// output.cc -- manage the output file for gold
-// Copyright 2006, 2007 Free Software Foundation, Inc.
+// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
// This file is part of gold.
#include "gold.h"
#include <cstdlib>
+#include <cstring>
#include <cerrno>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <algorithm>
-#include "libiberty.h" // for unlink_if_ordinary()
+#include "libiberty.h"
#include "parameters.h"
#include "object.h"
#include "symtab.h"
#include "reloc.h"
#include "merge.h"
+#include "descriptors.h"
#include "output.h"
+// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
+#ifndef MAP_ANONYMOUS
+# define MAP_ANONYMOUS MAP_ANON
+#endif
+
+#ifndef HAVE_POSIX_FALLOCATE
+// A dummy, non general, version of posix_fallocate. Here we just set
+// the file size and hope that there is enough disk space. FIXME: We
+// could allocate disk space by walking block by block and writing a
+// zero byte into each block.
+static int
+posix_fallocate(int o, off_t offset, off_t len)
+{
+ return ftruncate(o, offset + len);
+}
+#endif // !defined(HAVE_POSIX_FALLOCATE)
+
namespace gold
{
uint64_t
Output_data::default_alignment()
{
- return Output_data::default_alignment_for_size(parameters->get_size());
+ return Output_data::default_alignment_for_size(
+ parameters->target().get_size());
}
// Return the default alignment for a size--32 or 64.
Output_section_headers::Output_section_headers(
const Layout* layout,
const Layout::Segment_list* segment_list,
+ const Layout::Section_list* section_list,
const Layout::Section_list* unattached_section_list,
- const Stringpool* secnamepool)
+ const Stringpool* secnamepool,
+ const Output_section* shstrtab_section)
: layout_(layout),
segment_list_(segment_list),
+ section_list_(section_list),
unattached_section_list_(unattached_section_list),
- secnamepool_(secnamepool)
+ secnamepool_(secnamepool),
+ shstrtab_section_(shstrtab_section)
+{
+}
+
+// Compute the current data size.
+
+off_t
+Output_section_headers::do_size() const
{
// Count all the sections. Start with 1 for the null section.
off_t count = 1;
- for (Layout::Segment_list::const_iterator p = segment_list->begin();
- p != segment_list->end();
- ++p)
- if ((*p)->type() == elfcpp::PT_LOAD)
- count += (*p)->output_section_count();
- count += unattached_section_list->size();
+ if (!parameters->options().relocatable())
+ {
+ for (Layout::Segment_list::const_iterator p =
+ this->segment_list_->begin();
+ p != this->segment_list_->end();
+ ++p)
+ if ((*p)->type() == elfcpp::PT_LOAD)
+ count += (*p)->output_section_count();
+ }
+ else
+ {
+ for (Layout::Section_list::const_iterator p =
+ this->section_list_->begin();
+ p != this->section_list_->end();
+ ++p)
+ if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
+ ++count;
+ }
+ count += this->unattached_section_list_->size();
- const int size = parameters->get_size();
+ const int size = parameters->target().get_size();
int shdr_size;
if (size == 32)
shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
else
gold_unreachable();
- this->set_data_size(count * shdr_size);
+ return count * shdr_size;
}
// Write out the section headers.
void
Output_section_headers::do_write(Output_file* of)
{
- if (parameters->get_size() == 32)
+ switch (parameters->size_and_endianness())
{
- if (parameters->is_big_endian())
- {
-#ifdef HAVE_TARGET_32_BIG
- this->do_sized_write<32, true>(of);
-#else
- gold_unreachable();
-#endif
- }
- else
- {
#ifdef HAVE_TARGET_32_LITTLE
- this->do_sized_write<32, false>(of);
-#else
- gold_unreachable();
+ case Parameters::TARGET_32_LITTLE:
+ this->do_sized_write<32, false>(of);
+ break;
#endif
- }
- }
- else if (parameters->get_size() == 64)
- {
- if (parameters->is_big_endian())
- {
-#ifdef HAVE_TARGET_64_BIG
- this->do_sized_write<64, true>(of);
-#else
- gold_unreachable();
+#ifdef HAVE_TARGET_32_BIG
+ case Parameters::TARGET_32_BIG:
+ this->do_sized_write<32, true>(of);
+ break;
#endif
- }
- else
- {
#ifdef HAVE_TARGET_64_LITTLE
- this->do_sized_write<64, false>(of);
-#else
- gold_unreachable();
+ case Parameters::TARGET_64_LITTLE:
+ this->do_sized_write<64, false>(of);
+ break;
#endif
- }
+#ifdef HAVE_TARGET_64_BIG
+ case Parameters::TARGET_64_BIG:
+ this->do_sized_write<64, true>(of);
+ break;
+#endif
+ default:
+ gold_unreachable();
}
- else
- gold_unreachable();
}
template<int size, bool big_endian>
oshdr.put_sh_flags(0);
oshdr.put_sh_addr(0);
oshdr.put_sh_offset(0);
- oshdr.put_sh_size(0);
- oshdr.put_sh_link(0);
- oshdr.put_sh_info(0);
+
+ size_t section_count = (this->data_size()
+ / elfcpp::Elf_sizes<size>::shdr_size);
+ if (section_count < elfcpp::SHN_LORESERVE)
+ oshdr.put_sh_size(0);
+ else
+ oshdr.put_sh_size(section_count);
+
+ unsigned int shstrndx = this->shstrtab_section_->out_shndx();
+ if (shstrndx < elfcpp::SHN_LORESERVE)
+ oshdr.put_sh_link(0);
+ else
+ oshdr.put_sh_link(shstrndx);
+
+ size_t segment_count = this->segment_list_->size();
+ oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
+
oshdr.put_sh_addralign(0);
oshdr.put_sh_entsize(0);
}
v += shdr_size;
- unsigned shndx = 1;
- for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
- p != this->segment_list_->end();
- ++p)
- v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
- this->layout_, this->secnamepool_, v, &shndx
- SELECT_SIZE_ENDIAN(size, big_endian));
+ unsigned int shndx = 1;
+ if (!parameters->options().relocatable())
+ {
+ for (Layout::Segment_list::const_iterator p =
+ this->segment_list_->begin();
+ p != this->segment_list_->end();
+ ++p)
+ v = (*p)->write_section_headers<size, big_endian>(this->layout_,
+ this->secnamepool_,
+ v,
+ &shndx);
+ }
+ else
+ {
+ for (Layout::Section_list::const_iterator p =
+ this->section_list_->begin();
+ p != this->section_list_->end();
+ ++p)
+ {
+ // We do unallocated sections below, except that group
+ // sections have to come first.
+ if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
+ && (*p)->type() != elfcpp::SHT_GROUP)
+ continue;
+ gold_assert(shndx == (*p)->out_shndx());
+ elfcpp::Shdr_write<size, big_endian> oshdr(v);
+ (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
+ v += shdr_size;
+ ++shndx;
+ }
+ }
+
for (Layout::Section_list::const_iterator p =
this->unattached_section_list_->begin();
p != this->unattached_section_list_->end();
++p)
{
+ // For a relocatable link, we did unallocated group sections
+ // above, since they have to come first.
+ if ((*p)->type() == elfcpp::SHT_GROUP
+ && parameters->options().relocatable())
+ continue;
gold_assert(shndx == (*p)->out_shndx());
elfcpp::Shdr_write<size, big_endian> oshdr(v);
(*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
const Layout::Segment_list& segment_list)
: segment_list_(segment_list)
{
- const int size = parameters->get_size();
- int phdr_size;
- if (size == 32)
- phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
- else if (size == 64)
- phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
- else
- gold_unreachable();
-
- this->set_data_size(segment_list.size() * phdr_size);
}
void
Output_segment_headers::do_write(Output_file* of)
{
- if (parameters->get_size() == 32)
+ switch (parameters->size_and_endianness())
{
- if (parameters->is_big_endian())
- {
-#ifdef HAVE_TARGET_32_BIG
- this->do_sized_write<32, true>(of);
-#else
- gold_unreachable();
-#endif
- }
- else
- {
#ifdef HAVE_TARGET_32_LITTLE
- this->do_sized_write<32, false>(of);
-#else
- gold_unreachable();
+ case Parameters::TARGET_32_LITTLE:
+ this->do_sized_write<32, false>(of);
+ break;
#endif
- }
- }
- else if (parameters->get_size() == 64)
- {
- if (parameters->is_big_endian())
- {
-#ifdef HAVE_TARGET_64_BIG
- this->do_sized_write<64, true>(of);
-#else
- gold_unreachable();
+#ifdef HAVE_TARGET_32_BIG
+ case Parameters::TARGET_32_BIG:
+ this->do_sized_write<32, true>(of);
+ break;
#endif
- }
- else
- {
#ifdef HAVE_TARGET_64_LITTLE
- this->do_sized_write<64, false>(of);
-#else
- gold_unreachable();
+ case Parameters::TARGET_64_LITTLE:
+ this->do_sized_write<64, false>(of);
+ break;
#endif
- }
+#ifdef HAVE_TARGET_64_BIG
+ case Parameters::TARGET_64_BIG:
+ this->do_sized_write<64, true>(of);
+ break;
+#endif
+ default:
+ gold_unreachable();
}
- else
- gold_unreachable();
}
template<int size, bool big_endian>
{
const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
+ gold_assert(all_phdrs_size == this->data_size());
unsigned char* view = of->get_output_view(this->offset(),
all_phdrs_size);
unsigned char* v = view;
v += phdr_size;
}
+ gold_assert(v - view == all_phdrs_size);
+
of->write_output_view(this->offset(), all_phdrs_size, view);
}
+off_t
+Output_segment_headers::do_size() const
+{
+ const int size = parameters->target().get_size();
+ int phdr_size;
+ if (size == 32)
+ phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
+ else if (size == 64)
+ phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
+ else
+ gold_unreachable();
+
+ return this->segment_list_.size() * phdr_size;
+}
+
// Output_file_header methods.
Output_file_header::Output_file_header(const Target* target,
const Symbol_table* symtab,
- const Output_segment_headers* osh)
+ const Output_segment_headers* osh,
+ const char* entry)
: target_(target),
symtab_(symtab),
segment_header_(osh),
section_header_(NULL),
- shstrtab_(NULL)
+ shstrtab_(NULL),
+ entry_(entry)
{
- const int size = parameters->get_size();
- int ehdr_size;
- if (size == 32)
- ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
- else if (size == 64)
- ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
- else
- gold_unreachable();
-
- this->set_data_size(ehdr_size);
+ this->set_data_size(this->do_size());
}
// Set the section table information for a file header.
{
gold_assert(this->offset() == 0);
- if (parameters->get_size() == 32)
+ switch (parameters->size_and_endianness())
{
- if (parameters->is_big_endian())
- {
-#ifdef HAVE_TARGET_32_BIG
- this->do_sized_write<32, true>(of);
-#else
- gold_unreachable();
-#endif
- }
- else
- {
#ifdef HAVE_TARGET_32_LITTLE
- this->do_sized_write<32, false>(of);
-#else
- gold_unreachable();
+ case Parameters::TARGET_32_LITTLE:
+ this->do_sized_write<32, false>(of);
+ break;
#endif
- }
- }
- else if (parameters->get_size() == 64)
- {
- if (parameters->is_big_endian())
- {
-#ifdef HAVE_TARGET_64_BIG
- this->do_sized_write<64, true>(of);
-#else
- gold_unreachable();
+#ifdef HAVE_TARGET_32_BIG
+ case Parameters::TARGET_32_BIG:
+ this->do_sized_write<32, true>(of);
+ break;
#endif
- }
- else
- {
#ifdef HAVE_TARGET_64_LITTLE
- this->do_sized_write<64, false>(of);
-#else
- gold_unreachable();
+ case Parameters::TARGET_64_LITTLE:
+ this->do_sized_write<64, false>(of);
+ break;
#endif
- }
+#ifdef HAVE_TARGET_64_BIG
+ case Parameters::TARGET_64_BIG:
+ this->do_sized_write<64, true>(of);
+ break;
+#endif
+ default:
+ gold_unreachable();
}
- else
- gold_unreachable();
}
// Write out the file header with appropriate size and endianess.
? elfcpp::ELFDATA2MSB
: elfcpp::ELFDATA2LSB);
e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
- // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
oehdr.put_e_ident(e_ident);
elfcpp::ET e_type;
- if (parameters->output_is_object())
+ if (parameters->options().relocatable())
e_type = elfcpp::ET_REL;
- else if (parameters->output_is_shared())
+ else if (parameters->options().output_is_position_independent())
e_type = elfcpp::ET_DYN;
else
e_type = elfcpp::ET_EXEC;
oehdr.put_e_machine(this->target_->machine_code());
oehdr.put_e_version(elfcpp::EV_CURRENT);
- // FIXME: Need to support -e, and target specific entry symbol.
- Symbol* sym = this->symtab_->lookup("_start");
- typename Sized_symbol<size>::Value_type v;
- if (sym == NULL)
- v = 0;
+ oehdr.put_e_entry(this->entry<size>());
+
+ if (this->segment_header_ == NULL)
+ oehdr.put_e_phoff(0);
else
- {
- Sized_symbol<size>* ssym;
- ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
- sym SELECT_SIZE(size));
- v = ssym->value();
- }
- oehdr.put_e_entry(v);
+ oehdr.put_e_phoff(this->segment_header_->offset());
- oehdr.put_e_phoff(this->segment_header_->offset());
oehdr.put_e_shoff(this->section_header_->offset());
+ oehdr.put_e_flags(this->target_->processor_specific_flags());
+ oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
- // FIXME: The target needs to set the flags.
- oehdr.put_e_flags(0);
+ if (this->segment_header_ == NULL)
+ {
+ oehdr.put_e_phentsize(0);
+ oehdr.put_e_phnum(0);
+ }
+ else
+ {
+ oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
+ size_t phnum = (this->segment_header_->data_size()
+ / elfcpp::Elf_sizes<size>::phdr_size);
+ if (phnum > elfcpp::PN_XNUM)
+ phnum = elfcpp::PN_XNUM;
+ oehdr.put_e_phnum(phnum);
+ }
- oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
- oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
- oehdr.put_e_phnum(this->segment_header_->data_size()
- / elfcpp::Elf_sizes<size>::phdr_size);
oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
- oehdr.put_e_shnum(this->section_header_->data_size()
- / elfcpp::Elf_sizes<size>::shdr_size);
- oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
+ size_t section_count = (this->section_header_->data_size()
+ / elfcpp::Elf_sizes<size>::shdr_size);
+
+ if (section_count < elfcpp::SHN_LORESERVE)
+ oehdr.put_e_shnum(this->section_header_->data_size()
+ / elfcpp::Elf_sizes<size>::shdr_size);
+ else
+ oehdr.put_e_shnum(0);
+
+ unsigned int shstrndx = this->shstrtab_->out_shndx();
+ if (shstrndx < elfcpp::SHN_LORESERVE)
+ oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
+ else
+ oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
+
+ // Let the target adjust the ELF header, e.g., to set EI_OSABI in
+ // the e_ident field.
+ parameters->target().adjust_elf_header(view, ehdr_size);
of->write_output_view(0, ehdr_size, view);
}
+// Return the value to use for the entry address. THIS->ENTRY_ is the
+// symbol specified on the command line, if any.
+
+template<int size>
+typename elfcpp::Elf_types<size>::Elf_Addr
+Output_file_header::entry()
+{
+ const bool should_issue_warning = (this->entry_ != NULL
+ && !parameters->options().relocatable()
+ && !parameters->options().shared());
+
+ // FIXME: Need to support target specific entry symbol.
+ const char* entry = this->entry_;
+ if (entry == NULL)
+ entry = "_start";
+
+ Symbol* sym = this->symtab_->lookup(entry);
+
+ typename Sized_symbol<size>::Value_type v;
+ if (sym != NULL)
+ {
+ Sized_symbol<size>* ssym;
+ ssym = this->symtab_->get_sized_symbol<size>(sym);
+ if (!ssym->is_defined() && should_issue_warning)
+ gold_warning("entry symbol '%s' exists but is not defined", entry);
+ v = ssym->value();
+ }
+ else
+ {
+ // We couldn't find the entry symbol. See if we can parse it as
+ // a number. This supports, e.g., -e 0x1000.
+ char* endptr;
+ v = strtoull(entry, &endptr, 0);
+ if (*endptr != '\0')
+ {
+ if (should_issue_warning)
+ gold_warning("cannot find entry symbol '%s'", entry);
+ v = 0;
+ }
+ }
+
+ return v;
+}
+
+// Compute the current data size.
+
+off_t
+Output_file_header::do_size() const
+{
+ const int size = parameters->target().get_size();
+ if (size == 32)
+ return elfcpp::Elf_sizes<32>::ehdr_size;
+ else if (size == 64)
+ return elfcpp::Elf_sizes<64>::ehdr_size;
+ else
+ gold_unreachable();
+}
+
// Output_data_const methods.
void
return this->output_section_->out_shndx();
}
+// Set the alignment, which means we may need to update the alignment
+// of the output section.
+
+void
+Output_section_data::set_addralign(uint64_t addralign)
+{
+ this->addralign_ = addralign;
+ if (this->output_section_ != NULL
+ && this->output_section_->addralign() < addralign)
+ this->output_section_->set_addralign(addralign);
+}
+
// Output_data_strtab methods.
// Set the final data size.
// Output_reloc methods.
-// Get the symbol index of a relocation.
+// A reloc against a global symbol.
template<bool dynamic, int size, bool big_endian>
-unsigned int
-Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
- const
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ Symbol* gsym,
+ unsigned int type,
+ Output_data* od,
+ Address address,
+ bool is_relative,
+ bool is_symbolless)
+ : address_(address), local_sym_index_(GSYM_CODE), type_(type),
+ is_relative_(is_relative), is_symbolless_(is_symbolless),
+ is_section_symbol_(false), shndx_(INVALID_CODE)
{
- unsigned int index;
- switch (this->local_sym_index_)
- {
- case INVALID_CODE:
- gold_unreachable();
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.gsym = gsym;
+ this->u2_.od = od;
+ if (dynamic)
+ this->set_needs_dynsym_index();
+}
- case GSYM_CODE:
- if (this->u1_.gsym == NULL)
- index = 0;
- else if (dynamic)
- index = this->u1_.gsym->dynsym_index();
- else
- index = this->u1_.gsym->symtab_index();
- break;
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ Symbol* gsym,
+ unsigned int type,
+ Sized_relobj<size, big_endian>* relobj,
+ unsigned int shndx,
+ Address address,
+ bool is_relative,
+ bool is_symbolless)
+ : address_(address), local_sym_index_(GSYM_CODE), type_(type),
+ is_relative_(is_relative), is_symbolless_(is_symbolless),
+ is_section_symbol_(false), shndx_(shndx)
+{
+ gold_assert(shndx != INVALID_CODE);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.gsym = gsym;
+ this->u2_.relobj = relobj;
+ if (dynamic)
+ this->set_needs_dynsym_index();
+}
- case SECTION_CODE:
- if (dynamic)
- index = this->u1_.os->dynsym_index();
- else
- index = this->u1_.os->symtab_index();
- break;
+// A reloc against a local symbol.
- case 0:
- // Relocations without symbols use a symbol index of 0.
- index = 0;
- break;
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ Sized_relobj<size, big_endian>* relobj,
+ unsigned int local_sym_index,
+ unsigned int type,
+ Output_data* od,
+ Address address,
+ bool is_relative,
+ bool is_symbolless,
+ bool is_section_symbol)
+ : address_(address), local_sym_index_(local_sym_index), type_(type),
+ is_relative_(is_relative), is_symbolless_(is_symbolless),
+ is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
+{
+ gold_assert(local_sym_index != GSYM_CODE
+ && local_sym_index != INVALID_CODE);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.relobj = relobj;
+ this->u2_.od = od;
+ if (dynamic)
+ this->set_needs_dynsym_index();
+}
- default:
- if (dynamic)
- {
- // FIXME: It seems that some targets may need to generate
- // dynamic relocations against local symbols for some
- // reasons. This will have to be addressed at some point.
- gold_unreachable();
- }
- else
- index = this->u1_.relobj->symtab_index(this->local_sym_index_);
- break;
- }
- gold_assert(index != -1U);
- return index;
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ Sized_relobj<size, big_endian>* relobj,
+ unsigned int local_sym_index,
+ unsigned int type,
+ unsigned int shndx,
+ Address address,
+ bool is_relative,
+ bool is_symbolless,
+ bool is_section_symbol)
+ : address_(address), local_sym_index_(local_sym_index), type_(type),
+ is_relative_(is_relative), is_symbolless_(is_symbolless),
+ is_section_symbol_(is_section_symbol), shndx_(shndx)
+{
+ gold_assert(local_sym_index != GSYM_CODE
+ && local_sym_index != INVALID_CODE);
+ gold_assert(shndx != INVALID_CODE);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.relobj = relobj;
+ this->u2_.relobj = relobj;
+ if (dynamic)
+ this->set_needs_dynsym_index();
}
-// Write out the offset and info fields of a Rel or Rela relocation
-// entry.
+// A reloc against the STT_SECTION symbol of an output section.
template<bool dynamic, int size, bool big_endian>
-template<typename Write_rel>
-void
-Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
- Write_rel* wr) const
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ Output_section* os,
+ unsigned int type,
+ Output_data* od,
+ Address address)
+ : address_(address), local_sym_index_(SECTION_CODE), type_(type),
+ is_relative_(false), is_symbolless_(false),
+ is_section_symbol_(true), shndx_(INVALID_CODE)
{
- Address address = this->address_;
- if (this->shndx_ != INVALID_CODE)
- {
- off_t off;
- Output_section* os = this->u2_.relobj->output_section(this->shndx_,
- &off);
- gold_assert(os != NULL);
- if (off != -1)
- address += os->address() + off;
- else
- {
- address = os->output_address(this->u2_.relobj, this->shndx_,
- address);
- gold_assert(address != -1U);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.os = os;
+ this->u2_.od = od;
+ if (dynamic)
+ this->set_needs_dynsym_index();
+ else
+ os->set_needs_symtab_index();
+}
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ Output_section* os,
+ unsigned int type,
+ Sized_relobj<size, big_endian>* relobj,
+ unsigned int shndx,
+ Address address)
+ : address_(address), local_sym_index_(SECTION_CODE), type_(type),
+ is_relative_(false), is_symbolless_(false),
+ is_section_symbol_(true), shndx_(shndx)
+{
+ gold_assert(shndx != INVALID_CODE);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.os = os;
+ this->u2_.relobj = relobj;
+ if (dynamic)
+ this->set_needs_dynsym_index();
+ else
+ os->set_needs_symtab_index();
+}
+
+// An absolute relocation.
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ unsigned int type,
+ Output_data* od,
+ Address address)
+ : address_(address), local_sym_index_(0), type_(type),
+ is_relative_(false), is_symbolless_(false),
+ is_section_symbol_(false), shndx_(INVALID_CODE)
+{
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.relobj = NULL;
+ this->u2_.od = od;
+}
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ unsigned int type,
+ Sized_relobj<size, big_endian>* relobj,
+ unsigned int shndx,
+ Address address)
+ : address_(address), local_sym_index_(0), type_(type),
+ is_relative_(false), is_symbolless_(false),
+ is_section_symbol_(false), shndx_(shndx)
+{
+ gold_assert(shndx != INVALID_CODE);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.relobj = NULL;
+ this->u2_.relobj = relobj;
+}
+
+// A target specific relocation.
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ unsigned int type,
+ void* arg,
+ Output_data* od,
+ Address address)
+ : address_(address), local_sym_index_(TARGET_CODE), type_(type),
+ is_relative_(false), is_symbolless_(false),
+ is_section_symbol_(false), shndx_(INVALID_CODE)
+{
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.arg = arg;
+ this->u2_.od = od;
+}
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ unsigned int type,
+ void* arg,
+ Sized_relobj<size, big_endian>* relobj,
+ unsigned int shndx,
+ Address address)
+ : address_(address), local_sym_index_(TARGET_CODE), type_(type),
+ is_relative_(false), is_symbolless_(false),
+ is_section_symbol_(false), shndx_(shndx)
+{
+ gold_assert(shndx != INVALID_CODE);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.arg = arg;
+ this->u2_.relobj = relobj;
+}
+
+// Record that we need a dynamic symbol index for this relocation.
+
+template<bool dynamic, int size, bool big_endian>
+void
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
+set_needs_dynsym_index()
+{
+ if (this->is_symbolless_)
+ return;
+ switch (this->local_sym_index_)
+ {
+ case INVALID_CODE:
+ gold_unreachable();
+
+ case GSYM_CODE:
+ this->u1_.gsym->set_needs_dynsym_entry();
+ break;
+
+ case SECTION_CODE:
+ this->u1_.os->set_needs_dynsym_index();
+ break;
+
+ case TARGET_CODE:
+ // The target must take care of this if necessary.
+ break;
+
+ case 0:
+ break;
+
+ default:
+ {
+ const unsigned int lsi = this->local_sym_index_;
+ if (!this->is_section_symbol_)
+ this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
+ else
+ this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
+ }
+ break;
+ }
+}
+
+// Get the symbol index of a relocation.
+
+template<bool dynamic, int size, bool big_endian>
+unsigned int
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
+ const
+{
+ unsigned int index;
+ if (this->is_symbolless_)
+ return 0;
+ switch (this->local_sym_index_)
+ {
+ case INVALID_CODE:
+ gold_unreachable();
+
+ case GSYM_CODE:
+ if (this->u1_.gsym == NULL)
+ index = 0;
+ else if (dynamic)
+ index = this->u1_.gsym->dynsym_index();
+ else
+ index = this->u1_.gsym->symtab_index();
+ break;
+
+ case SECTION_CODE:
+ if (dynamic)
+ index = this->u1_.os->dynsym_index();
+ else
+ index = this->u1_.os->symtab_index();
+ break;
+
+ case TARGET_CODE:
+ index = parameters->target().reloc_symbol_index(this->u1_.arg,
+ this->type_);
+ break;
+
+ case 0:
+ // Relocations without symbols use a symbol index of 0.
+ index = 0;
+ break;
+
+ default:
+ {
+ const unsigned int lsi = this->local_sym_index_;
+ if (!this->is_section_symbol_)
+ {
+ if (dynamic)
+ index = this->u1_.relobj->dynsym_index(lsi);
+ else
+ index = this->u1_.relobj->symtab_index(lsi);
+ }
+ else
+ {
+ Output_section* os = this->u1_.relobj->output_section(lsi);
+ gold_assert(os != NULL);
+ if (dynamic)
+ index = os->dynsym_index();
+ else
+ index = os->symtab_index();
+ }
+ }
+ break;
+ }
+ gold_assert(index != -1U);
+ return index;
+}
+
+// For a local section symbol, get the address of the offset ADDEND
+// within the input section.
+
+template<bool dynamic, int size, bool big_endian>
+typename elfcpp::Elf_types<size>::Elf_Addr
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
+ local_section_offset(Addend addend) const
+{
+ gold_assert(this->local_sym_index_ != GSYM_CODE
+ && this->local_sym_index_ != SECTION_CODE
+ && this->local_sym_index_ != TARGET_CODE
+ && this->local_sym_index_ != INVALID_CODE
+ && this->local_sym_index_ != 0
+ && this->is_section_symbol_);
+ const unsigned int lsi = this->local_sym_index_;
+ Output_section* os = this->u1_.relobj->output_section(lsi);
+ gold_assert(os != NULL);
+ Address offset = this->u1_.relobj->get_output_section_offset(lsi);
+ if (offset != invalid_address)
+ return offset + addend;
+ // This is a merge section.
+ offset = os->output_address(this->u1_.relobj, lsi, addend);
+ gold_assert(offset != invalid_address);
+ return offset;
+}
+
+// Get the output address of a relocation.
+
+template<bool dynamic, int size, bool big_endian>
+typename elfcpp::Elf_types<size>::Elf_Addr
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
+{
+ Address address = this->address_;
+ if (this->shndx_ != INVALID_CODE)
+ {
+ Output_section* os = this->u2_.relobj->output_section(this->shndx_);
+ gold_assert(os != NULL);
+ Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
+ if (off != invalid_address)
+ address += os->address() + off;
+ else
+ {
+ address = os->output_address(this->u2_.relobj, this->shndx_,
+ address);
+ gold_assert(address != invalid_address);
}
}
else if (this->u2_.od != NULL)
address += this->u2_.od->address();
- wr->put_r_offset(address);
- wr->put_r_info(elfcpp::elf_r_info<size>(this->get_symbol_index(),
- this->type_));
+ return address;
+}
+
+// Write out the offset and info fields of a Rel or Rela relocation
+// entry.
+
+template<bool dynamic, int size, bool big_endian>
+template<typename Write_rel>
+void
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
+ Write_rel* wr) const
+{
+ wr->put_r_offset(this->get_address());
+ unsigned int sym_index = this->get_symbol_index();
+ wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
}
// Write out a Rel relocation.
this->write_rel(&orel);
}
+// Get the value of the symbol referred to by a Rel relocation.
+
+template<bool dynamic, int size, bool big_endian>
+typename elfcpp::Elf_types<size>::Elf_Addr
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
+ Addend addend) const
+{
+ if (this->local_sym_index_ == GSYM_CODE)
+ {
+ const Sized_symbol<size>* sym;
+ sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
+ return sym->value() + addend;
+ }
+ gold_assert(this->local_sym_index_ != SECTION_CODE
+ && this->local_sym_index_ != TARGET_CODE
+ && this->local_sym_index_ != INVALID_CODE
+ && this->local_sym_index_ != 0
+ && !this->is_section_symbol_);
+ const unsigned int lsi = this->local_sym_index_;
+ const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
+ return symval->value(this->u1_.relobj, addend);
+}
+
+// Reloc comparison. This function sorts the dynamic relocs for the
+// benefit of the dynamic linker. First we sort all relative relocs
+// to the front. Among relative relocs, we sort by output address.
+// Among non-relative relocs, we sort by symbol index, then by output
+// address.
+
+template<bool dynamic, int size, bool big_endian>
+int
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
+ compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
+ const
+{
+ if (this->is_relative_)
+ {
+ if (!r2.is_relative_)
+ return -1;
+ // Otherwise sort by reloc address below.
+ }
+ else if (r2.is_relative_)
+ return 1;
+ else
+ {
+ unsigned int sym1 = this->get_symbol_index();
+ unsigned int sym2 = r2.get_symbol_index();
+ if (sym1 < sym2)
+ return -1;
+ else if (sym1 > sym2)
+ return 1;
+ // Otherwise sort by reloc address.
+ }
+
+ section_offset_type addr1 = this->get_address();
+ section_offset_type addr2 = r2.get_address();
+ if (addr1 < addr2)
+ return -1;
+ else if (addr1 > addr2)
+ return 1;
+
+ // Final tie breaker, in order to generate the same output on any
+ // host: reloc type.
+ unsigned int type1 = this->type_;
+ unsigned int type2 = r2.type_;
+ if (type1 < type2)
+ return -1;
+ else if (type1 > type2)
+ return 1;
+
+ // These relocs appear to be exactly the same.
+ return 0;
+}
+
// Write out a Rela relocation.
template<bool dynamic, int size, bool big_endian>
{
elfcpp::Rela_write<size, big_endian> orel(pov);
this->rel_.write_rel(&orel);
- orel.put_r_addend(this->addend_);
+ Addend addend = this->addend_;
+ if (this->rel_.is_target_specific())
+ addend = parameters->target().reloc_addend(this->rel_.target_arg(),
+ this->rel_.type(), addend);
+ else if (this->rel_.is_symbolless())
+ addend = this->rel_.symbol_value(addend);
+ else if (this->rel_.is_local_section_symbol())
+ addend = this->rel_.local_section_offset(addend);
+ orel.put_r_addend(addend);
}
// Output_data_reloc_base methods.
const off_t oview_size = this->data_size();
unsigned char* const oview = of->get_output_view(off, oview_size);
+ if (this->sort_relocs())
+ {
+ gold_assert(dynamic);
+ std::sort(this->relocs_.begin(), this->relocs_.end(),
+ Sort_relocs_comparison());
+ }
+
unsigned char* pov = oview;
for (typename Relocs::const_iterator p = this->relocs_.begin();
p != this->relocs_.end();
this->relocs_.clear();
}
+// Class Output_relocatable_relocs.
+
+template<int sh_type, int size, bool big_endian>
+void
+Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
+{
+ this->set_data_size(this->rr_->output_reloc_count()
+ * Reloc_types<sh_type, size, big_endian>::reloc_size);
+}
+
+// class Output_data_group.
+
+template<int size, bool big_endian>
+Output_data_group<size, big_endian>::Output_data_group(
+ Sized_relobj<size, big_endian>* relobj,
+ section_size_type entry_count,
+ elfcpp::Elf_Word flags,
+ std::vector<unsigned int>* input_shndxes)
+ : Output_section_data(entry_count * 4, 4, false),
+ relobj_(relobj),
+ flags_(flags)
+{
+ this->input_shndxes_.swap(*input_shndxes);
+}
+
+// Write out the section group, which means translating the section
+// indexes to apply to the output file.
+
+template<int size, bool big_endian>
+void
+Output_data_group<size, big_endian>::do_write(Output_file* of)
+{
+ const off_t off = this->offset();
+ const section_size_type oview_size =
+ convert_to_section_size_type(this->data_size());
+ unsigned char* const oview = of->get_output_view(off, oview_size);
+
+ elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
+ elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
+ ++contents;
+
+ for (std::vector<unsigned int>::const_iterator p =
+ this->input_shndxes_.begin();
+ p != this->input_shndxes_.end();
+ ++p, ++contents)
+ {
+ Output_section* os = this->relobj_->output_section(*p);
+
+ unsigned int output_shndx;
+ if (os != NULL)
+ output_shndx = os->out_shndx();
+ else
+ {
+ this->relobj_->error(_("section group retained but "
+ "group element discarded"));
+ output_shndx = 0;
+ }
+
+ elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
+ }
+
+ size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
+ gold_assert(wrote == oview_size);
+
+ of->write_output_view(off, oview_size, oview);
+
+ // We no longer need this information.
+ this->input_shndxes_.clear();
+}
+
// Output_data_got::Got_entry methods.
// Write out the entry.
{
case GSYM_CODE:
{
+ // If the symbol is resolved locally, we need to write out the
+ // link-time value, which will be relocated dynamically by a
+ // RELATIVE relocation.
Symbol* gsym = this->u_.gsym;
-
- // If the symbol is resolved locally, we need to write out its
- // value. Otherwise we just write zero. The target code is
- // responsible for creating a relocation entry to fill in the
- // value at runtime. For non-preemptible symbols in a shared
- // library, the target will need to record whether or not the
- // value should be written (e.g., it may use a RELATIVE
- // relocation type).
- if (gsym->final_value_is_known() || gsym->needs_value_in_got())
- {
- Sized_symbol<size>* sgsym;
- // This cast is a bit ugly. We don't want to put a
- // virtual method in Symbol, because we want Symbol to be
- // as small as possible.
- sgsym = static_cast<Sized_symbol<size>*>(gsym);
- val = sgsym->value();
- }
+ Sized_symbol<size>* sgsym;
+ // This cast is a bit ugly. We don't want to put a
+ // virtual method in Symbol, because we want Symbol to be
+ // as small as possible.
+ sgsym = static_cast<Sized_symbol<size>*>(gsym);
+ val = sgsym->value();
}
break;
break;
default:
- val = this->u_.object->local_symbol_value(this->local_sym_index_);
+ {
+ const unsigned int lsi = this->local_sym_index_;
+ const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
+ val = symval->value(this->u_.object, 0);
+ }
break;
}
template<int size, bool big_endian>
bool
-Output_data_got<size, big_endian>::add_global(Symbol* gsym)
+Output_data_got<size, big_endian>::add_global(
+ Symbol* gsym,
+ unsigned int got_type)
{
- if (gsym->has_got_offset())
+ if (gsym->has_got_offset(got_type))
return false;
this->entries_.push_back(Got_entry(gsym));
this->set_got_size();
- gsym->set_got_offset(this->last_got_offset());
+ gsym->set_got_offset(got_type, this->last_got_offset());
return true;
}
+// Add an entry for a global symbol to the GOT, and add a dynamic
+// relocation of type R_TYPE for the GOT entry.
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_global_with_rel(
+ Symbol* gsym,
+ unsigned int got_type,
+ Rel_dyn* rel_dyn,
+ unsigned int r_type)
+{
+ if (gsym->has_got_offset(got_type))
+ return;
+
+ this->entries_.push_back(Got_entry());
+ this->set_got_size();
+ unsigned int got_offset = this->last_got_offset();
+ gsym->set_got_offset(got_type, got_offset);
+ rel_dyn->add_global(gsym, r_type, this, got_offset);
+}
+
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_global_with_rela(
+ Symbol* gsym,
+ unsigned int got_type,
+ Rela_dyn* rela_dyn,
+ unsigned int r_type)
+{
+ if (gsym->has_got_offset(got_type))
+ return;
+
+ this->entries_.push_back(Got_entry());
+ this->set_got_size();
+ unsigned int got_offset = this->last_got_offset();
+ gsym->set_got_offset(got_type, got_offset);
+ rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
+}
+
+// Add a pair of entries for a global symbol to the GOT, and add
+// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
+// If R_TYPE_2 == 0, add the second entry with no relocation.
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_global_pair_with_rel(
+ Symbol* gsym,
+ unsigned int got_type,
+ Rel_dyn* rel_dyn,
+ unsigned int r_type_1,
+ unsigned int r_type_2)
+{
+ if (gsym->has_got_offset(got_type))
+ return;
+
+ this->entries_.push_back(Got_entry());
+ unsigned int got_offset = this->last_got_offset();
+ gsym->set_got_offset(got_type, got_offset);
+ rel_dyn->add_global(gsym, r_type_1, this, got_offset);
+
+ this->entries_.push_back(Got_entry());
+ if (r_type_2 != 0)
+ {
+ got_offset = this->last_got_offset();
+ rel_dyn->add_global(gsym, r_type_2, this, got_offset);
+ }
+
+ this->set_got_size();
+}
+
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_global_pair_with_rela(
+ Symbol* gsym,
+ unsigned int got_type,
+ Rela_dyn* rela_dyn,
+ unsigned int r_type_1,
+ unsigned int r_type_2)
+{
+ if (gsym->has_got_offset(got_type))
+ return;
+
+ this->entries_.push_back(Got_entry());
+ unsigned int got_offset = this->last_got_offset();
+ gsym->set_got_offset(got_type, got_offset);
+ rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
+
+ this->entries_.push_back(Got_entry());
+ if (r_type_2 != 0)
+ {
+ got_offset = this->last_got_offset();
+ rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
+ }
+
+ this->set_got_size();
+}
+
// Add an entry for a local symbol to the GOT. This returns true if
// this is a new GOT entry, false if the symbol already has a GOT
// entry.
bool
Output_data_got<size, big_endian>::add_local(
Sized_relobj<size, big_endian>* object,
- unsigned int symndx)
+ unsigned int symndx,
+ unsigned int got_type)
{
- if (object->local_has_got_offset(symndx))
+ if (object->local_has_got_offset(symndx, got_type))
return false;
this->entries_.push_back(Got_entry(object, symndx));
this->set_got_size();
- object->set_local_got_offset(symndx, this->last_got_offset());
+ object->set_local_got_offset(symndx, got_type, this->last_got_offset());
return true;
}
-// Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
-// In a pair of entries, the first value in the pair will be used for the
-// module index, and the second value will be used for the dtv-relative
-// offset. This returns true if this is a new GOT entry, false if the symbol
-// already has a GOT entry.
+// Add an entry for a local symbol to the GOT, and add a dynamic
+// relocation of type R_TYPE for the GOT entry.
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_local_with_rel(
+ Sized_relobj<size, big_endian>* object,
+ unsigned int symndx,
+ unsigned int got_type,
+ Rel_dyn* rel_dyn,
+ unsigned int r_type)
+{
+ if (object->local_has_got_offset(symndx, got_type))
+ return;
+
+ this->entries_.push_back(Got_entry());
+ this->set_got_size();
+ unsigned int got_offset = this->last_got_offset();
+ object->set_local_got_offset(symndx, got_type, got_offset);
+ rel_dyn->add_local(object, symndx, r_type, this, got_offset);
+}
template<int size, bool big_endian>
-bool
-Output_data_got<size, big_endian>::add_global_tls(Symbol* gsym,
- bool need_pair)
+void
+Output_data_got<size, big_endian>::add_local_with_rela(
+ Sized_relobj<size, big_endian>* object,
+ unsigned int symndx,
+ unsigned int got_type,
+ Rela_dyn* rela_dyn,
+ unsigned int r_type)
{
- if (gsym->has_tls_got_offset(need_pair))
- return false;
+ if (object->local_has_got_offset(symndx, got_type))
+ return;
- this->entries_.push_back(Got_entry(gsym));
- gsym->set_tls_got_offset(this->last_got_offset(), need_pair);
- if (need_pair)
- this->entries_.push_back(Got_entry(gsym));
+ this->entries_.push_back(Got_entry());
this->set_got_size();
- return true;
+ unsigned int got_offset = this->last_got_offset();
+ object->set_local_got_offset(symndx, got_type, got_offset);
+ rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
}
-// Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
-// In a pair of entries, the first value in the pair will be used for the
-// module index, and the second value will be used for the dtv-relative
-// offset. This returns true if this is a new GOT entry, false if the symbol
-// already has a GOT entry.
+// Add a pair of entries for a local symbol to the GOT, and add
+// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
+// If R_TYPE_2 == 0, add the second entry with no relocation.
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_local_pair_with_rel(
+ Sized_relobj<size, big_endian>* object,
+ unsigned int symndx,
+ unsigned int shndx,
+ unsigned int got_type,
+ Rel_dyn* rel_dyn,
+ unsigned int r_type_1,
+ unsigned int r_type_2)
+{
+ if (object->local_has_got_offset(symndx, got_type))
+ return;
+
+ this->entries_.push_back(Got_entry());
+ unsigned int got_offset = this->last_got_offset();
+ object->set_local_got_offset(symndx, got_type, got_offset);
+ Output_section* os = object->output_section(shndx);
+ rel_dyn->add_output_section(os, r_type_1, this, got_offset);
+
+ this->entries_.push_back(Got_entry(object, symndx));
+ if (r_type_2 != 0)
+ {
+ got_offset = this->last_got_offset();
+ rel_dyn->add_output_section(os, r_type_2, this, got_offset);
+ }
+
+ this->set_got_size();
+}
template<int size, bool big_endian>
-bool
-Output_data_got<size, big_endian>::add_local_tls(
+void
+Output_data_got<size, big_endian>::add_local_pair_with_rela(
Sized_relobj<size, big_endian>* object,
unsigned int symndx,
- bool need_pair)
+ unsigned int shndx,
+ unsigned int got_type,
+ Rela_dyn* rela_dyn,
+ unsigned int r_type_1,
+ unsigned int r_type_2)
{
- if (object->local_has_tls_got_offset(symndx, need_pair))
- return false;
+ if (object->local_has_got_offset(symndx, got_type))
+ return;
+
+ this->entries_.push_back(Got_entry());
+ unsigned int got_offset = this->last_got_offset();
+ object->set_local_got_offset(symndx, got_type, got_offset);
+ Output_section* os = object->output_section(shndx);
+ rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
this->entries_.push_back(Got_entry(object, symndx));
- object->set_local_tls_got_offset(symndx, this->last_got_offset(), need_pair);
- if (need_pair)
- this->entries_.push_back(Got_entry(object, symndx));
+ if (r_type_2 != 0)
+ {
+ got_offset = this->last_got_offset();
+ rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
+ }
+
this->set_got_size();
- return true;
}
// Write out the GOT.
void
Output_data_dynamic::Dynamic_entry::write(
unsigned char* pov,
- const Stringpool* pool
- ACCEPT_SIZE_ENDIAN) const
+ const Stringpool* pool) const
{
typename elfcpp::Elf_types<size>::Elf_WXword val;
- switch (this->classification_)
+ switch (this->offset_)
{
case DYNAMIC_NUMBER:
val = this->u_.val;
break;
- case DYNAMIC_SECTION_ADDRESS:
- val = this->u_.od->address();
- break;
-
case DYNAMIC_SECTION_SIZE:
val = this->u_.od->data_size();
+ if (this->od2 != NULL)
+ val += this->od2->data_size();
break;
case DYNAMIC_SYMBOL:
break;
default:
- gold_unreachable();
+ val = this->u_.od->address() + this->offset_;
+ break;
}
elfcpp::Dyn_write<size, big_endian> dw(pov);
void
Output_data_dynamic::do_adjust_output_section(Output_section* os)
{
- if (parameters->get_size() == 32)
+ if (parameters->target().get_size() == 32)
os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
- else if (parameters->get_size() == 64)
+ else if (parameters->target().get_size() == 64)
os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
else
gold_unreachable();
void
Output_data_dynamic::set_final_data_size()
{
- // Add the terminating entry.
- this->add_constant(elfcpp::DT_NULL, 0);
+ // Add the terminating entry if it hasn't been added.
+ // Because of relaxation, we can run this multiple times.
+ if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
+ {
+ int extra = parameters->options().spare_dynamic_tags();
+ for (int i = 0; i < extra; ++i)
+ this->add_constant(elfcpp::DT_NULL, 0);
+ this->add_constant(elfcpp::DT_NULL, 0);
+ }
int dyn_size;
- if (parameters->get_size() == 32)
+ if (parameters->target().get_size() == 32)
dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
- else if (parameters->get_size() == 64)
+ else if (parameters->target().get_size() == 64)
dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
else
gold_unreachable();
void
Output_data_dynamic::do_write(Output_file* of)
{
- if (parameters->get_size() == 32)
+ switch (parameters->size_and_endianness())
{
- if (parameters->is_big_endian())
- {
-#ifdef HAVE_TARGET_32_BIG
- this->sized_write<32, true>(of);
-#else
- gold_unreachable();
-#endif
- }
- else
- {
#ifdef HAVE_TARGET_32_LITTLE
- this->sized_write<32, false>(of);
-#else
- gold_unreachable();
+ case Parameters::TARGET_32_LITTLE:
+ this->sized_write<32, false>(of);
+ break;
#endif
- }
- }
- else if (parameters->get_size() == 64)
- {
- if (parameters->is_big_endian())
- {
-#ifdef HAVE_TARGET_64_BIG
- this->sized_write<64, true>(of);
-#else
- gold_unreachable();
+#ifdef HAVE_TARGET_32_BIG
+ case Parameters::TARGET_32_BIG:
+ this->sized_write<32, true>(of);
+ break;
#endif
- }
- else
- {
#ifdef HAVE_TARGET_64_LITTLE
- this->sized_write<64, false>(of);
-#else
- gold_unreachable();
+ case Parameters::TARGET_64_LITTLE:
+ this->sized_write<64, false>(of);
+ break;
#endif
- }
+#ifdef HAVE_TARGET_64_BIG
+ case Parameters::TARGET_64_BIG:
+ this->sized_write<64, true>(of);
+ break;
+#endif
+ default:
+ gold_unreachable();
}
- else
- gold_unreachable();
}
template<int size, bool big_endian>
p != this->entries_.end();
++p)
{
- p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
- pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
+ p->write<size, big_endian>(pov, this->pool_);
pov += dyn_size;
}
this->entries_.clear();
}
+// Class Output_symtab_xindex.
+
+void
+Output_symtab_xindex::do_write(Output_file* of)
+{
+ const off_t offset = this->offset();
+ const off_t oview_size = this->data_size();
+ unsigned char* const oview = of->get_output_view(offset, oview_size);
+
+ memset(oview, 0, oview_size);
+
+ if (parameters->target().is_big_endian())
+ this->endian_do_write<true>(oview);
+ else
+ this->endian_do_write<false>(oview);
+
+ of->write_output_view(offset, oview_size, oview);
+
+ // We no longer need the data.
+ this->entries_.clear();
+}
+
+template<bool big_endian>
+void
+Output_symtab_xindex::endian_do_write(unsigned char* const oview)
+{
+ for (Xindex_entries::const_iterator p = this->entries_.begin();
+ p != this->entries_.end();
+ ++p)
+ {
+ unsigned int symndx = p->first;
+ gold_assert(symndx * 4 < this->data_size());
+ elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
+ }
+}
+
// Output_section::Input_section methods.
// Return the data size. For an input section we store the size here.
return this->u2_.posd->data_size();
}
+// Return the object for an input section.
+
+Relobj*
+Output_section::Input_section::relobj() const
+{
+ if (this->is_input_section())
+ return this->u2_.object;
+ else if (this->is_merge_section())
+ {
+ gold_assert(this->u2_.pomb->first_relobj() != NULL);
+ return this->u2_.pomb->first_relobj();
+ }
+ else if (this->is_relaxed_input_section())
+ return this->u2_.poris->relobj();
+ else
+ gold_unreachable();
+}
+
+// Return the input section index for an input section.
+
+unsigned int
+Output_section::Input_section::shndx() const
+{
+ if (this->is_input_section())
+ return this->shndx_;
+ else if (this->is_merge_section())
+ {
+ gold_assert(this->u2_.pomb->first_relobj() != NULL);
+ return this->u2_.pomb->first_shndx();
+ }
+ else if (this->is_relaxed_input_section())
+ return this->u2_.poris->shndx();
+ else
+ gold_unreachable();
+}
+
// Set the address and file offset.
void
this->u2_.posd->set_address_and_file_offset(address, file_offset);
}
+// Reset the address and file offset.
+
+void
+Output_section::Input_section::reset_address_and_file_offset()
+{
+ if (!this->is_input_section())
+ this->u2_.posd->reset_address_and_file_offset();
+}
+
// Finalize the data size.
void
this->u2_.posd->finalize_data_size();
}
-// Try to turn an input offset into an output offset.
+// Try to turn an input offset into an output offset. We want to
+// return the output offset relative to the start of this
+// Input_section in the output section.
-bool
-Output_section::Input_section::output_offset(const Relobj* object,
- unsigned int shndx,
- off_t offset,
- off_t *poutput) const
+inline bool
+Output_section::Input_section::output_offset(
+ const Relobj* object,
+ unsigned int shndx,
+ section_offset_type offset,
+ section_offset_type *poutput) const
{
if (!this->is_input_section())
return this->u2_.posd->output_offset(object, shndx, offset, poutput);
{
if (this->shndx_ != shndx || this->u2_.object != object)
return false;
- off_t output_offset;
- Output_section* os = object->output_section(shndx, &output_offset);
- gold_assert(os != NULL);
- gold_assert(output_offset != -1);
- *poutput = output_offset + offset;
+ *poutput = offset;
return true;
}
}
+// Return whether this is the merge section for the input section
+// SHNDX in OBJECT.
+
+inline bool
+Output_section::Input_section::is_merge_section_for(const Relobj* object,
+ unsigned int shndx) const
+{
+ if (this->is_input_section())
+ return false;
+ return this->u2_.posd->is_merge_section_for(object, shndx);
+}
+
// Write out the data. We don't have to do anything for an input
// section--they are handled via Object::relocate--but this is where
// we write out the data for an Output_section_data.
this->u2_.posd->write_to_buffer(buffer);
}
+// Print to a map file.
+
+void
+Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
+{
+ switch (this->shndx_)
+ {
+ case OUTPUT_SECTION_CODE:
+ case MERGE_DATA_SECTION_CODE:
+ case MERGE_STRING_SECTION_CODE:
+ this->u2_.posd->print_to_mapfile(mapfile);
+ break;
+
+ case RELAXED_INPUT_SECTION_CODE:
+ {
+ Output_relaxed_input_section* relaxed_section =
+ this->relaxed_input_section();
+ mapfile->print_input_section(relaxed_section->relobj(),
+ relaxed_section->shndx());
+ }
+ break;
+ default:
+ mapfile->print_input_section(this->u2_.object, this->shndx_);
+ break;
+ }
+}
+
// Output_section methods.
// Construct an Output_section. NAME will point into a Stringpool.
: name_(name),
addralign_(0),
entsize_(0),
+ load_address_(0),
link_section_(NULL),
link_(0),
info_section_(NULL),
+ info_symndx_(NULL),
info_(0),
type_(type),
flags_(flags),
should_link_to_symtab_(false),
should_link_to_dynsym_(false),
after_input_sections_(false),
- requires_postprocessing_(false)
+ requires_postprocessing_(false),
+ found_in_sections_clause_(false),
+ has_load_address_(false),
+ info_uses_section_index_(false),
+ may_sort_attached_input_sections_(false),
+ must_sort_attached_input_sections_(false),
+ attached_input_sections_are_sorted_(false),
+ is_relro_(false),
+ is_relro_local_(false),
+ is_last_relro_(false),
+ is_first_non_relro_(false),
+ is_small_section_(false),
+ is_large_section_(false),
+ is_interp_(false),
+ is_dynamic_linker_section_(false),
+ generate_code_fills_at_write_(false),
+ is_entsize_zero_(false),
+ section_offsets_need_adjustment_(false),
+ is_noload_(false),
+ tls_offset_(0),
+ checkpoint_(NULL),
+ lookup_maps_(new Output_section_lookup_maps)
{
// An unallocated section has no address. Forcing this means that
// we don't need special treatment for symbols defined in debug
Output_section::~Output_section()
{
+ delete this->checkpoint_;
}
// Set the entry size.
void
Output_section::set_entsize(uint64_t v)
{
- if (this->entsize_ == 0)
+ if (this->is_entsize_zero_)
+ ;
+ else if (this->entsize_ == 0)
this->entsize_ = v;
- else
- gold_assert(this->entsize_ == v);
+ else if (this->entsize_ != v)
+ {
+ this->entsize_ = 0;
+ this->is_entsize_zero_ = 1;
+ }
}
// Add the input section SHNDX, with header SHDR, named SECNAME, in
// receive special handling. In the normal case we don't always keep
// track of input sections for an Output_section. Instead, each
// Object keeps track of the Output_section for each of its input
-// sections.
+// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
+// track of input sections here; this is used when SECTIONS appears in
+// a linker script.
template<int size, bool big_endian>
off_t
unsigned int shndx,
const char* secname,
const elfcpp::Shdr<size, big_endian>& shdr,
- unsigned int reloc_shndx)
+ unsigned int reloc_shndx,
+ bool have_sections_script)
{
elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
if ((addralign & (addralign - 1)) != 0)
entsize = 1;
}
+ this->update_flags_for_input_section(sh_flags);
+ this->set_entsize(entsize);
+
// If this is a SHF_MERGE section, we pass all the input sections to
// a Output_data_merge. We don't try to handle relocations for such
- // a section.
+ // a section. We don't try to handle empty merge sections--they
+ // mess up the mappings, and are useless anyhow.
if ((sh_flags & elfcpp::SHF_MERGE) != 0
- && reloc_shndx == 0)
+ && reloc_shndx == 0
+ && shdr.get_sh_size() > 0)
{
- if (this->add_merge_input_section(object, shndx, sh_flags,
- entsize, addralign))
+ // Keep information about merged input sections for rebuilding fast
+ // lookup maps if we have sections-script or we do relaxation.
+ bool keeps_input_sections =
+ have_sections_script || parameters->target().may_relax();
+ if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
+ addralign, keeps_input_sections))
{
// Tell the relocation routines that they need to call the
// output_offset method to determine the final address.
off_t aligned_offset_in_section = align_address(offset_in_section,
addralign);
+ // Determine if we want to delay code-fill generation until the output
+ // section is written. When the target is relaxing, we want to delay fill
+ // generating to avoid adjusting them during relaxation.
+ if (!this->generate_code_fills_at_write_
+ && !have_sections_script
+ && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
+ && parameters->target().has_code_fill()
+ && parameters->target().may_relax())
+ {
+ gold_assert(this->fills_.empty());
+ this->generate_code_fills_at_write_ = true;
+ }
+
if (aligned_offset_in_section > offset_in_section
+ && !this->generate_code_fills_at_write_
+ && !have_sections_script
&& (sh_flags & elfcpp::SHF_EXECINSTR) != 0
- && object->target()->has_code_fill())
+ && parameters->target().has_code_fill())
{
// We need to add some fill data. Using fill_list_ when
// possible is an optimization, since we will often have fill
this->fills_.push_back(Fill(offset_in_section, fill_len));
else
{
- // FIXME: When relaxing, the size needs to adjust to
- // maintain a constant alignment.
- std::string fill_data(object->target()->code_fill(fill_len));
+ std::string fill_data(parameters->target().code_fill(fill_len));
Output_data_const* odc = new Output_data_const(fill_data, 1);
this->input_sections_.push_back(Input_section(odc));
}
+ shdr.get_sh_size());
// We need to keep track of this section if we are already keeping
- // track of sections, or if we are relaxing. FIXME: Add test for
- // relaxing.
- if (!this->input_sections_.empty())
+ // track of sections, or if we are relaxing. Also, if this is a
+ // section which requires sorting, or which may require sorting in
+ // the future, we keep track of the sections.
+ if (have_sections_script
+ || !this->input_sections_.empty()
+ || this->may_sort_attached_input_sections()
+ || this->must_sort_attached_input_sections()
+ || parameters->options().user_set_Map()
+ || parameters->target().may_relax())
this->input_sections_.push_back(Input_section(object, shndx,
shdr.get_sh_size(),
addralign));
{
Input_section inp(posd);
this->add_output_section_data(&inp);
+
+ if (posd->is_data_size_valid())
+ {
+ off_t offset_in_section = this->current_data_size_for_child();
+ off_t aligned_offset_in_section = align_address(offset_in_section,
+ posd->addralign());
+ this->set_current_data_size_for_child(aligned_offset_in_section
+ + posd->data_size());
+ }
+}
+
+// Add a relaxed input section.
+
+void
+Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
+{
+ Input_section inp(poris);
+ this->add_output_section_data(&inp);
+ if (this->lookup_maps_->is_valid())
+ this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
+ poris->shndx(), poris);
+
+ // For a relaxed section, we use the current data size. Linker scripts
+ // get all the input sections, including relaxed one from an output
+ // section and add them back to them same output section to compute the
+ // output section size. If we do not account for sizes of relaxed input
+ // sections, an output section would be incorrectly sized.
+ off_t offset_in_section = this->current_data_size_for_child();
+ off_t aligned_offset_in_section = align_address(offset_in_section,
+ poris->addralign());
+ this->set_current_data_size_for_child(aligned_offset_in_section
+ + poris->current_data_size());
}
// Add arbitrary data to an output section by Input_section.
bool
Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
uint64_t flags, uint64_t entsize,
- uint64_t addralign)
+ uint64_t addralign,
+ bool keeps_input_sections)
{
bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
if (is_string && addralign > entsize)
return false;
- Input_section_list::iterator p;
- for (p = this->input_sections_.begin();
- p != this->input_sections_.end();
- ++p)
- if (p->is_merge_section(is_string, entsize, addralign))
+ // We cannot restore merged input section states.
+ gold_assert(this->checkpoint_ == NULL);
+
+ // Look up merge sections by required properties.
+ // Currently, we only invalidate the lookup maps in script processing
+ // and relaxation. We should not have done either when we reach here.
+ // So we assume that the lookup maps are valid to simply code.
+ gold_assert(this->lookup_maps_->is_valid());
+ Merge_section_properties msp(is_string, entsize, addralign);
+ Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
+ bool is_new = false;
+ if (pomb != NULL)
+ {
+ gold_assert(pomb->is_string() == is_string
+ && pomb->entsize() == entsize
+ && pomb->addralign() == addralign);
+ }
+ else
+ {
+ // Create a new Output_merge_data or Output_merge_string_data.
+ if (!is_string)
+ pomb = new Output_merge_data(entsize, addralign);
+ else
+ {
+ switch (entsize)
+ {
+ case 1:
+ pomb = new Output_merge_string<char>(addralign);
+ break;
+ case 2:
+ pomb = new Output_merge_string<uint16_t>(addralign);
+ break;
+ case 4:
+ pomb = new Output_merge_string<uint32_t>(addralign);
+ break;
+ default:
+ return false;
+ }
+ }
+ // If we need to do script processing or relaxation, we need to keep
+ // the original input sections to rebuild the fast lookup maps.
+ if (keeps_input_sections)
+ pomb->set_keeps_input_sections();
+ is_new = true;
+ }
+
+ if (pomb->add_input_section(object, shndx))
+ {
+ // Add new merge section to this output section and link merge
+ // section properties to new merge section in map.
+ if (is_new)
+ {
+ this->add_output_merge_section(pomb, is_string, entsize);
+ this->lookup_maps_->add_merge_section(msp, pomb);
+ }
+
+ // Add input section to new merge section and link input section to new
+ // merge section in map.
+ this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
+ return true;
+ }
+ else
+ {
+ // If add_input_section failed, delete new merge section to avoid
+ // exporting empty merge sections in Output_section::get_input_section.
+ if (is_new)
+ delete pomb;
+ return false;
+ }
+}
+
+// Build a relaxation map to speed up relaxation of existing input sections.
+// Look up to the first LIMIT elements in INPUT_SECTIONS.
+
+void
+Output_section::build_relaxation_map(
+ const Input_section_list& input_sections,
+ size_t limit,
+ Relaxation_map* relaxation_map) const
+{
+ for (size_t i = 0; i < limit; ++i)
+ {
+ const Input_section& is(input_sections[i]);
+ if (is.is_input_section() || is.is_relaxed_input_section())
+ {
+ Section_id sid(is.relobj(), is.shndx());
+ (*relaxation_map)[sid] = i;
+ }
+ }
+}
+
+// Convert regular input sections in INPUT_SECTIONS into relaxed input
+// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
+// indices of INPUT_SECTIONS.
+
+void
+Output_section::convert_input_sections_in_list_to_relaxed_sections(
+ const std::vector<Output_relaxed_input_section*>& relaxed_sections,
+ const Relaxation_map& map,
+ Input_section_list* input_sections)
+{
+ for (size_t i = 0; i < relaxed_sections.size(); ++i)
+ {
+ Output_relaxed_input_section* poris = relaxed_sections[i];
+ Section_id sid(poris->relobj(), poris->shndx());
+ Relaxation_map::const_iterator p = map.find(sid);
+ gold_assert(p != map.end());
+ gold_assert((*input_sections)[p->second].is_input_section());
+ (*input_sections)[p->second] = Input_section(poris);
+ }
+}
+
+// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
+// is a vector of pointers to Output_relaxed_input_section or its derived
+// classes. The relaxed sections must correspond to existing input sections.
+
+void
+Output_section::convert_input_sections_to_relaxed_sections(
+ const std::vector<Output_relaxed_input_section*>& relaxed_sections)
+{
+ gold_assert(parameters->target().may_relax());
+
+ // We want to make sure that restore_states does not undo the effect of
+ // this. If there is no checkpoint active, just search the current
+ // input section list and replace the sections there. If there is
+ // a checkpoint, also replace the sections there.
+
+ // By default, we look at the whole list.
+ size_t limit = this->input_sections_.size();
+
+ if (this->checkpoint_ != NULL)
+ {
+ // Replace input sections with relaxed input section in the saved
+ // copy of the input section list.
+ if (this->checkpoint_->input_sections_saved())
+ {
+ Relaxation_map map;
+ this->build_relaxation_map(
+ *(this->checkpoint_->input_sections()),
+ this->checkpoint_->input_sections()->size(),
+ &map);
+ this->convert_input_sections_in_list_to_relaxed_sections(
+ relaxed_sections,
+ map,
+ this->checkpoint_->input_sections());
+ }
+ else
+ {
+ // We have not copied the input section list yet. Instead, just
+ // look at the portion that would be saved.
+ limit = this->checkpoint_->input_sections_size();
+ }
+ }
+
+ // Convert input sections in input_section_list.
+ Relaxation_map map;
+ this->build_relaxation_map(this->input_sections_, limit, &map);
+ this->convert_input_sections_in_list_to_relaxed_sections(
+ relaxed_sections,
+ map,
+ &this->input_sections_);
+
+ // Update fast look-up map.
+ if (this->lookup_maps_->is_valid())
+ for (size_t i = 0; i < relaxed_sections.size(); ++i)
{
- p->add_input_section(object, shndx);
- return true;
+ Output_relaxed_input_section* poris = relaxed_sections[i];
+ this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
+ poris->shndx(), poris);
}
+}
+
+// Update the output section flags based on input section flags.
+
+void
+Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
+{
+ // If we created the section with SHF_ALLOC clear, we set the
+ // address. If we are now setting the SHF_ALLOC flag, we need to
+ // undo that.
+ if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
+ && (flags & elfcpp::SHF_ALLOC) != 0)
+ this->mark_address_invalid();
+
+ this->flags_ |= (flags
+ & (elfcpp::SHF_WRITE
+ | elfcpp::SHF_ALLOC
+ | elfcpp::SHF_EXECINSTR));
+
+ if ((flags & elfcpp::SHF_MERGE) == 0)
+ this->flags_ &=~ elfcpp::SHF_MERGE;
+ else
+ {
+ if (this->current_data_size_for_child() == 0)
+ this->flags_ |= elfcpp::SHF_MERGE;
+ }
- // We handle the actual constant merging in Output_merge_data or
- // Output_merge_string_data.
- Output_section_data* posd;
- if (!is_string)
- posd = new Output_merge_data(entsize, addralign);
+ if ((flags & elfcpp::SHF_STRINGS) == 0)
+ this->flags_ &=~ elfcpp::SHF_STRINGS;
else
{
- switch (entsize)
+ if (this->current_data_size_for_child() == 0)
+ this->flags_ |= elfcpp::SHF_STRINGS;
+ }
+}
+
+// Find the merge section into which an input section with index SHNDX in
+// OBJECT has been added. Return NULL if none found.
+
+Output_section_data*
+Output_section::find_merge_section(const Relobj* object,
+ unsigned int shndx) const
+{
+ if (!this->lookup_maps_->is_valid())
+ this->build_lookup_maps();
+ return this->lookup_maps_->find_merge_section(object, shndx);
+}
+
+// Build the lookup maps for merge and relaxed sections. This is needs
+// to be declared as a const methods so that it is callable with a const
+// Output_section pointer. The method only updates states of the maps.
+
+void
+Output_section::build_lookup_maps() const
+{
+ this->lookup_maps_->clear();
+ for (Input_section_list::const_iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ if (p->is_merge_section())
+ {
+ Output_merge_base* pomb = p->output_merge_base();
+ Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
+ pomb->addralign());
+ this->lookup_maps_->add_merge_section(msp, pomb);
+ for (Output_merge_base::Input_sections::const_iterator is =
+ pomb->input_sections_begin();
+ is != pomb->input_sections_end();
+ ++is)
+ {
+ const Const_section_id& csid = *is;
+ this->lookup_maps_->add_merge_input_section(csid.first,
+ csid.second, pomb);
+ }
+
+ }
+ else if (p->is_relaxed_input_section())
{
- case 1:
- posd = new Output_merge_string<char>(addralign);
- break;
- case 2:
- posd = new Output_merge_string<uint16_t>(addralign);
- break;
- case 4:
- posd = new Output_merge_string<uint32_t>(addralign);
- break;
- default:
- return false;
+ Output_relaxed_input_section* poris = p->relaxed_input_section();
+ this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
+ poris->shndx(), poris);
}
}
+}
- this->add_output_merge_section(posd, is_string, entsize);
- posd->add_input_section(object, shndx);
+// Find an relaxed input section corresponding to an input section
+// in OBJECT with index SHNDX.
- return true;
+const Output_relaxed_input_section*
+Output_section::find_relaxed_input_section(const Relobj* object,
+ unsigned int shndx) const
+{
+ if (!this->lookup_maps_->is_valid())
+ this->build_lookup_maps();
+ return this->lookup_maps_->find_relaxed_input_section(object, shndx);
}
// Given an address OFFSET relative to the start of input section
unsigned int shndx,
off_t offset) const
{
- gold_assert(object->is_section_specially_mapped(shndx));
+ // Look at the Output_section_data_maps first.
+ const Output_section_data* posd = this->find_merge_section(object, shndx);
+ if (posd == NULL)
+ posd = this->find_relaxed_input_section(object, shndx);
+
+ if (posd != NULL)
+ {
+ section_offset_type output_offset;
+ bool found = posd->output_offset(object, shndx, offset, &output_offset);
+ gold_assert(found);
+ return output_offset != -1;
+ }
+ // Fall back to the slow look-up.
for (Input_section_list::const_iterator p = this->input_sections_.begin();
p != this->input_sections_.end();
++p)
{
- off_t output_offset;
+ section_offset_type output_offset;
if (p->output_offset(object, shndx, offset, &output_offset))
return output_offset != -1;
}
// Given an address OFFSET relative to the start of input section
// SHNDX in object OBJECT, return the output offset relative to the
-// start of the section. This should only be called if SHNDX in
-// OBJECT has a special mapping.
+// start of the input section in the output section. This should only
+// be called if SHNDX in OBJECT has a special mapping.
-off_t
+section_offset_type
Output_section::output_offset(const Relobj* object, unsigned int shndx,
- off_t offset) const
+ section_offset_type offset) const
{
- gold_assert(object->is_section_specially_mapped(shndx));
- // This can only be called meaningfully when layout is complete.
- gold_assert(Output_data::is_layout_complete());
+ // This can only be called meaningfully when we know the data size
+ // of this.
+ gold_assert(this->is_data_size_valid());
+
+ // Look at the Output_section_data_maps first.
+ const Output_section_data* posd = this->find_merge_section(object, shndx);
+ if (posd == NULL)
+ posd = this->find_relaxed_input_section(object, shndx);
+ if (posd != NULL)
+ {
+ section_offset_type output_offset;
+ bool found = posd->output_offset(object, shndx, offset, &output_offset);
+ gold_assert(found);
+ return output_offset;
+ }
+ // Fall back to the slow look-up.
for (Input_section_list::const_iterator p = this->input_sections_.begin();
p != this->input_sections_.end();
++p)
{
- off_t output_offset;
+ section_offset_type output_offset;
if (p->output_offset(object, shndx, offset, &output_offset))
return output_offset;
}
Output_section::output_address(const Relobj* object, unsigned int shndx,
off_t offset) const
{
- gold_assert(object->is_section_specially_mapped(shndx));
- // This can only be called meaningfully when layout is complete.
- gold_assert(Output_data::is_layout_complete());
-
uint64_t addr = this->address() + this->first_input_offset_;
+
+ // Look at the Output_section_data_maps first.
+ const Output_section_data* posd = this->find_merge_section(object, shndx);
+ if (posd == NULL)
+ posd = this->find_relaxed_input_section(object, shndx);
+ if (posd != NULL && posd->is_address_valid())
+ {
+ section_offset_type output_offset;
+ bool found = posd->output_offset(object, shndx, offset, &output_offset);
+ gold_assert(found);
+ return posd->address() + output_offset;
+ }
+
+ // Fall back to the slow look-up.
for (Input_section_list::const_iterator p = this->input_sections_.begin();
p != this->input_sections_.end();
++p)
{
addr = align_address(addr, p->addralign());
- off_t output_offset;
+ section_offset_type output_offset;
if (p->output_offset(object, shndx, offset, &output_offset))
{
if (output_offset == -1)
- return -1U;
+ return -1ULL;
return addr + output_offset;
}
addr += p->data_size();
}
- // If we get here, it means that we don't know the mapping for this
- // input section. This might happen in principle if
- // add_input_section were called before add_output_section_data.
- // But it should never actually happen.
+ // If we get here, it means that we don't know the mapping for this
+ // input section. This might happen in principle if
+ // add_input_section were called before add_output_section_data.
+ // But it should never actually happen.
+
+ gold_unreachable();
+}
+
+// Find the output address of the start of the merged section for
+// input section SHNDX in object OBJECT.
+
+bool
+Output_section::find_starting_output_address(const Relobj* object,
+ unsigned int shndx,
+ uint64_t* paddr) const
+{
+ // FIXME: This becomes a bottle-neck if we have many relaxed sections.
+ // Looking up the merge section map does not always work as we sometimes
+ // find a merge section without its address set.
+ uint64_t addr = this->address() + this->first_input_offset_;
+ for (Input_section_list::const_iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ addr = align_address(addr, p->addralign());
+
+ // It would be nice if we could use the existing output_offset
+ // method to get the output offset of input offset 0.
+ // Unfortunately we don't know for sure that input offset 0 is
+ // mapped at all.
+ if (p->is_merge_section_for(object, shndx))
+ {
+ *paddr = addr;
+ return true;
+ }
+
+ addr += p->data_size();
+ }
+
+ // We couldn't find a merge output section for this input section.
+ return false;
+}
+
+// Set the data size of an Output_section. This is where we handle
+// setting the addresses of any Output_section_data objects.
+
+void
+Output_section::set_final_data_size()
+{
+ if (this->input_sections_.empty())
+ {
+ this->set_data_size(this->current_data_size_for_child());
+ return;
+ }
+
+ if (this->must_sort_attached_input_sections())
+ this->sort_attached_input_sections();
+
+ uint64_t address = this->address();
+ off_t startoff = this->offset();
+ off_t off = startoff + this->first_input_offset_;
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ off = align_address(off, p->addralign());
+ p->set_address_and_file_offset(address + (off - startoff), off,
+ startoff);
+ off += p->data_size();
+ }
+
+ this->set_data_size(off - startoff);
+}
+
+// Reset the address and file offset.
+
+void
+Output_section::do_reset_address_and_file_offset()
+{
+ // An unallocated section has no address. Forcing this means that
+ // we don't need special treatment for symbols defined in debug
+ // sections. We do the same in the constructor. This does not
+ // apply to NOLOAD sections though.
+ if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
+ this->set_address(0);
+
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ p->reset_address_and_file_offset();
+}
+
+// Return true if address and file offset have the values after reset.
+
+bool
+Output_section::do_address_and_file_offset_have_reset_values() const
+{
+ if (this->is_offset_valid())
+ return false;
+
+ // An unallocated section has address 0 after its construction or a reset.
+ if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
+ return this->is_address_valid() && this->address() == 0;
+ else
+ return !this->is_address_valid();
+}
+
+// Set the TLS offset. Called only for SHT_TLS sections.
+
+void
+Output_section::do_set_tls_offset(uint64_t tls_base)
+{
+ this->tls_offset_ = this->address() - tls_base;
+}
+
+// In a few cases we need to sort the input sections attached to an
+// output section. This is used to implement the type of constructor
+// priority ordering implemented by the GNU linker, in which the
+// priority becomes part of the section name and the sections are
+// sorted by name. We only do this for an output section if we see an
+// attached input section matching ".ctor.*", ".dtor.*",
+// ".init_array.*" or ".fini_array.*".
+
+class Output_section::Input_section_sort_entry
+{
+ public:
+ Input_section_sort_entry()
+ : input_section_(), index_(-1U), section_has_name_(false),
+ section_name_()
+ { }
+
+ Input_section_sort_entry(const Input_section& input_section,
+ unsigned int index)
+ : input_section_(input_section), index_(index),
+ section_has_name_(input_section.is_input_section()
+ || input_section.is_relaxed_input_section())
+ {
+ if (this->section_has_name_)
+ {
+ // This is only called single-threaded from Layout::finalize,
+ // so it is OK to lock. Unfortunately we have no way to pass
+ // in a Task token.
+ const Task* dummy_task = reinterpret_cast<const Task*>(-1);
+ Object* obj = (input_section.is_input_section()
+ ? input_section.relobj()
+ : input_section.relaxed_input_section()->relobj());
+ Task_lock_obj<Object> tl(dummy_task, obj);
+
+ // This is a slow operation, which should be cached in
+ // Layout::layout if this becomes a speed problem.
+ this->section_name_ = obj->section_name(input_section.shndx());
+ }
+ }
+
+ // Return the Input_section.
+ const Input_section&
+ input_section() const
+ {
+ gold_assert(this->index_ != -1U);
+ return this->input_section_;
+ }
+
+ // The index of this entry in the original list. This is used to
+ // make the sort stable.
+ unsigned int
+ index() const
+ {
+ gold_assert(this->index_ != -1U);
+ return this->index_;
+ }
+
+ // Whether there is a section name.
+ bool
+ section_has_name() const
+ { return this->section_has_name_; }
+
+ // The section name.
+ const std::string&
+ section_name() const
+ {
+ gold_assert(this->section_has_name_);
+ return this->section_name_;
+ }
+
+ // Return true if the section name has a priority. This is assumed
+ // to be true if it has a dot after the initial dot.
+ bool
+ has_priority() const
+ {
+ gold_assert(this->section_has_name_);
+ return this->section_name_.find('.', 1) != std::string::npos;
+ }
+
+ // Return true if this an input file whose base name matches
+ // FILE_NAME. The base name must have an extension of ".o", and
+ // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
+ // This is to match crtbegin.o as well as crtbeginS.o without
+ // getting confused by other possibilities. Overall matching the
+ // file name this way is a dreadful hack, but the GNU linker does it
+ // in order to better support gcc, and we need to be compatible.
+ bool
+ match_file_name(const char* match_file_name) const
+ {
+ const std::string& file_name(this->input_section_.relobj()->name());
+ const char* base_name = lbasename(file_name.c_str());
+ size_t match_len = strlen(match_file_name);
+ if (strncmp(base_name, match_file_name, match_len) != 0)
+ return false;
+ size_t base_len = strlen(base_name);
+ if (base_len != match_len + 2 && base_len != match_len + 3)
+ return false;
+ return memcmp(base_name + base_len - 2, ".o", 2) == 0;
+ }
+
+ private:
+ // The Input_section we are sorting.
+ Input_section input_section_;
+ // The index of this Input_section in the original list.
+ unsigned int index_;
+ // Whether this Input_section has a section name--it won't if this
+ // is some random Output_section_data.
+ bool section_has_name_;
+ // The section name if there is one.
+ std::string section_name_;
+};
+
+// Return true if S1 should come before S2 in the output section.
+
+bool
+Output_section::Input_section_sort_compare::operator()(
+ const Output_section::Input_section_sort_entry& s1,
+ const Output_section::Input_section_sort_entry& s2) const
+{
+ // crtbegin.o must come first.
+ bool s1_begin = s1.match_file_name("crtbegin");
+ bool s2_begin = s2.match_file_name("crtbegin");
+ if (s1_begin || s2_begin)
+ {
+ if (!s1_begin)
+ return false;
+ if (!s2_begin)
+ return true;
+ return s1.index() < s2.index();
+ }
+
+ // crtend.o must come last.
+ bool s1_end = s1.match_file_name("crtend");
+ bool s2_end = s2.match_file_name("crtend");
+ if (s1_end || s2_end)
+ {
+ if (!s1_end)
+ return true;
+ if (!s2_end)
+ return false;
+ return s1.index() < s2.index();
+ }
+
+ // We sort all the sections with no names to the end.
+ if (!s1.section_has_name() || !s2.section_has_name())
+ {
+ if (s1.section_has_name())
+ return true;
+ if (s2.section_has_name())
+ return false;
+ return s1.index() < s2.index();
+ }
+
+ // A section with a priority follows a section without a priority.
+ bool s1_has_priority = s1.has_priority();
+ bool s2_has_priority = s2.has_priority();
+ if (s1_has_priority && !s2_has_priority)
+ return false;
+ if (!s1_has_priority && s2_has_priority)
+ return true;
+
+ // Otherwise we sort by name.
+ int compare = s1.section_name().compare(s2.section_name());
+ if (compare != 0)
+ return compare < 0;
+
+ // Otherwise we keep the input order.
+ return s1.index() < s2.index();
+}
+
+// Return true if S1 should come before S2 in an .init_array or .fini_array
+// output section.
+
+bool
+Output_section::Input_section_sort_init_fini_compare::operator()(
+ const Output_section::Input_section_sort_entry& s1,
+ const Output_section::Input_section_sort_entry& s2) const
+{
+ // We sort all the sections with no names to the end.
+ if (!s1.section_has_name() || !s2.section_has_name())
+ {
+ if (s1.section_has_name())
+ return true;
+ if (s2.section_has_name())
+ return false;
+ return s1.index() < s2.index();
+ }
+
+ // A section without a priority follows a section with a priority.
+ // This is the reverse of .ctors and .dtors sections.
+ bool s1_has_priority = s1.has_priority();
+ bool s2_has_priority = s2.has_priority();
+ if (s1_has_priority && !s2_has_priority)
+ return true;
+ if (!s1_has_priority && s2_has_priority)
+ return false;
- gold_unreachable();
+ // Otherwise we sort by name.
+ int compare = s1.section_name().compare(s2.section_name());
+ if (compare != 0)
+ return compare < 0;
+
+ // Otherwise we keep the input order.
+ return s1.index() < s2.index();
}
-// Set the data size of an Output_section. This is where we handle
-// setting the addresses of any Output_section_data objects.
+// Sort the input sections attached to an output section.
void
-Output_section::set_final_data_size()
+Output_section::sort_attached_input_sections()
{
- if (this->input_sections_.empty())
- {
- this->set_data_size(this->current_data_size_for_child());
- return;
- }
+ if (this->attached_input_sections_are_sorted_)
+ return;
- uint64_t address = this->address();
- off_t startoff = this->offset();
- off_t off = startoff + this->first_input_offset_;
+ if (this->checkpoint_ != NULL
+ && !this->checkpoint_->input_sections_saved())
+ this->checkpoint_->save_input_sections();
+
+ // The only thing we know about an input section is the object and
+ // the section index. We need the section name. Recomputing this
+ // is slow but this is an unusual case. If this becomes a speed
+ // problem we can cache the names as required in Layout::layout.
+
+ // We start by building a larger vector holding a copy of each
+ // Input_section, plus its current index in the list and its name.
+ std::vector<Input_section_sort_entry> sort_list;
+
+ unsigned int i = 0;
for (Input_section_list::iterator p = this->input_sections_.begin();
p != this->input_sections_.end();
+ ++p, ++i)
+ sort_list.push_back(Input_section_sort_entry(*p, i));
+
+ // Sort the input sections.
+ if (this->type() == elfcpp::SHT_PREINIT_ARRAY
+ || this->type() == elfcpp::SHT_INIT_ARRAY
+ || this->type() == elfcpp::SHT_FINI_ARRAY)
+ std::sort(sort_list.begin(), sort_list.end(),
+ Input_section_sort_init_fini_compare());
+ else
+ std::sort(sort_list.begin(), sort_list.end(),
+ Input_section_sort_compare());
+
+ // Copy the sorted input sections back to our list.
+ this->input_sections_.clear();
+ for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
+ p != sort_list.end();
++p)
- {
- off = align_address(off, p->addralign());
- p->set_address_and_file_offset(address + (off - startoff), off,
- startoff);
- off += p->data_size();
- }
+ this->input_sections_.push_back(p->input_section());
- this->set_data_size(off - startoff);
+ // Remember that we sorted the input sections, since we might get
+ // called again.
+ this->attached_input_sections_are_sorted_ = true;
}
// Write the section header to *OSHDR.
{
oshdr->put_sh_name(secnamepool->get_offset(this->name_));
oshdr->put_sh_type(this->type_);
- oshdr->put_sh_flags(this->flags_);
+
+ elfcpp::Elf_Xword flags = this->flags_;
+ if (this->info_section_ != NULL && this->info_uses_section_index_)
+ flags |= elfcpp::SHF_INFO_LINK;
+ oshdr->put_sh_flags(flags);
+
oshdr->put_sh_addr(this->address());
oshdr->put_sh_offset(this->offset());
oshdr->put_sh_size(this->data_size());
oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
else
oshdr->put_sh_link(this->link_);
+
+ elfcpp::Elf_Word info;
if (this->info_section_ != NULL)
- oshdr->put_sh_info(this->info_section_->out_shndx());
+ {
+ if (this->info_uses_section_index_)
+ info = this->info_section_->out_shndx();
+ else
+ info = this->info_section_->symtab_index();
+ }
+ else if (this->info_symndx_ != NULL)
+ info = this->info_symndx_->symtab_index();
else
- oshdr->put_sh_info(this->info_);
+ info = this->info_;
+ oshdr->put_sh_info(info);
+
oshdr->put_sh_addralign(this->addralign_);
oshdr->put_sh_entsize(this->entsize_);
}
{
gold_assert(!this->requires_postprocessing());
+ // If the target performs relaxation, we delay filler generation until now.
+ gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
+
off_t output_section_file_offset = this->offset();
for (Fill_list::iterator p = this->fills_.begin();
p != this->fills_.end();
++p)
{
- std::string fill_data(of->target()->code_fill(p->length()));
+ std::string fill_data(parameters->target().code_fill(p->length()));
of->write(output_section_file_offset + p->section_offset(),
- fill_data.data(), fill_data.size());
+ fill_data.data(), fill_data.size());
}
+ off_t off = this->offset() + this->first_input_offset_;
for (Input_section_list::iterator p = this->input_sections_.begin();
p != this->input_sections_.end();
++p)
- p->write(of);
+ {
+ off_t aligned_off = align_address(off, p->addralign());
+ if (this->generate_code_fills_at_write_ && (off != aligned_off))
+ {
+ size_t fill_len = aligned_off - off;
+ std::string fill_data(parameters->target().code_fill(fill_len));
+ of->write(off, fill_data.data(), fill_data.size());
+ }
+
+ p->write(of);
+ off = aligned_off + p->data_size();
+ }
}
// If a section requires postprocessing, create the buffer to use.
Output_section::create_postprocessing_buffer()
{
gold_assert(this->requires_postprocessing());
- gold_assert(this->postprocessing_buffer_ == NULL);
+
+ if (this->postprocessing_buffer_ != NULL)
+ return;
if (!this->input_sections_.empty())
{
{
gold_assert(this->requires_postprocessing());
- Target* target = parameters->target();
+ // If the target performs relaxation, we delay filler generation until now.
+ gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
+
unsigned char* buffer = this->postprocessing_buffer();
for (Fill_list::iterator p = this->fills_.begin();
p != this->fills_.end();
++p)
{
- std::string fill_data(target->code_fill(p->length()));
- memcpy(buffer + p->section_offset(), fill_data.data(), fill_data.size());
+ std::string fill_data(parameters->target().code_fill(p->length()));
+ memcpy(buffer + p->section_offset(), fill_data.data(),
+ fill_data.size());
}
off_t off = this->first_input_offset_;
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ off_t aligned_off = align_address(off, p->addralign());
+ if (this->generate_code_fills_at_write_ && (off != aligned_off))
+ {
+ size_t fill_len = aligned_off - off;
+ std::string fill_data(parameters->target().code_fill(fill_len));
+ memcpy(buffer + off, fill_data.data(), fill_data.size());
+ }
+
+ p->write_to_buffer(buffer + aligned_off);
+ off = aligned_off + p->data_size();
+ }
+}
+
+// Get the input sections for linker script processing. We leave
+// behind the Output_section_data entries. Note that this may be
+// slightly incorrect for merge sections. We will leave them behind,
+// but it is possible that the script says that they should follow
+// some other input sections, as in:
+// .rodata { *(.rodata) *(.rodata.cst*) }
+// For that matter, we don't handle this correctly:
+// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
+// With luck this will never matter.
+
+uint64_t
+Output_section::get_input_sections(
+ uint64_t address,
+ const std::string& fill,
+ std::list<Input_section>* input_sections)
+{
+ if (this->checkpoint_ != NULL
+ && !this->checkpoint_->input_sections_saved())
+ this->checkpoint_->save_input_sections();
+
+ // Invalidate fast look-up maps.
+ this->lookup_maps_->invalidate();
+
+ uint64_t orig_address = address;
+
+ address = align_address(address, this->addralign());
+
+ Input_section_list remaining;
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ if (p->is_input_section()
+ || p->is_relaxed_input_section()
+ || p->is_merge_section())
+ input_sections->push_back(*p);
+ else
+ {
+ uint64_t aligned_address = align_address(address, p->addralign());
+ if (aligned_address != address && !fill.empty())
+ {
+ section_size_type length =
+ convert_to_section_size_type(aligned_address - address);
+ std::string this_fill;
+ this_fill.reserve(length);
+ while (this_fill.length() + fill.length() <= length)
+ this_fill += fill;
+ if (this_fill.length() < length)
+ this_fill.append(fill, 0, length - this_fill.length());
+
+ Output_section_data* posd = new Output_data_const(this_fill, 0);
+ remaining.push_back(Input_section(posd));
+ }
+ address = aligned_address;
+
+ remaining.push_back(*p);
+
+ p->finalize_data_size();
+ address += p->data_size();
+ }
+ }
+
+ this->input_sections_.swap(remaining);
+ this->first_input_offset_ = 0;
+
+ uint64_t data_size = address - orig_address;
+ this->set_current_data_size_for_child(data_size);
+ return data_size;
+}
+
+// Add a script input section. SIS is an Output_section::Input_section,
+// which can be either a plain input section or a special input section like
+// a relaxed input section. For a special input section, its size must be
+// finalized.
+
+void
+Output_section::add_script_input_section(const Input_section& sis)
+{
+ uint64_t data_size = sis.data_size();
+ uint64_t addralign = sis.addralign();
+ if (addralign > this->addralign_)
+ this->addralign_ = addralign;
+
+ off_t offset_in_section = this->current_data_size_for_child();
+ off_t aligned_offset_in_section = align_address(offset_in_section,
+ addralign);
+
+ this->set_current_data_size_for_child(aligned_offset_in_section
+ + data_size);
+
+ this->input_sections_.push_back(sis);
+
+ // Update fast lookup maps if necessary.
+ if (this->lookup_maps_->is_valid())
+ {
+ if (sis.is_merge_section())
+ {
+ Output_merge_base* pomb = sis.output_merge_base();
+ Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
+ pomb->addralign());
+ this->lookup_maps_->add_merge_section(msp, pomb);
+ for (Output_merge_base::Input_sections::const_iterator p =
+ pomb->input_sections_begin();
+ p != pomb->input_sections_end();
+ ++p)
+ this->lookup_maps_->add_merge_input_section(p->first, p->second,
+ pomb);
+ }
+ else if (sis.is_relaxed_input_section())
+ {
+ Output_relaxed_input_section* poris = sis.relaxed_input_section();
+ this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
+ poris->shndx(), poris);
+ }
+ }
+}
+
+// Save states for relaxation.
+
+void
+Output_section::save_states()
+{
+ gold_assert(this->checkpoint_ == NULL);
+ Checkpoint_output_section* checkpoint =
+ new Checkpoint_output_section(this->addralign_, this->flags_,
+ this->input_sections_,
+ this->first_input_offset_,
+ this->attached_input_sections_are_sorted_);
+ this->checkpoint_ = checkpoint;
+ gold_assert(this->fills_.empty());
+}
+
+void
+Output_section::discard_states()
+{
+ gold_assert(this->checkpoint_ != NULL);
+ delete this->checkpoint_;
+ this->checkpoint_ = NULL;
+ gold_assert(this->fills_.empty());
+
+ // Simply invalidate the fast lookup maps since we do not keep
+ // track of them.
+ this->lookup_maps_->invalidate();
+}
+
+void
+Output_section::restore_states()
+{
+ gold_assert(this->checkpoint_ != NULL);
+ Checkpoint_output_section* checkpoint = this->checkpoint_;
+
+ this->addralign_ = checkpoint->addralign();
+ this->flags_ = checkpoint->flags();
+ this->first_input_offset_ = checkpoint->first_input_offset();
+
+ if (!checkpoint->input_sections_saved())
+ {
+ // If we have not copied the input sections, just resize it.
+ size_t old_size = checkpoint->input_sections_size();
+ gold_assert(this->input_sections_.size() >= old_size);
+ this->input_sections_.resize(old_size);
+ }
+ else
+ {
+ // We need to copy the whole list. This is not efficient for
+ // extremely large output with hundreads of thousands of input
+ // objects. We may need to re-think how we should pass sections
+ // to scripts.
+ this->input_sections_ = *checkpoint->input_sections();
+ }
+
+ this->attached_input_sections_are_sorted_ =
+ checkpoint->attached_input_sections_are_sorted();
+
+ // Simply invalidate the fast lookup maps since we do not keep
+ // track of them.
+ this->lookup_maps_->invalidate();
+}
+
+// Update the section offsets of input sections in this. This is required if
+// relaxation causes some input sections to change sizes.
+
+void
+Output_section::adjust_section_offsets()
+{
+ if (!this->section_offsets_need_adjustment_)
+ return;
+
+ off_t off = 0;
for (Input_section_list::iterator p = this->input_sections_.begin();
p != this->input_sections_.end();
++p)
{
off = align_address(off, p->addralign());
- p->write_to_buffer(buffer + off);
+ if (p->is_input_section())
+ p->relobj()->set_section_offset(p->shndx(), off);
off += p->data_size();
}
+
+ this->section_offsets_need_adjustment_ = false;
+}
+
+// Print to the map file.
+
+void
+Output_section::do_print_to_mapfile(Mapfile* mapfile) const
+{
+ mapfile->print_output_section(this);
+
+ for (Input_section_list::const_iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ p->print_to_mapfile(mapfile);
+}
+
+// Print stats for merge sections to stderr.
+
+void
+Output_section::print_merge_stats()
+{
+ Input_section_list::iterator p;
+ for (p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ p->print_merge_stats(this->name_);
}
// Output segment methods.
vaddr_(0),
paddr_(0),
memsz_(0),
- align_(0),
+ max_align_(0),
+ min_p_align_(0),
offset_(0),
filesz_(0),
type_(type),
flags_(flags),
- is_align_known_(false)
+ is_max_align_known_(false),
+ are_addresses_set_(false),
+ is_large_data_segment_(false)
{
+ // The ELF ABI specifies that a PT_TLS segment always has PF_R as
+ // the flags.
+ if (type == elfcpp::PT_TLS)
+ this->flags_ = elfcpp::PF_R;
}
// Add an Output_section to an Output_segment.
void
Output_segment::add_output_section(Output_section* os,
elfcpp::Elf_Word seg_flags,
- bool front)
+ bool do_sort)
{
gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
- gold_assert(!this->is_align_known_);
+ gold_assert(!this->is_max_align_known_);
+ gold_assert(os->is_large_data_section() == this->is_large_data_segment());
+ gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
- // Update the segment flags.
- this->flags_ |= seg_flags;
+ this->update_flags_for_output_section(seg_flags);
Output_segment::Output_data_list* pdl;
if (os->type() == elfcpp::SHT_NOBITS)
else
pdl = &this->output_data_;
- // So that PT_NOTE segments will work correctly, we need to ensure
- // that all SHT_NOTE sections are adjacent. This will normally
- // happen automatically, because all the SHT_NOTE input sections
- // will wind up in the same output section. However, it is possible
- // for multiple SHT_NOTE input sections to have different section
- // flags, and thus be in different output sections, but for the
- // different section flags to map into the same segment flags and
- // thus the same output segment.
-
// Note that while there may be many input sections in an output
// section, there are normally only a few output sections in an
- // output segment. This loop is expected to be fast.
+ // output segment. The loops below are expected to be fast.
+ // So that PT_NOTE segments will work correctly, we need to ensure
+ // that all SHT_NOTE sections are adjacent.
if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
{
Output_segment::Output_data_list::iterator p = pdl->end();
--p;
if ((*p)->is_section_type(elfcpp::SHT_NOTE))
{
- // We don't worry about the FRONT parameter.
++p;
pdl->insert(p, os);
return;
// case: we group the SHF_TLS/SHT_NOBITS sections right after the
// SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
// correctly. SHF_TLS sections get added to both a PT_LOAD segment
- // and the PT_TLS segment -- we do this grouping only for the
- // PT_LOAD segment.
+ // and the PT_TLS segment; we do this grouping only for the PT_LOAD
+ // segment.
if (this->type_ != elfcpp::PT_TLS
- && (os->flags() & elfcpp::SHF_TLS) != 0
- && !this->output_data_.empty())
+ && (os->flags() & elfcpp::SHF_TLS) != 0)
{
pdl = &this->output_data_;
- bool nobits = os->type() == elfcpp::SHT_NOBITS;
- bool sawtls = false;
- Output_segment::Output_data_list::iterator p = pdl->end();
- do
+ if (!pdl->empty())
{
- --p;
- bool insert;
- if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
+ bool nobits = os->type() == elfcpp::SHT_NOBITS;
+ bool sawtls = false;
+ Output_segment::Output_data_list::iterator p = pdl->end();
+ gold_assert(p != pdl->begin());
+ do
{
- sawtls = true;
- // Put a NOBITS section after the first TLS section.
- // But a PROGBITS section after the first TLS/PROGBITS
- // section.
- insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
+ --p;
+ bool insert;
+ if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
+ {
+ sawtls = true;
+ // Put a NOBITS section after the first TLS section.
+ // Put a PROGBITS section after the first
+ // TLS/PROGBITS section.
+ insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
+ }
+ else
+ {
+ // If we've gone past the TLS sections, but we've
+ // seen a TLS section, then we need to insert this
+ // section now.
+ insert = sawtls;
+ }
+
+ if (insert)
+ {
+ ++p;
+ pdl->insert(p, os);
+ return;
+ }
}
- else
+ while (p != pdl->begin());
+ }
+
+ // There are no TLS sections yet; put this one at the requested
+ // location in the section list.
+ }
+
+ if (do_sort)
+ {
+ // For the PT_GNU_RELRO segment, we need to group relro
+ // sections, and we need to put them before any non-relro
+ // sections. Any relro local sections go before relro non-local
+ // sections. One section may be marked as the last relro
+ // section.
+ if (os->is_relro())
+ {
+ gold_assert(pdl == &this->output_data_);
+ Output_segment::Output_data_list::iterator p;
+ for (p = pdl->begin(); p != pdl->end(); ++p)
{
- // If we've gone past the TLS sections, but we've seen a
- // TLS section, then we need to insert this section now.
- insert = sawtls;
+ if (!(*p)->is_section())
+ break;
+
+ Output_section* pos = (*p)->output_section();
+ if (!pos->is_relro()
+ || (os->is_relro_local() && !pos->is_relro_local())
+ || (!os->is_last_relro() && pos->is_last_relro()))
+ break;
}
- if (insert)
+ pdl->insert(p, os);
+ return;
+ }
+
+ // One section may be marked as the first section which follows
+ // the relro sections.
+ if (os->is_first_non_relro())
+ {
+ gold_assert(pdl == &this->output_data_);
+ Output_segment::Output_data_list::iterator p;
+ for (p = pdl->begin(); p != pdl->end(); ++p)
+ {
+ if (!(*p)->is_section())
+ break;
+
+ Output_section* pos = (*p)->output_section();
+ if (!pos->is_relro())
+ break;
+ }
+
+ pdl->insert(p, os);
+ return;
+ }
+ }
+
+ // Small data sections go at the end of the list of data sections.
+ // If OS is not small, and there are small sections, we have to
+ // insert it before the first small section.
+ if (os->type() != elfcpp::SHT_NOBITS
+ && !os->is_small_section()
+ && !pdl->empty()
+ && pdl->back()->is_section()
+ && pdl->back()->output_section()->is_small_section())
+ {
+ for (Output_segment::Output_data_list::iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ {
+ if ((*p)->is_section()
+ && (*p)->output_section()->is_small_section())
{
- // We don't worry about the FRONT parameter.
- ++p;
pdl->insert(p, os);
return;
}
}
- while (p != pdl->begin());
+ gold_unreachable();
+ }
- // There are no TLS sections yet; put this one at the requested
- // location in the section list.
+ // A small BSS section goes at the start of the BSS sections, after
+ // other small BSS sections.
+ if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
+ {
+ for (Output_segment::Output_data_list::iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ {
+ if (!(*p)->is_section()
+ || !(*p)->output_section()->is_small_section())
+ {
+ pdl->insert(p, os);
+ return;
+ }
+ }
}
- if (front)
- pdl->push_front(os);
- else
- pdl->push_back(os);
+ // A large BSS section goes at the end of the BSS sections, which
+ // means that one that is not large must come before the first large
+ // one.
+ if (os->type() == elfcpp::SHT_NOBITS
+ && !os->is_large_section()
+ && !pdl->empty()
+ && pdl->back()->is_section()
+ && pdl->back()->output_section()->is_large_section())
+ {
+ for (Output_segment::Output_data_list::iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ {
+ if ((*p)->is_section()
+ && (*p)->output_section()->is_large_section())
+ {
+ pdl->insert(p, os);
+ return;
+ }
+ }
+ gold_unreachable();
+ }
+
+ // We do some further output section sorting in order to make the
+ // generated program run more efficiently. We should only do this
+ // when not using a linker script, so it is controled by the DO_SORT
+ // parameter.
+ if (do_sort)
+ {
+ // FreeBSD requires the .interp section to be in the first page
+ // of the executable. That is a more efficient location anyhow
+ // for any OS, since it means that the kernel will have the data
+ // handy after it reads the program headers.
+ if (os->is_interp() && !pdl->empty())
+ {
+ pdl->insert(pdl->begin(), os);
+ return;
+ }
+
+ // Put loadable non-writable notes immediately after the .interp
+ // sections, so that the PT_NOTE segment is on the first page of
+ // the executable.
+ if (os->type() == elfcpp::SHT_NOTE
+ && (os->flags() & elfcpp::SHF_WRITE) == 0
+ && !pdl->empty())
+ {
+ Output_segment::Output_data_list::iterator p = pdl->begin();
+ if ((*p)->is_section() && (*p)->output_section()->is_interp())
+ ++p;
+ pdl->insert(p, os);
+ return;
+ }
+
+ // If this section is used by the dynamic linker, and it is not
+ // writable, then put it first, after the .interp section and
+ // any loadable notes. This makes it more likely that the
+ // dynamic linker will have to read less data from the disk.
+ if (os->is_dynamic_linker_section()
+ && !pdl->empty()
+ && (os->flags() & elfcpp::SHF_WRITE) == 0)
+ {
+ bool is_reloc = (os->type() == elfcpp::SHT_REL
+ || os->type() == elfcpp::SHT_RELA);
+ Output_segment::Output_data_list::iterator p = pdl->begin();
+ while (p != pdl->end()
+ && (*p)->is_section()
+ && ((*p)->output_section()->is_dynamic_linker_section()
+ || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
+ {
+ // Put reloc sections after the other ones. Putting the
+ // dynamic reloc sections first confuses BFD, notably
+ // objcopy and strip.
+ if (!is_reloc
+ && ((*p)->output_section()->type() == elfcpp::SHT_REL
+ || (*p)->output_section()->type() == elfcpp::SHT_RELA))
+ break;
+ ++p;
+ }
+ pdl->insert(p, os);
+ return;
+ }
+ }
+
+ // If there were no constraints on the output section, just add it
+ // to the end of the list.
+ pdl->push_back(os);
+}
+
+// Remove an Output_section from this segment. It is an error if it
+// is not present.
+
+void
+Output_segment::remove_output_section(Output_section* os)
+{
+ // We only need this for SHT_PROGBITS.
+ gold_assert(os->type() == elfcpp::SHT_PROGBITS);
+ for (Output_data_list::iterator p = this->output_data_.begin();
+ p != this->output_data_.end();
+ ++p)
+ {
+ if (*p == os)
+ {
+ this->output_data_.erase(p);
+ return;
+ }
+ }
+ gold_unreachable();
}
-// Add an Output_data (which is not an Output_section) to the start of
-// a segment.
+// Add an Output_data (which need not be an Output_section) to the
+// start of a segment.
void
Output_segment::add_initial_output_data(Output_data* od)
{
- gold_assert(!this->is_align_known_);
+ gold_assert(!this->is_max_align_known_);
this->output_data_.push_front(od);
}
+// Return whether the first data section is a relro section.
+
+bool
+Output_segment::is_first_section_relro() const
+{
+ return (!this->output_data_.empty()
+ && this->output_data_.front()->is_section()
+ && this->output_data_.front()->output_section()->is_relro());
+}
+
// Return the maximum alignment of the Output_data in Output_segment.
-// Once we compute this, we prohibit new sections from being added.
uint64_t
-Output_segment::addralign()
+Output_segment::maximum_alignment()
{
- if (!this->is_align_known_)
+ if (!this->is_max_align_known_)
{
uint64_t addralign;
- addralign = Output_segment::maximum_alignment(&this->output_data_);
- if (addralign > this->align_)
- this->align_ = addralign;
+ addralign = Output_segment::maximum_alignment_list(&this->output_data_);
+ if (addralign > this->max_align_)
+ this->max_align_ = addralign;
- addralign = Output_segment::maximum_alignment(&this->output_bss_);
- if (addralign > this->align_)
- this->align_ = addralign;
+ addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
+ if (addralign > this->max_align_)
+ this->max_align_ = addralign;
- this->is_align_known_ = true;
+ this->is_max_align_known_ = true;
}
- return this->align_;
+ return this->max_align_;
}
// Return the maximum alignment of a list of Output_data.
uint64_t
-Output_segment::maximum_alignment(const Output_data_list* pdl)
+Output_segment::maximum_alignment_list(const Output_data_list* pdl)
{
uint64_t ret = 0;
for (Output_data_list::const_iterator p = pdl->begin();
return count;
}
-// Set the section addresses for an Output_segment. ADDR is the
-// address and *POFF is the file offset. Set the section indexes
-// starting with *PSHNDX. Return the address of the immediately
-// following segment. Update *POFF and *PSHNDX.
+// Set the section addresses for an Output_segment. If RESET is true,
+// reset the addresses first. ADDR is the address and *POFF is the
+// file offset. Set the section indexes starting with *PSHNDX.
+// Return the address of the immediately following segment. Update
+// *POFF and *PSHNDX.
uint64_t
-Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
+Output_segment::set_section_addresses(const Layout* layout, bool reset,
+ uint64_t addr,
+ unsigned int increase_relro,
+ off_t* poff,
unsigned int* pshndx)
{
gold_assert(this->type_ == elfcpp::PT_LOAD);
- this->vaddr_ = addr;
- this->paddr_ = addr;
-
off_t orig_off = *poff;
- this->offset_ = orig_off;
- *poff = align_address(*poff, this->addralign());
+ // If we have relro sections, we need to pad forward now so that the
+ // relro sections plus INCREASE_RELRO end on a common page boundary.
+ if (parameters->options().relro()
+ && this->is_first_section_relro()
+ && (!this->are_addresses_set_ || reset))
+ {
+ uint64_t relro_size = 0;
+ off_t off = *poff;
+ for (Output_data_list::iterator p = this->output_data_.begin();
+ p != this->output_data_.end();
+ ++p)
+ {
+ if (!(*p)->is_section())
+ break;
+ Output_section* pos = (*p)->output_section();
+ if (!pos->is_relro())
+ break;
+ gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
+ if ((*p)->is_address_valid())
+ relro_size += (*p)->data_size();
+ else
+ {
+ // FIXME: This could be faster.
+ (*p)->set_address_and_file_offset(addr + relro_size,
+ off + relro_size);
+ relro_size += (*p)->data_size();
+ (*p)->reset_address_and_file_offset();
+ }
+ }
+ relro_size += increase_relro;
+
+ uint64_t page_align = parameters->target().common_pagesize();
+
+ // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
+ uint64_t desired_align = page_align - (relro_size % page_align);
+ if (desired_align < *poff % page_align)
+ *poff += page_align - *poff % page_align;
+ *poff += desired_align - *poff % page_align;
+ addr += *poff - orig_off;
+ orig_off = *poff;
+ }
+
+ if (!reset && this->are_addresses_set_)
+ {
+ gold_assert(this->paddr_ == addr);
+ addr = this->vaddr_;
+ }
+ else
+ {
+ this->vaddr_ = addr;
+ this->paddr_ = addr;
+ this->are_addresses_set_ = true;
+ }
+
+ bool in_tls = false;
+
+ this->offset_ = orig_off;
- addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
- pshndx);
+ addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
+ addr, poff, pshndx, &in_tls);
this->filesz_ = *poff - orig_off;
off_t off = *poff;
- uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
- poff, pshndx);
+ uint64_t ret = this->set_section_list_addresses(layout, reset,
+ &this->output_bss_,
+ addr, poff, pshndx,
+ &in_tls);
+
+ // If the last section was a TLS section, align upward to the
+ // alignment of the TLS segment, so that the overall size of the TLS
+ // segment is aligned.
+ if (in_tls)
+ {
+ uint64_t segment_align = layout->tls_segment()->maximum_alignment();
+ *poff = align_address(*poff, segment_align);
+ }
+
this->memsz_ = *poff - orig_off;
// Ignore the file offset adjustments made by the BSS Output_data
// structures.
uint64_t
-Output_segment::set_section_list_addresses(Output_data_list* pdl,
+Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
+ Output_data_list* pdl,
uint64_t addr, off_t* poff,
- unsigned int* pshndx)
+ unsigned int* pshndx,
+ bool* in_tls)
{
off_t startoff = *poff;
p != pdl->end();
++p)
{
- off = align_address(off, (*p)->addralign());
- (*p)->set_address_and_file_offset(addr + (off - startoff), off);
+ if (reset)
+ (*p)->reset_address_and_file_offset();
+
+ // When using a linker script the section will most likely
+ // already have an address.
+ if (!(*p)->is_address_valid())
+ {
+ uint64_t align = (*p)->addralign();
+
+ if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
+ {
+ // Give the first TLS section the alignment of the
+ // entire TLS segment. Otherwise the TLS segment as a
+ // whole may be misaligned.
+ if (!*in_tls)
+ {
+ Output_segment* tls_segment = layout->tls_segment();
+ gold_assert(tls_segment != NULL);
+ uint64_t segment_align = tls_segment->maximum_alignment();
+ gold_assert(segment_align >= align);
+ align = segment_align;
+
+ *in_tls = true;
+ }
+ }
+ else
+ {
+ // If this is the first section after the TLS segment,
+ // align it to at least the alignment of the TLS
+ // segment, so that the size of the overall TLS segment
+ // is aligned.
+ if (*in_tls)
+ {
+ uint64_t segment_align =
+ layout->tls_segment()->maximum_alignment();
+ if (segment_align > align)
+ align = segment_align;
+
+ *in_tls = false;
+ }
+ }
+
+ off = align_address(off, align);
+ (*p)->set_address_and_file_offset(addr + (off - startoff), off);
+ }
+ else
+ {
+ // The script may have inserted a skip forward, but it
+ // better not have moved backward.
+ if ((*p)->address() >= addr + (off - startoff))
+ off += (*p)->address() - (addr + (off - startoff));
+ else
+ {
+ if (!layout->script_options()->saw_sections_clause())
+ gold_unreachable();
+ else
+ {
+ Output_section* os = (*p)->output_section();
+
+ // Cast to unsigned long long to avoid format warnings.
+ unsigned long long previous_dot =
+ static_cast<unsigned long long>(addr + (off - startoff));
+ unsigned long long dot =
+ static_cast<unsigned long long>((*p)->address());
+
+ if (os == NULL)
+ gold_error(_("dot moves backward in linker script "
+ "from 0x%llx to 0x%llx"), previous_dot, dot);
+ else
+ gold_error(_("address of section '%s' moves backward "
+ "from 0x%llx to 0x%llx"),
+ os->name(), previous_dot, dot);
+ }
+ }
+ (*p)->set_file_offset(off);
+ (*p)->finalize_data_size();
+ }
- // Unless this is a PT_TLS segment, we want to ignore the size
- // of a SHF_TLS/SHT_NOBITS section. Such a section does not
- // affect the size of a PT_LOAD segment.
- if (this->type_ == elfcpp::PT_TLS
- || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
+ // We want to ignore the size of a SHF_TLS or SHT_NOBITS
+ // section. Such a section does not affect the size of a
+ // PT_LOAD segment.
+ if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
|| !(*p)->is_section_type(elfcpp::SHT_NOBITS))
off += (*p)->data_size();
}
// For a non-PT_LOAD segment, set the offset from the sections, if
-// any.
+// any. Add INCREASE to the file size and the memory size.
void
-Output_segment::set_offset()
+Output_segment::set_offset(unsigned int increase)
{
gold_assert(this->type_ != elfcpp::PT_LOAD);
+ gold_assert(!this->are_addresses_set_);
+
if (this->output_data_.empty() && this->output_bss_.empty())
{
+ gold_assert(increase == 0);
this->vaddr_ = 0;
this->paddr_ = 0;
+ this->are_addresses_set_ = true;
this->memsz_ = 0;
- this->align_ = 0;
+ this->min_p_align_ = 0;
this->offset_ = 0;
this->filesz_ = 0;
return;
else
first = this->output_data_.front();
this->vaddr_ = first->address();
- this->paddr_ = this->vaddr_;
+ this->paddr_ = (first->has_load_address()
+ ? first->load_address()
+ : this->vaddr_);
+ this->are_addresses_set_ = true;
this->offset_ = first->offset();
if (this->output_data_.empty())
this->memsz_ = (last->address()
+ last->data_size()
- this->vaddr_);
+
+ this->filesz_ += increase;
+ this->memsz_ += increase;
+
+ // If this is a TLS segment, align the memory size. The code in
+ // set_section_list ensures that the section after the TLS segment
+ // is aligned to give us room.
+ if (this->type_ == elfcpp::PT_TLS)
+ {
+ uint64_t segment_align = this->maximum_alignment();
+ gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
+ this->memsz_ = align_address(this->memsz_, segment_align);
+ }
+}
+
+// Set the TLS offsets of the sections in the PT_TLS segment.
+
+void
+Output_segment::set_tls_offsets()
+{
+ gold_assert(this->type_ == elfcpp::PT_TLS);
+
+ for (Output_data_list::iterator p = this->output_data_.begin();
+ p != this->output_data_.end();
+ ++p)
+ (*p)->set_tls_offset(this->vaddr_);
+
+ for (Output_data_list::iterator p = this->output_bss_.begin();
+ p != this->output_bss_.end();
+ ++p)
+ (*p)->set_tls_offset(this->vaddr_);
+}
+
+// Return the address of the first section.
+
+uint64_t
+Output_segment::first_section_load_address() const
+{
+ for (Output_data_list::const_iterator p = this->output_data_.begin();
+ p != this->output_data_.end();
+ ++p)
+ if ((*p)->is_section())
+ return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
+
+ for (Output_data_list::const_iterator p = this->output_bss_.begin();
+ p != this->output_bss_.end();
+ ++p)
+ if ((*p)->is_section())
+ return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
+
+ gold_unreachable();
}
// Return the number of Output_sections in an Output_segment.
return count;
}
+// Return the section attached to the list segment with the lowest
+// load address. This is used when handling a PHDRS clause in a
+// linker script.
+
+Output_section*
+Output_segment::section_with_lowest_load_address() const
+{
+ Output_section* found = NULL;
+ uint64_t found_lma = 0;
+ this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
+
+ Output_section* found_data = found;
+ this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
+ if (found != found_data && found_data != NULL)
+ {
+ gold_error(_("nobits section %s may not precede progbits section %s "
+ "in same segment"),
+ found->name(), found_data->name());
+ return NULL;
+ }
+
+ return found;
+}
+
+// Look through a list for a section with a lower load address.
+
+void
+Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
+ Output_section** found,
+ uint64_t* found_lma) const
+{
+ for (Output_data_list::const_iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ {
+ if (!(*p)->is_section())
+ continue;
+ Output_section* os = static_cast<Output_section*>(*p);
+ uint64_t lma = (os->has_load_address()
+ ? os->load_address()
+ : os->address());
+ if (*found == NULL || lma < *found_lma)
+ {
+ *found = os;
+ *found_lma = lma;
+ }
+ }
+}
+
// Write the segment data into *OPHDR.
template<int size, bool big_endian>
ophdr->put_p_filesz(this->filesz_);
ophdr->put_p_memsz(this->memsz_);
ophdr->put_p_flags(this->flags_);
- ophdr->put_p_align(this->addralign());
+ ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
}
// Write the section headers into V.
Output_segment::write_section_headers(const Layout* layout,
const Stringpool* secnamepool,
unsigned char* v,
- unsigned int *pshndx
- ACCEPT_SIZE_ENDIAN) const
+ unsigned int *pshndx) const
{
// Every section that is attached to a segment must be attached to a
// PT_LOAD segment, so we only write out section headers for PT_LOAD
if (this->type_ != elfcpp::PT_LOAD)
return v;
- v = this->write_section_headers_list
- SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
- layout, secnamepool, &this->output_data_, v, pshndx
- SELECT_SIZE_ENDIAN(size, big_endian));
- v = this->write_section_headers_list
- SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
- layout, secnamepool, &this->output_bss_, v, pshndx
- SELECT_SIZE_ENDIAN(size, big_endian));
+ v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
+ &this->output_data_,
+ v, pshndx);
+ v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
+ &this->output_bss_,
+ v, pshndx);
return v;
}
const Stringpool* secnamepool,
const Output_data_list* pdl,
unsigned char* v,
- unsigned int* pshndx
- ACCEPT_SIZE_ENDIAN) const
+ unsigned int* pshndx) const
{
const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
for (Output_data_list::const_iterator p = pdl->begin();
return v;
}
+// Print the output sections to the map file.
+
+void
+Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
+{
+ if (this->type() != elfcpp::PT_LOAD)
+ return;
+ this->print_section_list_to_mapfile(mapfile, &this->output_data_);
+ this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
+}
+
+// Print an output section list to the map file.
+
+void
+Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
+ const Output_data_list* pdl) const
+{
+ for (Output_data_list::const_iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ (*p)->print_to_mapfile(mapfile);
+}
+
// Output_file methods.
-Output_file::Output_file(const General_options& options, Target* target)
- : options_(options),
- target_(target),
- name_(options.output_file_name()),
+Output_file::Output_file(const char* name)
+ : name_(name),
o_(-1),
file_size_(0),
- base_(NULL)
+ base_(NULL),
+ map_is_anonymous_(false),
+ is_temporary_(false)
+{
+}
+
+// Try to open an existing file. Returns false if the file doesn't
+// exist, has a size of 0 or can't be mmapped.
+
+bool
+Output_file::open_for_modification()
{
+ // The name "-" means "stdout".
+ if (strcmp(this->name_, "-") == 0)
+ return false;
+
+ // Don't bother opening files with a size of zero.
+ struct stat s;
+ if (::stat(this->name_, &s) != 0 || s.st_size == 0)
+ return false;
+
+ int o = open_descriptor(-1, this->name_, O_RDWR, 0);
+ if (o < 0)
+ gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
+ this->o_ = o;
+ this->file_size_ = s.st_size;
+
+ // If the file can't be mmapped, copying the content to an anonymous
+ // map will probably negate the performance benefits of incremental
+ // linking. This could be helped by using views and loading only
+ // the necessary parts, but this is not supported as of now.
+ if (!this->map_no_anonymous())
+ {
+ release_descriptor(o, true);
+ this->o_ = -1;
+ this->file_size_ = 0;
+ return false;
+ }
+
+ return true;
}
// Open the output file.
// If we fail, continue; this command is merely a best-effort attempt
// to improve the odds for open().
- struct stat s;
- if (::stat(this->name_, &s) == 0 && s.st_size != 0)
- unlink_if_ordinary(this->name_);
+ // We let the name "-" mean "stdout"
+ if (!this->is_temporary_)
+ {
+ if (strcmp(this->name_, "-") == 0)
+ this->o_ = STDOUT_FILENO;
+ else
+ {
+ struct stat s;
+ if (::stat(this->name_, &s) == 0
+ && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
+ {
+ if (s.st_size != 0)
+ ::unlink(this->name_);
+ else if (!parameters->options().relocatable())
+ {
+ // If we don't unlink the existing file, add execute
+ // permission where read permissions already exist
+ // and where the umask permits.
+ int mask = ::umask(0);
+ ::umask(mask);
+ s.st_mode |= (s.st_mode & 0444) >> 2;
+ ::chmod(this->name_, s.st_mode & ~mask);
+ }
+ }
- int mode = parameters->output_is_object() ? 0666 : 0777;
- int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
- if (o < 0)
- gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
- this->o_ = o;
+ int mode = parameters->options().relocatable() ? 0666 : 0777;
+ int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
+ mode);
+ if (o < 0)
+ gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
+ this->o_ = o;
+ }
+ }
this->map();
}
void
Output_file::resize(off_t file_size)
{
- if (::munmap(this->base_, this->file_size_) < 0)
- gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
- this->file_size_ = file_size;
- this->map();
+ // If the mmap is mapping an anonymous memory buffer, this is easy:
+ // just mremap to the new size. If it's mapping to a file, we want
+ // to unmap to flush to the file, then remap after growing the file.
+ if (this->map_is_anonymous_)
+ {
+ void* base = ::mremap(this->base_, this->file_size_, file_size,
+ MREMAP_MAYMOVE);
+ if (base == MAP_FAILED)
+ gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
+ this->base_ = static_cast<unsigned char*>(base);
+ this->file_size_ = file_size;
+ }
+ else
+ {
+ this->unmap();
+ this->file_size_ = file_size;
+ if (!this->map_no_anonymous())
+ gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
+ }
}
-// Map the file into memory.
+// Map an anonymous block of memory which will later be written to the
+// file. Return whether the map succeeded.
-void
-Output_file::map()
+bool
+Output_file::map_anonymous()
+{
+ void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ if (base != MAP_FAILED)
+ {
+ this->map_is_anonymous_ = true;
+ this->base_ = static_cast<unsigned char*>(base);
+ return true;
+ }
+ return false;
+}
+
+// Map the file into memory. Return whether the mapping succeeded.
+
+bool
+Output_file::map_no_anonymous()
{
- int o = this->o_;
+ const int o = this->o_;
+
+ // If the output file is not a regular file, don't try to mmap it;
+ // instead, we'll mmap a block of memory (an anonymous buffer), and
+ // then later write the buffer to the file.
+ void* base;
+ struct stat statbuf;
+ if (o == STDOUT_FILENO || o == STDERR_FILENO
+ || ::fstat(o, &statbuf) != 0
+ || !S_ISREG(statbuf.st_mode)
+ || this->is_temporary_)
+ return false;
- // Write out one byte to make the file the right size.
- if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
- gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
- char b = 0;
- if (::write(o, &b, 1) != 1)
- gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
+ // Ensure that we have disk space available for the file. If we
+ // don't do this, it is possible that we will call munmap, close,
+ // and exit with dirty buffers still in the cache with no assigned
+ // disk blocks. If the disk is out of space at that point, the
+ // output file will wind up incomplete, but we will have already
+ // exited. The alternative to fallocate would be to use fdatasync,
+ // but that would be a more significant performance hit.
+ if (::posix_fallocate(o, 0, this->file_size_) < 0)
+ gold_fatal(_("%s: %s"), this->name_, strerror(errno));
// Map the file into memory.
- void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
- MAP_SHARED, o, 0);
+ base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
+ MAP_SHARED, o, 0);
+
+ // The mmap call might fail because of file system issues: the file
+ // system might not support mmap at all, or it might not support
+ // mmap with PROT_WRITE.
if (base == MAP_FAILED)
- gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
+ return false;
+
+ this->map_is_anonymous_ = false;
this->base_ = static_cast<unsigned char*>(base);
+ return true;
}
-// Close the output file.
+// Map the file into memory.
void
-Output_file::close()
+Output_file::map()
+{
+ if (this->map_no_anonymous())
+ return;
+
+ // The mmap call might fail because of file system issues: the file
+ // system might not support mmap at all, or it might not support
+ // mmap with PROT_WRITE. I'm not sure which errno values we will
+ // see in all cases, so if the mmap fails for any reason and we
+ // don't care about file contents, try for an anonymous map.
+ if (this->map_anonymous())
+ return;
+
+ gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
+ this->name_, static_cast<unsigned long>(this->file_size_),
+ strerror(errno));
+}
+
+// Unmap the file from memory.
+
+void
+Output_file::unmap()
{
if (::munmap(this->base_, this->file_size_) < 0)
gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
this->base_ = NULL;
+}
+
+// Close the output file.
- if (::close(this->o_) < 0)
- gold_error(_("%s: close: %s"), this->name_, strerror(errno));
+void
+Output_file::close()
+{
+ // If the map isn't file-backed, we need to write it now.
+ if (this->map_is_anonymous_ && !this->is_temporary_)
+ {
+ size_t bytes_to_write = this->file_size_;
+ size_t offset = 0;
+ while (bytes_to_write > 0)
+ {
+ ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
+ bytes_to_write);
+ if (bytes_written == 0)
+ gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
+ else if (bytes_written < 0)
+ gold_error(_("%s: write: %s"), this->name_, strerror(errno));
+ else
+ {
+ bytes_to_write -= bytes_written;
+ offset += bytes_written;
+ }
+ }
+ }
+ this->unmap();
+
+ // We don't close stdout or stderr
+ if (this->o_ != STDOUT_FILENO
+ && this->o_ != STDERR_FILENO
+ && !this->is_temporary_)
+ if (::close(this->o_) < 0)
+ gold_error(_("%s: close: %s"), this->name_, strerror(errno));
this->o_ = -1;
}
unsigned int shndx,
const char* secname,
const elfcpp::Shdr<32, false>& shdr,
- unsigned int reloc_shndx);
+ unsigned int reloc_shndx,
+ bool have_sections_script);
#endif
#ifdef HAVE_TARGET_32_BIG
unsigned int shndx,
const char* secname,
const elfcpp::Shdr<32, true>& shdr,
- unsigned int reloc_shndx);
+ unsigned int reloc_shndx,
+ bool have_sections_script);
#endif
#ifdef HAVE_TARGET_64_LITTLE
unsigned int shndx,
const char* secname,
const elfcpp::Shdr<64, false>& shdr,
- unsigned int reloc_shndx);
+ unsigned int reloc_shndx,
+ bool have_sections_script);
#endif
#ifdef HAVE_TARGET_64_BIG
unsigned int shndx,
const char* secname,
const elfcpp::Shdr<64, true>& shdr,
- unsigned int reloc_shndx);
+ unsigned int reloc_shndx,
+ bool have_sections_script);
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
#endif
#ifdef HAVE_TARGET_32_LITTLE
class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
#endif
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_data_group<32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_data_group<32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_data_group<64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_data_group<64, true>;
+#endif
+
#ifdef HAVE_TARGET_32_LITTLE
template
class Output_data_got<32, false>;