cat <<EOF
i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
#
-i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
+i::int:byte_order:::BFD_ENDIAN_BIG
#
-i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
+i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
#
i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
# Number of bits in a char or unsigned char for the target machine.
# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
#
# Number of bits in a short or unsigned short for the target machine.
-v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
+v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
# Number of bits in an int or unsigned int for the target machine.
-v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
+v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
# Number of bits in a long or unsigned long for the target machine.
-v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
+v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
# Number of bits in a long long or unsigned long long for the target
# machine.
-v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
+v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
# The ABI default bit-size and format for "float", "double", and "long
# double". These bit/format pairs should eventually be combined into
# a single object. For the moment, just initialize them as a pair.
+# Each format describes both the big and little endian layouts (if
+# useful).
-v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
-v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
-v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
-v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
-v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
-v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
+v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
+v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
+v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
+v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
+v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
+v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
# For most targets, a pointer on the target and its representation as an
# address in GDB have the same size and "look the same". For such a
-# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
+# target, you need only set gdbarch_ptr_bit and TARGET_ADDR_BIT
# / addr_bit will be set from it.
#
-# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
-# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
+# If gdbarch_ptr_bit and TARGET_ADDR_BIT are different, you'll probably
+# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
+# as well.
#
# ptr_bit is the size of a pointer on the target
-v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
+v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
# addr_bit is the size of a target address as represented in gdb
-v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
+v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
# Number of bits in a BFD_VMA for the target object file format.
-v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
+v::int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
#
# One if \`char' acts like \`signed char', zero if \`unsigned char'.
-v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
+v::int:char_signed:::1:-1:1
#
F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
-# UNWIND_SP is a direct replacement for TARGET_READ_SP.
-F:TARGET_READ_SP:CORE_ADDR:read_sp:void
# Function for getting target's idea of a frame pointer. FIXME: GDB's
# whole scheme for dealing with "frames" and "frame pointers" needs a
# serious shakedown.
-f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
+f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
#
M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
#
-v:=:int:num_regs:::0:-1
+v::int:num_regs:::0:-1
# This macro gives the number of pseudo-registers that live in the
# register namespace but do not get fetched or stored on the target.
# These pseudo-registers may be aliases for other registers,
# combinations of other registers, or they may be computed by GDB.
-v:=:int:num_pseudo_regs:::0:0::0
+v::int:num_pseudo_regs:::0:0::0
# GDB's standard (or well known) register numbers. These can map onto
# a real register or a pseudo (computed) register or not be defined at
v:=:int:ps_regnum:::-1:-1::0
v:=:int:fp0_regnum:::0:-1::0
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
-f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
+f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
-f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
+f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
# Provide a default mapping from a DWARF register number to a gdb REGNUM.
-f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
+f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
# Convert from an sdb register number to an internal gdb register number.
-f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
-f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
-f:=:const char *:register_name:int regnr:regnr
+f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
+f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
+f::const char *:register_name:int regnr:regnr
-# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
+# Return the type of a register specified by the architecture. Only
+# the register cache should call this function directly; others should
+# use "register_type".
M::struct type *:register_type:int reg_nr:reg_nr
-# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
-# register offsets computed using just REGISTER_TYPE, this can be
-# deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
-# function with predicate has a valid (callable) initial value. As a
-# consequence, even when the predicate is false, the corresponding
-# function works. This simplifies the migration process - old code,
-# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
-F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
# See gdbint.texinfo, and PUSH_DUMMY_CALL.
M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
# DEPRECATED_REGISTER_SIZE can be deleted.
v:=:int:deprecated_register_size
-v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
+v::int:call_dummy_location::::AT_ENTRY_POINT::0
M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
# MAP a GDB RAW register number onto a simulator register number. See
# also include/...-sim.h.
-f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
-F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
-f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
-f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
+f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
+f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
+f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
# setjmp/longjmp support.
-F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
+F::int:get_longjmp_target:CORE_ADDR *pc:pc
#
v:=:int:believe_pcc_promotion:::::::
#
-f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
-f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
-f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
+f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
+f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
+f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
# Construct a value representing the contents of register REGNUM in
# frame FRAME, interpreted as type TYPE. The routine needs to
# allocate and return a struct value with all value attributes
# (but not the value contents) filled in.
f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
#
-f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
-f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
+f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
+f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
-#
-# NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
-F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
# It has been suggested that this, well actually its predecessor,
# should take the type/value of the function to be called and not the
F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
#
-f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
-f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
-f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
+f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
+f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
+f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
-f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
-f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
-v:=:CORE_ADDR:decr_pc_after_break:::0:::0
+f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
+f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
+v::CORE_ADDR:decr_pc_after_break:::0:::0
# A function can be addressed by either it's "pointer" (possibly a
# descriptor address) or "entry point" (first executable instruction).
v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
-m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
+# Return the remote protocol register number associated with this
+# register. Normally the identity mapping.
+m::int:remote_register_number:int regno:regno::default_remote_register_number::0
# Fetch the target specific address used to represent a load module.
-F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
+F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
#
-v:=:CORE_ADDR:frame_args_skip:::0:::0
+v::CORE_ADDR:frame_args_skip:::0:::0
M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
# frame-base. Enable frame-base before frame-unwind.
-F:=:int:frame_num_args:struct frame_info *frame:frame
+F::int:frame_num_args:struct frame_info *frame:frame
#
-# DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
-# to frame_align and the requirement that methods such as
-# push_dummy_call and frame_red_zone_size maintain correct stack/frame
-# alignment.
-F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
M::CORE_ADDR:frame_align:CORE_ADDR address:address
# DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
# stabs_argument_has_addr.
F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
-v:=:int:frame_red_zone_size
+v::int:frame_red_zone_size
#
m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
# On some machines there are bits in addresses which are not really
# part of the address, but are used by the kernel, the hardware, etc.
-# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
+# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
# we get a "real" address such as one would find in a symbol table.
# This is used only for addresses of instructions, and even then I'm
# not sure it's used in all contexts. It exists to deal with there
# being a few stray bits in the PC which would mislead us, not as some
# sort of generic thing to handle alignment or segmentation (it's
# possible it should be in TARGET_READ_PC instead).
-f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
-# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
-# ADDR_BITS_REMOVE.
-f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
-# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
-# the target needs software single step. An ISA method to implement it.
+f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
+# It is not at all clear why gdbarch_smash_text_address is not folded into
+# gdbarch_addr_bits_remove.
+f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
+
+# FIXME/cagney/2001-01-18: This should be split in two. A target method that
+# indicates if the target needs software single step. An ISA method to
+# implement it.
+#
+# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
+# breakpoints using the breakpoint system instead of blatting memory directly
+# (as with rs6000).
#
-# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
-# using the breakpoint system instead of blatting memory directly (as with rs6000).
+# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
+# target can single step. If not, then implement single step using breakpoints.
#
-# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
-# single step. If not, then implement single step using breakpoints.
-F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
+# A return value of 1 means that the software_single_step breakpoints
+# were inserted; 0 means they were not.
+F:=:int:software_single_step:struct regcache *regcache:regcache
+
# Return non-zero if the processor is executing a delay slot and a
# further single-step is needed before the instruction finishes.
M::int:single_step_through_delay:struct frame_info *frame:frame
# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
# disassembler. Perhaps objdump can handle it?
f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
-f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
+f::CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
# a step-resume breakpoint to get us past the dynamic linker.
m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
# Some systems also have trampoline code for returning from shared libs.
-f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
+f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
# A target might have problems with watchpoints as soon as the stack
# frame of the current function has been destroyed. This mostly happens
# ARGC is the number of elements in the vector.
# ARGV is an array of strings, one per argument.
m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
-f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
-f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
-v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
-v:=:int:cannot_step_breakpoint:::0:0::0
-v:=:int:have_nonsteppable_watchpoint:::0:0::0
-F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
+f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
+f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
+v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
+v::int:cannot_step_breakpoint:::0:0::0
+v::int:have_nonsteppable_watchpoint:::0:0::0
+F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
# Is a register in a group
m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
# Fetch the pointer to the ith function argument.
-F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
+F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
# Return the appropriate register set for a core file section with
# name SECT_NAME and size SECT_SIZE.
# Set if the least significant bit of the delta is used instead of the least
# significant bit of the pfn for pointers to virtual member functions.
v::int:vbit_in_delta:::0:0::0
+
+# Advance PC to next instruction in order to skip a permanent breakpoint.
+F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
+
+# Refresh overlay mapped state for section OSECT.
+F::void:overlay_update:struct obj_section *osect:osect
EOF
}
struct frame_info;
struct value;
struct objfile;
+struct obj_section;
struct minimal_symbol;
struct regcache;
struct reggroup;
#include "arch-utils.h"
#include "gdbcmd.h"
-#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
+#include "inferior.h"
#include "symcat.h"
#include "floatformat.h"
}
static const char *
-pformat (const struct floatformat *format)
+pformat (const struct floatformat **format)
{
if (format == NULL)
return "(null)";
else
- return format->name;
+ /* Just print out one of them - this is only for diagnostics. */
+ return format[0]->name;
}
EOF
struct gdbarch_tdep *tdep)
{
/* NOTE: The new architecture variable is named \`\`current_gdbarch''
- so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
+ so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
the current local architecture and not the previous global
architecture. This ensures that the new architectures initial
values are not influenced by the previous architecture. Once
current_gdbarch_swap_out_hack ();
current_gdbarch_swap_in_hack (new_gdbarch);
architecture_changed_event ();
- flush_cached_frames ();
+ reinit_frame_cache ();
}
extern void _initialize_gdbarch (void);