-/* Target-dependent code for Mitsubishi D10V, for GDB.
-
- Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
- Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-
-#include "defs.h"
-#include "frame.h"
-#include "symtab.h"
-#include "gdbtypes.h"
-#include "gdbcmd.h"
-#include "gdbcore.h"
-#include "gdb_string.h"
-#include "value.h"
-#include "inferior.h"
-#include "dis-asm.h"
-#include "symfile.h"
-#include "objfiles.h"
-#include "language.h"
-#include "arch-utils.h"
-#include "regcache.h"
-
-#include "floatformat.h"
-#include "gdb/sim-d10v.h"
-#include "sim-regno.h"
-
-struct frame_extra_info
- {
- CORE_ADDR return_pc;
- int frameless;
- int size;
- };
-
-struct gdbarch_tdep
- {
- int a0_regnum;
- int nr_dmap_regs;
- unsigned long (*dmap_register) (int nr);
- unsigned long (*imap_register) (int nr);
- };
-
-/* These are the addresses the D10V-EVA board maps data and
- instruction memory to. */
-
-enum memspace {
- DMEM_START = 0x2000000,
- IMEM_START = 0x1000000,
- STACK_START = 0x200bffe
-};
-
-/* d10v register names. */
-
-enum
- {
- R0_REGNUM = 0,
- R3_REGNUM = 3,
- _FP_REGNUM = 11,
- LR_REGNUM = 13,
- _SP_REGNUM = 15,
- PSW_REGNUM = 16,
- _PC_REGNUM = 18,
- NR_IMAP_REGS = 2,
- NR_A_REGS = 2,
- TS2_NUM_REGS = 37,
- TS3_NUM_REGS = 42,
- /* d10v calling convention. */
- ARG1_REGNUM = R0_REGNUM,
- ARGN_REGNUM = R3_REGNUM,
- RET1_REGNUM = R0_REGNUM,
- };
-
-#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
-#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
-
-/* Local functions */
-
-extern void _initialize_d10v_tdep (void);
-
-static CORE_ADDR d10v_read_sp (void);
-
-static CORE_ADDR d10v_read_fp (void);
-
-static void d10v_eva_prepare_to_trace (void);
-
-static void d10v_eva_get_trace_data (void);
-
-static int prologue_find_regs (unsigned short op, struct frame_info *fi,
- CORE_ADDR addr);
-
-static void d10v_frame_init_saved_regs (struct frame_info *);
-
-static void do_d10v_pop_frame (struct frame_info *fi);
-
-static int
-d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
-{
- return (get_frame_pc (frame) > IMEM_START);
-}
-
-static CORE_ADDR
-d10v_stack_align (CORE_ADDR len)
-{
- return (len + 1) & ~1;
-}
-
-/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
- EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
- and TYPE is the type (which is known to be struct, union or array).
-
- The d10v returns anything less than 8 bytes in size in
- registers. */
-
-static int
-d10v_use_struct_convention (int gcc_p, struct type *type)
-{
- long alignment;
- int i;
- /* The d10v only passes a struct in a register when that structure
- has an alignment that matches the size of a register. */
- /* If the structure doesn't fit in 4 registers, put it on the
- stack. */
- if (TYPE_LENGTH (type) > 8)
- return 1;
- /* If the struct contains only one field, don't put it on the stack
- - gcc can fit it in one or more registers. */
- if (TYPE_NFIELDS (type) == 1)
- return 0;
- alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
- for (i = 1; i < TYPE_NFIELDS (type); i++)
- {
- /* If the alignment changes, just assume it goes on the
- stack. */
- if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
- return 1;
- }
- /* If the alignment is suitable for the d10v's 16 bit registers,
- don't put it on the stack. */
- if (alignment == 2 || alignment == 4)
- return 0;
- return 1;
-}
-
-
-static const unsigned char *
-d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
-{
- static unsigned char breakpoint[] =
- {0x2f, 0x90, 0x5e, 0x00};
- *lenptr = sizeof (breakpoint);
- return breakpoint;
-}
-
-/* Map the REG_NR onto an ascii name. Return NULL or an empty string
- when the reg_nr isn't valid. */
-
-enum ts2_regnums
- {
- TS2_IMAP0_REGNUM = 32,
- TS2_DMAP_REGNUM = 34,
- TS2_NR_DMAP_REGS = 1,
- TS2_A0_REGNUM = 35
- };
-
-static const char *
-d10v_ts2_register_name (int reg_nr)
-{
- static char *register_names[] =
- {
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
- "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
- "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
- "imap0", "imap1", "dmap", "a0", "a1"
- };
- if (reg_nr < 0)
- return NULL;
- if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
- return NULL;
- return register_names[reg_nr];
-}
-
-enum ts3_regnums
- {
- TS3_IMAP0_REGNUM = 36,
- TS3_DMAP0_REGNUM = 38,
- TS3_NR_DMAP_REGS = 4,
- TS3_A0_REGNUM = 32
- };
-
-static const char *
-d10v_ts3_register_name (int reg_nr)
-{
- static char *register_names[] =
- {
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
- "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
- "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
- "a0", "a1",
- "spi", "spu",
- "imap0", "imap1",
- "dmap0", "dmap1", "dmap2", "dmap3"
- };
- if (reg_nr < 0)
- return NULL;
- if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
- return NULL;
- return register_names[reg_nr];
-}
-
-/* Access the DMAP/IMAP registers in a target independent way.
-
- Divide the D10V's 64k data space into four 16k segments:
- 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
- 0xc000 -- 0xffff.
-
- On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
- 0x7fff) always map to the on-chip data RAM, and the fourth always
- maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
- unified memory or instruction memory, under the control of the
- single DMAP register.
-
- On the TS3, there are four DMAP registers, each of which controls
- one of the segments. */
-
-static unsigned long
-d10v_ts2_dmap_register (int reg_nr)
-{
- switch (reg_nr)
- {
- case 0:
- case 1:
- return 0x2000;
- case 2:
- return read_register (TS2_DMAP_REGNUM);
- default:
- return 0;
- }
-}
-
-static unsigned long
-d10v_ts3_dmap_register (int reg_nr)
-{
- return read_register (TS3_DMAP0_REGNUM + reg_nr);
-}
-
-static unsigned long
-d10v_dmap_register (int reg_nr)
-{
- return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
-}
-
-static unsigned long
-d10v_ts2_imap_register (int reg_nr)
-{
- return read_register (TS2_IMAP0_REGNUM + reg_nr);
-}
-
-static unsigned long
-d10v_ts3_imap_register (int reg_nr)
-{
- return read_register (TS3_IMAP0_REGNUM + reg_nr);
-}
-
-static unsigned long
-d10v_imap_register (int reg_nr)
-{
- return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
-}
-
-/* MAP GDB's internal register numbering (determined by the layout fo
- the REGISTER_BYTE array) onto the simulator's register
- numbering. */
-
-static int
-d10v_ts2_register_sim_regno (int nr)
-{
- if (legacy_register_sim_regno (nr) < 0)
- return legacy_register_sim_regno (nr);
- if (nr >= TS2_IMAP0_REGNUM
- && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
- return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
- if (nr == TS2_DMAP_REGNUM)
- return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
- if (nr >= TS2_A0_REGNUM
- && nr < TS2_A0_REGNUM + NR_A_REGS)
- return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
- return nr;
-}
-
-static int
-d10v_ts3_register_sim_regno (int nr)
-{
- if (legacy_register_sim_regno (nr) < 0)
- return legacy_register_sim_regno (nr);
- if (nr >= TS3_IMAP0_REGNUM
- && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
- return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
- if (nr >= TS3_DMAP0_REGNUM
- && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
- return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
- if (nr >= TS3_A0_REGNUM
- && nr < TS3_A0_REGNUM + NR_A_REGS)
- return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
- return nr;
-}
-
-/* Index within `registers' of the first byte of the space for
- register REG_NR. */
-
-static int
-d10v_register_byte (int reg_nr)
-{
- if (reg_nr < A0_REGNUM)
- return (reg_nr * 2);
- else if (reg_nr < (A0_REGNUM + NR_A_REGS))
- return (A0_REGNUM * 2
- + (reg_nr - A0_REGNUM) * 8);
- else
- return (A0_REGNUM * 2
- + NR_A_REGS * 8
- + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
-}
-
-/* Number of bytes of storage in the actual machine representation for
- register REG_NR. */
-
-static int
-d10v_register_raw_size (int reg_nr)
-{
- if (reg_nr < A0_REGNUM)
- return 2;
- else if (reg_nr < (A0_REGNUM + NR_A_REGS))
- return 8;
- else
- return 2;
-}
-
-/* Return the GDB type object for the "standard" data type
- of data in register N. */
-
-static struct type *
-d10v_register_virtual_type (int reg_nr)
-{
- if (reg_nr == PC_REGNUM)
- return builtin_type_void_func_ptr;
- if (reg_nr == _SP_REGNUM || reg_nr == _FP_REGNUM)
- return builtin_type_void_data_ptr;
- else if (reg_nr >= A0_REGNUM
- && reg_nr < (A0_REGNUM + NR_A_REGS))
- return builtin_type_int64;
- else
- return builtin_type_int16;
-}
-
-static int
-d10v_daddr_p (CORE_ADDR x)
-{
- return (((x) & 0x3000000) == DMEM_START);
-}
-
-static int
-d10v_iaddr_p (CORE_ADDR x)
-{
- return (((x) & 0x3000000) == IMEM_START);
-}
-
-static CORE_ADDR
-d10v_make_daddr (CORE_ADDR x)
-{
- return ((x) | DMEM_START);
-}
-
-static CORE_ADDR
-d10v_make_iaddr (CORE_ADDR x)
-{
- if (d10v_iaddr_p (x))
- return x; /* Idempotency -- x is already in the IMEM space. */
- else
- return (((x) << 2) | IMEM_START);
-}
-
-static CORE_ADDR
-d10v_convert_iaddr_to_raw (CORE_ADDR x)
-{
- return (((x) >> 2) & 0xffff);
-}
-
-static CORE_ADDR
-d10v_convert_daddr_to_raw (CORE_ADDR x)
-{
- return ((x) & 0xffff);
-}
-
-static void
-d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
-{
- /* Is it a code address? */
- if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
- || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
- {
- store_unsigned_integer (buf, TYPE_LENGTH (type),
- d10v_convert_iaddr_to_raw (addr));
- }
- else
- {
- /* Strip off any upper segment bits. */
- store_unsigned_integer (buf, TYPE_LENGTH (type),
- d10v_convert_daddr_to_raw (addr));
- }
-}
-
-static CORE_ADDR
-d10v_pointer_to_address (struct type *type, const void *buf)
-{
- CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
-
- /* Is it a code address? */
- if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
- || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
- || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
- return d10v_make_iaddr (addr);
- else
- return d10v_make_daddr (addr);
-}
-
-/* Don't do anything if we have an integer, this way users can type 'x
- <addr>' w/o having gdb outsmart them. The internal gdb conversions
- to the correct space are taken care of in the pointer_to_address
- function. If we don't do this, 'x $fp' wouldn't work. */
-static CORE_ADDR
-d10v_integer_to_address (struct type *type, void *buf)
-{
- LONGEST val;
- val = unpack_long (type, buf);
- return val;
-}
-
-/* Store the address of the place in which to copy the structure the
- subroutine will return. This is called from call_function.
-
- We store structs through a pointer passed in the first Argument
- register. */
-
-static void
-d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
-{
- write_register (ARG1_REGNUM, (addr));
-}
-
-/* Write into appropriate registers a function return value
- of type TYPE, given in virtual format.
-
- Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
-
-static void
-d10v_store_return_value (struct type *type, char *valbuf)
-{
- char tmp = 0;
- /* Only char return values need to be shifted right within R0. */
- if (TYPE_LENGTH (type) == 1
- && TYPE_CODE (type) == TYPE_CODE_INT)
- {
- /* zero the high byte */
- deprecated_write_register_bytes (REGISTER_BYTE (RET1_REGNUM), &tmp, 1);
- /* copy the low byte */
- deprecated_write_register_bytes (REGISTER_BYTE (RET1_REGNUM) + 1,
- valbuf, 1);
- }
- else
- deprecated_write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
- valbuf, TYPE_LENGTH (type));
-}
-
-/* Extract from an array REGBUF containing the (raw) register state
- the address in which a function should return its structure value,
- as a CORE_ADDR (or an expression that can be used as one). */
-
-static CORE_ADDR
-d10v_extract_struct_value_address (char *regbuf)
-{
- return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
- REGISTER_RAW_SIZE (ARG1_REGNUM))
- | DMEM_START);
-}
-
-static CORE_ADDR
-d10v_frame_saved_pc (struct frame_info *frame)
-{
- if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), frame->frame, frame->frame))
- return d10v_make_iaddr (deprecated_read_register_dummy (get_frame_pc (frame),
- frame->frame,
- PC_REGNUM));
- else
- return ((frame)->extra_info->return_pc);
-}
-
-/* Immediately after a function call, return the saved pc. We can't
- use frame->return_pc beause that is determined by reading R13 off
- the stack and that may not be written yet. */
-
-static CORE_ADDR
-d10v_saved_pc_after_call (struct frame_info *frame)
-{
- return ((read_register (LR_REGNUM) << 2)
- | IMEM_START);
-}
-
-/* Discard from the stack the innermost frame, restoring all saved
- registers. */
-
-static void
-d10v_pop_frame (void)
-{
- generic_pop_current_frame (do_d10v_pop_frame);
-}
-
-static void
-do_d10v_pop_frame (struct frame_info *fi)
-{
- CORE_ADDR fp;
- int regnum;
- char raw_buffer[8];
-
- fp = get_frame_base (fi);
- /* fill out fsr with the address of where each */
- /* register was stored in the frame */
- d10v_frame_init_saved_regs (fi);
-
- /* now update the current registers with the old values */
- for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
- {
- if (get_frame_saved_regs (fi)[regnum])
- {
- read_memory (get_frame_saved_regs (fi)[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
- deprecated_write_register_bytes (REGISTER_BYTE (regnum), raw_buffer,
- REGISTER_RAW_SIZE (regnum));
- }
- }
- for (regnum = 0; regnum < SP_REGNUM; regnum++)
- {
- if (get_frame_saved_regs (fi)[regnum])
- {
- write_register (regnum, read_memory_unsigned_integer (get_frame_saved_regs (fi)[regnum], REGISTER_RAW_SIZE (regnum)));
- }
- }
- if (get_frame_saved_regs (fi)[PSW_REGNUM])
- {
- write_register (PSW_REGNUM, read_memory_unsigned_integer (get_frame_saved_regs (fi)[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
- }
-
- write_register (PC_REGNUM, read_register (LR_REGNUM));
- write_register (SP_REGNUM, fp + fi->extra_info->size);
- target_store_registers (-1);
- flush_cached_frames ();
-}
-
-static int
-check_prologue (unsigned short op)
-{
- /* st rn, @-sp */
- if ((op & 0x7E1F) == 0x6C1F)
- return 1;
-
- /* st2w rn, @-sp */
- if ((op & 0x7E3F) == 0x6E1F)
- return 1;
-
- /* subi sp, n */
- if ((op & 0x7FE1) == 0x01E1)
- return 1;
-
- /* mv r11, sp */
- if (op == 0x417E)
- return 1;
-
- /* nop */
- if (op == 0x5E00)
- return 1;
-
- /* st rn, @sp */
- if ((op & 0x7E1F) == 0x681E)
- return 1;
-
- /* st2w rn, @sp */
- if ((op & 0x7E3F) == 0x3A1E)
- return 1;
-
- return 0;
-}
-
-static CORE_ADDR
-d10v_skip_prologue (CORE_ADDR pc)
-{
- unsigned long op;
- unsigned short op1, op2;
- CORE_ADDR func_addr, func_end;
- struct symtab_and_line sal;
-
- /* If we have line debugging information, then the end of the */
- /* prologue should the first assembly instruction of the first source line */
- if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
- {
- sal = find_pc_line (func_addr, 0);
- if (sal.end && sal.end < func_end)
- return sal.end;
- }
-
- if (target_read_memory (pc, (char *) &op, 4))
- return pc; /* Can't access it -- assume no prologue. */
-
- while (1)
- {
- op = (unsigned long) read_memory_integer (pc, 4);
- if ((op & 0xC0000000) == 0xC0000000)
- {
- /* long instruction */
- if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
- ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
- ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
- break;
- }
- else
- {
- /* short instructions */
- if ((op & 0xC0000000) == 0x80000000)
- {
- op2 = (op & 0x3FFF8000) >> 15;
- op1 = op & 0x7FFF;
- }
- else
- {
- op1 = (op & 0x3FFF8000) >> 15;
- op2 = op & 0x7FFF;
- }
- if (check_prologue (op1))
- {
- if (!check_prologue (op2))
- {
- /* if the previous opcode was really part of the prologue */
- /* and not just a NOP, then we want to break after both instructions */
- if (op1 != 0x5E00)
- pc += 4;
- break;
- }
- }
- else
- break;
- }
- pc += 4;
- }
- return pc;
-}
-
-/* Given a GDB frame, determine the address of the calling function's
- frame. This will be used to create a new GDB frame struct, and
- then INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC will be
- called for the new frame. */
-
-static CORE_ADDR
-d10v_frame_chain (struct frame_info *fi)
-{
- CORE_ADDR addr;
-
- /* A generic call dummy's frame is the same as caller's. */
- if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame, fi->frame))
- return fi->frame;
-
- d10v_frame_init_saved_regs (fi);
-
-
- if (fi->extra_info->return_pc == IMEM_START
- || inside_entry_file (fi->extra_info->return_pc))
- {
- /* This is meant to halt the backtrace at "_start".
- Make sure we don't halt it at a generic dummy frame. */
- if (!DEPRECATED_PC_IN_CALL_DUMMY (fi->extra_info->return_pc, 0, 0))
- return (CORE_ADDR) 0;
- }
-
- if (!get_frame_saved_regs (fi)[FP_REGNUM])
- {
- if (!get_frame_saved_regs (fi)[SP_REGNUM]
- || get_frame_saved_regs (fi)[SP_REGNUM] == STACK_START)
- return (CORE_ADDR) 0;
-
- return get_frame_saved_regs (fi)[SP_REGNUM];
- }
-
- addr = read_memory_unsigned_integer (get_frame_saved_regs (fi)[FP_REGNUM],
- REGISTER_RAW_SIZE (FP_REGNUM));
- if (addr == 0)
- return (CORE_ADDR) 0;
-
- return d10v_make_daddr (addr);
-}
-
-static int next_addr, uses_frame;
-
-static int
-prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
-{
- int n;
-
- /* st rn, @-sp */
- if ((op & 0x7E1F) == 0x6C1F)
- {
- n = (op & 0x1E0) >> 5;
- next_addr -= 2;
- get_frame_saved_regs (fi)[n] = next_addr;
- return 1;
- }
-
- /* st2w rn, @-sp */
- else if ((op & 0x7E3F) == 0x6E1F)
- {
- n = (op & 0x1E0) >> 5;
- next_addr -= 4;
- get_frame_saved_regs (fi)[n] = next_addr;
- get_frame_saved_regs (fi)[n + 1] = next_addr + 2;
- return 1;
- }
-
- /* subi sp, n */
- if ((op & 0x7FE1) == 0x01E1)
- {
- n = (op & 0x1E) >> 1;
- if (n == 0)
- n = 16;
- next_addr -= n;
- return 1;
- }
-
- /* mv r11, sp */
- if (op == 0x417E)
- {
- uses_frame = 1;
- return 1;
- }
-
- /* nop */
- if (op == 0x5E00)
- return 1;
-
- /* st rn, @sp */
- if ((op & 0x7E1F) == 0x681E)
- {
- n = (op & 0x1E0) >> 5;
- get_frame_saved_regs (fi)[n] = next_addr;
- return 1;
- }
-
- /* st2w rn, @sp */
- if ((op & 0x7E3F) == 0x3A1E)
- {
- n = (op & 0x1E0) >> 5;
- get_frame_saved_regs (fi)[n] = next_addr;
- get_frame_saved_regs (fi)[n + 1] = next_addr + 2;
- return 1;
- }
-
- return 0;
-}
-
-/* Put here the code to store, into fi->saved_regs, the addresses of
- the saved registers of frame described by FRAME_INFO. This
- includes special registers such as pc and fp saved in special ways
- in the stack frame. sp is even more special: the address we return
- for it IS the sp for the next frame. */
-
-static void
-d10v_frame_init_saved_regs (struct frame_info *fi)
-{
- CORE_ADDR fp, pc;
- unsigned long op;
- unsigned short op1, op2;
- int i;
-
- fp = fi->frame;
- memset (get_frame_saved_regs (fi), 0, SIZEOF_FRAME_SAVED_REGS);
- next_addr = 0;
-
- pc = get_pc_function_start (get_frame_pc (fi));
-
- uses_frame = 0;
- while (1)
- {
- op = (unsigned long) read_memory_integer (pc, 4);
- if ((op & 0xC0000000) == 0xC0000000)
- {
- /* long instruction */
- if ((op & 0x3FFF0000) == 0x01FF0000)
- {
- /* add3 sp,sp,n */
- short n = op & 0xFFFF;
- next_addr += n;
- }
- else if ((op & 0x3F0F0000) == 0x340F0000)
- {
- /* st rn, @(offset,sp) */
- short offset = op & 0xFFFF;
- short n = (op >> 20) & 0xF;
- get_frame_saved_regs (fi)[n] = next_addr + offset;
- }
- else if ((op & 0x3F1F0000) == 0x350F0000)
- {
- /* st2w rn, @(offset,sp) */
- short offset = op & 0xFFFF;
- short n = (op >> 20) & 0xF;
- get_frame_saved_regs (fi)[n] = next_addr + offset;
- get_frame_saved_regs (fi)[n + 1] = next_addr + offset + 2;
- }
- else
- break;
- }
- else
- {
- /* short instructions */
- if ((op & 0xC0000000) == 0x80000000)
- {
- op2 = (op & 0x3FFF8000) >> 15;
- op1 = op & 0x7FFF;
- }
- else
- {
- op1 = (op & 0x3FFF8000) >> 15;
- op2 = op & 0x7FFF;
- }
- if (!prologue_find_regs (op1, fi, pc)
- || !prologue_find_regs (op2, fi, pc))
- break;
- }
- pc += 4;
- }
-
- fi->extra_info->size = -next_addr;
-
- if (!(fp & 0xffff))
- fp = d10v_read_sp ();
-
- for (i = 0; i < NUM_REGS - 1; i++)
- if (get_frame_saved_regs (fi)[i])
- {
- get_frame_saved_regs (fi)[i] = fp - (next_addr - get_frame_saved_regs (fi)[i]);
- }
-
- if (get_frame_saved_regs (fi)[LR_REGNUM])
- {
- CORE_ADDR return_pc
- = read_memory_unsigned_integer (get_frame_saved_regs (fi)[LR_REGNUM],
- REGISTER_RAW_SIZE (LR_REGNUM));
- fi->extra_info->return_pc = d10v_make_iaddr (return_pc);
- }
- else
- {
- fi->extra_info->return_pc = d10v_make_iaddr (read_register (LR_REGNUM));
- }
-
- /* The SP is not normally (ever?) saved, but check anyway */
- if (!get_frame_saved_regs (fi)[SP_REGNUM])
- {
- /* if the FP was saved, that means the current FP is valid, */
- /* otherwise, it isn't being used, so we use the SP instead */
- if (uses_frame)
- get_frame_saved_regs (fi)[SP_REGNUM]
- = d10v_read_fp () + fi->extra_info->size;
- else
- {
- get_frame_saved_regs (fi)[SP_REGNUM] = fp + fi->extra_info->size;
- fi->extra_info->frameless = 1;
- get_frame_saved_regs (fi)[FP_REGNUM] = 0;
- }
- }
-}
-
-static void
-d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
-{
- fi->extra_info = (struct frame_extra_info *)
- frame_obstack_alloc (sizeof (struct frame_extra_info));
- frame_saved_regs_zalloc (fi);
-
- fi->extra_info->frameless = 0;
- fi->extra_info->size = 0;
- fi->extra_info->return_pc = 0;
-
- /* If get_frame_pc (fi) is zero, but this is not the outermost frame,
- then let's snatch the return_pc from the callee, so that
- DEPRECATED_PC_IN_CALL_DUMMY will work. */
- if (get_frame_pc (fi) == 0 && fi->level != 0 && fi->next != NULL)
- deprecated_update_frame_pc_hack (fi, d10v_frame_saved_pc (fi->next));
-
- /* The call dummy doesn't save any registers on the stack, so we can
- return now. */
- if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame, fi->frame))
- {
- return;
- }
- else
- {
- d10v_frame_init_saved_regs (fi);
- }
-}
-
-static void
-show_regs (char *args, int from_tty)
-{
- int a;
- printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
- (long) read_register (PC_REGNUM),
- (long) d10v_make_iaddr (read_register (PC_REGNUM)),
- (long) read_register (PSW_REGNUM),
- (long) read_register (24),
- (long) read_register (25),
- (long) read_register (23));
- printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
- (long) read_register (0),
- (long) read_register (1),
- (long) read_register (2),
- (long) read_register (3),
- (long) read_register (4),
- (long) read_register (5),
- (long) read_register (6),
- (long) read_register (7));
- printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
- (long) read_register (8),
- (long) read_register (9),
- (long) read_register (10),
- (long) read_register (11),
- (long) read_register (12),
- (long) read_register (13),
- (long) read_register (14),
- (long) read_register (15));
- for (a = 0; a < NR_IMAP_REGS; a++)
- {
- if (a > 0)
- printf_filtered (" ");
- printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
- }
- if (NR_DMAP_REGS == 1)
- printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
- else
- {
- for (a = 0; a < NR_DMAP_REGS; a++)
- {
- printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
- }
- printf_filtered ("\n");
- }
- printf_filtered ("A0-A%d", NR_A_REGS - 1);
- for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
- {
- char num[MAX_REGISTER_RAW_SIZE];
- int i;
- printf_filtered (" ");
- deprecated_read_register_gen (a, (char *) &num);
- for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
- {
- printf_filtered ("%02x", (num[i] & 0xff));
- }
- }
- printf_filtered ("\n");
-}
-
-static CORE_ADDR
-d10v_read_pc (ptid_t ptid)
-{
- ptid_t save_ptid;
- CORE_ADDR pc;
- CORE_ADDR retval;
-
- save_ptid = inferior_ptid;
- inferior_ptid = ptid;
- pc = (int) read_register (PC_REGNUM);
- inferior_ptid = save_ptid;
- retval = d10v_make_iaddr (pc);
- return retval;
-}
-
-static void
-d10v_write_pc (CORE_ADDR val, ptid_t ptid)
-{
- ptid_t save_ptid;
-
- save_ptid = inferior_ptid;
- inferior_ptid = ptid;
- write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
- inferior_ptid = save_ptid;
-}
-
-static CORE_ADDR
-d10v_read_sp (void)
-{
- return (d10v_make_daddr (read_register (SP_REGNUM)));
-}
-
-static void
-d10v_write_sp (CORE_ADDR val)
-{
- write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
-}
-
-static CORE_ADDR
-d10v_read_fp (void)
-{
- return (d10v_make_daddr (read_register (FP_REGNUM)));
-}
-
-/* Function: push_return_address (pc)
- Set up the return address for the inferior function call.
- Needed for targets where we don't actually execute a JSR/BSR instruction */
-
-static CORE_ADDR
-d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
-{
- write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
- return sp;
-}
-
-
-/* When arguments must be pushed onto the stack, they go on in reverse
- order. The below implements a FILO (stack) to do this. */
-
-struct stack_item
-{
- int len;
- struct stack_item *prev;
- void *data;
-};
-
-static struct stack_item *push_stack_item (struct stack_item *prev,
- void *contents, int len);
-static struct stack_item *
-push_stack_item (struct stack_item *prev, void *contents, int len)
-{
- struct stack_item *si;
- si = xmalloc (sizeof (struct stack_item));
- si->data = xmalloc (len);
- si->len = len;
- si->prev = prev;
- memcpy (si->data, contents, len);
- return si;
-}
-
-static struct stack_item *pop_stack_item (struct stack_item *si);
-static struct stack_item *
-pop_stack_item (struct stack_item *si)
-{
- struct stack_item *dead = si;
- si = si->prev;
- xfree (dead->data);
- xfree (dead);
- return si;
-}
-
-
-static CORE_ADDR
-d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
-{
- int i;
- int regnum = ARG1_REGNUM;
- struct stack_item *si = NULL;
- long val;
-
- /* If struct_return is true, then the struct return address will
- consume one argument-passing register. No need to actually
- write the value to the register -- that's done by
- d10v_store_struct_return(). */
-
- if (struct_return)
- regnum++;
-
- /* Fill in registers and arg lists */
- for (i = 0; i < nargs; i++)
- {
- struct value *arg = args[i];
- struct type *type = check_typedef (VALUE_TYPE (arg));
- char *contents = VALUE_CONTENTS (arg);
- int len = TYPE_LENGTH (type);
- int aligned_regnum = (regnum + 1) & ~1;
-
- /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
- if (len <= 2 && regnum <= ARGN_REGNUM)
- /* fits in a single register, do not align */
- {
- val = extract_unsigned_integer (contents, len);
- write_register (regnum++, val);
- }
- else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
- /* value fits in remaining registers, store keeping left
- aligned */
- {
- int b;
- regnum = aligned_regnum;
- for (b = 0; b < (len & ~1); b += 2)
- {
- val = extract_unsigned_integer (&contents[b], 2);
- write_register (regnum++, val);
- }
- if (b < len)
- {
- val = extract_unsigned_integer (&contents[b], 1);
- write_register (regnum++, (val << 8));
- }
- }
- else
- {
- /* arg will go onto stack */
- regnum = ARGN_REGNUM + 1;
- si = push_stack_item (si, contents, len);
- }
- }
-
- while (si)
- {
- sp = (sp - si->len) & ~1;
- write_memory (sp, si->data, si->len);
- si = pop_stack_item (si);
- }
-
- return sp;
-}
-
-
-/* Given a return value in `regbuf' with a type `valtype',
- extract and copy its value into `valbuf'. */
-
-static void
-d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
- char *valbuf)
-{
- int len;
-#if 0
- printf("RET: TYPE=%d len=%d r%d=0x%x\n", TYPE_CODE (type),
- TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM,
- (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM),
- REGISTER_RAW_SIZE (RET1_REGNUM)));
-#endif
- len = TYPE_LENGTH (type);
- if (len == 1)
- {
- unsigned short c;
-
- c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM),
- REGISTER_RAW_SIZE (RET1_REGNUM));
- store_unsigned_integer (valbuf, 1, c);
- }
- else if ((len & 1) == 0)
- memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
- else
- {
- /* For return values of odd size, the first byte is in the
- least significant part of the first register. The
- remaining bytes in remaining registers. Interestingly,
- when such values are passed in, the last byte is in the
- most significant byte of that same register - wierd. */
- memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
- }
-}
-
-/* Translate a GDB virtual ADDR/LEN into a format the remote target
- understands. Returns number of bytes that can be transfered
- starting at TARG_ADDR. Return ZERO if no bytes can be transfered
- (segmentation fault). Since the simulator knows all about how the
- VM system works, we just call that to do the translation. */
-
-static void
-remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
- CORE_ADDR *targ_addr, int *targ_len)
-{
- long out_addr;
- long out_len;
- out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
- &out_addr,
- d10v_dmap_register,
- d10v_imap_register);
- *targ_addr = out_addr;
- *targ_len = out_len;
-}
-
-
-/* The following code implements access to, and display of, the D10V's
- instruction trace buffer. The buffer consists of 64K or more
- 4-byte words of data, of which each words includes an 8-bit count,
- an 8-bit segment number, and a 16-bit instruction address.
-
- In theory, the trace buffer is continuously capturing instruction
- data that the CPU presents on its "debug bus", but in practice, the
- ROMified GDB stub only enables tracing when it continues or steps
- the program, and stops tracing when the program stops; so it
- actually works for GDB to read the buffer counter out of memory and
- then read each trace word. The counter records where the tracing
- stops, but there is no record of where it started, so we remember
- the PC when we resumed and then search backwards in the trace
- buffer for a word that includes that address. This is not perfect,
- because you will miss trace data if the resumption PC is the target
- of a branch. (The value of the buffer counter is semi-random, any
- trace data from a previous program stop is gone.) */
-
-/* The address of the last word recorded in the trace buffer. */
-
-#define DBBC_ADDR (0xd80000)
-
-/* The base of the trace buffer, at least for the "Board_0". */
-
-#define TRACE_BUFFER_BASE (0xf40000)
-
-static void trace_command (char *, int);
-
-static void untrace_command (char *, int);
-
-static void trace_info (char *, int);
-
-static void tdisassemble_command (char *, int);
-
-static void display_trace (int, int);
-
-/* True when instruction traces are being collected. */
-
-static int tracing;
-
-/* Remembered PC. */
-
-static CORE_ADDR last_pc;
-
-/* True when trace output should be displayed whenever program stops. */
-
-static int trace_display;
-
-/* True when trace listing should include source lines. */
-
-static int default_trace_show_source = 1;
-
-struct trace_buffer
- {
- int size;
- short *counts;
- CORE_ADDR *addrs;
- }
-trace_data;
-
-static void
-trace_command (char *args, int from_tty)
-{
- /* Clear the host-side trace buffer, allocating space if needed. */
- trace_data.size = 0;
- if (trace_data.counts == NULL)
- trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
- if (trace_data.addrs == NULL)
- trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
-
- tracing = 1;
-
- printf_filtered ("Tracing is now on.\n");
-}
-
-static void
-untrace_command (char *args, int from_tty)
-{
- tracing = 0;
-
- printf_filtered ("Tracing is now off.\n");
-}
-
-static void
-trace_info (char *args, int from_tty)
-{
- int i;
-
- if (trace_data.size)
- {
- printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
-
- for (i = 0; i < trace_data.size; ++i)
- {
- printf_filtered ("%d: %d instruction%s at 0x%s\n",
- i,
- trace_data.counts[i],
- (trace_data.counts[i] == 1 ? "" : "s"),
- paddr_nz (trace_data.addrs[i]));
- }
- }
- else
- printf_filtered ("No entries in trace buffer.\n");
-
- printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
-}
-
-/* Print the instruction at address MEMADDR in debugged memory,
- on STREAM. Returns length of the instruction, in bytes. */
-
-static int
-print_insn (CORE_ADDR memaddr, struct ui_file *stream)
-{
- /* If there's no disassembler, something is very wrong. */
- if (tm_print_insn == NULL)
- internal_error (__FILE__, __LINE__,
- "print_insn: no disassembler");
-
- if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
- tm_print_insn_info.endian = BFD_ENDIAN_BIG;
- else
- tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
- return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
-}
-
-static void
-d10v_eva_prepare_to_trace (void)
-{
- if (!tracing)
- return;
-
- last_pc = read_register (PC_REGNUM);
-}
-
-/* Collect trace data from the target board and format it into a form
- more useful for display. */
-
-static void
-d10v_eva_get_trace_data (void)
-{
- int count, i, j, oldsize;
- int trace_addr, trace_seg, trace_cnt, next_cnt;
- unsigned int last_trace, trace_word, next_word;
- unsigned int *tmpspace;
-
- if (!tracing)
- return;
-
- tmpspace = xmalloc (65536 * sizeof (unsigned int));
-
- last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
-
- /* Collect buffer contents from the target, stopping when we reach
- the word recorded when execution resumed. */
-
- count = 0;
- while (last_trace > 0)
- {
- QUIT;
- trace_word =
- read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
- trace_addr = trace_word & 0xffff;
- last_trace -= 4;
- /* Ignore an apparently nonsensical entry. */
- if (trace_addr == 0xffd5)
- continue;
- tmpspace[count++] = trace_word;
- if (trace_addr == last_pc)
- break;
- if (count > 65535)
- break;
- }
-
- /* Move the data to the host-side trace buffer, adjusting counts to
- include the last instruction executed and transforming the address
- into something that GDB likes. */
-
- for (i = 0; i < count; ++i)
- {
- trace_word = tmpspace[i];
- next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
- trace_addr = trace_word & 0xffff;
- next_cnt = (next_word >> 24) & 0xff;
- j = trace_data.size + count - i - 1;
- trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
- trace_data.counts[j] = next_cnt + 1;
- }
-
- oldsize = trace_data.size;
- trace_data.size += count;
-
- xfree (tmpspace);
-
- if (trace_display)
- display_trace (oldsize, trace_data.size);
-}
-
-static void
-tdisassemble_command (char *arg, int from_tty)
-{
- int i, count;
- CORE_ADDR low, high;
- char *space_index;
-
- if (!arg)
- {
- low = 0;
- high = trace_data.size;
- }
- else if (!(space_index = (char *) strchr (arg, ' ')))
- {
- low = parse_and_eval_address (arg);
- high = low + 5;
- }
- else
- {
- /* Two arguments. */
- *space_index = '\0';
- low = parse_and_eval_address (arg);
- high = parse_and_eval_address (space_index + 1);
- if (high < low)
- high = low;
- }
-
- printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
-
- display_trace (low, high);
-
- printf_filtered ("End of trace dump.\n");
- gdb_flush (gdb_stdout);
-}
-
-static void
-display_trace (int low, int high)
-{
- int i, count, trace_show_source, first, suppress;
- CORE_ADDR next_address;
-
- trace_show_source = default_trace_show_source;
- if (!have_full_symbols () && !have_partial_symbols ())
- {
- trace_show_source = 0;
- printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
- printf_filtered ("Trace will not display any source.\n");
- }
-
- first = 1;
- suppress = 0;
- for (i = low; i < high; ++i)
- {
- next_address = trace_data.addrs[i];
- count = trace_data.counts[i];
- while (count-- > 0)
- {
- QUIT;
- if (trace_show_source)
- {
- struct symtab_and_line sal, sal_prev;
-
- sal_prev = find_pc_line (next_address - 4, 0);
- sal = find_pc_line (next_address, 0);
-
- if (sal.symtab)
- {
- if (first || sal.line != sal_prev.line)
- print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
- suppress = 0;
- }
- else
- {
- if (!suppress)
- /* FIXME-32x64--assumes sal.pc fits in long. */
- printf_filtered ("No source file for address %s.\n",
- local_hex_string ((unsigned long) sal.pc));
- suppress = 1;
- }
- }
- first = 0;
- print_address (next_address, gdb_stdout);
- printf_filtered (":");
- printf_filtered ("\t");
- wrap_here (" ");
- next_address = next_address + print_insn (next_address, gdb_stdout);
- printf_filtered ("\n");
- gdb_flush (gdb_stdout);
- }
- }
-}
-
-
-static gdbarch_init_ftype d10v_gdbarch_init;
-
-static struct gdbarch *
-d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
-{
- static LONGEST d10v_call_dummy_words[] =
- {0};
- struct gdbarch *gdbarch;
- int d10v_num_regs;
- struct gdbarch_tdep *tdep;
- gdbarch_register_name_ftype *d10v_register_name;
- gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
-
- /* Find a candidate among the list of pre-declared architectures. */
- arches = gdbarch_list_lookup_by_info (arches, &info);
- if (arches != NULL)
- return arches->gdbarch;
-
- /* None found, create a new architecture from the information
- provided. */
- tdep = XMALLOC (struct gdbarch_tdep);
- gdbarch = gdbarch_alloc (&info, tdep);
-
- /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
- ready to unwind the PC first (see frame.c:get_prev_frame()). */
- set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
-
- switch (info.bfd_arch_info->mach)
- {
- case bfd_mach_d10v_ts2:
- d10v_num_regs = 37;
- d10v_register_name = d10v_ts2_register_name;
- d10v_register_sim_regno = d10v_ts2_register_sim_regno;
- tdep->a0_regnum = TS2_A0_REGNUM;
- tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
- tdep->dmap_register = d10v_ts2_dmap_register;
- tdep->imap_register = d10v_ts2_imap_register;
- break;
- default:
- case bfd_mach_d10v_ts3:
- d10v_num_regs = 42;
- d10v_register_name = d10v_ts3_register_name;
- d10v_register_sim_regno = d10v_ts3_register_sim_regno;
- tdep->a0_regnum = TS3_A0_REGNUM;
- tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
- tdep->dmap_register = d10v_ts3_dmap_register;
- tdep->imap_register = d10v_ts3_imap_register;
- break;
- }
-
- set_gdbarch_read_pc (gdbarch, d10v_read_pc);
- set_gdbarch_write_pc (gdbarch, d10v_write_pc);
- set_gdbarch_read_fp (gdbarch, d10v_read_fp);
- set_gdbarch_read_sp (gdbarch, d10v_read_sp);
- set_gdbarch_write_sp (gdbarch, d10v_write_sp);
-
- set_gdbarch_num_regs (gdbarch, d10v_num_regs);
- set_gdbarch_sp_regnum (gdbarch, 15);
- set_gdbarch_fp_regnum (gdbarch, 11);
- set_gdbarch_pc_regnum (gdbarch, 18);
- set_gdbarch_register_name (gdbarch, d10v_register_name);
- set_gdbarch_register_size (gdbarch, 2);
- set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
- set_gdbarch_register_byte (gdbarch, d10v_register_byte);
- set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
- set_gdbarch_max_register_raw_size (gdbarch, 8);
- set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
- set_gdbarch_max_register_virtual_size (gdbarch, 8);
- set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
-
- set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
- set_gdbarch_addr_bit (gdbarch, 32);
- set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
- set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
- set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
- set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
- set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
- set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
- /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
- double'' is 64 bits. */
- set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
- switch (info.byte_order)
- {
- case BFD_ENDIAN_BIG:
- set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
- set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
- set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
- break;
- case BFD_ENDIAN_LITTLE:
- set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
- set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
- set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
- break;
- default:
- internal_error (__FILE__, __LINE__,
- "d10v_gdbarch_init: bad byte order for float format");
- }
-
- set_gdbarch_call_dummy_length (gdbarch, 0);
- set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
- set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
- set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
- set_gdbarch_call_dummy_start_offset (gdbarch, 0);
- set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
- set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
- set_gdbarch_call_dummy_p (gdbarch, 1);
- set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
- set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
-
- set_gdbarch_deprecated_extract_return_value (gdbarch, d10v_extract_return_value);
- set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
- set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
- set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
-
- set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
- set_gdbarch_deprecated_store_return_value (gdbarch, d10v_store_return_value);
- set_gdbarch_deprecated_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
- set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
-
- set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
- set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
-
- set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
-
- set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
- set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
- set_gdbarch_decr_pc_after_break (gdbarch, 4);
- set_gdbarch_function_start_offset (gdbarch, 0);
- set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
-
- set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
-
- set_gdbarch_frame_args_skip (gdbarch, 0);
- set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
- set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
- set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
- set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
-
- set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
- set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
- set_gdbarch_stack_align (gdbarch, d10v_stack_align);
-
- set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
- set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
-
- return gdbarch;
-}
-
-
-extern void (*target_resume_hook) (void);
-extern void (*target_wait_loop_hook) (void);
-
-void
-_initialize_d10v_tdep (void)
-{
- register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
-
- tm_print_insn = print_insn_d10v;
-
- target_resume_hook = d10v_eva_prepare_to_trace;
- target_wait_loop_hook = d10v_eva_get_trace_data;
-
- add_com ("regs", class_vars, show_regs, "Print all registers");
-
- add_com ("itrace", class_support, trace_command,
- "Enable tracing of instruction execution.");
-
- add_com ("iuntrace", class_support, untrace_command,
- "Disable tracing of instruction execution.");
-
- add_com ("itdisassemble", class_vars, tdisassemble_command,
- "Disassemble the trace buffer.\n\
-Two optional arguments specify a range of trace buffer entries\n\
-as reported by info trace (NOT addresses!).");
-
- add_info ("itrace", trace_info,
- "Display info about the trace data buffer.");
-
- add_show_from_set (add_set_cmd ("itracedisplay", no_class,
- var_integer, (char *) &trace_display,
- "Set automatic display of trace.\n", &setlist),
- &showlist);
- add_show_from_set (add_set_cmd ("itracesource", no_class,
- var_integer, (char *) &default_trace_show_source,
- "Set display of source code with trace.\n", &setlist),
- &showlist);
-
-}
+// OBSOLETE /* Target-dependent code for Renesas D10V, for GDB.
+// OBSOLETE
+// OBSOLETE Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
+// OBSOLETE Foundation, Inc.
+// OBSOLETE
+// OBSOLETE This file is part of GDB.
+// OBSOLETE
+// OBSOLETE This program is free software; you can redistribute it and/or modify
+// OBSOLETE it under the terms of the GNU General Public License as published by
+// OBSOLETE the Free Software Foundation; either version 2 of the License, or
+// OBSOLETE (at your option) any later version.
+// OBSOLETE
+// OBSOLETE This program is distributed in the hope that it will be useful,
+// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
+// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// OBSOLETE GNU General Public License for more details.
+// OBSOLETE
+// OBSOLETE You should have received a copy of the GNU General Public License
+// OBSOLETE along with this program; if not, write to the Free Software
+// OBSOLETE Foundation, Inc., 51 Franklin Street, Fifth Floor,
+// OBSOLETE Boston, MA 02110-1301, USA. */
+// OBSOLETE
+// OBSOLETE
+// OBSOLETE #include "defs.h"
+// OBSOLETE #include "frame.h"
+// OBSOLETE #include "frame-unwind.h"
+// OBSOLETE #include "frame-base.h"
+// OBSOLETE #include "symtab.h"
+// OBSOLETE #include "gdbtypes.h"
+// OBSOLETE #include "gdbcmd.h"
+// OBSOLETE #include "gdbcore.h"
+// OBSOLETE #include "gdb_string.h"
+// OBSOLETE #include "value.h"
+// OBSOLETE #include "inferior.h"
+// OBSOLETE #include "dis-asm.h"
+// OBSOLETE #include "symfile.h"
+// OBSOLETE #include "objfiles.h"
+// OBSOLETE #include "language.h"
+// OBSOLETE #include "arch-utils.h"
+// OBSOLETE #include "regcache.h"
+// OBSOLETE #include "remote.h"
+// OBSOLETE #include "floatformat.h"
+// OBSOLETE #include "gdb/sim-d10v.h"
+// OBSOLETE #include "sim-regno.h"
+// OBSOLETE #include "disasm.h"
+// OBSOLETE #include "trad-frame.h"
+// OBSOLETE
+// OBSOLETE #include "gdb_assert.h"
+// OBSOLETE
+// OBSOLETE struct gdbarch_tdep
+// OBSOLETE {
+// OBSOLETE int a0_regnum;
+// OBSOLETE int nr_dmap_regs;
+// OBSOLETE unsigned long (*dmap_register) (void *regcache, int nr);
+// OBSOLETE unsigned long (*imap_register) (void *regcache, int nr);
+// OBSOLETE };
+// OBSOLETE
+// OBSOLETE /* These are the addresses the D10V-EVA board maps data and
+// OBSOLETE instruction memory to. */
+// OBSOLETE
+// OBSOLETE enum memspace {
+// OBSOLETE DMEM_START = 0x2000000,
+// OBSOLETE IMEM_START = 0x1000000,
+// OBSOLETE STACK_START = 0x200bffe
+// OBSOLETE };
+// OBSOLETE
+// OBSOLETE /* d10v register names. */
+// OBSOLETE
+// OBSOLETE enum
+// OBSOLETE {
+// OBSOLETE R0_REGNUM = 0,
+// OBSOLETE R3_REGNUM = 3,
+// OBSOLETE D10V_FP_REGNUM = 11,
+// OBSOLETE LR_REGNUM = 13,
+// OBSOLETE D10V_SP_REGNUM = 15,
+// OBSOLETE PSW_REGNUM = 16,
+// OBSOLETE D10V_PC_REGNUM = 18,
+// OBSOLETE NR_IMAP_REGS = 2,
+// OBSOLETE NR_A_REGS = 2,
+// OBSOLETE TS2_NUM_REGS = 37,
+// OBSOLETE TS3_NUM_REGS = 42,
+// OBSOLETE /* d10v calling convention. */
+// OBSOLETE ARG1_REGNUM = R0_REGNUM,
+// OBSOLETE ARGN_REGNUM = R3_REGNUM
+// OBSOLETE };
+// OBSOLETE
+// OBSOLETE static int
+// OBSOLETE nr_dmap_regs (struct gdbarch *gdbarch)
+// OBSOLETE {
+// OBSOLETE return gdbarch_tdep (gdbarch)->nr_dmap_regs;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static int
+// OBSOLETE a0_regnum (struct gdbarch *gdbarch)
+// OBSOLETE {
+// OBSOLETE return gdbarch_tdep (gdbarch)->a0_regnum;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Local functions */
+// OBSOLETE
+// OBSOLETE extern void _initialize_d10v_tdep (void);
+// OBSOLETE
+// OBSOLETE static void d10v_eva_prepare_to_trace (void);
+// OBSOLETE
+// OBSOLETE static void d10v_eva_get_trace_data (void);
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
+// OBSOLETE {
+// OBSOLETE /* Align to the size of an instruction (so that they can safely be
+// OBSOLETE pushed onto the stack. */
+// OBSOLETE return sp & ~3;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static const unsigned char *
+// OBSOLETE d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
+// OBSOLETE {
+// OBSOLETE static unsigned char breakpoint[] =
+// OBSOLETE {0x2f, 0x90, 0x5e, 0x00};
+// OBSOLETE *lenptr = sizeof (breakpoint);
+// OBSOLETE return breakpoint;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Map the REG_NR onto an ascii name. Return NULL or an empty string
+// OBSOLETE when the reg_nr isn't valid. */
+// OBSOLETE
+// OBSOLETE enum ts2_regnums
+// OBSOLETE {
+// OBSOLETE TS2_IMAP0_REGNUM = 32,
+// OBSOLETE TS2_DMAP_REGNUM = 34,
+// OBSOLETE TS2_NR_DMAP_REGS = 1,
+// OBSOLETE TS2_A0_REGNUM = 35
+// OBSOLETE };
+// OBSOLETE
+// OBSOLETE static const char *
+// OBSOLETE d10v_ts2_register_name (int reg_nr)
+// OBSOLETE {
+// OBSOLETE static char *register_names[] =
+// OBSOLETE {
+// OBSOLETE "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+// OBSOLETE "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+// OBSOLETE "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
+// OBSOLETE "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
+// OBSOLETE "imap0", "imap1", "dmap", "a0", "a1"
+// OBSOLETE };
+// OBSOLETE if (reg_nr < 0)
+// OBSOLETE return NULL;
+// OBSOLETE if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
+// OBSOLETE return NULL;
+// OBSOLETE return register_names[reg_nr];
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE enum ts3_regnums
+// OBSOLETE {
+// OBSOLETE TS3_IMAP0_REGNUM = 36,
+// OBSOLETE TS3_DMAP0_REGNUM = 38,
+// OBSOLETE TS3_NR_DMAP_REGS = 4,
+// OBSOLETE TS3_A0_REGNUM = 32
+// OBSOLETE };
+// OBSOLETE
+// OBSOLETE static const char *
+// OBSOLETE d10v_ts3_register_name (int reg_nr)
+// OBSOLETE {
+// OBSOLETE static char *register_names[] =
+// OBSOLETE {
+// OBSOLETE "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+// OBSOLETE "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+// OBSOLETE "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
+// OBSOLETE "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
+// OBSOLETE "a0", "a1",
+// OBSOLETE "spi", "spu",
+// OBSOLETE "imap0", "imap1",
+// OBSOLETE "dmap0", "dmap1", "dmap2", "dmap3"
+// OBSOLETE };
+// OBSOLETE if (reg_nr < 0)
+// OBSOLETE return NULL;
+// OBSOLETE if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
+// OBSOLETE return NULL;
+// OBSOLETE return register_names[reg_nr];
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Access the DMAP/IMAP registers in a target independent way.
+// OBSOLETE
+// OBSOLETE Divide the D10V's 64k data space into four 16k segments:
+// OBSOLETE 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
+// OBSOLETE 0xc000 -- 0xffff.
+// OBSOLETE
+// OBSOLETE On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
+// OBSOLETE 0x7fff) always map to the on-chip data RAM, and the fourth always
+// OBSOLETE maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
+// OBSOLETE unified memory or instruction memory, under the control of the
+// OBSOLETE single DMAP register.
+// OBSOLETE
+// OBSOLETE On the TS3, there are four DMAP registers, each of which controls
+// OBSOLETE one of the segments. */
+// OBSOLETE
+// OBSOLETE static unsigned long
+// OBSOLETE d10v_ts2_dmap_register (void *regcache, int reg_nr)
+// OBSOLETE {
+// OBSOLETE switch (reg_nr)
+// OBSOLETE {
+// OBSOLETE case 0:
+// OBSOLETE case 1:
+// OBSOLETE return 0x2000;
+// OBSOLETE case 2:
+// OBSOLETE {
+// OBSOLETE ULONGEST reg;
+// OBSOLETE regcache_cooked_read_unsigned (regcache, TS2_DMAP_REGNUM, ®);
+// OBSOLETE return reg;
+// OBSOLETE }
+// OBSOLETE default:
+// OBSOLETE return 0;
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static unsigned long
+// OBSOLETE d10v_ts3_dmap_register (void *regcache, int reg_nr)
+// OBSOLETE {
+// OBSOLETE ULONGEST reg;
+// OBSOLETE regcache_cooked_read_unsigned (regcache, TS3_DMAP0_REGNUM + reg_nr, ®);
+// OBSOLETE return reg;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static unsigned long
+// OBSOLETE d10v_ts2_imap_register (void *regcache, int reg_nr)
+// OBSOLETE {
+// OBSOLETE ULONGEST reg;
+// OBSOLETE regcache_cooked_read_unsigned (regcache, TS2_IMAP0_REGNUM + reg_nr, ®);
+// OBSOLETE return reg;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static unsigned long
+// OBSOLETE d10v_ts3_imap_register (void *regcache, int reg_nr)
+// OBSOLETE {
+// OBSOLETE ULONGEST reg;
+// OBSOLETE regcache_cooked_read_unsigned (regcache, TS3_IMAP0_REGNUM + reg_nr, ®);
+// OBSOLETE return reg;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* MAP GDB's internal register numbering (determined by the layout
+// OBSOLETE from the DEPRECATED_REGISTER_BYTE array) onto the simulator's
+// OBSOLETE register numbering. */
+// OBSOLETE
+// OBSOLETE static int
+// OBSOLETE d10v_ts2_register_sim_regno (int nr)
+// OBSOLETE {
+// OBSOLETE /* Only makes sense to supply raw registers. */
+// OBSOLETE gdb_assert (nr >= 0 && nr < NUM_REGS);
+// OBSOLETE if (nr >= TS2_IMAP0_REGNUM
+// OBSOLETE && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
+// OBSOLETE return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
+// OBSOLETE if (nr == TS2_DMAP_REGNUM)
+// OBSOLETE return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
+// OBSOLETE if (nr >= TS2_A0_REGNUM
+// OBSOLETE && nr < TS2_A0_REGNUM + NR_A_REGS)
+// OBSOLETE return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
+// OBSOLETE return nr;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static int
+// OBSOLETE d10v_ts3_register_sim_regno (int nr)
+// OBSOLETE {
+// OBSOLETE /* Only makes sense to supply raw registers. */
+// OBSOLETE gdb_assert (nr >= 0 && nr < NUM_REGS);
+// OBSOLETE if (nr >= TS3_IMAP0_REGNUM
+// OBSOLETE && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
+// OBSOLETE return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
+// OBSOLETE if (nr >= TS3_DMAP0_REGNUM
+// OBSOLETE && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
+// OBSOLETE return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
+// OBSOLETE if (nr >= TS3_A0_REGNUM
+// OBSOLETE && nr < TS3_A0_REGNUM + NR_A_REGS)
+// OBSOLETE return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
+// OBSOLETE return nr;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Return the GDB type object for the "standard" data type
+// OBSOLETE of data in register N. */
+// OBSOLETE
+// OBSOLETE static struct type *
+// OBSOLETE d10v_register_type (struct gdbarch *gdbarch, int reg_nr)
+// OBSOLETE {
+// OBSOLETE if (reg_nr == D10V_PC_REGNUM)
+// OBSOLETE return builtin_type (gdbarch)->builtin_func_ptr;
+// OBSOLETE if (reg_nr == D10V_SP_REGNUM || reg_nr == D10V_FP_REGNUM)
+// OBSOLETE return builtin_type (gdbarch)->builtin_data_ptr;
+// OBSOLETE else if (reg_nr >= a0_regnum (gdbarch)
+// OBSOLETE && reg_nr < (a0_regnum (gdbarch) + NR_A_REGS))
+// OBSOLETE return builtin_type_int64;
+// OBSOLETE else
+// OBSOLETE return builtin_type_int16;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static int
+// OBSOLETE d10v_iaddr_p (CORE_ADDR x)
+// OBSOLETE {
+// OBSOLETE return (((x) & 0x3000000) == IMEM_START);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_make_daddr (CORE_ADDR x)
+// OBSOLETE {
+// OBSOLETE return ((x) | DMEM_START);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_make_iaddr (CORE_ADDR x)
+// OBSOLETE {
+// OBSOLETE if (d10v_iaddr_p (x))
+// OBSOLETE return x; /* Idempotency -- x is already in the IMEM space. */
+// OBSOLETE else
+// OBSOLETE return (((x) << 2) | IMEM_START);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_convert_iaddr_to_raw (CORE_ADDR x)
+// OBSOLETE {
+// OBSOLETE return (((x) >> 2) & 0xffff);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_convert_daddr_to_raw (CORE_ADDR x)
+// OBSOLETE {
+// OBSOLETE return ((x) & 0xffff);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
+// OBSOLETE {
+// OBSOLETE /* Is it a code address? */
+// OBSOLETE if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
+// OBSOLETE || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
+// OBSOLETE {
+// OBSOLETE store_unsigned_integer (buf, TYPE_LENGTH (type),
+// OBSOLETE d10v_convert_iaddr_to_raw (addr));
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE /* Strip off any upper segment bits. */
+// OBSOLETE store_unsigned_integer (buf, TYPE_LENGTH (type),
+// OBSOLETE d10v_convert_daddr_to_raw (addr));
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_pointer_to_address (struct type *type, const void *buf)
+// OBSOLETE {
+// OBSOLETE CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
+// OBSOLETE /* Is it a code address? */
+// OBSOLETE if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
+// OBSOLETE || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
+// OBSOLETE || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
+// OBSOLETE return d10v_make_iaddr (addr);
+// OBSOLETE else
+// OBSOLETE return d10v_make_daddr (addr);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Don't do anything if we have an integer, this way users can type 'x
+// OBSOLETE <addr>' w/o having gdb outsmart them. The internal gdb conversions
+// OBSOLETE to the correct space are taken care of in the pointer_to_address
+// OBSOLETE function. If we don't do this, 'x $fp' wouldn't work. */
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_integer_to_address (struct type *type, void *buf)
+// OBSOLETE {
+// OBSOLETE LONGEST val;
+// OBSOLETE val = unpack_long (type, buf);
+// OBSOLETE return val;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Handle the d10v's return_value convention. */
+// OBSOLETE
+// OBSOLETE static enum return_value_convention
+// OBSOLETE d10v_return_value (struct gdbarch *gdbarch, struct type *valtype,
+// OBSOLETE struct regcache *regcache, void *readbuf,
+// OBSOLETE const void *writebuf)
+// OBSOLETE {
+// OBSOLETE if (TYPE_LENGTH (valtype) > 8)
+// OBSOLETE /* Anything larger than 8 bytes (4 registers) goes on the stack. */
+// OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION;
+// OBSOLETE if (TYPE_LENGTH (valtype) == 5
+// OBSOLETE || TYPE_LENGTH (valtype) == 6)
+// OBSOLETE /* Anything 5 or 6 bytes in size goes in memory. Contents don't
+// OBSOLETE appear to matter. Note that 7 and 8 byte objects do end up in
+// OBSOLETE registers! */
+// OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION;
+// OBSOLETE if (TYPE_LENGTH (valtype) == 1)
+// OBSOLETE {
+// OBSOLETE /* All single byte values go in a register stored right-aligned.
+// OBSOLETE Note: 2 byte integer values are handled further down. */
+// OBSOLETE if (readbuf)
+// OBSOLETE {
+// OBSOLETE /* Since TYPE is smaller than the register, there isn't a
+// OBSOLETE sign extension problem. Let the extraction truncate the
+// OBSOLETE register value. */
+// OBSOLETE ULONGEST regval;
+// OBSOLETE regcache_cooked_read_unsigned (regcache, R0_REGNUM,
+// OBSOLETE ®val);
+// OBSOLETE store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
+// OBSOLETE
+// OBSOLETE }
+// OBSOLETE if (writebuf)
+// OBSOLETE {
+// OBSOLETE ULONGEST regval;
+// OBSOLETE if (TYPE_CODE (valtype) == TYPE_CODE_INT)
+// OBSOLETE /* Some sort of integer value stored in R0. Use
+// OBSOLETE unpack_long since that should handle any required sign
+// OBSOLETE extension. */
+// OBSOLETE regval = unpack_long (valtype, writebuf);
+// OBSOLETE else
+// OBSOLETE /* Some other type. Don't sign-extend the value when
+// OBSOLETE storing it in the register. */
+// OBSOLETE regval = extract_unsigned_integer (writebuf, 1);
+// OBSOLETE regcache_cooked_write_unsigned (regcache, R0_REGNUM, regval);
+// OBSOLETE }
+// OBSOLETE return RETURN_VALUE_REGISTER_CONVENTION;
+// OBSOLETE }
+// OBSOLETE if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
+// OBSOLETE || TYPE_CODE (valtype) == TYPE_CODE_UNION)
+// OBSOLETE && TYPE_NFIELDS (valtype) > 1
+// OBSOLETE && TYPE_FIELD_BITPOS (valtype, 1) == 8)
+// OBSOLETE /* If a composite is 8 bit aligned (determined by looking at the
+// OBSOLETE start address of the second field), put it in memory. */
+// OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION;
+// OBSOLETE /* Assume it is in registers. */
+// OBSOLETE if (writebuf || readbuf)
+// OBSOLETE {
+// OBSOLETE int reg;
+// OBSOLETE /* Per above, the value is never more than 8 bytes long. */
+// OBSOLETE gdb_assert (TYPE_LENGTH (valtype) <= 8);
+// OBSOLETE /* Xfer 2 bytes at a time. */
+// OBSOLETE for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (valtype); reg++)
+// OBSOLETE {
+// OBSOLETE if (readbuf)
+// OBSOLETE regcache_cooked_read (regcache, R0_REGNUM + reg,
+// OBSOLETE (bfd_byte *) readbuf + reg * 2);
+// OBSOLETE if (writebuf)
+// OBSOLETE regcache_cooked_write (regcache, R0_REGNUM + reg,
+// OBSOLETE (bfd_byte *) writebuf + reg * 2);
+// OBSOLETE }
+// OBSOLETE /* Any trailing byte ends up _left_ aligned. */
+// OBSOLETE if ((reg * 2) < TYPE_LENGTH (valtype))
+// OBSOLETE {
+// OBSOLETE if (readbuf)
+// OBSOLETE regcache_cooked_read_part (regcache, R0_REGNUM + reg,
+// OBSOLETE 0, 1, (bfd_byte *) readbuf + reg * 2);
+// OBSOLETE if (writebuf)
+// OBSOLETE regcache_cooked_write_part (regcache, R0_REGNUM + reg,
+// OBSOLETE 0, 1, (bfd_byte *) writebuf + reg * 2);
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE return RETURN_VALUE_REGISTER_CONVENTION;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static int
+// OBSOLETE check_prologue (unsigned short op)
+// OBSOLETE {
+// OBSOLETE /* st rn, @-sp */
+// OBSOLETE if ((op & 0x7E1F) == 0x6C1F)
+// OBSOLETE return 1;
+// OBSOLETE
+// OBSOLETE /* st2w rn, @-sp */
+// OBSOLETE if ((op & 0x7E3F) == 0x6E1F)
+// OBSOLETE return 1;
+// OBSOLETE
+// OBSOLETE /* subi sp, n */
+// OBSOLETE if ((op & 0x7FE1) == 0x01E1)
+// OBSOLETE return 1;
+// OBSOLETE
+// OBSOLETE /* mv r11, sp */
+// OBSOLETE if (op == 0x417E)
+// OBSOLETE return 1;
+// OBSOLETE
+// OBSOLETE /* nop */
+// OBSOLETE if (op == 0x5E00)
+// OBSOLETE return 1;
+// OBSOLETE
+// OBSOLETE /* st rn, @sp */
+// OBSOLETE if ((op & 0x7E1F) == 0x681E)
+// OBSOLETE return 1;
+// OBSOLETE
+// OBSOLETE /* st2w rn, @sp */
+// OBSOLETE if ((op & 0x7E3F) == 0x3A1E)
+// OBSOLETE return 1;
+// OBSOLETE
+// OBSOLETE return 0;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_skip_prologue (CORE_ADDR pc)
+// OBSOLETE {
+// OBSOLETE unsigned long op;
+// OBSOLETE unsigned short op1, op2;
+// OBSOLETE CORE_ADDR func_addr, func_end;
+// OBSOLETE struct symtab_and_line sal;
+// OBSOLETE
+// OBSOLETE /* If we have line debugging information, then the end of the prologue
+// OBSOLETE should be the first assembly instruction of the first source line. */
+// OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
+// OBSOLETE {
+// OBSOLETE sal = find_pc_line (func_addr, 0);
+// OBSOLETE if (sal.end && sal.end < func_end)
+// OBSOLETE return sal.end;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE if (target_read_memory (pc, (char *) &op, 4))
+// OBSOLETE return pc; /* Can't access it -- assume no prologue. */
+// OBSOLETE
+// OBSOLETE while (1)
+// OBSOLETE {
+// OBSOLETE op = (unsigned long) read_memory_integer (pc, 4);
+// OBSOLETE if ((op & 0xC0000000) == 0xC0000000)
+// OBSOLETE {
+// OBSOLETE /* long instruction */
+// OBSOLETE if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
+// OBSOLETE ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
+// OBSOLETE ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
+// OBSOLETE break;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE /* short instructions */
+// OBSOLETE if ((op & 0xC0000000) == 0x80000000)
+// OBSOLETE {
+// OBSOLETE op2 = (op & 0x3FFF8000) >> 15;
+// OBSOLETE op1 = op & 0x7FFF;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE op1 = (op & 0x3FFF8000) >> 15;
+// OBSOLETE op2 = op & 0x7FFF;
+// OBSOLETE }
+// OBSOLETE if (check_prologue (op1))
+// OBSOLETE {
+// OBSOLETE if (!check_prologue (op2))
+// OBSOLETE {
+// OBSOLETE /* If the previous opcode was really part of the
+// OBSOLETE prologue and not just a NOP, then we want to
+// OBSOLETE break after both instructions. */
+// OBSOLETE if (op1 != 0x5E00)
+// OBSOLETE pc += 4;
+// OBSOLETE break;
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE break;
+// OBSOLETE }
+// OBSOLETE pc += 4;
+// OBSOLETE }
+// OBSOLETE return pc;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE struct d10v_unwind_cache
+// OBSOLETE {
+// OBSOLETE /* The previous frame's inner most stack address. Used as this
+// OBSOLETE frame ID's stack_addr. */
+// OBSOLETE CORE_ADDR prev_sp;
+// OBSOLETE /* The frame's base, optionally used by the high-level debug info. */
+// OBSOLETE CORE_ADDR base;
+// OBSOLETE int size;
+// OBSOLETE /* How far the SP and r11 (FP) have been offset from the start of
+// OBSOLETE the stack frame (as defined by the previous frame's stack
+// OBSOLETE pointer). */
+// OBSOLETE LONGEST sp_offset;
+// OBSOLETE LONGEST r11_offset;
+// OBSOLETE int uses_frame;
+// OBSOLETE /* Table indicating the location of each and every register. */
+// OBSOLETE struct trad_frame_saved_reg *saved_regs;
+// OBSOLETE };
+// OBSOLETE
+// OBSOLETE static int
+// OBSOLETE prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
+// OBSOLETE CORE_ADDR addr)
+// OBSOLETE {
+// OBSOLETE int n;
+// OBSOLETE
+// OBSOLETE /* st rn, @-sp */
+// OBSOLETE if ((op & 0x7E1F) == 0x6C1F)
+// OBSOLETE {
+// OBSOLETE n = (op & 0x1E0) >> 5;
+// OBSOLETE info->sp_offset -= 2;
+// OBSOLETE info->saved_regs[n].addr = info->sp_offset;
+// OBSOLETE return 1;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* st2w rn, @-sp */
+// OBSOLETE else if ((op & 0x7E3F) == 0x6E1F)
+// OBSOLETE {
+// OBSOLETE n = (op & 0x1E0) >> 5;
+// OBSOLETE info->sp_offset -= 4;
+// OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + 0;
+// OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + 2;
+// OBSOLETE return 1;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* subi sp, n */
+// OBSOLETE if ((op & 0x7FE1) == 0x01E1)
+// OBSOLETE {
+// OBSOLETE n = (op & 0x1E) >> 1;
+// OBSOLETE if (n == 0)
+// OBSOLETE n = 16;
+// OBSOLETE info->sp_offset -= n;
+// OBSOLETE return 1;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* mv r11, sp */
+// OBSOLETE if (op == 0x417E)
+// OBSOLETE {
+// OBSOLETE info->uses_frame = 1;
+// OBSOLETE info->r11_offset = info->sp_offset;
+// OBSOLETE return 1;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* st rn, @r11 */
+// OBSOLETE if ((op & 0x7E1F) == 0x6816)
+// OBSOLETE {
+// OBSOLETE n = (op & 0x1E0) >> 5;
+// OBSOLETE info->saved_regs[n].addr = info->r11_offset;
+// OBSOLETE return 1;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* nop */
+// OBSOLETE if (op == 0x5E00)
+// OBSOLETE return 1;
+// OBSOLETE
+// OBSOLETE /* st rn, @sp */
+// OBSOLETE if ((op & 0x7E1F) == 0x681E)
+// OBSOLETE {
+// OBSOLETE n = (op & 0x1E0) >> 5;
+// OBSOLETE info->saved_regs[n].addr = info->sp_offset;
+// OBSOLETE return 1;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* st2w rn, @sp */
+// OBSOLETE if ((op & 0x7E3F) == 0x3A1E)
+// OBSOLETE {
+// OBSOLETE n = (op & 0x1E0) >> 5;
+// OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + 0;
+// OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + 2;
+// OBSOLETE return 1;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE return 0;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Put here the code to store, into fi->saved_regs, the addresses of
+// OBSOLETE the saved registers of frame described by FRAME_INFO. This
+// OBSOLETE includes special registers such as pc and fp saved in special ways
+// OBSOLETE in the stack frame. sp is even more special: the address we return
+// OBSOLETE for it IS the sp for the next frame. */
+// OBSOLETE
+// OBSOLETE static struct d10v_unwind_cache *
+// OBSOLETE d10v_frame_unwind_cache (struct frame_info *next_frame,
+// OBSOLETE void **this_prologue_cache)
+// OBSOLETE {
+// OBSOLETE struct gdbarch *gdbarch = get_frame_arch (next_frame);
+// OBSOLETE CORE_ADDR pc;
+// OBSOLETE ULONGEST prev_sp;
+// OBSOLETE ULONGEST this_base;
+// OBSOLETE unsigned long op;
+// OBSOLETE unsigned short op1, op2;
+// OBSOLETE int i;
+// OBSOLETE struct d10v_unwind_cache *info;
+// OBSOLETE
+// OBSOLETE if ((*this_prologue_cache))
+// OBSOLETE return (*this_prologue_cache);
+// OBSOLETE
+// OBSOLETE info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
+// OBSOLETE (*this_prologue_cache) = info;
+// OBSOLETE info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
+// OBSOLETE
+// OBSOLETE info->size = 0;
+// OBSOLETE info->sp_offset = 0;
+// OBSOLETE
+// OBSOLETE info->uses_frame = 0;
+// OBSOLETE for (pc = frame_func_unwind (next_frame);
+// OBSOLETE pc > 0 && pc < frame_pc_unwind (next_frame);
+// OBSOLETE pc += 4)
+// OBSOLETE {
+// OBSOLETE op = get_frame_memory_unsigned (next_frame, pc, 4);
+// OBSOLETE if ((op & 0xC0000000) == 0xC0000000)
+// OBSOLETE {
+// OBSOLETE /* long instruction */
+// OBSOLETE if ((op & 0x3FFF0000) == 0x01FF0000)
+// OBSOLETE {
+// OBSOLETE /* add3 sp,sp,n */
+// OBSOLETE short n = op & 0xFFFF;
+// OBSOLETE info->sp_offset += n;
+// OBSOLETE }
+// OBSOLETE else if ((op & 0x3F0F0000) == 0x340F0000)
+// OBSOLETE {
+// OBSOLETE /* st rn, @(offset,sp) */
+// OBSOLETE short offset = op & 0xFFFF;
+// OBSOLETE short n = (op >> 20) & 0xF;
+// OBSOLETE info->saved_regs[n].addr = info->sp_offset + offset;
+// OBSOLETE }
+// OBSOLETE else if ((op & 0x3F1F0000) == 0x350F0000)
+// OBSOLETE {
+// OBSOLETE /* st2w rn, @(offset,sp) */
+// OBSOLETE short offset = op & 0xFFFF;
+// OBSOLETE short n = (op >> 20) & 0xF;
+// OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + offset + 0;
+// OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + offset + 2;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE break;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE /* short instructions */
+// OBSOLETE if ((op & 0xC0000000) == 0x80000000)
+// OBSOLETE {
+// OBSOLETE op2 = (op & 0x3FFF8000) >> 15;
+// OBSOLETE op1 = op & 0x7FFF;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE op1 = (op & 0x3FFF8000) >> 15;
+// OBSOLETE op2 = op & 0x7FFF;
+// OBSOLETE }
+// OBSOLETE if (!prologue_find_regs (info, op1, pc)
+// OBSOLETE || !prologue_find_regs (info, op2, pc))
+// OBSOLETE break;
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE info->size = -info->sp_offset;
+// OBSOLETE
+// OBSOLETE /* Compute the previous frame's stack pointer (which is also the
+// OBSOLETE frame's ID's stack address), and this frame's base pointer. */
+// OBSOLETE if (info->uses_frame)
+// OBSOLETE {
+// OBSOLETE /* The SP was moved to the FP. This indicates that a new frame
+// OBSOLETE was created. Get THIS frame's FP value by unwinding it from
+// OBSOLETE the next frame. */
+// OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_FP_REGNUM, &this_base);
+// OBSOLETE /* The FP points at the last saved register. Adjust the FP back
+// OBSOLETE to before the first saved register giving the SP. */
+// OBSOLETE prev_sp = this_base + info->size;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE /* Assume that the FP is this frame's SP but with that pushed
+// OBSOLETE stack space added back. */
+// OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &this_base);
+// OBSOLETE prev_sp = this_base + info->size;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Convert that SP/BASE into real addresses. */
+// OBSOLETE info->prev_sp = d10v_make_daddr (prev_sp);
+// OBSOLETE info->base = d10v_make_daddr (this_base);
+// OBSOLETE
+// OBSOLETE /* Adjust all the saved registers so that they contain addresses and
+// OBSOLETE not offsets. */
+// OBSOLETE for (i = 0; i < NUM_REGS - 1; i++)
+// OBSOLETE if (trad_frame_addr_p (info->saved_regs, i))
+// OBSOLETE {
+// OBSOLETE info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* The call instruction moves the caller's PC in the callee's LR.
+// OBSOLETE Since this is an unwind, do the reverse. Copy the location of LR
+// OBSOLETE into PC (the address / regnum) so that a request for PC will be
+// OBSOLETE converted into a request for the LR. */
+// OBSOLETE info->saved_regs[D10V_PC_REGNUM] = info->saved_regs[LR_REGNUM];
+// OBSOLETE
+// OBSOLETE /* The previous frame's SP needed to be computed. Save the computed
+// OBSOLETE value. */
+// OBSOLETE trad_frame_set_value (info->saved_regs, D10V_SP_REGNUM,
+// OBSOLETE d10v_make_daddr (prev_sp));
+// OBSOLETE
+// OBSOLETE return info;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
+// OBSOLETE struct frame_info *frame, int regnum, int all)
+// OBSOLETE {
+// OBSOLETE struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+// OBSOLETE if (regnum >= 0)
+// OBSOLETE {
+// OBSOLETE default_print_registers_info (gdbarch, file, frame, regnum, all);
+// OBSOLETE return;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE {
+// OBSOLETE ULONGEST pc, psw, rpt_s, rpt_e, rpt_c;
+// OBSOLETE pc = get_frame_register_unsigned (frame, D10V_PC_REGNUM);
+// OBSOLETE psw = get_frame_register_unsigned (frame, PSW_REGNUM);
+// OBSOLETE rpt_s = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_s", -1));
+// OBSOLETE rpt_e = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_e", -1));
+// OBSOLETE rpt_c = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_c", -1));
+// OBSOLETE fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
+// OBSOLETE (long) pc, (long) d10v_make_iaddr (pc), (long) psw,
+// OBSOLETE (long) rpt_s, (long) rpt_e, (long) rpt_c);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE {
+// OBSOLETE int group;
+// OBSOLETE for (group = 0; group < 16; group += 8)
+// OBSOLETE {
+// OBSOLETE int r;
+// OBSOLETE fprintf_filtered (file, "R%d-R%-2d", group, group + 7);
+// OBSOLETE for (r = group; r < group + 8; r++)
+// OBSOLETE {
+// OBSOLETE ULONGEST tmp;
+// OBSOLETE tmp = get_frame_register_unsigned (frame, r);
+// OBSOLETE fprintf_filtered (file, " %04lx", (long) tmp);
+// OBSOLETE }
+// OBSOLETE fprintf_filtered (file, "\n");
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Note: The IMAP/DMAP registers don't participate in function
+// OBSOLETE calls. Don't bother trying to unwind them. */
+// OBSOLETE
+// OBSOLETE {
+// OBSOLETE int a;
+// OBSOLETE for (a = 0; a < NR_IMAP_REGS; a++)
+// OBSOLETE {
+// OBSOLETE if (a > 0)
+// OBSOLETE fprintf_filtered (file, " ");
+// OBSOLETE fprintf_filtered (file, "IMAP%d %04lx", a,
+// OBSOLETE tdep->imap_register (current_regcache, a));
+// OBSOLETE }
+// OBSOLETE if (nr_dmap_regs (gdbarch) == 1)
+// OBSOLETE /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */
+// OBSOLETE fprintf_filtered (file, " DMAP %04lx\n",
+// OBSOLETE tdep->dmap_register (current_regcache, 2));
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE for (a = 0; a < nr_dmap_regs (gdbarch); a++)
+// OBSOLETE {
+// OBSOLETE fprintf_filtered (file, " DMAP%d %04lx", a,
+// OBSOLETE tdep->dmap_register (current_regcache, a));
+// OBSOLETE }
+// OBSOLETE fprintf_filtered (file, "\n");
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE {
+// OBSOLETE char num[MAX_REGISTER_SIZE];
+// OBSOLETE int a;
+// OBSOLETE fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1);
+// OBSOLETE for (a = a0_regnum (gdbarch); a < a0_regnum (gdbarch) + NR_A_REGS; a++)
+// OBSOLETE {
+// OBSOLETE int i;
+// OBSOLETE fprintf_filtered (file, " ");
+// OBSOLETE get_frame_register (frame, a, num);
+// OBSOLETE for (i = 0; i < register_size (gdbarch, a); i++)
+// OBSOLETE {
+// OBSOLETE fprintf_filtered (file, "%02x", (num[i] & 0xff));
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE fprintf_filtered (file, "\n");
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE show_regs (char *args, int from_tty)
+// OBSOLETE {
+// OBSOLETE d10v_print_registers_info (current_gdbarch, gdb_stdout,
+// OBSOLETE get_current_frame (), -1, 1);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_read_pc (ptid_t ptid)
+// OBSOLETE {
+// OBSOLETE ptid_t save_ptid;
+// OBSOLETE CORE_ADDR pc;
+// OBSOLETE CORE_ADDR retval;
+// OBSOLETE
+// OBSOLETE save_ptid = inferior_ptid;
+// OBSOLETE inferior_ptid = ptid;
+// OBSOLETE pc = (int) read_register (D10V_PC_REGNUM);
+// OBSOLETE inferior_ptid = save_ptid;
+// OBSOLETE retval = d10v_make_iaddr (pc);
+// OBSOLETE return retval;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE d10v_write_pc (CORE_ADDR val, ptid_t ptid)
+// OBSOLETE {
+// OBSOLETE ptid_t save_ptid;
+// OBSOLETE
+// OBSOLETE save_ptid = inferior_ptid;
+// OBSOLETE inferior_ptid = ptid;
+// OBSOLETE write_register (D10V_PC_REGNUM, d10v_convert_iaddr_to_raw (val));
+// OBSOLETE inferior_ptid = save_ptid;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
+// OBSOLETE {
+// OBSOLETE ULONGEST sp;
+// OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &sp);
+// OBSOLETE return d10v_make_daddr (sp);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* When arguments must be pushed onto the stack, they go on in reverse
+// OBSOLETE order. The below implements a FILO (stack) to do this. */
+// OBSOLETE
+// OBSOLETE struct stack_item
+// OBSOLETE {
+// OBSOLETE int len;
+// OBSOLETE struct stack_item *prev;
+// OBSOLETE void *data;
+// OBSOLETE };
+// OBSOLETE
+// OBSOLETE static struct stack_item *push_stack_item (struct stack_item *prev,
+// OBSOLETE void *contents, int len);
+// OBSOLETE static struct stack_item *
+// OBSOLETE push_stack_item (struct stack_item *prev, void *contents, int len)
+// OBSOLETE {
+// OBSOLETE struct stack_item *si;
+// OBSOLETE si = xmalloc (sizeof (struct stack_item));
+// OBSOLETE si->data = xmalloc (len);
+// OBSOLETE si->len = len;
+// OBSOLETE si->prev = prev;
+// OBSOLETE memcpy (si->data, contents, len);
+// OBSOLETE return si;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static struct stack_item *pop_stack_item (struct stack_item *si);
+// OBSOLETE static struct stack_item *
+// OBSOLETE pop_stack_item (struct stack_item *si)
+// OBSOLETE {
+// OBSOLETE struct stack_item *dead = si;
+// OBSOLETE si = si->prev;
+// OBSOLETE xfree (dead->data);
+// OBSOLETE xfree (dead);
+// OBSOLETE return si;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_push_dummy_code (struct gdbarch *gdbarch,
+// OBSOLETE CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
+// OBSOLETE struct value **args, int nargs,
+// OBSOLETE struct type *value_type,
+// OBSOLETE CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
+// OBSOLETE {
+// OBSOLETE /* Allocate space sufficient for a breakpoint. */
+// OBSOLETE sp = (sp - 4) & ~3;
+// OBSOLETE /* Store the address of that breakpoint taking care to first convert
+// OBSOLETE it into a code (IADDR) address from a stack (DADDR) address.
+// OBSOLETE This of course assumes that the two virtual addresses map onto
+// OBSOLETE the same real address. */
+// OBSOLETE (*bp_addr) = d10v_make_iaddr (d10v_convert_iaddr_to_raw (sp));
+// OBSOLETE /* d10v always starts the call at the callee's entry point. */
+// OBSOLETE (*real_pc) = funaddr;
+// OBSOLETE return sp;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
+// OBSOLETE struct regcache *regcache, CORE_ADDR bp_addr,
+// OBSOLETE int nargs, struct value **args, CORE_ADDR sp,
+// OBSOLETE int struct_return, CORE_ADDR struct_addr)
+// OBSOLETE {
+// OBSOLETE int i;
+// OBSOLETE int regnum = ARG1_REGNUM;
+// OBSOLETE struct stack_item *si = NULL;
+// OBSOLETE long val;
+// OBSOLETE
+// OBSOLETE /* Set the return address. For the d10v, the return breakpoint is
+// OBSOLETE always at BP_ADDR. */
+// OBSOLETE regcache_cooked_write_unsigned (regcache, LR_REGNUM,
+// OBSOLETE d10v_convert_iaddr_to_raw (bp_addr));
+// OBSOLETE
+// OBSOLETE /* If STRUCT_RETURN is true, then the struct return address (in
+// OBSOLETE STRUCT_ADDR) will consume the first argument-passing register.
+// OBSOLETE Both adjust the register count and store that value. */
+// OBSOLETE if (struct_return)
+// OBSOLETE {
+// OBSOLETE regcache_cooked_write_unsigned (regcache, regnum, struct_addr);
+// OBSOLETE regnum++;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Fill in registers and arg lists */
+// OBSOLETE for (i = 0; i < nargs; i++)
+// OBSOLETE {
+// OBSOLETE struct value *arg = args[i];
+// OBSOLETE struct type *type = check_typedef (VALUE_TYPE (arg));
+// OBSOLETE char *contents = VALUE_CONTENTS (arg);
+// OBSOLETE int len = TYPE_LENGTH (type);
+// OBSOLETE int aligned_regnum = (regnum + 1) & ~1;
+// OBSOLETE
+// OBSOLETE /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
+// OBSOLETE if (len <= 2 && regnum <= ARGN_REGNUM)
+// OBSOLETE /* fits in a single register, do not align */
+// OBSOLETE {
+// OBSOLETE val = extract_unsigned_integer (contents, len);
+// OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, val);
+// OBSOLETE }
+// OBSOLETE else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
+// OBSOLETE /* value fits in remaining registers, store keeping left
+// OBSOLETE aligned */
+// OBSOLETE {
+// OBSOLETE int b;
+// OBSOLETE regnum = aligned_regnum;
+// OBSOLETE for (b = 0; b < (len & ~1); b += 2)
+// OBSOLETE {
+// OBSOLETE val = extract_unsigned_integer (&contents[b], 2);
+// OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, val);
+// OBSOLETE }
+// OBSOLETE if (b < len)
+// OBSOLETE {
+// OBSOLETE val = extract_unsigned_integer (&contents[b], 1);
+// OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, (val << 8));
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE /* arg will go onto stack */
+// OBSOLETE regnum = ARGN_REGNUM + 1;
+// OBSOLETE si = push_stack_item (si, contents, len);
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE while (si)
+// OBSOLETE {
+// OBSOLETE sp = (sp - si->len) & ~1;
+// OBSOLETE write_memory (sp, si->data, si->len);
+// OBSOLETE si = pop_stack_item (si);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Finally, update the SP register. */
+// OBSOLETE regcache_cooked_write_unsigned (regcache, D10V_SP_REGNUM,
+// OBSOLETE d10v_convert_daddr_to_raw (sp));
+// OBSOLETE
+// OBSOLETE return sp;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Translate a GDB virtual ADDR/LEN into a format the remote target
+// OBSOLETE understands. Returns number of bytes that can be transfered
+// OBSOLETE starting at TARG_ADDR. Return ZERO if no bytes can be transfered
+// OBSOLETE (segmentation fault). Since the simulator knows all about how the
+// OBSOLETE VM system works, we just call that to do the translation. */
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE remote_d10v_translate_xfer_address (struct gdbarch *gdbarch,
+// OBSOLETE struct regcache *regcache,
+// OBSOLETE CORE_ADDR memaddr, int nr_bytes,
+// OBSOLETE CORE_ADDR *targ_addr, int *targ_len)
+// OBSOLETE {
+// OBSOLETE struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+// OBSOLETE long out_addr;
+// OBSOLETE long out_len;
+// OBSOLETE out_len = sim_d10v_translate_addr (memaddr, nr_bytes, &out_addr, regcache,
+// OBSOLETE tdep->dmap_register, tdep->imap_register);
+// OBSOLETE *targ_addr = out_addr;
+// OBSOLETE *targ_len = out_len;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE
+// OBSOLETE /* The following code implements access to, and display of, the D10V's
+// OBSOLETE instruction trace buffer. The buffer consists of 64K or more
+// OBSOLETE 4-byte words of data, of which each words includes an 8-bit count,
+// OBSOLETE an 8-bit segment number, and a 16-bit instruction address.
+// OBSOLETE
+// OBSOLETE In theory, the trace buffer is continuously capturing instruction
+// OBSOLETE data that the CPU presents on its "debug bus", but in practice, the
+// OBSOLETE ROMified GDB stub only enables tracing when it continues or steps
+// OBSOLETE the program, and stops tracing when the program stops; so it
+// OBSOLETE actually works for GDB to read the buffer counter out of memory and
+// OBSOLETE then read each trace word. The counter records where the tracing
+// OBSOLETE stops, but there is no record of where it started, so we remember
+// OBSOLETE the PC when we resumed and then search backwards in the trace
+// OBSOLETE buffer for a word that includes that address. This is not perfect,
+// OBSOLETE because you will miss trace data if the resumption PC is the target
+// OBSOLETE of a branch. (The value of the buffer counter is semi-random, any
+// OBSOLETE trace data from a previous program stop is gone.) */
+// OBSOLETE
+// OBSOLETE /* The address of the last word recorded in the trace buffer. */
+// OBSOLETE
+// OBSOLETE #define DBBC_ADDR (0xd80000)
+// OBSOLETE
+// OBSOLETE /* The base of the trace buffer, at least for the "Board_0". */
+// OBSOLETE
+// OBSOLETE #define TRACE_BUFFER_BASE (0xf40000)
+// OBSOLETE
+// OBSOLETE static void trace_command (char *, int);
+// OBSOLETE
+// OBSOLETE static void untrace_command (char *, int);
+// OBSOLETE
+// OBSOLETE static void trace_info (char *, int);
+// OBSOLETE
+// OBSOLETE static void tdisassemble_command (char *, int);
+// OBSOLETE
+// OBSOLETE static void display_trace (int, int);
+// OBSOLETE
+// OBSOLETE /* True when instruction traces are being collected. */
+// OBSOLETE
+// OBSOLETE static int tracing;
+// OBSOLETE
+// OBSOLETE /* Remembered PC. */
+// OBSOLETE
+// OBSOLETE static CORE_ADDR last_pc;
+// OBSOLETE
+// OBSOLETE /* True when trace output should be displayed whenever program stops. */
+// OBSOLETE
+// OBSOLETE static int trace_display;
+// OBSOLETE
+// OBSOLETE /* True when trace listing should include source lines. */
+// OBSOLETE
+// OBSOLETE static int default_trace_show_source = 1;
+// OBSOLETE
+// OBSOLETE struct trace_buffer
+// OBSOLETE {
+// OBSOLETE int size;
+// OBSOLETE short *counts;
+// OBSOLETE CORE_ADDR *addrs;
+// OBSOLETE }
+// OBSOLETE trace_data;
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE trace_command (char *args, int from_tty)
+// OBSOLETE {
+// OBSOLETE /* Clear the host-side trace buffer, allocating space if needed. */
+// OBSOLETE trace_data.size = 0;
+// OBSOLETE if (trace_data.counts == NULL)
+// OBSOLETE trace_data.counts = XCALLOC (65536, short);
+// OBSOLETE if (trace_data.addrs == NULL)
+// OBSOLETE trace_data.addrs = XCALLOC (65536, CORE_ADDR);
+// OBSOLETE
+// OBSOLETE tracing = 1;
+// OBSOLETE
+// OBSOLETE printf_filtered ("Tracing is now on.\n");
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE untrace_command (char *args, int from_tty)
+// OBSOLETE {
+// OBSOLETE tracing = 0;
+// OBSOLETE
+// OBSOLETE printf_filtered ("Tracing is now off.\n");
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE trace_info (char *args, int from_tty)
+// OBSOLETE {
+// OBSOLETE int i;
+// OBSOLETE
+// OBSOLETE if (trace_data.size)
+// OBSOLETE {
+// OBSOLETE printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
+// OBSOLETE
+// OBSOLETE for (i = 0; i < trace_data.size; ++i)
+// OBSOLETE {
+// OBSOLETE printf_filtered ("%d: %d instruction%s at 0x%s\n",
+// OBSOLETE i,
+// OBSOLETE trace_data.counts[i],
+// OBSOLETE (trace_data.counts[i] == 1 ? "" : "s"),
+// OBSOLETE paddr_nz (trace_data.addrs[i]));
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE printf_filtered ("No entries in trace buffer.\n");
+// OBSOLETE
+// OBSOLETE printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE d10v_eva_prepare_to_trace (void)
+// OBSOLETE {
+// OBSOLETE if (!tracing)
+// OBSOLETE return;
+// OBSOLETE
+// OBSOLETE last_pc = read_register (D10V_PC_REGNUM);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Collect trace data from the target board and format it into a form
+// OBSOLETE more useful for display. */
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE d10v_eva_get_trace_data (void)
+// OBSOLETE {
+// OBSOLETE int count, i, j, oldsize;
+// OBSOLETE int trace_addr, trace_seg, trace_cnt, next_cnt;
+// OBSOLETE unsigned int last_trace, trace_word, next_word;
+// OBSOLETE unsigned int *tmpspace;
+// OBSOLETE
+// OBSOLETE if (!tracing)
+// OBSOLETE return;
+// OBSOLETE
+// OBSOLETE tmpspace = xmalloc (65536 * sizeof (unsigned int));
+// OBSOLETE
+// OBSOLETE last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
+// OBSOLETE
+// OBSOLETE /* Collect buffer contents from the target, stopping when we reach
+// OBSOLETE the word recorded when execution resumed. */
+// OBSOLETE
+// OBSOLETE count = 0;
+// OBSOLETE while (last_trace > 0)
+// OBSOLETE {
+// OBSOLETE QUIT;
+// OBSOLETE trace_word =
+// OBSOLETE read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
+// OBSOLETE trace_addr = trace_word & 0xffff;
+// OBSOLETE last_trace -= 4;
+// OBSOLETE /* Ignore an apparently nonsensical entry. */
+// OBSOLETE if (trace_addr == 0xffd5)
+// OBSOLETE continue;
+// OBSOLETE tmpspace[count++] = trace_word;
+// OBSOLETE if (trace_addr == last_pc)
+// OBSOLETE break;
+// OBSOLETE if (count > 65535)
+// OBSOLETE break;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Move the data to the host-side trace buffer, adjusting counts to
+// OBSOLETE include the last instruction executed and transforming the address
+// OBSOLETE into something that GDB likes. */
+// OBSOLETE
+// OBSOLETE for (i = 0; i < count; ++i)
+// OBSOLETE {
+// OBSOLETE trace_word = tmpspace[i];
+// OBSOLETE next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
+// OBSOLETE trace_addr = trace_word & 0xffff;
+// OBSOLETE next_cnt = (next_word >> 24) & 0xff;
+// OBSOLETE j = trace_data.size + count - i - 1;
+// OBSOLETE trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
+// OBSOLETE trace_data.counts[j] = next_cnt + 1;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE oldsize = trace_data.size;
+// OBSOLETE trace_data.size += count;
+// OBSOLETE
+// OBSOLETE xfree (tmpspace);
+// OBSOLETE
+// OBSOLETE if (trace_display)
+// OBSOLETE display_trace (oldsize, trace_data.size);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE tdisassemble_command (char *arg, int from_tty)
+// OBSOLETE {
+// OBSOLETE int i, count;
+// OBSOLETE CORE_ADDR low, high;
+// OBSOLETE
+// OBSOLETE if (!arg)
+// OBSOLETE {
+// OBSOLETE low = 0;
+// OBSOLETE high = trace_data.size;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE char *space_index = strchr (arg, ' ');
+// OBSOLETE if (space_index == NULL)
+// OBSOLETE {
+// OBSOLETE low = parse_and_eval_address (arg);
+// OBSOLETE high = low + 5;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE /* Two arguments. */
+// OBSOLETE *space_index = '\0';
+// OBSOLETE low = parse_and_eval_address (arg);
+// OBSOLETE high = parse_and_eval_address (space_index + 1);
+// OBSOLETE if (high < low)
+// OBSOLETE high = low;
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE printf_filtered ("Dump of trace from %s to %s:\n",
+// OBSOLETE paddr_u (low), paddr_u (high));
+// OBSOLETE
+// OBSOLETE display_trace (low, high);
+// OBSOLETE
+// OBSOLETE printf_filtered ("End of trace dump.\n");
+// OBSOLETE gdb_flush (gdb_stdout);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE display_trace (int low, int high)
+// OBSOLETE {
+// OBSOLETE int i, count, trace_show_source, first, suppress;
+// OBSOLETE CORE_ADDR next_address;
+// OBSOLETE
+// OBSOLETE trace_show_source = default_trace_show_source;
+// OBSOLETE if (!have_full_symbols () && !have_partial_symbols ())
+// OBSOLETE {
+// OBSOLETE trace_show_source = 0;
+// OBSOLETE printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
+// OBSOLETE printf_filtered ("Trace will not display any source.\n");
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE first = 1;
+// OBSOLETE suppress = 0;
+// OBSOLETE for (i = low; i < high; ++i)
+// OBSOLETE {
+// OBSOLETE next_address = trace_data.addrs[i];
+// OBSOLETE count = trace_data.counts[i];
+// OBSOLETE while (count-- > 0)
+// OBSOLETE {
+// OBSOLETE QUIT;
+// OBSOLETE if (trace_show_source)
+// OBSOLETE {
+// OBSOLETE struct symtab_and_line sal, sal_prev;
+// OBSOLETE
+// OBSOLETE sal_prev = find_pc_line (next_address - 4, 0);
+// OBSOLETE sal = find_pc_line (next_address, 0);
+// OBSOLETE
+// OBSOLETE if (sal.symtab)
+// OBSOLETE {
+// OBSOLETE if (first || sal.line != sal_prev.line)
+// OBSOLETE print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
+// OBSOLETE suppress = 0;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE if (!suppress)
+// OBSOLETE /* FIXME-32x64--assumes sal.pc fits in long. */
+// OBSOLETE printf_filtered ("No source file for address %s.\n",
+// OBSOLETE hex_string ((unsigned long) sal.pc));
+// OBSOLETE suppress = 1;
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE first = 0;
+// OBSOLETE print_address (next_address, gdb_stdout);
+// OBSOLETE printf_filtered (":");
+// OBSOLETE printf_filtered ("\t");
+// OBSOLETE wrap_here (" ");
+// OBSOLETE next_address += gdb_print_insn (next_address, gdb_stdout);
+// OBSOLETE printf_filtered ("\n");
+// OBSOLETE gdb_flush (gdb_stdout);
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+// OBSOLETE {
+// OBSOLETE ULONGEST pc;
+// OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_PC_REGNUM, &pc);
+// OBSOLETE return d10v_make_iaddr (pc);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Given a GDB frame, determine the address of the calling function's
+// OBSOLETE frame. This will be used to create a new GDB frame struct. */
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE d10v_frame_this_id (struct frame_info *next_frame,
+// OBSOLETE void **this_prologue_cache,
+// OBSOLETE struct frame_id *this_id)
+// OBSOLETE {
+// OBSOLETE struct d10v_unwind_cache *info
+// OBSOLETE = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
+// OBSOLETE CORE_ADDR base;
+// OBSOLETE CORE_ADDR func;
+// OBSOLETE struct frame_id id;
+// OBSOLETE
+// OBSOLETE /* The FUNC is easy. */
+// OBSOLETE func = frame_func_unwind (next_frame);
+// OBSOLETE
+// OBSOLETE /* Hopefully the prologue analysis either correctly determined the
+// OBSOLETE frame's base (which is the SP from the previous frame), or set
+// OBSOLETE that base to "NULL". */
+// OBSOLETE base = info->prev_sp;
+// OBSOLETE if (base == STACK_START || base == 0)
+// OBSOLETE return;
+// OBSOLETE
+// OBSOLETE id = frame_id_build (base, func);
+// OBSOLETE
+// OBSOLETE (*this_id) = id;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE d10v_frame_prev_register (struct frame_info *next_frame,
+// OBSOLETE void **this_prologue_cache,
+// OBSOLETE int regnum, int *optimizedp,
+// OBSOLETE enum lval_type *lvalp, CORE_ADDR *addrp,
+// OBSOLETE int *realnump, void *bufferp)
+// OBSOLETE {
+// OBSOLETE struct d10v_unwind_cache *info
+// OBSOLETE = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
+// OBSOLETE trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
+// OBSOLETE optimizedp, lvalp, addrp, realnump, bufferp);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static const struct frame_unwind d10v_frame_unwind = {
+// OBSOLETE NORMAL_FRAME,
+// OBSOLETE d10v_frame_this_id,
+// OBSOLETE d10v_frame_prev_register
+// OBSOLETE };
+// OBSOLETE
+// OBSOLETE static const struct frame_unwind *
+// OBSOLETE d10v_frame_sniffer (struct frame_info *next_frame)
+// OBSOLETE {
+// OBSOLETE return &d10v_frame_unwind;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE d10v_frame_base_address (struct frame_info *next_frame, void **this_cache)
+// OBSOLETE {
+// OBSOLETE struct d10v_unwind_cache *info
+// OBSOLETE = d10v_frame_unwind_cache (next_frame, this_cache);
+// OBSOLETE return info->base;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static const struct frame_base d10v_frame_base = {
+// OBSOLETE &d10v_frame_unwind,
+// OBSOLETE d10v_frame_base_address,
+// OBSOLETE d10v_frame_base_address,
+// OBSOLETE d10v_frame_base_address
+// OBSOLETE };
+// OBSOLETE
+// OBSOLETE /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
+// OBSOLETE dummy frame. The frame ID's base needs to match the TOS value
+// OBSOLETE saved by save_dummy_frame_tos(), and the PC match the dummy frame's
+// OBSOLETE breakpoint. */
+// OBSOLETE
+// OBSOLETE static struct frame_id
+// OBSOLETE d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
+// OBSOLETE {
+// OBSOLETE return frame_id_build (d10v_unwind_sp (gdbarch, next_frame),
+// OBSOLETE frame_pc_unwind (next_frame));
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static gdbarch_init_ftype d10v_gdbarch_init;
+// OBSOLETE
+// OBSOLETE static struct gdbarch *
+// OBSOLETE d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+// OBSOLETE {
+// OBSOLETE struct gdbarch *gdbarch;
+// OBSOLETE int d10v_num_regs;
+// OBSOLETE struct gdbarch_tdep *tdep;
+// OBSOLETE gdbarch_register_name_ftype *d10v_register_name;
+// OBSOLETE gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
+// OBSOLETE
+// OBSOLETE /* Find a candidate among the list of pre-declared architectures. */
+// OBSOLETE arches = gdbarch_list_lookup_by_info (arches, &info);
+// OBSOLETE if (arches != NULL)
+// OBSOLETE return arches->gdbarch;
+// OBSOLETE
+// OBSOLETE /* None found, create a new architecture from the information
+// OBSOLETE provided. */
+// OBSOLETE tdep = XMALLOC (struct gdbarch_tdep);
+// OBSOLETE gdbarch = gdbarch_alloc (&info, tdep);
+// OBSOLETE
+// OBSOLETE switch (info.bfd_arch_info->mach)
+// OBSOLETE {
+// OBSOLETE case bfd_mach_d10v_ts2:
+// OBSOLETE d10v_num_regs = 37;
+// OBSOLETE d10v_register_name = d10v_ts2_register_name;
+// OBSOLETE d10v_register_sim_regno = d10v_ts2_register_sim_regno;
+// OBSOLETE tdep->a0_regnum = TS2_A0_REGNUM;
+// OBSOLETE tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
+// OBSOLETE tdep->dmap_register = d10v_ts2_dmap_register;
+// OBSOLETE tdep->imap_register = d10v_ts2_imap_register;
+// OBSOLETE break;
+// OBSOLETE default:
+// OBSOLETE case bfd_mach_d10v_ts3:
+// OBSOLETE d10v_num_regs = 42;
+// OBSOLETE d10v_register_name = d10v_ts3_register_name;
+// OBSOLETE d10v_register_sim_regno = d10v_ts3_register_sim_regno;
+// OBSOLETE tdep->a0_regnum = TS3_A0_REGNUM;
+// OBSOLETE tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
+// OBSOLETE tdep->dmap_register = d10v_ts3_dmap_register;
+// OBSOLETE tdep->imap_register = d10v_ts3_imap_register;
+// OBSOLETE break;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE set_gdbarch_read_pc (gdbarch, d10v_read_pc);
+// OBSOLETE set_gdbarch_write_pc (gdbarch, d10v_write_pc);
+// OBSOLETE set_gdbarch_unwind_sp (gdbarch, d10v_unwind_sp);
+// OBSOLETE
+// OBSOLETE set_gdbarch_num_regs (gdbarch, d10v_num_regs);
+// OBSOLETE set_gdbarch_sp_regnum (gdbarch, D10V_SP_REGNUM);
+// OBSOLETE set_gdbarch_register_name (gdbarch, d10v_register_name);
+// OBSOLETE set_gdbarch_register_type (gdbarch, d10v_register_type);
+// OBSOLETE
+// OBSOLETE set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+// OBSOLETE set_gdbarch_addr_bit (gdbarch, 32);
+// OBSOLETE set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
+// OBSOLETE set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
+// OBSOLETE set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
+// OBSOLETE set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+// OBSOLETE set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+// OBSOLETE set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+// OBSOLETE set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+// OBSOLETE /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
+// OBSOLETE double'' is 64 bits. */
+// OBSOLETE set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+// OBSOLETE set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+// OBSOLETE set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+// OBSOLETE switch (info.byte_order)
+// OBSOLETE {
+// OBSOLETE case BFD_ENDIAN_BIG:
+// OBSOLETE set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
+// OBSOLETE set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
+// OBSOLETE set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
+// OBSOLETE break;
+// OBSOLETE case BFD_ENDIAN_LITTLE:
+// OBSOLETE set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
+// OBSOLETE set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
+// OBSOLETE set_gdbarch_long_double_format (gdbarch,
+// OBSOLETE &floatformat_ieee_double_little);
+// OBSOLETE break;
+// OBSOLETE default:
+// OBSOLETE internal_error (__FILE__, __LINE__,
+// OBSOLETE "d10v_gdbarch_init: bad byte order for float format");
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE set_gdbarch_return_value (gdbarch, d10v_return_value);
+// OBSOLETE set_gdbarch_push_dummy_code (gdbarch, d10v_push_dummy_code);
+// OBSOLETE set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call);
+// OBSOLETE
+// OBSOLETE set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
+// OBSOLETE set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+// OBSOLETE set_gdbarch_decr_pc_after_break (gdbarch, 4);
+// OBSOLETE set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
+// OBSOLETE
+// OBSOLETE set_gdbarch_remote_translate_xfer_address (gdbarch,
+// OBSOLETE remote_d10v_translate_xfer_address);
+// OBSOLETE
+// OBSOLETE set_gdbarch_frame_align (gdbarch, d10v_frame_align);
+// OBSOLETE
+// OBSOLETE set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
+// OBSOLETE
+// OBSOLETE set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info);
+// OBSOLETE
+// OBSOLETE frame_unwind_append_sniffer (gdbarch, d10v_frame_sniffer);
+// OBSOLETE frame_base_set_default (gdbarch, &d10v_frame_base);
+// OBSOLETE
+// OBSOLETE /* Methods for saving / extracting a dummy frame's ID. The ID's
+// OBSOLETE stack address must match the SP value returned by
+// OBSOLETE PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
+// OBSOLETE set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id);
+// OBSOLETE
+// OBSOLETE /* Return the unwound PC value. */
+// OBSOLETE set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc);
+// OBSOLETE
+// OBSOLETE set_gdbarch_print_insn (gdbarch, print_insn_d10v);
+// OBSOLETE
+// OBSOLETE return gdbarch;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE _initialize_d10v_tdep (void)
+// OBSOLETE {
+// OBSOLETE register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
+// OBSOLETE
+// OBSOLETE deprecated_target_resume_hook = d10v_eva_prepare_to_trace;
+// OBSOLETE deprecated_target_wait_loop_hook = d10v_eva_get_trace_data;
+// OBSOLETE
+// OBSOLETE deprecate_cmd (add_com ("regs", class_vars, show_regs,
+// OBSOLETE "Print all registers"),
+// OBSOLETE "info registers");
+// OBSOLETE
+// OBSOLETE add_com ("itrace", class_support, trace_command,
+// OBSOLETE "Enable tracing of instruction execution.");
+// OBSOLETE
+// OBSOLETE add_com ("iuntrace", class_support, untrace_command,
+// OBSOLETE "Disable tracing of instruction execution.");
+// OBSOLETE
+// OBSOLETE add_com ("itdisassemble", class_vars, tdisassemble_command,
+// OBSOLETE "Disassemble the trace buffer.\n\
+// OBSOLETE Two optional arguments specify a range of trace buffer entries\n\
+// OBSOLETE as reported by info trace (NOT addresses!).");
+// OBSOLETE
+// OBSOLETE add_info ("itrace", trace_info,
+// OBSOLETE "Display info about the trace data buffer.");
+// OBSOLETE
+// OBSOLETE add_setshow_boolean_cmd ("itracedisplay", no_class, &trace_display, "\
+// OBSOLETE Set automatic display of trace.", "\
+// OBSOLETE Show automatic display of trace.", "\
+// OBSOLETE Controls the display of d10v specific instruction trace information.", "\
+// OBSOLETE Automatic display of trace is %s.",
+// OBSOLETE NULL, NULL, &setlist, &showlist);
+// OBSOLETE add_setshow_boolean_cmd ("itracesource", no_class,
+// OBSOLETE &default_trace_show_source, "\
+// OBSOLETE Set display of source code with trace.", "\
+// OBSOLETE Show display of source code with trace.", "\
+// OBSOLETE When on source code is included in the d10v instruction trace display.", "\
+// OBSOLETE Display of source code with trace is %s.",
+// OBSOLETE NULL, NULL, &setlist, &showlist);
+// OBSOLETE }