldd_cp)
+ {
+ solib_add_common_symbols (debug_copy.ldd_cp, so -> objfile);
+ }
+
+#endif /* !SVR4_SHARED_LIBS */
+}
+
+
+/*
+
+LOCAL FUNCTION
+
+ sharedlibrary_command -- handle command to explicitly add library
+
+SYNOPSIS
+
+ static void sharedlibrary_command (char *args, int from_tty)
+
+DESCRIPTION
+
+*/
+
+static void
+sharedlibrary_command (args, from_tty)
+char *args;
+int from_tty;
+{
+ dont_repeat ();
+ solib_add (args, from_tty, (struct target_ops *) 0);
}
void
_initialize_solib()
{
-
- add_com("sharedlibrary", class_files, solib_add,
+
+ add_com ("sharedlibrary", class_files, sharedlibrary_command,
"Load shared object library symbols for files matching REGEXP.");
- add_info("sharedlibrary", solib_info,
- "Status of loaded shared object libraries");
-
+ add_info ("sharedlibrary", info_sharedlibrary_command,
+ "Status of loaded shared object libraries.");
}