/* Target-machine dependent code for Motorola 88000 series, for GDB.
- Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
+ Copyright (C) 1988, 1990, 1991, 1994 Free Software Foundation, Inc.
This file is part of GDB.
#include "frame.h"
#include "inferior.h"
#include "value.h"
-
-#ifdef USG
-#include <sys/types.h>
-#endif
-
-#include <sys/param.h>
-#include <sys/dir.h>
-#include <signal.h>
#include "gdbcore.h"
-#include <sys/user.h>
-#ifndef USER /* added to support BCS ptrace_user */
-
-#define USER ptrace_user
-#endif
-#include <sys/ioctl.h>
-#include <fcntl.h>
-
-#include <sys/file.h>
-#include <sys/stat.h>
-
#include "symtab.h"
#include "setjmp.h"
#include "value.h"
+/* Size of an instruction */
+#define BYTES_PER_88K_INSN 4
+
void frame_find_saved_regs ();
+/* Is this target an m88110? Otherwise assume m88100. This has
+ relevance for the ways in which we screw with instruction pointers. */
+
+int target_is_m88110 = 0;
/* Given a GDB frame, determine the address of the calling function's frame.
This will be used to create a new GDB frame struct, and then
For us, the frame address is its stack pointer value, so we look up
the function prologue to determine the caller's sp value, and return it. */
-FRAME_ADDR
+CORE_ADDR
frame_chain (thisframe)
- FRAME thisframe;
+ struct frame_info *thisframe;
{
frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
int
frameless_function_invocation (frame)
- FRAME frame;
+ struct frame_info *frame;
{
frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
return 1; /* Frameless -- no saved return address */
}
-int
-frame_chain_valid (chain, thisframe)
- CORE_ADDR chain;
- struct frame_info *thisframe;
-{
- return (chain != 0
- && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
-}
-
void
-init_extra_frame_info (fromleaf, fi)
+init_extra_frame_info (fromleaf, frame)
int fromleaf;
- struct frame_info *fi;
+ struct frame_info *frame;
{
- fi->fsr = 0; /* Not yet allocated */
- fi->args_pointer = 0; /* Unknown */
- fi->locals_pointer = 0; /* Unknown */
+ frame->fsr = 0; /* Not yet allocated */
+ frame->args_pointer = 0; /* Unknown */
+ frame->locals_pointer = 0; /* Unknown */
}
\f
/* Examine an m88k function prologue, recording the addresses at which
#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
+#define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
+#define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
+#define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
+#define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
-/* Prologue code that handles position-independent-code setup. */
+/*
+ * prologue_insn_tbl is a table of instructions which may comprise a
+ * function prologue. Associated with each table entry (corresponding
+ * to a single instruction or group of instructions), is an action.
+ * This action is used by examine_prologue (below) to determine
+ * the state of certain machine registers and where the stack frame lives.
+ */
+
+enum prologue_insn_action {
+ PIA_SKIP, /* don't care what the instruction does */
+ PIA_NOTE_ST, /* note register stored and where */
+ PIA_NOTE_STD, /* note pair of registers stored and where */
+ PIA_NOTE_SP_ADJUSTMENT, /* note stack pointer adjustment */
+ PIA_NOTE_FP_ASSIGNMENT, /* note frame pointer assignment */
+ PIA_NOTE_PROLOGUE_END, /* no more prologue */
+};
-struct pic_prologue_code {
- unsigned long insn, mask;
+struct prologue_insns {
+ unsigned long insn;
+ unsigned long mask;
+ enum prologue_insn_action action;
};
-static struct pic_prologue_code pic_prologue_code [] = {
-/* FIXME -- until this is translated to hex, we won't match it... */
- 0xffffffff, 0,
- /* or r10,r1,0 (if not saved) */
- /* bsr.n LabN */
- /* or.u r25,r0,const */
- /*LabN: or r25,r25,const2 */
- /* addu r25,r25,1 */
- /* or r1,r10,0 (if not saved) */
+struct prologue_insns prologue_insn_tbl[] = {
+ /* Various register move instructions */
+ { 0x58000000, 0xf800ffff, PIA_SKIP }, /* or/or.u with immed of 0 */
+ { 0xf4005800, 0xfc1fffe0, PIA_SKIP }, /* or rd, r0, rs */
+ { 0xf4005800, 0xfc00ffff, PIA_SKIP }, /* or rd, rs, r0 */
+
+ /* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */
+ { 0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT },
+
+ /* Frame pointer assignment: "addu r30, r31, n" */
+ { 0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT },
+
+ /* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */
+ { 0x241f0000, 0xfc1f0000, PIA_NOTE_ST }, /* st rx, sp, n */
+ { 0x201f0000, 0xfc1f0000, PIA_NOTE_STD }, /* st.d rs, sp, n */
+
+ /* Instructions needed for setting up r25 for pic code. */
+ { 0x5f200000, 0xffff0000, PIA_SKIP }, /* or.u r25, r0, offset_high */
+ { 0xcc000002, 0xffffffff, PIA_SKIP }, /* bsr.n Lab */
+ { 0x5b390000, 0xffff0000, PIA_SKIP }, /* or r25, r25, offset_low */
+ { 0xf7396001, 0xffffffff, PIA_SKIP }, /* Lab: addu r25, r25, r1 */
+
+ /* Various branch or jump instructions which have a delay slot -- these
+ do not form part of the prologue, but the instruction in the delay
+ slot might be a store instruction which should be noted. */
+ { 0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END },
+ /* br.n, bsr.n, bb0.n, or bb1.n */
+ { 0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END }, /* bcnd.n */
+ { 0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END } /* jmp.n or jsr.n */
+
};
+
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
is not the address of a valid instruction, the address of the next
instruction beyond ADDR otherwise. *PWORD1 receives the first word
- of the instruction. PWORD2 is ignored -- a remnant of the original
- i960 version. */
+ of the instruction. */
-#define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
+#define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
(((addr) < (lim)) ? next_insn (addr, pword1) : 0)
/* Read the m88k instruction at 'memaddr' and return the address of
unsigned long *pword1;
CORE_ADDR memaddr;
{
- unsigned long buf[1];
-
- read_memory (memaddr, buf, sizeof (buf));
- *pword1 = buf[0];
- SWAP_TARGET_AND_HOST (pword1, sizeof (long));
-
- return memaddr + 4;
+ *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
+ return memaddr + BYTES_PER_88K_INSN;
}
/* Read a register from frames called by us (or from the hardware regs). */
-int
-read_next_frame_reg(fi, regno)
- FRAME fi;
+static int
+read_next_frame_reg(frame, regno)
+ struct frame_info *frame;
int regno;
{
- for (; fi; fi = fi->next) {
- if (regno == SP_REGNUM) return fi->frame;
- else if (fi->fsr->regs[regno])
- return read_memory_integer(fi->fsr->regs[regno], 4);
+ for (; frame; frame = frame->next) {
+ if (regno == SP_REGNUM)
+ return FRAME_FP (frame);
+ else if (frame->fsr->regs[regno])
+ return read_memory_integer(frame->fsr->regs[regno], 4);
}
return read_register(regno);
}
examine_prologue (ip, limit, frame_sp, fsr, fi)
register CORE_ADDR ip;
register CORE_ADDR limit;
- FRAME_ADDR frame_sp;
+ CORE_ADDR frame_sp;
struct frame_saved_regs *fsr;
struct frame_info *fi;
{
register CORE_ADDR next_ip;
register int src;
- register struct pic_prologue_code *pcode;
- unsigned int insn1, insn2;
+ unsigned int insn;
int size, offset;
char must_adjust[32]; /* If set, must adjust offsets in fsr */
int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
int fp_offset = -1; /* -1 means not set */
CORE_ADDR frame_fp;
+ CORE_ADDR prologue_end = 0;
- bzero (must_adjust, sizeof (must_adjust));
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
-
- /* Accept move of incoming registers to other registers, using
- "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
- We don't have to worry about walking into the first lines of code,
- since the first line number will stop us (assuming we have symbols).
- What we have actually seen is "or r10,r0,r12". */
-
-#define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
-#define OR_MOVE_MASK 0xF800FFFF
-#define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
-#define OR_REG_MOVE1_MASK 0xFC1FFFE0
-#define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
-#define OR_REG_MOVE2_MASK 0xFC00FFFF
- while (next_ip &&
- ((insn1 & OR_MOVE_MASK) == OR_MOVE_INSN ||
- (insn1 & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
- (insn1 & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
- )
- )
- {
- /* We don't care what moves to where. The result of the moves
- has already been reflected in what the compiler tells us is the
- location of these parameters. */
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
-
- /* Accept an optional "subu sp,sp,n" to set up the stack pointer. */
+ memset (must_adjust, '\0', sizeof (must_adjust));
+ next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
-#define SUBU_SP_INSN 0x67ff0000
-#define SUBU_SP_MASK 0xffff0007 /* Note offset must be mult. of 8 */
-#define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
- if (next_ip &&
- ((insn1 & SUBU_SP_MASK) == SUBU_SP_INSN)) /* subu r31, r31, N */
+ while (next_ip)
{
- sp_offset = -SUBU_OFFSET (insn1);
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
+ struct prologue_insns *pip;
- /* The function must start with a stack-pointer adjustment, or
- we don't know WHAT'S going on... */
- if (sp_offset == -1)
- return ip;
+ for (pip=prologue_insn_tbl; (insn & pip->mask) != pip->insn; )
+ if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl)
+ goto end_of_prologue_found; /* not a prologue insn */
- /* Accept zero or more instances of "st rx,sp,n" or "st.d rx,sp,n".
- This may cause us to mistake the copying of a register
- parameter to the frame for the saving of a callee-saved
- register, but that can't be helped, since with the
- "-fcall-saved" flag, any register can be made callee-saved.
- This probably doesn't matter, since the ``saved'' caller's values of
- non-callee-saved registers are not relevant anyway. */
-
-#define STD_STACK_INSN 0x201f0000
-#define STD_STACK_MASK 0xfc1f0000
-#define ST_STACK_INSN 0x241f0000
-#define ST_STACK_MASK 0xfc1f0000
-#define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
-#define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
-
- while (next_ip)
- {
- if ((insn1 & ST_STACK_MASK) == ST_STACK_INSN)
- size = 1;
- else if ((insn1 & STD_STACK_MASK) == STD_STACK_INSN)
- size = 2;
- else
- break;
-
- src = ST_SRC (insn1);
- offset = ST_OFFSET (insn1);
- while (size--)
+ switch (pip->action)
{
- must_adjust[src] = 1;
- fsr->regs[src++] = offset; /* Will be adjusted later */
- offset += 4;
+ case PIA_NOTE_ST:
+ case PIA_NOTE_STD:
+ if (sp_offset != -1) {
+ src = ST_SRC (insn);
+ offset = ST_OFFSET (insn);
+ must_adjust[src] = 1;
+ fsr->regs[src++] = offset; /* Will be adjusted later */
+ if (pip->action == PIA_NOTE_STD && src < 32)
+ {
+ offset += 4;
+ must_adjust[src] = 1;
+ fsr->regs[src++] = offset;
+ }
+ }
+ else
+ goto end_of_prologue_found;
+ break;
+ case PIA_NOTE_SP_ADJUSTMENT:
+ if (sp_offset == -1)
+ sp_offset = -SUBU_OFFSET (insn);
+ else
+ goto end_of_prologue_found;
+ break;
+ case PIA_NOTE_FP_ASSIGNMENT:
+ if (fp_offset == -1)
+ fp_offset = ADDU_OFFSET (insn);
+ else
+ goto end_of_prologue_found;
+ break;
+ case PIA_NOTE_PROLOGUE_END:
+ if (!prologue_end)
+ prologue_end = ip;
+ break;
+ case PIA_SKIP:
+ default :
+ /* Do nothing */
+ break;
}
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
- /* Accept an optional "addu r30,r31,n" to set up the frame pointer. */
-
-#define ADDU_FP_INSN 0x63df0000
-#define ADDU_FP_MASK 0xffff0000
-#define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
- if (next_ip &&
- ((insn1 & ADDU_FP_MASK) == ADDU_FP_INSN)) /* addu r30, r31, N */
- {
- fp_offset = ADDU_OFFSET (insn1);
ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
+ next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
}
- /* Accept the PIC prologue code if present. */
+end_of_prologue_found:
- pcode = pic_prologue_code;
- size = sizeof (pic_prologue_code) / sizeof (*pic_prologue_code);
- /* If return addr is saved, we don't use first or last insn of PICstuff. */
- if (fsr->regs[SRP_REGNUM]) {
- pcode++;
- size-=2;
- }
-
- while (size-- && next_ip && (pcode->insn == (pcode->mask & insn1)))
- {
- pcode++;
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
-
- /* Accept moves of parameter registers to other registers, using
- "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
- We don't have to worry about walking into the first lines of code,
- since the first line number will stop us (assuming we have symbols).
- What gcc actually seems to produce is "or rd,r0,rs". */
-
-#define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
-#define OR_MOVE_MASK 0xF800FFFF
-#define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
-#define OR_REG_MOVE1_MASK 0xFC1FFFE0
-#define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
-#define OR_REG_MOVE2_MASK 0xFC00FFFF
- while (next_ip &&
- ((insn1 & OR_MOVE_MASK) == OR_MOVE_INSN ||
- (insn1 & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
- (insn1 & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
- )
- )
- {
- /* We don't care what moves to where. The result of the moves
- has already been reflected in what the compiler tells us is the
- location of these parameters. */
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
+ if (prologue_end)
+ ip = prologue_end;
/* We're done with the prologue. If we don't care about the stack
frame itself, just return. (Note that fsr->regs has been trashed,
if (fi == 0)
return ip;
- /* OK, now we have:
- sp_offset original negative displacement of SP
- fp_offset positive displacement between new SP and new FP, or -1
- fsr->regs[0..31] offset from original SP where reg is stored
- must_adjust[0..31] set if corresp. offset was set
+ /*
+ OK, now we have:
+
+ sp_offset original (before any alloca calls) displacement of SP
+ (will be negative).
+
+ fp_offset displacement from original SP to the FP for this frame
+ or -1.
+
+ fsr->regs[0..31] displacement from original SP to the stack
+ location where reg[0..31] is stored.
- The current SP (frame_sp) might not be the original new SP as set
- by the function prologue, if alloca has been called. This can
- only occur if fp_offset is set, though (the compiler allocates an
- FP when it sees alloca). In that case, we have the FP,
- and can calculate the original new SP from the FP.
+ must_adjust[0..31] set if corresponding offset was set.
- Then, we figure out where the arguments and locals are, and
- relocate the offsets in fsr->regs to absolute addresses. */
+ If alloca has been called between the function prologue and the current
+ IP, then the current SP (frame_sp) will not be the original SP as set by
+ the function prologue. If the current SP is not the original SP, then the
+ compiler will have allocated an FP for this frame, fp_offset will be set,
+ and we can use it to calculate the original SP.
+
+ Then, we figure out where the arguments and locals are, and relocate the
+ offsets in fsr->regs to absolute addresses. */
if (fp_offset != -1) {
/* We have a frame pointer, so get it, and base our calc's on it. */
- frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, FP_REGNUM);
+ frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
frame_sp = frame_fp - fp_offset;
} else {
/* We have no frame pointer, therefore frame_sp is still the same value
/* (we hope...) */
if (fsr->regs[SP_REGNUM] != 0
&& fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
- fprintf(stderr, "Bad saved SP value %x != %x, offset %x!\n",
+ fprintf_unfiltered(gdb_stderr, "Bad saved SP value %x != %x, offset %x!\n",
fsr->regs[SP_REGNUM],
frame_sp - sp_offset, sp_offset);
sal = find_pc_line (ip, 0);
limit = (sal.end) ? sal.end : 0xffffffff;
- return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy,
+ return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy,
(struct frame_info *)0 ));
}
struct frame_info *fi;
struct frame_saved_regs *fsr;
{
- register CORE_ADDR next_addr;
- register CORE_ADDR *saved_regs;
- register int regnum;
register struct frame_saved_regs *cache_fsr;
extern struct obstack frame_cache_obstack;
CORE_ADDR ip;
cache_fsr = (struct frame_saved_regs *)
obstack_alloc (&frame_cache_obstack,
sizeof (struct frame_saved_regs));
- bzero (cache_fsr, sizeof (struct frame_saved_regs));
+ memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
fi->fsr = cache_fsr;
/* Find the start and end of the function prologue. If the PC
is in the function prologue, we only consider the part that
- has executed already. */
+ has executed already. In the case where the PC is not in
+ the function prologue, we set limit to two instructions beyond
+ where the prologue ends in case if any of the prologue instructions
+ were moved into a delay slot of a branch instruction. */
ip = get_pc_function_start (fi->pc);
sal = find_pc_line (ip, 0);
- limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
+ limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN
+ : fi->pc;
/* This will fill in fields in *fi as well as in cache_fsr. */
+#ifdef SIGTRAMP_FRAME_FIXUP
+ if (fi->signal_handler_caller)
+ SIGTRAMP_FRAME_FIXUP(fi->frame);
+#endif
examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
+#ifdef SIGTRAMP_SP_FIXUP
+ if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
+ SIGTRAMP_SP_FIXUP(fi->fsr->regs[SP_REGNUM]);
+#endif
}
if (fsr)
frame_locals_address (fi)
struct frame_info *fi;
{
- register FRAME frame;
struct frame_saved_regs fsr;
- CORE_ADDR ap;
if (fi->args_pointer) /* Cached value is likely there. */
return fi->args_pointer;
frame_args_address (fi)
struct frame_info *fi;
{
- register FRAME frame;
struct frame_saved_regs fsr;
- CORE_ADDR ap;
if (fi->args_pointer) /* Cached value is likely there. */
return fi->args_pointer;
CORE_ADDR
frame_saved_pc (frame)
- FRAME frame;
+ struct frame_info *frame;
{
return read_next_frame_reg(frame, SRP_REGNUM);
}
-#if TARGET_BYTE_ORDER != HOST_BYTE_ORDER
-you lose
-#else /* Host and target byte order the same. */
-#define SINGLE_EXP_BITS 8
-#define DOUBLE_EXP_BITS 11
-int
-IEEE_isNAN(fp, len)
- int *fp, len;
- /* fp points to a single precision OR double precision
- * floating point value; len is the number of bytes, either 4 or 8.
- * Returns 1 iff fp points to a valid IEEE floating point number.
- * Returns 0 if fp points to a denormalized number or a NaN
- */
-{
- int exponent;
- if (len == 4)
- {
- exponent = *fp;
- exponent = exponent << 1 >> (32 - SINGLE_EXP_BITS - 1);
- return ((exponent == -1) || (! exponent && *fp));
- }
- else if (len == 8)
- {
- exponent = *(fp+1);
- exponent = exponent << 1 >> (32 - DOUBLE_EXP_BITS - 1);
- return ((exponent == -1) || (! exponent && *fp * *(fp+1)));
- }
- else return 1;
-}
-#endif /* Host and target byte order the same. */
-
-static int
-pushed_size (prev_words, v)
- int prev_words;
- struct value *v;
-{
- switch (TYPE_CODE (VALUE_TYPE (v)))
- {
- case TYPE_CODE_VOID: /* Void type (values zero length) */
-
- return 0; /* That was easy! */
-
- case TYPE_CODE_PTR: /* Pointer type */
- case TYPE_CODE_ENUM: /* Enumeration type */
- case TYPE_CODE_INT: /* Integer type */
- case TYPE_CODE_REF: /* C++ Reference types */
- case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
-
- return 1;
-
- case TYPE_CODE_FLT: /* Floating type */
-
- if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
- return 1;
- else
- /* Assume that it must be a double. */
- if (prev_words & 1) /* at an odd-word boundary */
- return 3; /* round to 8-byte boundary */
- else
- return 2;
-
- case TYPE_CODE_STRUCT: /* C struct or Pascal record */
- case TYPE_CODE_UNION: /* C union or Pascal variant part */
-
- return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
-
- case TYPE_CODE_FUNC: /* Function type */
- case TYPE_CODE_SET: /* Pascal sets */
- case TYPE_CODE_RANGE: /* Range (integers within bounds) */
- case TYPE_CODE_PASCAL_ARRAY: /* Array with explicit type of index */
- case TYPE_CODE_MEMBER: /* Member type */
- case TYPE_CODE_METHOD: /* Method type */
- /* Don't know how to pass these yet. */
-
- case TYPE_CODE_UNDEF: /* Not used; catches errors */
- default:
- abort ();
- }
-}
+#define DUMMY_FRAME_SIZE 192
static void
-store_parm_word (address, val)
- CORE_ADDR address;
- int val;
+write_word (sp, word)
+ CORE_ADDR sp;
+ unsigned LONGEST word;
{
- write_memory (address, &val, 4);
+ register int len = REGISTER_SIZE;
+ char buffer[MAX_REGISTER_RAW_SIZE];
+
+ store_unsigned_integer (buffer, len, word);
+ write_memory (sp, buffer, len);
}
-static int
-store_parm (prev_words, left_parm_addr, v)
- unsigned int prev_words;
- CORE_ADDR left_parm_addr;
- struct value *v;
+void
+m88k_push_dummy_frame()
{
- CORE_ADDR start = left_parm_addr + (prev_words * 4);
- int *val_addr = (int *)VALUE_CONTENTS(v);
+ register CORE_ADDR sp = read_register (SP_REGNUM);
+ register int rn;
+ int offset;
- switch (TYPE_CODE (VALUE_TYPE (v)))
- {
- case TYPE_CODE_VOID: /* Void type (values zero length) */
+ sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
- return 0;
-
- case TYPE_CODE_PTR: /* Pointer type */
- case TYPE_CODE_ENUM: /* Enumeration type */
- case TYPE_CODE_INT: /* Integer type */
- case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
- case TYPE_CODE_REF: /* C++ Reference types */
-
- store_parm_word (start, *val_addr);
- return 1;
+ for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset+=4)
+ write_word (sp+offset, read_register(rn));
+
+ write_word (sp+offset, read_register (SXIP_REGNUM));
+ offset += 4;
- case TYPE_CODE_FLT: /* Floating type */
+ write_word (sp+offset, read_register (SNIP_REGNUM));
+ offset += 4;
- if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
- {
- store_parm_word (start, *val_addr);
- return 1;
- }
- else
- {
- store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]);
- store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]);
- return 2 + (prev_words & 1);
- }
+ write_word (sp+offset, read_register (SFIP_REGNUM));
+ offset += 4;
- case TYPE_CODE_STRUCT: /* C struct or Pascal record */
- case TYPE_CODE_UNION: /* C union or Pascal variant part */
+ write_word (sp+offset, read_register (PSR_REGNUM));
+ offset += 4;
- {
- unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
- unsigned int word;
+ write_word (sp+offset, read_register (FPSR_REGNUM));
+ offset += 4;
- for (word = 0; word < words; word++)
- store_parm_word (start + (word * 4), val_addr[word]);
- return words;
- }
+ write_word (sp+offset, read_register (FPCR_REGNUM));
+ offset += 4;
- default:
- abort ();
- }
-}
-
- /* This routine sets up all of the parameter values needed to make a pseudo
- call. The name "push_parameters" is a misnomer on some archs,
- because (on the m88k) most parameters generally end up being passed in
- registers rather than on the stack. In this routine however, we do
- end up storing *all* parameter values onto the stack (even if we will
- realize later that some of these stores were unnecessary). */
-
-#define FIRST_PARM_REGNUM 2
-
-void
-push_parameters (return_type, struct_conv, nargs, args)
- struct type *return_type;
- int struct_conv;
- int nargs;
- value *args;
-{
- int parm_num;
- unsigned int p_words = 0;
- CORE_ADDR left_parm_addr;
-
- /* Start out by creating a space for the return value (if need be). We
- only need to do this if the return value is a struct or union. If we
- do make a space for a struct or union return value, then we must also
- arrange for the base address of that space to go into r12, which is the
- standard place to pass the address of the return value area to the
- callee. Note that only structs and unions are returned in this fashion.
- Ints, enums, pointers, and floats are returned into r2. Doubles are
- returned into the register pair {r2,r3}. Note also that the space
- reserved for a struct or union return value only has to be word aligned
- (not double-word) but it is double-word aligned here anyway (just in
- case that becomes important someday). */
-
- switch (TYPE_CODE (return_type))
- {
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- {
- int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8;
- CORE_ADDR rv_addr;
-
- rv_addr = read_register (SP_REGNUM) - return_bytes;
-
- write_register (SP_REGNUM, rv_addr); /* push space onto the stack */
- write_register (SRA_REGNUM, rv_addr);/* set return value register */
- }
- }
-
- /* Here we make a pre-pass on the whole parameter list to figure out exactly
- how many words worth of stuff we are going to pass. */
-
- for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
- p_words += pushed_size (p_words, value_arg_coerce (args[parm_num]));
-
- /* Now, check to see if we have to round up the number of parameter words
- to get up to the next 8-bytes boundary. This may be necessary because
- of the software convention to always keep the stack aligned on an 8-byte
- boundary. */
-
- if (p_words & 1)
- p_words++; /* round to 8-byte boundary */
-
- /* Now figure out the absolute address of the leftmost parameter, and update
- the stack pointer to point at that address. */
-
- left_parm_addr = read_register (SP_REGNUM) - (p_words * 4);
- write_register (SP_REGNUM, left_parm_addr);
-
- /* Now we can go through all of the parameters (in left-to-right order)
- and write them to their parameter stack slots. Note that we are not
- really "pushing" the parameter values. The stack space for these values
- was already allocated above. Now we are just filling it up. */
-
- for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
- p_words +=
- store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num]));
-
- /* Now that we are all done storing the parameter values into the stack, we
- must go back and load up the parameter registers with the values from the
- corresponding stack slots. Note that in the two cases of (a) gaps in the
- parameter word sequence causes by (otherwise) misaligned doubles, and (b)
- slots correcponding to structs or unions, the work we do here in loading
- some parameter registers may be unnecessary, but who cares? */
-
- for (p_words = 0; p_words < 8; p_words++)
- {
- write_register (FIRST_PARM_REGNUM + p_words,
- read_memory_integer (left_parm_addr + (p_words * 4), 4));
- }
+ write_register (SP_REGNUM, sp);
+ write_register (ACTUAL_FP_REGNUM, sp);
}
void
pop_frame ()
{
- error ("Feature not implemented for the m88k yet.");
- return;
-}
-
-void
-collect_returned_value (rval, value_type, struct_return, nargs, args)
- value *rval;
- struct type *value_type;
- int struct_return;
- int nargs;
- value *args;
-{
- char retbuf[REGISTER_BYTES];
+ register struct frame_info *frame = get_current_frame ();
+ register CORE_ADDR fp;
+ register int regnum;
+ struct frame_saved_regs fsr;
- bcopy (registers, retbuf, REGISTER_BYTES);
- *rval = value_being_returned (value_type, retbuf, struct_return);
- return;
-}
+ fp = FRAME_FP (frame);
+ get_frame_saved_regs (frame, &fsr);
-#if 0
-/* Now handled in a machine independent way with CALL_DUMMY_LOCATION. */
- /* Stuff a breakpoint instruction onto the stack (or elsewhere if the stack
- is not a good place for it). Return the address at which the instruction
- got stuffed, or zero if we were unable to stuff it anywhere. */
+ if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), FRAME_FP (fi)))
+ {
+ /* FIXME: I think get_frame_saved_regs should be handling this so
+ that we can deal with the saved registers properly (e.g. frame
+ 1 is a call dummy, the user types "frame 2" and then "print $ps"). */
+ register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
+ int offset;
+
+ for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset+=4)
+ (void) write_register (regnum, read_memory_integer (sp+offset, 4));
-CORE_ADDR
-push_breakpoint ()
-{
- static char breakpoint_insn[] = BREAKPOINT;
- extern CORE_ADDR text_end; /* of inferior */
- static char readback_buffer[] = BREAKPOINT;
- int i;
-
- /* With a little bit of luck, we can just stash the breakpoint instruction
- in the word just beyond the end of normal text space. For systems on
- which the hardware will not allow us to execute out of the stack segment,
- we have to hope that we *are* at least allowed to effectively extend the
- text segment by one word. If the actual end of user's the text segment
- happens to fall right at a page boundary this trick may fail. Note that
- we check for this by reading after writing, and comparing in order to
- be sure that the write worked. */
+ write_register (SXIP_REGNUM, read_memory_integer (sp+offset, 4));
+ offset += 4;
- write_memory (text_end, &breakpoint_insn, 4);
+ write_register (SNIP_REGNUM, read_memory_integer (sp+offset, 4));
+ offset += 4;
- /* Fill the readback buffer with some garbage which is certain to be
- unequal to the breakpoint insn. That way we can tell if the
- following read doesn't actually succeed. */
+ write_register (SFIP_REGNUM, read_memory_integer (sp+offset, 4));
+ offset += 4;
- for (i = 0; i < sizeof (readback_buffer); i++)
- readback_buffer[i] = ~ readback_buffer[i]; /* Invert the bits */
+ write_register (PSR_REGNUM, read_memory_integer (sp+offset, 4));
+ offset += 4;
- /* Now check that the breakpoint insn was successfully installed. */
+ write_register (FPSR_REGNUM, read_memory_integer (sp+offset, 4));
+ offset += 4;
- read_memory (text_end, readback_buffer, sizeof (readback_buffer));
- for (i = 0; i < sizeof (readback_buffer); i++)
- if (readback_buffer[i] != breakpoint_insn[i])
- return 0; /* Failed to install! */
+ write_register (FPCR_REGNUM, read_memory_integer (sp+offset, 4));
+ offset += 4;
- return text_end;
+ }
+ else
+ {
+ for (regnum = FP_REGNUM ; regnum > 0 ; regnum--)
+ if (fsr.regs[regnum])
+ write_register (regnum,
+ read_memory_integer (fsr.regs[regnum], 4));
+ write_pc (frame_saved_pc (frame));
+ }
+ reinit_frame_cache ();
}
-#endif