/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
- Copyright 1996, 1997, 1998 Free Software Foundation, Inc.
+ Copyright 1996, 1997, 1998, 1999, 2000, 2001
+ Free Software Foundation, Inc.
-This file is part of GDB.
+ This file is part of GDB.
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "symfile.h"
+#include "regcache.h"
+#include "arch-utils.h"
-static char *mn10300_generic_register_names[] =
-{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
- "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
- "", "", "", "", "", "", "", "",
- "", "", "", "", "", "", "", "fp" };
+extern void _initialize_mn10300_tdep (void);
+static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
+ CORE_ADDR pc);
-char **mn10300_register_names = mn10300_generic_register_names;
-
-static CORE_ADDR mn10300_analyze_prologue PARAMS ((struct frame_info *fi,
- CORE_ADDR pc));
+/* mn10300 private data */
+struct gdbarch_tdep
+{
+ int am33_mode;
+#define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
+};
/* Additional info used by the frame */
struct frame_extra_info
+ {
+ int status;
+ int stack_size;
+ };
+
+
+static char *
+register_name (int reg, char **regs, long sizeof_regs)
{
- int status;
- int stack_size;
-};
+ if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
+ return NULL;
+ else
+ return regs[reg];
+}
+
+static char *
+mn10300_generic_register_name (int reg)
+{
+ static char *regs[] =
+ { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
+ "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
+ "", "", "", "", "", "", "", "",
+ "", "", "", "", "", "", "", "fp"
+ };
+ return register_name (reg, regs, sizeof regs);
+}
+
+
+static char *
+am33_register_name (int reg)
+{
+ static char *regs[] =
+ { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
+ "sp", "pc", "mdr", "psw", "lir", "lar", "",
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
+ };
+ return register_name (reg, regs, sizeof regs);
+}
+
+static CORE_ADDR
+mn10300_saved_pc_after_call (struct frame_info *fi)
+{
+ return read_memory_integer (read_register (SP_REGNUM), 4);
+}
-static struct frame_info *analyze_dummy_frame PARAMS ((CORE_ADDR, CORE_ADDR));
+static void
+mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
+{
+ if (TYPE_CODE (type) == TYPE_CODE_PTR)
+ memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
+ else
+ memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
+}
+
+static CORE_ADDR
+mn10300_extract_struct_value_address (char *regbuf)
+{
+ return extract_address (regbuf + REGISTER_BYTE (4),
+ REGISTER_RAW_SIZE (4));
+}
+
+static void
+mn10300_store_return_value (struct type *type, char *valbuf)
+{
+ if (TYPE_CODE (type) == TYPE_CODE_PTR)
+ write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
+ else
+ write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
+}
+
+static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
static struct frame_info *
-analyze_dummy_frame (pc, frame)
- CORE_ADDR pc;
- CORE_ADDR frame;
+analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
{
static struct frame_info *dummy = NULL;
if (dummy == NULL)
/* Should call_function allocate stack space for a struct return? */
-int
-mn10300_use_struct_convention (gcc_p, type)
- int gcc_p;
- struct type *type;
+static int
+mn10300_use_struct_convention (int gcc_p, struct type *type)
{
return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
}
so we need a single byte breakpoint. Matsushita hasn't defined
one, so we defined it ourselves. */
-unsigned char *
-mn10300_breakpoint_from_pc (bp_addr, bp_size)
- CORE_ADDR *bp_addr;
- int *bp_size;
+static unsigned char *
+mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
{
- static char breakpoint[] = {0xff};
+ static char breakpoint[] =
+ {0xff};
*bp_size = 1;
return breakpoint;
}
function for mn10300_analyze_prologue. */
static void
-fix_frame_pointer (fi, stack_size)
- struct frame_info *fi;
- int stack_size;
+fix_frame_pointer (struct frame_info *fi, int stack_size)
{
if (fi && fi->next == NULL)
{
This is a helper function for mn10300_analyze_prologue. */
static void
-set_movm_offsets (fi, movm_args)
- struct frame_info *fi;
- int movm_args;
+set_movm_offsets (struct frame_info *fi, int movm_args)
{
int offset = 0;
if (fi == NULL || movm_args == 0)
return;
- if (movm_args & 0x10)
+ if (movm_args & movm_other_bit)
+ {
+ /* The `other' bit leaves a blank area of four bytes at the
+ beginning of its block of saved registers, making it 32 bytes
+ long in total. */
+ fi->saved_regs[LAR_REGNUM] = fi->frame + offset + 4;
+ fi->saved_regs[LIR_REGNUM] = fi->frame + offset + 8;
+ fi->saved_regs[MDR_REGNUM] = fi->frame + offset + 12;
+ fi->saved_regs[A0_REGNUM + 1] = fi->frame + offset + 16;
+ fi->saved_regs[A0_REGNUM] = fi->frame + offset + 20;
+ fi->saved_regs[D0_REGNUM + 1] = fi->frame + offset + 24;
+ fi->saved_regs[D0_REGNUM] = fi->frame + offset + 28;
+ offset += 32;
+ }
+ if (movm_args & movm_a3_bit)
{
fi->saved_regs[A3_REGNUM] = fi->frame + offset;
offset += 4;
}
- if (movm_args & 0x20)
+ if (movm_args & movm_a2_bit)
{
fi->saved_regs[A2_REGNUM] = fi->frame + offset;
offset += 4;
}
- if (movm_args & 0x40)
+ if (movm_args & movm_d3_bit)
{
fi->saved_regs[D3_REGNUM] = fi->frame + offset;
offset += 4;
}
- if (movm_args & 0x80)
+ if (movm_args & movm_d2_bit)
{
fi->saved_regs[D2_REGNUM] = fi->frame + offset;
offset += 4;
}
+ if (AM33_MODE)
+ {
+ if (movm_args & movm_exother_bit)
+ {
+ fi->saved_regs[MCVF_REGNUM] = fi->frame + offset;
+ fi->saved_regs[MCRL_REGNUM] = fi->frame + offset + 4;
+ fi->saved_regs[MCRH_REGNUM] = fi->frame + offset + 8;
+ fi->saved_regs[MDRQ_REGNUM] = fi->frame + offset + 12;
+ fi->saved_regs[E0_REGNUM + 1] = fi->frame + offset + 16;
+ fi->saved_regs[E0_REGNUM + 0] = fi->frame + offset + 20;
+ offset += 24;
+ }
+ if (movm_args & movm_exreg1_bit)
+ {
+ fi->saved_regs[E0_REGNUM + 7] = fi->frame + offset;
+ fi->saved_regs[E0_REGNUM + 6] = fi->frame + offset + 4;
+ fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset + 8;
+ fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 12;
+ offset += 16;
+ }
+ if (movm_args & movm_exreg0_bit)
+ {
+ fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset;
+ fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 4;
+ offset += 8;
+ }
+ }
}
For reference here's how prologues look on the mn10300:
- With frame pointer:
- movm [d2,d3,a2,a3],sp
- mov sp,a3
- add <size>,sp
+ With frame pointer:
+ movm [d2,d3,a2,a3],sp
+ mov sp,a3
+ add <size>,sp
- Without frame pointer:
- movm [d2,d3,a2,a3],sp (if needed)
- add <size>,sp
+ Without frame pointer:
+ movm [d2,d3,a2,a3],sp (if needed)
+ add <size>,sp
One day we might keep the stack pointer constant, that won't
change the code for prologues, but it will make the frame
pointerless case much more common. */
-
+
/* Analyze the prologue to determine where registers are saved,
the end of the prologue, etc etc. Return the end of the prologue
scanned.
We store into FI (if non-null) several tidbits of information:
- * stack_size -- size of this stack frame. Note that if we stop in
- certain parts of the prologue/epilogue we may claim the size of the
- current frame is zero. This happens when the current frame has
- not been allocated yet or has already been deallocated.
+ * stack_size -- size of this stack frame. Note that if we stop in
+ certain parts of the prologue/epilogue we may claim the size of the
+ current frame is zero. This happens when the current frame has
+ not been allocated yet or has already been deallocated.
- * fsr -- Addresses of registers saved in the stack by this frame.
+ * fsr -- Addresses of registers saved in the stack by this frame.
- * status -- A (relatively) generic status indicator. It's a bitmask
- with the following bits:
+ * status -- A (relatively) generic status indicator. It's a bitmask
+ with the following bits:
- MY_FRAME_IN_SP: The base of the current frame is actually in
- the stack pointer. This can happen for frame pointerless
- functions, or cases where we're stopped in the prologue/epilogue
- itself. For these cases mn10300_analyze_prologue will need up
- update fi->frame before returning or analyzing the register
- save instructions.
+ MY_FRAME_IN_SP: The base of the current frame is actually in
+ the stack pointer. This can happen for frame pointerless
+ functions, or cases where we're stopped in the prologue/epilogue
+ itself. For these cases mn10300_analyze_prologue will need up
+ update fi->frame before returning or analyzing the register
+ save instructions.
- MY_FRAME_IN_FP: The base of the current frame is in the
- frame pointer register ($a2).
+ MY_FRAME_IN_FP: The base of the current frame is in the
+ frame pointer register ($a2).
- NO_MORE_FRAMES: Set this if the current frame is "start" or
- if the first instruction looks like mov <imm>,sp. This tells
- frame chain to not bother trying to unwind past this frame. */
+ NO_MORE_FRAMES: Set this if the current frame is "start" or
+ if the first instruction looks like mov <imm>,sp. This tells
+ frame chain to not bother trying to unwind past this frame. */
static CORE_ADDR
-mn10300_analyze_prologue (fi, pc)
- struct frame_info *fi;
- CORE_ADDR pc;
+mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
{
CORE_ADDR func_addr, func_end, addr, stop;
CORE_ADDR stack_size;
/* Do nothing if we couldn't find the start of this function or if we're
stopped at the first instruction in the prologue. */
if (status == 0)
- return pc;
+ {
+ return pc;
+ }
/* If we're in start, then give up. */
if (strcmp (name, "start") == 0)
return addr;
}
}
-
+
/* Next we should allocate the local frame. No more prologue insns
are found after allocating the local frame.
-
+
Search for add imm8,sp (0xf8feXX)
- or add imm16,sp (0xfafeXXXX)
- or add imm32,sp (0xfcfeXXXXXXXX).
-
+ or add imm16,sp (0xfafeXXXX)
+ or add imm32,sp (0xfcfeXXXXXXXX).
+
If none of the above was found, then this prologue has no
additional stack. */
set_movm_offsets (fi, movm_args);
return addr;
}
-
+
+
+/* Function: saved_regs_size
+ Return the size in bytes of the register save area, based on the
+ saved_regs array in FI. */
+static int
+saved_regs_size (struct frame_info *fi)
+{
+ int adjust = 0;
+ int i;
+
+ /* Reserve four bytes for every register saved. */
+ for (i = 0; i < NUM_REGS; i++)
+ if (fi->saved_regs[i])
+ adjust += 4;
+
+ /* If we saved LIR, then it's most likely we used a `movm'
+ instruction with the `other' bit set, in which case the SP is
+ decremented by an extra four bytes, "to simplify calculation
+ of the transfer area", according to the processor manual. */
+ if (fi->saved_regs[LIR_REGNUM])
+ adjust += 4;
+
+ return adjust;
+}
+
+
/* Function: frame_chain
Figure out and return the caller's frame pointer given current
frame_info struct.
We don't handle dummy frames yet but we would probably just return the
stack pointer that was in use at the time the function call was made? */
-CORE_ADDR
-mn10300_frame_chain (fi)
- struct frame_info *fi;
+static CORE_ADDR
+mn10300_frame_chain (struct frame_info *fi)
{
struct frame_info *dummy;
/* Walk through the prologue to determine the stack size,
location of saved registers, end of the prologue, etc. */
if (fi->extra_info->status == 0)
- mn10300_analyze_prologue (fi, (CORE_ADDR)0);
+ mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
/* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
if (fi->extra_info->status & NO_MORE_FRAMES)
/* Now that we've analyzed our prologue, determine the frame
pointer for our caller.
- If our caller has a frame pointer, then we need to
- find the entry value of $a3 to our function.
+ If our caller has a frame pointer, then we need to
+ find the entry value of $a3 to our function.
+
+ If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
+ location pointed to by fsr.regs[A3_REGNUM].
- If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
- location pointed to by fsr.regs[A3_REGNUM].
+ Else it's still in $a3.
- Else it's still in $a3.
+ If our caller does not have a frame pointer, then his
+ frame base is fi->frame + -caller's stack size. */
- If our caller does not have a frame pointer, then his
- frame base is fi->frame + -caller's stack size. */
-
/* The easiest way to get that info is to analyze our caller's frame.
So we set up a dummy frame and call mn10300_analyze_prologue to
find stuff for us. */
}
else
{
- int adjust = 0;
-
- adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
- adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
- adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
- adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
+ int adjust = saved_regs_size (fi);
/* Our caller does not have a frame pointer. So his frame starts
- at the base of our frame (fi->frame) + register save space
- + <his size>. */
+ at the base of our frame (fi->frame) + register save space
+ + <his size>. */
return fi->frame + adjust + -dummy->extra_info->stack_size;
}
}
/* Function: skip_prologue
Return the address of the first inst past the prologue of the function. */
-CORE_ADDR
-mn10300_skip_prologue (pc)
- CORE_ADDR pc;
+static CORE_ADDR
+mn10300_skip_prologue (CORE_ADDR pc)
{
/* We used to check the debug symbols, but that can lose if
we have a null prologue. */
return mn10300_analyze_prologue (NULL, pc);
}
-
-/* Function: pop_frame
- This routine gets called when either the user uses the `return'
- command, or the call dummy breakpoint gets hit. */
-
-void
-mn10300_pop_frame (frame)
- struct frame_info *frame;
+/* generic_pop_current_frame calls this function if the current
+ frame isn't a dummy frame. */
+static void
+mn10300_pop_frame_regular (struct frame_info *frame)
{
int regnum;
- if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
- generic_pop_dummy_frame ();
- else
- {
- write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
+ write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
- /* Restore any saved registers. */
- for (regnum = 0; regnum < NUM_REGS; regnum++)
- if (frame->saved_regs[regnum] != 0)
- {
- ULONGEST value;
+ /* Restore any saved registers. */
+ for (regnum = 0; regnum < NUM_REGS; regnum++)
+ if (frame->saved_regs[regnum] != 0)
+ {
+ ULONGEST value;
- value = read_memory_unsigned_integer (frame->saved_regs[regnum],
- REGISTER_RAW_SIZE (regnum));
- write_register (regnum, value);
- }
+ value = read_memory_unsigned_integer (frame->saved_regs[regnum],
+ REGISTER_RAW_SIZE (regnum));
+ write_register (regnum, value);
+ }
- /* Actually cut back the stack. */
- write_register (SP_REGNUM, FRAME_FP (frame));
+ /* Actually cut back the stack. */
+ write_register (SP_REGNUM, FRAME_FP (frame));
- /* Don't we need to set the PC?!? XXX FIXME. */
- }
+ /* Don't we need to set the PC?!? XXX FIXME. */
+}
+
+/* Function: pop_frame
+ This routine gets called when either the user uses the `return'
+ command, or the call dummy breakpoint gets hit. */
+static void
+mn10300_pop_frame (void)
+{
+ /* This function checks for and handles generic dummy frames, and
+ calls back to our function for ordinary frames. */
+ generic_pop_current_frame (mn10300_pop_frame_regular);
/* Throw away any cached frame information. */
flush_cached_frames ();
Setup arguments for a call to the target. Arguments go in
order on the stack. */
-CORE_ADDR
-mn10300_push_arguments (nargs, args, sp, struct_return, struct_addr)
- int nargs;
- value_ptr *args;
- CORE_ADDR sp;
- unsigned char struct_return;
- CORE_ADDR struct_addr;
+static CORE_ADDR
+mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
{
int argnum = 0;
int len = 0;
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
{
/* XXX Wrong, we want a pointer to this argument. */
- len = TYPE_LENGTH (VALUE_TYPE (*args));
- val = (char *)VALUE_CONTENTS (*args);
+ len = TYPE_LENGTH (VALUE_TYPE (*args));
+ val = (char *) VALUE_CONTENTS (*args);
}
else
{
len = TYPE_LENGTH (VALUE_TYPE (*args));
- val = (char *)VALUE_CONTENTS (*args);
+ val = (char *) VALUE_CONTENTS (*args);
}
while (regsused < 2 && len > 0)
/* Function: push_return_address (pc)
Set up the return address for the inferior function call.
Needed for targets where we don't actually execute a JSR/BSR instruction */
-
-CORE_ADDR
-mn10300_push_return_address (pc, sp)
- CORE_ADDR pc;
- CORE_ADDR sp;
+
+static CORE_ADDR
+mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
unsigned char buf[4];
/* Function: store_struct_return (addr,sp)
Store the structure value return address for an inferior function
call. */
-
-CORE_ADDR
-mn10300_store_struct_return (addr, sp)
- CORE_ADDR addr;
- CORE_ADDR sp;
+
+static void
+mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
/* The structure return address is passed as the first argument. */
write_register (0, addr);
- return sp;
}
-
+
/* Function: frame_saved_pc
Find the caller of this frame. We do this by seeing if RP_REGNUM
is saved in the stack anywhere, otherwise we get it from the
instead of RP, because that's where "caller" of the dummy-frame
will be found. */
-CORE_ADDR
-mn10300_frame_saved_pc (fi)
- struct frame_info *fi;
+static CORE_ADDR
+mn10300_frame_saved_pc (struct frame_info *fi)
{
- int adjust = 0;
-
- adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
- adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
- adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
- adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
+ int adjust = saved_regs_size (fi);
return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
}
First, during normal backtracing, second, while figuring out the frame
pointer just prior to calling the target function (see run_stack_dummy). */
-void
-mn10300_init_extra_frame_info (fi)
- struct frame_info *fi;
+static void
+mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
if (fi->next)
fi->pc = FRAME_SAVED_PC (fi->next);
mn10300_analyze_prologue (fi, 0);
}
+
+/* This function's job is handled by init_extra_frame_info. */
+static void
+mn10300_frame_init_saved_regs (struct frame_info *frame)
+{
+}
+
+
/* Function: mn10300_virtual_frame_pointer
Return the register that the function uses for a frame pointer,
plus any necessary offset to be applied to the register before
any frame pointer offsets. */
void
-mn10300_virtual_frame_pointer (pc, reg, offset)
- CORE_ADDR pc;
- long *reg;
- long *offset;
+mn10300_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
{
struct frame_info *dummy = analyze_dummy_frame (pc, 0);
/* Set up a dummy frame_info, Analyze the prolog and fill in the
/* Results will tell us which type of frame it uses. */
if (dummy->extra_info->status & MY_FRAME_IN_SP)
{
- *reg = SP_REGNUM;
+ *reg = SP_REGNUM;
*offset = -(dummy->extra_info->stack_size);
}
else
{
- *reg = A3_REGNUM;
+ *reg = A3_REGNUM;
*offset = 0;
}
}
-
-/* This can be made more generic later. */
+
+static int
+mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
+{
+ return (TYPE_LENGTH (type) > 8);
+}
+
+static struct type *
+mn10300_register_virtual_type (int reg)
+{
+ return builtin_type_int;
+}
+
+static int
+mn10300_register_byte (int reg)
+{
+ return (reg * 4);
+}
+
+static int
+mn10300_register_virtual_size (int reg)
+{
+ return 4;
+}
+
+static int
+mn10300_register_raw_size (int reg)
+{
+ return 4;
+}
+
+/* If DWARF2 is a register number appearing in Dwarf2 debug info, then
+ mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
+ register number. Why don't Dwarf2 and GDB use the same numbering?
+ Who knows? But since people have object files lying around with
+ the existing Dwarf2 numbering, and other people have written stubs
+ to work with the existing GDB, neither of them can change. So we
+ just have to cope. */
+static int
+mn10300_dwarf2_reg_to_regnum (int dwarf2)
+{
+ /* This table is supposed to be shaped like the REGISTER_NAMES
+ initializer in gcc/config/mn10300/mn10300.h. Registers which
+ appear in GCC's numbering, but have no counterpart in GDB's
+ world, are marked with a -1. */
+ static int dwarf2_to_gdb[] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
+ 15, 16, 17, 18, 19, 20, 21, 22
+ };
+ int gdb;
+
+ if (dwarf2 < 0
+ || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
+ || dwarf2_to_gdb[dwarf2] == -1)
+ internal_error (__FILE__, __LINE__,
+ "bogus register number in debug info: %d", dwarf2);
+
+ return dwarf2_to_gdb[dwarf2];
+}
+
static void
-set_machine_hook (filename)
- char *filename;
+mn10300_print_register (const char *name, int regnum, int reg_width)
{
- int i;
+ char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
+
+ if (reg_width)
+ printf_filtered ("%*s: ", reg_width, name);
+ else
+ printf_filtered ("%s: ", name);
- if (bfd_get_mach (exec_bfd) == bfd_mach_mn10300
- || bfd_get_mach (exec_bfd) == 0)
+ /* Get the data */
+ if (read_relative_register_raw_bytes (regnum, raw_buffer))
+ {
+ printf_filtered ("[invalid]");
+ return;
+ }
+ else
{
- mn10300_register_names = mn10300_generic_register_names;
+ int byte;
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
+ byte < REGISTER_RAW_SIZE (regnum);
+ byte++)
+ printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
+ }
+ else
+ {
+ for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
+ byte >= 0;
+ byte--)
+ printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
+ }
}
+}
+static void
+mn10300_do_registers_info (int regnum, int fpregs)
+{
+ if (regnum >= 0)
+ {
+ const char *name = REGISTER_NAME (regnum);
+ if (name == NULL || name[0] == '\0')
+ error ("Not a valid register for the current processor type");
+ mn10300_print_register (name, regnum, 0);
+ printf_filtered ("\n");
+ }
+ else
+ {
+ /* print registers in an array 4x8 */
+ int r;
+ int reg;
+ const int nr_in_row = 4;
+ const int reg_width = 4;
+ for (r = 0; r < NUM_REGS; r += nr_in_row)
+ {
+ int c;
+ int printing = 0;
+ int padding = 0;
+ for (c = r; c < r + nr_in_row; c++)
+ {
+ const char *name = REGISTER_NAME (c);
+ if (name != NULL && *name != '\0')
+ {
+ printing = 1;
+ while (padding > 0)
+ {
+ printf_filtered (" ");
+ padding--;
+ }
+ mn10300_print_register (name, c, reg_width);
+ printf_filtered (" ");
+ }
+ else
+ {
+ padding += (reg_width + 2 + 8 + 1);
+ }
+ }
+ if (printing)
+ printf_filtered ("\n");
+ }
+ }
}
+/* Dump out the mn10300 speciic architecture information. */
+
+static void
+mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+ fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
+ tdep->am33_mode);
+}
+
+static struct gdbarch *
+mn10300_gdbarch_init (struct gdbarch_info info,
+ struct gdbarch_list *arches)
+{
+ static LONGEST mn10300_call_dummy_words[] = { 0 };
+ struct gdbarch *gdbarch;
+ struct gdbarch_tdep *tdep = NULL;
+ int am33_mode;
+ gdbarch_register_name_ftype *register_name;
+ int mach;
+ int num_regs;
+
+ arches = gdbarch_list_lookup_by_info (arches, &info);
+ if (arches != NULL)
+ return arches->gdbarch;
+ tdep = xmalloc (sizeof (struct gdbarch_tdep));
+ gdbarch = gdbarch_alloc (&info, tdep);
+
+ if (info.bfd_arch_info != NULL
+ && info.bfd_arch_info->arch == bfd_arch_mn10300)
+ mach = info.bfd_arch_info->mach;
+ else
+ mach = 0;
+ switch (mach)
+ {
+ case 0:
+ case bfd_mach_mn10300:
+ am33_mode = 0;
+ register_name = mn10300_generic_register_name;
+ num_regs = 32;
+ break;
+ case bfd_mach_am33:
+ am33_mode = 1;
+ register_name = am33_register_name;
+ num_regs = 32;
+ break;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "mn10300_gdbarch_init: Unknown mn10300 variant");
+ return NULL; /* keep GCC happy. */
+ }
+
+ /* Registers. */
+ set_gdbarch_num_regs (gdbarch, num_regs);
+ set_gdbarch_register_name (gdbarch, register_name);
+ set_gdbarch_register_size (gdbarch, 4);
+ set_gdbarch_register_bytes (gdbarch,
+ num_regs * gdbarch_register_size (gdbarch));
+ set_gdbarch_max_register_raw_size (gdbarch, 4);
+ set_gdbarch_register_raw_size (gdbarch, mn10300_register_raw_size);
+ set_gdbarch_register_byte (gdbarch, mn10300_register_byte);
+ set_gdbarch_max_register_virtual_size (gdbarch, 4);
+ set_gdbarch_register_virtual_size (gdbarch, mn10300_register_virtual_size);
+ set_gdbarch_register_virtual_type (gdbarch, mn10300_register_virtual_type);
+ set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
+ set_gdbarch_do_registers_info (gdbarch, mn10300_do_registers_info);
+ set_gdbarch_fp_regnum (gdbarch, 31);
+
+ /* Breakpoints. */
+ set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
+ set_gdbarch_function_start_offset (gdbarch, 0);
+ set_gdbarch_decr_pc_after_break (gdbarch, 0);
+
+ /* Stack unwinding. */
+ set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
+ set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
+ set_gdbarch_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
+ set_gdbarch_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
+ set_gdbarch_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
+ set_gdbarch_frame_chain (gdbarch, mn10300_frame_chain);
+ set_gdbarch_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
+ set_gdbarch_extract_return_value (gdbarch, mn10300_extract_return_value);
+ set_gdbarch_extract_struct_value_address
+ (gdbarch, mn10300_extract_struct_value_address);
+ set_gdbarch_store_return_value (gdbarch, mn10300_store_return_value);
+ set_gdbarch_store_struct_return (gdbarch, mn10300_store_struct_return);
+ set_gdbarch_pop_frame (gdbarch, mn10300_pop_frame);
+ set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
+ set_gdbarch_frame_args_skip (gdbarch, 0);
+ set_gdbarch_frame_args_address (gdbarch, default_frame_address);
+ set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
+ set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
+ /* That's right, we're using the stack pointer as our frame pointer. */
+ set_gdbarch_read_fp (gdbarch, generic_target_read_sp);
+
+ /* Calling functions in the inferior from GDB. */
+ set_gdbarch_call_dummy_p (gdbarch, 1);
+ set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
+ set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
+ set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
+ set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
+ set_gdbarch_call_dummy_words (gdbarch, mn10300_call_dummy_words);
+ set_gdbarch_sizeof_call_dummy_words (gdbarch,
+ sizeof (mn10300_call_dummy_words));
+ set_gdbarch_call_dummy_length (gdbarch, 0);
+ set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
+ set_gdbarch_call_dummy_start_offset (gdbarch, 0);
+ set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
+ set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
+ set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
+ set_gdbarch_push_arguments (gdbarch, mn10300_push_arguments);
+ set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
+ set_gdbarch_push_return_address (gdbarch, mn10300_push_return_address);
+ set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
+ set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
+
+ tdep->am33_mode = am33_mode;
+
+ return gdbarch;
+}
+
void
-_initialize_mn10300_tdep ()
+_initialize_mn10300_tdep (void)
{
/* printf("_initialize_mn10300_tdep\n"); */
tm_print_insn = print_insn_mn10300;
- specify_exec_file_hook (set_machine_hook);
+ register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
}
-