/* Implementation of the GDB variable objects API.
- Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
- Free Software Foundation, Inc.
+ Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+ 2009 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
+ the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 51 Franklin Street, Fifth Floor,
- Boston, MA 02110-1301, USA. */
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "exceptions.h"
#include "wrapper.h"
#include "gdbcmd.h"
#include "block.h"
+#include "valprint.h"
#include "gdb_assert.h"
#include "gdb_string.h"
#include "varobj.h"
#include "vec.h"
+#include "gdbthread.h"
+#include "inferior.h"
+
+#if HAVE_PYTHON
+#include "python/python.h"
+#include "python/python-internal.h"
+#else
+typedef int PyObject;
+#endif
/* Non-zero if we want to see trace of varobj level stuff. */
/* Block for which this expression is valid */
struct block *valid_block;
- /* The frame for this expression */
+ /* The frame for this expression. This field is set iff valid_block is
+ not NULL. */
struct frame_id frame;
- /* If 1, "update" always recomputes the frame & valid block
- using the currently selected frame. */
- int use_selected_frame;
+ /* The thread ID that this varobj_root belong to. This field
+ is only valid if valid_block is not NULL.
+ When not 0, indicates which thread 'frame' belongs to.
+ When 0, indicates that the thread list was empty when the varobj_root
+ was created. */
+ int thread_id;
+
+ /* If 1, the -var-update always recomputes the value in the
+ current thread and frame. Otherwise, variable object is
+ always updated in the specific scope/thread/frame */
+ int floating;
+
+ /* Flag that indicates validity: set to 0 when this varobj_root refers
+ to symbols that do not exist anymore. */
+ int is_valid;
/* Language info for this variable and its children */
struct language_specific *lang;
struct varobj_root *next;
};
-typedef struct varobj *varobj_p;
-
-DEF_VEC_P (varobj_p);
-
/* Every variable in the system has a structure of this type defined
for it. This structure holds all information necessary to manipulate
a particular object variable. Members which must be freed are noted. */
/* NOTE: This is the "expression" */
char *name;
+ /* Alloc'd expression for this child. Can be used to create a
+ root variable corresponding to this child. */
+ char *path_expr;
+
/* The alloc'd name for this variable's object. This is here for
convenience when constructing this object's children. */
char *obj_name;
/* Index of this variable in its parent or -1 */
int index;
- /* The type of this variable. This may NEVER be NULL. */
+ /* The type of this variable. This can be NULL
+ for artifial variable objects -- currently, the "accessibility"
+ variable objects in C++. */
struct type *type;
/* The value of this expression or subexpression. A NULL value
/* Children of this object. */
VEC (varobj_p) *children;
+ /* Whether the children of this varobj were requested. This field is
+ used to decide if dynamic varobj should recompute their children.
+ In the event that the frontend never asked for the children, we
+ can avoid that. */
+ int children_requested;
+
/* Description of the root variable. Points to root variable for children. */
struct varobj_root *root;
/* Last print value. */
char *print_value;
+
+ /* Is this variable frozen. Frozen variables are never implicitly
+ updated by -var-update *
+ or -var-update <direct-or-indirect-parent>. */
+ int frozen;
+
+ /* Is the value of this variable intentionally not fetched? It is
+ not fetched if either the variable is frozen, or any parents is
+ frozen. */
+ int not_fetched;
+
+ /* The pretty-printer that has been constructed. If NULL, then a
+ new printer object is needed, and one will be constructed. */
+ PyObject *pretty_printer;
};
struct cpstack
static struct varobj *create_child (struct varobj *, int, char *);
+static struct varobj *
+create_child_with_value (struct varobj *parent, int index, const char *name,
+ struct value *value);
+
/* Utility routines */
static struct varobj *new_variable (void);
static int install_new_value (struct varobj *var, struct value *value,
int initial);
+static void install_default_visualizer (struct varobj *var);
+
/* Language-specific routines. */
static enum varobj_languages variable_language (struct varobj *var);
static struct value *value_of_child (struct varobj *parent, int index);
-static int variable_editable (struct varobj *var);
-
-static char *my_value_of_variable (struct varobj *var);
+static char *my_value_of_variable (struct varobj *var,
+ enum varobj_display_formats format);
static char *value_get_print_value (struct value *value,
- enum varobj_display_formats format);
+ enum varobj_display_formats format,
+ PyObject *value_formatter);
static int varobj_value_is_changeable_p (struct varobj *var);
static int is_root_p (struct varobj *var);
+static struct varobj *
+varobj_add_child (struct varobj *var, const char *name, struct value *value);
+
/* C implementation */
static int c_number_of_children (struct varobj *var);
static char *c_name_of_child (struct varobj *parent, int index);
+static char *c_path_expr_of_child (struct varobj *child);
+
static struct value *c_value_of_root (struct varobj **var_handle);
static struct value *c_value_of_child (struct varobj *parent, int index);
static struct type *c_type_of_child (struct varobj *parent, int index);
-static int c_variable_editable (struct varobj *var);
-
-static char *c_value_of_variable (struct varobj *var);
+static char *c_value_of_variable (struct varobj *var,
+ enum varobj_display_formats format);
/* C++ implementation */
static char *cplus_name_of_child (struct varobj *parent, int index);
+static char *cplus_path_expr_of_child (struct varobj *child);
+
static struct value *cplus_value_of_root (struct varobj **var_handle);
static struct value *cplus_value_of_child (struct varobj *parent, int index);
static struct type *cplus_type_of_child (struct varobj *parent, int index);
-static int cplus_variable_editable (struct varobj *var);
-
-static char *cplus_value_of_variable (struct varobj *var);
+static char *cplus_value_of_variable (struct varobj *var,
+ enum varobj_display_formats format);
/* Java implementation */
static char *java_name_of_child (struct varobj *parent, int index);
+static char *java_path_expr_of_child (struct varobj *child);
+
static struct value *java_value_of_root (struct varobj **var_handle);
static struct value *java_value_of_child (struct varobj *parent, int index);
static struct type *java_type_of_child (struct varobj *parent, int index);
-static int java_variable_editable (struct varobj *var);
-
-static char *java_value_of_variable (struct varobj *var);
+static char *java_value_of_variable (struct varobj *var,
+ enum varobj_display_formats format);
/* The language specific vector */
/* The name of the INDEX'th child of PARENT. */
char *(*name_of_child) (struct varobj * parent, int index);
+ /* Returns the rooted expression of CHILD, which is a variable
+ obtain that has some parent. */
+ char *(*path_expr_of_child) (struct varobj * child);
+
/* The ``struct value *'' of the root variable ROOT. */
struct value *(*value_of_root) (struct varobj ** root_handle);
/* The type of the INDEX'th child of PARENT. */
struct type *(*type_of_child) (struct varobj * parent, int index);
- /* Is VAR editable? */
- int (*variable_editable) (struct varobj * var);
-
/* The current value of VAR. */
- char *(*value_of_variable) (struct varobj * var);
+ char *(*value_of_variable) (struct varobj * var,
+ enum varobj_display_formats format);
};
/* Array of known source language routines. */
c_number_of_children,
c_name_of_variable,
c_name_of_child,
+ c_path_expr_of_child,
c_value_of_root,
c_value_of_child,
c_type_of_child,
- c_variable_editable,
c_value_of_variable}
,
/* C */
c_number_of_children,
c_name_of_variable,
c_name_of_child,
+ c_path_expr_of_child,
c_value_of_root,
c_value_of_child,
c_type_of_child,
- c_variable_editable,
c_value_of_variable}
,
/* C++ */
cplus_number_of_children,
cplus_name_of_variable,
cplus_name_of_child,
+ cplus_path_expr_of_child,
cplus_value_of_root,
cplus_value_of_child,
cplus_type_of_child,
- cplus_variable_editable,
cplus_value_of_variable}
,
/* Java */
java_number_of_children,
java_name_of_variable,
java_name_of_child,
+ java_path_expr_of_child,
java_value_of_root,
java_value_of_child,
java_type_of_child,
- java_variable_editable,
java_value_of_variable}
};
if (frame_addr == (CORE_ADDR) 0)
return NULL;
- while (1)
+ for (frame = get_current_frame ();
+ frame != NULL;
+ frame = get_prev_frame (frame))
{
- frame = get_prev_frame (frame);
- if (frame == NULL)
- return NULL;
if (get_frame_base_address (frame) == frame_addr)
return frame;
}
+
+ return NULL;
}
struct varobj *
{
char *p;
enum varobj_languages lang;
- struct value *value;
+ struct value *value = NULL;
- /* Parse and evaluate the expression, filling in as much
- of the variable's data as possible */
+ /* Parse and evaluate the expression, filling in as much of the
+ variable's data as possible. */
- /* Allow creator to specify context of variable */
- if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
- fi = deprecated_selected_frame;
+ if (has_stack_frames ())
+ {
+ /* Allow creator to specify context of variable */
+ if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
+ fi = get_selected_frame (NULL);
+ else
+ /* FIXME: cagney/2002-11-23: This code should be doing a
+ lookup using the frame ID and not just the frame's
+ ``address''. This, of course, means an interface
+ change. However, with out that interface change ISAs,
+ such as the ia64 with its two stacks, won't work.
+ Similar goes for the case where there is a frameless
+ function. */
+ fi = find_frame_addr_in_frame_chain (frame);
+ }
else
- /* FIXME: cagney/2002-11-23: This code should be doing a
- lookup using the frame ID and not just the frame's
- ``address''. This, of course, means an interface change.
- However, with out that interface change ISAs, such as the
- ia64 with its two stacks, won't work. Similar goes for the
- case where there is a frameless function. */
- fi = find_frame_addr_in_frame_chain (frame);
+ fi = NULL;
/* frame = -2 means always use selected frame */
if (type == USE_SELECTED_FRAME)
- var->root->use_selected_frame = 1;
+ var->root->floating = 1;
block = NULL;
if (fi != NULL)
var->format = variable_default_display (var);
var->root->valid_block = innermost_block;
- var->name = savestring (expression, strlen (expression));
+ var->name = xstrdup (expression);
+ /* For a root var, the name and the expr are the same. */
+ var->path_expr = xstrdup (expression);
/* When the frame is different from the current frame,
we must select the appropriate frame before parsing
the expression, otherwise the value will not be current.
Since select_frame is so benign, just call it for all cases. */
- if (fi != NULL)
+ if (innermost_block && fi != NULL)
{
var->root->frame = get_frame_id (fi);
- old_fi = deprecated_selected_frame;
- select_frame (fi);
+ var->root->thread_id = pid_to_thread_id (inferior_ptid);
+ old_fi = get_selected_frame (NULL);
+ select_frame (fi);
}
- /* We definitively need to catch errors here.
+ /* We definitely need to catch errors here.
If evaluate_expression succeeds we got the value we wanted.
But if it fails, we still go on with a call to evaluate_type() */
if (!gdb_evaluate_expression (var->root->exp, &value))
- /* Error getting the value. Try to at least get the
- right type. */
- value = evaluate_type (var->root->exp);
+ {
+ /* Error getting the value. Try to at least get the
+ right type. */
+ struct value *type_only_value = evaluate_type (var->root->exp);
+ var->type = value_type (type_only_value);
+ }
+ else
+ var->type = value_type (value);
- var->type = value_type (value);
install_new_value (var, value, 1 /* Initial assignment */);
/* Set language info */
if ((var != NULL) && (objname != NULL))
{
- var->obj_name = savestring (objname, strlen (objname));
+ var->obj_name = xstrdup (objname);
/* If a varobj name is duplicated, the install will fail so
we must clenup */
}
}
+ install_default_visualizer (var);
discard_cleanups (old_chain);
return var;
}
return obj_name;
}
-/* Given an "objname", returns the pointer to the corresponding varobj
- or NULL if not found */
+/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
+ error if OBJNAME cannot be found. */
struct varobj *
varobj_get_handle (char *objname)
return delcount;
}
+/* Convenience function for varobj_set_visualizer. Instantiate a
+ pretty-printer for a given value. */
+static PyObject *
+instantiate_pretty_printer (PyObject *constructor, struct value *value)
+{
+#if HAVE_PYTHON
+ PyObject *val_obj = NULL;
+ PyObject *printer;
+ volatile struct gdb_exception except;
+
+ TRY_CATCH (except, RETURN_MASK_ALL)
+ {
+ value = value_copy (value);
+ }
+ GDB_PY_HANDLE_EXCEPTION (except);
+ val_obj = value_to_value_object (value);
+
+ if (! val_obj)
+ return NULL;
+
+ printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
+ Py_DECREF (val_obj);
+ return printer;
+#endif
+ return NULL;
+}
+
/* Set/Get variable object display format */
enum varobj_display_formats
var->format = variable_default_display (var);
}
+ if (varobj_value_is_changeable_p (var)
+ && var->value && !value_lazy (var->value))
+ {
+ xfree (var->print_value);
+ var->print_value = value_get_print_value (var->value, var->format,
+ var->pretty_printer);
+ }
+
return var->format;
}
return var->format;
}
+char *
+varobj_get_display_hint (struct varobj *var)
+{
+ char *result = NULL;
+
+#if HAVE_PYTHON
+ PyGILState_STATE state = PyGILState_Ensure ();
+ if (var->pretty_printer)
+ result = gdbpy_get_display_hint (var->pretty_printer);
+ PyGILState_Release (state);
+#endif
+
+ return result;
+}
+
+/* If the variable object is bound to a specific thread, that
+ is its evaluation can always be done in context of a frame
+ inside that thread, returns GDB id of the thread -- which
+ is always positive. Otherwise, returns -1. */
+int
+varobj_get_thread_id (struct varobj *var)
+{
+ if (var->root->valid_block && var->root->thread_id > 0)
+ return var->root->thread_id;
+ else
+ return -1;
+}
+
+void
+varobj_set_frozen (struct varobj *var, int frozen)
+{
+ /* When a variable is unfrozen, we don't fetch its value.
+ The 'not_fetched' flag remains set, so next -var-update
+ won't complain.
+
+ We don't fetch the value, because for structures the client
+ should do -var-update anyway. It would be bad to have different
+ client-size logic for structure and other types. */
+ var->frozen = frozen;
+}
+
+int
+varobj_get_frozen (struct varobj *var)
+{
+ return var->frozen;
+}
+
+static int
+update_dynamic_varobj_children (struct varobj *var,
+ VEC (varobj_p) **changed,
+ VEC (varobj_p) **new_and_unchanged,
+ int *cchanged)
+
+{
+#if HAVE_PYTHON
+ /* FIXME: we *might* want to provide this functionality as
+ a standalone function, so that other interested parties
+ than varobj code can benefit for this. */
+ struct cleanup *back_to;
+ PyObject *children;
+ PyObject *iterator;
+ int i;
+ int children_changed = 0;
+ PyObject *printer = var->pretty_printer;
+ PyGILState_STATE state;
+
+ state = PyGILState_Ensure ();
+ back_to = make_cleanup_py_restore_gil (&state);
+
+ *cchanged = 0;
+ if (!PyObject_HasAttr (printer, gdbpy_children_cst))
+ {
+ do_cleanups (back_to);
+ return 0;
+ }
+
+ children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
+ NULL);
+
+ if (!children)
+ {
+ gdbpy_print_stack ();
+ error ("Null value returned for children");
+ }
+
+ make_cleanup_py_decref (children);
+
+ if (!PyIter_Check (children))
+ error ("Returned value is not iterable");
+
+ iterator = PyObject_GetIter (children);
+ if (!iterator)
+ {
+ gdbpy_print_stack ();
+ error ("Could not get children iterator");
+ }
+ make_cleanup_py_decref (iterator);
+
+ for (i = 0; ; ++i)
+ {
+ PyObject *item = PyIter_Next (iterator);
+ PyObject *py_v;
+ struct value *v;
+ char *name;
+ struct cleanup *inner;
+
+ if (!item)
+ break;
+ inner = make_cleanup_py_decref (item);
+
+ if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
+ error ("Invalid item from the child list");
+
+ if (PyObject_TypeCheck (py_v, &value_object_type))
+ {
+ /* If we just call convert_value_from_python for this type,
+ we won't know who owns the result. For this one case we
+ need to copy the resulting value. */
+ v = value_object_to_value (py_v);
+ v = value_copy (v);
+ }
+ else
+ v = convert_value_from_python (py_v);
+
+ /* TODO: This assume the name of the i-th child never changes. */
+
+ /* Now see what to do here. */
+ if (VEC_length (varobj_p, var->children) < i + 1)
+ {
+ /* There's no child yet. */
+ struct varobj *child = varobj_add_child (var, name, v);
+ if (new_and_unchanged)
+ VEC_safe_push (varobj_p, *new_and_unchanged, child);
+ children_changed = 1;
+ }
+ else
+ {
+ varobj_p existing = VEC_index (varobj_p, var->children, i);
+ if (install_new_value (existing, v, 0) && changed)
+ {
+ if (changed)
+ VEC_safe_push (varobj_p, *changed, existing);
+ }
+ else
+ {
+ if (new_and_unchanged)
+ VEC_safe_push (varobj_p, *new_and_unchanged, existing);
+ }
+ }
+
+ do_cleanups (inner);
+ }
+
+ if (i < VEC_length (varobj_p, var->children))
+ {
+ int i;
+ children_changed = 1;
+ for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
+ varobj_delete (VEC_index (varobj_p, var->children, i), NULL, 0);
+ }
+ VEC_truncate (varobj_p, var->children, i);
+ var->num_children = VEC_length (varobj_p, var->children);
+
+ do_cleanups (back_to);
+
+ *cchanged = children_changed;
+ return 1;
+#else
+ gdb_assert (0 && "should never be called if Python is not enabled");
+#endif
+}
+
int
varobj_get_num_children (struct varobj *var)
{
if (var->num_children == -1)
- var->num_children = number_of_children (var);
+ {
+ int changed;
+ if (!var->pretty_printer
+ || !update_dynamic_varobj_children (var, NULL, NULL, &changed))
+ var->num_children = number_of_children (var);
+ }
return var->num_children;
}
/* Creates a list of the immediate children of a variable object;
the return code is the number of such children or -1 on error */
-int
-varobj_list_children (struct varobj *var, struct varobj ***childlist)
+VEC (varobj_p)*
+varobj_list_children (struct varobj *var)
{
struct varobj *child;
char *name;
- int i;
+ int i, children_changed;
- /* sanity check: have we been passed a pointer? */
- if (childlist == NULL)
- return -1;
+ var->children_requested = 1;
- *childlist = NULL;
+ if (var->pretty_printer
+ /* This, in theory, can result in the number of children changing without
+ frontend noticing. But well, calling -var-list-children on the same
+ varobj twice is not something a sane frontend would do. */
+ && update_dynamic_varobj_children (var, NULL, NULL, &children_changed))
+ return var->children;
if (var->num_children == -1)
var->num_children = number_of_children (var);
/* If that failed, give up. */
if (var->num_children == -1)
- return -1;
+ return var->children;
/* If we're called when the list of children is not yet initialized,
allocate enough elements in it. */
while (VEC_length (varobj_p, var->children) < var->num_children)
VEC_safe_push (varobj_p, var->children, NULL);
- /* List of children */
- *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *));
-
for (i = 0; i < var->num_children; i++)
{
- varobj_p existing;
-
- /* Mark as the end in case we bail out */
- *((*childlist) + i) = NULL;
-
- existing = VEC_index (varobj_p, var->children, i);
+ varobj_p existing = VEC_index (varobj_p, var->children, i);
if (existing == NULL)
{
name = name_of_child (var, i);
existing = create_child (var, i, name);
VEC_replace (varobj_p, var->children, i, existing);
+ install_default_visualizer (existing);
}
-
- *((*childlist) + i) = existing;
}
- /* End of list is marked by a NULL pointer */
- *((*childlist) + i) = NULL;
+ return var->children;
+}
- return var->num_children;
+static struct varobj *
+varobj_add_child (struct varobj *var, const char *name, struct value *value)
+{
+ varobj_p v = create_child_with_value (var,
+ VEC_length (varobj_p, var->children),
+ name, value);
+ VEC_safe_push (varobj_p, var->children, v);
+ install_default_visualizer (v);
+ return v;
}
/* Obtain the type of an object Variable as a string similar to the one gdb
long length;
/* For the "fake" variables, do not return a type. (It's type is
- NULL, too.) */
- if (CPLUS_FAKE_CHILD (var))
+ NULL, too.)
+ Do not return a type for invalid variables as well. */
+ if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
return NULL;
stb = mem_fileopen ();
return var->type;
}
+/* Return a pointer to the full rooted expression of varobj VAR.
+ If it has not been computed yet, compute it. */
+char *
+varobj_get_path_expr (struct varobj *var)
+{
+ if (var->path_expr != NULL)
+ return var->path_expr;
+ else
+ {
+ /* For root varobjs, we initialize path_expr
+ when creating varobj, so here it should be
+ child varobj. */
+ gdb_assert (!is_root_p (var));
+ return (*var->root->lang->path_expr_of_child) (var);
+ }
+}
+
enum varobj_languages
varobj_get_language (struct varobj *var)
{
{
int attributes = 0;
- if (variable_editable (var))
+ if (varobj_editable_p (var))
/* FIXME: define masks for attributes */
attributes |= 0x00000001; /* Editable */
return attributes;
}
+char *
+varobj_get_formatted_value (struct varobj *var,
+ enum varobj_display_formats format)
+{
+ return my_value_of_variable (var, format);
+}
+
char *
varobj_get_value (struct varobj *var)
{
- return my_value_of_variable (var);
+ return my_value_of_variable (var, var->format);
}
/* Set the value of an object variable (if it is editable) to the
struct expression *exp;
struct value *value;
int saved_input_radix = input_radix;
+ char *s = expression;
+ int i;
- if (var->value != NULL && variable_editable (var))
- {
- char *s = expression;
- int i;
-
- input_radix = 10; /* ALWAYS reset to decimal temporarily */
- exp = parse_exp_1 (&s, 0, 0);
- if (!gdb_evaluate_expression (exp, &value))
- {
- /* We cannot proceed without a valid expression. */
- xfree (exp);
- return 0;
- }
+ gdb_assert (varobj_editable_p (var));
- /* All types that are editable must also be changeable. */
- gdb_assert (varobj_value_is_changeable_p (var));
-
- /* The value of a changeable variable object must not be lazy. */
- gdb_assert (!value_lazy (var->value));
-
- /* Need to coerce the input. We want to check if the
- value of the variable object will be different
- after assignment, and the first thing value_assign
- does is coerce the input.
- For example, if we are assigning an array to a pointer variable we
- should compare the pointer with the the array's address, not with the
- array's content. */
- value = coerce_array (value);
-
- /* The new value may be lazy. gdb_value_assign, or
- rather value_contents, will take care of this.
- If fetching of the new value will fail, gdb_value_assign
- with catch the exception. */
- if (!gdb_value_assign (var->value, value, &val))
- return 0;
-
- /* If the value has changed, record it, so that next -var-update can
- report this change. If a variable had a value of '1', we've set it
- to '333' and then set again to '1', when -var-update will report this
- variable as changed -- because the first assignment has set the
- 'updated' flag. There's no need to optimize that, because return value
- of -var-update should be considered an approximation. */
- var->updated = install_new_value (var, val, 0 /* Compare values. */);
- input_radix = saved_input_radix;
- return 1;
+ input_radix = 10; /* ALWAYS reset to decimal temporarily */
+ exp = parse_exp_1 (&s, 0, 0);
+ if (!gdb_evaluate_expression (exp, &value))
+ {
+ /* We cannot proceed without a valid expression. */
+ xfree (exp);
+ return 0;
}
- return 0;
+ /* All types that are editable must also be changeable. */
+ gdb_assert (varobj_value_is_changeable_p (var));
+
+ /* The value of a changeable variable object must not be lazy. */
+ gdb_assert (!value_lazy (var->value));
+
+ /* Need to coerce the input. We want to check if the
+ value of the variable object will be different
+ after assignment, and the first thing value_assign
+ does is coerce the input.
+ For example, if we are assigning an array to a pointer variable we
+ should compare the pointer with the the array's address, not with the
+ array's content. */
+ value = coerce_array (value);
+
+ /* The new value may be lazy. gdb_value_assign, or
+ rather value_contents, will take care of this.
+ If fetching of the new value will fail, gdb_value_assign
+ with catch the exception. */
+ if (!gdb_value_assign (var->value, value, &val))
+ return 0;
+
+ /* If the value has changed, record it, so that next -var-update can
+ report this change. If a variable had a value of '1', we've set it
+ to '333' and then set again to '1', when -var-update will report this
+ variable as changed -- because the first assignment has set the
+ 'updated' flag. There's no need to optimize that, because return value
+ of -var-update should be considered an approximation. */
+ var->updated = install_new_value (var, val, 0 /* Compare values. */);
+ input_radix = saved_input_radix;
+ return 1;
}
/* Returns a malloc'ed list with all root variable objects */
this is the first assignement after the variable object was just
created, or changed type. In that case, just assign the value
and return 0.
- Otherwise, assign the value and if type_changeable returns non-zero,
- find if the new value is different from the current value.
- Return 1 if so, and 0 if the values are equal.
+ Otherwise, assign the new value, and return 1 if the value is different
+ from the current one, 0 otherwise. The comparison is done on textual
+ representation of value. Therefore, some types need not be compared. E.g.
+ for structures the reported value is always "{...}", so no comparison is
+ necessary here. If the old value was NULL and new one is not, or vice versa,
+ we always return 1.
The VALUE parameter should not be released -- the function will
take care of releasing it when needed. */
int changeable;
int need_to_fetch;
int changed = 0;
+ int intentionally_not_fetched = 0;
+ char *print_value = NULL;
/* We need to know the varobj's type to decide if the value should
be fetched or not. C++ fake children (public/protected/private) don't have
a type. */
gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
changeable = varobj_value_is_changeable_p (var);
+
+ /* If the type has custom visualizer, we consider it to be always
+ changeable. FIXME: need to make sure this behaviour will not
+ mess up read-sensitive values. */
+ if (var->pretty_printer)
+ changeable = 1;
+
need_to_fetch = changeable;
/* We are not interested in the address of references, and given
will be lazy, which means we've lost that old value. */
if (need_to_fetch && value && value_lazy (value))
{
- if (!gdb_value_fetch_lazy (value))
+ struct varobj *parent = var->parent;
+ int frozen = var->frozen;
+ for (; !frozen && parent; parent = parent->parent)
+ frozen |= parent->frozen;
+
+ if (frozen && initial)
+ {
+ /* For variables that are frozen, or are children of frozen
+ variables, we don't do fetch on initial assignment.
+ For non-initial assignemnt we do the fetch, since it means we're
+ explicitly asked to compare the new value with the old one. */
+ intentionally_not_fetched = 1;
+ }
+ else if (!gdb_value_fetch_lazy (value))
{
/* Set the value to NULL, so that for the next -var-update,
we don't try to compare the new value with this value,
}
}
+
+ /* Below, we'll be comparing string rendering of old and new
+ values. Don't get string rendering if the value is
+ lazy -- if it is, the code above has decided that the value
+ should not be fetched. */
+ if (value && !value_lazy (value))
+ print_value = value_get_print_value (value, var->format,
+ var->pretty_printer);
+
/* If the type is changeable, compare the old and the new values.
If this is the initial assignment, we don't have any old value
to compare with. */
- if (initial && changeable)
- var->print_value = value_get_print_value (value, var->format);
- else if (changeable)
+ if (!initial && changeable)
{
/* If the value of the varobj was changed by -var-set-value, then the
value in the varobj and in the target is the same. However, that value
-var-update. So need to the varobj as changed. */
if (var->updated)
{
- xfree (var->print_value);
- var->print_value = value_get_print_value (value, var->format);
changed = 1;
}
else
{
/* Try to compare the values. That requires that both
values are non-lazy. */
-
- /* Quick comparison of NULL values. */
- if (var->value == NULL && value == NULL)
+ if (var->not_fetched && value_lazy (var->value))
+ {
+ /* This is a frozen varobj and the value was never read.
+ Presumably, UI shows some "never read" indicator.
+ Now that we've fetched the real value, we need to report
+ this varobj as changed so that UI can show the real
+ value. */
+ changed = 1;
+ }
+ else if (var->value == NULL && value == NULL)
/* Equal. */
;
else if (var->value == NULL || value == NULL)
{
- xfree (var->print_value);
- var->print_value = value_get_print_value (value, var->format);
changed = 1;
}
else
{
- char *print_value;
gdb_assert (!value_lazy (var->value));
gdb_assert (!value_lazy (value));
- print_value = value_get_print_value (value, var->format);
gdb_assert (var->print_value != NULL && print_value != NULL);
if (strcmp (var->print_value, print_value) != 0)
- {
- xfree (var->print_value);
- var->print_value = print_value;
- changed = 1;
- }
- else
- xfree (print_value);
+ changed = 1;
}
}
}
+ if (!initial && !changeable)
+ {
+ /* For values that are not changeable, we don't compare the values.
+ However, we want to notice if a value was not NULL and now is NULL,
+ or vise versa, so that we report when top-level varobjs come in scope
+ and leave the scope. */
+ changed = (var->value != NULL) != (value != NULL);
+ }
+
/* We must always keep the new value, since children depend on it. */
- if (var->value != NULL)
+ if (var->value != NULL && var->value != value)
value_free (var->value);
var->value = value;
+ if (var->print_value)
+ xfree (var->print_value);
+ var->print_value = print_value;
+ if (value && value_lazy (value) && intentionally_not_fetched)
+ var->not_fetched = 1;
+ else
+ var->not_fetched = 0;
var->updated = 0;
gdb_assert (!var->value || value_type (var->value));
return changed;
}
+static void
+install_visualizer (struct varobj *var, PyObject *visualizer)
+{
+#if HAVE_PYTHON
+ /* If there are any children now, wipe them. */
+ varobj_delete (var, NULL, 1 /* children only */);
+ var->num_children = -1;
+
+ Py_XDECREF (var->pretty_printer);
+ var->pretty_printer = visualizer;
+
+ install_new_value (var, var->value, 1);
+
+ /* If we removed the visualizer, and the user ever requested the
+ object's children, then we must compute the list of children.
+ Note that we needn't do this when installing a visualizer,
+ because updating will recompute dynamic children. */
+ if (!visualizer && var->children_requested)
+ varobj_list_children (var);
+#else
+ error ("Python support required");
+#endif
+}
+
+static void
+install_default_visualizer (struct varobj *var)
+{
+#if HAVE_PYTHON
+ struct cleanup *cleanup;
+ PyGILState_STATE state;
+ PyObject *pretty_printer = NULL;
+
+ state = PyGILState_Ensure ();
+ cleanup = make_cleanup_py_restore_gil (&state);
+
+ if (var->value)
+ {
+ pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
+ if (! pretty_printer)
+ {
+ gdbpy_print_stack ();
+ error (_("Cannot instantiate printer for default visualizer"));
+ }
+ }
+
+ if (pretty_printer == Py_None)
+ {
+ Py_DECREF (pretty_printer);
+ pretty_printer = NULL;
+ }
+
+ install_visualizer (var, pretty_printer);
+ do_cleanups (cleanup);
+#else
+ /* No error is right as this function is inserted just as a hook. */
+#endif
+}
+
+void
+varobj_set_visualizer (struct varobj *var, const char *visualizer)
+{
+#if HAVE_PYTHON
+ PyObject *mainmod, *globals, *pretty_printer, *constructor;
+ struct cleanup *back_to, *value;
+ PyGILState_STATE state;
+
+
+ state = PyGILState_Ensure ();
+ back_to = make_cleanup_py_restore_gil (&state);
+
+ mainmod = PyImport_AddModule ("__main__");
+ globals = PyModule_GetDict (mainmod);
+ Py_INCREF (globals);
+ make_cleanup_py_decref (globals);
+
+ constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
+
+ /* Do not instantiate NoneType. */
+ if (constructor == Py_None)
+ {
+ pretty_printer = Py_None;
+ Py_INCREF (pretty_printer);
+ }
+ else
+ pretty_printer = instantiate_pretty_printer (constructor, var->value);
+
+ Py_XDECREF (constructor);
+
+ if (! pretty_printer)
+ {
+ gdbpy_print_stack ();
+ error ("Could not evaluate visualizer expression: %s", visualizer);
+ }
+
+ if (pretty_printer == Py_None)
+ {
+ Py_DECREF (pretty_printer);
+ pretty_printer = NULL;
+ }
+
+ install_visualizer (var, pretty_printer);
+
+ do_cleanups (back_to);
+#else
+ error ("Python support required");
+#endif
+}
+
/* Update the values for a variable and its children. This is a
two-pronged attack. First, re-parse the value for the root's
expression to see if it's changed. Then go all the way
through its children, reconstructing them and noting if they've
changed.
- Return value:
- -1 if there was an error updating the varobj
- -2 if the type changed
- Otherwise it is the number of children + parent changed
- Only root variables can be updated...
+ The EXPLICIT parameter specifies if this call is result
+ of MI request to update this specific variable, or
+ result of implicit -var-update *. For implicit request, we don't
+ update frozen variables.
NOTE: This function may delete the caller's varobj. If it
- returns -2, then it has done this and VARP will be modified
- to point to the new varobj. */
+ returns TYPE_CHANGED, then it has done this and VARP will be modified
+ to point to the new varobj. */
-int
-varobj_update (struct varobj **varp, struct varobj ***changelist)
+VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
{
int changed = 0;
- int error = 0;
- int type_changed;
+ int type_changed = 0;
int i;
int vleft;
struct varobj *v;
struct varobj **cv;
struct varobj **templist = NULL;
struct value *new;
- VEC (varobj_p) *stack = NULL;
- VEC (varobj_p) *result = NULL;
- struct frame_id old_fid;
+ VEC (varobj_update_result) *stack = NULL;
+ VEC (varobj_update_result) *result = NULL;
struct frame_info *fi;
- /* sanity check: have we been passed a pointer? */
- if (changelist == NULL)
- return -1;
-
- /* Only root variables can be updated... */
- if (!is_root_p (*varp))
- /* Not a root var */
- return -1;
-
- /* Save the selected stack frame, since we will need to change it
- in order to evaluate expressions. */
- old_fid = get_frame_id (deprecated_selected_frame);
-
- /* Update the root variable. value_of_root can return NULL
- if the variable is no longer around, i.e. we stepped out of
- the frame in which a local existed. We are letting the
- value_of_root variable dispose of the varobj if the type
- has changed. */
- type_changed = 1;
- new = value_of_root (varp, &type_changed);
+ /* Frozen means frozen -- we don't check for any change in
+ this varobj, including its going out of scope, or
+ changing type. One use case for frozen varobjs is
+ retaining previously evaluated expressions, and we don't
+ want them to be reevaluated at all. */
+ if (!explicit && (*varp)->frozen)
+ return result;
- /* Restore selected frame */
- fi = frame_find_by_id (old_fid);
- if (fi)
- select_frame (fi);
+ if (!(*varp)->root->is_valid)
+ {
+ varobj_update_result r = {*varp};
+ r.status = VAROBJ_INVALID;
+ VEC_safe_push (varobj_update_result, result, &r);
+ return result;
+ }
- /* If this is a "use_selected_frame" varobj, and its type has changed,
- them note that it's changed. */
- if (type_changed)
- VEC_safe_push (varobj_p, result, *varp);
+ if ((*varp)->root->rootvar == *varp)
+ {
+ varobj_update_result r = {*varp};
+ r.status = VAROBJ_IN_SCOPE;
+
+ /* Update the root variable. value_of_root can return NULL
+ if the variable is no longer around, i.e. we stepped out of
+ the frame in which a local existed. We are letting the
+ value_of_root variable dispose of the varobj if the type
+ has changed. */
+ new = value_of_root (varp, &type_changed);
+ r.varobj = *varp;
+
+ r.type_changed = type_changed;
+ if (install_new_value ((*varp), new, type_changed))
+ r.changed = 1;
+
+ if (new == NULL)
+ r.status = VAROBJ_NOT_IN_SCOPE;
+ r.value_installed = 1;
- if (install_new_value ((*varp), new, type_changed))
+ if (r.status == VAROBJ_NOT_IN_SCOPE)
+ {
+ VEC_safe_push (varobj_update_result, result, &r);
+ return result;
+ }
+
+ VEC_safe_push (varobj_update_result, stack, &r);
+ }
+ else
{
- /* If type_changed is 1, install_new_value will never return
- non-zero, so we'll never report the same variable twice. */
- gdb_assert (!type_changed);
- VEC_safe_push (varobj_p, result, *varp);
+ varobj_update_result r = {*varp};
+ VEC_safe_push (varobj_update_result, stack, &r);
}
- if (new == NULL)
+ /* Walk through the children, reconstructing them all. */
+ while (!VEC_empty (varobj_update_result, stack))
{
- /* This means the varobj itself is out of scope.
- Report it. */
- VEC_free (varobj_p, result);
- return -1;
- }
+ varobj_update_result r = *(VEC_last (varobj_update_result, stack));
+ struct varobj *v = r.varobj;
- VEC_safe_push (varobj_p, stack, *varp);
+ VEC_pop (varobj_update_result, stack);
- /* Walk through the children, reconstructing them all. */
- while (!VEC_empty (varobj_p, stack))
- {
- v = VEC_pop (varobj_p, stack);
+ /* Update this variable, unless it's a root, which is already
+ updated. */
+ if (!r.value_installed)
+ {
+ new = value_of_child (v->parent, v->index);
+ if (install_new_value (v, new, 0 /* type not changed */))
+ {
+ r.changed = 1;
+ v->updated = 0;
+ }
+ }
+
+ /* We probably should not get children of a varobj that has a
+ pretty-printer, but for which -var-list-children was never
+ invoked. Presumably, such varobj is not yet expanded in the
+ UI, so we need not bother getting it. */
+ if (v->pretty_printer)
+ {
+ VEC (varobj_p) *changed = 0, *new_and_unchanged = 0;
+ int i, children_changed;
+ varobj_p tmp;
+
+ if (!v->children_requested)
+ continue;
+
+ if (v->frozen)
+ continue;
+
+ /* If update_dynamic_varobj_children returns 0, then we have
+ a non-conforming pretty-printer, so we skip it. */
+ if (update_dynamic_varobj_children (v, &changed, &new_and_unchanged,
+ &children_changed))
+ {
+ if (children_changed)
+ r.children_changed = 1;
+ for (i = 0; VEC_iterate (varobj_p, changed, i, tmp); ++i)
+ {
+ varobj_update_result r = {tmp};
+ r.changed = 1;
+ r.value_installed = 1;
+ VEC_safe_push (varobj_update_result, stack, &r);
+ }
+ for (i = 0;
+ VEC_iterate (varobj_p, new_and_unchanged, i, tmp);
+ ++i)
+ {
+ varobj_update_result r = {tmp};
+ r.value_installed = 1;
+ VEC_safe_push (varobj_update_result, stack, &r);
+ }
+ if (r.changed || r.children_changed)
+ VEC_safe_push (varobj_update_result, result, &r);
+ continue;
+ }
+ }
/* Push any children. Use reverse order so that the first
child is popped from the work stack first, and so
{
varobj_p c = VEC_index (varobj_p, v->children, i);
/* Child may be NULL if explicitly deleted by -var-delete. */
- if (c != NULL)
- VEC_safe_push (varobj_p, stack, c);
- }
-
- /* Update this variable, unless it's a root, which is already
- updated. */
- if (v != *varp)
- {
- new = value_of_child (v->parent, v->index);
- if (install_new_value (v, new, 0 /* type not changed */))
+ if (c != NULL && !c->frozen)
{
- /* Note that it's changed */
- VEC_safe_push (varobj_p, result, v);
- v->updated = 0;
+ varobj_update_result r = {c};
+ VEC_safe_push (varobj_update_result, stack, &r);
}
}
- }
-
- /* Alloc (changed + 1) list entries */
- changed = VEC_length (varobj_p, result);
- *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *));
- cv = *changelist;
- for (i = 0; i < changed; ++i)
- {
- *cv = VEC_index (varobj_p, result, i);
- gdb_assert (*cv != NULL);
- ++cv;
+ if (r.changed || r.type_changed)
+ VEC_safe_push (varobj_update_result, result, &r);
}
- *cv = 0;
- if (type_changed)
- return -2;
- else
- return changed;
+ VEC_free (varobj_update_result, stack);
+
+ return result;
}
\f
for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
{
varobj_p child = VEC_index (varobj_p, var->children, i);
+ if (!child)
+ continue;
if (!remove_from_parent_p)
child->parent = NULL;
delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
/* Create and install a child of the parent of the given name */
static struct varobj *
create_child (struct varobj *parent, int index, char *name)
+{
+ return create_child_with_value (parent, index, name,
+ value_of_child (parent, index));
+}
+
+static struct varobj *
+create_child_with_value (struct varobj *parent, int index, const char *name,
+ struct value *value)
{
struct varobj *child;
char *childs_name;
- struct value *value;
child = new_variable ();
/* name is allocated by name_of_child */
- child->name = name;
+ /* FIXME: xstrdup should not be here. */
+ child->name = xstrdup (name);
child->index = index;
- value = value_of_child (parent, index);
child->parent = parent;
child->root = parent->root;
childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
var = (struct varobj *) xmalloc (sizeof (struct varobj));
var->name = NULL;
+ var->path_expr = NULL;
var->obj_name = NULL;
var->index = -1;
var->type = NULL;
var->root = NULL;
var->updated = 0;
var->print_value = NULL;
+ var->frozen = 0;
+ var->not_fetched = 0;
+ var->children_requested = 0;
+ var->pretty_printer = 0;
return var;
}
var->root->exp = NULL;
var->root->valid_block = NULL;
var->root->frame = null_frame_id;
- var->root->use_selected_frame = 0;
+ var->root->floating = 0;
var->root->rootvar = NULL;
+ var->root->is_valid = 1;
return var;
}
static void
free_variable (struct varobj *var)
{
+ value_free (var->value);
+
/* Free the expression if this is a root variable. */
if (is_root_p (var))
{
- free_current_contents (&var->root->exp);
+ xfree (var->root->exp);
xfree (var->root);
}
+#if HAVE_PYTHON
+ {
+ PyGILState_STATE state = PyGILState_Ensure ();
+ Py_XDECREF (var->pretty_printer);
+ PyGILState_Release (state);
+ }
+#endif
+
xfree (var->name);
xfree (var->obj_name);
xfree (var->print_value);
+ xfree (var->path_expr);
xfree (var);
}
return (*var->root->lang->name_of_child) (var, index);
}
-/* What is the ``struct value *'' of the root variable VAR?
- TYPE_CHANGED controls what to do if the type of a
- use_selected_frame = 1 variable changes. On input,
- TYPE_CHANGED = 1 means discard the old varobj, and replace
- it with this one. TYPE_CHANGED = 0 means leave it around.
- NB: In both cases, var_handle will point to the new varobj,
- so if you use TYPE_CHANGED = 0, you will have to stash the
- old varobj pointer away somewhere before calling this.
- On return, TYPE_CHANGED will be 1 if the type has changed, and
- 0 otherwise. */
+/* What is the ``struct value *'' of the root variable VAR?
+ For floating variable object, evaluation can get us a value
+ of different type from what is stored in varobj already. In
+ that case:
+ - *type_changed will be set to 1
+ - old varobj will be freed, and new one will be
+ created, with the same name.
+ - *var_handle will be set to the new varobj
+ Otherwise, *type_changed will be set to 0. */
static struct value *
value_of_root (struct varobj **var_handle, int *type_changed)
{
if (!is_root_p (var))
return NULL;
- if (var->root->use_selected_frame)
+ if (var->root->floating)
{
struct varobj *tmp_var;
char *old_type, *new_type;
- old_type = varobj_get_type (var);
+
tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
USE_SELECTED_FRAME);
if (tmp_var == NULL)
{
return NULL;
}
+ old_type = varobj_get_type (var);
new_type = varobj_get_type (tmp_var);
if (strcmp (old_type, new_type) == 0)
{
+ /* The expression presently stored inside var->root->exp
+ remembers the locations of local variables relatively to
+ the frame where the expression was created (in DWARF location
+ button, for example). Naturally, those locations are not
+ correct in other frames, so update the expression. */
+
+ struct expression *tmp_exp = var->root->exp;
+ var->root->exp = tmp_var->root->exp;
+ tmp_var->root->exp = tmp_exp;
+
varobj_delete (tmp_var, NULL, 0);
*type_changed = 0;
}
else
{
- if (*type_changed)
- {
- tmp_var->obj_name =
- savestring (var->obj_name, strlen (var->obj_name));
- varobj_delete (var, NULL, 0);
- }
- else
- {
- tmp_var->obj_name = varobj_gen_name ();
- }
+ tmp_var->obj_name = xstrdup (var->obj_name);
+ varobj_delete (var, NULL, 0);
+
install_variable (tmp_var);
*var_handle = tmp_var;
var = *var_handle;
*type_changed = 1;
}
+ xfree (old_type);
+ xfree (new_type);
}
else
{
return value;
}
-/* Is this variable editable? Use the variable's type to make
- this determination. */
-static int
-variable_editable (struct varobj *var)
-{
- return (*var->root->lang->variable_editable) (var);
-}
-
/* GDB already has a command called "value_of_variable". Sigh. */
static char *
-my_value_of_variable (struct varobj *var)
+my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
{
- return (*var->root->lang->value_of_variable) (var);
+ if (var->root->is_valid)
+ return (*var->root->lang->value_of_variable) (var, format);
+ else
+ return NULL;
}
static char *
-value_get_print_value (struct value *value, enum varobj_display_formats format)
+value_get_print_value (struct value *value, enum varobj_display_formats format,
+ PyObject *value_formatter)
{
long dummy;
struct ui_file *stb;
struct cleanup *old_chain;
- char *thevalue;
+ char *thevalue = NULL;
+ struct value_print_options opts;
if (value == NULL)
return NULL;
+#if HAVE_PYTHON
+ {
+ PyGILState_STATE state = PyGILState_Ensure ();
+ if (value_formatter && PyObject_HasAttr (value_formatter,
+ gdbpy_to_string_cst))
+ {
+ char *hint;
+ struct value *replacement;
+ int string_print = 0;
+
+ hint = gdbpy_get_display_hint (value_formatter);
+ if (hint)
+ {
+ if (!strcmp (hint, "string"))
+ string_print = 1;
+ xfree (hint);
+ }
+
+ thevalue = apply_varobj_pretty_printer (value_formatter,
+ &replacement);
+ if (thevalue && !string_print)
+ {
+ PyGILState_Release (state);
+ return thevalue;
+ }
+ if (replacement)
+ value = replacement;
+ }
+ PyGILState_Release (state);
+ }
+#endif
+
stb = mem_fileopen ();
old_chain = make_cleanup_ui_file_delete (stb);
- common_val_print (value, stb, format_code[(int) format], 1, 0, 0);
+ get_formatted_print_options (&opts, format_code[(int) format]);
+ opts.deref_ref = 0;
+ opts.raw = 1;
+ if (thevalue)
+ {
+ make_cleanup (xfree, thevalue);
+ LA_PRINT_STRING (stb, builtin_type (current_gdbarch)->builtin_char,
+ (gdb_byte *) thevalue, strlen (thevalue),
+ 0, &opts);
+ }
+ else
+ common_val_print (value, stb, 0, &opts, current_language);
thevalue = ui_file_xstrdup (stb, &dummy);
do_cleanups (old_chain);
return thevalue;
}
+int
+varobj_editable_p (struct varobj *var)
+{
+ struct type *type;
+ struct value *value;
+
+ if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
+ return 0;
+
+ type = get_value_type (var);
+
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_STRUCT:
+ case TYPE_CODE_UNION:
+ case TYPE_CODE_ARRAY:
+ case TYPE_CODE_FUNC:
+ case TYPE_CODE_METHOD:
+ return 0;
+ break;
+
+ default:
+ return 1;
+ break;
+ }
+}
+
/* Return non-zero if changes in value of VAR
must be detected and reported by -var-update.
Return zero is -var-update should never report
return r;
}
+/* Return 1 if that varobj is floating, that is is always evaluated in the
+ selected frame, and not bound to thread/frame. Such variable objects
+ are created using '@' as frame specifier to -var-create. */
+int
+varobj_floating_p (struct varobj *var)
+{
+ return var->root->floating;
+}
+
/* Given the value and the type of a variable object,
adjust the value and type to those necessary
for getting children of the variable object.
Both TYPE and *TYPE should be non-null. VALUE
can be null if we want to only translate type.
*VALUE can be null as well -- if the parent
- value is not known. */
+ value is not known.
+
+ If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
+ depending on whether pointer was dereferenced
+ in this function. */
static void
adjust_value_for_child_access (struct value **value,
- struct type **type)
+ struct type **type,
+ int *was_ptr)
{
gdb_assert (type && *type);
+ if (was_ptr)
+ *was_ptr = 0;
+
*type = check_typedef (*type);
/* The type of value stored in varobj, that is passed
|| TYPE_CODE (target_type) == TYPE_CODE_UNION)
{
if (value && *value)
- gdb_value_ind (*value, value);
+ {
+ int success = gdb_value_ind (*value, value);
+ if (!success)
+ *value = NULL;
+ }
*type = target_type;
+ if (was_ptr)
+ *was_ptr = 1;
}
}
int children = 0;
struct type *target;
- adjust_value_for_child_access (NULL, &type);
+ adjust_value_for_child_access (NULL, &type, NULL);
target = get_target_type (type);
switch (TYPE_CODE (type))
{
case TYPE_CODE_ARRAY:
if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
- && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED)
+ && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
else
/* If we don't know how many elements there are, don't display
static char *
c_name_of_variable (struct varobj *parent)
{
- return savestring (parent->name, strlen (parent->name));
+ return xstrdup (parent->name);
}
/* Return the value of element TYPE_INDEX of a structure
TRY_CATCH (e, RETURN_MASK_ERROR)
{
- if (TYPE_FIELD_STATIC (type, type_index))
+ if (field_is_static (&TYPE_FIELD (type, type_index)))
result = value_static_field (type, type_index);
else
result = value_primitive_field (value, 0, type_index, type);
to NULL. */
static void
c_describe_child (struct varobj *parent, int index,
- char **cname, struct value **cvalue, struct type **ctype)
+ char **cname, struct value **cvalue, struct type **ctype,
+ char **cfull_expression)
{
struct value *value = parent->value;
struct type *type = get_value_type (parent);
+ char *parent_expression = NULL;
+ int was_ptr;
if (cname)
*cname = NULL;
*cvalue = NULL;
if (ctype)
*ctype = NULL;
-
- adjust_value_for_child_access (&value, &type);
+ if (cfull_expression)
+ {
+ *cfull_expression = NULL;
+ parent_expression = varobj_get_path_expr (parent);
+ }
+ adjust_value_for_child_access (&value, &type, &was_ptr);
switch (TYPE_CODE (type))
{
{
int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
struct value *indval =
- value_from_longest (builtin_type_int, (LONGEST) real_index);
+ value_from_longest (builtin_type_int32, (LONGEST) real_index);
gdb_value_subscript (value, indval, cvalue);
}
if (ctype)
*ctype = get_target_type (type);
+ if (cfull_expression)
+ *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
+ index
+ + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
+
+
break;
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
if (cname)
- {
- char *string = TYPE_FIELD_NAME (type, index);
- *cname = savestring (string, strlen (string));
- }
+ *cname = xstrdup (TYPE_FIELD_NAME (type, index));
if (cvalue && value)
{
if (ctype)
*ctype = TYPE_FIELD_TYPE (type, index);
+ if (cfull_expression)
+ {
+ char *join = was_ptr ? "->" : ".";
+ *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
+ TYPE_FIELD_NAME (type, index));
+ }
+
break;
case TYPE_CODE_PTR:
*cname = xstrprintf ("*%s", parent->name);
if (cvalue && value)
- gdb_value_ind (value, cvalue);
+ {
+ int success = gdb_value_ind (value, cvalue);
+ if (!success)
+ *cvalue = NULL;
+ }
/* Don't use get_target_type because it calls
check_typedef and here, we want to show the true
declared type of the variable. */
if (ctype)
*ctype = TYPE_TARGET_TYPE (type);
+
+ if (cfull_expression)
+ *cfull_expression = xstrprintf ("*(%s)", parent_expression);
break;
/* This should not happen */
if (cname)
*cname = xstrdup ("???");
+ if (cfull_expression)
+ *cfull_expression = xstrdup ("???");
/* Don't set value and type, we don't know then. */
}
}
c_name_of_child (struct varobj *parent, int index)
{
char *name;
- c_describe_child (parent, index, &name, NULL, NULL);
+ c_describe_child (parent, index, &name, NULL, NULL, NULL);
return name;
}
+static char *
+c_path_expr_of_child (struct varobj *child)
+{
+ c_describe_child (child->parent, child->index, NULL, NULL, NULL,
+ &child->path_expr);
+ return child->path_expr;
+}
+
+/* If frame associated with VAR can be found, switch
+ to it and return 1. Otherwise, return 0. */
+static int
+check_scope (struct varobj *var)
+{
+ struct frame_info *fi;
+ int scope;
+
+ fi = frame_find_by_id (var->root->frame);
+ scope = fi != NULL;
+
+ if (fi)
+ {
+ CORE_ADDR pc = get_frame_pc (fi);
+ if (pc < BLOCK_START (var->root->valid_block) ||
+ pc >= BLOCK_END (var->root->valid_block))
+ scope = 0;
+ else
+ select_frame (fi);
+ }
+ return scope;
+}
+
static struct value *
c_value_of_root (struct varobj **var_handle)
{
struct value *new_val = NULL;
struct varobj *var = *var_handle;
struct frame_info *fi;
- int within_scope;
-
+ int within_scope = 0;
+ struct cleanup *back_to;
+
/* Only root variables can be updated... */
if (!is_root_p (var))
/* Not a root var */
return NULL;
+ back_to = make_cleanup_restore_current_thread ();
/* Determine whether the variable is still around. */
- if (var->root->valid_block == NULL || var->root->use_selected_frame)
+ if (var->root->valid_block == NULL || var->root->floating)
within_scope = 1;
+ else if (var->root->thread_id == 0)
+ {
+ /* The program was single-threaded when the variable object was
+ created. Technically, it's possible that the program became
+ multi-threaded since then, but we don't support such
+ scenario yet. */
+ within_scope = check_scope (var);
+ }
else
{
- fi = frame_find_by_id (var->root->frame);
- within_scope = fi != NULL;
- /* FIXME: select_frame could fail */
- if (fi)
+ ptid_t ptid = thread_id_to_pid (var->root->thread_id);
+ if (in_thread_list (ptid))
{
- CORE_ADDR pc = get_frame_pc (fi);
- if (pc < BLOCK_START (var->root->valid_block) ||
- pc >= BLOCK_END (var->root->valid_block))
- within_scope = 0;
- else
- select_frame (fi);
- }
+ switch_to_thread (ptid);
+ within_scope = check_scope (var);
+ }
}
if (within_scope)
return new_val;
}
+ do_cleanups (back_to);
+
return NULL;
}
c_value_of_child (struct varobj *parent, int index)
{
struct value *value = NULL;
- c_describe_child (parent, index, NULL, &value, NULL);
+ c_describe_child (parent, index, NULL, &value, NULL, NULL);
return value;
}
c_type_of_child (struct varobj *parent, int index)
{
struct type *type = NULL;
- c_describe_child (parent, index, NULL, NULL, &type);
+ c_describe_child (parent, index, NULL, NULL, &type, NULL);
return type;
}
-static int
-c_variable_editable (struct varobj *var)
-{
- switch (TYPE_CODE (get_value_type (var)))
- {
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- case TYPE_CODE_ARRAY:
- case TYPE_CODE_FUNC:
- case TYPE_CODE_METHOD:
- return 0;
- break;
-
- default:
- return 1;
- break;
- }
-}
-
static char *
-c_value_of_variable (struct varobj *var)
+c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
{
/* BOGUS: if val_print sees a struct/class, or a reference to one,
it will print out its children instead of "{...}". So we need to
catch that case explicitly. */
struct type *type = get_type (var);
+ /* If we have a custom formatter, return whatever string it has
+ produced. */
+ if (var->pretty_printer && var->print_value)
+ return xstrdup (var->print_value);
+
/* Strip top-level references. */
while (TYPE_CODE (type) == TYPE_CODE_REF)
type = check_typedef (TYPE_TARGET_TYPE (type));
}
else
{
+ if (var->not_fetched && value_lazy (var->value))
+ /* Frozen variable and no value yet. We don't
+ implicitly fetch the value. MI response will
+ use empty string for the value, which is OK. */
+ return NULL;
+
gdb_assert (varobj_value_is_changeable_p (var));
gdb_assert (!value_lazy (var->value));
- return value_get_print_value (var->value, var->format);
+
+ /* If the specified format is the current one,
+ we can reuse print_value */
+ if (format == var->format)
+ return xstrdup (var->print_value);
+ else
+ return value_get_print_value (var->value, format,
+ var->pretty_printer);
}
}
}
if (!CPLUS_FAKE_CHILD (var))
{
type = get_value_type (var);
- adjust_value_for_child_access (NULL, &type);
+ adjust_value_for_child_access (NULL, &type, NULL);
if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
((TYPE_CODE (type)) == TYPE_CODE_UNION))
int kids[3];
type = get_value_type (var->parent);
- adjust_value_for_child_access (NULL, &type);
+ adjust_value_for_child_access (NULL, &type, NULL);
cplus_class_num_children (type, kids);
if (strcmp (var->name, "public") == 0)
static void
cplus_describe_child (struct varobj *parent, int index,
- char **cname, struct value **cvalue, struct type **ctype)
+ char **cname, struct value **cvalue, struct type **ctype,
+ char **cfull_expression)
{
- char *name = 0;
+ char *name = NULL;
struct value *value;
struct type *type;
+ int was_ptr;
+ char *parent_expression = NULL;
if (cname)
*cname = NULL;
*cvalue = NULL;
if (ctype)
*ctype = NULL;
-
+ if (cfull_expression)
+ *cfull_expression = NULL;
if (CPLUS_FAKE_CHILD (parent))
{
value = parent->parent->value;
type = get_value_type (parent->parent);
+ if (cfull_expression)
+ parent_expression = varobj_get_path_expr (parent->parent);
}
else
{
value = parent->value;
type = get_value_type (parent);
+ if (cfull_expression)
+ parent_expression = varobj_get_path_expr (parent);
}
- adjust_value_for_child_access (&value, &type);
+ adjust_value_for_child_access (&value, &type, &was_ptr);
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
- || TYPE_CODE (type) == TYPE_CODE_STRUCT)
+ || TYPE_CODE (type) == TYPE_CODE_UNION)
{
+ char *join = was_ptr ? "->" : ".";
if (CPLUS_FAKE_CHILD (parent))
{
/* The fields of the class type are ordered as they
if (ctype)
*ctype = TYPE_FIELD_TYPE (type, type_index);
+
+ if (cfull_expression)
+ *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
+ join,
+ TYPE_FIELD_NAME (type, type_index));
}
else if (index < TYPE_N_BASECLASSES (type))
{
if (cvalue && value)
{
*cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
+ release_value (*cvalue);
}
if (ctype)
{
*ctype = TYPE_FIELD_TYPE (type, index);
}
+
+ if (cfull_expression)
+ {
+ char *ptr = was_ptr ? "*" : "";
+ /* Cast the parent to the base' type. Note that in gdb,
+ expression like
+ (Base1)d
+ will create an lvalue, for all appearences, so we don't
+ need to use more fancy:
+ *(Base1*)(&d)
+ construct. */
+ *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
+ ptr,
+ TYPE_FIELD_NAME (type, index),
+ ptr,
+ parent_expression);
+ }
}
else
{
- char *access = 0;
+ char *access = NULL;
int children[3];
cplus_class_num_children (type, children);
/* error! */
break;
}
-
+
+ gdb_assert (access);
if (cname)
*cname = xstrdup (access);
- /* Value and type are null here. */
+ /* Value and type and full expression are null here. */
}
}
else
{
- c_describe_child (parent, index, cname, cvalue, ctype);
+ c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
}
}
cplus_name_of_child (struct varobj *parent, int index)
{
char *name = NULL;
- cplus_describe_child (parent, index, &name, NULL, NULL);
+ cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
return name;
}
+static char *
+cplus_path_expr_of_child (struct varobj *child)
+{
+ cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
+ &child->path_expr);
+ return child->path_expr;
+}
+
static struct value *
cplus_value_of_root (struct varobj **var_handle)
{
cplus_value_of_child (struct varobj *parent, int index)
{
struct value *value = NULL;
- cplus_describe_child (parent, index, NULL, &value, NULL);
+ cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
return value;
}
cplus_type_of_child (struct varobj *parent, int index)
{
struct type *type = NULL;
- cplus_describe_child (parent, index, NULL, NULL, &type);
+ cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
return type;
}
-static int
-cplus_variable_editable (struct varobj *var)
-{
- if (CPLUS_FAKE_CHILD (var))
- return 0;
-
- return c_variable_editable (var);
-}
-
static char *
-cplus_value_of_variable (struct varobj *var)
+cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
{
/* If we have one of our special types, don't print out
if (CPLUS_FAKE_CHILD (var))
return xstrdup ("");
- return c_value_of_variable (var);
+ return c_value_of_variable (var, format);
}
\f
/* Java */
return name;
}
+static char *
+java_path_expr_of_child (struct varobj *child)
+{
+ return NULL;
+}
+
static struct value *
java_value_of_root (struct varobj **var_handle)
{
return cplus_type_of_child (parent, index);
}
-static int
-java_variable_editable (struct varobj *var)
-{
- return cplus_variable_editable (var);
-}
-
static char *
-java_value_of_variable (struct varobj *var)
+java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
{
- return cplus_value_of_variable (var);
+ return cplus_value_of_variable (var, format);
}
\f
extern void _initialize_varobj (void);
show_varobjdebug,
&setlist, &showlist);
}
+
+/* Invalidate the varobjs that are tied to locals and re-create the ones that
+ are defined on globals.
+ Invalidated varobjs will be always printed in_scope="invalid". */
+
+void
+varobj_invalidate (void)
+{
+ struct varobj **all_rootvarobj;
+ struct varobj **varp;
+
+ if (varobj_list (&all_rootvarobj) > 0)
+ {
+ varp = all_rootvarobj;
+ while (*varp != NULL)
+ {
+ /* Floating varobjs are reparsed on each stop, so we don't care if
+ the presently parsed expression refers to something that's gone.
+ */
+ if ((*varp)->root->floating)
+ continue;
+
+ /* global var must be re-evaluated. */
+ if ((*varp)->root->valid_block == NULL)
+ {
+ struct varobj *tmp_var;
+
+ /* Try to create a varobj with same expression. If we succeed
+ replace the old varobj, otherwise invalidate it. */
+ tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0,
+ USE_CURRENT_FRAME);
+ if (tmp_var != NULL)
+ {
+ tmp_var->obj_name = xstrdup ((*varp)->obj_name);
+ varobj_delete (*varp, NULL, 0);
+ install_variable (tmp_var);
+ }
+ else
+ (*varp)->root->is_valid = 0;
+ }
+ else /* locals must be invalidated. */
+ (*varp)->root->is_valid = 0;
+
+ varp++;
+ }
+ }
+ xfree (all_rootvarobj);
+ return;
+}