/* Target-dependent code for Mitsubishi D10V, for GDB.
- Copyright (C) 1996, 1997, 2000 Free Software Foundation, Inc.
+
+ Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
+ Foundation, Inc.
This file is part of GDB.
#include "defs.h"
#include "frame.h"
-#include "obstack.h"
+#include "frame-unwind.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "symfile.h"
#include "objfiles.h"
#include "language.h"
+#include "arch-utils.h"
+#include "regcache.h"
-#include "sim-d10v.h"
-
-#undef XMALLOC
-#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
+#include "floatformat.h"
+#include "gdb/sim-d10v.h"
+#include "sim-regno.h"
-struct frame_extra_info
- {
- CORE_ADDR return_pc;
- int frameless;
- int size;
- };
+#include "gdb_assert.h"
struct gdbarch_tdep
{
int nr_dmap_regs;
unsigned long (*dmap_register) (int nr);
unsigned long (*imap_register) (int nr);
- int (*register_sim_regno) (int nr);
};
/* These are the addresses the D10V-EVA board maps data and
instruction memory to. */
-#define DMEM_START 0x2000000
-#define IMEM_START 0x1000000
-#define STACK_START 0x0007ffe
+enum memspace {
+ DMEM_START = 0x2000000,
+ IMEM_START = 0x1000000,
+ STACK_START = 0x200bffe
+};
/* d10v register names. */
enum
{
R0_REGNUM = 0,
+ R3_REGNUM = 3,
+ _FP_REGNUM = 11,
LR_REGNUM = 13,
+ _SP_REGNUM = 15,
PSW_REGNUM = 16,
+ _PC_REGNUM = 18,
NR_IMAP_REGS = 2,
- NR_A_REGS = 2
+ NR_A_REGS = 2,
+ TS2_NUM_REGS = 37,
+ TS3_NUM_REGS = 42,
+ /* d10v calling convention. */
+ ARG1_REGNUM = R0_REGNUM,
+ ARGN_REGNUM = R3_REGNUM,
+ RET1_REGNUM = R0_REGNUM,
};
+
#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
-/* d10v calling convention. */
-
-#define ARG1_REGNUM R0_REGNUM
-#define ARGN_REGNUM 3
-#define RET1_REGNUM R0_REGNUM
-
/* Local functions */
-extern void _initialize_d10v_tdep PARAMS ((void));
-
-static void d10v_eva_prepare_to_trace PARAMS ((void));
+extern void _initialize_d10v_tdep (void);
-static void d10v_eva_get_trace_data PARAMS ((void));
+static CORE_ADDR d10v_read_sp (void);
-static int prologue_find_regs PARAMS ((unsigned short op, struct frame_info * fi, CORE_ADDR addr));
+static CORE_ADDR d10v_read_fp (void);
-extern void d10v_frame_init_saved_regs PARAMS ((struct frame_info *));
+static void d10v_eva_prepare_to_trace (void);
-static void do_d10v_pop_frame PARAMS ((struct frame_info * fi));
+static void d10v_eva_get_trace_data (void);
-int
-d10v_frame_chain_valid (chain, frame)
- CORE_ADDR chain;
- struct frame_info *frame; /* not used here */
-{
- return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
-}
-
-CORE_ADDR
+static CORE_ADDR
d10v_stack_align (CORE_ADDR len)
{
return (len + 1) & ~1;
The d10v returns anything less than 8 bytes in size in
registers. */
-int
-d10v_use_struct_convention (gcc_p, type)
- int gcc_p;
- struct type *type;
+static int
+d10v_use_struct_convention (int gcc_p, struct type *type)
{
- return (TYPE_LENGTH (type) > 8);
+ long alignment;
+ int i;
+ /* The d10v only passes a struct in a register when that structure
+ has an alignment that matches the size of a register. */
+ /* If the structure doesn't fit in 4 registers, put it on the
+ stack. */
+ if (TYPE_LENGTH (type) > 8)
+ return 1;
+ /* If the struct contains only one field, don't put it on the stack
+ - gcc can fit it in one or more registers. */
+ if (TYPE_NFIELDS (type) == 1)
+ return 0;
+ alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
+ for (i = 1; i < TYPE_NFIELDS (type); i++)
+ {
+ /* If the alignment changes, just assume it goes on the
+ stack. */
+ if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
+ return 1;
+ }
+ /* If the alignment is suitable for the d10v's 16 bit registers,
+ don't put it on the stack. */
+ if (alignment == 2 || alignment == 4)
+ return 0;
+ return 1;
}
-unsigned char *
-d10v_breakpoint_from_pc (pcptr, lenptr)
- CORE_ADDR *pcptr;
- int *lenptr;
+static const unsigned char *
+d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
static unsigned char breakpoint[] =
{0x2f, 0x90, 0x5e, 0x00};
TS2_A0_REGNUM = 35
};
-static char *
+static const char *
d10v_ts2_register_name (int reg_nr)
{
static char *register_names[] =
TS3_A0_REGNUM = 32
};
-static char *
+static const char *
d10v_ts3_register_name (int reg_nr)
{
static char *register_names[] =
return register_names[reg_nr];
}
-/* Access the DMAP/IMAP registers in a target independant way. */
+/* Access the DMAP/IMAP registers in a target independent way.
+
+ Divide the D10V's 64k data space into four 16k segments:
+ 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
+ 0xc000 -- 0xffff.
+
+ On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
+ 0x7fff) always map to the on-chip data RAM, and the fourth always
+ maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
+ unified memory or instruction memory, under the control of the
+ single DMAP register.
+
+ On the TS3, there are four DMAP registers, each of which controls
+ one of the segments. */
static unsigned long
d10v_ts2_dmap_register (int reg_nr)
static int
d10v_ts2_register_sim_regno (int nr)
{
+ if (legacy_register_sim_regno (nr) < 0)
+ return legacy_register_sim_regno (nr);
if (nr >= TS2_IMAP0_REGNUM
&& nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
static int
d10v_ts3_register_sim_regno (int nr)
{
+ if (legacy_register_sim_regno (nr) < 0)
+ return legacy_register_sim_regno (nr);
if (nr >= TS3_IMAP0_REGNUM
&& nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
return nr;
}
-int
-d10v_register_sim_regno (int nr)
-{
- return gdbarch_tdep (current_gdbarch)->register_sim_regno (nr);
-}
-
/* Index within `registers' of the first byte of the space for
register REG_NR. */
-int
-d10v_register_byte (reg_nr)
- int reg_nr;
+static int
+d10v_register_byte (int reg_nr)
{
if (reg_nr < A0_REGNUM)
return (reg_nr * 2);
/* Number of bytes of storage in the actual machine representation for
register REG_NR. */
-int
-d10v_register_raw_size (reg_nr)
- int reg_nr;
+static int
+d10v_register_raw_size (int reg_nr)
{
if (reg_nr < A0_REGNUM)
return 2;
return 2;
}
-/* Number of bytes of storage in the program's representation
- for register N. */
-
-int
-d10v_register_virtual_size (reg_nr)
- int reg_nr;
-{
- return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg_nr));
-}
-
/* Return the GDB type object for the "standard" data type
of data in register N. */
-struct type *
-d10v_register_virtual_type (reg_nr)
- int reg_nr;
+static struct type *
+d10v_register_type (struct gdbarch *gdbarch, int reg_nr)
{
- if (reg_nr >= A0_REGNUM
+ if (reg_nr == PC_REGNUM)
+ return builtin_type_void_func_ptr;
+ if (reg_nr == _SP_REGNUM || reg_nr == _FP_REGNUM)
+ return builtin_type_void_data_ptr;
+ else if (reg_nr >= A0_REGNUM
&& reg_nr < (A0_REGNUM + NR_A_REGS))
return builtin_type_int64;
- else if (reg_nr == PC_REGNUM
- || reg_nr == SP_REGNUM)
- return builtin_type_int32;
else
return builtin_type_int16;
}
-/* convert $pc and $sp to/from virtual addresses */
-int
-d10v_register_convertible (nr)
- int nr;
+static int
+d10v_daddr_p (CORE_ADDR x)
{
- return ((nr) == PC_REGNUM || (nr) == SP_REGNUM);
-}
-
-void
-d10v_register_convert_to_virtual (regnum, type, from, to)
- int regnum;
- struct type *type;
- char *from;
- char *to;
-{
- ULONGEST x = extract_unsigned_integer (from, REGISTER_RAW_SIZE (regnum));
- if (regnum == PC_REGNUM)
- x = (x << 2) | IMEM_START;
- else
- x |= DMEM_START;
- store_unsigned_integer (to, TYPE_LENGTH (type), x);
+ return (((x) & 0x3000000) == DMEM_START);
}
-void
-d10v_register_convert_to_raw (type, regnum, from, to)
- struct type *type;
- int regnum;
- char *from;
- char *to;
-{
- ULONGEST x = extract_unsigned_integer (from, TYPE_LENGTH (type));
- x &= 0x3ffff;
- if (regnum == PC_REGNUM)
- x >>= 2;
- store_unsigned_integer (to, 2, x);
+static int
+d10v_iaddr_p (CORE_ADDR x)
+{
+ return (((x) & 0x3000000) == IMEM_START);
}
-
-CORE_ADDR
-d10v_make_daddr (x)
- CORE_ADDR x;
+static CORE_ADDR
+d10v_make_daddr (CORE_ADDR x)
{
return ((x) | DMEM_START);
}
-CORE_ADDR
-d10v_make_iaddr (x)
- CORE_ADDR x;
+static CORE_ADDR
+d10v_make_iaddr (CORE_ADDR x)
{
- return (((x) << 2) | IMEM_START);
+ if (d10v_iaddr_p (x))
+ return x; /* Idempotency -- x is already in the IMEM space. */
+ else
+ return (((x) << 2) | IMEM_START);
}
-int
-d10v_daddr_p (x)
- CORE_ADDR x;
+static CORE_ADDR
+d10v_convert_iaddr_to_raw (CORE_ADDR x)
{
- return (((x) & 0x3000000) == DMEM_START);
+ return (((x) >> 2) & 0xffff);
}
-int
-d10v_iaddr_p (x)
- CORE_ADDR x;
+static CORE_ADDR
+d10v_convert_daddr_to_raw (CORE_ADDR x)
{
- return (((x) & 0x3000000) == IMEM_START);
+ return ((x) & 0xffff);
}
+static void
+d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
+{
+ /* Is it a code address? */
+ if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
+ || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
+ {
+ store_unsigned_integer (buf, TYPE_LENGTH (type),
+ d10v_convert_iaddr_to_raw (addr));
+ }
+ else
+ {
+ /* Strip off any upper segment bits. */
+ store_unsigned_integer (buf, TYPE_LENGTH (type),
+ d10v_convert_daddr_to_raw (addr));
+ }
+}
-CORE_ADDR
-d10v_convert_iaddr_to_raw (x)
- CORE_ADDR x;
+static CORE_ADDR
+d10v_pointer_to_address (struct type *type, const void *buf)
{
- return (((x) >> 2) & 0xffff);
+ CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
+
+ /* Is it a code address? */
+ if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
+ || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
+ || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
+ return d10v_make_iaddr (addr);
+ else
+ return d10v_make_daddr (addr);
}
-CORE_ADDR
-d10v_convert_daddr_to_raw (x)
- CORE_ADDR x;
+/* Don't do anything if we have an integer, this way users can type 'x
+ <addr>' w/o having gdb outsmart them. The internal gdb conversions
+ to the correct space are taken care of in the pointer_to_address
+ function. If we don't do this, 'x $fp' wouldn't work. */
+static CORE_ADDR
+d10v_integer_to_address (struct type *type, void *buf)
{
- return ((x) & 0xffff);
+ LONGEST val;
+ val = unpack_long (type, buf);
+ return val;
}
/* Store the address of the place in which to copy the structure the
We store structs through a pointer passed in the first Argument
register. */
-void
-d10v_store_struct_return (addr, sp)
- CORE_ADDR addr;
- CORE_ADDR sp;
+static void
+d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
write_register (ARG1_REGNUM, (addr));
}
Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
-void
-d10v_store_return_value (type, valbuf)
- struct type *type;
- char *valbuf;
+static void
+d10v_store_return_value (struct type *type, struct regcache *regcache,
+ const void *valbuf)
{
- write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
- valbuf,
- TYPE_LENGTH (type));
+ /* Only char return values need to be shifted right within the first
+ regnum. */
+ if (TYPE_LENGTH (type) == 1
+ && TYPE_CODE (type) == TYPE_CODE_INT)
+ {
+ bfd_byte tmp[2];
+ tmp[1] = *(bfd_byte *)valbuf;
+ regcache_cooked_write (regcache, RET1_REGNUM, tmp);
+ }
+ else
+ {
+ int reg;
+ /* A structure is never more than 8 bytes long. See
+ use_struct_convention(). */
+ gdb_assert (TYPE_LENGTH (type) <= 8);
+ /* Write out most registers, stop loop before trying to write
+ out any dangling byte at the end of the buffer. */
+ for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
+ {
+ regcache_cooked_write (regcache, RET1_REGNUM + reg,
+ (bfd_byte *) valbuf + reg * 2);
+ }
+ /* Write out any dangling byte at the end of the buffer. */
+ if ((reg * 2) + 1 == TYPE_LENGTH (type))
+ regcache_cooked_write_part (regcache, reg, 0, 1,
+ (bfd_byte *) valbuf + reg * 2);
+ }
}
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
-CORE_ADDR
-d10v_extract_struct_value_address (regbuf)
- char *regbuf;
+static CORE_ADDR
+d10v_extract_struct_value_address (struct regcache *regcache)
{
- return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
- REGISTER_RAW_SIZE (ARG1_REGNUM))
- | DMEM_START);
-}
-
-CORE_ADDR
-d10v_frame_saved_pc (frame)
- struct frame_info *frame;
-{
- return ((frame)->extra_info->return_pc);
-}
-
-CORE_ADDR
-d10v_frame_args_address (fi)
- struct frame_info *fi;
-{
- return (fi)->frame;
-}
-
-CORE_ADDR
-d10v_frame_locals_address (fi)
- struct frame_info *fi;
-{
- return (fi)->frame;
+ ULONGEST addr;
+ regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
+ return (addr | DMEM_START);
}
/* Immediately after a function call, return the saved pc. We can't
use frame->return_pc beause that is determined by reading R13 off
the stack and that may not be written yet. */
-CORE_ADDR
-d10v_saved_pc_after_call (frame)
- struct frame_info *frame;
+static CORE_ADDR
+d10v_saved_pc_after_call (struct frame_info *frame)
{
return ((read_register (LR_REGNUM) << 2)
| IMEM_START);
}
-/* Discard from the stack the innermost frame, restoring all saved
- registers. */
-
-void
-d10v_pop_frame ()
-{
- generic_pop_current_frame (do_d10v_pop_frame);
-}
-
-static void
-do_d10v_pop_frame (fi)
- struct frame_info *fi;
-{
- CORE_ADDR fp;
- int regnum;
- char raw_buffer[8];
-
- fp = FRAME_FP (fi);
- /* fill out fsr with the address of where each */
- /* register was stored in the frame */
- d10v_frame_init_saved_regs (fi);
-
- /* now update the current registers with the old values */
- for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
- {
- if (fi->saved_regs[regnum])
- {
- read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
- write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
- }
- }
- for (regnum = 0; regnum < SP_REGNUM; regnum++)
- {
- if (fi->saved_regs[regnum])
- {
- write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
- }
- }
- if (fi->saved_regs[PSW_REGNUM])
- {
- write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
- }
-
- write_register (PC_REGNUM, read_register (LR_REGNUM));
- write_register (SP_REGNUM, fp + fi->extra_info->size);
- target_store_registers (-1);
- flush_cached_frames ();
-}
-
static int
-check_prologue (op)
- unsigned short op;
+check_prologue (unsigned short op)
{
/* st rn, @-sp */
if ((op & 0x7E1F) == 0x6C1F)
return 0;
}
-CORE_ADDR
-d10v_skip_prologue (pc)
- CORE_ADDR pc;
+static CORE_ADDR
+d10v_skip_prologue (CORE_ADDR pc)
{
unsigned long op;
unsigned short op1, op2;
return pc;
}
-/* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
- */
-
-CORE_ADDR
-d10v_frame_chain (fi)
- struct frame_info *fi;
-{
- d10v_frame_init_saved_regs (fi);
-
- if (fi->extra_info->return_pc == IMEM_START
- || inside_entry_file (fi->extra_info->return_pc))
- return (CORE_ADDR) 0;
-
- if (!fi->saved_regs[FP_REGNUM])
- {
- if (!fi->saved_regs[SP_REGNUM]
- || fi->saved_regs[SP_REGNUM] == STACK_START)
- return (CORE_ADDR) 0;
-
- return fi->saved_regs[SP_REGNUM];
- }
-
- if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
- REGISTER_RAW_SIZE (FP_REGNUM)))
- return (CORE_ADDR) 0;
-
- return D10V_MAKE_DADDR (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
- REGISTER_RAW_SIZE (FP_REGNUM)));
-}
-
-static int next_addr, uses_frame;
+struct d10v_unwind_cache
+{
+ CORE_ADDR return_pc;
+ /* The frame's base. Used when constructing a frame ID. */
+ CORE_ADDR base;
+ int size;
+ CORE_ADDR *saved_regs;
+ /* How far the SP and r11 (FP) have been offset from the start of
+ the stack frame (as defined by the previous frame's stack
+ pointer). */
+ LONGEST sp_offset;
+ LONGEST r11_offset;
+ int uses_frame;
+ void **regs;
+};
static int
-prologue_find_regs (op, fi, addr)
- unsigned short op;
- struct frame_info *fi;
- CORE_ADDR addr;
+prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
+ CORE_ADDR addr)
{
int n;
if ((op & 0x7E1F) == 0x6C1F)
{
n = (op & 0x1E0) >> 5;
- next_addr -= 2;
- fi->saved_regs[n] = next_addr;
+ info->sp_offset -= 2;
+ info->saved_regs[n] = info->sp_offset;
return 1;
}
else if ((op & 0x7E3F) == 0x6E1F)
{
n = (op & 0x1E0) >> 5;
- next_addr -= 4;
- fi->saved_regs[n] = next_addr;
- fi->saved_regs[n + 1] = next_addr + 2;
+ info->sp_offset -= 4;
+ info->saved_regs[n] = info->sp_offset;
+ info->saved_regs[n + 1] = info->sp_offset + 2;
return 1;
}
n = (op & 0x1E) >> 1;
if (n == 0)
n = 16;
- next_addr -= n;
+ info->sp_offset -= n;
return 1;
}
/* mv r11, sp */
if (op == 0x417E)
{
- uses_frame = 1;
+ info->uses_frame = 1;
+ info->r11_offset = info->sp_offset;
+ return 1;
+ }
+
+ /* st rn, @r11 */
+ if ((op & 0x7E1F) == 0x6816)
+ {
+ n = (op & 0x1E0) >> 5;
+ info->saved_regs[n] = info->r11_offset;
return 1;
}
if ((op & 0x7E1F) == 0x681E)
{
n = (op & 0x1E0) >> 5;
- fi->saved_regs[n] = next_addr;
+ info->saved_regs[n] = info->sp_offset;
return 1;
}
if ((op & 0x7E3F) == 0x3A1E)
{
n = (op & 0x1E0) >> 5;
- fi->saved_regs[n] = next_addr;
- fi->saved_regs[n + 1] = next_addr + 2;
+ info->saved_regs[n] = info->sp_offset;
+ info->saved_regs[n + 1] = info->sp_offset + 2;
return 1;
}
in the stack frame. sp is even more special: the address we return
for it IS the sp for the next frame. */
-void
-d10v_frame_init_saved_regs (fi)
- struct frame_info *fi;
+struct d10v_unwind_cache *
+d10v_frame_unwind_cache (struct frame_info *fi,
+ void **cache)
{
- CORE_ADDR fp, pc;
+ CORE_ADDR pc;
+ ULONGEST prev_sp;
+ ULONGEST this_base;
unsigned long op;
unsigned short op1, op2;
int i;
+ struct d10v_unwind_cache *info;
+
+ if ((*cache))
+ return (*cache);
- fp = fi->frame;
- memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
- next_addr = 0;
+ info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
+ (*cache) = info;
+ info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
- pc = get_pc_function_start (fi->pc);
+ info->size = 0;
+ info->return_pc = 0;
+ info->sp_offset = 0;
- uses_frame = 0;
+ pc = get_pc_function_start (get_frame_pc (fi));
+
+ info->uses_frame = 0;
while (1)
{
op = (unsigned long) read_memory_integer (pc, 4);
{
/* add3 sp,sp,n */
short n = op & 0xFFFF;
- next_addr += n;
+ info->sp_offset += n;
}
else if ((op & 0x3F0F0000) == 0x340F0000)
{
/* st rn, @(offset,sp) */
short offset = op & 0xFFFF;
short n = (op >> 20) & 0xF;
- fi->saved_regs[n] = next_addr + offset;
+ info->saved_regs[n] = info->sp_offset + offset;
}
else if ((op & 0x3F1F0000) == 0x350F0000)
{
/* st2w rn, @(offset,sp) */
short offset = op & 0xFFFF;
short n = (op >> 20) & 0xF;
- fi->saved_regs[n] = next_addr + offset;
- fi->saved_regs[n + 1] = next_addr + offset + 2;
+ info->saved_regs[n] = info->sp_offset + offset;
+ info->saved_regs[n + 1] = info->sp_offset + offset + 2;
}
else
break;
op1 = (op & 0x3FFF8000) >> 15;
op2 = op & 0x7FFF;
}
- if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
+ if (!prologue_find_regs (info, op1, pc)
+ || !prologue_find_regs (info, op2, pc))
break;
}
pc += 4;
}
- fi->extra_info->size = -next_addr;
+ info->size = -info->sp_offset;
+
+ /* Compute the frame's base, and the previous frame's SP. */
+ if (info->uses_frame)
+ {
+ /* The SP was moved to the FP. This indicates that a new frame
+ was created. Get THIS frame's FP value by unwinding it from
+ the next frame. */
+ frame_read_unsigned_register (fi, FP_REGNUM, &this_base);
+ /* The FP points at the last saved register. Adjust the FP back
+ to before the first saved register giving the SP. */
+ prev_sp = this_base + info->size;
+ }
+ else if (info->saved_regs[SP_REGNUM])
+ {
+ /* The SP was saved (which is very unusual), the frame base is
+ just the PREV's frame's TOP-OF-STACK. */
+ this_base = read_memory_unsigned_integer (info->saved_regs[SP_REGNUM],
+ register_size (current_gdbarch,
+ SP_REGNUM));
+ prev_sp = this_base;
+ }
+ else
+ {
+ /* Assume that the FP is this frame's SP but with that pushed
+ stack space added back. */
+ frame_read_unsigned_register (fi, SP_REGNUM, &this_base);
+ prev_sp = this_base + info->size;
+ }
- if (!(fp & 0xffff))
- fp = D10V_MAKE_DADDR (read_register (SP_REGNUM));
+ info->base = d10v_make_daddr (this_base);
+ prev_sp = d10v_make_daddr (prev_sp);
+ /* Adjust all the saved registers so that they contain addresses and
+ not offsets. */
for (i = 0; i < NUM_REGS - 1; i++)
- if (fi->saved_regs[i])
+ if (info->saved_regs[i])
{
- fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
+ info->saved_regs[i] = (prev_sp + info->saved_regs[i]);
}
- if (fi->saved_regs[LR_REGNUM])
+ if (info->saved_regs[LR_REGNUM])
{
- CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
- fi->extra_info->return_pc = D10V_MAKE_IADDR (return_pc);
+ CORE_ADDR return_pc
+ = read_memory_unsigned_integer (info->saved_regs[LR_REGNUM],
+ register_size (current_gdbarch, LR_REGNUM));
+ info->return_pc = d10v_make_iaddr (return_pc);
}
else
{
- fi->extra_info->return_pc = D10V_MAKE_IADDR (read_register (LR_REGNUM));
+ ULONGEST return_pc;
+ frame_read_unsigned_register (fi, LR_REGNUM, &return_pc);
+ info->return_pc = d10v_make_iaddr (return_pc);
}
- /* th SP is not normally (ever?) saved, but check anyway */
- if (!fi->saved_regs[SP_REGNUM])
- {
- /* if the FP was saved, that means the current FP is valid, */
- /* otherwise, it isn't being used, so we use the SP instead */
- if (uses_frame)
- fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
- else
- {
- fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
- fi->extra_info->frameless = 1;
- fi->saved_regs[FP_REGNUM] = 0;
- }
- }
+ /* The SP_REGNUM is special. Instead of the address of the SP, the
+ previous frame's SP value is saved. */
+ info->saved_regs[SP_REGNUM] = prev_sp;
+
+ return info;
}
-void
-d10v_init_extra_frame_info (fromleaf, fi)
- int fromleaf;
- struct frame_info *fi;
+static void
+d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
+ struct frame_info *frame, int regnum, int all)
{
- fi->extra_info = (struct frame_extra_info *)
- frame_obstack_alloc (sizeof (struct frame_extra_info));
- frame_saved_regs_zalloc (fi);
-
- fi->extra_info->frameless = 0;
- fi->extra_info->size = 0;
- fi->extra_info->return_pc = 0;
-
- /* The call dummy doesn't save any registers on the stack, so we can
- return now. */
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ if (regnum >= 0)
{
+ default_print_registers_info (gdbarch, file, frame, regnum, all);
return;
}
- else
- {
- d10v_frame_init_saved_regs (fi);
- }
+
+ {
+ ULONGEST pc, psw, rpt_s, rpt_e, rpt_c;
+ frame_read_unsigned_register (frame, PC_REGNUM, &pc);
+ frame_read_unsigned_register (frame, PSW_REGNUM, &psw);
+ frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_s", -1), &rpt_s);
+ frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_e", -1), &rpt_e);
+ frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_c", -1), &rpt_c);
+ fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
+ (long) pc, (long) d10v_make_iaddr (pc), (long) psw,
+ (long) rpt_s, (long) rpt_e, (long) rpt_c);
+ }
+
+ {
+ int group;
+ for (group = 0; group < 16; group += 8)
+ {
+ int r;
+ fprintf_filtered (file, "R%d-R%-2d", group, group + 7);
+ for (r = group; r < group + 8; r++)
+ {
+ ULONGEST tmp;
+ frame_read_unsigned_register (frame, r, &tmp);
+ fprintf_filtered (file, " %04lx", (long) tmp);
+ }
+ fprintf_filtered (file, "\n");
+ }
+ }
+
+ /* Note: The IMAP/DMAP registers don't participate in function
+ calls. Don't bother trying to unwind them. */
+
+ {
+ int a;
+ for (a = 0; a < NR_IMAP_REGS; a++)
+ {
+ if (a > 0)
+ fprintf_filtered (file, " ");
+ fprintf_filtered (file, "IMAP%d %04lx", a, d10v_imap_register (a));
+ }
+ if (NR_DMAP_REGS == 1)
+ /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */
+ fprintf_filtered (file, " DMAP %04lx\n", d10v_dmap_register (2));
+ else
+ {
+ for (a = 0; a < NR_DMAP_REGS; a++)
+ {
+ fprintf_filtered (file, " DMAP%d %04lx", a, d10v_dmap_register (a));
+ }
+ fprintf_filtered (file, "\n");
+ }
+ }
+
+ {
+ char *num = alloca (max_register_size (gdbarch));
+ int a;
+ fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1);
+ for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
+ {
+ int i;
+ fprintf_filtered (file, " ");
+ frame_register_read (frame, a, num);
+ for (i = 0; i < max_register_size (current_gdbarch); i++)
+ {
+ fprintf_filtered (file, "%02x", (num[i] & 0xff));
+ }
+ }
+ }
+ fprintf_filtered (file, "\n");
}
static void
-show_regs (args, from_tty)
- char *args;
- int from_tty;
-{
- int a;
- printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
- (long) read_register (PC_REGNUM),
- (long) D10V_MAKE_IADDR (read_register (PC_REGNUM)),
- (long) read_register (PSW_REGNUM),
- (long) read_register (24),
- (long) read_register (25),
- (long) read_register (23));
- printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
- (long) read_register (0),
- (long) read_register (1),
- (long) read_register (2),
- (long) read_register (3),
- (long) read_register (4),
- (long) read_register (5),
- (long) read_register (6),
- (long) read_register (7));
- printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
- (long) read_register (8),
- (long) read_register (9),
- (long) read_register (10),
- (long) read_register (11),
- (long) read_register (12),
- (long) read_register (13),
- (long) read_register (14),
- (long) read_register (15));
- for (a = 0; a < NR_IMAP_REGS; a++)
- {
- if (a > 0)
- printf_filtered (" ");
- printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
- }
- if (NR_DMAP_REGS == 1)
- printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
- else
- {
- for (a = 0; a < NR_DMAP_REGS; a++)
- {
- printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
- }
- printf_filtered ("\n");
- }
- printf_filtered ("A0-A%d", NR_A_REGS - 1);
- for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
- {
- char num[MAX_REGISTER_RAW_SIZE];
- int i;
- printf_filtered (" ");
- read_register_gen (a, (char *) &num);
- for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
- {
- printf_filtered ("%02x", (num[i] & 0xff));
- }
- }
- printf_filtered ("\n");
+show_regs (char *args, int from_tty)
+{
+ d10v_print_registers_info (current_gdbarch, gdb_stdout,
+ get_current_frame (), -1, 1);
}
-CORE_ADDR
-d10v_read_pc (pid)
- int pid;
+static CORE_ADDR
+d10v_read_pc (ptid_t ptid)
{
- int save_pid;
+ ptid_t save_ptid;
CORE_ADDR pc;
CORE_ADDR retval;
- save_pid = inferior_pid;
- inferior_pid = pid;
+ save_ptid = inferior_ptid;
+ inferior_ptid = ptid;
pc = (int) read_register (PC_REGNUM);
- inferior_pid = save_pid;
- retval = D10V_MAKE_IADDR (pc);
+ inferior_ptid = save_ptid;
+ retval = d10v_make_iaddr (pc);
return retval;
}
-void
-d10v_write_pc (val, pid)
- CORE_ADDR val;
- int pid;
+static void
+d10v_write_pc (CORE_ADDR val, ptid_t ptid)
{
- int save_pid;
+ ptid_t save_ptid;
- save_pid = inferior_pid;
- inferior_pid = pid;
- write_register (PC_REGNUM, D10V_CONVERT_IADDR_TO_RAW (val));
- inferior_pid = save_pid;
+ save_ptid = inferior_ptid;
+ inferior_ptid = ptid;
+ write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
+ inferior_ptid = save_ptid;
}
-CORE_ADDR
-d10v_read_sp ()
+static CORE_ADDR
+d10v_read_sp (void)
{
- return (D10V_MAKE_DADDR (read_register (SP_REGNUM)));
+ return (d10v_make_daddr (read_register (SP_REGNUM)));
}
-void
-d10v_write_sp (val)
- CORE_ADDR val;
-{
- write_register (SP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
-}
-
-void
-d10v_write_fp (val)
- CORE_ADDR val;
+static void
+d10v_write_sp (CORE_ADDR val)
{
- write_register (FP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
+ write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
}
-CORE_ADDR
-d10v_read_fp ()
+static CORE_ADDR
+d10v_read_fp (void)
{
- return (D10V_MAKE_DADDR (read_register (FP_REGNUM)));
+ return (d10v_make_daddr (read_register (FP_REGNUM)));
}
/* Function: push_return_address (pc)
Set up the return address for the inferior function call.
Needed for targets where we don't actually execute a JSR/BSR instruction */
-CORE_ADDR
-d10v_push_return_address (pc, sp)
- CORE_ADDR pc;
- CORE_ADDR sp;
+static CORE_ADDR
+d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
- write_register (LR_REGNUM, D10V_CONVERT_IADDR_TO_RAW (CALL_DUMMY_ADDRESS ()));
+ write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
return sp;
}
void *data;
};
-static struct stack_item *push_stack_item PARAMS ((struct stack_item * prev, void *contents, int len));
+static struct stack_item *push_stack_item (struct stack_item *prev,
+ void *contents, int len);
static struct stack_item *
-push_stack_item (prev, contents, len)
- struct stack_item *prev;
- void *contents;
- int len;
+push_stack_item (struct stack_item *prev, void *contents, int len)
{
struct stack_item *si;
si = xmalloc (sizeof (struct stack_item));
return si;
}
-static struct stack_item *pop_stack_item PARAMS ((struct stack_item * si));
+static struct stack_item *pop_stack_item (struct stack_item *si);
static struct stack_item *
-pop_stack_item (si)
- struct stack_item *si;
+pop_stack_item (struct stack_item *si)
{
struct stack_item *dead = si;
si = si->prev;
- free (dead->data);
- free (dead);
+ xfree (dead->data);
+ xfree (dead);
return si;
}
-CORE_ADDR
-d10v_push_arguments (nargs, args, sp, struct_return, struct_addr)
- int nargs;
- value_ptr *args;
- CORE_ADDR sp;
- int struct_return;
- CORE_ADDR struct_addr;
+static CORE_ADDR
+d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
{
int i;
int regnum = ARG1_REGNUM;
struct stack_item *si = NULL;
+ long val;
+
+ /* If struct_return is true, then the struct return address will
+ consume one argument-passing register. No need to actually
+ write the value to the register -- that's done by
+ d10v_store_struct_return(). */
+
+ if (struct_return)
+ regnum++;
/* Fill in registers and arg lists */
for (i = 0; i < nargs; i++)
{
- value_ptr arg = args[i];
+ struct value *arg = args[i];
struct type *type = check_typedef (VALUE_TYPE (arg));
char *contents = VALUE_CONTENTS (arg);
int len = TYPE_LENGTH (type);
- /* printf ("push: type=%d len=%d\n", type->code, len); */
- if (TYPE_CODE (type) == TYPE_CODE_PTR)
+ int aligned_regnum = (regnum + 1) & ~1;
+
+ /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
+ if (len <= 2 && regnum <= ARGN_REGNUM)
+ /* fits in a single register, do not align */
{
- /* pointers require special handling - first convert and
- then store */
- long val = extract_signed_integer (contents, len);
- len = 2;
- if (TYPE_TARGET_TYPE (type)
- && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
- {
- /* function pointer */
- val = D10V_CONVERT_IADDR_TO_RAW (val);
- }
- else if (D10V_IADDR_P (val))
- {
- /* also function pointer! */
- val = D10V_CONVERT_DADDR_TO_RAW (val);
- }
- else
- {
- /* data pointer */
- val &= 0xFFFF;
- }
- if (regnum <= ARGN_REGNUM)
- write_register (regnum++, val & 0xffff);
- else
- {
- char ptr[2];
- /* arg will go onto stack */
- store_address (ptr, 2, val & 0xffff);
- si = push_stack_item (si, ptr, 2);
- }
+ val = extract_unsigned_integer (contents, len);
+ write_register (regnum++, val);
}
- else
+ else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
+ /* value fits in remaining registers, store keeping left
+ aligned */
{
- int aligned_regnum = (regnum + 1) & ~1;
- if (len <= 2 && regnum <= ARGN_REGNUM)
- /* fits in a single register, do not align */
+ int b;
+ regnum = aligned_regnum;
+ for (b = 0; b < (len & ~1); b += 2)
{
- long val = extract_unsigned_integer (contents, len);
+ val = extract_unsigned_integer (&contents[b], 2);
write_register (regnum++, val);
}
- else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
- /* value fits in remaining registers, store keeping left
- aligned */
- {
- int b;
- regnum = aligned_regnum;
- for (b = 0; b < (len & ~1); b += 2)
- {
- long val = extract_unsigned_integer (&contents[b], 2);
- write_register (regnum++, val);
- }
- if (b < len)
- {
- long val = extract_unsigned_integer (&contents[b], 1);
- write_register (regnum++, (val << 8));
- }
- }
- else
+ if (b < len)
{
- /* arg will go onto stack */
- regnum = ARGN_REGNUM + 1;
- si = push_stack_item (si, contents, len);
+ val = extract_unsigned_integer (&contents[b], 1);
+ write_register (regnum++, (val << 8));
}
}
+ else
+ {
+ /* arg will go onto stack */
+ regnum = ARGN_REGNUM + 1;
+ si = push_stack_item (si, contents, len);
+ }
}
while (si)
/* Given a return value in `regbuf' with a type `valtype',
extract and copy its value into `valbuf'. */
-void
-d10v_extract_return_value (type, regbuf, valbuf)
- struct type *type;
- char regbuf[REGISTER_BYTES];
- char *valbuf;
+static void
+d10v_extract_return_value (struct type *type, struct regcache *regcache,
+ void *valbuf)
{
int len;
- /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
- if (TYPE_CODE (type) == TYPE_CODE_PTR
- && TYPE_TARGET_TYPE (type)
- && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
+#if 0
+ printf("RET: TYPE=%d len=%d r%d=0x%x\n", TYPE_CODE (type),
+ TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM,
+ (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM),
+ register_size (current_gdbarch, RET1_REGNUM)));
+#endif
+ if (TYPE_LENGTH (type) == 1)
{
- /* pointer to function */
- int num;
- short snum;
- snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
- store_address (valbuf, 4, D10V_MAKE_IADDR (snum));
- }
- else if (TYPE_CODE (type) == TYPE_CODE_PTR)
- {
- /* pointer to data */
- int num;
- short snum;
- snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
- store_address (valbuf, 4, D10V_MAKE_DADDR (snum));
+ ULONGEST c;
+ regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
+ store_unsigned_integer (valbuf, 1, c);
}
else
{
- len = TYPE_LENGTH (type);
- if (len == 1)
+ /* For return values of odd size, the first byte is in the
+ least significant part of the first register. The
+ remaining bytes in remaining registers. Interestingly, when
+ such values are passed in, the last byte is in the most
+ significant byte of that same register - wierd. */
+ int reg = RET1_REGNUM;
+ int off = 0;
+ if (TYPE_LENGTH (type) & 1)
{
- unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
- store_unsigned_integer (valbuf, 1, c);
+ regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
+ (bfd_byte *)valbuf + off);
+ off++;
+ reg++;
}
- else if ((len & 1) == 0)
- memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
- else
+ /* Transfer the remaining registers. */
+ for (; off < TYPE_LENGTH (type); reg++, off += 2)
{
- /* For return values of odd size, the first byte is in the
- least significant part of the first register. The
- remaining bytes in remaining registers. Interestingly,
- when such values are passed in, the last byte is in the
- most significant byte of that same register - wierd. */
- memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
+ regcache_cooked_read (regcache, RET1_REGNUM + reg,
+ (bfd_byte *) valbuf + off);
}
}
}
#define TRACE_BUFFER_BASE (0xf40000)
-static void trace_command PARAMS ((char *, int));
+static void trace_command (char *, int);
-static void untrace_command PARAMS ((char *, int));
+static void untrace_command (char *, int);
-static void trace_info PARAMS ((char *, int));
+static void trace_info (char *, int);
-static void tdisassemble_command PARAMS ((char *, int));
+static void tdisassemble_command (char *, int);
-static void display_trace PARAMS ((int, int));
+static void display_trace (int, int);
/* True when instruction traces are being collected. */
trace_data;
static void
-trace_command (args, from_tty)
- char *args;
- int from_tty;
+trace_command (char *args, int from_tty)
{
/* Clear the host-side trace buffer, allocating space if needed. */
trace_data.size = 0;
}
static void
-untrace_command (args, from_tty)
- char *args;
- int from_tty;
+untrace_command (char *args, int from_tty)
{
tracing = 0;
}
static void
-trace_info (args, from_tty)
- char *args;
- int from_tty;
+trace_info (char *args, int from_tty)
{
int i;
on STREAM. Returns length of the instruction, in bytes. */
static int
-print_insn (memaddr, stream)
- CORE_ADDR memaddr;
- struct ui_file *stream;
+print_insn (CORE_ADDR memaddr, struct ui_file *stream)
{
/* If there's no disassembler, something is very wrong. */
if (tm_print_insn == NULL)
- internal_error ("print_insn: no disassembler");
+ internal_error (__FILE__, __LINE__,
+ "print_insn: no disassembler");
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
tm_print_insn_info.endian = BFD_ENDIAN_BIG;
else
tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
- return (*tm_print_insn) (memaddr, &tm_print_insn_info);
+ return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
}
static void
-d10v_eva_prepare_to_trace ()
+d10v_eva_prepare_to_trace (void)
{
if (!tracing)
return;
more useful for display. */
static void
-d10v_eva_get_trace_data ()
+d10v_eva_get_trace_data (void)
{
int count, i, j, oldsize;
int trace_addr, trace_seg, trace_cnt, next_cnt;
oldsize = trace_data.size;
trace_data.size += count;
- free (tmpspace);
+ xfree (tmpspace);
if (trace_display)
display_trace (oldsize, trace_data.size);
}
static void
-tdisassemble_command (arg, from_tty)
- char *arg;
- int from_tty;
+tdisassemble_command (char *arg, int from_tty)
{
int i, count;
CORE_ADDR low, high;
}
static void
-display_trace (low, high)
- int low, high;
+display_trace (int low, int high)
{
int i, count, trace_show_source, first, suppress;
CORE_ADDR next_address;
}
+static CORE_ADDR
+d10v_frame_pc_unwind (struct frame_info *frame,
+ void **cache)
+{
+ struct d10v_unwind_cache *info = d10v_frame_unwind_cache (frame, cache);
+ return info->return_pc;
+}
+
+/* Given a GDB frame, determine the address of the calling function's
+ frame. This will be used to create a new GDB frame struct. */
+
+static void
+d10v_frame_id_unwind (struct frame_info *frame,
+ void **cache,
+ struct frame_id *id)
+{
+ struct d10v_unwind_cache *info = d10v_frame_unwind_cache (frame, cache);
+ CORE_ADDR addr;
+
+ /* Start with a NULL frame ID. */
+ (*id) = null_frame_id;
+
+ if (info->return_pc == IMEM_START
+ || info->return_pc <= IMEM_START
+ || inside_entry_file (info->return_pc))
+ {
+ /* This is meant to halt the backtrace at "_start".
+ Make sure we don't halt it at a generic dummy frame. */
+ return;
+ }
+
+ if (!info->saved_regs[FP_REGNUM])
+ {
+ if (!info->saved_regs[SP_REGNUM]
+ || info->saved_regs[SP_REGNUM] == STACK_START)
+ return;
+
+ id->base = info->saved_regs[SP_REGNUM];
+ id->pc = info->return_pc;
+ }
+
+ addr = read_memory_unsigned_integer (info->saved_regs[FP_REGNUM],
+ register_size (current_gdbarch, FP_REGNUM));
+ if (addr == 0)
+ return;
+
+ id->base = d10v_make_daddr (addr);
+ id->pc = info->return_pc;
+}
+
+static void
+saved_regs_unwinder (struct frame_info *frame,
+ CORE_ADDR *saved_regs,
+ int regnum, int *optimizedp,
+ enum lval_type *lvalp, CORE_ADDR *addrp,
+ int *realnump, void *bufferp)
+{
+ /* If we're using generic dummy frames, we'd better not be in a call
+ dummy. (generic_call_dummy_register_unwind ought to have been called
+ instead.) */
+ gdb_assert (!(DEPRECATED_USE_GENERIC_DUMMY_FRAMES
+ && (get_frame_type (frame) == DUMMY_FRAME)));
+
+ if (saved_regs[regnum] != 0)
+ {
+ if (regnum == SP_REGNUM)
+ {
+ /* SP register treated specially. */
+ *optimizedp = 0;
+ *lvalp = not_lval;
+ *addrp = 0;
+ *realnump = -1;
+ if (bufferp != NULL)
+ store_address (bufferp, register_size (current_gdbarch, regnum),
+ saved_regs[regnum]);
+ }
+ else
+ {
+ /* Any other register is saved in memory, fetch it but cache
+ a local copy of its value. */
+ *optimizedp = 0;
+ *lvalp = lval_memory;
+ *addrp = saved_regs[regnum];
+ *realnump = -1;
+ if (bufferp != NULL)
+ {
+ /* Read the value in from memory. */
+ read_memory (saved_regs[regnum], bufferp,
+ register_size (current_gdbarch, regnum));
+ }
+ }
+ return;
+ }
+
+ /* No luck, assume this and the next frame have the same register
+ value. If a value is needed, pass the request on down the chain;
+ otherwise just return an indication that the value is in the same
+ register as the next frame. */
+ frame_register (frame, regnum, optimizedp, lvalp, addrp,
+ realnump, bufferp);
+}
+
+
+static void
+d10v_frame_register_unwind (struct frame_info *frame,
+ void **cache,
+ int regnum, int *optimizedp,
+ enum lval_type *lvalp, CORE_ADDR *addrp,
+ int *realnump, void *bufferp)
+{
+ struct d10v_unwind_cache *info = d10v_frame_unwind_cache (frame, cache);
+ saved_regs_unwinder (frame, info->saved_regs, regnum, optimizedp,
+ lvalp, addrp, realnump, bufferp);
+}
+
+
+static void
+d10v_frame_pop (struct frame_info *fi, void **unwind_cache,
+ struct regcache *regcache)
+{
+ struct d10v_unwind_cache *info = d10v_frame_unwind_cache (fi, unwind_cache);
+ CORE_ADDR fp;
+ int regnum;
+ char raw_buffer[8];
+
+ fp = get_frame_base (fi);
+
+ /* now update the current registers with the old values */
+ for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
+ {
+ frame_unwind_register (fi, regnum, raw_buffer);
+ regcache_cooked_write (regcache, regnum, raw_buffer);
+ }
+ for (regnum = 0; regnum < SP_REGNUM; regnum++)
+ {
+ frame_unwind_register (fi, regnum, raw_buffer);
+ regcache_cooked_write (regcache, regnum, raw_buffer);
+ }
+ frame_unwind_register (fi, PSW_REGNUM, raw_buffer);
+ regcache_cooked_write (regcache, PSW_REGNUM, raw_buffer);
+
+ frame_unwind_register (fi, LR_REGNUM, raw_buffer);
+ regcache_cooked_write (regcache, PC_REGNUM, raw_buffer);
+
+ store_unsigned_integer (raw_buffer,
+ register_size (current_gdbarch, SP_REGNUM),
+ fp + info->size);
+ regcache_cooked_write (regcache, SP_REGNUM, raw_buffer);
+
+ target_store_registers (-1);
+ flush_cached_frames ();
+}
+
+static struct frame_unwind d10v_frame_unwind = {
+ d10v_frame_pop,
+ d10v_frame_pc_unwind,
+ d10v_frame_id_unwind,
+ d10v_frame_register_unwind
+};
+
+const struct frame_unwind *
+d10v_frame_p (CORE_ADDR pc)
+{
+ return &d10v_frame_unwind;
+}
+
+/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
+ dummy frame. The frame ID's base needs to match the TOS value
+ saved by save_dummy_frame_tos(), and the PC match the dummy frame's
+ breakpoint. */
+
+static struct frame_id
+d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ ULONGEST base;
+ struct frame_id id;
+ id.pc = frame_pc_unwind (next_frame);
+ frame_unwind_unsigned_register (next_frame, SP_REGNUM, &base);
+ id.base = d10v_make_daddr (base);
+ return id;
+}
+
static gdbarch_init_ftype d10v_gdbarch_init;
static struct gdbarch *
-d10v_gdbarch_init (info, arches)
- struct gdbarch_info info;
- struct gdbarch_list *arches;
+d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
static LONGEST d10v_call_dummy_words[] =
{0};
int d10v_num_regs;
struct gdbarch_tdep *tdep;
gdbarch_register_name_ftype *d10v_register_name;
+ gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
/* Find a candidate among the list of pre-declared architectures. */
arches = gdbarch_list_lookup_by_info (arches, &info);
case bfd_mach_d10v_ts2:
d10v_num_regs = 37;
d10v_register_name = d10v_ts2_register_name;
+ d10v_register_sim_regno = d10v_ts2_register_sim_regno;
tdep->a0_regnum = TS2_A0_REGNUM;
tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
- tdep->register_sim_regno = d10v_ts2_register_sim_regno;
tdep->dmap_register = d10v_ts2_dmap_register;
tdep->imap_register = d10v_ts2_imap_register;
break;
case bfd_mach_d10v_ts3:
d10v_num_regs = 42;
d10v_register_name = d10v_ts3_register_name;
+ d10v_register_sim_regno = d10v_ts3_register_sim_regno;
tdep->a0_regnum = TS3_A0_REGNUM;
tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
- tdep->register_sim_regno = d10v_ts3_register_sim_regno;
tdep->dmap_register = d10v_ts3_dmap_register;
tdep->imap_register = d10v_ts3_imap_register;
break;
set_gdbarch_read_pc (gdbarch, d10v_read_pc);
set_gdbarch_write_pc (gdbarch, d10v_write_pc);
set_gdbarch_read_fp (gdbarch, d10v_read_fp);
- set_gdbarch_write_fp (gdbarch, d10v_write_fp);
set_gdbarch_read_sp (gdbarch, d10v_read_sp);
set_gdbarch_write_sp (gdbarch, d10v_write_sp);
set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
set_gdbarch_register_byte (gdbarch, d10v_register_byte);
set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
- set_gdbarch_max_register_raw_size (gdbarch, 8);
- set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
- set_gdbarch_max_register_virtual_size (gdbarch, 8);
- set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
-
- set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
+ set_gdbarch_register_type (gdbarch, d10v_register_type);
+
+ set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_addr_bit (gdbarch, 32);
+ set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
+ set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
+ set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
+ double'' is 64 bits. */
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ switch (info.byte_order)
+ {
+ case BFD_ENDIAN_BIG:
+ set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
+ set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
+ set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
+ break;
+ case BFD_ENDIAN_LITTLE:
+ set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
+ set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
+ set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
+ break;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "d10v_gdbarch_init: bad byte order for float format");
+ }
- set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
set_gdbarch_call_dummy_length (gdbarch, 0);
- set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
- set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
set_gdbarch_call_dummy_p (gdbarch, 1);
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
- set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
- set_gdbarch_register_convertible (gdbarch, d10v_register_convertible);
- set_gdbarch_register_convert_to_virtual (gdbarch, d10v_register_convert_to_virtual);
- set_gdbarch_register_convert_to_raw (gdbarch, d10v_register_convert_to_raw);
-
set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
- set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
- set_gdbarch_d10v_make_daddr (gdbarch, d10v_make_daddr);
- set_gdbarch_d10v_make_iaddr (gdbarch, d10v_make_iaddr);
- set_gdbarch_d10v_daddr_p (gdbarch, d10v_daddr_p);
- set_gdbarch_d10v_iaddr_p (gdbarch, d10v_iaddr_p);
- set_gdbarch_d10v_convert_daddr_to_raw (gdbarch, d10v_convert_daddr_to_raw);
- set_gdbarch_d10v_convert_iaddr_to_raw (gdbarch, d10v_convert_iaddr_to_raw);
-
set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
- set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
- set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
-
- set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
-
set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_decr_pc_after_break (gdbarch, 4);
set_gdbarch_frame_args_skip (gdbarch, 0);
set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
- set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
- set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
- set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
- set_gdbarch_frame_args_address (gdbarch, d10v_frame_args_address);
- set_gdbarch_frame_locals_address (gdbarch, d10v_frame_locals_address);
+
set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
+ set_gdbarch_stack_align (gdbarch, d10v_stack_align);
+
+ set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
+ set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
+
+ set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info);
+
+ frame_unwind_append_predicate (gdbarch, d10v_frame_p);
+
+ /* Methods for saving / extracting a dummy frame's ID. */
+ set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id);
+ set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
return gdbarch;
}
-extern void (*target_resume_hook) PARAMS ((void));
-extern void (*target_wait_loop_hook) PARAMS ((void));
+extern void (*target_resume_hook) (void);
+extern void (*target_wait_loop_hook) (void);
void
-_initialize_d10v_tdep ()
+_initialize_d10v_tdep (void)
{
register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
target_resume_hook = d10v_eva_prepare_to_trace;
target_wait_loop_hook = d10v_eva_get_trace_data;
- add_com ("regs", class_vars, show_regs, "Print all registers");
+ deprecate_cmd (add_com ("regs", class_vars, show_regs, "Print all registers"),
+ "info registers");
add_com ("itrace", class_support, trace_command,
"Enable tracing of instruction execution.");