/* Target-dependent code for Mitsubishi D10V, for GDB.
- Copyright 1996, 1997, 1998, 1999, 2000, 2001
- Free Software Foundation, Inc.
+
+ Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
+ Foundation, Inc.
This file is part of GDB.
#include "defs.h"
#include "frame.h"
-#include "obstack.h"
+#include "frame-unwind.h"
+#include "frame-base.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "language.h"
#include "arch-utils.h"
#include "regcache.h"
-
+#include "remote.h"
#include "floatformat.h"
-#include "sim-d10v.h"
-
-#undef XMALLOC
-#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
+#include "gdb/sim-d10v.h"
+#include "sim-regno.h"
-struct frame_extra_info
- {
- CORE_ADDR return_pc;
- int frameless;
- int size;
- };
+#include "gdb_assert.h"
struct gdbarch_tdep
{
/* These are the addresses the D10V-EVA board maps data and
instruction memory to. */
-#define DMEM_START 0x2000000
-#define IMEM_START 0x1000000
-#define STACK_START 0x0007ffe
+enum memspace {
+ DMEM_START = 0x2000000,
+ IMEM_START = 0x1000000,
+ STACK_START = 0x200bffe
+};
/* d10v register names. */
enum
{
R0_REGNUM = 0,
+ R3_REGNUM = 3,
+ D10V_FP_REGNUM = 11,
LR_REGNUM = 13,
+ D10V_SP_REGNUM = 15,
PSW_REGNUM = 16,
+ _PC_REGNUM = 18,
NR_IMAP_REGS = 2,
- NR_A_REGS = 2
+ NR_A_REGS = 2,
+ TS2_NUM_REGS = 37,
+ TS3_NUM_REGS = 42,
+ /* d10v calling convention. */
+ ARG1_REGNUM = R0_REGNUM,
+ ARGN_REGNUM = R3_REGNUM,
+ RET1_REGNUM = R0_REGNUM,
};
-#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
-#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
-/* d10v calling convention. */
+int
+nr_dmap_regs (struct gdbarch *gdbarch)
+{
+ return gdbarch_tdep (gdbarch)->nr_dmap_regs;
+}
-#define ARG1_REGNUM R0_REGNUM
-#define ARGN_REGNUM 3
-#define RET1_REGNUM R0_REGNUM
+int
+a0_regnum (struct gdbarch *gdbarch)
+{
+ return gdbarch_tdep (gdbarch)->a0_regnum;
+}
/* Local functions */
extern void _initialize_d10v_tdep (void);
-static void d10v_eva_prepare_to_trace (void);
-
-static void d10v_eva_get_trace_data (void);
-
-static int prologue_find_regs (unsigned short op, struct frame_info *fi,
- CORE_ADDR addr);
+static CORE_ADDR d10v_read_sp (void);
-extern void d10v_frame_init_saved_regs (struct frame_info *);
+static CORE_ADDR d10v_read_fp (void);
-static void do_d10v_pop_frame (struct frame_info *fi);
+static void d10v_eva_prepare_to_trace (void);
-int
-d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
-{
- return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
-}
+static void d10v_eva_get_trace_data (void);
static CORE_ADDR
d10v_stack_align (CORE_ADDR len)
The d10v returns anything less than 8 bytes in size in
registers. */
-int
+static int
d10v_use_struct_convention (int gcc_p, struct type *type)
{
- return (TYPE_LENGTH (type) > 8);
+ long alignment;
+ int i;
+ /* The d10v only passes a struct in a register when that structure
+ has an alignment that matches the size of a register. */
+ /* If the structure doesn't fit in 4 registers, put it on the
+ stack. */
+ if (TYPE_LENGTH (type) > 8)
+ return 1;
+ /* If the struct contains only one field, don't put it on the stack
+ - gcc can fit it in one or more registers. */
+ if (TYPE_NFIELDS (type) == 1)
+ return 0;
+ alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
+ for (i = 1; i < TYPE_NFIELDS (type); i++)
+ {
+ /* If the alignment changes, just assume it goes on the
+ stack. */
+ if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
+ return 1;
+ }
+ /* If the alignment is suitable for the d10v's 16 bit registers,
+ don't put it on the stack. */
+ if (alignment == 2 || alignment == 4)
+ return 0;
+ return 1;
}
-unsigned char *
+static const unsigned char *
d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
static unsigned char breakpoint[] =
TS2_A0_REGNUM = 35
};
-static char *
+static const char *
d10v_ts2_register_name (int reg_nr)
{
static char *register_names[] =
TS3_A0_REGNUM = 32
};
-static char *
+static const char *
d10v_ts3_register_name (int reg_nr)
{
static char *register_names[] =
return register_names[reg_nr];
}
-/* Access the DMAP/IMAP registers in a target independent way. */
+/* Access the DMAP/IMAP registers in a target independent way.
+
+ Divide the D10V's 64k data space into four 16k segments:
+ 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
+ 0xc000 -- 0xffff.
+
+ On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
+ 0x7fff) always map to the on-chip data RAM, and the fourth always
+ maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
+ unified memory or instruction memory, under the control of the
+ single DMAP register.
+
+ On the TS3, there are four DMAP registers, each of which controls
+ one of the segments. */
static unsigned long
d10v_ts2_dmap_register (int reg_nr)
static int
d10v_ts2_register_sim_regno (int nr)
{
+ /* Only makes sense to supply raw registers. */
+ gdb_assert (nr >= 0 && nr < NUM_REGS);
if (nr >= TS2_IMAP0_REGNUM
&& nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
static int
d10v_ts3_register_sim_regno (int nr)
{
+ /* Only makes sense to supply raw registers. */
+ gdb_assert (nr >= 0 && nr < NUM_REGS);
if (nr >= TS3_IMAP0_REGNUM
&& nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
return nr;
}
-/* Index within `registers' of the first byte of the space for
- register REG_NR. */
-
-int
-d10v_register_byte (int reg_nr)
-{
- if (reg_nr < A0_REGNUM)
- return (reg_nr * 2);
- else if (reg_nr < (A0_REGNUM + NR_A_REGS))
- return (A0_REGNUM * 2
- + (reg_nr - A0_REGNUM) * 8);
- else
- return (A0_REGNUM * 2
- + NR_A_REGS * 8
- + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
-}
-
-/* Number of bytes of storage in the actual machine representation for
- register REG_NR. */
-
-int
-d10v_register_raw_size (int reg_nr)
-{
- if (reg_nr < A0_REGNUM)
- return 2;
- else if (reg_nr < (A0_REGNUM + NR_A_REGS))
- return 8;
- else
- return 2;
-}
-
-/* Number of bytes of storage in the program's representation
- for register N. */
-
-int
-d10v_register_virtual_size (int reg_nr)
-{
- return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg_nr));
-}
-
/* Return the GDB type object for the "standard" data type
of data in register N. */
-struct type *
-d10v_register_virtual_type (int reg_nr)
+static struct type *
+d10v_register_type (struct gdbarch *gdbarch, int reg_nr)
{
- if (reg_nr >= A0_REGNUM
- && reg_nr < (A0_REGNUM + NR_A_REGS))
+ if (reg_nr == PC_REGNUM)
+ return builtin_type_void_func_ptr;
+ if (reg_nr == D10V_SP_REGNUM || reg_nr == D10V_FP_REGNUM)
+ return builtin_type_void_data_ptr;
+ else if (reg_nr >= a0_regnum (gdbarch)
+ && reg_nr < (a0_regnum (gdbarch) + NR_A_REGS))
return builtin_type_int64;
- else if (reg_nr == PC_REGNUM
- || reg_nr == SP_REGNUM)
- return builtin_type_int32;
else
return builtin_type_int16;
}
-/* convert $pc and $sp to/from virtual addresses */
-int
-d10v_register_convertible (int nr)
-{
- return ((nr) == PC_REGNUM || (nr) == SP_REGNUM);
-}
-
-void
-d10v_register_convert_to_virtual (int regnum, struct type *type, char *from,
- char *to)
+static int
+d10v_daddr_p (CORE_ADDR x)
{
- ULONGEST x = extract_unsigned_integer (from, REGISTER_RAW_SIZE (regnum));
- if (regnum == PC_REGNUM)
- x = (x << 2) | IMEM_START;
- else
- x |= DMEM_START;
- store_unsigned_integer (to, TYPE_LENGTH (type), x);
+ return (((x) & 0x3000000) == DMEM_START);
}
-void
-d10v_register_convert_to_raw (struct type *type, int regnum, char *from,
- char *to)
+static int
+d10v_iaddr_p (CORE_ADDR x)
{
- ULONGEST x = extract_unsigned_integer (from, TYPE_LENGTH (type));
- x &= 0x3ffff;
- if (regnum == PC_REGNUM)
- x >>= 2;
- store_unsigned_integer (to, 2, x);
+ return (((x) & 0x3000000) == IMEM_START);
}
-
-CORE_ADDR
+static CORE_ADDR
d10v_make_daddr (CORE_ADDR x)
{
return ((x) | DMEM_START);
}
-CORE_ADDR
+static CORE_ADDR
d10v_make_iaddr (CORE_ADDR x)
{
- return (((x) << 2) | IMEM_START);
-}
-
-int
-d10v_daddr_p (CORE_ADDR x)
-{
- return (((x) & 0x3000000) == DMEM_START);
-}
-
-int
-d10v_iaddr_p (CORE_ADDR x)
-{
- return (((x) & 0x3000000) == IMEM_START);
+ if (d10v_iaddr_p (x))
+ return x; /* Idempotency -- x is already in the IMEM space. */
+ else
+ return (((x) << 2) | IMEM_START);
}
-
-CORE_ADDR
+static CORE_ADDR
d10v_convert_iaddr_to_raw (CORE_ADDR x)
{
return (((x) >> 2) & 0xffff);
}
-CORE_ADDR
+static CORE_ADDR
d10v_convert_daddr_to_raw (CORE_ADDR x)
{
return ((x) & 0xffff);
}
-/* Store the address of the place in which to copy the structure the
- subroutine will return. This is called from call_function.
-
- We store structs through a pointer passed in the first Argument
- register. */
-
-void
-d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
-{
- write_register (ARG1_REGNUM, (addr));
-}
-
-/* Write into appropriate registers a function return value
- of type TYPE, given in virtual format.
-
- Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
-
-void
-d10v_store_return_value (struct type *type, char *valbuf)
-{
- write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
- valbuf,
- TYPE_LENGTH (type));
-}
-
-/* Extract from an array REGBUF containing the (raw) register state
- the address in which a function should return its structure value,
- as a CORE_ADDR (or an expression that can be used as one). */
-
-CORE_ADDR
-d10v_extract_struct_value_address (char *regbuf)
+static void
+d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
{
- return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
- REGISTER_RAW_SIZE (ARG1_REGNUM))
- | DMEM_START);
+ /* Is it a code address? */
+ if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
+ || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
+ {
+ store_unsigned_integer (buf, TYPE_LENGTH (type),
+ d10v_convert_iaddr_to_raw (addr));
+ }
+ else
+ {
+ /* Strip off any upper segment bits. */
+ store_unsigned_integer (buf, TYPE_LENGTH (type),
+ d10v_convert_daddr_to_raw (addr));
+ }
}
-CORE_ADDR
-d10v_frame_saved_pc (struct frame_info *frame)
-{
- return ((frame)->extra_info->return_pc);
+static CORE_ADDR
+d10v_pointer_to_address (struct type *type, const void *buf)
+{
+ CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
+ /* Is it a code address? */
+ if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
+ || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
+ || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
+ return d10v_make_iaddr (addr);
+ else
+ return d10v_make_daddr (addr);
}
-/* Immediately after a function call, return the saved pc. We can't
- use frame->return_pc beause that is determined by reading R13 off
- the stack and that may not be written yet. */
-
-CORE_ADDR
-d10v_saved_pc_after_call (struct frame_info *frame)
+/* Don't do anything if we have an integer, this way users can type 'x
+ <addr>' w/o having gdb outsmart them. The internal gdb conversions
+ to the correct space are taken care of in the pointer_to_address
+ function. If we don't do this, 'x $fp' wouldn't work. */
+static CORE_ADDR
+d10v_integer_to_address (struct type *type, void *buf)
{
- return ((read_register (LR_REGNUM) << 2)
- | IMEM_START);
+ LONGEST val;
+ val = unpack_long (type, buf);
+ return val;
}
-/* Discard from the stack the innermost frame, restoring all saved
- registers. */
+/* Write into appropriate registers a function return value
+ of type TYPE, given in virtual format.
-void
-d10v_pop_frame (void)
-{
- generic_pop_current_frame (do_d10v_pop_frame);
-}
+ Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
static void
-do_d10v_pop_frame (struct frame_info *fi)
+d10v_store_return_value (struct type *type, struct regcache *regcache,
+ const void *valbuf)
{
- CORE_ADDR fp;
- int regnum;
- char raw_buffer[8];
-
- fp = FRAME_FP (fi);
- /* fill out fsr with the address of where each */
- /* register was stored in the frame */
- d10v_frame_init_saved_regs (fi);
-
- /* now update the current registers with the old values */
- for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
+ /* Only char return values need to be shifted right within the first
+ regnum. */
+ if (TYPE_LENGTH (type) == 1
+ && TYPE_CODE (type) == TYPE_CODE_INT)
{
- if (fi->saved_regs[regnum])
- {
- read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
- write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
- }
+ bfd_byte tmp[2];
+ tmp[1] = *(bfd_byte *)valbuf;
+ regcache_cooked_write (regcache, RET1_REGNUM, tmp);
}
- for (regnum = 0; regnum < SP_REGNUM; regnum++)
+ else
{
- if (fi->saved_regs[regnum])
+ int reg;
+ /* A structure is never more than 8 bytes long. See
+ use_struct_convention(). */
+ gdb_assert (TYPE_LENGTH (type) <= 8);
+ /* Write out most registers, stop loop before trying to write
+ out any dangling byte at the end of the buffer. */
+ for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
{
- write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
+ regcache_cooked_write (regcache, RET1_REGNUM + reg,
+ (bfd_byte *) valbuf + reg * 2);
}
+ /* Write out any dangling byte at the end of the buffer. */
+ if ((reg * 2) + 1 == TYPE_LENGTH (type))
+ regcache_cooked_write_part (regcache, reg, 0, 1,
+ (bfd_byte *) valbuf + reg * 2);
}
- if (fi->saved_regs[PSW_REGNUM])
- {
- write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
- }
+}
- write_register (PC_REGNUM, read_register (LR_REGNUM));
- write_register (SP_REGNUM, fp + fi->extra_info->size);
- target_store_registers (-1);
- flush_cached_frames ();
+/* Extract from an array REGBUF containing the (raw) register state
+ the address in which a function should return its structure value,
+ as a CORE_ADDR (or an expression that can be used as one). */
+
+static CORE_ADDR
+d10v_extract_struct_value_address (struct regcache *regcache)
+{
+ ULONGEST addr;
+ regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
+ return (addr | DMEM_START);
}
static int
return 0;
}
-CORE_ADDR
+static CORE_ADDR
d10v_skip_prologue (CORE_ADDR pc)
{
unsigned long op;
return pc;
}
-/* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
- */
-
-CORE_ADDR
-d10v_frame_chain (struct frame_info *fi)
-{
- d10v_frame_init_saved_regs (fi);
-
- if (fi->extra_info->return_pc == IMEM_START
- || inside_entry_file (fi->extra_info->return_pc))
- return (CORE_ADDR) 0;
-
- if (!fi->saved_regs[FP_REGNUM])
- {
- if (!fi->saved_regs[SP_REGNUM]
- || fi->saved_regs[SP_REGNUM] == STACK_START)
- return (CORE_ADDR) 0;
-
- return fi->saved_regs[SP_REGNUM];
- }
-
- if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
- REGISTER_RAW_SIZE (FP_REGNUM)))
- return (CORE_ADDR) 0;
-
- return D10V_MAKE_DADDR (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
- REGISTER_RAW_SIZE (FP_REGNUM)));
-}
-
-static int next_addr, uses_frame;
+struct d10v_unwind_cache
+{
+ CORE_ADDR return_pc;
+ /* The previous frame's inner most stack address. Used as this
+ frame ID's stack_addr. */
+ CORE_ADDR prev_sp;
+ /* The frame's base, optionally used by the high-level debug info. */
+ CORE_ADDR base;
+ int size;
+ CORE_ADDR *saved_regs;
+ /* How far the SP and r11 (FP) have been offset from the start of
+ the stack frame (as defined by the previous frame's stack
+ pointer). */
+ LONGEST sp_offset;
+ LONGEST r11_offset;
+ int uses_frame;
+ void **regs;
+};
static int
-prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
+prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
+ CORE_ADDR addr)
{
int n;
if ((op & 0x7E1F) == 0x6C1F)
{
n = (op & 0x1E0) >> 5;
- next_addr -= 2;
- fi->saved_regs[n] = next_addr;
+ info->sp_offset -= 2;
+ info->saved_regs[n] = info->sp_offset;
return 1;
}
else if ((op & 0x7E3F) == 0x6E1F)
{
n = (op & 0x1E0) >> 5;
- next_addr -= 4;
- fi->saved_regs[n] = next_addr;
- fi->saved_regs[n + 1] = next_addr + 2;
+ info->sp_offset -= 4;
+ info->saved_regs[n] = info->sp_offset;
+ info->saved_regs[n + 1] = info->sp_offset + 2;
return 1;
}
n = (op & 0x1E) >> 1;
if (n == 0)
n = 16;
- next_addr -= n;
+ info->sp_offset -= n;
return 1;
}
/* mv r11, sp */
if (op == 0x417E)
{
- uses_frame = 1;
+ info->uses_frame = 1;
+ info->r11_offset = info->sp_offset;
+ return 1;
+ }
+
+ /* st rn, @r11 */
+ if ((op & 0x7E1F) == 0x6816)
+ {
+ n = (op & 0x1E0) >> 5;
+ info->saved_regs[n] = info->r11_offset;
return 1;
}
if ((op & 0x7E1F) == 0x681E)
{
n = (op & 0x1E0) >> 5;
- fi->saved_regs[n] = next_addr;
+ info->saved_regs[n] = info->sp_offset;
return 1;
}
if ((op & 0x7E3F) == 0x3A1E)
{
n = (op & 0x1E0) >> 5;
- fi->saved_regs[n] = next_addr;
- fi->saved_regs[n + 1] = next_addr + 2;
+ info->saved_regs[n] = info->sp_offset;
+ info->saved_regs[n + 1] = info->sp_offset + 2;
return 1;
}
in the stack frame. sp is even more special: the address we return
for it IS the sp for the next frame. */
-void
-d10v_frame_init_saved_regs (struct frame_info *fi)
+struct d10v_unwind_cache *
+d10v_frame_unwind_cache (struct frame_info *next_frame,
+ void **this_prologue_cache)
{
- CORE_ADDR fp, pc;
+ CORE_ADDR pc;
+ ULONGEST prev_sp;
+ ULONGEST this_base;
unsigned long op;
unsigned short op1, op2;
int i;
+ struct d10v_unwind_cache *info;
- fp = fi->frame;
- memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
- next_addr = 0;
+ if ((*this_prologue_cache))
+ return (*this_prologue_cache);
- pc = get_pc_function_start (fi->pc);
+ info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
+ (*this_prologue_cache) = info;
+ info->saved_regs = FRAME_OBSTACK_CALLOC (NUM_REGS, CORE_ADDR);
- uses_frame = 0;
- while (1)
+ info->size = 0;
+ info->return_pc = 0;
+ info->sp_offset = 0;
+
+ info->uses_frame = 0;
+ for (pc = frame_func_unwind (next_frame);
+ pc > 0 && pc < frame_pc_unwind (next_frame);
+ pc += 4)
{
op = (unsigned long) read_memory_integer (pc, 4);
if ((op & 0xC0000000) == 0xC0000000)
{
/* add3 sp,sp,n */
short n = op & 0xFFFF;
- next_addr += n;
+ info->sp_offset += n;
}
else if ((op & 0x3F0F0000) == 0x340F0000)
{
/* st rn, @(offset,sp) */
short offset = op & 0xFFFF;
short n = (op >> 20) & 0xF;
- fi->saved_regs[n] = next_addr + offset;
+ info->saved_regs[n] = info->sp_offset + offset;
}
else if ((op & 0x3F1F0000) == 0x350F0000)
{
/* st2w rn, @(offset,sp) */
short offset = op & 0xFFFF;
short n = (op >> 20) & 0xF;
- fi->saved_regs[n] = next_addr + offset;
- fi->saved_regs[n + 1] = next_addr + offset + 2;
+ info->saved_regs[n] = info->sp_offset + offset;
+ info->saved_regs[n + 1] = info->sp_offset + offset + 2;
}
else
break;
op1 = (op & 0x3FFF8000) >> 15;
op2 = op & 0x7FFF;
}
- if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
+ if (!prologue_find_regs (info, op1, pc)
+ || !prologue_find_regs (info, op2, pc))
break;
}
- pc += 4;
}
- fi->extra_info->size = -next_addr;
+ info->size = -info->sp_offset;
- if (!(fp & 0xffff))
- fp = D10V_MAKE_DADDR (read_register (SP_REGNUM));
+ /* Compute the frame's base, and the previous frame's SP. */
+ if (info->uses_frame)
+ {
+ /* The SP was moved to the FP. This indicates that a new frame
+ was created. Get THIS frame's FP value by unwinding it from
+ the next frame. */
+ frame_unwind_unsigned_register (next_frame, D10V_FP_REGNUM, &this_base);
+ /* The FP points at the last saved register. Adjust the FP back
+ to before the first saved register giving the SP. */
+ prev_sp = this_base + info->size;
+ }
+ else if (info->saved_regs[D10V_SP_REGNUM])
+ {
+ /* The SP was saved (which is very unusual), the frame base is
+ just the PREV's frame's TOP-OF-STACK. */
+ this_base = read_memory_unsigned_integer (info->saved_regs[D10V_SP_REGNUM],
+ register_size (current_gdbarch,
+ D10V_SP_REGNUM));
+ prev_sp = this_base;
+ }
+ else
+ {
+ /* Assume that the FP is this frame's SP but with that pushed
+ stack space added back. */
+ frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &this_base);
+ prev_sp = this_base + info->size;
+ }
+
+ info->base = d10v_make_daddr (this_base);
+ info->prev_sp = d10v_make_daddr (prev_sp);
+ /* Adjust all the saved registers so that they contain addresses and
+ not offsets. */
for (i = 0; i < NUM_REGS - 1; i++)
- if (fi->saved_regs[i])
+ if (info->saved_regs[i])
{
- fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
+ info->saved_regs[i] = (info->prev_sp + info->saved_regs[i]);
}
- if (fi->saved_regs[LR_REGNUM])
+ if (info->saved_regs[LR_REGNUM])
{
- CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
- fi->extra_info->return_pc = D10V_MAKE_IADDR (return_pc);
+ CORE_ADDR return_pc
+ = read_memory_unsigned_integer (info->saved_regs[LR_REGNUM],
+ register_size (current_gdbarch, LR_REGNUM));
+ info->return_pc = d10v_make_iaddr (return_pc);
}
else
{
- fi->extra_info->return_pc = D10V_MAKE_IADDR (read_register (LR_REGNUM));
+ ULONGEST return_pc;
+ frame_unwind_unsigned_register (next_frame, LR_REGNUM, &return_pc);
+ info->return_pc = d10v_make_iaddr (return_pc);
}
- /* th SP is not normally (ever?) saved, but check anyway */
- if (!fi->saved_regs[SP_REGNUM])
- {
- /* if the FP was saved, that means the current FP is valid, */
- /* otherwise, it isn't being used, so we use the SP instead */
- if (uses_frame)
- fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
- else
- {
- fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
- fi->extra_info->frameless = 1;
- fi->saved_regs[FP_REGNUM] = 0;
- }
- }
+ /* The D10V_SP_REGNUM is special. Instead of the address of the SP, the
+ previous frame's SP value is saved. */
+ info->saved_regs[D10V_SP_REGNUM] = info->prev_sp;
+
+ return info;
}
-void
-d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
+static void
+d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
+ struct frame_info *frame, int regnum, int all)
{
- fi->extra_info = (struct frame_extra_info *)
- frame_obstack_alloc (sizeof (struct frame_extra_info));
- frame_saved_regs_zalloc (fi);
-
- fi->extra_info->frameless = 0;
- fi->extra_info->size = 0;
- fi->extra_info->return_pc = 0;
-
- /* The call dummy doesn't save any registers on the stack, so we can
- return now. */
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ if (regnum >= 0)
{
+ default_print_registers_info (gdbarch, file, frame, regnum, all);
return;
}
- else
- {
- d10v_frame_init_saved_regs (fi);
- }
+
+ {
+ ULONGEST pc, psw, rpt_s, rpt_e, rpt_c;
+ frame_read_unsigned_register (frame, PC_REGNUM, &pc);
+ frame_read_unsigned_register (frame, PSW_REGNUM, &psw);
+ frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_s", -1), &rpt_s);
+ frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_e", -1), &rpt_e);
+ frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_c", -1), &rpt_c);
+ fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
+ (long) pc, (long) d10v_make_iaddr (pc), (long) psw,
+ (long) rpt_s, (long) rpt_e, (long) rpt_c);
+ }
+
+ {
+ int group;
+ for (group = 0; group < 16; group += 8)
+ {
+ int r;
+ fprintf_filtered (file, "R%d-R%-2d", group, group + 7);
+ for (r = group; r < group + 8; r++)
+ {
+ ULONGEST tmp;
+ frame_read_unsigned_register (frame, r, &tmp);
+ fprintf_filtered (file, " %04lx", (long) tmp);
+ }
+ fprintf_filtered (file, "\n");
+ }
+ }
+
+ /* Note: The IMAP/DMAP registers don't participate in function
+ calls. Don't bother trying to unwind them. */
+
+ {
+ int a;
+ for (a = 0; a < NR_IMAP_REGS; a++)
+ {
+ if (a > 0)
+ fprintf_filtered (file, " ");
+ fprintf_filtered (file, "IMAP%d %04lx", a, d10v_imap_register (a));
+ }
+ if (nr_dmap_regs (gdbarch) == 1)
+ /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */
+ fprintf_filtered (file, " DMAP %04lx\n", d10v_dmap_register (2));
+ else
+ {
+ for (a = 0; a < nr_dmap_regs (gdbarch); a++)
+ {
+ fprintf_filtered (file, " DMAP%d %04lx", a, d10v_dmap_register (a));
+ }
+ fprintf_filtered (file, "\n");
+ }
+ }
+
+ {
+ char *num = alloca (max_register_size (gdbarch));
+ int a;
+ fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1);
+ for (a = a0_regnum (gdbarch); a < a0_regnum (gdbarch) + NR_A_REGS; a++)
+ {
+ int i;
+ fprintf_filtered (file, " ");
+ frame_read_register (frame, a, num);
+ for (i = 0; i < register_size (current_gdbarch, a); i++)
+ {
+ fprintf_filtered (file, "%02x", (num[i] & 0xff));
+ }
+ }
+ }
+ fprintf_filtered (file, "\n");
}
static void
show_regs (char *args, int from_tty)
{
- int a;
- printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
- (long) read_register (PC_REGNUM),
- (long) D10V_MAKE_IADDR (read_register (PC_REGNUM)),
- (long) read_register (PSW_REGNUM),
- (long) read_register (24),
- (long) read_register (25),
- (long) read_register (23));
- printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
- (long) read_register (0),
- (long) read_register (1),
- (long) read_register (2),
- (long) read_register (3),
- (long) read_register (4),
- (long) read_register (5),
- (long) read_register (6),
- (long) read_register (7));
- printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
- (long) read_register (8),
- (long) read_register (9),
- (long) read_register (10),
- (long) read_register (11),
- (long) read_register (12),
- (long) read_register (13),
- (long) read_register (14),
- (long) read_register (15));
- for (a = 0; a < NR_IMAP_REGS; a++)
- {
- if (a > 0)
- printf_filtered (" ");
- printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
- }
- if (NR_DMAP_REGS == 1)
- printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
- else
- {
- for (a = 0; a < NR_DMAP_REGS; a++)
- {
- printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
- }
- printf_filtered ("\n");
- }
- printf_filtered ("A0-A%d", NR_A_REGS - 1);
- for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
- {
- char num[MAX_REGISTER_RAW_SIZE];
- int i;
- printf_filtered (" ");
- read_register_gen (a, (char *) &num);
- for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
- {
- printf_filtered ("%02x", (num[i] & 0xff));
- }
- }
- printf_filtered ("\n");
+ d10v_print_registers_info (current_gdbarch, gdb_stdout,
+ get_current_frame (), -1, 1);
}
-CORE_ADDR
-d10v_read_pc (int pid)
+static CORE_ADDR
+d10v_read_pc (ptid_t ptid)
{
- int save_pid;
+ ptid_t save_ptid;
CORE_ADDR pc;
CORE_ADDR retval;
- save_pid = inferior_pid;
- inferior_pid = pid;
+ save_ptid = inferior_ptid;
+ inferior_ptid = ptid;
pc = (int) read_register (PC_REGNUM);
- inferior_pid = save_pid;
- retval = D10V_MAKE_IADDR (pc);
+ inferior_ptid = save_ptid;
+ retval = d10v_make_iaddr (pc);
return retval;
}
-void
-d10v_write_pc (CORE_ADDR val, int pid)
+static void
+d10v_write_pc (CORE_ADDR val, ptid_t ptid)
{
- int save_pid;
+ ptid_t save_ptid;
- save_pid = inferior_pid;
- inferior_pid = pid;
- write_register (PC_REGNUM, D10V_CONVERT_IADDR_TO_RAW (val));
- inferior_pid = save_pid;
+ save_ptid = inferior_ptid;
+ inferior_ptid = ptid;
+ write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
+ inferior_ptid = save_ptid;
}
-CORE_ADDR
+static CORE_ADDR
d10v_read_sp (void)
{
- return (D10V_MAKE_DADDR (read_register (SP_REGNUM)));
+ return (d10v_make_daddr (read_register (D10V_SP_REGNUM)));
}
-void
-d10v_write_sp (CORE_ADDR val)
-{
- write_register (SP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
-}
-
-void
-d10v_write_fp (CORE_ADDR val)
-{
- write_register (FP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
-}
-
-CORE_ADDR
+static CORE_ADDR
d10v_read_fp (void)
{
- return (D10V_MAKE_DADDR (read_register (FP_REGNUM)));
+ return (d10v_make_daddr (read_register (D10V_FP_REGNUM)));
}
-/* Function: push_return_address (pc)
- Set up the return address for the inferior function call.
- Needed for targets where we don't actually execute a JSR/BSR instruction */
-
-CORE_ADDR
-d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
-{
- write_register (LR_REGNUM, D10V_CONVERT_IADDR_TO_RAW (CALL_DUMMY_ADDRESS ()));
- return sp;
-}
-
-
/* When arguments must be pushed onto the stack, they go on in reverse
order. The below implements a FILO (stack) to do this. */
}
-CORE_ADDR
-d10v_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
+static CORE_ADDR
+d10v_push_dummy_call (struct gdbarch *gdbarch, struct regcache *regcache,
+ CORE_ADDR dummy_addr, int nargs, struct value **args,
+ CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
{
int i;
int regnum = ARG1_REGNUM;
struct stack_item *si = NULL;
+ long val;
+
+ /* Set the return address. For the d10v, the return breakpoint is
+ always at DUMMY_ADDR. */
+ regcache_cooked_write_unsigned (regcache, LR_REGNUM,
+ d10v_convert_iaddr_to_raw (dummy_addr));
+
+ /* If STRUCT_RETURN is true, then the struct return address (in
+ STRUCT_ADDR) will consume the first argument-passing register.
+ Both adjust the register count and store that value. */
+ if (struct_return)
+ {
+ regcache_cooked_write_unsigned (regcache, regnum, struct_addr);
+ regnum++;
+ }
/* Fill in registers and arg lists */
for (i = 0; i < nargs; i++)
{
- value_ptr arg = args[i];
+ struct value *arg = args[i];
struct type *type = check_typedef (VALUE_TYPE (arg));
char *contents = VALUE_CONTENTS (arg);
int len = TYPE_LENGTH (type);
- /* printf ("push: type=%d len=%d\n", type->code, len); */
- if (TYPE_CODE (type) == TYPE_CODE_PTR)
+ int aligned_regnum = (regnum + 1) & ~1;
+
+ /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
+ if (len <= 2 && regnum <= ARGN_REGNUM)
+ /* fits in a single register, do not align */
{
- /* pointers require special handling - first convert and
- then store */
- long val = extract_signed_integer (contents, len);
- len = 2;
- if (TYPE_TARGET_TYPE (type)
- && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
- {
- /* function pointer */
- val = D10V_CONVERT_IADDR_TO_RAW (val);
- }
- else if (D10V_IADDR_P (val))
+ val = extract_unsigned_integer (contents, len);
+ regcache_cooked_write_unsigned (regcache, regnum++, val);
+ }
+ else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
+ /* value fits in remaining registers, store keeping left
+ aligned */
+ {
+ int b;
+ regnum = aligned_regnum;
+ for (b = 0; b < (len & ~1); b += 2)
{
- /* also function pointer! */
- val = D10V_CONVERT_DADDR_TO_RAW (val);
+ val = extract_unsigned_integer (&contents[b], 2);
+ regcache_cooked_write_unsigned (regcache, regnum++, val);
}
- else
+ if (b < len)
{
- /* data pointer */
- val &= 0xFFFF;
- }
- if (regnum <= ARGN_REGNUM)
- write_register (regnum++, val & 0xffff);
- else
- {
- char ptr[2];
- /* arg will go onto stack */
- store_address (ptr, 2, val & 0xffff);
- si = push_stack_item (si, ptr, 2);
+ val = extract_unsigned_integer (&contents[b], 1);
+ regcache_cooked_write_unsigned (regcache, regnum++, (val << 8));
}
}
else
{
- int aligned_regnum = (regnum + 1) & ~1;
- if (len <= 2 && regnum <= ARGN_REGNUM)
- /* fits in a single register, do not align */
- {
- long val = extract_unsigned_integer (contents, len);
- write_register (regnum++, val);
- }
- else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
- /* value fits in remaining registers, store keeping left
- aligned */
- {
- int b;
- regnum = aligned_regnum;
- for (b = 0; b < (len & ~1); b += 2)
- {
- long val = extract_unsigned_integer (&contents[b], 2);
- write_register (regnum++, val);
- }
- if (b < len)
- {
- long val = extract_unsigned_integer (&contents[b], 1);
- write_register (regnum++, (val << 8));
- }
- }
- else
- {
- /* arg will go onto stack */
- regnum = ARGN_REGNUM + 1;
- si = push_stack_item (si, contents, len);
- }
+ /* arg will go onto stack */
+ regnum = ARGN_REGNUM + 1;
+ si = push_stack_item (si, contents, len);
}
}
si = pop_stack_item (si);
}
+ /* Finally, update the SP register. */
+ regcache_cooked_write_unsigned (regcache, D10V_SP_REGNUM,
+ d10v_convert_daddr_to_raw (sp));
+
return sp;
}
/* Given a return value in `regbuf' with a type `valtype',
extract and copy its value into `valbuf'. */
-void
-d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
- char *valbuf)
+static void
+d10v_extract_return_value (struct type *type, struct regcache *regcache,
+ void *valbuf)
{
int len;
- /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
- if (TYPE_CODE (type) == TYPE_CODE_PTR
- && TYPE_TARGET_TYPE (type)
- && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
+ if (TYPE_LENGTH (type) == 1)
{
- /* pointer to function */
- int num;
- short snum;
- snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
- store_address (valbuf, 4, D10V_MAKE_IADDR (snum));
- }
- else if (TYPE_CODE (type) == TYPE_CODE_PTR)
- {
- /* pointer to data */
- int num;
- short snum;
- snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
- store_address (valbuf, 4, D10V_MAKE_DADDR (snum));
+ ULONGEST c;
+ regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
+ store_unsigned_integer (valbuf, 1, c);
}
else
{
- len = TYPE_LENGTH (type);
- if (len == 1)
+ /* For return values of odd size, the first byte is in the
+ least significant part of the first register. The
+ remaining bytes in remaining registers. Interestingly, when
+ such values are passed in, the last byte is in the most
+ significant byte of that same register - wierd. */
+ int reg = RET1_REGNUM;
+ int off = 0;
+ if (TYPE_LENGTH (type) & 1)
{
- unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
- store_unsigned_integer (valbuf, 1, c);
+ regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
+ (bfd_byte *)valbuf + off);
+ off++;
+ reg++;
}
- else if ((len & 1) == 0)
- memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
- else
+ /* Transfer the remaining registers. */
+ for (; off < TYPE_LENGTH (type); reg++, off += 2)
{
- /* For return values of odd size, the first byte is in the
- least significant part of the first register. The
- remaining bytes in remaining registers. Interestingly,
- when such values are passed in, the last byte is in the
- most significant byte of that same register - wierd. */
- memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
+ regcache_cooked_read (regcache, RET1_REGNUM + reg,
+ (bfd_byte *) valbuf + off);
}
}
}
/* Clear the host-side trace buffer, allocating space if needed. */
trace_data.size = 0;
if (trace_data.counts == NULL)
- trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
+ trace_data.counts = XCALLOC (65536, short);
if (trace_data.addrs == NULL)
- trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
+ trace_data.addrs = XCALLOC (65536, CORE_ADDR);
tracing = 1;
printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
}
-/* Print the instruction at address MEMADDR in debugged memory,
- on STREAM. Returns length of the instruction, in bytes. */
-
-static int
-print_insn (CORE_ADDR memaddr, struct ui_file *stream)
-{
- /* If there's no disassembler, something is very wrong. */
- if (tm_print_insn == NULL)
- internal_error (__FILE__, __LINE__,
- "print_insn: no disassembler");
-
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- tm_print_insn_info.endian = BFD_ENDIAN_BIG;
- else
- tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
- return (*tm_print_insn) (memaddr, &tm_print_insn_info);
-}
-
static void
d10v_eva_prepare_to_trace (void)
{
{
int i, count;
CORE_ADDR low, high;
- char *space_index;
if (!arg)
{
low = 0;
high = trace_data.size;
}
- else if (!(space_index = (char *) strchr (arg, ' ')))
- {
- low = parse_and_eval_address (arg);
- high = low + 5;
- }
else
- {
- /* Two arguments. */
- *space_index = '\0';
- low = parse_and_eval_address (arg);
- high = parse_and_eval_address (space_index + 1);
- if (high < low)
- high = low;
+ {
+ char *space_index = strchr (arg, ' ');
+ if (space_index == NULL)
+ {
+ low = parse_and_eval_address (arg);
+ high = low + 5;
+ }
+ else
+ {
+ /* Two arguments. */
+ *space_index = '\0';
+ low = parse_and_eval_address (arg);
+ high = parse_and_eval_address (space_index + 1);
+ if (high < low)
+ high = low;
+ }
}
printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
printf_filtered (":");
printf_filtered ("\t");
wrap_here (" ");
- next_address = next_address + print_insn (next_address, gdb_stdout);
+ next_address += TARGET_PRINT_INSN (next_address,
+ &tm_print_insn_info);
printf_filtered ("\n");
gdb_flush (gdb_stdout);
}
}
}
+static CORE_ADDR
+d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ ULONGEST pc;
+ frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
+ return d10v_make_iaddr (pc);
+}
+
+/* Given a GDB frame, determine the address of the calling function's
+ frame. This will be used to create a new GDB frame struct. */
+
+static void
+d10v_frame_this_id (struct frame_info *next_frame,
+ void **this_prologue_cache,
+ struct frame_id *this_id)
+{
+ struct d10v_unwind_cache *info
+ = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
+ CORE_ADDR base;
+ CORE_ADDR func;
+ struct frame_id id;
+
+ /* The FUNC is easy. */
+ func = frame_func_unwind (next_frame);
+
+ /* This is meant to halt the backtrace at "_start". Make sure we
+ don't halt it at a generic dummy frame. */
+ if (func <= IMEM_START || inside_entry_file (func))
+ return;
+
+ /* Hopefully the prologue analysis either correctly determined the
+ frame's base (which is the SP from the previous frame), or set
+ that base to "NULL". */
+ base = info->prev_sp;
+ if (base == STACK_START || base == 0)
+ return;
+
+ id = frame_id_build (base, func);
+
+ /* Check that we're not going round in circles with the same frame
+ ID (but avoid applying the test to sentinel frames which do go
+ round in circles). Can't use frame_id_eq() as that doesn't yet
+ compare the frame's PC value. */
+ if (frame_relative_level (next_frame) >= 0
+ && get_frame_type (next_frame) != DUMMY_FRAME
+ && frame_id_eq (get_frame_id (next_frame), id))
+ return;
+
+ (*this_id) = id;
+}
+
+static void
+saved_regs_unwinder (struct frame_info *next_frame,
+ CORE_ADDR *this_saved_regs,
+ int regnum, int *optimizedp,
+ enum lval_type *lvalp, CORE_ADDR *addrp,
+ int *realnump, void *bufferp)
+{
+ if (this_saved_regs[regnum] != 0)
+ {
+ if (regnum == D10V_SP_REGNUM)
+ {
+ /* SP register treated specially. */
+ *optimizedp = 0;
+ *lvalp = not_lval;
+ *addrp = 0;
+ *realnump = -1;
+ if (bufferp != NULL)
+ store_unsigned_integer (bufferp,
+ register_size (current_gdbarch, regnum),
+ this_saved_regs[regnum]);
+ }
+ else
+ {
+ /* Any other register is saved in memory, fetch it but cache
+ a local copy of its value. */
+ *optimizedp = 0;
+ *lvalp = lval_memory;
+ *addrp = this_saved_regs[regnum];
+ *realnump = -1;
+ if (bufferp != NULL)
+ {
+ /* Read the value in from memory. */
+ read_memory (this_saved_regs[regnum], bufferp,
+ register_size (current_gdbarch, regnum));
+ }
+ }
+ return;
+ }
+
+ /* No luck, assume this and the next frame have the same register
+ value. If a value is needed, pass the request on down the chain;
+ otherwise just return an indication that the value is in the same
+ register as the next frame. */
+ frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp,
+ realnump, bufferp);
+}
+
+
+static void
+d10v_frame_prev_register (struct frame_info *next_frame,
+ void **this_prologue_cache,
+ int regnum, int *optimizedp,
+ enum lval_type *lvalp, CORE_ADDR *addrp,
+ int *realnump, void *bufferp)
+{
+ struct d10v_unwind_cache *info
+ = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
+ if (regnum == PC_REGNUM)
+ {
+ /* The call instruction saves the caller's PC in LR. The
+ function prologue of the callee may then save the LR on the
+ stack. Find that possibly saved LR value and return it. */
+ saved_regs_unwinder (next_frame, info->saved_regs, LR_REGNUM, optimizedp,
+ lvalp, addrp, realnump, bufferp);
+ }
+ else
+ {
+ saved_regs_unwinder (next_frame, info->saved_regs, regnum, optimizedp,
+ lvalp, addrp, realnump, bufferp);
+ }
+}
+
+static const struct frame_unwind d10v_frame_unwind = {
+ NORMAL_FRAME,
+ d10v_frame_this_id,
+ d10v_frame_prev_register
+};
+
+const struct frame_unwind *
+d10v_frame_p (CORE_ADDR pc)
+{
+ return &d10v_frame_unwind;
+}
+
+static CORE_ADDR
+d10v_frame_base_address (struct frame_info *next_frame, void **this_cache)
+{
+ struct d10v_unwind_cache *info
+ = d10v_frame_unwind_cache (next_frame, this_cache);
+ return info->base;
+}
+
+static const struct frame_base d10v_frame_base = {
+ &d10v_frame_unwind,
+ d10v_frame_base_address,
+ d10v_frame_base_address,
+ d10v_frame_base_address
+};
+
+/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
+ dummy frame. The frame ID's base needs to match the TOS value
+ saved by save_dummy_frame_tos(), and the PC match the dummy frame's
+ breakpoint. */
+
+static struct frame_id
+d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ ULONGEST base;
+ frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &base);
+ return frame_id_build (d10v_make_daddr (base), frame_pc_unwind (next_frame));
+}
static gdbarch_init_ftype d10v_gdbarch_init;
static struct gdbarch *
d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
- static LONGEST d10v_call_dummy_words[] =
- {0};
struct gdbarch *gdbarch;
int d10v_num_regs;
struct gdbarch_tdep *tdep;
set_gdbarch_read_pc (gdbarch, d10v_read_pc);
set_gdbarch_write_pc (gdbarch, d10v_write_pc);
set_gdbarch_read_fp (gdbarch, d10v_read_fp);
- set_gdbarch_write_fp (gdbarch, d10v_write_fp);
set_gdbarch_read_sp (gdbarch, d10v_read_sp);
- set_gdbarch_write_sp (gdbarch, d10v_write_sp);
set_gdbarch_num_regs (gdbarch, d10v_num_regs);
- set_gdbarch_sp_regnum (gdbarch, 15);
- set_gdbarch_fp_regnum (gdbarch, 11);
+ set_gdbarch_sp_regnum (gdbarch, D10V_SP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, 18);
set_gdbarch_register_name (gdbarch, d10v_register_name);
set_gdbarch_register_size (gdbarch, 2);
set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
- set_gdbarch_register_byte (gdbarch, d10v_register_byte);
- set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
- set_gdbarch_max_register_raw_size (gdbarch, 8);
- set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
- set_gdbarch_max_register_virtual_size (gdbarch, 8);
- set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
-
- set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
+ set_gdbarch_register_type (gdbarch, d10v_register_type);
+
+ set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_addr_bit (gdbarch, 32);
+ set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
+ set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
+ set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
/* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
double'' is 64 bits. */
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
switch (info.byte_order)
{
- case BIG_ENDIAN:
+ case BFD_ENDIAN_BIG:
set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
break;
- case LITTLE_ENDIAN:
+ case BFD_ENDIAN_LITTLE:
set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
"d10v_gdbarch_init: bad byte order for float format");
}
- set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
- set_gdbarch_call_dummy_length (gdbarch, 0);
- set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
- set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
- set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
- set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
- set_gdbarch_call_dummy_start_offset (gdbarch, 0);
- set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
- set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
- set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
- set_gdbarch_call_dummy_p (gdbarch, 1);
- set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
- set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
- set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
-
- set_gdbarch_register_convertible (gdbarch, d10v_register_convertible);
- set_gdbarch_register_convert_to_virtual (gdbarch, d10v_register_convert_to_virtual);
- set_gdbarch_register_convert_to_raw (gdbarch, d10v_register_convert_to_raw);
-
set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
- set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
- set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
- set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
-
- set_gdbarch_d10v_make_daddr (gdbarch, d10v_make_daddr);
- set_gdbarch_d10v_make_iaddr (gdbarch, d10v_make_iaddr);
- set_gdbarch_d10v_daddr_p (gdbarch, d10v_daddr_p);
- set_gdbarch_d10v_iaddr_p (gdbarch, d10v_iaddr_p);
- set_gdbarch_d10v_convert_daddr_to_raw (gdbarch, d10v_convert_daddr_to_raw);
- set_gdbarch_d10v_convert_iaddr_to_raw (gdbarch, d10v_convert_iaddr_to_raw);
-
- set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
+ set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call);
set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
- set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
- set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
-
- set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
-
set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_decr_pc_after_break (gdbarch, 4);
set_gdbarch_frame_args_skip (gdbarch, 0);
set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
- set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
- set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
- set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
- set_gdbarch_frame_args_address (gdbarch, default_frame_address);
- set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
- set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
+
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
set_gdbarch_stack_align (gdbarch, d10v_stack_align);
set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
- set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
- return gdbarch;
-}
+ set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info);
+
+ frame_unwind_append_predicate (gdbarch, d10v_frame_p);
+ frame_base_set_default (gdbarch, &d10v_frame_base);
+
+ /* Methods for saving / extracting a dummy frame's ID. */
+ set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id);
+ set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
+ /* Return the unwound PC value. */
+ set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc);
-extern void (*target_resume_hook) (void);
-extern void (*target_wait_loop_hook) (void);
+ set_gdbarch_print_insn (gdbarch, print_insn_d10v);
+
+ return gdbarch;
+}
void
_initialize_d10v_tdep (void)
{
register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
- tm_print_insn = print_insn_d10v;
-
target_resume_hook = d10v_eva_prepare_to_trace;
target_wait_loop_hook = d10v_eva_get_trace_data;
- add_com ("regs", class_vars, show_regs, "Print all registers");
+ deprecate_cmd (add_com ("regs", class_vars, show_regs, "Print all registers"),
+ "info registers");
add_com ("itrace", class_support, trace_command,
"Enable tracing of instruction execution.");
add_info ("itrace", trace_info,
"Display info about the trace data buffer.");
- add_show_from_set (add_set_cmd ("itracedisplay", no_class,
- var_integer, (char *) &trace_display,
- "Set automatic display of trace.\n", &setlist),
- &showlist);
- add_show_from_set (add_set_cmd ("itracesource", no_class,
- var_integer, (char *) &default_trace_show_source,
- "Set display of source code with trace.\n", &setlist),
- &showlist);
-
+ add_setshow_boolean_cmd ("itracedisplay", no_class, &trace_display,
+ "Set automatic display of trace.\n",
+ "Show automatic display of trace.\n",
+ NULL, NULL, &setlist, &showlist);
+ add_setshow_boolean_cmd ("itracesource", no_class,
+ &default_trace_show_source,
+ "Set display of source code with trace.\n",
+ "Show display of source code with trace.\n",
+ NULL, NULL, &setlist, &showlist);
}