// arm.cc -- arm target support for gold.
-// Copyright 2009 Free Software Foundation, Inc.
+// Copyright 2009, 2010 Free Software Foundation, Inc.
// This file also contains borrowed and adapted code from
#include <cstdio>
#include <string>
#include <algorithm>
+#include <map>
+#include <utility>
+#include <set>
#include "elfcpp.h"
#include "parameters.h"
#include "defstd.h"
#include "gc.h"
#include "attributes.h"
+#include "arm-reloc-property.h"
namespace
{
template<bool big_endian>
class Arm_input_section;
+class Arm_exidx_cantunwind;
+
+class Arm_exidx_merged_section;
+
+class Arm_exidx_fixup;
+
template<bool big_endian>
class Arm_output_section;
+class Arm_exidx_input_section;
+
template<bool big_endian>
class Arm_relobj;
+template<bool big_endian>
+class Arm_relocate_functions;
+
+template<bool big_endian>
+class Arm_output_data_got;
+
template<bool big_endian>
class Target_arm;
const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
+// Thread Control Block size.
+const size_t ARM_TCB_SIZE = 8;
+
// The arm target class.
//
// This is a very simple port of gold for ARM-EABI. It is intended for
-// supporting Android only for the time being. Only these relocation types
-// are supported.
-//
-// R_ARM_NONE
-// R_ARM_ABS32
-// R_ARM_ABS32_NOI
-// R_ARM_ABS16
-// R_ARM_ABS12
-// R_ARM_ABS8
-// R_ARM_THM_ABS5
-// R_ARM_BASE_ABS
-// R_ARM_REL32
-// R_ARM_THM_CALL
-// R_ARM_COPY
-// R_ARM_GLOB_DAT
-// R_ARM_BASE_PREL
-// R_ARM_JUMP_SLOT
-// R_ARM_RELATIVE
-// R_ARM_GOTOFF32
-// R_ARM_GOT_BREL
-// R_ARM_GOT_PREL
-// R_ARM_PLT32
-// R_ARM_CALL
-// R_ARM_JUMP24
-// R_ARM_TARGET1
-// R_ARM_PREL31
-// R_ARM_ABS8
-// R_ARM_MOVW_ABS_NC
-// R_ARM_MOVT_ABS
-// R_ARM_THM_MOVW_ABS_NC
-// R_ARM_THM_MOVT_ABS
-// R_ARM_MOVW_PREL_NC
-// R_ARM_MOVT_PREL
-// R_ARM_THM_MOVW_PREL_NC
-// R_ARM_THM_MOVT_PREL
+// supporting Android only for the time being.
//
// TODOs:
-// - Support more relocation types as needed.
+// - Implement all static relocation types documented in arm-reloc.def.
// - Make PLTs more flexible for different architecture features like
// Thumb-2 and BE8.
// There are probably a lot more.
+// Ideally we would like to avoid using global variables but this is used
+// very in many places and sometimes in loops. If we use a function
+// returning a static instance of Arm_reloc_property_table, it will very
+// slow in an threaded environment since the static instance needs to be
+// locked. The pointer is below initialized in the
+// Target::do_select_as_default_target() hook so that we do not spend time
+// building the table if we are not linking ARM objects.
+//
+// An alternative is to to process the information in arm-reloc.def in
+// compilation time and generate a representation of it in PODs only. That
+// way we can avoid initialization when the linker starts.
+
+Arm_reloc_property_table* arm_reloc_property_table = NULL;
+
// Instruction template class. This class is similar to the insn_sequence
// struct in bfd/elf32-arm.c.
DEF_STUB(a8_veneer_b_cond) \
DEF_STUB(a8_veneer_b) \
DEF_STUB(a8_veneer_bl) \
- DEF_STUB(a8_veneer_blx)
+ DEF_STUB(a8_veneer_blx) \
+ DEF_STUB(v4_veneer_bx)
// Stub types.
arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
// Last stub type.
- arm_stub_type_last = arm_stub_a8_veneer_blx
+ arm_stub_type_last = arm_stub_v4_veneer_bx
} Stub_type;
#undef DEF_STUB
// Otherwise, this points a relobj. We used the unsized and target
// independent Symbol and Relobj classes instead of Sized_symbol<32> and
// Arm_relobj. This is done to avoid making the stub class a template
- // as most of the stub machinery is endianity-neutral. However, it
+ // as most of the stub machinery is endianness-neutral. However, it
// may require a bit of casting done by users of this class.
union
{
uint32_t original_insn_;
};
+// ARMv4 BX Rx branch relocation stub class.
+class Arm_v4bx_stub : public Stub
+{
+ public:
+ ~Arm_v4bx_stub()
+ { }
+
+ // Return the associated register.
+ uint32_t
+ reg() const
+ { return this->reg_; }
+
+ protected:
+ // Arm V4BX stubs are created via a stub factory. So these are protected.
+ Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
+ : Stub(stub_template), reg_(reg)
+ { }
+
+ friend class Stub_factory;
+
+ // Return the relocation target address of the i-th relocation in the
+ // stub.
+ Arm_address
+ do_reloc_target(size_t)
+ { gold_unreachable(); }
+
+ // This may be overridden in the child class.
+ virtual void
+ do_write(unsigned char* view, section_size_type view_size, bool big_endian)
+ {
+ if (big_endian)
+ this->do_fixed_endian_v4bx_write<true>(view, view_size);
+ else
+ this->do_fixed_endian_v4bx_write<false>(view, view_size);
+ }
+
+ private:
+ // A template to implement do_write.
+ template<bool big_endian>
+ void inline
+ do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
+ {
+ const Insn_template* insns = this->stub_template()->insns();
+ elfcpp::Swap<32, big_endian>::writeval(view,
+ (insns[0].data()
+ + (this->reg_ << 16)));
+ view += insns[0].size();
+ elfcpp::Swap<32, big_endian>::writeval(view,
+ (insns[1].data() + this->reg_));
+ view += insns[1].size();
+ elfcpp::Swap<32, big_endian>::writeval(view,
+ (insns[2].data() + this->reg_));
+ }
+
+ // A register index (r0-r14), which is associated with the stub.
+ uint32_t reg_;
+};
+
// Stub factory class.
class Stub_factory
source, destination, original_insn);
}
+ // Make an ARM V4BX relocation stub.
+ // This method creates a stub from the arm_stub_v4_veneer_bx template only.
+ Arm_v4bx_stub*
+ make_arm_v4bx_stub(uint32_t reg) const
+ {
+ gold_assert(reg < 0xf);
+ return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
+ reg);
+ }
+
private:
// Constructor and destructor are protected since we only return a single
// instance created in Stub_factory::get_instance().
{
public:
Stub_table(Arm_input_section<big_endian>* owner)
- : Output_data(), owner_(owner), reloc_stubs_(), cortex_a8_stubs_(),
+ : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
+ reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
prev_data_size_(0), prev_addralign_(1)
{ }
// Whether this stub table is empty.
bool
empty() const
- { return this->reloc_stubs_.empty() && this->cortex_a8_stubs_.empty(); }
+ {
+ return (this->reloc_stubs_.empty()
+ && this->cortex_a8_stubs_.empty()
+ && this->arm_v4bx_stubs_.empty());
+ }
// Return the current data size.
off_t
const Stub_template* stub_template = stub->stub_template();
gold_assert(stub_template->type() == key.stub_type());
this->reloc_stubs_[key] = stub;
+
+ // Assign stub offset early. We can do this because we never remove
+ // reloc stubs and they are in the beginning of the stub table.
+ uint64_t align = stub_template->alignment();
+ this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
+ stub->set_offset(this->reloc_stubs_size_);
+ this->reloc_stubs_size_ += stub_template->size();
+ this->reloc_stubs_addralign_ =
+ std::max(this->reloc_stubs_addralign_, align);
}
// Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
this->cortex_a8_stubs_.insert(value);
}
+ // Add an ARM V4BX relocation stub. A register index will be retrieved
+ // from the stub.
+ void
+ add_arm_v4bx_stub(Arm_v4bx_stub* stub)
+ {
+ gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
+ this->arm_v4bx_stubs_[stub->reg()] = stub;
+ }
+
// Remove all Cortex-A8 stubs.
void
remove_all_cortex_a8_stubs();
return (p != this->reloc_stubs_.end()) ? p->second : NULL;
}
+ // Look up an arm v4bx relocation stub using the register index.
+ // Return NULL if there is none.
+ Arm_v4bx_stub*
+ find_arm_v4bx_stub(const uint32_t reg) const
+ {
+ gold_assert(reg < 0xf);
+ return this->arm_v4bx_stubs_[reg];
+ }
+
// Relocate stubs in this stub table.
void
relocate_stubs(const Relocate_info<32, big_endian>*,
// List of Cortex-A8 stubs ordered by addresses of branches being
// fixed up in output.
typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
+ // List of Arm V4BX relocation stubs ordered by associated registers.
+ typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
// Owner of this stub table.
Arm_input_section<big_endian>* owner_;
// The relocation stubs.
Reloc_stub_map reloc_stubs_;
+ // Size of reloc stubs.
+ off_t reloc_stubs_size_;
+ // Maximum address alignment of reloc stubs.
+ uint64_t reloc_stubs_addralign_;
// The cortex_a8_stubs.
Cortex_a8_stub_list cortex_a8_stubs_;
+ // The Arm V4BX relocation stubs.
+ Arm_v4bx_stub_list arm_v4bx_stubs_;
// data size of this in the previous pass.
off_t prev_data_size_;
// address alignment of this in the previous pass.
uint64_t prev_addralign_;
};
+// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
+// we add to the end of an EXIDX input section that goes into the output.
+
+class Arm_exidx_cantunwind : public Output_section_data
+{
+ public:
+ Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
+ : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
+ { }
+
+ // Return the object containing the section pointed by this.
+ Relobj*
+ relobj() const
+ { return this->relobj_; }
+
+ // Return the section index of the section pointed by this.
+ unsigned int
+ shndx() const
+ { return this->shndx_; }
+
+ protected:
+ void
+ do_write(Output_file* of)
+ {
+ if (parameters->target().is_big_endian())
+ this->do_fixed_endian_write<true>(of);
+ else
+ this->do_fixed_endian_write<false>(of);
+ }
+
+ // Write to a map file.
+ void
+ do_print_to_mapfile(Mapfile* mapfile) const
+ { mapfile->print_output_data(this, _("** ARM cantunwind")); }
+
+ private:
+ // Implement do_write for a given endianness.
+ template<bool big_endian>
+ void inline
+ do_fixed_endian_write(Output_file*);
+
+ // The object containing the section pointed by this.
+ Relobj* relobj_;
+ // The section index of the section pointed by this.
+ unsigned int shndx_;
+};
+
+// During EXIDX coverage fix-up, we compact an EXIDX section. The
+// Offset map is used to map input section offset within the EXIDX section
+// to the output offset from the start of this EXIDX section.
+
+typedef std::map<section_offset_type, section_offset_type>
+ Arm_exidx_section_offset_map;
+
+// Arm_exidx_merged_section class. This represents an EXIDX input section
+// with some of its entries merged.
+
+class Arm_exidx_merged_section : public Output_relaxed_input_section
+{
+ public:
+ // Constructor for Arm_exidx_merged_section.
+ // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
+ // SECTION_OFFSET_MAP points to a section offset map describing how
+ // parts of the input section are mapped to output. DELETED_BYTES is
+ // the number of bytes deleted from the EXIDX input section.
+ Arm_exidx_merged_section(
+ const Arm_exidx_input_section& exidx_input_section,
+ const Arm_exidx_section_offset_map& section_offset_map,
+ uint32_t deleted_bytes);
+
+ // Return the original EXIDX input section.
+ const Arm_exidx_input_section&
+ exidx_input_section() const
+ { return this->exidx_input_section_; }
+
+ // Return the section offset map.
+ const Arm_exidx_section_offset_map&
+ section_offset_map() const
+ { return this->section_offset_map_; }
+
+ protected:
+ // Write merged section into file OF.
+ void
+ do_write(Output_file* of);
+
+ bool
+ do_output_offset(const Relobj*, unsigned int, section_offset_type,
+ section_offset_type*) const;
+
+ private:
+ // Original EXIDX input section.
+ const Arm_exidx_input_section& exidx_input_section_;
+ // Section offset map.
+ const Arm_exidx_section_offset_map& section_offset_map_;
+};
+
// A class to wrap an ordinary input section containing executable code.
template<bool big_endian>
as_arm_input_section(Output_relaxed_input_section* poris)
{ return static_cast<Arm_input_section<big_endian>*>(poris); }
+ // Return the original size of the section.
+ uint32_t
+ original_size() const
+ { return this->original_size_; }
+
protected:
// Write data to output file.
void
{
if (this->is_stub_table_owner())
return std::max(this->stub_table_->addralign(),
- this->original_addralign_);
+ static_cast<uint64_t>(this->original_addralign_));
else
return this->original_addralign_;
}
if ((object == this->relobj())
&& (shndx == this->shndx())
&& (offset >= 0)
- && (convert_types<uint64_t, section_offset_type>(offset)
- <= this->original_size_))
+ && (offset <=
+ convert_types<section_offset_type, uint32_t>(this->original_size_)))
{
*poutput = offset;
return true;
Arm_input_section& operator=(const Arm_input_section&);
// Address alignment of the original input section.
- uint64_t original_addralign_;
+ uint32_t original_addralign_;
// Section size of the original input section.
- uint64_t original_size_;
+ uint32_t original_size_;
// Stub table.
Stub_table<big_endian>* stub_table_;
};
+// Arm_exidx_fixup class. This is used to define a number of methods
+// and keep states for fixing up EXIDX coverage.
+
+class Arm_exidx_fixup
+{
+ public:
+ Arm_exidx_fixup(Output_section* exidx_output_section,
+ bool merge_exidx_entries = true)
+ : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
+ last_inlined_entry_(0), last_input_section_(NULL),
+ section_offset_map_(NULL), first_output_text_section_(NULL),
+ merge_exidx_entries_(merge_exidx_entries)
+ { }
+
+ ~Arm_exidx_fixup()
+ { delete this->section_offset_map_; }
+
+ // Process an EXIDX section for entry merging. Return number of bytes to
+ // be deleted in output. If parts of the input EXIDX section are merged
+ // a heap allocated Arm_exidx_section_offset_map is store in the located
+ // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
+ // releasing it.
+ template<bool big_endian>
+ uint32_t
+ process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
+ Arm_exidx_section_offset_map** psection_offset_map);
+
+ // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
+ // input section, if there is not one already.
+ void
+ add_exidx_cantunwind_as_needed();
+
+ // Return the output section for the text section which is linked to the
+ // first exidx input in output.
+ Output_section*
+ first_output_text_section() const
+ { return this->first_output_text_section_; }
+
+ private:
+ // Copying is not allowed.
+ Arm_exidx_fixup(const Arm_exidx_fixup&);
+ Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
+
+ // Type of EXIDX unwind entry.
+ enum Unwind_type
+ {
+ // No type.
+ UT_NONE,
+ // EXIDX_CANTUNWIND.
+ UT_EXIDX_CANTUNWIND,
+ // Inlined entry.
+ UT_INLINED_ENTRY,
+ // Normal entry.
+ UT_NORMAL_ENTRY,
+ };
+
+ // Process an EXIDX entry. We only care about the second word of the
+ // entry. Return true if the entry can be deleted.
+ bool
+ process_exidx_entry(uint32_t second_word);
+
+ // Update the current section offset map during EXIDX section fix-up.
+ // If there is no map, create one. INPUT_OFFSET is the offset of a
+ // reference point, DELETED_BYTES is the number of deleted by in the
+ // section so far. If DELETE_ENTRY is true, the reference point and
+ // all offsets after the previous reference point are discarded.
+ void
+ update_offset_map(section_offset_type input_offset,
+ section_size_type deleted_bytes, bool delete_entry);
+
+ // EXIDX output section.
+ Output_section* exidx_output_section_;
+ // Unwind type of the last EXIDX entry processed.
+ Unwind_type last_unwind_type_;
+ // Last seen inlined EXIDX entry.
+ uint32_t last_inlined_entry_;
+ // Last processed EXIDX input section.
+ const Arm_exidx_input_section* last_input_section_;
+ // Section offset map created in process_exidx_section.
+ Arm_exidx_section_offset_map* section_offset_map_;
+ // Output section for the text section which is linked to the first exidx
+ // input in output.
+ Output_section* first_output_text_section_;
+
+ bool merge_exidx_entries_;
+};
+
// Arm output section class. This is defined mainly to add a number of
// stub generation methods.
class Arm_output_section : public Output_section
{
public:
+ typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
+
Arm_output_section(const char* name, elfcpp::Elf_Word type,
elfcpp::Elf_Xword flags)
: Output_section(name, type, flags)
- { }
+ {
+ if (type == elfcpp::SHT_ARM_EXIDX)
+ this->set_always_keeps_input_sections();
+ }
~Arm_output_section()
{ }
as_arm_output_section(Output_section* os)
{ return static_cast<Arm_output_section<big_endian>*>(os); }
+ // Append all input text sections in this into LIST.
+ void
+ append_text_sections_to_list(Text_section_list* list);
+
+ // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
+ // is a list of text input sections sorted in ascending order of their
+ // output addresses.
+ void
+ fix_exidx_coverage(Layout* layout,
+ const Text_section_list& sorted_text_section,
+ Symbol_table* symtab,
+ bool merge_exidx_entries);
+
+ // Link an EXIDX section into its corresponding text section.
+ void
+ set_exidx_section_link();
+
private:
// For convenience.
typedef Output_section::Input_section Input_section;
std::vector<Output_relaxed_input_section*>*);
};
+// Arm_exidx_input_section class. This represents an EXIDX input section.
+
+class Arm_exidx_input_section
+{
+ public:
+ static const section_offset_type invalid_offset =
+ static_cast<section_offset_type>(-1);
+
+ Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
+ unsigned int link, uint32_t size, uint32_t addralign)
+ : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
+ addralign_(addralign), has_errors_(false)
+ { }
+
+ ~Arm_exidx_input_section()
+ { }
+
+ // Accessors: This is a read-only class.
+
+ // Return the object containing this EXIDX input section.
+ Relobj*
+ relobj() const
+ { return this->relobj_; }
+
+ // Return the section index of this EXIDX input section.
+ unsigned int
+ shndx() const
+ { return this->shndx_; }
+
+ // Return the section index of linked text section in the same object.
+ unsigned int
+ link() const
+ { return this->link_; }
+
+ // Return size of the EXIDX input section.
+ uint32_t
+ size() const
+ { return this->size_; }
+
+ // Reutnr address alignment of EXIDX input section.
+ uint32_t
+ addralign() const
+ { return this->addralign_; }
+
+ // Whether there are any errors in the EXIDX input section.
+ bool
+ has_errors() const
+ { return this->has_errors_; }
+
+ // Set has-errors flag.
+ void
+ set_has_errors()
+ { this->has_errors_ = true; }
+
+ private:
+ // Object containing this.
+ Relobj* relobj_;
+ // Section index of this.
+ unsigned int shndx_;
+ // text section linked to this in the same object.
+ unsigned int link_;
+ // Size of this. For ARM 32-bit is sufficient.
+ uint32_t size_;
+ // Address alignment of this. For ARM 32-bit is sufficient.
+ uint32_t addralign_;
+ // Whether this has any errors.
+ bool has_errors_;
+};
+
// Arm_relobj class.
template<bool big_endian>
: Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
stub_tables_(), local_symbol_is_thumb_function_(),
attributes_section_data_(NULL), mapping_symbols_info_(),
- section_has_cortex_a8_workaround_(NULL)
+ section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
+ output_local_symbol_count_needs_update_(false),
+ merge_flags_and_attributes_(true)
{ }
~Arm_relobj()
{
// The stubs have relocations and we need to process them after writing
// out the stubs. So relocation now must follow section write.
- this->invalidate_section_offset(shndx);
+ this->set_section_offset(shndx, -1ULL);
this->set_relocs_must_follow_section_writes();
}
(*this->section_has_cortex_a8_workaround_)[shndx] = true;
}
+ // Return the EXIDX section of an text section with index SHNDX or NULL
+ // if the text section has no associated EXIDX section.
+ const Arm_exidx_input_section*
+ exidx_input_section_by_link(unsigned int shndx) const
+ {
+ Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
+ return ((p != this->exidx_section_map_.end()
+ && p->second->link() == shndx)
+ ? p->second
+ : NULL);
+ }
+
+ // Return the EXIDX section with index SHNDX or NULL if there is none.
+ const Arm_exidx_input_section*
+ exidx_input_section_by_shndx(unsigned shndx) const
+ {
+ Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
+ return ((p != this->exidx_section_map_.end()
+ && p->second->shndx() == shndx)
+ ? p->second
+ : NULL);
+ }
+
+ // Whether output local symbol count needs updating.
+ bool
+ output_local_symbol_count_needs_update() const
+ { return this->output_local_symbol_count_needs_update_; }
+
+ // Set output_local_symbol_count_needs_update flag to be true.
+ void
+ set_output_local_symbol_count_needs_update()
+ { this->output_local_symbol_count_needs_update_ = true; }
+
+ // Update output local symbol count at the end of relaxation.
+ void
+ update_output_local_symbol_count();
+
+ // Whether we want to merge processor-specific flags and attributes.
+ bool
+ merge_flags_and_attributes() const
+ { return this->merge_flags_and_attributes_; }
+
+ // Export list of EXIDX section indices.
+ void
+ get_exidx_shndx_list(std::vector<unsigned int>* list) const
+ {
+ list->clear();
+ for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
+ p != this->exidx_section_map_.end();
+ ++p)
+ {
+ if (p->second->shndx() == p->first)
+ list->push_back(p->first);
+ }
+ // Sort list to make result independent of implementation of map.
+ std::sort(list->begin(), list->end());
+ }
+
protected:
// Post constructor setup.
void
void
do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
- const unsigned char* pshdrs,
+ const unsigned char* pshdrs, Output_file* of,
typename Sized_relobj<32, big_endian>::Views* pivews);
// Read the symbol information.
bool
section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
const Relobj::Output_sections&,
- const Symbol_table *);
+ const Symbol_table*, const unsigned char*);
+
+ // Whether a section is a scannable text section.
+ bool
+ section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
+ const Output_section*, const Symbol_table*);
// Whether a section needs to be scanned for the Cortex-A8 erratum.
bool
section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
unsigned int, Output_section*,
- const Symbol_table *);
+ const Symbol_table*);
// Scan a section for the Cortex-A8 erratum.
void
unsigned int, Output_section*,
Target_arm<big_endian>*);
- // List of stub tables.
+ // Find the linked text section of an EXIDX section by looking at the
+ // first reloction of the EXIDX section. PSHDR points to the section
+ // headers of a relocation section and PSYMS points to the local symbols.
+ // PSHNDX points to a location storing the text section index if found.
+ // Return whether we can find the linked section.
+ bool
+ find_linked_text_section(const unsigned char* pshdr,
+ const unsigned char* psyms, unsigned int* pshndx);
+
+ //
+ // Make a new Arm_exidx_input_section object for EXIDX section with
+ // index SHNDX and section header SHDR. TEXT_SHNDX is the section
+ // index of the linked text section.
+ void
+ make_exidx_input_section(unsigned int shndx,
+ const elfcpp::Shdr<32, big_endian>& shdr,
+ unsigned int text_shndx,
+ const elfcpp::Shdr<32, big_endian>& text_shdr);
+
+ // Return the output address of either a plain input section or a
+ // relaxed input section. SHNDX is the section index.
+ Arm_address
+ simple_input_section_output_address(unsigned int, Output_section*);
+
typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
+ typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
+ Exidx_section_map;
+
+ // List of stub tables.
Stub_table_list stub_tables_;
// Bit vector to tell if a local symbol is a thumb function or not.
// This is only valid after do_count_local_symbol is called.
Mapping_symbols_info mapping_symbols_info_;
// Bitmap to indicate sections with Cortex-A8 workaround or NULL.
std::vector<bool>* section_has_cortex_a8_workaround_;
+ // Map a text section to its associated .ARM.exidx section, if there is one.
+ Exidx_section_map exidx_section_map_;
+ // Whether output local symbol count needs updating.
+ bool output_local_symbol_count_needs_update_;
+ // Whether we merge processor flags and attributes of this object to
+ // output.
+ bool merge_flags_and_attributes_;
};
// Arm_dynobj class.
Arm_address destination_;
};
-// Utilities for manipulating integers of up to 32-bits
+// Arm_output_data_got class. We derive this from Output_data_got to add
+// extra methods to handle TLS relocations in a static link.
-namespace utils
+template<bool big_endian>
+class Arm_output_data_got : public Output_data_got<32, big_endian>
{
- // Sign extend an n-bit unsigned integer stored in an uint32_t into
- // an int32_t. NO_BITS must be between 1 to 32.
- template<int no_bits>
- static inline int32_t
- sign_extend(uint32_t bits)
+ public:
+ Arm_output_data_got(Symbol_table* symtab, Layout* layout)
+ : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
+ { }
+
+ // Add a static entry for the GOT entry at OFFSET. GSYM is a global
+ // symbol and R_TYPE is the code of a dynamic relocation that needs to be
+ // applied in a static link.
+ void
+ add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
+ { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
+
+ // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
+ // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
+ // relocation that needs to be applied in a static link.
+ void
+ add_static_reloc(unsigned int got_offset, unsigned int r_type,
+ Sized_relobj<32, big_endian>* relobj, unsigned int index)
{
- gold_assert(no_bits >= 0 && no_bits <= 32);
- if (no_bits == 32)
- return static_cast<int32_t>(bits);
- uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
- bits &= mask;
- uint32_t top_bit = 1U << (no_bits - 1);
- int32_t as_signed = static_cast<int32_t>(bits);
- return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
+ this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
+ index));
}
- // Detects overflow of an NO_BITS integer stored in a uint32_t.
- template<int no_bits>
- static inline bool
- has_overflow(uint32_t bits)
+ // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
+ // The first one is initialized to be 1, which is the module index for
+ // the main executable and the second one 0. A reloc of the type
+ // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
+ // be applied by gold. GSYM is a global symbol.
+ void
+ add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
+
+ // Same as the above but for a local symbol in OBJECT with INDEX.
+ void
+ add_tls_gd32_with_static_reloc(unsigned int got_type,
+ Sized_relobj<32, big_endian>* object,
+ unsigned int index);
+
+ protected:
+ // Write out the GOT table.
+ void
+ do_write(Output_file*);
+
+ private:
+ // This class represent dynamic relocations that need to be applied by
+ // gold because we are using TLS relocations in a static link.
+ class Static_reloc
{
- gold_assert(no_bits >= 0 && no_bits <= 32);
- if (no_bits == 32)
- return false;
- int32_t max = (1 << (no_bits - 1)) - 1;
- int32_t min = -(1 << (no_bits - 1));
- int32_t as_signed = static_cast<int32_t>(bits);
- return as_signed > max || as_signed < min;
- }
+ public:
+ Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
+ : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
+ { this->u_.global.symbol = gsym; }
- // Detects overflow of an NO_BITS integer stored in a uint32_t when it
- // fits in the given number of bits as either a signed or unsigned value.
- // For example, has_signed_unsigned_overflow<8> would check
- // -128 <= bits <= 255
+ Static_reloc(unsigned int got_offset, unsigned int r_type,
+ Sized_relobj<32, big_endian>* relobj, unsigned int index)
+ : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
+ {
+ this->u_.local.relobj = relobj;
+ this->u_.local.index = index;
+ }
+
+ // Return the GOT offset.
+ unsigned int
+ got_offset() const
+ { return this->got_offset_; }
+
+ // Relocation type.
+ unsigned int
+ r_type() const
+ { return this->r_type_; }
+
+ // Whether the symbol is global or not.
+ bool
+ symbol_is_global() const
+ { return this->symbol_is_global_; }
+
+ // For a relocation against a global symbol, the global symbol.
+ Symbol*
+ symbol() const
+ {
+ gold_assert(this->symbol_is_global_);
+ return this->u_.global.symbol;
+ }
+
+ // For a relocation against a local symbol, the defining object.
+ Sized_relobj<32, big_endian>*
+ relobj() const
+ {
+ gold_assert(!this->symbol_is_global_);
+ return this->u_.local.relobj;
+ }
+
+ // For a relocation against a local symbol, the local symbol index.
+ unsigned int
+ index() const
+ {
+ gold_assert(!this->symbol_is_global_);
+ return this->u_.local.index;
+ }
+
+ private:
+ // GOT offset of the entry to which this relocation is applied.
+ unsigned int got_offset_;
+ // Type of relocation.
+ unsigned int r_type_;
+ // Whether this relocation is against a global symbol.
+ bool symbol_is_global_;
+ // A global or local symbol.
+ union
+ {
+ struct
+ {
+ // For a global symbol, the symbol itself.
+ Symbol* symbol;
+ } global;
+ struct
+ {
+ // For a local symbol, the object defining object.
+ Sized_relobj<32, big_endian>* relobj;
+ // For a local symbol, the symbol index.
+ unsigned int index;
+ } local;
+ } u_;
+ };
+
+ // Symbol table of the output object.
+ Symbol_table* symbol_table_;
+ // Layout of the output object.
+ Layout* layout_;
+ // Static relocs to be applied to the GOT.
+ std::vector<Static_reloc> static_relocs_;
+};
+
+// The ARM target has many relocation types with odd-sizes or incontigious
+// bits. The default handling of relocatable relocation cannot process these
+// relocations. So we have to extend the default code.
+
+template<bool big_endian, int sh_type, typename Classify_reloc>
+class Arm_scan_relocatable_relocs :
+ public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
+{
+ public:
+ // Return the strategy to use for a local symbol which is a section
+ // symbol, given the relocation type.
+ inline Relocatable_relocs::Reloc_strategy
+ local_section_strategy(unsigned int r_type, Relobj*)
+ {
+ if (sh_type == elfcpp::SHT_RELA)
+ return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
+ else
+ {
+ if (r_type == elfcpp::R_ARM_TARGET1
+ || r_type == elfcpp::R_ARM_TARGET2)
+ {
+ const Target_arm<big_endian>* arm_target =
+ Target_arm<big_endian>::default_target();
+ r_type = arm_target->get_real_reloc_type(r_type);
+ }
+
+ switch(r_type)
+ {
+ // Relocations that write nothing. These exclude R_ARM_TARGET1
+ // and R_ARM_TARGET2.
+ case elfcpp::R_ARM_NONE:
+ case elfcpp::R_ARM_V4BX:
+ case elfcpp::R_ARM_TLS_GOTDESC:
+ case elfcpp::R_ARM_TLS_CALL:
+ case elfcpp::R_ARM_TLS_DESCSEQ:
+ case elfcpp::R_ARM_THM_TLS_CALL:
+ case elfcpp::R_ARM_GOTRELAX:
+ case elfcpp::R_ARM_GNU_VTENTRY:
+ case elfcpp::R_ARM_GNU_VTINHERIT:
+ case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
+ case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
+ return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
+ // These should have been converted to something else above.
+ case elfcpp::R_ARM_TARGET1:
+ case elfcpp::R_ARM_TARGET2:
+ gold_unreachable();
+ // Relocations that write full 32 bits.
+ case elfcpp::R_ARM_ABS32:
+ case elfcpp::R_ARM_REL32:
+ case elfcpp::R_ARM_SBREL32:
+ case elfcpp::R_ARM_GOTOFF32:
+ case elfcpp::R_ARM_BASE_PREL:
+ case elfcpp::R_ARM_GOT_BREL:
+ case elfcpp::R_ARM_BASE_ABS:
+ case elfcpp::R_ARM_ABS32_NOI:
+ case elfcpp::R_ARM_REL32_NOI:
+ case elfcpp::R_ARM_PLT32_ABS:
+ case elfcpp::R_ARM_GOT_ABS:
+ case elfcpp::R_ARM_GOT_PREL:
+ case elfcpp::R_ARM_TLS_GD32:
+ case elfcpp::R_ARM_TLS_LDM32:
+ case elfcpp::R_ARM_TLS_LDO32:
+ case elfcpp::R_ARM_TLS_IE32:
+ case elfcpp::R_ARM_TLS_LE32:
+ return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
+ default:
+ // For all other static relocations, return RELOC_SPECIAL.
+ return Relocatable_relocs::RELOC_SPECIAL;
+ }
+ }
+ }
+};
+
+// Utilities for manipulating integers of up to 32-bits
+
+namespace utils
+{
+ // Sign extend an n-bit unsigned integer stored in an uint32_t into
+ // an int32_t. NO_BITS must be between 1 to 32.
+ template<int no_bits>
+ static inline int32_t
+ sign_extend(uint32_t bits)
+ {
+ gold_assert(no_bits >= 0 && no_bits <= 32);
+ if (no_bits == 32)
+ return static_cast<int32_t>(bits);
+ uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
+ bits &= mask;
+ uint32_t top_bit = 1U << (no_bits - 1);
+ int32_t as_signed = static_cast<int32_t>(bits);
+ return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
+ }
+
+ // Detects overflow of an NO_BITS integer stored in a uint32_t.
+ template<int no_bits>
+ static inline bool
+ has_overflow(uint32_t bits)
+ {
+ gold_assert(no_bits >= 0 && no_bits <= 32);
+ if (no_bits == 32)
+ return false;
+ int32_t max = (1 << (no_bits - 1)) - 1;
+ int32_t min = -(1 << (no_bits - 1));
+ int32_t as_signed = static_cast<int32_t>(bits);
+ return as_signed > max || as_signed < min;
+ }
+
+ // Detects overflow of an NO_BITS integer stored in a uint32_t when it
+ // fits in the given number of bits as either a signed or unsigned value.
+ // For example, has_signed_unsigned_overflow<8> would check
+ // -128 <= bits <= 255
template<int no_bits>
static inline bool
has_signed_unsigned_overflow(uint32_t bits)
Target_arm()
: Sized_target<32, big_endian>(&arm_info),
got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
- copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), stub_tables_(),
- stub_factory_(Stub_factory::get_instance()), may_use_blx_(false),
- should_force_pic_veneer_(false), arm_input_section_map_(),
- attributes_section_data_(NULL), fix_cortex_a8_(false),
- cortex_a8_relocs_info_()
+ copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
+ got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
+ stub_tables_(), stub_factory_(Stub_factory::get_instance()),
+ may_use_blx_(false), should_force_pic_veneer_(false),
+ arm_input_section_map_(), attributes_section_data_(NULL),
+ fix_cortex_a8_(false), cortex_a8_relocs_info_()
{ }
+ // Virtual function which is set to return true by a target if
+ // it can use relocation types to determine if a function's
+ // pointer is taken.
+ virtual bool
+ can_check_for_function_pointers() const
+ { return true; }
+
+ // Whether a section called SECTION_NAME may have function pointers to
+ // sections not eligible for safe ICF folding.
+ virtual bool
+ section_may_have_icf_unsafe_pointers(const char* section_name) const
+ {
+ return (!is_prefix_of(".ARM.exidx", section_name)
+ && !is_prefix_of(".ARM.extab", section_name)
+ && Target::section_may_have_icf_unsafe_pointers(section_name));
+ }
+
// Whether we can use BLX.
bool
may_use_blx() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
+
+ if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
+ || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
+ return true;
if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
&& attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
return false;
unsigned char* reloc_view,
section_size_type reloc_view_size);
+ // Perform target-specific processing in a relocatable link. This is
+ // only used if we use the relocation strategy RELOC_SPECIAL.
+ void
+ relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
+ unsigned int sh_type,
+ const unsigned char* preloc_in,
+ size_t relnum,
+ Output_section* output_section,
+ off_t offset_in_output_section,
+ unsigned char* view,
+ typename elfcpp::Elf_types<32>::Elf_Addr
+ view_address,
+ section_size_type view_size,
+ unsigned char* preloc_out);
+
// Return whether SYM is defined by the ABI.
bool
do_is_defined_by_abi(Symbol* sym) const
{ return strcmp(sym->name(), "__tls_get_addr") == 0; }
+ // Return whether there is a GOT section.
+ bool
+ has_got_section() const
+ { return this->got_ != NULL; }
+
// Return the size of the GOT section.
section_size_type
- got_size()
+ got_size() const
{
gold_assert(this->got_ != NULL);
return this->got_->data_size();
}
+ // Return the number of entries in the GOT.
+ unsigned int
+ got_entry_count() const
+ {
+ if (!this->has_got_section())
+ return 0;
+ return this->got_size() / 4;
+ }
+
+ // Return the number of entries in the PLT.
+ unsigned int
+ plt_entry_count() const;
+
+ // Return the offset of the first non-reserved PLT entry.
+ unsigned int
+ first_plt_entry_offset() const;
+
+ // Return the size of each PLT entry.
+ unsigned int
+ plt_entry_size() const;
+
// Map platform-specific reloc types
static unsigned int
- get_real_reloc_type (unsigned int r_type);
+ get_real_reloc_type(unsigned int r_type);
//
// Methods to support stub-generations.
parameters->sized_target<32, big_endian>());
}
- // Whether relocation type uses LSB to distinguish THUMB addresses.
- static bool
- reloc_uses_thumb_bit(unsigned int r_type);
-
// Whether NAME belongs to a mapping symbol.
static bool
is_mapping_symbol_name(const char* name)
fix_cortex_a8() const
{ return this->fix_cortex_a8_; }
+ // Whether we merge exidx entries in debuginfo.
+ bool
+ merge_exidx_entries() const
+ { return parameters->options().merge_exidx_entries(); }
+
+ // Whether we fix R_ARM_V4BX relocation.
+ // 0 - do not fix
+ // 1 - replace with MOV instruction (armv4 target)
+ // 2 - make interworking veneer (>= armv4t targets only)
+ General_options::Fix_v4bx
+ fix_v4bx() const
+ { return parameters->options().fix_v4bx(); }
+
// Scan a span of THUMB code section for Cortex-A8 erratum.
void
scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
section_size_type, section_size_type,
const unsigned char*, Arm_address);
+ // Apply Cortex-A8 workaround to a branch.
+ void
+ apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
+ unsigned char*, Arm_address);
+
protected:
// Make an ELF object.
Object*
int
do_attributes_order(int num) const;
+ // This is called when the target is selected as the default.
+ void
+ do_select_as_default_target()
+ {
+ // No locking is required since there should only be one default target.
+ // We cannot have both the big-endian and little-endian ARM targets
+ // as the default.
+ gold_assert(arm_reloc_property_table == NULL);
+ arm_reloc_property_table = new Arm_reloc_property_table();
+ }
+
private:
// The class which scans relocations.
class Scan
const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
Symbol* gsym);
+ inline bool
+ local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
+ Sized_relobj<32, big_endian>* ,
+ unsigned int ,
+ Output_section* ,
+ const elfcpp::Rel<32, big_endian>& ,
+ unsigned int ,
+ const elfcpp::Sym<32, big_endian>&);
+
+ inline bool
+ global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
+ Sized_relobj<32, big_endian>* ,
+ unsigned int ,
+ Output_section* ,
+ const elfcpp::Rel<32, big_endian>& ,
+ unsigned int , Symbol*);
+
private:
static void
unsupported_reloc_local(Sized_relobj<32, big_endian>*,
|| sym->is_preemptible()));
}
+ inline bool
+ possible_function_pointer_reloc(unsigned int r_type);
+
// Whether we have issued an error about a non-PIC compilation.
bool issued_non_pic_error_;
};
// reloc. This means the relocation type accesses a symbol not via
// GOT or PLT.
static inline bool
- reloc_is_non_pic (unsigned int r_type)
+ reloc_is_non_pic(unsigned int r_type)
{
switch (r_type)
{
case elfcpp::R_ARM_THM_JUMP19:
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_THM_XPC22:
+ case elfcpp::R_ARM_PREL31:
+ case elfcpp::R_ARM_SBREL31:
return false;
default:
return true;
}
}
+
+ private:
+ // Do a TLS relocation.
+ inline typename Arm_relocate_functions<big_endian>::Status
+ relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
+ size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
+ const Sized_symbol<32>*, const Symbol_value<32>*,
+ unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
+ section_size_type);
+
};
// A class which returns the size required for a relocation type,
get_size_for_reloc(unsigned int, Relobj*);
};
+ // Adjust TLS relocation type based on the options and whether this
+ // is a local symbol.
+ static tls::Tls_optimization
+ optimize_tls_reloc(bool is_final, int r_type);
+
// Get the GOT section, creating it if necessary.
- Output_data_got<32, big_endian>*
+ Arm_output_data_got<big_endian>*
got_section(Symbol_table*, Layout*);
// Get the GOT PLT section.
void
make_plt_entry(Symbol_table*, Layout*, Symbol*);
+ // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
+ void
+ define_tls_base_symbol(Symbol_table*, Layout*);
+
+ // Create a GOT entry for the TLS module index.
+ unsigned int
+ got_mod_index_entry(Symbol_table* symtab, Layout* layout,
+ Sized_relobj<32, big_endian>* object);
+
// Get the PLT section.
const Output_data_plt_arm<big_endian>*
plt_section() const
Reloc_section*
rel_dyn_section(Layout*);
+ // Get the section to use for TLS_DESC relocations.
+ Reloc_section*
+ rel_tls_desc_section(Layout*) const;
+
// Return true if the symbol may need a COPY relocation.
// References from an executable object to non-function symbols
// defined in a dynamic object may need a COPY relocation.
elfcpp::Elf_types<32>::Elf_Addr view_address,
section_size_type);
+ // Fix .ARM.exidx section coverage.
+ void
+ fix_exidx_coverage(Layout*, const Input_objects*,
+ Arm_output_section<big_endian>*, Symbol_table*);
+
+ // Functors for STL set.
+ struct output_section_address_less_than
+ {
+ bool
+ operator()(const Output_section* s1, const Output_section* s2) const
+ { return s1->address() < s2->address(); }
+ };
+
// Information about this specific target which we pass to the
// general Target structure.
static const Target::Target_info arm_info;
// The types of GOT entries needed for this platform.
+ // These values are exposed to the ABI in an incremental link.
+ // Do not renumber existing values without changing the version
+ // number of the .gnu_incremental_inputs section.
enum Got_type
{
- GOT_TYPE_STANDARD = 0 // GOT entry for a regular symbol
+ GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
+ GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
+ GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
+ GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
+ GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
};
typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
// Map input section to Arm_input_section.
- typedef Unordered_map<Input_section_specifier,
+ typedef Unordered_map<Section_id,
Arm_input_section<big_endian>*,
- Input_section_specifier::hash,
- Input_section_specifier::equal_to>
+ Section_id_hash>
Arm_input_section_map;
// Map output addresses to relocs for Cortex-A8 erratum.
Cortex_a8_relocs_info;
// The GOT section.
- Output_data_got<32, big_endian>* got_;
+ Arm_output_data_got<big_endian>* got_;
// The PLT section.
Output_data_plt_arm<big_endian>* plt_;
// The GOT PLT section.
Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
// Space for variables copied with a COPY reloc.
Output_data_space* dynbss_;
+ // Offset of the GOT entry for the TLS module index.
+ unsigned int got_mod_index_offset_;
+ // True if the _TLS_MODULE_BASE_ symbol has been defined.
+ bool tls_base_symbol_defined_;
// Vector of Stub_tables created.
Stub_table_list stub_tables_;
// Stub factory.
return val;
}
+ // Calculate the smallest constant Kn for the specified residual.
+ // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
+ static uint32_t
+ calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
+ {
+ int32_t msb;
+
+ if (residual == 0)
+ return 0;
+ // Determine the most significant bit in the residual and
+ // align the resulting value to a 2-bit boundary.
+ for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
+ ;
+ // The desired shift is now (msb - 6), or zero, whichever
+ // is the greater.
+ return (((msb - 6) < 0) ? 0 : (msb - 6));
+ }
+
+ // Calculate the final residual for the specified group index.
+ // If the passed group index is less than zero, the method will return
+ // the value of the specified residual without any change.
+ // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
+ static typename elfcpp::Swap<32, big_endian>::Valtype
+ calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
+ const int group)
+ {
+ for (int n = 0; n <= group; n++)
+ {
+ // Calculate which part of the value to mask.
+ uint32_t shift = calc_grp_kn(residual);
+ // Calculate the residual for the next time around.
+ residual &= ~(residual & (0xff << shift));
+ }
+
+ return residual;
+ }
+
+ // Calculate the value of Gn for the specified group index.
+ // We return it in the form of an encoded constant-and-rotation.
+ // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
+ static typename elfcpp::Swap<32, big_endian>::Valtype
+ calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
+ const int group)
+ {
+ typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
+ uint32_t shift = 0;
+
+ for (int n = 0; n <= group; n++)
+ {
+ // Calculate which part of the value to mask.
+ shift = calc_grp_kn(residual);
+ // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
+ gn = residual & (0xff << shift);
+ // Calculate the residual for the next time around.
+ residual &= ~gn;
+ }
+ // Return Gn in the form of an encoded constant-and-rotation.
+ return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
+ }
+
+ public:
// Handle ARM long branches.
static typename This::Status
arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
- unsigned char *, const Sized_symbol<32>*,
+ unsigned char*, const Sized_symbol<32>*,
const Arm_relobj<big_endian>*, unsigned int,
const Symbol_value<32>*, Arm_address, Arm_address, bool);
// Handle THUMB long branches.
static typename This::Status
thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
- unsigned char *, const Sized_symbol<32>*,
+ unsigned char*, const Sized_symbol<32>*,
const Arm_relobj<big_endian>*, unsigned int,
const Symbol_value<32>*, Arm_address, Arm_address, bool);
- public:
// Return the branch offset of a 32-bit THUMB branch.
static inline int32_t
// R_ARM_ABS8: S + A
static inline typename This::Status
- abs8(unsigned char *view,
+ abs8(unsigned char* view,
const Sized_relobj<32, big_endian>* object,
const Symbol_value<32>* psymval)
{
Reltype x = psymval->value(object, addend);
val = utils::bit_select(val, x, 0xffU);
elfcpp::Swap<8, big_endian>::writeval(wv, val);
- return (utils::has_signed_unsigned_overflow<8>(x)
+
+ // R_ARM_ABS8 permits signed or unsigned results.
+ int signed_x = static_cast<int32_t>(x);
+ return ((signed_x < -128 || signed_x > 255)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_THM_ABS5: S + A
static inline typename This::Status
- thm_abs5(unsigned char *view,
+ thm_abs5(unsigned char* view,
const Sized_relobj<32, big_endian>* object,
const Symbol_value<32>* psymval)
{
Reltype x = psymval->value(object, addend);
val = utils::bit_select(val, x << 6, 0x7e0U);
elfcpp::Swap<16, big_endian>::writeval(wv, val);
- return (utils::has_overflow<5>(x)
+
+ // R_ARM_ABS16 permits signed or unsigned results.
+ int signed_x = static_cast<int32_t>(x);
+ return ((signed_x < -32768 || signed_x > 65535)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_ABS12: S + A
static inline typename This::Status
- abs12(unsigned char *view,
+ abs12(unsigned char* view,
const Sized_relobj<32, big_endian>* object,
const Symbol_value<32>* psymval)
{
// R_ARM_ABS16: S + A
static inline typename This::Status
- abs16(unsigned char *view,
+ abs16(unsigned char* view,
const Sized_relobj<32, big_endian>* object,
const Symbol_value<32>* psymval)
{
// R_ARM_ABS32: (S + A) | T
static inline typename This::Status
- abs32(unsigned char *view,
+ abs32(unsigned char* view,
const Sized_relobj<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address thumb_bit)
// R_ARM_REL32: (S + A) | T - P
static inline typename This::Status
- rel32(unsigned char *view,
+ rel32(unsigned char* view,
const Sized_relobj<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address,
return This::STATUS_OKAY;
}
- // R_ARM_THM_CALL: (S + A) | T - P
+ // R_ARM_THM_JUMP24: (S + A) | T - P
+ static typename This::Status
+ thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
+ const Symbol_value<32>* psymval, Arm_address address,
+ Arm_address thumb_bit);
+
+ // R_ARM_THM_JUMP6: S + A – P
static inline typename This::Status
- thm_call(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
- const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
- unsigned int r_sym, const Symbol_value<32>* psymval,
- Arm_address address, Arm_address thumb_bit,
- bool is_weakly_undefined_without_plt)
+ thm_jump6(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ Arm_address address)
{
- return thumb_branch_common(elfcpp::R_ARM_THM_CALL, relinfo, view, gsym,
- object, r_sym, psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
+ typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+ typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
+ Valtype* wv = reinterpret_cast<Valtype*>(view);
+ Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
+ // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
+ Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
+ Reltype x = (psymval->value(object, addend) - address);
+ val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
+ elfcpp::Swap<16, big_endian>::writeval(wv, val);
+ // CZB does only forward jumps.
+ return ((x > 0x007e)
+ ? This::STATUS_OVERFLOW
+ : This::STATUS_OKAY);
}
- // R_ARM_THM_JUMP24: (S + A) | T - P
+ // R_ARM_THM_JUMP8: S + A – P
static inline typename This::Status
- thm_jump24(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
- const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
- unsigned int r_sym, const Symbol_value<32>* psymval,
- Arm_address address, Arm_address thumb_bit,
- bool is_weakly_undefined_without_plt)
+ thm_jump8(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ Arm_address address)
{
- return thumb_branch_common(elfcpp::R_ARM_THM_JUMP24, relinfo, view, gsym,
- object, r_sym, psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
+ typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+ typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
+ Valtype* wv = reinterpret_cast<Valtype*>(view);
+ Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
+ Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
+ Reltype x = (psymval->value(object, addend) - address);
+ elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
+ return (utils::has_overflow<8>(x)
+ ? This::STATUS_OVERFLOW
+ : This::STATUS_OKAY);
}
- // R_ARM_THM_JUMP24: (S + A) | T - P
- static typename This::Status
- thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
- const Symbol_value<32>* psymval, Arm_address address,
- Arm_address thumb_bit);
-
- // R_ARM_THM_XPC22: (S + A) | T - P
+ // R_ARM_THM_JUMP11: S + A – P
static inline typename This::Status
- thm_xpc22(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
- const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
- unsigned int r_sym, const Symbol_value<32>* psymval,
- Arm_address address, Arm_address thumb_bit,
- bool is_weakly_undefined_without_plt)
+ thm_jump11(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ Arm_address address)
{
- return thumb_branch_common(elfcpp::R_ARM_THM_XPC22, relinfo, view, gsym,
- object, r_sym, psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
+ typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+ typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
+ Valtype* wv = reinterpret_cast<Valtype*>(view);
+ Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
+ Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
+ Reltype x = (psymval->value(object, addend) - address);
+ elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
+ return (utils::has_overflow<11>(x)
+ ? This::STATUS_OVERFLOW
+ : This::STATUS_OKAY);
}
// R_ARM_BASE_PREL: B(S) + A - P
// R_ARM_GOT_PREL: GOT(S) + A - P
static inline typename This::Status
- got_prel(unsigned char *view,
+ got_prel(unsigned char* view,
Arm_address got_entry,
Arm_address address)
{
return This::STATUS_OKAY;
}
- // R_ARM_PLT32: (S + A) | T - P
- static inline typename This::Status
- plt32(const Relocate_info<32, big_endian>* relinfo,
- unsigned char *view,
- const Sized_symbol<32>* gsym,
- const Arm_relobj<big_endian>* object,
- unsigned int r_sym,
- const Symbol_value<32>* psymval,
- Arm_address address,
- Arm_address thumb_bit,
- bool is_weakly_undefined_without_plt)
- {
- return arm_branch_common(elfcpp::R_ARM_PLT32, relinfo, view, gsym,
- object, r_sym, psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
- }
-
- // R_ARM_XPC25: (S + A) | T - P
- static inline typename This::Status
- xpc25(const Relocate_info<32, big_endian>* relinfo,
- unsigned char *view,
- const Sized_symbol<32>* gsym,
- const Arm_relobj<big_endian>* object,
- unsigned int r_sym,
- const Symbol_value<32>* psymval,
- Arm_address address,
- Arm_address thumb_bit,
- bool is_weakly_undefined_without_plt)
- {
- return arm_branch_common(elfcpp::R_ARM_XPC25, relinfo, view, gsym,
- object, r_sym, psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
- }
-
- // R_ARM_CALL: (S + A) | T - P
- static inline typename This::Status
- call(const Relocate_info<32, big_endian>* relinfo,
- unsigned char *view,
- const Sized_symbol<32>* gsym,
- const Arm_relobj<big_endian>* object,
- unsigned int r_sym,
- const Symbol_value<32>* psymval,
- Arm_address address,
- Arm_address thumb_bit,
- bool is_weakly_undefined_without_plt)
- {
- return arm_branch_common(elfcpp::R_ARM_CALL, relinfo, view, gsym,
- object, r_sym, psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
- }
-
- // R_ARM_JUMP24: (S + A) | T - P
- static inline typename This::Status
- jump24(const Relocate_info<32, big_endian>* relinfo,
- unsigned char *view,
- const Sized_symbol<32>* gsym,
- const Arm_relobj<big_endian>* object,
- unsigned int r_sym,
- const Symbol_value<32>* psymval,
- Arm_address address,
- Arm_address thumb_bit,
- bool is_weakly_undefined_without_plt)
- {
- return arm_branch_common(elfcpp::R_ARM_JUMP24, relinfo, view, gsym,
- object, r_sym, psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
- }
-
// R_ARM_PREL: (S + A) | T - P
static inline typename This::Status
- prel31(unsigned char *view,
+ prel31(unsigned char* view,
const Sized_relobj<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address,
This::STATUS_OVERFLOW : This::STATUS_OKAY);
}
- // R_ARM_MOVW_ABS_NC: (S + A) | T
- static inline typename This::Status
- movw_abs_nc(unsigned char *view,
- const Sized_relobj<32, big_endian>* object,
- const Symbol_value<32>* psymval,
- Arm_address thumb_bit)
+ // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
+ // R_ARM_MOVW_PREL_NC: (S + A) | T - P
+ // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
+ // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
+ static inline typename This::Status
+ movw(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ Arm_address relative_address_base,
+ Arm_address thumb_bit,
+ bool check_overflow)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
- Valtype addend = This::extract_arm_movw_movt_addend(val);
- Valtype x = psymval->value(object, addend) | thumb_bit;
+ Valtype addend = This::extract_arm_movw_movt_addend(val);
+ Valtype x = ((psymval->value(object, addend) | thumb_bit)
+ - relative_address_base);
val = This::insert_val_arm_movw_movt(val, x);
elfcpp::Swap<32, big_endian>::writeval(wv, val);
- return This::STATUS_OKAY;
+ return ((check_overflow && utils::has_overflow<16>(x))
+ ? This::STATUS_OVERFLOW
+ : This::STATUS_OKAY);
}
- // R_ARM_MOVT_ABS: S + A
+ // R_ARM_MOVT_ABS: S + A (relative address base is 0)
+ // R_ARM_MOVT_PREL: S + A - P
+ // R_ARM_MOVT_BREL: S + A - B(S)
static inline typename This::Status
- movt_abs(unsigned char *view,
- const Sized_relobj<32, big_endian>* object,
- const Symbol_value<32>* psymval)
+ movt(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ Arm_address relative_address_base)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = This::extract_arm_movw_movt_addend(val);
- Valtype x = psymval->value(object, addend) >> 16;
+ Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
val = This::insert_val_arm_movw_movt(val, x);
elfcpp::Swap<32, big_endian>::writeval(wv, val);
+ // FIXME: IHI0044D says that we should check for overflow.
return This::STATUS_OKAY;
}
- // R_ARM_THM_MOVW_ABS_NC: S + A | T
- static inline typename This::Status
- thm_movw_abs_nc(unsigned char *view,
- const Sized_relobj<32, big_endian>* object,
- const Symbol_value<32>* psymval,
- Arm_address thumb_bit)
+ // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
+ // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
+ // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
+ // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
+ static inline typename This::Status
+ thm_movw(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ Arm_address relative_address_base,
+ Arm_address thumb_bit,
+ bool check_overflow)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
- Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
- | elfcpp::Swap<16, big_endian>::readval(wv + 1));
- Reltype addend = extract_thumb_movw_movt_addend(val);
- Reltype x = psymval->value(object, addend) | thumb_bit;
+ Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
+ | elfcpp::Swap<16, big_endian>::readval(wv + 1);
+ Reltype addend = This::extract_thumb_movw_movt_addend(val);
+ Reltype x =
+ (psymval->value(object, addend) | thumb_bit) - relative_address_base;
val = This::insert_val_thumb_movw_movt(val, x);
elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
- return This::STATUS_OKAY;
+ return ((check_overflow && utils::has_overflow<16>(x))
+ ? This::STATUS_OVERFLOW
+ : This::STATUS_OKAY);
}
- // R_ARM_THM_MOVT_ABS: S + A
- static inline typename This::Status
- thm_movt_abs(unsigned char *view,
- const Sized_relobj<32, big_endian>* object,
- const Symbol_value<32>* psymval)
+ // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
+ // R_ARM_THM_MOVT_PREL: S + A - P
+ // R_ARM_THM_MOVT_BREL: S + A - B(S)
+ static inline typename This::Status
+ thm_movt(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ Arm_address relative_address_base)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
- Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
- | elfcpp::Swap<16, big_endian>::readval(wv + 1));
+ Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
+ | elfcpp::Swap<16, big_endian>::readval(wv + 1);
Reltype addend = This::extract_thumb_movw_movt_addend(val);
- Reltype x = psymval->value(object, addend) >> 16;
+ Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
val = This::insert_val_thumb_movw_movt(val, x);
elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
return This::STATUS_OKAY;
}
- // R_ARM_MOVW_PREL_NC: (S + A) | T - P
+ // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
static inline typename This::Status
- movw_prel_nc(unsigned char *view,
- const Sized_relobj<32, big_endian>* object,
- const Symbol_value<32>* psymval,
- Arm_address address,
- Arm_address thumb_bit)
+ thm_alu11(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ Arm_address address,
+ Arm_address thumb_bit)
{
- typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+ typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+ typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+ Valtype* wv = reinterpret_cast<Valtype*>(view);
+ Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
+ | elfcpp::Swap<16, big_endian>::readval(wv + 1);
+
+ // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
+ // -----------------------------------------------------------------------
+ // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
+ // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
+ // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
+ // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
+ // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
+ // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
+
+ // Determine a sign for the addend.
+ const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
+ || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
+ // Thumb2 addend encoding:
+ // imm12 := i | imm3 | imm8
+ int32_t addend = (insn & 0xff)
+ | ((insn & 0x00007000) >> 4)
+ | ((insn & 0x04000000) >> 15);
+ // Apply a sign to the added.
+ addend *= sign;
+
+ int32_t x = (psymval->value(object, addend) | thumb_bit)
+ - (address & 0xfffffffc);
+ Reltype val = abs(x);
+ // Mask out the value and a distinct part of the ADD/SUB opcode
+ // (bits 7:5 of opword).
+ insn = (insn & 0xfb0f8f00)
+ | (val & 0xff)
+ | ((val & 0x700) << 4)
+ | ((val & 0x800) << 15);
+ // Set the opcode according to whether the value to go in the
+ // place is negative.
+ if (x < 0)
+ insn |= 0x00a00000;
+
+ elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
+ elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
+ return ((val > 0xfff) ?
+ This::STATUS_OVERFLOW : This::STATUS_OKAY);
+ }
+
+ // R_ARM_THM_PC8: S + A - Pa (Thumb)
+ static inline typename This::Status
+ thm_pc8(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ Arm_address address)
+ {
+ typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+ typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
+ Valtype* wv = reinterpret_cast<Valtype*>(view);
+ Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
+ Reltype addend = ((insn & 0x00ff) << 2);
+ int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
+ Reltype val = abs(x);
+ insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
+
+ elfcpp::Swap<16, big_endian>::writeval(wv, insn);
+ return ((val > 0x03fc)
+ ? This::STATUS_OVERFLOW
+ : This::STATUS_OKAY);
+ }
+
+ // R_ARM_THM_PC12: S + A - Pa (Thumb32)
+ static inline typename This::Status
+ thm_pc12(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ Arm_address address)
+ {
+ typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+ typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+ Valtype* wv = reinterpret_cast<Valtype*>(view);
+ Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
+ | elfcpp::Swap<16, big_endian>::readval(wv + 1);
+ // Determine a sign for the addend (positive if the U bit is 1).
+ const int sign = (insn & 0x00800000) ? 1 : -1;
+ int32_t addend = (insn & 0xfff);
+ // Apply a sign to the added.
+ addend *= sign;
+
+ int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
+ Reltype val = abs(x);
+ // Mask out and apply the value and the U bit.
+ insn = (insn & 0xff7ff000) | (val & 0xfff);
+ // Set the U bit according to whether the value to go in the
+ // place is positive.
+ if (x >= 0)
+ insn |= 0x00800000;
+
+ elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
+ elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
+ return ((val > 0xfff) ?
+ This::STATUS_OVERFLOW : This::STATUS_OKAY);
+ }
+
+ // R_ARM_V4BX
+ static inline typename This::Status
+ v4bx(const Relocate_info<32, big_endian>* relinfo,
+ unsigned char* view,
+ const Arm_relobj<big_endian>* object,
+ const Arm_address address,
+ const bool is_interworking)
+ {
+
+ typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
- Valtype addend = This::extract_arm_movw_movt_addend(val);
- Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
- val = This::insert_val_arm_movw_movt(val, x);
+
+ // Ensure that we have a BX instruction.
+ gold_assert((val & 0x0ffffff0) == 0x012fff10);
+ const uint32_t reg = (val & 0xf);
+ if (is_interworking && reg != 0xf)
+ {
+ Stub_table<big_endian>* stub_table =
+ object->stub_table(relinfo->data_shndx);
+ gold_assert(stub_table != NULL);
+
+ Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
+ gold_assert(stub != NULL);
+
+ int32_t veneer_address =
+ stub_table->address() + stub->offset() - 8 - address;
+ gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
+ && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
+ // Replace with a branch to veneer (B <addr>)
+ val = (val & 0xf0000000) | 0x0a000000
+ | ((veneer_address >> 2) & 0x00ffffff);
+ }
+ else
+ {
+ // Preserve Rm (lowest four bits) and the condition code
+ // (highest four bits). Other bits encode MOV PC,Rm.
+ val = (val & 0xf000000f) | 0x01a0f000;
+ }
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
- // R_ARM_MOVT_PREL: S + A - P
+ // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
+ // R_ARM_ALU_PC_G0: ((S + A) | T) - P
+ // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
+ // R_ARM_ALU_PC_G1: ((S + A) | T) - P
+ // R_ARM_ALU_PC_G2: ((S + A) | T) - P
+ // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
+ // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
+ // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
+ // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
+ // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
static inline typename This::Status
- movt_prel(unsigned char *view,
- const Sized_relobj<32, big_endian>* object,
- const Symbol_value<32>* psymval,
- Arm_address address)
+ arm_grp_alu(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ const int group,
+ Arm_address address,
+ Arm_address thumb_bit,
+ bool check_overflow)
{
+ gold_assert(group >= 0 && group < 3);
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
- Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
- Valtype addend = This::extract_arm_movw_movt_addend(val);
- Valtype x = (psymval->value(object, addend) - address) >> 16;
- val = This::insert_val_arm_movw_movt(val, x);
- elfcpp::Swap<32, big_endian>::writeval(wv, val);
+ Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
+
+ // ALU group relocations are allowed only for the ADD/SUB instructions.
+ // (0x00800000 - ADD, 0x00400000 - SUB)
+ const Valtype opcode = insn & 0x01e00000;
+ if (opcode != 0x00800000 && opcode != 0x00400000)
+ return This::STATUS_BAD_RELOC;
+
+ // Determine a sign for the addend.
+ const int sign = (opcode == 0x00800000) ? 1 : -1;
+ // shifter = rotate_imm * 2
+ const uint32_t shifter = (insn & 0xf00) >> 7;
+ // Initial addend value.
+ int32_t addend = insn & 0xff;
+ // Rotate addend right by shifter.
+ addend = (addend >> shifter) | (addend << (32 - shifter));
+ // Apply a sign to the added.
+ addend *= sign;
+
+ int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
+ Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
+ // Check for overflow if required
+ if (check_overflow
+ && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
+ return This::STATUS_OVERFLOW;
+
+ // Mask out the value and the ADD/SUB part of the opcode; take care
+ // not to destroy the S bit.
+ insn &= 0xff1ff000;
+ // Set the opcode according to whether the value to go in the
+ // place is negative.
+ insn |= ((x < 0) ? 0x00400000 : 0x00800000);
+ // Encode the offset (encoded Gn).
+ insn |= gn;
+
+ elfcpp::Swap<32, big_endian>::writeval(wv, insn);
return This::STATUS_OKAY;
}
- // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
+ // R_ARM_LDR_PC_G0: S + A - P
+ // R_ARM_LDR_PC_G1: S + A - P
+ // R_ARM_LDR_PC_G2: S + A - P
+ // R_ARM_LDR_SB_G0: S + A - B(S)
+ // R_ARM_LDR_SB_G1: S + A - B(S)
+ // R_ARM_LDR_SB_G2: S + A - B(S)
static inline typename This::Status
- thm_movw_prel_nc(unsigned char *view,
- const Sized_relobj<32, big_endian>* object,
- const Symbol_value<32>* psymval,
- Arm_address address,
- Arm_address thumb_bit)
+ arm_grp_ldr(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ const int group,
+ Arm_address address)
{
- typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
- typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+ gold_assert(group >= 0 && group < 3);
+ typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
- Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
- | elfcpp::Swap<16, big_endian>::readval(wv + 1);
- Reltype addend = This::extract_thumb_movw_movt_addend(val);
- Reltype x = (psymval->value(object, addend) | thumb_bit) - address;
- val = This::insert_val_thumb_movw_movt(val, x);
- elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
- elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
+ Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
+
+ const int sign = (insn & 0x00800000) ? 1 : -1;
+ int32_t addend = (insn & 0xfff) * sign;
+ int32_t x = (psymval->value(object, addend) - address);
+ // Calculate the relevant G(n-1) value to obtain this stage residual.
+ Valtype residual =
+ Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
+ if (residual >= 0x1000)
+ return This::STATUS_OVERFLOW;
+
+ // Mask out the value and U bit.
+ insn &= 0xff7ff000;
+ // Set the U bit for non-negative values.
+ if (x >= 0)
+ insn |= 0x00800000;
+ insn |= residual;
+
+ elfcpp::Swap<32, big_endian>::writeval(wv, insn);
return This::STATUS_OKAY;
}
- // R_ARM_THM_MOVT_PREL: S + A - P
+ // R_ARM_LDRS_PC_G0: S + A - P
+ // R_ARM_LDRS_PC_G1: S + A - P
+ // R_ARM_LDRS_PC_G2: S + A - P
+ // R_ARM_LDRS_SB_G0: S + A - B(S)
+ // R_ARM_LDRS_SB_G1: S + A - B(S)
+ // R_ARM_LDRS_SB_G2: S + A - B(S)
+ static inline typename This::Status
+ arm_grp_ldrs(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ const int group,
+ Arm_address address)
+ {
+ gold_assert(group >= 0 && group < 3);
+ typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+ Valtype* wv = reinterpret_cast<Valtype*>(view);
+ Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
+
+ const int sign = (insn & 0x00800000) ? 1 : -1;
+ int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
+ int32_t x = (psymval->value(object, addend) - address);
+ // Calculate the relevant G(n-1) value to obtain this stage residual.
+ Valtype residual =
+ Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
+ if (residual >= 0x100)
+ return This::STATUS_OVERFLOW;
+
+ // Mask out the value and U bit.
+ insn &= 0xff7ff0f0;
+ // Set the U bit for non-negative values.
+ if (x >= 0)
+ insn |= 0x00800000;
+ insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
+
+ elfcpp::Swap<32, big_endian>::writeval(wv, insn);
+ return This::STATUS_OKAY;
+ }
+
+ // R_ARM_LDC_PC_G0: S + A - P
+ // R_ARM_LDC_PC_G1: S + A - P
+ // R_ARM_LDC_PC_G2: S + A - P
+ // R_ARM_LDC_SB_G0: S + A - B(S)
+ // R_ARM_LDC_SB_G1: S + A - B(S)
+ // R_ARM_LDC_SB_G2: S + A - B(S)
static inline typename This::Status
- thm_movt_prel(unsigned char *view,
- const Sized_relobj<32, big_endian>* object,
- const Symbol_value<32>* psymval,
- Arm_address address)
+ arm_grp_ldc(unsigned char* view,
+ const Sized_relobj<32, big_endian>* object,
+ const Symbol_value<32>* psymval,
+ const int group,
+ Arm_address address)
{
- typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
- typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+ gold_assert(group >= 0 && group < 3);
+ typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
- Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
- | elfcpp::Swap<16, big_endian>::readval(wv + 1);
- Reltype addend = This::extract_thumb_movw_movt_addend(val);
- Reltype x = (psymval->value(object, addend) - address) >> 16;
- val = This::insert_val_thumb_movw_movt(val, x);
- elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
- elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
+ Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
+
+ const int sign = (insn & 0x00800000) ? 1 : -1;
+ int32_t addend = ((insn & 0xff) << 2) * sign;
+ int32_t x = (psymval->value(object, addend) - address);
+ // Calculate the relevant G(n-1) value to obtain this stage residual.
+ Valtype residual =
+ Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
+ if ((residual & 0x3) != 0 || residual >= 0x400)
+ return This::STATUS_OVERFLOW;
+
+ // Mask out the value and U bit.
+ insn &= 0xff7fff00;
+ // Set the U bit for non-negative values.
+ if (x >= 0)
+ insn |= 0x00800000;
+ insn |= (residual >> 2);
+
+ elfcpp::Swap<32, big_endian>::writeval(wv, insn);
return This::STATUS_OKAY;
}
};
Arm_relocate_functions<big_endian>::arm_branch_common(
unsigned int r_type,
const Relocate_info<32, big_endian>* relinfo,
- unsigned char *view,
+ unsigned char* view,
const Sized_symbol<32>* gsym,
const Arm_relobj<big_endian>* object,
unsigned int r_sym,
Target_arm<big_endian>::default_target();
if (is_weakly_undefined_without_plt)
{
+ gold_assert(!parameters->options().relocatable());
Valtype cond = val & 0xf0000000U;
if (arm_target->may_use_arm_nop())
val = cond | 0x0320f000;
// to switch mode.
bool may_use_blx = arm_target->may_use_blx();
Reloc_stub* stub = NULL;
- if ((branch_offset > ARM_MAX_FWD_BRANCH_OFFSET)
- || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
- || ((thumb_bit != 0) && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))
+
+ if (!parameters->options().relocatable()
+ && (utils::has_overflow<26>(branch_offset)
+ || ((thumb_bit != 0)
+ && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
{
+ Valtype unadjusted_branch_target = psymval->value(object, 0);
+
Stub_type stub_type =
- Reloc_stub::stub_type_for_reloc(r_type, address, branch_target,
+ Reloc_stub::stub_type_for_reloc(r_type, address,
+ unadjusted_branch_target,
(thumb_bit != 0));
if (stub_type != arm_stub_none)
{
thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
branch_target = stub_table->address() + stub->offset() + addend;
branch_offset = branch_target - address;
- gold_assert((branch_offset <= ARM_MAX_FWD_BRANCH_OFFSET)
- && (branch_offset >= ARM_MAX_BWD_BRANCH_OFFSET));
+ gold_assert(!utils::has_overflow<26>(branch_offset));
}
}
Arm_relocate_functions<big_endian>::thumb_branch_common(
unsigned int r_type,
const Relocate_info<32, big_endian>* relinfo,
- unsigned char *view,
+ unsigned char* view,
const Sized_symbol<32>* gsym,
const Arm_relobj<big_endian>* object,
unsigned int r_sym,
Target_arm<big_endian>::default_target();
if (is_weakly_undefined_without_plt)
{
+ gold_assert(!parameters->options().relocatable());
if (arm_target->may_use_thumb2_nop())
{
elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
Arm_address branch_target = psymval->value(object, addend);
+
+ // For BLX, bit 1 of target address comes from bit 1 of base address.
+ bool may_use_blx = arm_target->may_use_blx();
+ if (thumb_bit == 0 && may_use_blx)
+ branch_target = utils::bit_select(branch_target, address, 0x2);
+
int32_t branch_offset = branch_target - address;
// We need a stub if the branch offset is too large or if we need
// to switch mode.
- bool may_use_blx = arm_target->may_use_blx();
bool thumb2 = arm_target->using_thumb2();
- if ((!thumb2
- && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
- || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
- || (thumb2
- && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
- || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
- || ((thumb_bit == 0)
- && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
- || r_type == elfcpp::R_ARM_THM_JUMP24)))
+ if (!parameters->options().relocatable()
+ && ((!thumb2 && utils::has_overflow<23>(branch_offset))
+ || (thumb2 && utils::has_overflow<25>(branch_offset))
+ || ((thumb_bit == 0)
+ && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
+ || r_type == elfcpp::R_ARM_THM_JUMP24))))
{
+ Arm_address unadjusted_branch_target = psymval->value(object, 0);
+
Stub_type stub_type =
- Reloc_stub::stub_type_for_reloc(r_type, address, branch_target,
+ Reloc_stub::stub_type_for_reloc(r_type, address,
+ unadjusted_branch_target,
(thumb_bit != 0));
+
if (stub_type != arm_stub_none)
{
Stub_table<big_endian>* stub_table =
gold_assert(stub != NULL);
thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
branch_target = stub_table->address() + stub->offset() + addend;
+ if (thumb_bit == 0 && may_use_blx)
+ branch_target = utils::bit_select(branch_target, address, 0x2);
branch_offset = branch_target - address;
}
}
lower_insn |= 0x1000U;
}
+ // For a BLX instruction, make sure that the relocation is rounded up
+ // to a word boundary. This follows the semantics of the instruction
+ // which specifies that bit 1 of the target address will come from bit
+ // 1 of the base address.
if ((lower_insn & 0x5000U) == 0x4000U)
- // For a BLX instruction, make sure that the relocation is rounded up
- // to a word boundary. This follows the semantics of the instruction
- // which specifies that bit 1 of the target address will come from bit
- // 1 of the base address.
- branch_offset = (branch_offset + 2) & ~3;
+ gold_assert((branch_offset & 3) == 0);
// Put BRANCH_OFFSET back into the insn. Assumes two's complement.
// We use the Thumb-2 encoding, which is safe even if dealing with
elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
+ gold_assert(!utils::has_overflow<25>(branch_offset));
+
return ((thumb2
? utils::has_overflow<25>(branch_offset)
: utils::has_overflow<23>(branch_offset))
template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::thm_jump19(
- unsigned char *view,
+ unsigned char* view,
const Arm_relobj<big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address,
// Get the GOT section, creating it if necessary.
template<bool big_endian>
-Output_data_got<32, big_endian>*
+Arm_output_data_got<big_endian>*
Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
{
if (this->got_ == NULL)
{
gold_assert(symtab != NULL && layout != NULL);
- this->got_ = new Output_data_got<32, big_endian>();
+ this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
- Output_section* os;
- os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
- (elfcpp::SHF_ALLOC
- | elfcpp::SHF_WRITE),
- this->got_, false, true, true,
- false);
+ layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
+ (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
+ this->got_, ORDER_DATA, false);
// The old GNU linker creates a .got.plt section. We just
// create another set of data in the .got section. Note that we
// always create a PLT if we create a GOT, although the PLT
// might be empty.
this->got_plt_ = new Output_data_space(4, "** GOT PLT");
- os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
- (elfcpp::SHF_ALLOC
- | elfcpp::SHF_WRITE),
- this->got_plt_, false, false,
- false, true);
+ layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
+ (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
+ this->got_plt_, ORDER_DATA, false);
// The first three entries are reserved.
this->got_plt_->set_current_data_size(3 * 4);
gold_assert(layout != NULL);
this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
- elfcpp::SHF_ALLOC, this->rel_dyn_, true,
- false, false, false);
+ elfcpp::SHF_ALLOC, this->rel_dyn_,
+ ORDER_DYNAMIC_RELOCS, false);
}
return this->rel_dyn_;
}
// Stub methods.
-// Template to implement do_write for a specific target endianity.
+// Template to implement do_write for a specific target endianness.
template<bool big_endian>
void inline
thumb_only = little_endian_target->using_thumb_only();
}
- int64_t branch_offset = (int64_t)destination - location;
-
+ int64_t branch_offset;
if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
{
+ // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
+ // base address (instruction address + 4).
+ if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
+ destination = utils::bit_select(destination, location, 0x2);
+ branch_offset = static_cast<int64_t>(destination) - location;
+
// Handle cases where:
// - this call goes too far (different Thumb/Thumb2 max
// distance)
|| r_type == elfcpp::R_ARM_JUMP24
|| r_type == elfcpp::R_ARM_PLT32)
{
+ branch_offset = static_cast<int64_t>(destination) - location;
if (target_is_thumb)
{
// Arm to thumb.
Insn_template::arm_rel_insn(0xea000000, -8) // b dest
};
+ // Stub used to provide an interworking for R_ARM_V4BX relocation
+ // (bx r[n] instruction).
+ static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
+ {
+ Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
+ Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
+ Insn_template::arm_insn(0xe12fff10) // bx r<n>
+ };
+
// Fill in the stub template look-up table. Stub templates are constructed
// per instance of Stub_factory for fast look-up without locking
// in a thread-enabled environment.
++p)
this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
address, view_size);
+
+ // Relocate all ARM V4BX stubs.
+ for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
+ p != this->arm_v4bx_stubs_.end();
+ ++p)
+ {
+ if (*p != NULL)
+ this->relocate_stub(*p, relinfo, arm_target, output_section, view,
+ address, view_size);
+ }
}
// Write out the stubs to file.
big_endian);
}
+ // Write ARM V4BX relocation stubs.
+ for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
+ p != this->arm_v4bx_stubs_.end();
+ ++p)
+ {
+ if (*p == NULL)
+ continue;
+
+ Arm_address address = this->address() + (*p)->offset();
+ gold_assert(address
+ == align_address(address,
+ (*p)->stub_template()->alignment()));
+ (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
+ big_endian);
+ }
+
of->write_output_view(this->offset(), oview_size, oview);
}
bool
Stub_table<big_endian>::update_data_size_and_addralign()
{
- off_t size = 0;
- unsigned addralign = 1;
-
// Go over all stubs in table to compute data size and address alignment.
-
- for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
- p != this->reloc_stubs_.end();
- ++p)
+ off_t size = this->reloc_stubs_size_;
+ unsigned addralign = this->reloc_stubs_addralign_;
+
+ for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
+ p != this->cortex_a8_stubs_.end();
+ ++p)
{
const Stub_template* stub_template = p->second->stub_template();
addralign = std::max(addralign, stub_template->alignment());
+ stub_template->size());
}
- for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
- p != this->cortex_a8_stubs_.end();
+ for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
+ p != this->arm_v4bx_stubs_.end();
++p)
{
- const Stub_template* stub_template = p->second->stub_template();
+ if (*p == NULL)
+ continue;
+
+ const Stub_template* stub_template = (*p)->stub_template();
addralign = std::max(addralign, stub_template->alignment());
size = (align_address(size, stub_template->alignment())
+ stub_template->size());
void
Stub_table<big_endian>::finalize_stubs()
{
- off_t off = 0;
- for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
- p != this->reloc_stubs_.end();
- ++p)
- {
- Reloc_stub* stub = p->second;
- const Stub_template* stub_template = stub->stub_template();
- uint64_t stub_addralign = stub_template->alignment();
- off = align_address(off, stub_addralign);
- stub->set_offset(off);
- off += stub_template->size();
- }
-
+ off_t off = this->reloc_stubs_size_;
for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
p != this->cortex_a8_stubs_.end();
++p)
arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
}
+ for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
+ p != this->arm_v4bx_stubs_.end();
+ ++p)
+ {
+ if (*p == NULL)
+ continue;
+
+ const Stub_template* stub_template = (*p)->stub_template();
+ uint64_t stub_addralign = stub_template->alignment();
+ off = align_address(off, stub_addralign);
+ (*p)->set_offset(off);
+ off += stub_template->size();
+ }
+
gold_assert(off <= this->prev_data_size_);
}
// Cache these to speed up size and alignment queries. It is too slow
// to call section_addraglin and section_size every time.
- this->original_addralign_ = relobj->section_addralign(shndx);
- this->original_size_ = relobj->section_size(shndx);
+ this->original_addralign_ =
+ convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
+ this->original_size_ =
+ convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
// We want to make this look like the original input section after
// output sections are finalized.
void
Arm_input_section<big_endian>::set_final_data_size()
{
- // If this owns a stub table, finalize its data size as well.
+ off_t off = convert_types<off_t, uint64_t>(this->original_size_);
+
if (this->is_stub_table_owner())
{
- uint64_t address = this->address();
-
- // The stub table comes after the original section contents.
- address += this->original_size_;
- address = align_address(address, this->stub_table_->addralign());
- off_t offset = this->offset() + (address - this->address());
- this->stub_table_->set_address_and_file_offset(address, offset);
- address += this->stub_table_->data_size();
- gold_assert(address == this->address() + this->current_data_size());
+ this->stub_table_->finalize_data_size();
+ off = align_address(off, this->stub_table_->addralign());
+ off += this->stub_table_->data_size();
}
-
- this->set_data_size(this->current_data_size());
+ this->set_data_size(off);
}
// Reset address and file offset.
this->set_current_data_size(off);
}
+// Arm_exidx_cantunwind methods.
+
+// Write this to Output file OF for a fixed endianness.
+
+template<bool big_endian>
+void
+Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
+{
+ off_t offset = this->offset();
+ const section_size_type oview_size = 8;
+ unsigned char* const oview = of->get_output_view(offset, oview_size);
+
+ typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+ Valtype* wv = reinterpret_cast<Valtype*>(oview);
+
+ Output_section* os = this->relobj_->output_section(this->shndx_);
+ gold_assert(os != NULL);
+
+ Arm_relobj<big_endian>* arm_relobj =
+ Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
+ Arm_address output_offset =
+ arm_relobj->get_output_section_offset(this->shndx_);
+ Arm_address section_start;
+ if (output_offset != Arm_relobj<big_endian>::invalid_address)
+ section_start = os->address() + output_offset;
+ else
+ {
+ // Currently this only happens for a relaxed section.
+ const Output_relaxed_input_section* poris =
+ os->find_relaxed_input_section(this->relobj_, this->shndx_);
+ gold_assert(poris != NULL);
+ section_start = poris->address();
+ }
+
+ // We always append this to the end of an EXIDX section.
+ Arm_address output_address =
+ section_start + this->relobj_->section_size(this->shndx_);
+
+ // Write out the entry. The first word either points to the beginning
+ // or after the end of a text section. The second word is the special
+ // EXIDX_CANTUNWIND value.
+ uint32_t prel31_offset = output_address - this->address();
+ if (utils::has_overflow<31>(offset))
+ gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
+ elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
+ elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
+
+ of->write_output_view(this->offset(), oview_size, oview);
+}
+
+// Arm_exidx_merged_section methods.
+
+// Constructor for Arm_exidx_merged_section.
+// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
+// SECTION_OFFSET_MAP points to a section offset map describing how
+// parts of the input section are mapped to output. DELETED_BYTES is
+// the number of bytes deleted from the EXIDX input section.
+
+Arm_exidx_merged_section::Arm_exidx_merged_section(
+ const Arm_exidx_input_section& exidx_input_section,
+ const Arm_exidx_section_offset_map& section_offset_map,
+ uint32_t deleted_bytes)
+ : Output_relaxed_input_section(exidx_input_section.relobj(),
+ exidx_input_section.shndx(),
+ exidx_input_section.addralign()),
+ exidx_input_section_(exidx_input_section),
+ section_offset_map_(section_offset_map)
+{
+ // Fix size here so that we do not need to implement set_final_data_size.
+ this->set_data_size(exidx_input_section.size() - deleted_bytes);
+ this->fix_data_size();
+}
+
+// Given an input OBJECT, an input section index SHNDX within that
+// object, and an OFFSET relative to the start of that input
+// section, return whether or not the corresponding offset within
+// the output section is known. If this function returns true, it
+// sets *POUTPUT to the output offset. The value -1 indicates that
+// this input offset is being discarded.
+
+bool
+Arm_exidx_merged_section::do_output_offset(
+ const Relobj* relobj,
+ unsigned int shndx,
+ section_offset_type offset,
+ section_offset_type* poutput) const
+{
+ // We only handle offsets for the original EXIDX input section.
+ if (relobj != this->exidx_input_section_.relobj()
+ || shndx != this->exidx_input_section_.shndx())
+ return false;
+
+ section_offset_type section_size =
+ convert_types<section_offset_type>(this->exidx_input_section_.size());
+ if (offset < 0 || offset >= section_size)
+ // Input offset is out of valid range.
+ *poutput = -1;
+ else
+ {
+ // We need to look up the section offset map to determine the output
+ // offset. Find the reference point in map that is first offset
+ // bigger than or equal to this offset.
+ Arm_exidx_section_offset_map::const_iterator p =
+ this->section_offset_map_.lower_bound(offset);
+
+ // The section offset maps are build such that this should not happen if
+ // input offset is in the valid range.
+ gold_assert(p != this->section_offset_map_.end());
+
+ // We need to check if this is dropped.
+ section_offset_type ref = p->first;
+ section_offset_type mapped_ref = p->second;
+
+ if (mapped_ref != Arm_exidx_input_section::invalid_offset)
+ // Offset is present in output.
+ *poutput = mapped_ref + (offset - ref);
+ else
+ // Offset is discarded owing to EXIDX entry merging.
+ *poutput = -1;
+ }
+
+ return true;
+}
+
+// Write this to output file OF.
+
+void
+Arm_exidx_merged_section::do_write(Output_file* of)
+{
+ // If we retain or discard the whole EXIDX input section, we would
+ // not be here.
+ gold_assert(this->data_size() != this->exidx_input_section_.size()
+ && this->data_size() != 0);
+
+ off_t offset = this->offset();
+ const section_size_type oview_size = this->data_size();
+ unsigned char* const oview = of->get_output_view(offset, oview_size);
+
+ Output_section* os = this->relobj()->output_section(this->shndx());
+ gold_assert(os != NULL);
+
+ // Get contents of EXIDX input section.
+ section_size_type section_size;
+ const unsigned char* section_contents =
+ this->relobj()->section_contents(this->shndx(), §ion_size, false);
+ gold_assert(section_size == this->exidx_input_section_.size());
+
+ // Go over spans of input offsets and write only those that are not
+ // discarded.
+ section_offset_type in_start = 0;
+ section_offset_type out_start = 0;
+ for(Arm_exidx_section_offset_map::const_iterator p =
+ this->section_offset_map_.begin();
+ p != this->section_offset_map_.end();
+ ++p)
+ {
+ section_offset_type in_end = p->first;
+ gold_assert(in_end >= in_start);
+ section_offset_type out_end = p->second;
+ size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
+ if (out_end != -1)
+ {
+ size_t out_chunk_size =
+ convert_types<size_t>(out_end - out_start + 1);
+ gold_assert(out_chunk_size == in_chunk_size);
+ memcpy(oview + out_start, section_contents + in_start,
+ out_chunk_size);
+ out_start += out_chunk_size;
+ }
+ in_start += in_chunk_size;
+ }
+
+ gold_assert(convert_to_section_size_type(out_start) == oview_size);
+ of->write_output_view(this->offset(), oview_size, oview);
+}
+
+// Arm_exidx_fixup methods.
+
+// Append an EXIDX_CANTUNWIND in the current output section if the last entry
+// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
+// points to the end of the last seen EXIDX section.
+
+void
+Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
+{
+ if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
+ && this->last_input_section_ != NULL)
+ {
+ Relobj* relobj = this->last_input_section_->relobj();
+ unsigned int text_shndx = this->last_input_section_->link();
+ Arm_exidx_cantunwind* cantunwind =
+ new Arm_exidx_cantunwind(relobj, text_shndx);
+ this->exidx_output_section_->add_output_section_data(cantunwind);
+ this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
+ }
+}
+
+// Process an EXIDX section entry in input. Return whether this entry
+// can be deleted in the output. SECOND_WORD in the second word of the
+// EXIDX entry.
+
+bool
+Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
+{
+ bool delete_entry;
+ if (second_word == elfcpp::EXIDX_CANTUNWIND)
+ {
+ // Merge if previous entry is also an EXIDX_CANTUNWIND.
+ delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
+ this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
+ }
+ else if ((second_word & 0x80000000) != 0)
+ {
+ // Inlined unwinding data. Merge if equal to previous.
+ delete_entry = (merge_exidx_entries_
+ && this->last_unwind_type_ == UT_INLINED_ENTRY
+ && this->last_inlined_entry_ == second_word);
+ this->last_unwind_type_ = UT_INLINED_ENTRY;
+ this->last_inlined_entry_ = second_word;
+ }
+ else
+ {
+ // Normal table entry. In theory we could merge these too,
+ // but duplicate entries are likely to be much less common.
+ delete_entry = false;
+ this->last_unwind_type_ = UT_NORMAL_ENTRY;
+ }
+ return delete_entry;
+}
+
+// Update the current section offset map during EXIDX section fix-up.
+// If there is no map, create one. INPUT_OFFSET is the offset of a
+// reference point, DELETED_BYTES is the number of deleted by in the
+// section so far. If DELETE_ENTRY is true, the reference point and
+// all offsets after the previous reference point are discarded.
+
+void
+Arm_exidx_fixup::update_offset_map(
+ section_offset_type input_offset,
+ section_size_type deleted_bytes,
+ bool delete_entry)
+{
+ if (this->section_offset_map_ == NULL)
+ this->section_offset_map_ = new Arm_exidx_section_offset_map();
+ section_offset_type output_offset;
+ if (delete_entry)
+ output_offset = Arm_exidx_input_section::invalid_offset;
+ else
+ output_offset = input_offset - deleted_bytes;
+ (*this->section_offset_map_)[input_offset] = output_offset;
+}
+
+// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
+// bytes deleted. If some entries are merged, also store a pointer to a newly
+// created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
+// caller owns the map and is responsible for releasing it after use.
+
+template<bool big_endian>
+uint32_t
+Arm_exidx_fixup::process_exidx_section(
+ const Arm_exidx_input_section* exidx_input_section,
+ Arm_exidx_section_offset_map** psection_offset_map)
+{
+ Relobj* relobj = exidx_input_section->relobj();
+ unsigned shndx = exidx_input_section->shndx();
+ section_size_type section_size;
+ const unsigned char* section_contents =
+ relobj->section_contents(shndx, §ion_size, false);
+
+ if ((section_size % 8) != 0)
+ {
+ // Something is wrong with this section. Better not touch it.
+ gold_error(_("uneven .ARM.exidx section size in %s section %u"),
+ relobj->name().c_str(), shndx);
+ this->last_input_section_ = exidx_input_section;
+ this->last_unwind_type_ = UT_NONE;
+ return 0;
+ }
+
+ uint32_t deleted_bytes = 0;
+ bool prev_delete_entry = false;
+ gold_assert(this->section_offset_map_ == NULL);
+
+ for (section_size_type i = 0; i < section_size; i += 8)
+ {
+ typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+ const Valtype* wv =
+ reinterpret_cast<const Valtype*>(section_contents + i + 4);
+ uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
+
+ bool delete_entry = this->process_exidx_entry(second_word);
+
+ // Entry deletion causes changes in output offsets. We use a std::map
+ // to record these. And entry (x, y) means input offset x
+ // is mapped to output offset y. If y is invalid_offset, then x is
+ // dropped in the output. Because of the way std::map::lower_bound
+ // works, we record the last offset in a region w.r.t to keeping or
+ // dropping. If there is no entry (x0, y0) for an input offset x0,
+ // the output offset y0 of it is determined by the output offset y1 of
+ // the smallest input offset x1 > x0 that there is an (x1, y1) entry
+ // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
+ // y0 is also -1.
+ if (delete_entry != prev_delete_entry && i != 0)
+ this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
+
+ // Update total deleted bytes for this entry.
+ if (delete_entry)
+ deleted_bytes += 8;
+
+ prev_delete_entry = delete_entry;
+ }
+
+ // If section offset map is not NULL, make an entry for the end of
+ // section.
+ if (this->section_offset_map_ != NULL)
+ update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
+
+ *psection_offset_map = this->section_offset_map_;
+ this->section_offset_map_ = NULL;
+ this->last_input_section_ = exidx_input_section;
+
+ // Set the first output text section so that we can link the EXIDX output
+ // section to it. Ignore any EXIDX input section that is completely merged.
+ if (this->first_output_text_section_ == NULL
+ && deleted_bytes != section_size)
+ {
+ unsigned int link = exidx_input_section->link();
+ Output_section* os = relobj->output_section(link);
+ gold_assert(os != NULL);
+ this->first_output_text_section_ = os;
+ }
+
+ return deleted_bytes;
+}
+
// Arm_output_section methods.
// Create a stub group for input sections from BEGIN to END. OWNER
Target_arm<big_endian>* target,
std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
{
+ // We use a different kind of relaxed section in an EXIDX section.
+ // The static casting from Output_relaxed_input_section to
+ // Arm_input_section is invalid in an EXIDX section. We are okay
+ // because we should not be calling this for an EXIDX section.
+ gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
+
// Currently we convert ordinary input sections into relaxed sections only
// at this point but we may want to support creating relaxed input section
// very early. So we check here to see if owner is already a relaxed
}
}
-// Arm_relobj methods.
+// Append non empty text sections in this to LIST in ascending
+// order of their position in this.
-// Determine if we want to scan the SHNDX-th section for relocation stubs.
+template<bool big_endian>
+void
+Arm_output_section<big_endian>::append_text_sections_to_list(
+ Text_section_list* list)
+{
+ gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
+
+ for (Input_section_list::const_iterator p = this->input_sections().begin();
+ p != this->input_sections().end();
+ ++p)
+ {
+ // We only care about plain or relaxed input sections. We also
+ // ignore any merged sections.
+ if ((p->is_input_section() || p->is_relaxed_input_section())
+ && p->data_size() != 0)
+ list->push_back(Text_section_list::value_type(p->relobj(),
+ p->shndx()));
+ }
+}
+
+template<bool big_endian>
+void
+Arm_output_section<big_endian>::fix_exidx_coverage(
+ Layout* layout,
+ const Text_section_list& sorted_text_sections,
+ Symbol_table* symtab,
+ bool merge_exidx_entries)
+{
+ // We should only do this for the EXIDX output section.
+ gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
+
+ // We don't want the relaxation loop to undo these changes, so we discard
+ // the current saved states and take another one after the fix-up.
+ this->discard_states();
+
+ // Remove all input sections.
+ uint64_t address = this->address();
+ typedef std::list<Output_section::Input_section> Input_section_list;
+ Input_section_list input_sections;
+ this->reset_address_and_file_offset();
+ this->get_input_sections(address, std::string(""), &input_sections);
+
+ if (!this->input_sections().empty())
+ gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
+
+ // Go through all the known input sections and record them.
+ typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
+ typedef Unordered_map<Section_id, const Output_section::Input_section*,
+ Section_id_hash> Text_to_exidx_map;
+ Text_to_exidx_map text_to_exidx_map;
+ for (Input_section_list::const_iterator p = input_sections.begin();
+ p != input_sections.end();
+ ++p)
+ {
+ // This should never happen. At this point, we should only see
+ // plain EXIDX input sections.
+ gold_assert(!p->is_relaxed_input_section());
+ text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
+ }
+
+ Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
+
+ // Go over the sorted text sections.
+ typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
+ Section_id_set processed_input_sections;
+ for (Text_section_list::const_iterator p = sorted_text_sections.begin();
+ p != sorted_text_sections.end();
+ ++p)
+ {
+ Relobj* relobj = p->first;
+ unsigned int shndx = p->second;
+
+ Arm_relobj<big_endian>* arm_relobj =
+ Arm_relobj<big_endian>::as_arm_relobj(relobj);
+ const Arm_exidx_input_section* exidx_input_section =
+ arm_relobj->exidx_input_section_by_link(shndx);
+
+ // If this text section has no EXIDX section or if the EXIDX section
+ // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
+ // of the last seen EXIDX section.
+ if (exidx_input_section == NULL || exidx_input_section->has_errors())
+ {
+ exidx_fixup.add_exidx_cantunwind_as_needed();
+ continue;
+ }
+
+ Relobj* exidx_relobj = exidx_input_section->relobj();
+ unsigned int exidx_shndx = exidx_input_section->shndx();
+ Section_id sid(exidx_relobj, exidx_shndx);
+ Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
+ if (iter == text_to_exidx_map.end())
+ {
+ // This is odd. We have not seen this EXIDX input section before.
+ // We cannot do fix-up. If we saw a SECTIONS clause in a script,
+ // issue a warning instead. We assume the user knows what he
+ // or she is doing. Otherwise, this is an error.
+ if (layout->script_options()->saw_sections_clause())
+ gold_warning(_("unwinding may not work because EXIDX input section"
+ " %u of %s is not in EXIDX output section"),
+ exidx_shndx, exidx_relobj->name().c_str());
+ else
+ gold_error(_("unwinding may not work because EXIDX input section"
+ " %u of %s is not in EXIDX output section"),
+ exidx_shndx, exidx_relobj->name().c_str());
+
+ exidx_fixup.add_exidx_cantunwind_as_needed();
+ continue;
+ }
+
+ // Fix up coverage and append input section to output data list.
+ Arm_exidx_section_offset_map* section_offset_map = NULL;
+ uint32_t deleted_bytes =
+ exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
+ §ion_offset_map);
+
+ if (deleted_bytes == exidx_input_section->size())
+ {
+ // The whole EXIDX section got merged. Remove it from output.
+ gold_assert(section_offset_map == NULL);
+ exidx_relobj->set_output_section(exidx_shndx, NULL);
+
+ // All local symbols defined in this input section will be dropped.
+ // We need to adjust output local symbol count.
+ arm_relobj->set_output_local_symbol_count_needs_update();
+ }
+ else if (deleted_bytes > 0)
+ {
+ // Some entries are merged. We need to convert this EXIDX input
+ // section into a relaxed section.
+ gold_assert(section_offset_map != NULL);
+ Arm_exidx_merged_section* merged_section =
+ new Arm_exidx_merged_section(*exidx_input_section,
+ *section_offset_map, deleted_bytes);
+ const std::string secname = exidx_relobj->section_name(exidx_shndx);
+ this->add_relaxed_input_section(layout, merged_section, secname);
+ arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
+
+ // All local symbols defined in discarded portions of this input
+ // section will be dropped. We need to adjust output local symbol
+ // count.
+ arm_relobj->set_output_local_symbol_count_needs_update();
+ }
+ else
+ {
+ // Just add back the EXIDX input section.
+ gold_assert(section_offset_map == NULL);
+ const Output_section::Input_section* pis = iter->second;
+ gold_assert(pis->is_input_section());
+ this->add_script_input_section(*pis);
+ }
+
+ processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
+ }
+
+ // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
+ exidx_fixup.add_exidx_cantunwind_as_needed();
+
+ // Remove any known EXIDX input sections that are not processed.
+ for (Input_section_list::const_iterator p = input_sections.begin();
+ p != input_sections.end();
+ ++p)
+ {
+ if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
+ == processed_input_sections.end())
+ {
+ // We discard a known EXIDX section because its linked
+ // text section has been folded by ICF. We also discard an
+ // EXIDX section with error, the output does not matter in this
+ // case. We do this to avoid triggering asserts.
+ Arm_relobj<big_endian>* arm_relobj =
+ Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
+ const Arm_exidx_input_section* exidx_input_section =
+ arm_relobj->exidx_input_section_by_shndx(p->shndx());
+ gold_assert(exidx_input_section != NULL);
+ if (!exidx_input_section->has_errors())
+ {
+ unsigned int text_shndx = exidx_input_section->link();
+ gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
+ }
+
+ // Remove this from link. We also need to recount the
+ // local symbols.
+ p->relobj()->set_output_section(p->shndx(), NULL);
+ arm_relobj->set_output_local_symbol_count_needs_update();
+ }
+ }
+
+ // Link exidx output section to the first seen output section and
+ // set correct entry size.
+ this->set_link_section(exidx_fixup.first_output_text_section());
+ this->set_entsize(8);
+
+ // Make changes permanent.
+ this->save_states();
+ this->set_section_offsets_need_adjustment();
+}
+
+// Link EXIDX output sections to text output sections.
+
+template<bool big_endian>
+void
+Arm_output_section<big_endian>::set_exidx_section_link()
+{
+ gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
+ if (!this->input_sections().empty())
+ {
+ Input_section_list::const_iterator p = this->input_sections().begin();
+ Arm_relobj<big_endian>* arm_relobj =
+ Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
+ unsigned exidx_shndx = p->shndx();
+ const Arm_exidx_input_section* exidx_input_section =
+ arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
+ gold_assert(exidx_input_section != NULL);
+ unsigned int text_shndx = exidx_input_section->link();
+ Output_section* os = arm_relobj->output_section(text_shndx);
+ this->set_link_section(os);
+ }
+}
+
+// Arm_relobj methods.
+
+// Determine if an input section is scannable for stub processing. SHDR is
+// the header of the section and SHNDX is the section index. OS is the output
+// section for the input section and SYMTAB is the global symbol table used to
+// look up ICF information.
+
+template<bool big_endian>
+bool
+Arm_relobj<big_endian>::section_is_scannable(
+ const elfcpp::Shdr<32, big_endian>& shdr,
+ unsigned int shndx,
+ const Output_section* os,
+ const Symbol_table* symtab)
+{
+ // Skip any empty sections, unallocated sections or sections whose
+ // type are not SHT_PROGBITS.
+ if (shdr.get_sh_size() == 0
+ || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
+ || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
+ return false;
+
+ // Skip any discarded or ICF'ed sections.
+ if (os == NULL || symtab->is_section_folded(this, shndx))
+ return false;
+
+ // If this requires special offset handling, check to see if it is
+ // a relaxed section. If this is not, then it is a merged section that
+ // we cannot handle.
+ if (this->is_output_section_offset_invalid(shndx))
+ {
+ const Output_relaxed_input_section* poris =
+ os->find_relaxed_input_section(this, shndx);
+ if (poris == NULL)
+ return false;
+ }
+
+ return true;
+}
+
+// Determine if we want to scan the SHNDX-th section for relocation stubs.
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
template<bool big_endian>
Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
const elfcpp::Shdr<32, big_endian>& shdr,
const Relobj::Output_sections& out_sections,
- const Symbol_table *symtab)
+ const Symbol_table* symtab,
+ const unsigned char* pshdrs)
{
unsigned int sh_type = shdr.get_sh_type();
if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
if (sh_size == 0)
return false;
- // Ignore reloc section with bad info. This error will be
- // reported in the final link.
- unsigned int index = this->adjust_shndx(shdr.get_sh_info());
- if (index >= this->shnum())
- return false;
-
- // This relocation section is against a section which we
- // discarded or if the section is folded into another
- // section due to ICF.
- if (out_sections[index] == NULL || symtab->is_section_folded(this, index))
- return false;
-
// Ignore reloc section with unexpected symbol table. The
// error will be reported in the final link.
if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
return false;
- return true;
+ // Ignore reloc section with bad info. This error will be
+ // reported in the final link.
+ unsigned int index = this->adjust_shndx(shdr.get_sh_info());
+ if (index >= this->shnum())
+ return false;
+
+ const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
+ const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
+ return this->section_is_scannable(text_shdr, index,
+ out_sections[index], symtab);
+}
+
+// Return the output address of either a plain input section or a relaxed
+// input section. SHNDX is the section index. We define and use this
+// instead of calling Output_section::output_address because that is slow
+// for large output.
+
+template<bool big_endian>
+Arm_address
+Arm_relobj<big_endian>::simple_input_section_output_address(
+ unsigned int shndx,
+ Output_section* os)
+{
+ if (this->is_output_section_offset_invalid(shndx))
+ {
+ const Output_relaxed_input_section* poris =
+ os->find_relaxed_input_section(this, shndx);
+ // We do not handle merged sections here.
+ gold_assert(poris != NULL);
+ return poris->address();
+ }
+ else
+ return os->address() + this->get_output_section_offset(shndx);
}
// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
Output_section* os,
const Symbol_table* symtab)
{
- // We only scan non-empty code sections.
- if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0
- || shdr.get_sh_size() == 0)
- return false;
-
- // Ignore discarded or ICF'ed sections.
- if (os == NULL || symtab->is_section_folded(this, shndx))
+ if (!this->section_is_scannable(shdr, shndx, os, symtab))
return false;
-
- // Find output address of section.
- Arm_address address = os->output_address(this, shndx, 0);
// If the section does not cross any 4K-boundaries, it does not need to
// be scanned.
+ Arm_address address = this->simple_input_section_output_address(shndx, os);
if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
return false;
Output_section* os,
Target_arm<big_endian>* arm_target)
{
- Arm_address output_address = os->output_address(this, shndx, 0);
+ // Look for the first mapping symbol in this section. It should be
+ // at (shndx, 0).
+ Mapping_symbol_position section_start(shndx, 0);
+ typename Mapping_symbols_info::const_iterator p =
+ this->mapping_symbols_info_.lower_bound(section_start);
+
+ // There are no mapping symbols for this section. Treat it as a data-only
+ // section. Issue a warning if section is marked as containing
+ // instructions.
+ if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
+ {
+ if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
+ gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
+ "erratum because it has no mapping symbols."),
+ shndx, this->name().c_str());
+ return;
+ }
+
+ Arm_address output_address =
+ this->simple_input_section_output_address(shndx, os);
// Get the section contents.
section_size_type input_view_size = 0;
// THUMB code only. Second, we only want to look at the 4K-page boundary
// to speed up the scanning.
- // Look for the first mapping symbol in this section. It should be
- // at (shndx, 0).
- Mapping_symbol_position section_start(shndx, 0);
- typename Mapping_symbols_info::const_iterator p =
- this->mapping_symbols_info_.lower_bound(section_start);
-
- if (p == this->mapping_symbols_info_.end()
- || p->first != section_start)
- {
- gold_warning(_("Cortex-A8 erratum scanning failed because there "
- "is no mapping symbols for section %u of %s"),
- shndx, this->name().c_str());
- return;
- }
-
while (p != this->mapping_symbols_info_.end()
&& p->first.first == shndx)
{
for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
{
const elfcpp::Shdr<32, big_endian> shdr(p);
- if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab))
+ if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
+ pshdrs))
{
unsigned int index = this->adjust_shndx(shdr.get_sh_info());
Arm_address output_offset = this->get_output_section_offset(index);
Arm_address output_address;
- if(output_offset != invalid_address)
+ if (output_offset != invalid_address)
output_address = out_sections[index]->address() + output_offset;
else
{
const char* sym_name = pnames + sym.get_st_name();
if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
{
- unsigned int input_shndx = sym.get_st_shndx();
+ bool is_ordinary;
+ unsigned int input_shndx =
+ this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
+ gold_assert(is_ordinary);
// Strip of LSB in case this is a THUMB symbol.
Mapping_symbol_position msp(input_shndx, input_value & ~1U);
const Symbol_table* symtab,
const Layout* layout,
const unsigned char* pshdrs,
+ Output_file* of,
typename Sized_relobj<32, big_endian>::Views* pviews)
{
// Call parent to relocate sections.
Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
- pviews);
+ of, pviews);
// We do not generate stubs if doing a relocatable link.
if (parameters->options().relocatable())
Arm_input_section<big_endian>* arm_input_section =
arm_target->find_arm_input_section(this, i);
- if (arm_input_section == NULL
- || !arm_input_section->is_stub_table_owner()
- || arm_input_section->stub_table()->empty())
- continue;
+ if (arm_input_section != NULL
+ && arm_input_section->is_stub_table_owner()
+ && !arm_input_section->stub_table()->empty())
+ {
+ // We cannot discard a section if it owns a stub table.
+ Output_section* os = this->output_section(i);
+ gold_assert(os != NULL);
+
+ relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
+ relinfo.reloc_shdr = NULL;
+ relinfo.data_shndx = i;
+ relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
+
+ gold_assert((*pviews)[i].view != NULL);
+
+ // We are passed the output section view. Adjust it to cover the
+ // stub table only.
+ Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
+ gold_assert((stub_table->address() >= (*pviews)[i].address)
+ && ((stub_table->address() + stub_table->data_size())
+ <= (*pviews)[i].address + (*pviews)[i].view_size));
+
+ off_t offset = stub_table->address() - (*pviews)[i].address;
+ unsigned char* view = (*pviews)[i].view + offset;
+ Arm_address address = stub_table->address();
+ section_size_type view_size = stub_table->data_size();
+
+ stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
+ view_size);
+ }
- // We cannot discard a section if it owns a stub table.
- Output_section* os = this->output_section(i);
- gold_assert(os != NULL);
+ // Apply Cortex A8 workaround if applicable.
+ if (this->section_has_cortex_a8_workaround(i))
+ {
+ unsigned char* view = (*pviews)[i].view;
+ Arm_address view_address = (*pviews)[i].address;
+ section_size_type view_size = (*pviews)[i].view_size;
+ Stub_table<big_endian>* stub_table = this->stub_tables_[i];
+
+ // Adjust view to cover section.
+ Output_section* os = this->output_section(i);
+ gold_assert(os != NULL);
+ Arm_address section_address =
+ this->simple_input_section_output_address(i, os);
+ uint64_t section_size = this->section_size(i);
+
+ gold_assert(section_address >= view_address
+ && ((section_address + section_size)
+ <= (view_address + view_size)));
+
+ unsigned char* section_view = view + (section_address - view_address);
+
+ // Apply the Cortex-A8 workaround to the output address range
+ // corresponding to this input section.
+ stub_table->apply_cortex_a8_workaround_to_address_range(
+ arm_target,
+ section_view,
+ section_address,
+ section_size);
+ }
+ }
+}
+
+// Find the linked text section of an EXIDX section by looking the the first
+// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
+// must be linked to to its associated code section via the sh_link field of
+// its section header. However, some tools are broken and the link is not
+// always set. LD just drops such an EXIDX section silently, causing the
+// associated code not unwindabled. Here we try a little bit harder to
+// discover the linked code section.
+//
+// PSHDR points to the section header of a relocation section of an EXIDX
+// section. If we can find a linked text section, return true and
+// store the text section index in the location PSHNDX. Otherwise
+// return false.
+
+template<bool big_endian>
+bool
+Arm_relobj<big_endian>::find_linked_text_section(
+ const unsigned char* pshdr,
+ const unsigned char* psyms,
+ unsigned int* pshndx)
+{
+ elfcpp::Shdr<32, big_endian> shdr(pshdr);
+
+ // If there is no relocation, we cannot find the linked text section.
+ size_t reloc_size;
+ if (shdr.get_sh_type() == elfcpp::SHT_REL)
+ reloc_size = elfcpp::Elf_sizes<32>::rel_size;
+ else
+ reloc_size = elfcpp::Elf_sizes<32>::rela_size;
+ size_t reloc_count = shdr.get_sh_size() / reloc_size;
+
+ // Get the relocations.
+ const unsigned char* prelocs =
+ this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
- relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
- relinfo.reloc_shdr = NULL;
- relinfo.data_shndx = i;
- relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
+ // Find the REL31 relocation for the first word of the first EXIDX entry.
+ for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
+ {
+ Arm_address r_offset;
+ typename elfcpp::Elf_types<32>::Elf_WXword r_info;
+ if (shdr.get_sh_type() == elfcpp::SHT_REL)
+ {
+ typename elfcpp::Rel<32, big_endian> reloc(prelocs);
+ r_info = reloc.get_r_info();
+ r_offset = reloc.get_r_offset();
+ }
+ else
+ {
+ typename elfcpp::Rela<32, big_endian> reloc(prelocs);
+ r_info = reloc.get_r_info();
+ r_offset = reloc.get_r_offset();
+ }
- gold_assert((*pviews)[i].view != NULL);
+ unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
+ if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
+ continue;
- // We are passed the output section view. Adjust it to cover the
- // stub table only.
- Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
- gold_assert((stub_table->address() >= (*pviews)[i].address)
- && ((stub_table->address() + stub_table->data_size())
- <= (*pviews)[i].address + (*pviews)[i].view_size));
+ unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
+ if (r_sym == 0
+ || r_sym >= this->local_symbol_count()
+ || r_offset != 0)
+ continue;
- off_t offset = stub_table->address() - (*pviews)[i].address;
- unsigned char* view = (*pviews)[i].view + offset;
- Arm_address address = stub_table->address();
- section_size_type view_size = stub_table->data_size();
-
- stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
- view_size);
+ // This is the relocation for the first word of the first EXIDX entry.
+ // We expect to see a local section symbol.
+ const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
+ elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
+ if (sym.get_st_type() == elfcpp::STT_SECTION)
+ {
+ bool is_ordinary;
+ *pshndx =
+ this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
+ gold_assert(is_ordinary);
+ return true;
+ }
+ else
+ return false;
}
+
+ return false;
}
-// Helper functions for both Arm_relobj and Arm_dynobj to read ARM
-// ABI information.
+// Make an EXIDX input section object for an EXIDX section whose index is
+// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
+// is the section index of the linked text section.
template<bool big_endian>
-Attributes_section_data*
-read_arm_attributes_section(
- Object* object,
- Read_symbols_data *sd)
+void
+Arm_relobj<big_endian>::make_exidx_input_section(
+ unsigned int shndx,
+ const elfcpp::Shdr<32, big_endian>& shdr,
+ unsigned int text_shndx,
+ const elfcpp::Shdr<32, big_endian>& text_shdr)
{
- // Read the attributes section if there is one.
- // We read from the end because gas seems to put it near the end of
- // the section headers.
- const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
- const unsigned char *ps =
- sd->section_headers->data() + shdr_size * (object->shnum() - 1);
- for (unsigned int i = object->shnum(); i > 0; --i, ps -= shdr_size)
+ // Create an Arm_exidx_input_section object for this EXIDX section.
+ Arm_exidx_input_section* exidx_input_section =
+ new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
+ shdr.get_sh_addralign());
+
+ gold_assert(this->exidx_section_map_[shndx] == NULL);
+ this->exidx_section_map_[shndx] = exidx_input_section;
+
+ if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
{
- elfcpp::Shdr<32, big_endian> shdr(ps);
- if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
- {
- section_offset_type section_offset = shdr.get_sh_offset();
- section_size_type section_size =
- convert_to_section_size_type(shdr.get_sh_size());
- File_view* view = object->get_lasting_view(section_offset,
- section_size, true, false);
- return new Attributes_section_data(view->data(), section_size);
- }
+ gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
+ this->section_name(shndx).c_str(), shndx, text_shndx,
+ this->name().c_str());
+ exidx_input_section->set_has_errors();
+ }
+ else if (this->exidx_section_map_[text_shndx] != NULL)
+ {
+ unsigned other_exidx_shndx =
+ this->exidx_section_map_[text_shndx]->shndx();
+ gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
+ "%s(%u) in %s"),
+ this->section_name(shndx).c_str(), shndx,
+ this->section_name(other_exidx_shndx).c_str(),
+ other_exidx_shndx, this->section_name(text_shndx).c_str(),
+ text_shndx, this->name().c_str());
+ exidx_input_section->set_has_errors();
+ }
+ else
+ this->exidx_section_map_[text_shndx] = exidx_input_section;
+
+ // Check section flags of text section.
+ if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
+ {
+ gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
+ " in %s"),
+ this->section_name(shndx).c_str(), shndx,
+ this->section_name(text_shndx).c_str(), text_shndx,
+ this->name().c_str());
+ exidx_input_section->set_has_errors();
}
- return NULL;
+ else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
+ // I would like to make this an error but currenlty ld just ignores
+ // this.
+ gold_warning(_("EXIDX section %s(%u) links to non-executable section "
+ "%s(%u) in %s"),
+ this->section_name(shndx).c_str(), shndx,
+ this->section_name(text_shndx).c_str(), text_shndx,
+ this->name().c_str());
}
// Read the symbol information.
// Call parent class to read symbol information.
Sized_relobj<32, big_endian>::do_read_symbols(sd);
+ // If this input file is a binary file, it has no processor
+ // specific flags and attributes section.
+ Input_file::Format format = this->input_file()->format();
+ if (format != Input_file::FORMAT_ELF)
+ {
+ gold_assert(format == Input_file::FORMAT_BINARY);
+ this->merge_flags_and_attributes_ = false;
+ return;
+ }
+
// Read processor-specific flags in ELF file header.
const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
elfcpp::Elf_sizes<32>::ehdr_size,
true, false);
elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
this->processor_specific_flags_ = ehdr.get_e_flags();
- this->attributes_section_data_ =
- read_arm_attributes_section<big_endian>(this, sd);
+
+ // Go over the section headers and look for .ARM.attributes and .ARM.exidx
+ // sections.
+ std::vector<unsigned int> deferred_exidx_sections;
+ const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
+ const unsigned char* pshdrs = sd->section_headers->data();
+ const unsigned char* ps = pshdrs + shdr_size;
+ bool must_merge_flags_and_attributes = false;
+ for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
+ {
+ elfcpp::Shdr<32, big_endian> shdr(ps);
+
+ // Sometimes an object has no contents except the section name string
+ // table and an empty symbol table with the undefined symbol. We
+ // don't want to merge processor-specific flags from such an object.
+ if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
+ {
+ // Symbol table is not empty.
+ const elfcpp::Elf_types<32>::Elf_WXword sym_size =
+ elfcpp::Elf_sizes<32>::sym_size;
+ if (shdr.get_sh_size() > sym_size)
+ must_merge_flags_and_attributes = true;
+ }
+ else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
+ // If this is neither an empty symbol table nor a string table,
+ // be conservative.
+ must_merge_flags_and_attributes = true;
+
+ if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
+ {
+ gold_assert(this->attributes_section_data_ == NULL);
+ section_offset_type section_offset = shdr.get_sh_offset();
+ section_size_type section_size =
+ convert_to_section_size_type(shdr.get_sh_size());
+ File_view* view = this->get_lasting_view(section_offset,
+ section_size, true, false);
+ this->attributes_section_data_ =
+ new Attributes_section_data(view->data(), section_size);
+ }
+ else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
+ {
+ unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
+ if (text_shndx == elfcpp::SHN_UNDEF)
+ deferred_exidx_sections.push_back(i);
+ else
+ {
+ elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
+ + text_shndx * shdr_size);
+ this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
+ }
+ // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
+ if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
+ gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
+ this->section_name(i).c_str(), this->name().c_str());
+ }
+ }
+
+ // This is rare.
+ if (!must_merge_flags_and_attributes)
+ {
+ gold_assert(deferred_exidx_sections.empty());
+ this->merge_flags_and_attributes_ = false;
+ return;
+ }
+
+ // Some tools are broken and they do not set the link of EXIDX sections.
+ // We look at the first relocation to figure out the linked sections.
+ if (!deferred_exidx_sections.empty())
+ {
+ // We need to go over the section headers again to find the mapping
+ // from sections being relocated to their relocation sections. This is
+ // a bit inefficient as we could do that in the loop above. However,
+ // we do not expect any deferred EXIDX sections normally. So we do not
+ // want to slow down the most common path.
+ typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
+ Reloc_map reloc_map;
+ ps = pshdrs + shdr_size;
+ for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
+ {
+ elfcpp::Shdr<32, big_endian> shdr(ps);
+ elfcpp::Elf_Word sh_type = shdr.get_sh_type();
+ if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
+ {
+ unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
+ if (info_shndx >= this->shnum())
+ gold_error(_("relocation section %u has invalid info %u"),
+ i, info_shndx);
+ Reloc_map::value_type value(info_shndx, i);
+ std::pair<Reloc_map::iterator, bool> result =
+ reloc_map.insert(value);
+ if (!result.second)
+ gold_error(_("section %u has multiple relocation sections "
+ "%u and %u"),
+ info_shndx, i, reloc_map[info_shndx]);
+ }
+ }
+
+ // Read the symbol table section header.
+ const unsigned int symtab_shndx = this->symtab_shndx();
+ elfcpp::Shdr<32, big_endian>
+ symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
+ gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
+
+ // Read the local symbols.
+ const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
+ const unsigned int loccount = this->local_symbol_count();
+ gold_assert(loccount == symtabshdr.get_sh_info());
+ off_t locsize = loccount * sym_size;
+ const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
+ locsize, true, true);
+
+ // Process the deferred EXIDX sections.
+ for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
+ {
+ unsigned int shndx = deferred_exidx_sections[i];
+ elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
+ unsigned int text_shndx = elfcpp::SHN_UNDEF;
+ Reloc_map::const_iterator it = reloc_map.find(shndx);
+ if (it != reloc_map.end())
+ find_linked_text_section(pshdrs + it->second * shdr_size,
+ psyms, &text_shndx);
+ elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
+ + text_shndx * shdr_size);
+ this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
+ }
+ }
}
// Process relocations for garbage collection. The ARM target uses .ARM.exidx
// First, call base class method to process relocations in this object.
Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
+ // If --gc-sections is not specified, there is nothing more to do.
+ // This happens when --icf is used but --gc-sections is not.
+ if (!parameters->options().gc_sections())
+ return;
+
unsigned int shnum = this->shnum();
const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
}
}
-// Arm_dynobj methods.
-
-// Read the symbol information.
+// Update output local symbol count. Owing to EXIDX entry merging, some local
+// symbols will be removed in output. Adjust output local symbol count
+// accordingly. We can only changed the static output local symbol count. It
+// is too late to change the dynamic symbols.
template<bool big_endian>
void
-Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
+Arm_relobj<big_endian>::update_output_local_symbol_count()
{
- // Call parent class to read symbol information.
- Sized_dynobj<32, big_endian>::do_read_symbols(sd);
-
- // Read processor-specific flags in ELF file header.
- const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
- elfcpp::Elf_sizes<32>::ehdr_size,
- true, false);
- elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
- this->processor_specific_flags_ = ehdr.get_e_flags();
- this->attributes_section_data_ =
- read_arm_attributes_section<big_endian>(this, sd);
-}
+ // Caller should check that this needs updating. We want caller checking
+ // because output_local_symbol_count_needs_update() is most likely inlined.
+ gold_assert(this->output_local_symbol_count_needs_update_);
+
+ gold_assert(this->symtab_shndx() != -1U);
+ if (this->symtab_shndx() == 0)
+ {
+ // This object has no symbols. Weird but legal.
+ return;
+ }
+
+ // Read the symbol table section header.
+ const unsigned int symtab_shndx = this->symtab_shndx();
+ elfcpp::Shdr<32, big_endian>
+ symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
+ gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
+
+ // Read the local symbols.
+ const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
+ const unsigned int loccount = this->local_symbol_count();
+ gold_assert(loccount == symtabshdr.get_sh_info());
+ off_t locsize = loccount * sym_size;
+ const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
+ locsize, true, true);
+
+ // Loop over the local symbols.
+
+ typedef typename Sized_relobj<32, big_endian>::Output_sections
+ Output_sections;
+ const Output_sections& out_sections(this->output_sections());
+ unsigned int shnum = this->shnum();
+ unsigned int count = 0;
+ // Skip the first, dummy, symbol.
+ psyms += sym_size;
+ for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
+ {
+ elfcpp::Sym<32, big_endian> sym(psyms);
+
+ Symbol_value<32>& lv((*this->local_values())[i]);
+
+ // This local symbol was already discarded by do_count_local_symbols.
+ if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
+ continue;
+
+ bool is_ordinary;
+ unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
+ &is_ordinary);
+
+ if (shndx < shnum)
+ {
+ Output_section* os = out_sections[shndx];
+
+ // This local symbol no longer has an output section. Discard it.
+ if (os == NULL)
+ {
+ lv.set_no_output_symtab_entry();
+ continue;
+ }
+
+ // Currently we only discard parts of EXIDX input sections.
+ // We explicitly check for a merged EXIDX input section to avoid
+ // calling Output_section_data::output_offset unless necessary.
+ if ((this->get_output_section_offset(shndx) == invalid_address)
+ && (this->exidx_input_section_by_shndx(shndx) != NULL))
+ {
+ section_offset_type output_offset =
+ os->output_offset(this, shndx, lv.input_value());
+ if (output_offset == -1)
+ {
+ // This symbol is defined in a part of an EXIDX input section
+ // that is discarded due to entry merging.
+ lv.set_no_output_symtab_entry();
+ continue;
+ }
+ }
+ }
+
+ ++count;
+ }
+
+ this->set_output_local_symbol_count(count);
+ this->output_local_symbol_count_needs_update_ = false;
+}
+
+// Arm_dynobj methods.
+
+// Read the symbol information.
+
+template<bool big_endian>
+void
+Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
+{
+ // Call parent class to read symbol information.
+ Sized_dynobj<32, big_endian>::do_read_symbols(sd);
+
+ // Read processor-specific flags in ELF file header.
+ const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
+ elfcpp::Elf_sizes<32>::ehdr_size,
+ true, false);
+ elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
+ this->processor_specific_flags_ = ehdr.get_e_flags();
+
+ // Read the attributes section if there is one.
+ // We read from the end because gas seems to put it near the end of
+ // the section headers.
+ const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
+ const unsigned char* ps =
+ sd->section_headers->data() + shdr_size * (this->shnum() - 1);
+ for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
+ {
+ elfcpp::Shdr<32, big_endian> shdr(ps);
+ if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
+ {
+ section_offset_type section_offset = shdr.get_sh_offset();
+ section_size_type section_size =
+ convert_to_section_size_type(shdr.get_sh_size());
+ File_view* view = this->get_lasting_view(section_offset,
+ section_size, true, false);
+ this->attributes_section_data_ =
+ new Attributes_section_data(view->data(), section_size);
+ break;
+ }
+ }
+}
// Stub_addend_reader methods.
}
}
+// Arm_output_data_got methods.
+
+// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
+// The first one is initialized to be 1, which is the module index for
+// the main executable and the second one 0. A reloc of the type
+// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
+// be applied by gold. GSYM is a global symbol.
+//
+template<bool big_endian>
+void
+Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
+ unsigned int got_type,
+ Symbol* gsym)
+{
+ if (gsym->has_got_offset(got_type))
+ return;
+
+ // We are doing a static link. Just mark it as belong to module 1,
+ // the executable.
+ unsigned int got_offset = this->add_constant(1);
+ gsym->set_got_offset(got_type, got_offset);
+ got_offset = this->add_constant(0);
+ this->static_relocs_.push_back(Static_reloc(got_offset,
+ elfcpp::R_ARM_TLS_DTPOFF32,
+ gsym));
+}
+
+// Same as the above but for a local symbol.
+
+template<bool big_endian>
+void
+Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
+ unsigned int got_type,
+ Sized_relobj<32, big_endian>* object,
+ unsigned int index)
+{
+ if (object->local_has_got_offset(index, got_type))
+ return;
+
+ // We are doing a static link. Just mark it as belong to module 1,
+ // the executable.
+ unsigned int got_offset = this->add_constant(1);
+ object->set_local_got_offset(index, got_type, got_offset);
+ got_offset = this->add_constant(0);
+ this->static_relocs_.push_back(Static_reloc(got_offset,
+ elfcpp::R_ARM_TLS_DTPOFF32,
+ object, index));
+}
+
+template<bool big_endian>
+void
+Arm_output_data_got<big_endian>::do_write(Output_file* of)
+{
+ // Call parent to write out GOT.
+ Output_data_got<32, big_endian>::do_write(of);
+
+ // We are done if there is no fix up.
+ if (this->static_relocs_.empty())
+ return;
+
+ gold_assert(parameters->doing_static_link());
+
+ const off_t offset = this->offset();
+ const section_size_type oview_size =
+ convert_to_section_size_type(this->data_size());
+ unsigned char* const oview = of->get_output_view(offset, oview_size);
+
+ Output_segment* tls_segment = this->layout_->tls_segment();
+ gold_assert(tls_segment != NULL);
+
+ // The thread pointer $tp points to the TCB, which is followed by the
+ // TLS. So we need to adjust $tp relative addressing by this amount.
+ Arm_address aligned_tcb_size =
+ align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
+
+ for (size_t i = 0; i < this->static_relocs_.size(); ++i)
+ {
+ Static_reloc& reloc(this->static_relocs_[i]);
+
+ Arm_address value;
+ if (!reloc.symbol_is_global())
+ {
+ Sized_relobj<32, big_endian>* object = reloc.relobj();
+ const Symbol_value<32>* psymval =
+ reloc.relobj()->local_symbol(reloc.index());
+
+ // We are doing static linking. Issue an error and skip this
+ // relocation if the symbol is undefined or in a discarded_section.
+ bool is_ordinary;
+ unsigned int shndx = psymval->input_shndx(&is_ordinary);
+ if ((shndx == elfcpp::SHN_UNDEF)
+ || (is_ordinary
+ && shndx != elfcpp::SHN_UNDEF
+ && !object->is_section_included(shndx)
+ && !this->symbol_table_->is_section_folded(object, shndx)))
+ {
+ gold_error(_("undefined or discarded local symbol %u from "
+ " object %s in GOT"),
+ reloc.index(), reloc.relobj()->name().c_str());
+ continue;
+ }
+
+ value = psymval->value(object, 0);
+ }
+ else
+ {
+ const Symbol* gsym = reloc.symbol();
+ gold_assert(gsym != NULL);
+ if (gsym->is_forwarder())
+ gsym = this->symbol_table_->resolve_forwards(gsym);
+
+ // We are doing static linking. Issue an error and skip this
+ // relocation if the symbol is undefined or in a discarded_section
+ // unless it is a weakly_undefined symbol.
+ if ((gsym->is_defined_in_discarded_section()
+ || gsym->is_undefined())
+ && !gsym->is_weak_undefined())
+ {
+ gold_error(_("undefined or discarded symbol %s in GOT"),
+ gsym->name());
+ continue;
+ }
+
+ if (!gsym->is_weak_undefined())
+ {
+ const Sized_symbol<32>* sym =
+ static_cast<const Sized_symbol<32>*>(gsym);
+ value = sym->value();
+ }
+ else
+ value = 0;
+ }
+
+ unsigned got_offset = reloc.got_offset();
+ gold_assert(got_offset < oview_size);
+
+ typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+ Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
+ Valtype x;
+ switch (reloc.r_type())
+ {
+ case elfcpp::R_ARM_TLS_DTPOFF32:
+ x = value;
+ break;
+ case elfcpp::R_ARM_TLS_TPOFF32:
+ x = value + aligned_tcb_size;
+ break;
+ default:
+ gold_unreachable();
+ }
+ elfcpp::Swap<32, big_endian>::writeval(wv, x);
+ }
+
+ of->write_output_view(offset, oview_size, oview);
+}
+
// A class to handle the PLT data.
template<bool big_endian>
rel_plt() const
{ return this->rel_; }
+ // Return the number of PLT entries.
+ unsigned int
+ entry_count() const
+ { return this->count_; }
+
+ // Return the offset of the first non-reserved PLT entry.
+ static unsigned int
+ first_plt_entry_offset()
+ { return sizeof(first_plt_entry); }
+
+ // Return the size of a PLT entry.
+ static unsigned int
+ get_plt_entry_size()
+ { return sizeof(plt_entry); }
+
protected:
void
do_adjust_output_section(Output_section* os);
{
this->rel_ = new Reloc_section(false);
layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
- elfcpp::SHF_ALLOC, this->rel_, true, false,
- false, false);
+ elfcpp::SHF_ALLOC, this->rel_,
+ ORDER_DYNAMIC_PLT_RELOCS, false);
}
template<bool big_endian>
layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR),
- this->plt_, false, false, false, false);
+ this->plt_, ORDER_PLT, false);
}
this->plt_->add_entry(gsym);
}
+// Return the number of entries in the PLT.
+
+template<bool big_endian>
+unsigned int
+Target_arm<big_endian>::plt_entry_count() const
+{
+ if (this->plt_ == NULL)
+ return 0;
+ return this->plt_->entry_count();
+}
+
+// Return the offset of the first non-reserved PLT entry.
+
+template<bool big_endian>
+unsigned int
+Target_arm<big_endian>::first_plt_entry_offset() const
+{
+ return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
+}
+
+// Return the size of each PLT entry.
+
+template<bool big_endian>
+unsigned int
+Target_arm<big_endian>::plt_entry_size() const
+{
+ return Output_data_plt_arm<big_endian>::get_plt_entry_size();
+}
+
+// Get the section to use for TLS_DESC relocations.
+
+template<bool big_endian>
+typename Target_arm<big_endian>::Reloc_section*
+Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
+{
+ return this->plt_section()->rel_tls_desc(layout);
+}
+
+// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::define_tls_base_symbol(
+ Symbol_table* symtab,
+ Layout* layout)
+{
+ if (this->tls_base_symbol_defined_)
+ return;
+
+ Output_segment* tls_segment = layout->tls_segment();
+ if (tls_segment != NULL)
+ {
+ bool is_exec = parameters->options().output_is_executable();
+ symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
+ Symbol_table::PREDEFINED,
+ tls_segment, 0, 0,
+ elfcpp::STT_TLS,
+ elfcpp::STB_LOCAL,
+ elfcpp::STV_HIDDEN, 0,
+ (is_exec
+ ? Symbol::SEGMENT_END
+ : Symbol::SEGMENT_START),
+ true);
+ }
+ this->tls_base_symbol_defined_ = true;
+}
+
+// Create a GOT entry for the TLS module index.
+
+template<bool big_endian>
+unsigned int
+Target_arm<big_endian>::got_mod_index_entry(
+ Symbol_table* symtab,
+ Layout* layout,
+ Sized_relobj<32, big_endian>* object)
+{
+ if (this->got_mod_index_offset_ == -1U)
+ {
+ gold_assert(symtab != NULL && layout != NULL && object != NULL);
+ Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
+ unsigned int got_offset;
+ if (!parameters->doing_static_link())
+ {
+ got_offset = got->add_constant(0);
+ Reloc_section* rel_dyn = this->rel_dyn_section(layout);
+ rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
+ got_offset);
+ }
+ else
+ {
+ // We are doing a static link. Just mark it as belong to module 1,
+ // the executable.
+ got_offset = got->add_constant(1);
+ }
+
+ got->add_constant(0);
+ this->got_mod_index_offset_ = got_offset;
+ }
+ return this->got_mod_index_offset_;
+}
+
+// Optimize the TLS relocation type based on what we know about the
+// symbol. IS_FINAL is true if the final address of this symbol is
+// known at link time.
+
+template<bool big_endian>
+tls::Tls_optimization
+Target_arm<big_endian>::optimize_tls_reloc(bool, int)
+{
+ // FIXME: Currently we do not do any TLS optimization.
+ return tls::TLSOPT_NONE;
+}
+
// Report an unsupported relocation against a local symbol.
template<bool big_endian>
return;
default:
- // This prevents us from issuing more than one error per reloc
- // section. But we can still wind up issuing more than one
- // error per object file.
- if (this->issued_non_pic_error_)
+ {
+ // This prevents us from issuing more than one error per reloc
+ // section. But we can still wind up issuing more than one
+ // error per object file.
+ if (this->issued_non_pic_error_)
+ return;
+ const Arm_reloc_property* reloc_property =
+ arm_reloc_property_table->get_reloc_property(r_type);
+ gold_assert(reloc_property != NULL);
+ object->error(_("requires unsupported dynamic reloc %s; "
+ "recompile with -fPIC"),
+ reloc_property->name().c_str());
+ this->issued_non_pic_error_ = true;
return;
- object->error(_("requires unsupported dynamic reloc; "
- "recompile with -fPIC"));
- this->issued_non_pic_error_ = true;
- return;
+ }
case elfcpp::R_ARM_NONE:
gold_unreachable();
Output_section* output_section,
const elfcpp::Rel<32, big_endian>& reloc,
unsigned int r_type,
- const elfcpp::Sym<32, big_endian>&)
+ const elfcpp::Sym<32, big_endian>& lsym)
{
r_type = get_real_reloc_type(r_type);
switch (r_type)
{
case elfcpp::R_ARM_NONE:
+ case elfcpp::R_ARM_V4BX:
+ case elfcpp::R_ARM_GNU_VTENTRY:
+ case elfcpp::R_ARM_GNU_VTINHERIT:
break;
case elfcpp::R_ARM_ABS32:
}
break;
- case elfcpp::R_ARM_REL32:
- case elfcpp::R_ARM_THM_CALL:
- case elfcpp::R_ARM_CALL:
- case elfcpp::R_ARM_PREL31:
- case elfcpp::R_ARM_JUMP24:
- case elfcpp::R_ARM_PLT32:
+ case elfcpp::R_ARM_ABS16:
+ case elfcpp::R_ARM_ABS12:
case elfcpp::R_ARM_THM_ABS5:
case elfcpp::R_ARM_ABS8:
- case elfcpp::R_ARM_ABS12:
- case elfcpp::R_ARM_ABS16:
case elfcpp::R_ARM_BASE_ABS:
case elfcpp::R_ARM_MOVW_ABS_NC:
case elfcpp::R_ARM_MOVT_ABS:
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
case elfcpp::R_ARM_THM_MOVT_ABS:
+ // If building a shared library (or a position-independent
+ // executable), we need to create a dynamic relocation for
+ // this location. Because the addend needs to remain in the
+ // data section, we need to be careful not to apply this
+ // relocation statically.
+ if (parameters->options().output_is_position_independent())
+ {
+ check_non_pic(object, r_type);
+ Reloc_section* rel_dyn = target->rel_dyn_section(layout);
+ unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
+ if (lsym.get_st_type() != elfcpp::STT_SECTION)
+ rel_dyn->add_local(object, r_sym, r_type, output_section,
+ data_shndx, reloc.get_r_offset());
+ else
+ {
+ gold_assert(lsym.get_st_value() == 0);
+ unsigned int shndx = lsym.get_st_shndx();
+ bool is_ordinary;
+ shndx = object->adjust_sym_shndx(r_sym, shndx,
+ &is_ordinary);
+ if (!is_ordinary)
+ object->error(_("section symbol %u has bad shndx %u"),
+ r_sym, shndx);
+ else
+ rel_dyn->add_local_section(object, shndx,
+ r_type, output_section,
+ data_shndx, reloc.get_r_offset());
+ }
+ }
+ break;
+
+ case elfcpp::R_ARM_REL32:
+ case elfcpp::R_ARM_LDR_PC_G0:
+ case elfcpp::R_ARM_SBREL32:
+ case elfcpp::R_ARM_THM_CALL:
+ case elfcpp::R_ARM_THM_PC8:
+ case elfcpp::R_ARM_BASE_PREL:
+ case elfcpp::R_ARM_PLT32:
+ case elfcpp::R_ARM_CALL:
+ case elfcpp::R_ARM_JUMP24:
+ case elfcpp::R_ARM_THM_JUMP24:
+ case elfcpp::R_ARM_SBREL31:
+ case elfcpp::R_ARM_PREL31:
case elfcpp::R_ARM_MOVW_PREL_NC:
case elfcpp::R_ARM_MOVT_PREL:
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
case elfcpp::R_ARM_THM_MOVT_PREL:
+ case elfcpp::R_ARM_THM_JUMP19:
+ case elfcpp::R_ARM_THM_JUMP6:
+ case elfcpp::R_ARM_THM_ALU_PREL_11_0:
+ case elfcpp::R_ARM_THM_PC12:
+ case elfcpp::R_ARM_REL32_NOI:
+ case elfcpp::R_ARM_ALU_PC_G0_NC:
+ case elfcpp::R_ARM_ALU_PC_G0:
+ case elfcpp::R_ARM_ALU_PC_G1_NC:
+ case elfcpp::R_ARM_ALU_PC_G1:
+ case elfcpp::R_ARM_ALU_PC_G2:
+ case elfcpp::R_ARM_LDR_PC_G1:
+ case elfcpp::R_ARM_LDR_PC_G2:
+ case elfcpp::R_ARM_LDRS_PC_G0:
+ case elfcpp::R_ARM_LDRS_PC_G1:
+ case elfcpp::R_ARM_LDRS_PC_G2:
+ case elfcpp::R_ARM_LDC_PC_G0:
+ case elfcpp::R_ARM_LDC_PC_G1:
+ case elfcpp::R_ARM_LDC_PC_G2:
+ case elfcpp::R_ARM_ALU_SB_G0_NC:
+ case elfcpp::R_ARM_ALU_SB_G0:
+ case elfcpp::R_ARM_ALU_SB_G1_NC:
+ case elfcpp::R_ARM_ALU_SB_G1:
+ case elfcpp::R_ARM_ALU_SB_G2:
+ case elfcpp::R_ARM_LDR_SB_G0:
+ case elfcpp::R_ARM_LDR_SB_G1:
+ case elfcpp::R_ARM_LDR_SB_G2:
+ case elfcpp::R_ARM_LDRS_SB_G0:
+ case elfcpp::R_ARM_LDRS_SB_G1:
+ case elfcpp::R_ARM_LDRS_SB_G2:
+ case elfcpp::R_ARM_LDC_SB_G0:
+ case elfcpp::R_ARM_LDC_SB_G1:
+ case elfcpp::R_ARM_LDC_SB_G2:
+ case elfcpp::R_ARM_MOVW_BREL_NC:
+ case elfcpp::R_ARM_MOVT_BREL:
+ case elfcpp::R_ARM_MOVW_BREL:
+ case elfcpp::R_ARM_THM_MOVW_BREL_NC:
+ case elfcpp::R_ARM_THM_MOVT_BREL:
+ case elfcpp::R_ARM_THM_MOVW_BREL:
+ case elfcpp::R_ARM_THM_JUMP11:
+ case elfcpp::R_ARM_THM_JUMP8:
+ // We don't need to do anything for a relative addressing relocation
+ // against a local symbol if it does not reference the GOT.
break;
case elfcpp::R_ARM_GOTOFF32:
+ case elfcpp::R_ARM_GOTOFF12:
// We need a GOT section:
target->got_section(symtab, layout);
break;
- case elfcpp::R_ARM_BASE_PREL:
- // FIXME: What about this?
- break;
-
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_GOT_PREL:
{
// The symbol requires a GOT entry.
- Output_data_got<32, big_endian>* got =
+ Arm_output_data_got<big_endian>* got =
target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
break;
case elfcpp::R_ARM_TARGET1:
+ case elfcpp::R_ARM_TARGET2:
// This should have been mapped to another type already.
// Fall through.
case elfcpp::R_ARM_COPY:
object->name().c_str(), r_type);
break;
+
+ // These are initial TLS relocs, which are expected when
+ // linking.
+ case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
+ case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
+ case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
+ case elfcpp::R_ARM_TLS_IE32: // Initial-exec
+ case elfcpp::R_ARM_TLS_LE32: // Local-exec
+ {
+ bool output_is_shared = parameters->options().shared();
+ const tls::Tls_optimization optimized_type
+ = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
+ r_type);
+ switch (r_type)
+ {
+ case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
+ if (optimized_type == tls::TLSOPT_NONE)
+ {
+ // Create a pair of GOT entries for the module index and
+ // dtv-relative offset.
+ Arm_output_data_got<big_endian>* got
+ = target->got_section(symtab, layout);
+ unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
+ unsigned int shndx = lsym.get_st_shndx();
+ bool is_ordinary;
+ shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
+ if (!is_ordinary)
+ {
+ object->error(_("local symbol %u has bad shndx %u"),
+ r_sym, shndx);
+ break;
+ }
+
+ if (!parameters->doing_static_link())
+ got->add_local_pair_with_rel(object, r_sym, shndx,
+ GOT_TYPE_TLS_PAIR,
+ target->rel_dyn_section(layout),
+ elfcpp::R_ARM_TLS_DTPMOD32, 0);
+ else
+ got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
+ object, r_sym);
+ }
+ else
+ // FIXME: TLS optimization not supported yet.
+ gold_unreachable();
+ break;
+
+ case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
+ if (optimized_type == tls::TLSOPT_NONE)
+ {
+ // Create a GOT entry for the module index.
+ target->got_mod_index_entry(symtab, layout, object);
+ }
+ else
+ // FIXME: TLS optimization not supported yet.
+ gold_unreachable();
+ break;
+
+ case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
+ break;
+
+ case elfcpp::R_ARM_TLS_IE32: // Initial-exec
+ layout->set_has_static_tls();
+ if (optimized_type == tls::TLSOPT_NONE)
+ {
+ // Create a GOT entry for the tp-relative offset.
+ Arm_output_data_got<big_endian>* got
+ = target->got_section(symtab, layout);
+ unsigned int r_sym =
+ elfcpp::elf_r_sym<32>(reloc.get_r_info());
+ if (!parameters->doing_static_link())
+ got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
+ target->rel_dyn_section(layout),
+ elfcpp::R_ARM_TLS_TPOFF32);
+ else if (!object->local_has_got_offset(r_sym,
+ GOT_TYPE_TLS_OFFSET))
+ {
+ got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
+ unsigned int got_offset =
+ object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
+ got->add_static_reloc(got_offset,
+ elfcpp::R_ARM_TLS_TPOFF32, object,
+ r_sym);
+ }
+ }
+ else
+ // FIXME: TLS optimization not supported yet.
+ gold_unreachable();
+ break;
+
+ case elfcpp::R_ARM_TLS_LE32: // Local-exec
+ layout->set_has_static_tls();
+ if (output_is_shared)
+ {
+ // We need to create a dynamic relocation.
+ gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
+ unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
+ Reloc_section* rel_dyn = target->rel_dyn_section(layout);
+ rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
+ output_section, data_shndx,
+ reloc.get_r_offset());
+ }
+ break;
+
+ default:
+ gold_unreachable();
+ }
+ }
+ break;
+
+ case elfcpp::R_ARM_PC24:
+ case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
+ case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
+ case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
default:
unsupported_reloc_local(object, r_type);
break;
object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
+template<bool big_endian>
+inline bool
+Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
+ unsigned int r_type)
+{
+ switch (r_type)
+ {
+ case elfcpp::R_ARM_PC24:
+ case elfcpp::R_ARM_THM_CALL:
+ case elfcpp::R_ARM_PLT32:
+ case elfcpp::R_ARM_CALL:
+ case elfcpp::R_ARM_JUMP24:
+ case elfcpp::R_ARM_THM_JUMP24:
+ case elfcpp::R_ARM_SBREL31:
+ case elfcpp::R_ARM_PREL31:
+ case elfcpp::R_ARM_THM_JUMP19:
+ case elfcpp::R_ARM_THM_JUMP6:
+ case elfcpp::R_ARM_THM_JUMP11:
+ case elfcpp::R_ARM_THM_JUMP8:
+ // All the relocations above are branches except SBREL31 and PREL31.
+ return false;
+
+ default:
+ // Be conservative and assume this is a function pointer.
+ return true;
+ }
+}
+
+template<bool big_endian>
+inline bool
+Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
+ Symbol_table*,
+ Layout*,
+ Target_arm<big_endian>* target,
+ Sized_relobj<32, big_endian>*,
+ unsigned int,
+ Output_section*,
+ const elfcpp::Rel<32, big_endian>&,
+ unsigned int r_type,
+ const elfcpp::Sym<32, big_endian>&)
+{
+ r_type = target->get_real_reloc_type(r_type);
+ return possible_function_pointer_reloc(r_type);
+}
+
+template<bool big_endian>
+inline bool
+Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
+ Symbol_table*,
+ Layout*,
+ Target_arm<big_endian>* target,
+ Sized_relobj<32, big_endian>*,
+ unsigned int,
+ Output_section*,
+ const elfcpp::Rel<32, big_endian>&,
+ unsigned int r_type,
+ Symbol* gsym)
+{
+ // GOT is not a function.
+ if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
+ return false;
+
+ r_type = target->get_real_reloc_type(r_type);
+ return possible_function_pointer_reloc(r_type);
+}
+
// Scan a relocation for a global symbol.
-// FIXME: This only handles a subset of relocation types used by Android
-// on ARM v5te devices.
template<bool big_endian>
inline void
unsigned int r_type,
Symbol* gsym)
{
+ // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
+ // section. We check here to avoid creating a dynamic reloc against
+ // _GLOBAL_OFFSET_TABLE_.
+ if (!target->has_got_section()
+ && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
+ target->got_section(symtab, layout);
+
r_type = get_real_reloc_type(r_type);
switch (r_type)
{
case elfcpp::R_ARM_NONE:
+ case elfcpp::R_ARM_V4BX:
+ case elfcpp::R_ARM_GNU_VTENTRY:
+ case elfcpp::R_ARM_GNU_VTINHERIT:
break;
case elfcpp::R_ARM_ABS32:
- case elfcpp::R_ARM_ABS32_NOI:
- {
- // Make a dynamic relocation if necessary.
- if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
- {
- if (target->may_need_copy_reloc(gsym))
- {
- target->copy_reloc(symtab, layout, object,
- data_shndx, output_section, gsym, reloc);
- }
- else if (gsym->can_use_relative_reloc(false))
- {
- // If we are to add more other reloc types than R_ARM_ABS32,
- // we need to add check_non_pic(object, r_type) here.
- Reloc_section* rel_dyn = target->rel_dyn_section(layout);
- rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
- output_section, object,
- data_shndx, reloc.get_r_offset());
- }
- else
- {
- // If we are to add more other reloc types than R_ARM_ABS32,
- // we need to add check_non_pic(object, r_type) here.
- Reloc_section* rel_dyn = target->rel_dyn_section(layout);
- rel_dyn->add_global(gsym, r_type, output_section, object,
- data_shndx, reloc.get_r_offset());
- }
- }
- }
- break;
-
+ case elfcpp::R_ARM_ABS16:
+ case elfcpp::R_ARM_ABS12:
+ case elfcpp::R_ARM_THM_ABS5:
+ case elfcpp::R_ARM_ABS8:
+ case elfcpp::R_ARM_BASE_ABS:
case elfcpp::R_ARM_MOVW_ABS_NC:
case elfcpp::R_ARM_MOVT_ABS:
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
case elfcpp::R_ARM_THM_MOVT_ABS:
- case elfcpp::R_ARM_MOVW_PREL_NC:
- case elfcpp::R_ARM_MOVT_PREL:
- case elfcpp::R_ARM_THM_MOVW_PREL_NC:
- case elfcpp::R_ARM_THM_MOVT_PREL:
- break;
-
- case elfcpp::R_ARM_THM_ABS5:
- case elfcpp::R_ARM_ABS8:
- case elfcpp::R_ARM_ABS12:
- case elfcpp::R_ARM_ABS16:
- case elfcpp::R_ARM_BASE_ABS:
+ case elfcpp::R_ARM_ABS32_NOI:
+ // Absolute addressing relocations.
{
- // No dynamic relocs of this kinds.
- // Report the error in case of PIC.
- int flags = Symbol::NON_PIC_REF;
- if (gsym->type() == elfcpp::STT_FUNC
- || gsym->type() == elfcpp::STT_ARM_TFUNC)
- flags |= Symbol::FUNCTION_CALL;
- if (gsym->needs_dynamic_reloc(flags))
- check_non_pic(object, r_type);
+ // Make a PLT entry if necessary.
+ if (this->symbol_needs_plt_entry(gsym))
+ {
+ target->make_plt_entry(symtab, layout, gsym);
+ // Since this is not a PC-relative relocation, we may be
+ // taking the address of a function. In that case we need to
+ // set the entry in the dynamic symbol table to the address of
+ // the PLT entry.
+ if (gsym->is_from_dynobj() && !parameters->options().shared())
+ gsym->set_needs_dynsym_value();
+ }
+ // Make a dynamic relocation if necessary.
+ if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
+ {
+ if (gsym->may_need_copy_reloc())
+ {
+ target->copy_reloc(symtab, layout, object,
+ data_shndx, output_section, gsym, reloc);
+ }
+ else if ((r_type == elfcpp::R_ARM_ABS32
+ || r_type == elfcpp::R_ARM_ABS32_NOI)
+ && gsym->can_use_relative_reloc(false))
+ {
+ Reloc_section* rel_dyn = target->rel_dyn_section(layout);
+ rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
+ output_section, object,
+ data_shndx, reloc.get_r_offset());
+ }
+ else
+ {
+ check_non_pic(object, r_type);
+ Reloc_section* rel_dyn = target->rel_dyn_section(layout);
+ rel_dyn->add_global(gsym, r_type, output_section, object,
+ data_shndx, reloc.get_r_offset());
+ }
+ }
}
break;
+ case elfcpp::R_ARM_GOTOFF32:
+ case elfcpp::R_ARM_GOTOFF12:
+ // We need a GOT section.
+ target->got_section(symtab, layout);
+ break;
+
case elfcpp::R_ARM_REL32:
- case elfcpp::R_ARM_PREL31:
+ case elfcpp::R_ARM_LDR_PC_G0:
+ case elfcpp::R_ARM_SBREL32:
+ case elfcpp::R_ARM_THM_PC8:
+ case elfcpp::R_ARM_BASE_PREL:
+ case elfcpp::R_ARM_MOVW_PREL_NC:
+ case elfcpp::R_ARM_MOVT_PREL:
+ case elfcpp::R_ARM_THM_MOVW_PREL_NC:
+ case elfcpp::R_ARM_THM_MOVT_PREL:
+ case elfcpp::R_ARM_THM_ALU_PREL_11_0:
+ case elfcpp::R_ARM_THM_PC12:
+ case elfcpp::R_ARM_REL32_NOI:
+ case elfcpp::R_ARM_ALU_PC_G0_NC:
+ case elfcpp::R_ARM_ALU_PC_G0:
+ case elfcpp::R_ARM_ALU_PC_G1_NC:
+ case elfcpp::R_ARM_ALU_PC_G1:
+ case elfcpp::R_ARM_ALU_PC_G2:
+ case elfcpp::R_ARM_LDR_PC_G1:
+ case elfcpp::R_ARM_LDR_PC_G2:
+ case elfcpp::R_ARM_LDRS_PC_G0:
+ case elfcpp::R_ARM_LDRS_PC_G1:
+ case elfcpp::R_ARM_LDRS_PC_G2:
+ case elfcpp::R_ARM_LDC_PC_G0:
+ case elfcpp::R_ARM_LDC_PC_G1:
+ case elfcpp::R_ARM_LDC_PC_G2:
+ case elfcpp::R_ARM_ALU_SB_G0_NC:
+ case elfcpp::R_ARM_ALU_SB_G0:
+ case elfcpp::R_ARM_ALU_SB_G1_NC:
+ case elfcpp::R_ARM_ALU_SB_G1:
+ case elfcpp::R_ARM_ALU_SB_G2:
+ case elfcpp::R_ARM_LDR_SB_G0:
+ case elfcpp::R_ARM_LDR_SB_G1:
+ case elfcpp::R_ARM_LDR_SB_G2:
+ case elfcpp::R_ARM_LDRS_SB_G0:
+ case elfcpp::R_ARM_LDRS_SB_G1:
+ case elfcpp::R_ARM_LDRS_SB_G2:
+ case elfcpp::R_ARM_LDC_SB_G0:
+ case elfcpp::R_ARM_LDC_SB_G1:
+ case elfcpp::R_ARM_LDC_SB_G2:
+ case elfcpp::R_ARM_MOVW_BREL_NC:
+ case elfcpp::R_ARM_MOVT_BREL:
+ case elfcpp::R_ARM_MOVW_BREL:
+ case elfcpp::R_ARM_THM_MOVW_BREL_NC:
+ case elfcpp::R_ARM_THM_MOVT_BREL:
+ case elfcpp::R_ARM_THM_MOVW_BREL:
+ // Relative addressing relocations.
{
// Make a dynamic relocation if necessary.
int flags = Symbol::NON_PIC_REF;
}
break;
+ case elfcpp::R_ARM_THM_CALL:
+ case elfcpp::R_ARM_PLT32:
+ case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_THM_JUMP24:
- case elfcpp::R_ARM_CALL:
- case elfcpp::R_ARM_THM_CALL:
-
- if (Target_arm<big_endian>::Scan::symbol_needs_plt_entry(gsym))
- target->make_plt_entry(symtab, layout, gsym);
- else
- {
- // Check to see if this is a function that would need a PLT
- // but does not get one because the function symbol is untyped.
- // This happens in assembly code missing a proper .type directive.
- if ((!gsym->is_undefined() || parameters->options().shared())
- && !parameters->doing_static_link()
- && gsym->type() == elfcpp::STT_NOTYPE
- && (gsym->is_from_dynobj()
- || gsym->is_undefined()
- || gsym->is_preemptible()))
- gold_error(_("%s is not a function."),
- gsym->demangled_name().c_str());
- }
- break;
+ case elfcpp::R_ARM_SBREL31:
+ case elfcpp::R_ARM_PREL31:
+ case elfcpp::R_ARM_THM_JUMP19:
+ case elfcpp::R_ARM_THM_JUMP6:
+ case elfcpp::R_ARM_THM_JUMP11:
+ case elfcpp::R_ARM_THM_JUMP8:
+ // All the relocation above are branches except for the PREL31 ones.
+ // A PREL31 relocation can point to a personality function in a shared
+ // library. In that case we want to use a PLT because we want to
+ // call the personality routine and the dyanmic linkers we care about
+ // do not support dynamic PREL31 relocations. An REL31 relocation may
+ // point to a function whose unwinding behaviour is being described but
+ // we will not mistakenly generate a PLT for that because we should use
+ // a local section symbol.
- case elfcpp::R_ARM_PLT32:
// If the symbol is fully resolved, this is just a relative
// local reloc. Otherwise we need a PLT entry.
if (gsym->final_value_is_known())
target->make_plt_entry(symtab, layout, gsym);
break;
- case elfcpp::R_ARM_GOTOFF32:
- // We need a GOT section.
- target->got_section(symtab, layout);
- break;
-
- case elfcpp::R_ARM_BASE_PREL:
- // FIXME: What about this?
- break;
-
case elfcpp::R_ARM_GOT_BREL:
+ case elfcpp::R_ARM_GOT_ABS:
case elfcpp::R_ARM_GOT_PREL:
{
// The symbol requires a GOT entry.
- Output_data_got<32, big_endian>* got =
+ Arm_output_data_got<big_endian>* got =
target->got_section(symtab, layout);
if (gsym->final_value_is_known())
got->add_global(gsym, GOT_TYPE_STANDARD);
break;
case elfcpp::R_ARM_TARGET1:
- // This should have been mapped to another type already.
+ case elfcpp::R_ARM_TARGET2:
+ // These should have been mapped to other types already.
// Fall through.
case elfcpp::R_ARM_COPY:
case elfcpp::R_ARM_GLOB_DAT:
object->name().c_str(), r_type);
break;
+ // These are initial tls relocs, which are expected when
+ // linking.
+ case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
+ case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
+ case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
+ case elfcpp::R_ARM_TLS_IE32: // Initial-exec
+ case elfcpp::R_ARM_TLS_LE32: // Local-exec
+ {
+ const bool is_final = gsym->final_value_is_known();
+ const tls::Tls_optimization optimized_type
+ = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
+ switch (r_type)
+ {
+ case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
+ if (optimized_type == tls::TLSOPT_NONE)
+ {
+ // Create a pair of GOT entries for the module index and
+ // dtv-relative offset.
+ Arm_output_data_got<big_endian>* got
+ = target->got_section(symtab, layout);
+ if (!parameters->doing_static_link())
+ got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
+ target->rel_dyn_section(layout),
+ elfcpp::R_ARM_TLS_DTPMOD32,
+ elfcpp::R_ARM_TLS_DTPOFF32);
+ else
+ got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
+ }
+ else
+ // FIXME: TLS optimization not supported yet.
+ gold_unreachable();
+ break;
+
+ case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
+ if (optimized_type == tls::TLSOPT_NONE)
+ {
+ // Create a GOT entry for the module index.
+ target->got_mod_index_entry(symtab, layout, object);
+ }
+ else
+ // FIXME: TLS optimization not supported yet.
+ gold_unreachable();
+ break;
+
+ case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
+ break;
+
+ case elfcpp::R_ARM_TLS_IE32: // Initial-exec
+ layout->set_has_static_tls();
+ if (optimized_type == tls::TLSOPT_NONE)
+ {
+ // Create a GOT entry for the tp-relative offset.
+ Arm_output_data_got<big_endian>* got
+ = target->got_section(symtab, layout);
+ if (!parameters->doing_static_link())
+ got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
+ target->rel_dyn_section(layout),
+ elfcpp::R_ARM_TLS_TPOFF32);
+ else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
+ {
+ got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
+ unsigned int got_offset =
+ gsym->got_offset(GOT_TYPE_TLS_OFFSET);
+ got->add_static_reloc(got_offset,
+ elfcpp::R_ARM_TLS_TPOFF32, gsym);
+ }
+ }
+ else
+ // FIXME: TLS optimization not supported yet.
+ gold_unreachable();
+ break;
+
+ case elfcpp::R_ARM_TLS_LE32: // Local-exec
+ layout->set_has_static_tls();
+ if (parameters->options().shared())
+ {
+ // We need to create a dynamic relocation.
+ Reloc_section* rel_dyn = target->rel_dyn_section(layout);
+ rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
+ output_section, object,
+ data_shndx, reloc.get_r_offset());
+ }
+ break;
+
+ default:
+ gold_unreachable();
+ }
+ }
+ break;
+
+ case elfcpp::R_ARM_PC24:
+ case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
+ case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
+ case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
default:
unsupported_reloc_global(object, r_type, gsym);
break;
typedef Target_arm<big_endian> Arm;
typedef typename Target_arm<big_endian>::Scan Scan;
- gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
+ gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
+ typename Target_arm::Relocatable_size_for_reloc>(
symtab,
layout,
this,
const Input_objects* input_objects,
Symbol_table* symtab)
{
+ bool merged_any_attributes = false;
// Merge processor-specific flags.
for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
p != input_objects->relobj_end();
{
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(*p);
- this->merge_processor_specific_flags(
- arm_relobj->name(),
- arm_relobj->processor_specific_flags());
- this->merge_object_attributes(arm_relobj->name().c_str(),
- arm_relobj->attributes_section_data());
-
+ if (arm_relobj->merge_flags_and_attributes())
+ {
+ this->merge_processor_specific_flags(
+ arm_relobj->name(),
+ arm_relobj->processor_specific_flags());
+ this->merge_object_attributes(arm_relobj->name().c_str(),
+ arm_relobj->attributes_section_data());
+ merged_any_attributes = true;
+ }
}
for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
arm_dynobj->processor_specific_flags());
this->merge_object_attributes(arm_dynobj->name().c_str(),
arm_dynobj->attributes_section_data());
+ merged_any_attributes = true;
}
+ // Create an empty uninitialized attribute section if we still don't have it
+ // at this moment. This happens if there is no attributes sections in all
+ // inputs.
+ if (this->attributes_section_data_ == NULL)
+ this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
+
// Check BLX use.
- Object_attribute* attr =
+ const Object_attribute* cpu_arch_attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
- if (attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
+ if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
this->set_may_use_blx(true);
+ // Check if we need to use Cortex-A8 workaround.
+ if (parameters->options().user_set_fix_cortex_a8())
+ this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
+ else
+ {
+ // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
+ // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
+ // profile.
+ const Object_attribute* cpu_arch_profile_attr =
+ this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
+ this->fix_cortex_a8_ =
+ (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
+ && (cpu_arch_profile_attr->int_value() == 'A'
+ || cpu_arch_profile_attr->int_value() == 0));
+ }
+
+ // Check if we can use V4BX interworking.
+ // The V4BX interworking stub contains BX instruction,
+ // which is not specified for some profiles.
+ if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
+ && !this->may_use_blx())
+ gold_error(_("unable to provide V4BX reloc interworking fix up; "
+ "the target profile does not support BX instruction"));
+
// Fill in some more dynamic tags.
const Reloc_section* rel_plt = (this->plt_ == NULL
? NULL
: this->plt_->rel_plt());
layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
- this->rel_dyn_, true);
+ this->rel_dyn_, true, false);
// Emit any relocs we saved in an attempt to avoid generating COPY
// relocs.
// Handle the .ARM.exidx section.
Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
- if (exidx_section != NULL
- && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
- && !parameters->options().relocatable())
- {
- // Create __exidx_start and __exdix_end symbols.
- symtab->define_in_output_data("__exidx_start", NULL,
- Symbol_table::PREDEFINED,
- exidx_section, 0, 0, elfcpp::STT_OBJECT,
- elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
- false, true);
- symtab->define_in_output_data("__exidx_end", NULL,
- Symbol_table::PREDEFINED,
- exidx_section, 0, 0, elfcpp::STT_OBJECT,
- elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
- true, true);
- // For the ARM target, we need to add a PT_ARM_EXIDX segment for
- // the .ARM.exidx section.
- if (!layout->script_options()->saw_phdrs_clause())
- {
- gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
- == NULL);
- Output_segment* exidx_segment =
- layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
- exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
- false);
- }
+ if (!parameters->options().relocatable())
+ {
+ if (exidx_section != NULL
+ && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
+ {
+ // Create __exidx_start and __exdix_end symbols.
+ symtab->define_in_output_data("__exidx_start", NULL,
+ Symbol_table::PREDEFINED,
+ exidx_section, 0, 0, elfcpp::STT_OBJECT,
+ elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
+ 0, false, true);
+ symtab->define_in_output_data("__exidx_end", NULL,
+ Symbol_table::PREDEFINED,
+ exidx_section, 0, 0, elfcpp::STT_OBJECT,
+ elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
+ 0, true, true);
+
+ // For the ARM target, we need to add a PT_ARM_EXIDX segment for
+ // the .ARM.exidx section.
+ if (!layout->script_options()->saw_phdrs_clause())
+ {
+ gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
+ 0)
+ == NULL);
+ Output_segment* exidx_segment =
+ layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
+ exidx_segment->add_output_section_to_nonload(exidx_section,
+ elfcpp::PF_R);
+ }
+ }
+ else
+ {
+ symtab->define_as_constant("__exidx_start", NULL,
+ Symbol_table::PREDEFINED,
+ 0, 0, elfcpp::STT_OBJECT,
+ elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
+ true, false);
+ symtab->define_as_constant("__exidx_end", NULL,
+ Symbol_table::PREDEFINED,
+ 0, 0, elfcpp::STT_OBJECT,
+ elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
+ true, false);
+ }
}
- // Create an .ARM.attributes section if there is not one already.
- Output_attributes_section_data* attributes_section =
- new Output_attributes_section_data(*this->attributes_section_data_);
- layout->add_output_section_data(".ARM.attributes",
- elfcpp::SHT_ARM_ATTRIBUTES, 0,
- attributes_section, false, false, false,
- false);
+ // Create an .ARM.attributes section if we have merged any attributes
+ // from inputs.
+ if (merged_any_attributes)
+ {
+ Output_attributes_section_data* attributes_section =
+ new Output_attributes_section_data(*this->attributes_section_data_);
+ layout->add_output_section_data(".ARM.attributes",
+ elfcpp::SHT_ARM_ATTRIBUTES, 0,
+ attributes_section, ORDER_INVALID,
+ false);
+ }
+
+ // Fix up links in section EXIDX headers.
+ for (Layout::Section_list::const_iterator p = layout->section_list().begin();
+ p != layout->section_list().end();
+ ++p)
+ if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
+ {
+ Arm_output_section<big_endian>* os =
+ Arm_output_section<big_endian>::as_arm_output_section(*p);
+ os->set_exidx_section_link();
+ }
}
// Return whether a direct absolute static relocation needs to be applied.
Target_arm<big_endian>::Relocate::relocate(
const Relocate_info<32, big_endian>* relinfo,
Target_arm* target,
- Output_section *output_section,
+ Output_section* output_section,
size_t relnum,
const elfcpp::Rel<32, big_endian>& rel,
unsigned int r_type,
const Symbol_value<32>* psymval,
unsigned char* view,
Arm_address address,
- section_size_type /* view_size */ )
+ section_size_type view_size)
{
typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
r_type = get_real_reloc_type(r_type);
+ const Arm_reloc_property* reloc_property =
+ arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
+ if (reloc_property == NULL)
+ {
+ std::string reloc_name =
+ arm_reloc_property_table->reloc_name_in_error_message(r_type);
+ gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
+ _("cannot relocate %s in object file"),
+ reloc_name.c_str());
+ return true;
+ }
const Arm_relobj<big_endian>* object =
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
Arm_address thumb_bit = 0;
Symbol_value<32> symval;
bool is_weakly_undefined_without_plt = false;
- if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
+ bool have_got_offset = false;
+ unsigned int got_offset = 0;
+
+ // If the relocation uses the GOT entry of a symbol instead of the symbol
+ // itself, we don't care about whether the symbol is defined or what kind
+ // of symbol it is.
+ if (reloc_property->uses_got_entry())
+ {
+ // Get the GOT offset.
+ // The GOT pointer points to the end of the GOT section.
+ // We need to subtract the size of the GOT section to get
+ // the actual offset to use in the relocation.
+ // TODO: We should move GOT offset computing code in TLS relocations
+ // to here.
+ switch (r_type)
+ {
+ case elfcpp::R_ARM_GOT_BREL:
+ case elfcpp::R_ARM_GOT_PREL:
+ if (gsym != NULL)
+ {
+ gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
+ got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
+ - target->got_size());
+ }
+ else
+ {
+ unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
+ gold_assert(object->local_has_got_offset(r_sym,
+ GOT_TYPE_STANDARD));
+ got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
+ - target->got_size());
+ }
+ have_got_offset = true;
+ break;
+
+ default:
+ break;
+ }
+ }
+ else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
{
if (gsym != NULL)
{
// be converted into an NOP.
is_weakly_undefined_without_plt = true;
}
+ else if (gsym->is_undefined() && reloc_property->uses_symbol())
+ {
+ // This relocation uses the symbol value but the symbol is
+ // undefined. Exit early and have the caller reporting an
+ // error.
+ return true;
+ }
else
{
// Set thumb bit if symbol:
// Strip LSB if this points to a THUMB target.
if (thumb_bit != 0
- && Target_arm<big_endian>::reloc_uses_thumb_bit(r_type)
+ && reloc_property->uses_thumb_bit()
&& ((psymval->value(object, 0) & 1) != 0))
{
Arm_address stripped_value =
psymval = &symval;
}
- // Get the GOT offset if needed.
- // The GOT pointer points to the end of the GOT section.
- // We need to subtract the size of the GOT section to get
- // the actual offset to use in the relocation.
- bool have_got_offset = false;
- unsigned int got_offset = 0;
- switch (r_type)
- {
- case elfcpp::R_ARM_GOT_BREL:
- case elfcpp::R_ARM_GOT_PREL:
- if (gsym != NULL)
- {
- gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
- got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
- - target->got_size());
- }
- else
- {
- unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
- gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
- got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
- - target->got_size());
- }
- have_got_offset = true;
- break;
-
- default:
- break;
- }
-
// To look up relocation stubs, we need to pass the symbol table index of
// a local symbol.
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
+ // Get the addressing origin of the output segment defining the
+ // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
+ Arm_address sym_origin = 0;
+ if (reloc_property->uses_symbol_base())
+ {
+ if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
+ // R_ARM_BASE_ABS with the NULL symbol will give the
+ // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
+ // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
+ sym_origin = target->got_plt_section()->address();
+ else if (gsym == NULL)
+ sym_origin = 0;
+ else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
+ sym_origin = gsym->output_segment()->vaddr();
+ else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
+ sym_origin = gsym->output_data()->address();
+
+ // TODO: Assumes the segment base to be zero for the global symbols
+ // till the proper support for the segment-base-relative addressing
+ // will be implemented. This is consistent with GNU ld.
+ }
+
+ // For relative addressing relocation, find out the relative address base.
+ Arm_address relative_address_base = 0;
+ switch(reloc_property->relative_address_base())
+ {
+ case Arm_reloc_property::RAB_NONE:
+ // Relocations with relative address bases RAB_TLS and RAB_tp are
+ // handled by relocate_tls. So we do not need to do anything here.
+ case Arm_reloc_property::RAB_TLS:
+ case Arm_reloc_property::RAB_tp:
+ break;
+ case Arm_reloc_property::RAB_B_S:
+ relative_address_base = sym_origin;
+ break;
+ case Arm_reloc_property::RAB_GOT_ORG:
+ relative_address_base = target->got_plt_section()->address();
+ break;
+ case Arm_reloc_property::RAB_P:
+ relative_address_base = address;
+ break;
+ case Arm_reloc_property::RAB_Pa:
+ relative_address_base = address & 0xfffffffcU;
+ break;
+ default:
+ gold_unreachable();
+ }
+
typename Arm_relocate_functions::Status reloc_status =
Arm_relocate_functions::STATUS_OKAY;
+ bool check_overflow = reloc_property->checks_overflow();
switch (r_type)
{
case elfcpp::R_ARM_NONE:
break;
case elfcpp::R_ARM_MOVW_ABS_NC:
- if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+ if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
output_section))
- reloc_status = Arm_relocate_functions::movw_abs_nc(view, object,
- psymval,
- thumb_bit);
- else
- gold_error(_("relocation R_ARM_MOVW_ABS_NC cannot be used when making"
- "a shared object; recompile with -fPIC"));
+ reloc_status = Arm_relocate_functions::movw(view, object, psymval,
+ 0, thumb_bit,
+ check_overflow);
break;
case elfcpp::R_ARM_MOVT_ABS:
- if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+ if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
output_section))
- reloc_status = Arm_relocate_functions::movt_abs(view, object, psymval);
- else
- gold_error(_("relocation R_ARM_MOVT_ABS cannot be used when making"
- "a shared object; recompile with -fPIC"));
+ reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
break;
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
- if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+ if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
output_section))
- reloc_status = Arm_relocate_functions::thm_movw_abs_nc(view, object,
- psymval,
- thumb_bit);
- else
- gold_error(_("relocation R_ARM_THM_MOVW_ABS_NC cannot be used when"
- "making a shared object; recompile with -fPIC"));
+ reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
+ 0, thumb_bit, false);
break;
case elfcpp::R_ARM_THM_MOVT_ABS:
- if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+ if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
output_section))
- reloc_status = Arm_relocate_functions::thm_movt_abs(view, object,
- psymval);
- else
- gold_error(_("relocation R_ARM_THM_MOVT_ABS cannot be used when"
- "making a shared object; recompile with -fPIC"));
+ reloc_status = Arm_relocate_functions::thm_movt(view, object,
+ psymval, 0);
break;
case elfcpp::R_ARM_MOVW_PREL_NC:
- reloc_status = Arm_relocate_functions::movw_prel_nc(view, object,
- psymval, address,
- thumb_bit);
+ case elfcpp::R_ARM_MOVW_BREL_NC:
+ case elfcpp::R_ARM_MOVW_BREL:
+ reloc_status =
+ Arm_relocate_functions::movw(view, object, psymval,
+ relative_address_base, thumb_bit,
+ check_overflow);
break;
case elfcpp::R_ARM_MOVT_PREL:
- reloc_status = Arm_relocate_functions::movt_prel(view, object,
- psymval, address);
+ case elfcpp::R_ARM_MOVT_BREL:
+ reloc_status =
+ Arm_relocate_functions::movt(view, object, psymval,
+ relative_address_base);
break;
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
- reloc_status = Arm_relocate_functions::thm_movw_prel_nc(view, object,
- psymval, address,
- thumb_bit);
+ case elfcpp::R_ARM_THM_MOVW_BREL_NC:
+ case elfcpp::R_ARM_THM_MOVW_BREL:
+ reloc_status =
+ Arm_relocate_functions::thm_movw(view, object, psymval,
+ relative_address_base,
+ thumb_bit, check_overflow);
break;
case elfcpp::R_ARM_THM_MOVT_PREL:
- reloc_status = Arm_relocate_functions::thm_movt_prel(view, object,
- psymval, address);
+ case elfcpp::R_ARM_THM_MOVT_BREL:
+ reloc_status =
+ Arm_relocate_functions::thm_movt(view, object, psymval,
+ relative_address_base);
break;
case elfcpp::R_ARM_REL32:
reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
break;
+ // Thumb long branches.
case elfcpp::R_ARM_THM_CALL:
- reloc_status =
- Arm_relocate_functions::thm_call(relinfo, view, gsym, object, r_sym,
- psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
- break;
-
- case elfcpp::R_ARM_XPC25:
- reloc_status =
- Arm_relocate_functions::xpc25(relinfo, view, gsym, object, r_sym,
- psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
- break;
-
case elfcpp::R_ARM_THM_XPC22:
+ case elfcpp::R_ARM_THM_JUMP24:
reloc_status =
- Arm_relocate_functions::thm_xpc22(relinfo, view, gsym, object, r_sym,
- psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
+ Arm_relocate_functions::thumb_branch_common(
+ r_type, relinfo, view, gsym, object, r_sym, psymval, address,
+ thumb_bit, is_weakly_undefined_without_plt);
break;
case elfcpp::R_ARM_GOTOFF32:
break;
case elfcpp::R_ARM_BASE_PREL:
- {
- uint32_t origin;
- // Get the addressing origin of the output segment defining the
- // symbol gsym (AAELF 4.6.1.2 Relocation types)
- gold_assert(gsym != NULL);
- if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
- origin = gsym->output_segment()->vaddr();
- else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
- origin = gsym->output_data()->address();
- else
- {
- gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
- _("cannot find origin of R_ARM_BASE_PREL"));
- return true;
- }
- reloc_status = Arm_relocate_functions::base_prel(view, origin, address);
- }
+ gold_assert(gsym != NULL);
+ reloc_status =
+ Arm_relocate_functions::base_prel(view, sym_origin, address);
break;
case elfcpp::R_ARM_BASE_ABS:
{
- if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+ if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
output_section))
break;
- uint32_t origin;
- // Get the addressing origin of the output segment defining
- // the symbol gsym (AAELF 4.6.1.2 Relocation types).
- if (gsym == NULL)
- // R_ARM_BASE_ABS with the NULL symbol will give the
- // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
- // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
- origin = target->got_plt_section()->address();
- else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
- origin = gsym->output_segment()->vaddr();
- else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
- origin = gsym->output_data()->address();
- else
- {
- gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
- _("cannot find origin of R_ARM_BASE_ABS"));
- return true;
- }
-
- reloc_status = Arm_relocate_functions::base_abs(view, origin);
+ reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
}
break;
break;
case elfcpp::R_ARM_PLT32:
+ case elfcpp::R_ARM_CALL:
+ case elfcpp::R_ARM_JUMP24:
+ case elfcpp::R_ARM_XPC25:
gold_assert(gsym == NULL
|| gsym->has_plt_offset()
|| gsym->final_value_is_known()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible()));
reloc_status =
- Arm_relocate_functions::plt32(relinfo, view, gsym, object, r_sym,
- psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
+ Arm_relocate_functions::arm_branch_common(
+ r_type, relinfo, view, gsym, object, r_sym, psymval, address,
+ thumb_bit, is_weakly_undefined_without_plt);
break;
- case elfcpp::R_ARM_CALL:
+ case elfcpp::R_ARM_THM_JUMP19:
reloc_status =
- Arm_relocate_functions::call(relinfo, view, gsym, object, r_sym,
- psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
+ Arm_relocate_functions::thm_jump19(view, object, psymval, address,
+ thumb_bit);
break;
- case elfcpp::R_ARM_JUMP24:
+ case elfcpp::R_ARM_THM_JUMP6:
reloc_status =
- Arm_relocate_functions::jump24(relinfo, view, gsym, object, r_sym,
- psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
+ Arm_relocate_functions::thm_jump6(view, object, psymval, address);
break;
- case elfcpp::R_ARM_THM_JUMP24:
+ case elfcpp::R_ARM_THM_JUMP8:
reloc_status =
- Arm_relocate_functions::thm_jump24(relinfo, view, gsym, object, r_sym,
- psymval, address, thumb_bit,
- is_weakly_undefined_without_plt);
+ Arm_relocate_functions::thm_jump8(view, object, psymval, address);
+ break;
+
+ case elfcpp::R_ARM_THM_JUMP11:
+ reloc_status =
+ Arm_relocate_functions::thm_jump11(view, object, psymval, address);
break;
case elfcpp::R_ARM_PREL31:
address, thumb_bit);
break;
- case elfcpp::R_ARM_TARGET1:
- // This should have been mapped to another type already.
- // Fall through.
- case elfcpp::R_ARM_COPY:
- case elfcpp::R_ARM_GLOB_DAT:
- case elfcpp::R_ARM_JUMP_SLOT:
- case elfcpp::R_ARM_RELATIVE:
- // These are relocations which should only be seen by the
- // dynamic linker, and should never be seen here.
- gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
- _("unexpected reloc %u in object file"),
- r_type);
+ case elfcpp::R_ARM_V4BX:
+ if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
+ {
+ const bool is_v4bx_interworking =
+ (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
+ reloc_status =
+ Arm_relocate_functions::v4bx(relinfo, view, object, address,
+ is_v4bx_interworking);
+ }
+ break;
+
+ case elfcpp::R_ARM_THM_PC8:
+ reloc_status =
+ Arm_relocate_functions::thm_pc8(view, object, psymval, address);
+ break;
+
+ case elfcpp::R_ARM_THM_PC12:
+ reloc_status =
+ Arm_relocate_functions::thm_pc12(view, object, psymval, address);
+ break;
+
+ case elfcpp::R_ARM_THM_ALU_PREL_11_0:
+ reloc_status =
+ Arm_relocate_functions::thm_alu11(view, object, psymval, address,
+ thumb_bit);
+ break;
+
+ case elfcpp::R_ARM_ALU_PC_G0_NC:
+ case elfcpp::R_ARM_ALU_PC_G0:
+ case elfcpp::R_ARM_ALU_PC_G1_NC:
+ case elfcpp::R_ARM_ALU_PC_G1:
+ case elfcpp::R_ARM_ALU_PC_G2:
+ case elfcpp::R_ARM_ALU_SB_G0_NC:
+ case elfcpp::R_ARM_ALU_SB_G0:
+ case elfcpp::R_ARM_ALU_SB_G1_NC:
+ case elfcpp::R_ARM_ALU_SB_G1:
+ case elfcpp::R_ARM_ALU_SB_G2:
+ reloc_status =
+ Arm_relocate_functions::arm_grp_alu(view, object, psymval,
+ reloc_property->group_index(),
+ relative_address_base,
+ thumb_bit, check_overflow);
break;
+ case elfcpp::R_ARM_LDR_PC_G0:
+ case elfcpp::R_ARM_LDR_PC_G1:
+ case elfcpp::R_ARM_LDR_PC_G2:
+ case elfcpp::R_ARM_LDR_SB_G0:
+ case elfcpp::R_ARM_LDR_SB_G1:
+ case elfcpp::R_ARM_LDR_SB_G2:
+ reloc_status =
+ Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
+ reloc_property->group_index(),
+ relative_address_base);
+ break;
+
+ case elfcpp::R_ARM_LDRS_PC_G0:
+ case elfcpp::R_ARM_LDRS_PC_G1:
+ case elfcpp::R_ARM_LDRS_PC_G2:
+ case elfcpp::R_ARM_LDRS_SB_G0:
+ case elfcpp::R_ARM_LDRS_SB_G1:
+ case elfcpp::R_ARM_LDRS_SB_G2:
+ reloc_status =
+ Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
+ reloc_property->group_index(),
+ relative_address_base);
+ break;
+
+ case elfcpp::R_ARM_LDC_PC_G0:
+ case elfcpp::R_ARM_LDC_PC_G1:
+ case elfcpp::R_ARM_LDC_PC_G2:
+ case elfcpp::R_ARM_LDC_SB_G0:
+ case elfcpp::R_ARM_LDC_SB_G1:
+ case elfcpp::R_ARM_LDC_SB_G2:
+ reloc_status =
+ Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
+ reloc_property->group_index(),
+ relative_address_base);
+ break;
+
+ // These are initial tls relocs, which are expected when
+ // linking.
+ case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
+ case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
+ case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
+ case elfcpp::R_ARM_TLS_IE32: // Initial-exec
+ case elfcpp::R_ARM_TLS_LE32: // Local-exec
+ reloc_status =
+ this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
+ view, address, view_size);
+ break;
+
+ // The known and unknown unsupported and/or deprecated relocations.
+ case elfcpp::R_ARM_PC24:
+ case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
+ case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
+ case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
default:
- gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
- _("unsupported reloc %u"),
- r_type);
+ // Just silently leave the method. We should get an appropriate error
+ // message in the scan methods.
break;
}
break;
case Arm_relocate_functions::STATUS_OVERFLOW:
gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
- _("relocation overflow in relocation %u"),
- r_type);
+ _("relocation overflow in %s"),
+ reloc_property->name().c_str());
break;
case Arm_relocate_functions::STATUS_BAD_RELOC:
gold_error_at_location(
relinfo,
relnum,
rel.get_r_offset(),
- _("unexpected opcode while processing relocation %u"),
- r_type);
+ _("unexpected opcode while processing relocation %s"),
+ reloc_property->name().c_str());
break;
default:
gold_unreachable();
return true;
}
+// Perform a TLS relocation.
+
+template<bool big_endian>
+inline typename Arm_relocate_functions<big_endian>::Status
+Target_arm<big_endian>::Relocate::relocate_tls(
+ const Relocate_info<32, big_endian>* relinfo,
+ Target_arm<big_endian>* target,
+ size_t relnum,
+ const elfcpp::Rel<32, big_endian>& rel,
+ unsigned int r_type,
+ const Sized_symbol<32>* gsym,
+ const Symbol_value<32>* psymval,
+ unsigned char* view,
+ elfcpp::Elf_types<32>::Elf_Addr address,
+ section_size_type /*view_size*/ )
+{
+ typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
+ typedef Relocate_functions<32, big_endian> RelocFuncs;
+ Output_segment* tls_segment = relinfo->layout->tls_segment();
+
+ const Sized_relobj<32, big_endian>* object = relinfo->object;
+
+ elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
+
+ const bool is_final = (gsym == NULL
+ ? !parameters->options().shared()
+ : gsym->final_value_is_known());
+ const tls::Tls_optimization optimized_type
+ = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
+ switch (r_type)
+ {
+ case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
+ {
+ unsigned int got_type = GOT_TYPE_TLS_PAIR;
+ unsigned int got_offset;
+ if (gsym != NULL)
+ {
+ gold_assert(gsym->has_got_offset(got_type));
+ got_offset = gsym->got_offset(got_type) - target->got_size();
+ }
+ else
+ {
+ unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
+ gold_assert(object->local_has_got_offset(r_sym, got_type));
+ got_offset = (object->local_got_offset(r_sym, got_type)
+ - target->got_size());
+ }
+ if (optimized_type == tls::TLSOPT_NONE)
+ {
+ Arm_address got_entry =
+ target->got_plt_section()->address() + got_offset;
+
+ // Relocate the field with the PC relative offset of the pair of
+ // GOT entries.
+ RelocFuncs::pcrel32(view, got_entry, address);
+ return ArmRelocFuncs::STATUS_OKAY;
+ }
+ }
+ break;
+
+ case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
+ if (optimized_type == tls::TLSOPT_NONE)
+ {
+ // Relocate the field with the offset of the GOT entry for
+ // the module index.
+ unsigned int got_offset;
+ got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
+ - target->got_size());
+ Arm_address got_entry =
+ target->got_plt_section()->address() + got_offset;
+
+ // Relocate the field with the PC relative offset of the pair of
+ // GOT entries.
+ RelocFuncs::pcrel32(view, got_entry, address);
+ return ArmRelocFuncs::STATUS_OKAY;
+ }
+ break;
+
+ case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
+ RelocFuncs::rel32(view, value);
+ return ArmRelocFuncs::STATUS_OKAY;
+
+ case elfcpp::R_ARM_TLS_IE32: // Initial-exec
+ if (optimized_type == tls::TLSOPT_NONE)
+ {
+ // Relocate the field with the offset of the GOT entry for
+ // the tp-relative offset of the symbol.
+ unsigned int got_type = GOT_TYPE_TLS_OFFSET;
+ unsigned int got_offset;
+ if (gsym != NULL)
+ {
+ gold_assert(gsym->has_got_offset(got_type));
+ got_offset = gsym->got_offset(got_type);
+ }
+ else
+ {
+ unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
+ gold_assert(object->local_has_got_offset(r_sym, got_type));
+ got_offset = object->local_got_offset(r_sym, got_type);
+ }
+
+ // All GOT offsets are relative to the end of the GOT.
+ got_offset -= target->got_size();
+
+ Arm_address got_entry =
+ target->got_plt_section()->address() + got_offset;
+
+ // Relocate the field with the PC relative offset of the GOT entry.
+ RelocFuncs::pcrel32(view, got_entry, address);
+ return ArmRelocFuncs::STATUS_OKAY;
+ }
+ break;
+
+ case elfcpp::R_ARM_TLS_LE32: // Local-exec
+ // If we're creating a shared library, a dynamic relocation will
+ // have been created for this location, so do not apply it now.
+ if (!parameters->options().shared())
+ {
+ gold_assert(tls_segment != NULL);
+
+ // $tp points to the TCB, which is followed by the TLS, so we
+ // need to add TCB size to the offset.
+ Arm_address aligned_tcb_size =
+ align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
+ RelocFuncs::rel32(view, value + aligned_tcb_size);
+
+ }
+ return ArmRelocFuncs::STATUS_OKAY;
+
+ default:
+ gold_unreachable();
+ }
+
+ gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
+ _("unsupported reloc %u"),
+ r_type);
+ return ArmRelocFuncs::STATUS_BAD_RELOC;
+}
+
// Relocate section data.
template<bool big_endian>
typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
gold_assert(sh_type == elfcpp::SHT_REL);
- Arm_input_section<big_endian>* arm_input_section =
- this->find_arm_input_section(relinfo->object, relinfo->data_shndx);
-
- // This is an ARM input section and the view covers the whole output
- // section.
- if (arm_input_section != NULL)
+ // See if we are relocating a relaxed input section. If so, the view
+ // covers the whole output section and we need to adjust accordingly.
+ if (needs_special_offset_handling)
{
- gold_assert(needs_special_offset_handling);
- Arm_address section_address = arm_input_section->address();
- section_size_type section_size = arm_input_section->data_size();
+ const Output_relaxed_input_section* poris =
+ output_section->find_relaxed_input_section(relinfo->object,
+ relinfo->data_shndx);
+ if (poris != NULL)
+ {
+ Arm_address section_address = poris->address();
+ section_size_type section_size = poris->data_size();
- gold_assert((arm_input_section->address() >= address)
- && ((arm_input_section->address()
- + arm_input_section->data_size())
- <= (address + view_size)));
+ gold_assert((section_address >= address)
+ && ((section_address + section_size)
+ <= (address + view_size)));
- off_t offset = section_address - address;
- view += offset;
- address += offset;
- view_size = section_size;
+ off_t offset = section_address - address;
+ view += offset;
+ address += offset;
+ view_size = section_size;
+ }
}
gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
Relobj* object)
{
r_type = get_real_reloc_type(r_type);
- switch (r_type)
+ const Arm_reloc_property* arp =
+ arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
+ if (arp != NULL)
+ return arp->size();
+ else
{
- case elfcpp::R_ARM_NONE:
- return 0;
-
- case elfcpp::R_ARM_ABS8:
- return 1;
-
- case elfcpp::R_ARM_ABS16:
- case elfcpp::R_ARM_THM_ABS5:
- return 2;
-
- case elfcpp::R_ARM_ABS32:
- case elfcpp::R_ARM_ABS32_NOI:
- case elfcpp::R_ARM_ABS12:
- case elfcpp::R_ARM_BASE_ABS:
- case elfcpp::R_ARM_REL32:
- case elfcpp::R_ARM_THM_CALL:
- case elfcpp::R_ARM_GOTOFF32:
- case elfcpp::R_ARM_BASE_PREL:
- case elfcpp::R_ARM_GOT_BREL:
- case elfcpp::R_ARM_GOT_PREL:
- case elfcpp::R_ARM_PLT32:
- case elfcpp::R_ARM_CALL:
- case elfcpp::R_ARM_JUMP24:
- case elfcpp::R_ARM_PREL31:
- case elfcpp::R_ARM_MOVW_ABS_NC:
- case elfcpp::R_ARM_MOVT_ABS:
- case elfcpp::R_ARM_THM_MOVW_ABS_NC:
- case elfcpp::R_ARM_THM_MOVT_ABS:
- case elfcpp::R_ARM_MOVW_PREL_NC:
- case elfcpp::R_ARM_MOVT_PREL:
- case elfcpp::R_ARM_THM_MOVW_PREL_NC:
- case elfcpp::R_ARM_THM_MOVT_PREL:
- return 4;
-
- case elfcpp::R_ARM_TARGET1:
- // This should have been mapped to another type already.
- // Fall through.
- case elfcpp::R_ARM_COPY:
- case elfcpp::R_ARM_GLOB_DAT:
- case elfcpp::R_ARM_JUMP_SLOT:
- case elfcpp::R_ARM_RELATIVE:
- // These are relocations which should only be seen by the
- // dynamic linker, and should never be seen here.
- gold_error(_("%s: unexpected reloc %u in object file"),
- object->name().c_str(), r_type);
- return 0;
-
- default:
- object->error(_("unsupported reloc %u in object file"), r_type);
+ std::string reloc_name =
+ arm_reloc_property_table->reloc_name_in_error_message(r_type);
+ gold_error(_("%s: unexpected %s in object file"),
+ object->name().c_str(), reloc_name.c_str());
return 0;
}
}
{
gold_assert(sh_type == elfcpp::SHT_REL);
- typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
+ typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
Relocatable_size_for_reloc> Scan_relocatable_relocs;
gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
rr);
}
-// Relocate a section during a relocatable link.
+// Relocate a section during a relocatable link.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::relocate_for_relocatable(
+ const Relocate_info<32, big_endian>* relinfo,
+ unsigned int sh_type,
+ const unsigned char* prelocs,
+ size_t reloc_count,
+ Output_section* output_section,
+ off_t offset_in_output_section,
+ const Relocatable_relocs* rr,
+ unsigned char* view,
+ Arm_address view_address,
+ section_size_type view_size,
+ unsigned char* reloc_view,
+ section_size_type reloc_view_size)
+{
+ gold_assert(sh_type == elfcpp::SHT_REL);
+
+ gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
+ relinfo,
+ prelocs,
+ reloc_count,
+ output_section,
+ offset_in_output_section,
+ rr,
+ view,
+ view_address,
+ view_size,
+ reloc_view,
+ reloc_view_size);
+}
+
+// Perform target-specific processing in a relocatable link. This is
+// only used if we use the relocation strategy RELOC_SPECIAL.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::relocate_special_relocatable(
+ const Relocate_info<32, big_endian>* relinfo,
+ unsigned int sh_type,
+ const unsigned char* preloc_in,
+ size_t relnum,
+ Output_section* output_section,
+ off_t offset_in_output_section,
+ unsigned char* view,
+ elfcpp::Elf_types<32>::Elf_Addr view_address,
+ section_size_type,
+ unsigned char* preloc_out)
+{
+ // We can only handle REL type relocation sections.
+ gold_assert(sh_type == elfcpp::SHT_REL);
+
+ typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
+ typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
+ Reltype_write;
+ const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
+
+ const Arm_relobj<big_endian>* object =
+ Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
+ const unsigned int local_count = object->local_symbol_count();
+
+ Reltype reloc(preloc_in);
+ Reltype_write reloc_write(preloc_out);
+
+ elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
+ const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
+ const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
+
+ const Arm_reloc_property* arp =
+ arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
+ gold_assert(arp != NULL);
+
+ // Get the new symbol index.
+ // We only use RELOC_SPECIAL strategy in local relocations.
+ gold_assert(r_sym < local_count);
+
+ // We are adjusting a section symbol. We need to find
+ // the symbol table index of the section symbol for
+ // the output section corresponding to input section
+ // in which this symbol is defined.
+ bool is_ordinary;
+ unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
+ gold_assert(is_ordinary);
+ Output_section* os = object->output_section(shndx);
+ gold_assert(os != NULL);
+ gold_assert(os->needs_symtab_index());
+ unsigned int new_symndx = os->symtab_index();
+
+ // Get the new offset--the location in the output section where
+ // this relocation should be applied.
+
+ Arm_address offset = reloc.get_r_offset();
+ Arm_address new_offset;
+ if (offset_in_output_section != invalid_address)
+ new_offset = offset + offset_in_output_section;
+ else
+ {
+ section_offset_type sot_offset =
+ convert_types<section_offset_type, Arm_address>(offset);
+ section_offset_type new_sot_offset =
+ output_section->output_offset(object, relinfo->data_shndx,
+ sot_offset);
+ gold_assert(new_sot_offset != -1);
+ new_offset = new_sot_offset;
+ }
+
+ // In an object file, r_offset is an offset within the section.
+ // In an executable or dynamic object, generated by
+ // --emit-relocs, r_offset is an absolute address.
+ if (!parameters->options().relocatable())
+ {
+ new_offset += view_address;
+ if (offset_in_output_section != invalid_address)
+ new_offset -= offset_in_output_section;
+ }
+
+ reloc_write.put_r_offset(new_offset);
+ reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
+
+ // Handle the reloc addend.
+ // The relocation uses a section symbol in the input file.
+ // We are adjusting it to use a section symbol in the output
+ // file. The input section symbol refers to some address in
+ // the input section. We need the relocation in the output
+ // file to refer to that same address. This adjustment to
+ // the addend is the same calculation we use for a simple
+ // absolute relocation for the input section symbol.
+
+ const Symbol_value<32>* psymval = object->local_symbol(r_sym);
+
+ // Handle THUMB bit.
+ Symbol_value<32> symval;
+ Arm_address thumb_bit =
+ object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
+ if (thumb_bit != 0
+ && arp->uses_thumb_bit()
+ && ((psymval->value(object, 0) & 1) != 0))
+ {
+ Arm_address stripped_value =
+ psymval->value(object, 0) & ~static_cast<Arm_address>(1);
+ symval.set_output_value(stripped_value);
+ psymval = &symval;
+ }
+
+ unsigned char* paddend = view + offset;
+ typename Arm_relocate_functions<big_endian>::Status reloc_status =
+ Arm_relocate_functions<big_endian>::STATUS_OKAY;
+ switch (r_type)
+ {
+ case elfcpp::R_ARM_ABS8:
+ reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
+ psymval);
+ break;
+
+ case elfcpp::R_ARM_ABS12:
+ reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
+ psymval);
+ break;
+
+ case elfcpp::R_ARM_ABS16:
+ reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
+ psymval);
+ break;
+
+ case elfcpp::R_ARM_THM_ABS5:
+ reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
+ object,
+ psymval);
+ break;
+
+ case elfcpp::R_ARM_MOVW_ABS_NC:
+ case elfcpp::R_ARM_MOVW_PREL_NC:
+ case elfcpp::R_ARM_MOVW_BREL_NC:
+ case elfcpp::R_ARM_MOVW_BREL:
+ reloc_status = Arm_relocate_functions<big_endian>::movw(
+ paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
+ break;
+
+ case elfcpp::R_ARM_THM_MOVW_ABS_NC:
+ case elfcpp::R_ARM_THM_MOVW_PREL_NC:
+ case elfcpp::R_ARM_THM_MOVW_BREL_NC:
+ case elfcpp::R_ARM_THM_MOVW_BREL:
+ reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
+ paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
+ break;
+
+ case elfcpp::R_ARM_THM_CALL:
+ case elfcpp::R_ARM_THM_XPC22:
+ case elfcpp::R_ARM_THM_JUMP24:
+ reloc_status =
+ Arm_relocate_functions<big_endian>::thumb_branch_common(
+ r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
+ false);
+ break;
+
+ case elfcpp::R_ARM_PLT32:
+ case elfcpp::R_ARM_CALL:
+ case elfcpp::R_ARM_JUMP24:
+ case elfcpp::R_ARM_XPC25:
+ reloc_status =
+ Arm_relocate_functions<big_endian>::arm_branch_common(
+ r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
+ false);
+ break;
+
+ case elfcpp::R_ARM_THM_JUMP19:
+ reloc_status =
+ Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
+ psymval, 0, thumb_bit);
+ break;
+
+ case elfcpp::R_ARM_THM_JUMP6:
+ reloc_status =
+ Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
+ 0);
+ break;
+
+ case elfcpp::R_ARM_THM_JUMP8:
+ reloc_status =
+ Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
+ 0);
+ break;
+
+ case elfcpp::R_ARM_THM_JUMP11:
+ reloc_status =
+ Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
+ 0);
+ break;
+
+ case elfcpp::R_ARM_PREL31:
+ reloc_status =
+ Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
+ thumb_bit);
+ break;
+
+ case elfcpp::R_ARM_THM_PC8:
+ reloc_status =
+ Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
+ 0);
+ break;
+
+ case elfcpp::R_ARM_THM_PC12:
+ reloc_status =
+ Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
+ 0);
+ break;
+
+ case elfcpp::R_ARM_THM_ALU_PREL_11_0:
+ reloc_status =
+ Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
+ 0, thumb_bit);
+ break;
-template<bool big_endian>
-void
-Target_arm<big_endian>::relocate_for_relocatable(
- const Relocate_info<32, big_endian>* relinfo,
- unsigned int sh_type,
- const unsigned char* prelocs,
- size_t reloc_count,
- Output_section* output_section,
- off_t offset_in_output_section,
- const Relocatable_relocs* rr,
- unsigned char* view,
- Arm_address view_address,
- section_size_type view_size,
- unsigned char* reloc_view,
- section_size_type reloc_view_size)
-{
- gold_assert(sh_type == elfcpp::SHT_REL);
+ // These relocation truncate relocation results so we cannot handle them
+ // in a relocatable link.
+ case elfcpp::R_ARM_MOVT_ABS:
+ case elfcpp::R_ARM_THM_MOVT_ABS:
+ case elfcpp::R_ARM_MOVT_PREL:
+ case elfcpp::R_ARM_MOVT_BREL:
+ case elfcpp::R_ARM_THM_MOVT_PREL:
+ case elfcpp::R_ARM_THM_MOVT_BREL:
+ case elfcpp::R_ARM_ALU_PC_G0_NC:
+ case elfcpp::R_ARM_ALU_PC_G0:
+ case elfcpp::R_ARM_ALU_PC_G1_NC:
+ case elfcpp::R_ARM_ALU_PC_G1:
+ case elfcpp::R_ARM_ALU_PC_G2:
+ case elfcpp::R_ARM_ALU_SB_G0_NC:
+ case elfcpp::R_ARM_ALU_SB_G0:
+ case elfcpp::R_ARM_ALU_SB_G1_NC:
+ case elfcpp::R_ARM_ALU_SB_G1:
+ case elfcpp::R_ARM_ALU_SB_G2:
+ case elfcpp::R_ARM_LDR_PC_G0:
+ case elfcpp::R_ARM_LDR_PC_G1:
+ case elfcpp::R_ARM_LDR_PC_G2:
+ case elfcpp::R_ARM_LDR_SB_G0:
+ case elfcpp::R_ARM_LDR_SB_G1:
+ case elfcpp::R_ARM_LDR_SB_G2:
+ case elfcpp::R_ARM_LDRS_PC_G0:
+ case elfcpp::R_ARM_LDRS_PC_G1:
+ case elfcpp::R_ARM_LDRS_PC_G2:
+ case elfcpp::R_ARM_LDRS_SB_G0:
+ case elfcpp::R_ARM_LDRS_SB_G1:
+ case elfcpp::R_ARM_LDRS_SB_G2:
+ case elfcpp::R_ARM_LDC_PC_G0:
+ case elfcpp::R_ARM_LDC_PC_G1:
+ case elfcpp::R_ARM_LDC_PC_G2:
+ case elfcpp::R_ARM_LDC_SB_G0:
+ case elfcpp::R_ARM_LDC_SB_G1:
+ case elfcpp::R_ARM_LDC_SB_G2:
+ gold_error(_("cannot handle %s in a relocatable link"),
+ arp->name().c_str());
+ break;
- gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
- relinfo,
- prelocs,
- reloc_count,
- output_section,
- offset_in_output_section,
- rr,
- view,
- view_address,
- view_size,
- reloc_view,
- reloc_view_size);
+ default:
+ gold_unreachable();
+ }
+
+ // Report any errors.
+ switch (reloc_status)
+ {
+ case Arm_relocate_functions<big_endian>::STATUS_OKAY:
+ break;
+ case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
+ gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
+ _("relocation overflow in %s"),
+ arp->name().c_str());
+ break;
+ case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
+ gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
+ _("unexpected opcode while processing relocation %s"),
+ arp->name().c_str());
+ break;
+ default:
+ gold_unreachable();
+ }
}
// Return the value to use for a dynamic symbol which requires special
//
template<bool big_endian>
unsigned int
-Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
+Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
{
switch (r_type)
{
{
// v4 and v5 are the same spec before and after it was released,
// so allow mixing them.
- if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
+ if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
+ || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
|| (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
return true;
// Complain about various flag mismatches.
elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
- if (!this->are_eabi_versions_compatible(version1, version2))
+ if (!this->are_eabi_versions_compatible(version1, version2)
+ && parameters->options().warn_mismatch())
gold_error(_("Source object %s has EABI version %d but output has "
"EABI version %d."),
name.c_str(),
Target_arm<big_endian>::get_secondary_compatible_arch(
const Attributes_section_data* pasd)
{
- const Object_attribute *known_attributes =
+ const Object_attribute* known_attributes =
pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
// Note: the tag and its argument below are uleb128 values, though
Attributes_section_data* pasd,
int arch)
{
- Object_attribute *known_attributes =
+ Object_attribute* known_attributes =
pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
if (arch == -1)
T(V7E_M), // V7E_M.
T(V4T_PLUS_V6_M) // V4T plus V6_M.
};
- static const int *comb[] =
+ static const int* comb[] =
{
v6t2,
v6k,
std::string
Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
{
- static const char *aeabi_enum_names[] =
+ static const char* aeabi_enum_names[] =
{ "", "variable-size", "32-bit", "" };
const size_t aeabi_enum_names_size =
sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
std::string
Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
{
- static const char *name_table[] = {
+ static const char* name_table[] = {
// These aren't real CPU names, but we can't guess
// that from the architecture version alone.
"Pre v4",
return;
// If output has no object attributes, just copy.
+ const int vendor = Object_attribute::OBJ_ATTR_PROC;
if (this->attributes_section_data_ == NULL)
{
this->attributes_section_data_ = new Attributes_section_data(*pasd);
+ Object_attribute* out_attr =
+ this->attributes_section_data_->known_attributes(vendor);
+
+ // We do not output objects with Tag_MPextension_use_legacy - we move
+ // the attribute's value to Tag_MPextension_use. */
+ if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
+ {
+ if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
+ && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
+ != out_attr[elfcpp::Tag_MPextension_use].int_value())
+ {
+ gold_error(_("%s has both the current and legacy "
+ "Tag_MPextension_use attributes"),
+ name);
+ }
+
+ out_attr[elfcpp::Tag_MPextension_use] =
+ out_attr[elfcpp::Tag_MPextension_use_legacy];
+ out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
+ out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
+ }
+
return;
}
- const int vendor = Object_attribute::OBJ_ATTR_PROC;
const Object_attribute* in_attr = pasd->known_attributes(vendor);
Object_attribute* out_attr =
this->attributes_section_data_->known_attributes(vendor);
if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
- else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0)
+ else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
+ && parameters->options().warn_mismatch())
gold_error(_("%s uses VFP register arguments, output does not"),
name);
}
&& (out_attr[i].int_value() == 'A'
|| out_attr[i].int_value() == 'R')))
; // Do nothing.
- else
+ else if (parameters->options().warn_mismatch())
{
gold_error
(_("conflicting architecture profiles %c/%c"),
case elfcpp::Tag_PCS_config:
if (out_attr[i].int_value() == 0)
out_attr[i].set_int_value(in_attr[i].int_value());
- else if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
+ else if (in_attr[i].int_value() != 0
+ && out_attr[i].int_value() != 0
+ && parameters->options().warn_mismatch())
{
// It's sometimes ok to mix different configs, so this is only
// a warning.
case elfcpp::Tag_ABI_PCS_R9_use:
if (in_attr[i].int_value() != out_attr[i].int_value()
&& out_attr[i].int_value() != elfcpp::AEABI_R9_unused
- && in_attr[i].int_value() != elfcpp::AEABI_R9_unused)
+ && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
+ && parameters->options().warn_mismatch())
{
gold_error(_("%s: conflicting use of R9"), name);
}
&& (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
!= elfcpp::AEABI_R9_SB)
&& (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
- != elfcpp::AEABI_R9_unused))
+ != elfcpp::AEABI_R9_unused)
+ && parameters->options().warn_mismatch())
{
gold_error(_("%s: SB relative addressing conflicts with use "
"of R9"),
- name);
+ name);
}
// Use the smallest value specified.
if (in_attr[i].int_value() < out_attr[i].int_value())
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_PCS_wchar_t:
- // FIXME: Make it possible to turn off this warning.
if (out_attr[i].int_value()
&& in_attr[i].int_value()
- && out_attr[i].int_value() != in_attr[i].int_value())
+ && out_attr[i].int_value() != in_attr[i].int_value()
+ && parameters->options().warn_mismatch()
+ && parameters->options().wchar_size_warning())
{
gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
"use %u-byte wchar_t; use of wchar_t values "
// Use whatever requirements the new object has.
out_attr[i].set_int_value(in_attr[i].int_value());
}
- // FIXME: Make it possible to turn off this warning.
else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
- && out_attr[i].int_value() != in_attr[i].int_value())
+ && out_attr[i].int_value() != in_attr[i].int_value()
+ && parameters->options().warn_mismatch()
+ && parameters->options().enum_size_warning())
{
unsigned int in_value = in_attr[i].int_value();
unsigned int out_value = out_attr[i].int_value();
// Aready done.
break;
case elfcpp::Tag_ABI_WMMX_args:
- if (in_attr[i].int_value() != out_attr[i].int_value())
+ if (in_attr[i].int_value() != out_attr[i].int_value()
+ && parameters->options().warn_mismatch())
{
gold_error(_("%s uses iWMMXt register arguments, output does "
"not"),
case elfcpp::Tag_ABI_FP_16bit_format:
if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
{
- if (in_attr[i].int_value() != out_attr[i].int_value())
+ if (in_attr[i].int_value() != out_attr[i].int_value()
+ && parameters->options().warn_mismatch())
gold_error(_("fp16 format mismatch between %s and output"),
name);
}
out_attr[i].set_int_value(in_attr[i].int_value());
break;
+ case elfcpp::Tag_DIV_use:
+ // This tag is set to zero if we can use UDIV and SDIV in Thumb
+ // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
+ // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
+ // CPU. We will merge as follows: If the input attribute's value
+ // is one then the output attribute's value remains unchanged. If
+ // the input attribute's value is zero or two then if the output
+ // attribute's value is one the output value is set to the input
+ // value, otherwise the output value must be the same as the
+ // inputs. */
+ if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
+ {
+ if (in_attr[i].int_value() != out_attr[i].int_value())
+ {
+ gold_error(_("DIV usage mismatch between %s and output"),
+ name);
+ }
+ }
+
+ if (in_attr[i].int_value() != 1)
+ out_attr[i].set_int_value(in_attr[i].int_value());
+
+ break;
+
+ case elfcpp::Tag_MPextension_use_legacy:
+ // We don't output objects with Tag_MPextension_use_legacy - we
+ // move the value to Tag_MPextension_use.
+ if (in_attr[i].int_value() != 0
+ && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
+ {
+ if (in_attr[elfcpp::Tag_MPextension_use].int_value()
+ != in_attr[i].int_value())
+ {
+ gold_error(_("%s has has both the current and legacy "
+ "Tag_MPextension_use attributes"),
+ name);
+ }
+ }
+
+ if (in_attr[i].int_value()
+ > out_attr[elfcpp::Tag_MPextension_use].int_value())
+ out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
+
+ break;
+
case elfcpp::Tag_nodefaults:
// This tag is set if it exists, but the value is unused (and is
// typically zero). We don't actually need to do anything here -
|| in_attr[i].string_value() != "")
err_object = name;
- if (err_object != NULL)
+ if (err_object != NULL
+ && parameters->options().warn_mismatch())
{
// Attribute numbers >=64 (mod 128) can be safely ignored.
if ((i & 127) < 64)
}
}
- if (err_object)
+ if (err_object && parameters->options().warn_mismatch())
{
// Attribute numbers >=64 (mod 128) can be safely ignored. */
if ((err_tag & 127) < 64)
}
}
-// Return whether a relocation type used the LSB to distinguish THUMB
-// addresses.
-template<bool big_endian>
-bool
-Target_arm<big_endian>::reloc_uses_thumb_bit(unsigned int r_type)
-{
- switch (r_type)
- {
- case elfcpp::R_ARM_PC24:
- case elfcpp::R_ARM_ABS32:
- case elfcpp::R_ARM_REL32:
- case elfcpp::R_ARM_SBREL32:
- case elfcpp::R_ARM_THM_CALL:
- case elfcpp::R_ARM_GLOB_DAT:
- case elfcpp::R_ARM_JUMP_SLOT:
- case elfcpp::R_ARM_GOTOFF32:
- case elfcpp::R_ARM_PLT32:
- case elfcpp::R_ARM_CALL:
- case elfcpp::R_ARM_JUMP24:
- case elfcpp::R_ARM_THM_JUMP24:
- case elfcpp::R_ARM_SBREL31:
- case elfcpp::R_ARM_PREL31:
- case elfcpp::R_ARM_MOVW_ABS_NC:
- case elfcpp::R_ARM_MOVW_PREL_NC:
- case elfcpp::R_ARM_THM_MOVW_ABS_NC:
- case elfcpp::R_ARM_THM_MOVW_PREL_NC:
- case elfcpp::R_ARM_THM_JUMP19:
- case elfcpp::R_ARM_THM_ALU_PREL_11_0:
- case elfcpp::R_ARM_ALU_PC_G0_NC:
- case elfcpp::R_ARM_ALU_PC_G0:
- case elfcpp::R_ARM_ALU_PC_G1_NC:
- case elfcpp::R_ARM_ALU_PC_G1:
- case elfcpp::R_ARM_ALU_PC_G2:
- case elfcpp::R_ARM_ALU_SB_G0_NC:
- case elfcpp::R_ARM_ALU_SB_G0:
- case elfcpp::R_ARM_ALU_SB_G1_NC:
- case elfcpp::R_ARM_ALU_SB_G1:
- case elfcpp::R_ARM_ALU_SB_G2:
- case elfcpp::R_ARM_MOVW_BREL_NC:
- case elfcpp::R_ARM_MOVW_BREL:
- case elfcpp::R_ARM_THM_MOVW_BREL_NC:
- case elfcpp::R_ARM_THM_MOVW_BREL:
- return true;
- default:
- return false;
- }
-}
-
// Stub-generation methods for Target_arm.
// Make a new Arm_input_section object.
Relobj* relobj,
unsigned int shndx)
{
- Input_section_specifier iss(relobj, shndx);
+ Section_id sid(relobj, shndx);
Arm_input_section<big_endian>* arm_input_section =
new Arm_input_section<big_endian>(relobj, shndx);
// Register new Arm_input_section in map for look-up.
std::pair<typename Arm_input_section_map::iterator, bool> ins =
- this->arm_input_section_map_.insert(std::make_pair(iss, arm_input_section));
+ this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
// Make sure that it we have not created another Arm_input_section
// for this input section already.
Relobj* relobj,
unsigned int shndx) const
{
- Input_section_specifier iss(relobj, shndx);
+ Section_id sid(relobj, shndx);
typename Arm_input_section_map::const_iterator p =
- this->arm_input_section_map_.find(iss);
+ this->arm_input_section_map_.find(sid);
return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
}
}
// Strip LSB if this points to a THUMB target.
+ const Arm_reloc_property* reloc_property =
+ arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
+ gold_assert(reloc_property != NULL);
if (target_is_thumb
- && Target_arm<big_endian>::reloc_uses_thumb_bit(r_type)
+ && reloc_property->uses_thumb_bit()
&& ((psymval->value(arm_relobj, 0) & 1) != 0))
{
Arm_address stripped_value =
&& (r_type != elfcpp::R_ARM_THM_CALL)
&& (r_type != elfcpp::R_ARM_THM_XPC22)
&& (r_type != elfcpp::R_ARM_THM_JUMP24)
- && (r_type != elfcpp::R_ARM_THM_JUMP19))
+ && (r_type != elfcpp::R_ARM_THM_JUMP19)
+ && (r_type != elfcpp::R_ARM_V4BX))
continue;
section_offset_type offset =
continue;
}
+ // Create a v4bx stub if --fix-v4bx-interworking is used.
+ if (r_type == elfcpp::R_ARM_V4BX)
+ {
+ if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
+ {
+ // Get the BX instruction.
+ typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+ const Valtype* wv =
+ reinterpret_cast<const Valtype*>(view + offset);
+ elfcpp::Elf_types<32>::Elf_Swxword insn =
+ elfcpp::Swap<32, big_endian>::readval(wv);
+ const uint32_t reg = (insn & 0xf);
+
+ if (reg < 0xf)
+ {
+ // Try looking up an existing stub from a stub table.
+ Stub_table<big_endian>* stub_table =
+ arm_object->stub_table(relinfo->data_shndx);
+ gold_assert(stub_table != NULL);
+
+ if (stub_table->find_arm_v4bx_stub(reg) == NULL)
+ {
+ // create a new stub and add it to stub table.
+ Arm_v4bx_stub* stub =
+ this->stub_factory().make_arm_v4bx_stub(reg);
+ gold_assert(stub != NULL);
+ stub_table->add_arm_v4bx_stub(stub);
+ }
+ }
+ }
+ continue;
+ }
+
// Get the addend.
Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
elfcpp::Elf_types<32>::Elf_Swxword addend =
Symbol_value<32> symval;
const Symbol_value<32> *psymval;
+ bool is_defined_in_discarded_section;
+ unsigned int shndx;
if (r_sym < local_count)
{
sym = NULL;
// counterpart in the kept section. The symbol must not
// correspond to a section we are folding.
bool is_ordinary;
- unsigned int shndx = psymval->input_shndx(&is_ordinary);
- if (is_ordinary
- && shndx != elfcpp::SHN_UNDEF
- && !arm_object->is_section_included(shndx)
- && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
+ shndx = psymval->input_shndx(&is_ordinary);
+ is_defined_in_discarded_section =
+ (is_ordinary
+ && shndx != elfcpp::SHN_UNDEF
+ && !arm_object->is_section_included(shndx)
+ && !relinfo->symtab->is_section_folded(arm_object, shndx));
+
+ // We need to compute the would-be final value of this local
+ // symbol.
+ if (!is_defined_in_discarded_section)
{
- if (comdat_behavior == CB_UNDETERMINED)
- {
- std::string name =
- arm_object->section_name(relinfo->data_shndx);
- comdat_behavior = get_comdat_behavior(name.c_str());
- }
- if (comdat_behavior == CB_PRETEND)
- {
- bool found;
- typename elfcpp::Elf_types<32>::Elf_Addr value =
- arm_object->map_to_kept_section(shndx, &found);
- if (found)
- symval.set_output_value(value + psymval->input_value());
- else
- symval.set_output_value(0);
- }
+ typedef Sized_relobj<32, big_endian> ObjType;
+ typename ObjType::Compute_final_local_value_status status =
+ arm_object->compute_final_local_value(r_sym, psymval, &symval,
+ relinfo->symtab);
+ if (status == ObjType::CFLV_OK)
+ {
+ // Currently we cannot handle a branch to a target in
+ // a merged section. If this is the case, issue an error
+ // and also free the merge symbol value.
+ if (!symval.has_output_value())
+ {
+ const std::string& section_name =
+ arm_object->section_name(shndx);
+ arm_object->error(_("cannot handle branch to local %u "
+ "in a merged section %s"),
+ r_sym, section_name.c_str());
+ }
+ psymval = &symval;
+ }
else
- {
- symval.set_output_value(0);
- }
- symval.set_no_output_symtab_entry();
- psymval = &symval;
+ {
+ // We cannot determine the final value.
+ continue;
+ }
}
}
else
{
- const Symbol* gsym = arm_object->global_symbol(r_sym);
+ const Symbol* gsym;
+ gsym = arm_object->global_symbol(r_sym);
gold_assert(gsym != NULL);
if (gsym->is_forwarder())
gsym = relinfo->symtab->resolve_forwards(gsym);
sym = static_cast<const Sized_symbol<32>*>(gsym);
- if (sym->has_symtab_index())
+ if (sym->has_symtab_index() && sym->symtab_index() != -1U)
symval.set_output_symtab_index(sym->symtab_index());
else
symval.set_no_output_symtab_entry();
// Skip this if the symbol has not output section.
if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
continue;
-
symval.set_output_value(value);
+
+ if (gsym->type() == elfcpp::STT_TLS)
+ symval.set_is_tls_symbol();
+ else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
+ symval.set_is_ifunc_symbol();
psymval = &symval;
+
+ is_defined_in_discarded_section =
+ (gsym->is_defined_in_discarded_section()
+ && gsym->is_undefined());
+ shndx = 0;
+ }
+
+ Symbol_value<32> symval2;
+ if (is_defined_in_discarded_section)
+ {
+ if (comdat_behavior == CB_UNDETERMINED)
+ {
+ std::string name = arm_object->section_name(relinfo->data_shndx);
+ comdat_behavior = get_comdat_behavior(name.c_str());
+ }
+ if (comdat_behavior == CB_PRETEND)
+ {
+ // FIXME: This case does not work for global symbols.
+ // We have no place to store the original section index.
+ // Fortunately this does not matter for comdat sections,
+ // only for sections explicitly discarded by a linker
+ // script.
+ bool found;
+ typename elfcpp::Elf_types<32>::Elf_Addr value =
+ arm_object->map_to_kept_section(shndx, &found);
+ if (found)
+ symval2.set_output_value(value + psymval->input_value());
+ else
+ symval2.set_output_value(0);
+ }
+ else
+ {
+ if (comdat_behavior == CB_WARNING)
+ gold_warning_at_location(relinfo, i, offset,
+ _("relocation refers to discarded "
+ "section"));
+ symval2.set_output_value(0);
+ }
+ symval2.set_no_output_symtab_entry();
+ psymval = &symval2;
}
// If symbol is a section symbol, we don't know the actual type of
// If this is the first pass, we need to group input sections into
// stub groups.
+ bool done_exidx_fixup = false;
+ typedef typename Stub_table_list::iterator Stub_table_iterator;
if (pass == 1)
{
// Determine the stub group size. The group size is the absolute
bool stubs_always_after_branch = stub_group_size_param < 0;
section_size_type stub_group_size = abs(stub_group_size_param);
- // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
- // page as the first half of a 32-bit branch straddling two 4K pages.
- // This is a crude way of enforcing that.
- if (this->fix_cortex_a8_)
- stubs_always_after_branch = true;
-
if (stub_group_size == 1)
{
// Default value.
// Thumb branch range is +-4MB has to be used as the default
// maximum size (a given section can contain both ARM and Thumb
- // code, so the worst case has to be taken into account).
+ // code, so the worst case has to be taken into account). If we are
+ // fixing cortex-a8 errata, the branch range has to be even smaller,
+ // since wide conditional branch has a range of +-1MB only.
//
- // This value is 24K less than that, which allows for 2025
+ // This value is 48K less than that, which allows for 4096
// 12-byte stubs. If we exceed that, then we will fail to link.
// The user will have to relink with an explicit group size
// option.
- stub_group_size = 4170000;
+ stub_group_size = 4145152;
+ }
+
+ // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
+ // page as the first half of a 32-bit branch straddling two 4K pages.
+ // This is a crude way of enforcing that. In addition, long conditional
+ // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
+ // erratum, limit the group size to (1M - 12k) to avoid unreachable
+ // cortex-A8 stubs from long conditional branches.
+ if (this->fix_cortex_a8_)
+ {
+ stubs_always_after_branch = true;
+ const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
+ stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
}
group_sections(layout, stub_group_size, stubs_always_after_branch);
+
+ // Also fix .ARM.exidx section coverage.
+ Arm_output_section<big_endian>* exidx_output_section = NULL;
+ for (Layout::Section_list::const_iterator p =
+ layout->section_list().begin();
+ p != layout->section_list().end();
+ ++p)
+ if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
+ {
+ if (exidx_output_section == NULL)
+ exidx_output_section =
+ Arm_output_section<big_endian>::as_arm_output_section(*p);
+ else
+ // We cannot handle this now.
+ gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
+ "non-relocatable link"),
+ exidx_output_section->name(),
+ (*p)->name());
+ }
+
+ if (exidx_output_section != NULL)
+ {
+ this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
+ symtab);
+ done_exidx_fixup = true;
+ }
+ }
+ else
+ {
+ // If this is not the first pass, addresses and file offsets have
+ // been reset at this point, set them here.
+ for (Stub_table_iterator sp = this->stub_tables_.begin();
+ sp != this->stub_tables_.end();
+ ++sp)
+ {
+ Arm_input_section<big_endian>* owner = (*sp)->owner();
+ off_t off = align_address(owner->original_size(),
+ (*sp)->addralign());
+ (*sp)->set_address_and_file_offset(owner->address() + off,
+ owner->offset() + off);
+ }
}
// The Cortex-A8 stubs are sensitive to layout of code sections. At the
// Alternatively, we could selectively remove only the stubs and reloc
// information for code sections that have moved since the last pass.
// That would require more book-keeping.
- typedef typename Stub_table_list::iterator Stub_table_iterator;
if (this->fix_cortex_a8_)
{
// Clear all Cortex-A8 reloc information.
// or addresses alignments changed. These are the only things that
// matter.
bool any_stub_table_changed = false;
+ Unordered_set<const Output_section*> sections_needing_adjustment;
for (Stub_table_iterator sp = this->stub_tables_.begin();
(sp != this->stub_tables_.end()) && !any_stub_table_changed;
++sp)
{
if ((*sp)->update_data_size_and_addralign())
- any_stub_table_changed = true;
+ {
+ // Update data size of stub table owner.
+ Arm_input_section<big_endian>* owner = (*sp)->owner();
+ uint64_t address = owner->address();
+ off_t offset = owner->offset();
+ owner->reset_address_and_file_offset();
+ owner->set_address_and_file_offset(address, offset);
+
+ sections_needing_adjustment.insert(owner->output_section());
+ any_stub_table_changed = true;
+ }
}
+ // Output_section_data::output_section() returns a const pointer but we
+ // need to update output sections, so we record all output sections needing
+ // update above and scan the sections here to find out what sections need
+ // to be updated.
+ for(Layout::Section_list::const_iterator p = layout->section_list().begin();
+ p != layout->section_list().end();
+ ++p)
+ {
+ if (sections_needing_adjustment.find(*p)
+ != sections_needing_adjustment.end())
+ (*p)->set_section_offsets_need_adjustment();
+ }
+
+ // Stop relaxation if no EXIDX fix-up and no stub table change.
+ bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
+
// Finalize the stubs in the last relaxation pass.
- if (!any_stub_table_changed)
- for (Stub_table_iterator sp = this->stub_tables_.begin();
- (sp != this->stub_tables_.end()) && !any_stub_table_changed;
- ++sp)
- (*sp)->finalize_stubs();
+ if (!continue_relaxation)
+ {
+ for (Stub_table_iterator sp = this->stub_tables_.begin();
+ (sp != this->stub_tables_.end()) && !any_stub_table_changed;
+ ++sp)
+ (*sp)->finalize_stubs();
+
+ // Update output local symbol counts of objects if necessary.
+ for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
+ op != input_objects->relobj_end();
+ ++op)
+ {
+ Arm_relobj<big_endian>* arm_relobj =
+ Arm_relobj<big_endian>::as_arm_relobj(*op);
+
+ // Update output local symbol counts. We need to discard local
+ // symbols defined in parts of input sections that are discarded by
+ // relaxation.
+ if (arm_relobj->output_local_symbol_count_needs_update())
+ arm_relobj->update_output_local_symbol_count();
+ }
+ }
- return any_stub_table_changed;
+ return continue_relaxation;
}
// Relocate a stub.
gold_assert(reloc_offset + reloc_size <= view_size);
// This is the address of the stub destination.
- Arm_address target = stub->reloc_target(i);
+ Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
Symbol_value<32> symval;
symval.set_output_value(target);
}
}
+// Apply the Cortex-A8 workaround.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::apply_cortex_a8_workaround(
+ const Cortex_a8_stub* stub,
+ Arm_address stub_address,
+ unsigned char* insn_view,
+ Arm_address insn_address)
+{
+ typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+ Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
+ Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
+ Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
+ off_t branch_offset = stub_address - (insn_address + 4);
+
+ typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
+ switch (stub->stub_template()->type())
+ {
+ case arm_stub_a8_veneer_b_cond:
+ // For a conditional branch, we re-write it to be a uncondition
+ // branch to the stub. We use the THUMB-2 encoding here.
+ upper_insn = 0xf000U;
+ lower_insn = 0xb800U;
+ // Fall through
+ case arm_stub_a8_veneer_b:
+ case arm_stub_a8_veneer_bl:
+ case arm_stub_a8_veneer_blx:
+ if ((lower_insn & 0x5000U) == 0x4000U)
+ // For a BLX instruction, make sure that the relocation is
+ // rounded up to a word boundary. This follows the semantics of
+ // the instruction which specifies that bit 1 of the target
+ // address will come from bit 1 of the base address.
+ branch_offset = (branch_offset + 2) & ~3;
+
+ // Put BRANCH_OFFSET back into the insn.
+ gold_assert(!utils::has_overflow<25>(branch_offset));
+ upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
+ lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
+ break;
+
+ default:
+ gold_unreachable();
+ }
+
+ // Put the relocated value back in the object file:
+ elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
+ elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
+}
+
template<bool big_endian>
class Target_selector_arm : public Target_selector
{
{ return new Target_arm<big_endian>(); }
};
+// Fix .ARM.exidx section coverage.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::fix_exidx_coverage(
+ Layout* layout,
+ const Input_objects* input_objects,
+ Arm_output_section<big_endian>* exidx_section,
+ Symbol_table* symtab)
+{
+ // We need to look at all the input sections in output in ascending
+ // order of of output address. We do that by building a sorted list
+ // of output sections by addresses. Then we looks at the output sections
+ // in order. The input sections in an output section are already sorted
+ // by addresses within the output section.
+
+ typedef std::set<Output_section*, output_section_address_less_than>
+ Sorted_output_section_list;
+ Sorted_output_section_list sorted_output_sections;
+
+ // Find out all the output sections of input sections pointed by
+ // EXIDX input sections.
+ for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
+ p != input_objects->relobj_end();
+ ++p)
+ {
+ Arm_relobj<big_endian>* arm_relobj =
+ Arm_relobj<big_endian>::as_arm_relobj(*p);
+ std::vector<unsigned int> shndx_list;
+ arm_relobj->get_exidx_shndx_list(&shndx_list);
+ for (size_t i = 0; i < shndx_list.size(); ++i)
+ {
+ const Arm_exidx_input_section* exidx_input_section =
+ arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
+ gold_assert(exidx_input_section != NULL);
+ if (!exidx_input_section->has_errors())
+ {
+ unsigned int text_shndx = exidx_input_section->link();
+ Output_section* os = arm_relobj->output_section(text_shndx);
+ if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
+ sorted_output_sections.insert(os);
+ }
+ }
+ }
+
+ // Go over the output sections in ascending order of output addresses.
+ typedef typename Arm_output_section<big_endian>::Text_section_list
+ Text_section_list;
+ Text_section_list sorted_text_sections;
+ for(typename Sorted_output_section_list::iterator p =
+ sorted_output_sections.begin();
+ p != sorted_output_sections.end();
+ ++p)
+ {
+ Arm_output_section<big_endian>* arm_output_section =
+ Arm_output_section<big_endian>::as_arm_output_section(*p);
+ arm_output_section->append_text_sections_to_list(&sorted_text_sections);
+ }
+
+ exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
+ merge_exidx_entries());
+}
+
Target_selector_arm<false> target_selector_arm;
Target_selector_arm<true> target_selector_armbe;