/* Support routines for manipulating internal types for GDB.
- Copyright 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003,
- 2004 Free Software Foundation, Inc.
+
+ Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
+ 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
+
Contributed by Cygnus Support, using pieces from other GDB modules.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
+ the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdb_string.h"
#include "wrapper.h"
#include "cp-abi.h"
#include "gdb_assert.h"
+#include "hashtab.h"
/* These variables point to the objects
representing the predefined C data types. */
-struct type *builtin_type_void;
-struct type *builtin_type_char;
-struct type *builtin_type_true_char;
-struct type *builtin_type_short;
-struct type *builtin_type_int;
-struct type *builtin_type_long;
-struct type *builtin_type_long_long;
-struct type *builtin_type_signed_char;
-struct type *builtin_type_unsigned_char;
-struct type *builtin_type_unsigned_short;
-struct type *builtin_type_unsigned_int;
-struct type *builtin_type_unsigned_long;
-struct type *builtin_type_unsigned_long_long;
-struct type *builtin_type_float;
-struct type *builtin_type_double;
-struct type *builtin_type_long_double;
-struct type *builtin_type_complex;
-struct type *builtin_type_double_complex;
-struct type *builtin_type_string;
struct type *builtin_type_int0;
struct type *builtin_type_int8;
struct type *builtin_type_uint8;
struct type *builtin_type_uint64;
struct type *builtin_type_int128;
struct type *builtin_type_uint128;
-struct type *builtin_type_bool;
-
-/* 128 bit long vector types */
-struct type *builtin_type_v2_double;
-struct type *builtin_type_v4_float;
-struct type *builtin_type_v2_int64;
-struct type *builtin_type_v4_int32;
-struct type *builtin_type_v8_int16;
-struct type *builtin_type_v16_int8;
-/* 64 bit long vector types */
-struct type *builtin_type_v2_float;
-struct type *builtin_type_v2_int32;
-struct type *builtin_type_v4_int16;
-struct type *builtin_type_v8_int8;
-
-struct type *builtin_type_v4sf;
-struct type *builtin_type_v4si;
-struct type *builtin_type_v16qi;
-struct type *builtin_type_v8qi;
-struct type *builtin_type_v8hi;
-struct type *builtin_type_v4hi;
-struct type *builtin_type_v2si;
-struct type *builtin_type_vec64;
-struct type *builtin_type_vec64i;
-struct type *builtin_type_vec128;
-struct type *builtin_type_vec128i;
-struct type *builtin_type_ieee_single_big;
-struct type *builtin_type_ieee_single_little;
-struct type *builtin_type_ieee_double_big;
-struct type *builtin_type_ieee_double_little;
-struct type *builtin_type_ieee_double_littlebyte_bigword;
+
+/* Floatformat pairs. */
+const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
+ &floatformat_ieee_single_big,
+ &floatformat_ieee_single_little
+};
+const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
+ &floatformat_ieee_double_big,
+ &floatformat_ieee_double_little
+};
+const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
+ &floatformat_ieee_double_big,
+ &floatformat_ieee_double_littlebyte_bigword
+};
+const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
+ &floatformat_i387_ext,
+ &floatformat_i387_ext
+};
+const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
+ &floatformat_m68881_ext,
+ &floatformat_m68881_ext
+};
+const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
+ &floatformat_arm_ext_big,
+ &floatformat_arm_ext_littlebyte_bigword
+};
+const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
+ &floatformat_ia64_spill_big,
+ &floatformat_ia64_spill_little
+};
+const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
+ &floatformat_ia64_quad_big,
+ &floatformat_ia64_quad_little
+};
+const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
+ &floatformat_vax_f,
+ &floatformat_vax_f
+};
+const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
+ &floatformat_vax_d,
+ &floatformat_vax_d
+};
+const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
+ &floatformat_ibm_long_double,
+ &floatformat_ibm_long_double
+};
+
+struct type *builtin_type_ieee_single;
+struct type *builtin_type_ieee_double;
struct type *builtin_type_i387_ext;
struct type *builtin_type_m68881_ext;
-struct type *builtin_type_i960_ext;
-struct type *builtin_type_m88110_ext;
-struct type *builtin_type_m88110_harris_ext;
-struct type *builtin_type_arm_ext_big;
-struct type *builtin_type_arm_ext_littlebyte_bigword;
-struct type *builtin_type_ia64_spill_big;
-struct type *builtin_type_ia64_spill_little;
-struct type *builtin_type_ia64_quad_big;
-struct type *builtin_type_ia64_quad_little;
-struct type *builtin_type_void_data_ptr;
-struct type *builtin_type_void_func_ptr;
-struct type *builtin_type_CORE_ADDR;
-struct type *builtin_type_bfd_vma;
+struct type *builtin_type_arm_ext;
+struct type *builtin_type_ia64_spill;
+struct type *builtin_type_ia64_quad;
+
int opaque_type_resolution = 1;
+static void
+show_opaque_type_resolution (struct ui_file *file, int from_tty,
+ struct cmd_list_element *c,
+ const char *value)
+{
+ fprintf_filtered (file, _("\
+Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
+ value);
+}
+
int overload_debug = 0;
+static void
+show_overload_debug (struct ui_file *file, int from_tty,
+ struct cmd_list_element *c, const char *value)
+{
+ fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
+ value);
+}
struct extra
{
char str[128];
int len;
- }; /* maximum extension is 128! FIXME */
+ }; /* Maximum extension is 128! FIXME */
static void print_bit_vector (B_TYPE *, int);
static void print_arg_types (struct field *, int, int);
static void dump_fn_fieldlists (struct type *, int);
static void print_cplus_stuff (struct type *, int);
-static void virtual_base_list_aux (struct type *dclass);
/* Alloc a new type structure and fill it with some defaults. If
OBJFILE is non-NULL, then allocate the space for the type structure
- in that objfile's objfile_obstack. Otherwise allocate the new type structure
- by xmalloc () (for permanent types). */
+ in that objfile's objfile_obstack. Otherwise allocate the new type
+ structure by xmalloc () (for permanent types). */
struct type *
alloc_type (struct objfile *objfile)
{
struct type *type;
- /* Alloc the structure and start off with all fields zeroed. */
+ /* Alloc the structure and start off with all fields zeroed. */
if (objfile == NULL)
{
}
memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
- /* Initialize the fields that might not be zero. */
+ /* Initialize the fields that might not be zero. */
TYPE_CODE (type) = TYPE_CODE_UNDEF;
TYPE_OBJFILE (type) = objfile;
{
struct type *ntype; /* New type */
struct objfile *objfile;
+ struct type *chain;
ntype = TYPE_POINTER_TYPE (type);
if (ntype)
{
if (typeptr == 0)
- return ntype; /* Don't care about alloc, and have new type. */
+ return ntype; /* Don't care about alloc,
+ and have new type. */
else if (*typeptr == 0)
{
- *typeptr = ntype; /* Tracking alloc, and we have new type. */
+ *typeptr = ntype; /* Tracking alloc, and have new type. */
return ntype;
}
}
if (typeptr)
*typeptr = ntype;
}
- else
- /* We have storage, but need to reset it. */
+ else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
objfile = TYPE_OBJFILE (ntype);
+ chain = TYPE_CHAIN (ntype);
smash_type (ntype);
+ TYPE_CHAIN (ntype) = chain;
TYPE_OBJFILE (ntype) = objfile;
}
TYPE_TARGET_TYPE (ntype) = type;
TYPE_POINTER_TYPE (type) = ntype;
- /* FIXME! Assume the machine has only one representation for pointers! */
+ /* FIXME! Assume the machine has only one representation for
+ pointers! */
- TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
+ TYPE_LENGTH (ntype) =
+ gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
TYPE_CODE (ntype) = TYPE_CODE_PTR;
/* Mark pointers as unsigned. The target converts between pointers
- and addresses (CORE_ADDRs) using POINTER_TO_ADDRESS() and
- ADDRESS_TO_POINTER(). */
+ and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
+ gdbarch_address_to_pointer. */
TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
TYPE_POINTER_TYPE (type) = ntype;
+ /* Update the length of all the other variants of this type. */
+ chain = TYPE_CHAIN (ntype);
+ while (chain != ntype)
+ {
+ TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
+ chain = TYPE_CHAIN (chain);
+ }
+
return ntype;
}
return make_pointer_type (type, (struct type **) 0);
}
-/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points
- to a pointer to memory where the reference type should be stored.
- If *TYPEPTR is zero, update it to point to the reference type we return.
- We allocate new memory if needed. */
+/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
+ points to a pointer to memory where the reference type should be
+ stored. If *TYPEPTR is zero, update it to point to the reference
+ type we return. We allocate new memory if needed. */
struct type *
make_reference_type (struct type *type, struct type **typeptr)
{
struct type *ntype; /* New type */
struct objfile *objfile;
+ struct type *chain;
ntype = TYPE_REFERENCE_TYPE (type);
if (ntype)
{
if (typeptr == 0)
- return ntype; /* Don't care about alloc, and have new type. */
+ return ntype; /* Don't care about alloc,
+ and have new type. */
else if (*typeptr == 0)
{
- *typeptr = ntype; /* Tracking alloc, and we have new type. */
+ *typeptr = ntype; /* Tracking alloc, and have new type. */
return ntype;
}
}
if (typeptr)
*typeptr = ntype;
}
- else
- /* We have storage, but need to reset it. */
+ else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
objfile = TYPE_OBJFILE (ntype);
+ chain = TYPE_CHAIN (ntype);
smash_type (ntype);
+ TYPE_CHAIN (ntype) = chain;
TYPE_OBJFILE (ntype) = objfile;
}
TYPE_TARGET_TYPE (ntype) = type;
TYPE_REFERENCE_TYPE (type) = ntype;
- /* FIXME! Assume the machine has only one representation for references,
- and that it matches the (only) representation for pointers! */
+ /* FIXME! Assume the machine has only one representation for
+ references, and that it matches the (only) representation for
+ pointers! */
- TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
+ TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
TYPE_CODE (ntype) = TYPE_CODE_REF;
if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
TYPE_REFERENCE_TYPE (type) = ntype;
+ /* Update the length of all the other variants of this type. */
+ chain = TYPE_CHAIN (ntype);
+ while (chain != ntype)
+ {
+ TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
+ chain = TYPE_CHAIN (chain);
+ }
+
return ntype;
}
-/* Same as above, but caller doesn't care about memory allocation details. */
+/* Same as above, but caller doesn't care about memory allocation
+ details. */
struct type *
lookup_reference_type (struct type *type)
return make_reference_type (type, (struct type **) 0);
}
-/* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points
- to a pointer to memory where the function type should be stored.
- If *TYPEPTR is zero, update it to point to the function type we return.
- We allocate new memory if needed. */
+/* Lookup a function type that returns type TYPE. TYPEPTR, if
+ nonzero, points to a pointer to memory where the function type
+ should be stored. If *TYPEPTR is zero, update it to point to the
+ function type we return. We allocate new memory if needed. */
struct type *
make_function_type (struct type *type, struct type **typeptr)
if (typeptr)
*typeptr = ntype;
}
- else
- /* We have storage, but need to reset it. */
+ else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
objfile = TYPE_OBJFILE (ntype);
{
struct gdbarch *gdbarch = current_gdbarch;
int type_flags;
- /* Check for known address space delimiters. */
+ /* Check for known address space delimiters. */
if (!strcmp (space_identifier, "code"))
return TYPE_FLAG_CODE_SPACE;
else if (!strcmp (space_identifier, "data"))
&type_flags))
return type_flags;
else
- error ("Unknown address space specifier: \"%s\"", space_identifier);
+ error (_("Unknown address space specifier: \"%s\""), space_identifier);
}
/* Identify address space identifier by integer flag as defined in
- gdbtypes.h -- return the string version of the adress space name. */
+ gdbtypes.h -- return the string version of the adress space name. */
const char *
address_space_int_to_name (int space_flag)
}
/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
- If STORAGE is non-NULL, create the new type instance there. */
+
+ If STORAGE is non-NULL, create the new type instance there.
+ STORAGE must be in the same obstack as TYPE. */
static struct type *
make_qualified_type (struct type *type, int new_flags,
ntype = alloc_type_instance (type);
else
{
+ /* If STORAGE was provided, it had better be in the same objfile
+ as TYPE. Otherwise, we can't link it into TYPE's cv chain:
+ if one objfile is freed and the other kept, we'd have
+ dangling pointers. */
+ gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
+
ntype = storage;
TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
TYPE_CHAIN (ntype) = ntype;
is identical to the one supplied except that it has an address
space attribute attached to it (such as "code" or "data").
- The space attributes "code" and "data" are for Harvard architectures.
- The address space attributes are for architectures which have
- alternately sized pointers or pointers with alternate representations. */
+ The space attributes "code" and "data" are for Harvard
+ architectures. The address space attributes are for architectures
+ which have alternately sized pointers or pointers with alternate
+ representations. */
struct type *
make_type_with_address_space (struct type *type, int space_flag)
CNST is a flag for setting the const attribute
VOLTL is a flag for setting the volatile attribute
TYPE is the base type whose variant we are creating.
- TYPEPTR, if nonzero, points
- to a pointer to memory where the reference type should be stored.
- If *TYPEPTR is zero, update it to point to the reference type we return.
- We allocate new memory if needed. */
+ If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
+ storage to hold the new qualified type; *TYPEPTR and TYPE must be
+ in the same objfile. Otherwise, allocate fresh memory for the new
+ type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
+ new type we construct. */
struct type *
-make_cv_type (int cnst, int voltl, struct type *type, struct type **typeptr)
+make_cv_type (int cnst, int voltl,
+ struct type *type,
+ struct type **typeptr)
{
struct type *ntype; /* New type */
struct type *tmp_type = type; /* tmp type */
if (typeptr && *typeptr != NULL)
{
- /* Objfile is per-core-type. This const-qualified type had best
- belong to the same objfile as the type it is qualifying, unless
- we are overwriting a stub type, in which case the safest thing
- to do is to copy the core type into the new objfile. */
+ /* TYPE and *TYPEPTR must be in the same objfile. We can't have
+ a C-V variant chain that threads across objfiles: if one
+ objfile gets freed, then the other has a broken C-V chain.
- gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type)
- || TYPE_STUB (*typeptr));
- if (TYPE_OBJFILE (*typeptr) != TYPE_OBJFILE (type))
- {
- TYPE_MAIN_TYPE (*typeptr)
- = TYPE_ALLOC (*typeptr, sizeof (struct main_type));
- *TYPE_MAIN_TYPE (*typeptr)
- = *TYPE_MAIN_TYPE (type);
- }
+ This code used to try to copy over the main type from TYPE to
+ *TYPEPTR if they were in different objfiles, but that's
+ wrong, too: TYPE may have a field list or member function
+ lists, which refer to types of their own, etc. etc. The
+ whole shebang would need to be copied over recursively; you
+ can't have inter-objfile pointers. The only thing to do is
+ to leave stub types as stub types, and look them up afresh by
+ name each time you encounter them. */
+ gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
}
- ntype = make_qualified_type (type, new_flags, typeptr ? *typeptr : NULL);
+ ntype = make_qualified_type (type, new_flags,
+ typeptr ? *typeptr : NULL);
if (typeptr != NULL)
*typeptr = ntype;
{
struct type *chain;
+ /* These two types had better be in the same objfile. Otherwise,
+ the assignment of one type's main type structure to the other
+ will produce a type with references to objects (names; field
+ lists; etc.) allocated on an objfile other than its own. */
+ gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
+
*TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
- /* The type length is not a part of the main type. Update it for each
- type on the variant chain. */
+ /* The type length is not a part of the main type. Update it for
+ each type on the variant chain. */
chain = ntype;
do {
/* Assert that this element of the chain has no address-class bits
call replace_type(). */
gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
- TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
+ TYPE_LENGTH (chain) = TYPE_LENGTH (type);
chain = TYPE_CHAIN (chain);
} while (ntype != chain);
of the aggregate that the member belongs to. */
struct type *
-lookup_member_type (struct type *type, struct type *domain)
+lookup_memberptr_type (struct type *type, struct type *domain)
{
struct type *mtype;
mtype = alloc_type (TYPE_OBJFILE (type));
- smash_to_member_type (mtype, domain, type);
+ smash_to_memberptr_type (mtype, domain, type);
return (mtype);
}
-/* Allocate a stub method whose return type is TYPE.
- This apparently happens for speed of symbol reading, since parsing
- out the arguments to the method is cpu-intensive, the way we are doing
- it. So, we will fill in arguments later.
- This always returns a fresh type. */
+/* Return a pointer-to-method type, for a method of type TO_TYPE. */
+
+struct type *
+lookup_methodptr_type (struct type *to_type)
+{
+ struct type *mtype;
+
+ mtype = alloc_type (TYPE_OBJFILE (to_type));
+ TYPE_TARGET_TYPE (mtype) = to_type;
+ TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
+ TYPE_LENGTH (mtype) = cplus_method_ptr_size ();
+ TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
+ return mtype;
+}
+
+/* Allocate a stub method whose return type is TYPE. This apparently
+ happens for speed of symbol reading, since parsing out the
+ arguments to the method is cpu-intensive, the way we are doing it.
+ So, we will fill in arguments later. This always returns a fresh
+ type. */
struct type *
allocate_stub_method (struct type *type)
return (mtype);
}
-/* Create a range type using either a blank type supplied in RESULT_TYPE,
- or creating a new type, inheriting the objfile from INDEX_TYPE.
+/* Create a range type using either a blank type supplied in
+ RESULT_TYPE, or creating a new type, inheriting the objfile from
+ INDEX_TYPE.
- Indices will be of type INDEX_TYPE, and will range from LOW_BOUND to
- HIGH_BOUND, inclusive.
+ Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
+ to HIGH_BOUND, inclusive.
- FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
- sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
+ FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
+ sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
struct type *
create_range_type (struct type *result_type, struct type *index_type,
memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
- TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */
- TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */
if (low_bound >= 0)
TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
return (result_type);
}
-/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type TYPE.
- Return 1 of type is a range type, 0 if it is discrete (and bounds
- will fit in LONGEST), or -1 otherwise. */
+/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
+ TYPE. Return 1 if type is a range type, 0 if it is discrete (and
+ bounds will fit in LONGEST), or -1 otherwise. */
int
get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
*highp = TYPE_FIELD_BITPOS (type, i);
}
- /* Set unsigned indicator if warranted. */
+ /* Set unsigned indicator if warranted. */
if (*lowp >= 0)
{
TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
*highp = -*lowp - 1;
return 0;
}
- /* ... fall through for unsigned ints ... */
+ /* ... fall through for unsigned ints ... */
case TYPE_CODE_CHAR:
*lowp = 0;
/* This round-about calculation is to avoid shifting by
TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
- if TYPE_LENGTH (type) == sizeof (LONGEST). */
+ if TYPE_LENGTH (type) == sizeof (LONGEST). */
*highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
*highp = (*highp - 1) | *highp;
return 0;
}
}
-/* Create an array type using either a blank type supplied in RESULT_TYPE,
- or creating a new type, inheriting the objfile from RANGE_TYPE.
+/* Create an array type using either a blank type supplied in
+ RESULT_TYPE, or creating a new type, inheriting the objfile from
+ RANGE_TYPE.
Elements will be of type ELEMENT_TYPE, the indices will be of type
RANGE_TYPE.
- FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
- sure it is TYPE_CODE_UNDEF before we bash it into an array type? */
+ FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
+ sure it is TYPE_CODE_UNDEF before we bash it into an array
+ type? */
struct type *
-create_array_type (struct type *result_type, struct type *element_type,
+create_array_type (struct type *result_type,
+ struct type *element_type,
struct type *range_type)
{
LONGEST low_bound, high_bound;
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
low_bound = high_bound = 0;
CHECK_TYPEDEF (element_type);
- TYPE_LENGTH (result_type) =
- TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
+ /* Be careful when setting the array length. Ada arrays can be
+ empty arrays with the high_bound being smaller than the low_bound.
+ In such cases, the array length should be zero. */
+ if (high_bound < low_bound)
+ TYPE_LENGTH (result_type) = 0;
+ else
+ TYPE_LENGTH (result_type) =
+ TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
TYPE_NFIELDS (result_type) = 1;
TYPE_FIELDS (result_type) =
(struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
return (result_type);
}
-/* Create a string type using either a blank type supplied in RESULT_TYPE,
- or creating a new type. String types are similar enough to array of
- char types that we can use create_array_type to build the basic type
- and then bash it into a string type.
+/* Create a string type using either a blank type supplied in
+ RESULT_TYPE, or creating a new type. String types are similar
+ enough to array of char types that we can use create_array_type to
+ build the basic type and then bash it into a string type.
For fixed length strings, the range type contains 0 as the lower
bound and the length of the string minus one as the upper bound.
- FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
- sure it is TYPE_CODE_UNDEF before we bash it into a string type? */
+ FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
+ sure it is TYPE_CODE_UNDEF before we bash it into a string
+ type? */
struct type *
-create_string_type (struct type *result_type, struct type *range_type)
+create_string_type (struct type *result_type,
+ struct type *range_type)
{
struct type *string_char_type;
struct type *
create_set_type (struct type *result_type, struct type *domain_type)
{
- LONGEST low_bound, high_bound, bit_length;
if (result_type == NULL)
{
result_type = alloc_type (TYPE_OBJFILE (domain_type));
if (!TYPE_STUB (domain_type))
{
+ LONGEST low_bound, high_bound, bit_length;
if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
low_bound = high_bound = 0;
bit_length = high_bound - low_bound + 1;
TYPE_LENGTH (result_type)
= (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
+ if (low_bound >= 0)
+ TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
}
TYPE_FIELD_TYPE (result_type, 0) = domain_type;
- if (low_bound >= 0)
- TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
-
return (result_type);
}
-/* Construct and return a type of the form:
- struct NAME { ELT_TYPE ELT_NAME[N]; }
- We use these types for SIMD registers. For example, the type of
- the SSE registers on the late x86-family processors is:
- struct __builtin_v4sf { float f[4]; }
- built by the function call:
- init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4)
- The type returned is a permanent type, allocated using malloc; it
- doesn't live in any objfile's obstack. */
-static struct type *
-init_simd_type (char *name,
- struct type *elt_type,
- char *elt_name,
- int n)
+void
+append_flags_type_flag (struct type *type, int bitpos, char *name)
{
- struct type *simd_type;
- struct type *array_type;
-
- simd_type = init_composite_type (name, TYPE_CODE_STRUCT);
- array_type = create_array_type (0, elt_type,
- create_range_type (0, builtin_type_int,
- 0, n-1));
- append_composite_type_field (simd_type, elt_name, array_type);
- return simd_type;
-}
+ gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
+ gdb_assert (bitpos < TYPE_NFIELDS (type));
+ gdb_assert (bitpos >= 0);
-static struct type *
-init_vector_type (struct type *elt_type, int n)
-{
- struct type *array_type;
-
- array_type = create_array_type (0, elt_type,
- create_range_type (0, builtin_type_int,
- 0, n-1));
- TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
- return array_type;
+ if (name)
+ {
+ TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
+ TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
+ }
+ else
+ {
+ /* Don't show this field to the user. */
+ TYPE_FIELD_BITPOS (type, bitpos) = -1;
+ }
}
-static struct type *
-build_builtin_type_vec64 (void)
+struct type *
+init_flags_type (char *name, int length)
{
- /* Construct a type for the 64 bit registers. The type we're
- building is this: */
-#if 0
- union __gdb_builtin_type_vec64
- {
- int64_t uint64;
- float v2_float[2];
- int32_t v2_int32[2];
- int16_t v4_int16[4];
- int8_t v8_int8[8];
- };
-#endif
-
- struct type *t;
+ int nfields = length * TARGET_CHAR_BIT;
+ struct type *type;
- t = init_composite_type ("__gdb_builtin_type_vec64", TYPE_CODE_UNION);
- append_composite_type_field (t, "uint64", builtin_type_int64);
- append_composite_type_field (t, "v2_float", builtin_type_v2_float);
- append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
- append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
- append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
+ type = init_type (TYPE_CODE_FLAGS, length,
+ TYPE_FLAG_UNSIGNED, name, NULL);
+ TYPE_NFIELDS (type) = nfields;
+ TYPE_FIELDS (type) = TYPE_ALLOC (type,
+ nfields * sizeof (struct field));
+ memset (TYPE_FIELDS (type), 0, nfields * sizeof (struct field));
- TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
- TYPE_NAME (t) = "builtin_type_vec64";
- return t;
+ return type;
}
-static struct type *
-build_builtin_type_vec64i (void)
-{
- /* Construct a type for the 64 bit registers. The type we're
- building is this: */
-#if 0
- union __gdb_builtin_type_vec64i
- {
- int64_t uint64;
- int32_t v2_int32[2];
- int16_t v4_int16[4];
- int8_t v8_int8[8];
- };
-#endif
-
- struct type *t;
-
- t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
- append_composite_type_field (t, "uint64", builtin_type_int64);
- append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
- append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
- append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
-
- TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
- TYPE_NAME (t) = "builtin_type_vec64i";
- return t;
-}
+/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
+ and any array types nested inside it. */
-static struct type *
-build_builtin_type_vec128 (void)
+void
+make_vector_type (struct type *array_type)
{
- /* Construct a type for the 128 bit registers. The type we're
- building is this: */
-#if 0
- union __gdb_builtin_type_vec128
- {
- int128_t uint128;
- float v4_float[4];
- int32_t v4_int32[4];
- int16_t v8_int16[8];
- int8_t v16_int8[16];
- };
-#endif
+ struct type *inner_array, *elt_type;
+ int flags;
- struct type *t;
+ /* Find the innermost array type, in case the array is
+ multi-dimensional. */
+ inner_array = array_type;
+ while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
+ inner_array = TYPE_TARGET_TYPE (inner_array);
- t = init_composite_type ("__gdb_builtin_type_vec128", TYPE_CODE_UNION);
- append_composite_type_field (t, "uint128", builtin_type_int128);
- append_composite_type_field (t, "v4_float", builtin_type_v4_float);
- append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
- append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
- append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
+ elt_type = TYPE_TARGET_TYPE (inner_array);
+ if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
+ {
+ flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
+ elt_type = make_qualified_type (elt_type, flags, NULL);
+ TYPE_TARGET_TYPE (inner_array) = elt_type;
+ }
- TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
- TYPE_NAME (t) = "builtin_type_vec128";
- return t;
+ TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
}
-static struct type *
-build_builtin_type_vec128i (void)
+struct type *
+init_vector_type (struct type *elt_type, int n)
{
- /* 128-bit Intel SIMD registers */
- struct type *t;
-
- t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
- append_composite_type_field (t, "v4_float", builtin_type_v4_float);
- append_composite_type_field (t, "v2_double", builtin_type_v2_double);
- append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
- append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
- append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
- append_composite_type_field (t, "v2_int64", builtin_type_v2_int64);
- append_composite_type_field (t, "uint128", builtin_type_int128);
-
- TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
- TYPE_NAME (t) = "builtin_type_vec128i";
- return t;
+ struct type *array_type;
+
+ array_type = create_array_type (0, elt_type,
+ create_range_type (0,
+ builtin_type_int32,
+ 0, n-1));
+ make_vector_type (array_type);
+ return array_type;
}
-/* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE.
- A MEMBER is a wierd thing -- it amounts to a typed offset into
- a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't
- include the offset (that's the value of the MEMBER itself), but does
- include the structure type into which it points (for some reason).
+/* Smash TYPE to be a type of pointers to members of DOMAIN with type
+ TO_TYPE. A member pointer is a wierd thing -- it amounts to a
+ typed offset into a struct, e.g. "an int at offset 8". A MEMBER
+ TYPE doesn't include the offset (that's the value of the MEMBER
+ itself), but does include the structure type into which it points
+ (for some reason).
- When "smashing" the type, we preserve the objfile that the
- old type pointed to, since we aren't changing where the type is actually
+ When "smashing" the type, we preserve the objfile that the old type
+ pointed to, since we aren't changing where the type is actually
allocated. */
void
-smash_to_member_type (struct type *type, struct type *domain,
- struct type *to_type)
+smash_to_memberptr_type (struct type *type, struct type *domain,
+ struct type *to_type)
{
struct objfile *objfile;
TYPE_OBJFILE (type) = objfile;
TYPE_TARGET_TYPE (type) = to_type;
TYPE_DOMAIN_TYPE (type) = domain;
- TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
- TYPE_CODE (type) = TYPE_CODE_MEMBER;
+ /* Assume that a data member pointer is the same size as a normal
+ pointer. */
+ TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
+ TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
}
/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
METHOD just means `function that gets an extra "this" argument'.
- When "smashing" the type, we preserve the objfile that the
- old type pointed to, since we aren't changing where the type is actually
+ When "smashing" the type, we preserve the objfile that the old type
+ pointed to, since we aren't changing where the type is actually
allocated. */
void
if (TYPE_TAG_NAME (type) != NULL)
return TYPE_TAG_NAME (type);
- /* Is there code which expects this to return the name if there is no
- tag name? My guess is that this is mainly used for C++ in cases where
- the two will always be the same. */
+ /* Is there code which expects this to return the name if there is
+ no tag name? My guess is that this is mainly used for C++ in
+ cases where the two will always be the same. */
return TYPE_NAME (type);
}
-/* Lookup a primitive type named NAME.
- Return zero if NAME is not a primitive type. */
-
-struct type *
-lookup_primitive_typename (char *name)
-{
- return language_lookup_primitive_type_by_name (current_language,
- current_gdbarch,
- name);
-}
-
-/* Lookup a typedef or primitive type named NAME,
- visible in lexical block BLOCK.
- If NOERR is nonzero, return zero if NAME is not suitably defined. */
+/* Lookup a typedef or primitive type named NAME, visible in lexical
+ block BLOCK. If NOERR is nonzero, return zero if NAME is not
+ suitably defined. */
struct type *
lookup_typename (char *name, struct block *block, int noerr)
struct symbol *sym;
struct type *tmp;
- sym = lookup_symbol (name, block, VAR_DOMAIN, 0, (struct symtab **) NULL);
+ sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
{
- tmp = lookup_primitive_typename (name);
+ tmp = language_lookup_primitive_type_by_name (current_language,
+ current_gdbarch,
+ name);
if (tmp)
{
return (tmp);
}
else
{
- error ("No type named %s.", name);
+ error (_("No type named %s."), name);
}
}
return (SYMBOL_TYPE (sym));
strcpy (uns, "signed ");
strcpy (uns + 7, name);
t = lookup_typename (uns, (struct block *) NULL, 1);
- /* If we don't find "signed FOO" just try again with plain "FOO". */
+ /* If we don't find "signed FOO" just try again with plain "FOO". */
if (t != NULL)
return t;
return lookup_typename (name, (struct block *) NULL, 0);
{
struct symbol *sym;
- sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
- (struct symtab **) NULL);
+ sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
if (sym == NULL)
{
- error ("No struct type named %s.", name);
+ error (_("No struct type named %s."), name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
{
- error ("This context has class, union or enum %s, not a struct.", name);
+ error (_("This context has class, union or enum %s, not a struct."),
+ name);
}
return (SYMBOL_TYPE (sym));
}
struct symbol *sym;
struct type *t;
- sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
- (struct symtab **) NULL);
+ sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
if (sym == NULL)
- error ("No union type named %s.", name);
+ error (_("No union type named %s."), name);
t = SYMBOL_TYPE (sym);
if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
return (t);
- /* If we get here, it's not a union */
- error ("This context has class, struct or enum %s, not a union.", name);
+ /* If we get here, it's not a union. */
+ error (_("This context has class, struct or enum %s, not a union."),
+ name);
}
{
struct symbol *sym;
- sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
- (struct symtab **) NULL);
+ sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
if (sym == NULL)
{
- error ("No enum type named %s.", name);
+ error (_("No enum type named %s."), name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
{
- error ("This context has class, struct or union %s, not an enum.", name);
+ error (_("This context has class, struct or union %s, not an enum."),
+ name);
}
return (SYMBOL_TYPE (sym));
}
visible in lexical block BLOCK. */
struct type *
-lookup_template_type (char *name, struct type *type, struct block *block)
+lookup_template_type (char *name, struct type *type,
+ struct block *block)
{
struct symbol *sym;
- char *nam = (char *) alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
+ char *nam = (char *)
+ alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
strcpy (nam, name);
strcat (nam, "<");
strcat (nam, TYPE_NAME (type));
- strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
+ strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
- sym = lookup_symbol (nam, block, VAR_DOMAIN, 0, (struct symtab **) NULL);
+ sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
if (sym == NULL)
{
- error ("No template type named %s.", name);
+ error (_("No template type named %s."), name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
{
- error ("This context has class, union or enum %s, not a struct.", name);
+ error (_("This context has class, union or enum %s, not a struct."),
+ name);
}
return (SYMBOL_TYPE (sym));
}
-/* Given a type TYPE, lookup the type of the component of type named NAME.
+/* Given a type TYPE, lookup the type of the component of type named
+ NAME.
- TYPE can be either a struct or union, or a pointer or reference to a struct or
- union. If it is a pointer or reference, its target type is automatically used.
- Thus '.' and '->' are interchangable, as specified for the definitions of the
- expression element types STRUCTOP_STRUCT and STRUCTOP_PTR.
+ TYPE can be either a struct or union, or a pointer or reference to
+ a struct or union. If it is a pointer or reference, its target
+ type is automatically used. Thus '.' and '->' are interchangable,
+ as specified for the definitions of the expression element types
+ STRUCTOP_STRUCT and STRUCTOP_PTR.
If NOERR is nonzero, return zero if NAME is not suitably defined.
If NAME is the name of a baseclass type, return that type. */
type = TYPE_TARGET_TYPE (type);
}
- if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
- TYPE_CODE (type) != TYPE_CODE_UNION)
+ if (TYPE_CODE (type) != TYPE_CODE_STRUCT
+ && TYPE_CODE (type) != TYPE_CODE_UNION)
{
target_terminal_ours ();
gdb_flush (gdb_stdout);
fprintf_unfiltered (gdb_stderr, "Type ");
type_print (type, "", gdb_stderr, -1);
- error (" is not a structure or union type.");
+ error (_(" is not a structure or union type."));
}
#if 0
- /* FIXME: This change put in by Michael seems incorrect for the case where
- the structure tag name is the same as the member name. I.E. when doing
- "ptype bell->bar" for "struct foo { int bar; int foo; } bell;"
- Disabled by fnf. */
+ /* FIXME: This change put in by Michael seems incorrect for the case
+ where the structure tag name is the same as the member name.
+ I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
+ foo; } bell;" Disabled by fnf. */
{
char *typename;
{
struct type *t;
- t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, noerr);
+ t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
if (t != NULL)
{
return t;
type_print (type, "", gdb_stderr, -1);
fprintf_unfiltered (gdb_stderr, " has no component named ");
fputs_filtered (name, gdb_stderr);
- error (".");
+ error (("."));
return (struct type *) -1; /* For lint */
}
-/* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
- valid. Callers should be aware that in some cases (for example,
+/* Lookup the vptr basetype/fieldno values for TYPE.
+ If found store vptr_basetype in *BASETYPEP if non-NULL, and return
+ vptr_fieldno. Also, if found and basetype is from the same objfile,
+ cache the results.
+ If not found, return -1 and ignore BASETYPEP.
+ Callers should be aware that in some cases (for example,
the type or one of its baseclasses is a stub type and we are
- debugging a .o file), this function will not be able to find the virtual
- function table pointer, and vptr_fieldno will remain -1 and vptr_basetype
- will remain NULL. */
+ debugging a .o file), this function will not be able to find the
+ virtual function table pointer, and vptr_fieldno will remain -1 and
+ vptr_basetype will remain NULL or incomplete. */
-void
-fill_in_vptr_fieldno (struct type *type)
+int
+get_vptr_fieldno (struct type *type, struct type **basetypep)
{
CHECK_TYPEDEF (type);
{
int i;
- /* We must start at zero in case the first (and only) baseclass is
- virtual (and hence we cannot share the table pointer). */
+ /* We must start at zero in case the first (and only) baseclass
+ is virtual (and hence we cannot share the table pointer). */
for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
{
struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
- fill_in_vptr_fieldno (baseclass);
- if (TYPE_VPTR_FIELDNO (baseclass) >= 0)
+ int fieldno;
+ struct type *basetype;
+
+ fieldno = get_vptr_fieldno (baseclass, &basetype);
+ if (fieldno >= 0)
{
- TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (baseclass);
- TYPE_VPTR_BASETYPE (type) = TYPE_VPTR_BASETYPE (baseclass);
- break;
+ /* If the type comes from a different objfile we can't cache
+ it, it may have a different lifetime. PR 2384 */
+ if (TYPE_OBJFILE (type) == TYPE_OBJFILE (baseclass))
+ {
+ TYPE_VPTR_FIELDNO (type) = fieldno;
+ TYPE_VPTR_BASETYPE (type) = basetype;
+ }
+ if (basetypep)
+ *basetypep = basetype;
+ return fieldno;
}
}
+
+ /* Not found. */
+ return -1;
+ }
+ else
+ {
+ if (basetypep)
+ *basetypep = TYPE_VPTR_BASETYPE (type);
+ return TYPE_VPTR_FIELDNO (type);
}
}
Return 1 if the destructor was found, otherwise, return 0. */
int
-get_destructor_fn_field (struct type *t, int *method_indexp, int *field_indexp)
+get_destructor_fn_field (struct type *t,
+ int *method_indexp,
+ int *field_indexp)
{
int i;
static void
stub_noname_complaint (void)
{
- complaint (&symfile_complaints, "stub type has NULL name");
+ complaint (&symfile_complaints, _("stub type has NULL name"));
}
/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
If this is a stubbed struct (i.e. declared as struct foo *), see if
we can find a full definition in some other file. If so, copy this
- definition, so we can use it in future. There used to be a comment (but
- not any code) that if we don't find a full definition, we'd set a flag
- so we don't spend time in the future checking the same type. That would
- be a mistake, though--we might load in more symbols which contain a
- full definition for the type.
+ definition, so we can use it in future. There used to be a comment
+ (but not any code) that if we don't find a full definition, we'd
+ set a flag so we don't spend time in the future checking the same
+ type. That would be a mistake, though--we might load in more
+ symbols which contain a full definition for the type.
This used to be coded as a macro, but I don't think it is called
often enough to merit such treatment. */
-/* Find the real type of TYPE. This function returns the real type, after
- removing all layers of typedefs and completing opaque or stub types.
- Completion changes the TYPE argument, but stripping of typedefs does
- not. */
+/* Find the real type of TYPE. This function returns the real type,
+ after removing all layers of typedefs and completing opaque or stub
+ types. Completion changes the TYPE argument, but stripping of
+ typedefs does not. */
struct type *
check_typedef (struct type *type)
struct type *orig_type = type;
int is_const, is_volatile;
+ gdb_assert (type);
+
while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
{
if (!TYPE_TARGET_TYPE (type))
struct symbol *sym;
/* It is dangerous to call lookup_symbol if we are currently
- reading a symtab. Infinite recursion is one danger. */
+ reading a symtab. Infinite recursion is one danger. */
if (currently_reading_symtab)
return type;
name = type_name_no_tag (type);
- /* FIXME: shouldn't we separately check the TYPE_NAME and the
- TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
- as appropriate? (this code was written before TYPE_NAME and
- TYPE_TAG_NAME were separate). */
+ /* FIXME: shouldn't we separately check the TYPE_NAME and
+ the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
+ VAR_DOMAIN as appropriate? (this code was written before
+ TYPE_NAME and TYPE_TAG_NAME were separate). */
if (name == NULL)
{
stub_noname_complaint ();
return type;
}
- sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
- (struct symtab **) NULL);
+ sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
if (sym)
TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
- else
- TYPE_TARGET_TYPE (type) = alloc_type (NULL); /* TYPE_CODE_UNDEF */
+ else /* TYPE_CODE_UNDEF */
+ TYPE_TARGET_TYPE (type) = alloc_type (NULL);
}
type = TYPE_TARGET_TYPE (type);
}
is_const = TYPE_CONST (type);
is_volatile = TYPE_VOLATILE (type);
- /* If this is a struct/class/union with no fields, then check whether a
- full definition exists somewhere else. This is for systems where a
- type definition with no fields is issued for such types, instead of
- identifying them as stub types in the first place */
+ /* If this is a struct/class/union with no fields, then check
+ whether a full definition exists somewhere else. This is for
+ systems where a type definition with no fields is issued for such
+ types, instead of identifying them as stub types in the first
+ place. */
- if (TYPE_IS_OPAQUE (type) && opaque_type_resolution && !currently_reading_symtab)
+ if (TYPE_IS_OPAQUE (type)
+ && opaque_type_resolution
+ && !currently_reading_symtab)
{
char *name = type_name_no_tag (type);
struct type *newtype;
return type;
}
newtype = lookup_transparent_type (name);
+
if (newtype)
- make_cv_type (is_const, is_volatile, newtype, &type);
+ {
+ /* If the resolved type and the stub are in the same
+ objfile, then replace the stub type with the real deal.
+ But if they're in separate objfiles, leave the stub
+ alone; we'll just look up the transparent type every time
+ we call check_typedef. We can't create pointers between
+ types allocated to different objfiles, since they may
+ have different lifetimes. Trying to copy NEWTYPE over to
+ TYPE's objfile is pointless, too, since you'll have to
+ move over any other types NEWTYPE refers to, which could
+ be an unbounded amount of stuff. */
+ if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
+ make_cv_type (is_const, is_volatile, newtype, &type);
+ else
+ type = newtype;
+ }
}
- /* Otherwise, rely on the stub flag being set for opaque/stubbed types */
+ /* Otherwise, rely on the stub flag being set for opaque/stubbed
+ types. */
else if (TYPE_STUB (type) && !currently_reading_symtab)
{
char *name = type_name_no_tag (type);
stub_noname_complaint ();
return type;
}
- sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0, (struct symtab **) NULL);
+ sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
if (sym)
- make_cv_type (is_const, is_volatile, SYMBOL_TYPE (sym), &type);
+ {
+ /* Same as above for opaque types, we can replace the stub
+ with the complete type only if they are int the same
+ objfile. */
+ if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
+ make_cv_type (is_const, is_volatile,
+ SYMBOL_TYPE (sym), &type);
+ else
+ type = SYMBOL_TYPE (sym);
+ }
}
if (TYPE_TARGET_STUB (type))
if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
{
+ /* Empty. */
}
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
&& TYPE_NFIELDS (type) == 1
== TYPE_CODE_RANGE))
{
/* Now recompute the length of the array type, based on its
- number of elements and the target type's length. */
- TYPE_LENGTH (type) =
- ((TYPE_FIELD_BITPOS (range_type, 1)
- - TYPE_FIELD_BITPOS (range_type, 0)
- + 1)
- * TYPE_LENGTH (target_type));
+ number of elements and the target type's length.
+ Watch out for Ada null Ada arrays where the high bound
+ is smaller than the low bound. */
+ const int low_bound = TYPE_FIELD_BITPOS (range_type, 0);
+ const int high_bound = TYPE_FIELD_BITPOS (range_type, 1);
+ int nb_elements;
+
+ if (high_bound < low_bound)
+ nb_elements = 0;
+ else
+ nb_elements = high_bound - low_bound + 1;
+
+ TYPE_LENGTH (type) = nb_elements * TYPE_LENGTH (target_type);
TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
}
else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
}
}
- /* Cache TYPE_LENGTH for future use. */
+ /* Cache TYPE_LENGTH for future use. */
TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
return type;
}
-/* Parse a type expression in the string [P..P+LENGTH). If an error occurs,
- silently return builtin_type_void. */
+/* Parse a type expression in the string [P..P+LENGTH). If an error
+ occurs, silently return builtin_type_void. */
static struct type *
safe_parse_type (char *p, int length)
struct ui_file *saved_gdb_stderr;
struct type *type;
- /* Suppress error messages. */
+ /* Suppress error messages. */
saved_gdb_stderr = gdb_stderr;
gdb_stderr = ui_file_new ();
- /* Call parse_and_eval_type() without fear of longjmp()s. */
+ /* Call parse_and_eval_type() without fear of longjmp()s. */
if (!gdb_parse_and_eval_type (p, length, &type))
type = builtin_type_void;
- /* Stop suppressing error messages. */
+ /* Stop suppressing error messages. */
ui_file_delete (gdb_stderr);
gdb_stderr = saved_gdb_stderr;
/* Ugly hack to convert method stubs into method types.
- He ain't kiddin'. This demangles the name of the method into a string
- including argument types, parses out each argument type, generates
- a string casting a zero to that type, evaluates the string, and stuffs
- the resulting type into an argtype vector!!! Then it knows the type
- of the whole function (including argument types for overloading),
- which info used to be in the stab's but was removed to hack back
- the space required for them. */
+ He ain't kiddin'. This demangles the name of the method into a
+ string including argument types, parses out each argument type,
+ generates a string casting a zero to that type, evaluates the
+ string, and stuffs the resulting type into an argtype vector!!!
+ Then it knows the type of the whole function (including argument
+ types for overloading), which info used to be in the stab's but was
+ removed to hack back the space required for them. */
static void
check_stub_method (struct type *type, int method_id, int signature_id)
p = NULL;
if (demangled_name == NULL || p == NULL)
- error ("Internal: Cannot demangle mangled name `%s'.", mangled_name);
+ error (_("Internal: Cannot demangle mangled name `%s'."),
+ mangled_name);
/* Now, read in the parameters that define this type. */
p += 1;
xfree (demangled_name);
}
-/* This is the external interface to check_stub_method, above. This function
- unstubs all of the signatures for TYPE's METHOD_ID method name. After
- calling this function TYPE_FN_FIELD_STUB will be cleared for each signature
- and TYPE_FN_FIELDLIST_NAME will be correct.
+/* This is the external interface to check_stub_method, above. This
+ function unstubs all of the signatures for TYPE's METHOD_ID method
+ name. After calling this function TYPE_FN_FIELD_STUB will be
+ cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
+ correct.
This function unfortunately can not die until stabs do. */
check_stub_method (type, method_id, j);
}
- /* GNU v3 methods with incorrect names were corrected when we read in
- type information, because it was cheaper to do it then. The only GNU v2
- methods with incorrect method names are operators and destructors;
- destructors were also corrected when we read in type information.
+ /* GNU v3 methods with incorrect names were corrected when we read
+ in type information, because it was cheaper to do it then. The
+ only GNU v2 methods with incorrect method names are operators and
+ destructors; destructors were also corrected when we read in type
+ information.
Therefore the only thing we need to handle here are v2 operator
names. */
int ret;
char dem_opname[256];
- ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type, method_id),
+ ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
+ method_id),
dem_opname, DMGL_ANSI);
if (!ret)
- ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type, method_id),
+ ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
+ method_id),
dem_opname, 0);
if (ret)
TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
/* Helper function to initialize the standard scalar types.
- If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy
- of the string pointed to by name in the objfile_obstack for that objfile,
- and initialize the type name to that copy. There are places (mipsread.c
- in particular, where init_type is called with a NULL value for NAME). */
+ If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
+ the string pointed to by name in the objfile_obstack for that
+ objfile, and initialize the type name to that copy. There are
+ places (mipsread.c in particular, where init_type is called with a
+ NULL value for NAME). */
struct type *
-init_type (enum type_code code, int length, int flags, char *name,
- struct objfile *objfile)
+init_type (enum type_code code, int length, int flags,
+ char *name, struct objfile *objfile)
{
struct type *type;
TYPE_FLAGS (type) |= flags;
if ((name != NULL) && (objfile != NULL))
{
- TYPE_NAME (type) =
- obsavestring (name, strlen (name), &objfile->objfile_obstack);
+ TYPE_NAME (type) = obsavestring (name, strlen (name),
+ &objfile->objfile_obstack);
}
else
{
/* Helper function. Append a field to a composite type. */
void
-append_composite_type_field (struct type *t, char *name, struct type *field)
+append_composite_type_field (struct type *t, char *name,
+ struct type *field)
{
struct field *f;
TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
}
}
-/* Look up a fundamental type for the specified objfile.
- May need to construct such a type if this is the first use.
-
- Some object file formats (ELF, COFF, etc) do not define fundamental
- types such as "int" or "double". Others (stabs for example), do
- define fundamental types.
-
- For the formats which don't provide fundamental types, gdb can create
- such types, using defaults reasonable for the current language and
- the current target machine.
-
- NOTE: This routine is obsolescent. Each debugging format reader
- should manage it's own fundamental types, either creating them from
- suitable defaults or reading them from the debugging information,
- whichever is appropriate. The DWARF reader has already been
- fixed to do this. Once the other readers are fixed, this routine
- will go away. Also note that fundamental types should be managed
- on a compilation unit basis in a multi-language environment, not
- on a linkage unit basis as is done here. */
-
-
-struct type *
-lookup_fundamental_type (struct objfile *objfile, int typeid)
-{
- struct type **typep;
- int nbytes;
-
- if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
- {
- error ("internal error - invalid fundamental type id %d", typeid);
- }
-
- /* If this is the first time we need a fundamental type for this objfile
- then we need to initialize the vector of type pointers. */
-
- if (objfile->fundamental_types == NULL)
- {
- nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
- objfile->fundamental_types = (struct type **)
- obstack_alloc (&objfile->objfile_obstack, nbytes);
- memset ((char *) objfile->fundamental_types, 0, nbytes);
- OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
- }
-
- /* Look for this particular type in the fundamental type vector. If one is
- not found, create and install one appropriate for the current language. */
-
- typep = objfile->fundamental_types + typeid;
- if (*typep == NULL)
- {
- *typep = create_fundamental_type (objfile, typeid);
- }
-
- return (*typep);
-}
-
int
can_dereference (struct type *t)
{
- /* FIXME: Should we return true for references as well as pointers? */
+ /* FIXME: Should we return true for references as well as
+ pointers? */
CHECK_TYPEDEF (t);
return
(t != NULL
((t != NULL)
&& ((TYPE_CODE (t) == TYPE_CODE_INT)
|| (TYPE_CODE (t) == TYPE_CODE_ENUM)
+ || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
|| (TYPE_CODE (t) == TYPE_CODE_CHAR)
|| (TYPE_CODE (t) == TYPE_CODE_RANGE)
|| (TYPE_CODE (t) == TYPE_CODE_BOOL)));
Return 1 if so, and 0 if not.
Note: callers may want to check for identity of the types before
calling this function -- identical types are considered to satisfy
- the ancestor relationship even if they're identical */
+ the ancestor relationship even if they're identical. */
int
is_ancestor (struct type *base, struct type *dclass)
if (base == dclass)
return 1;
- if (TYPE_NAME (base) && TYPE_NAME (dclass) &&
- !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
+ if (TYPE_NAME (base) && TYPE_NAME (dclass)
+ && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
return 1;
for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
return 0;
}
+\f
+/* Functions for overload resolution begin here */
-/* See whether DCLASS has a virtual table. This routine is aimed at
- the HP/Taligent ANSI C++ runtime model, and may not work with other
- runtime models. Return 1 => Yes, 0 => No. */
+/* Compare two badness vectors A and B and return the result.
+ 0 => A and B are identical
+ 1 => A and B are incomparable
+ 2 => A is better than B
+ 3 => A is worse than B */
int
-has_vtable (struct type *dclass)
+compare_badness (struct badness_vector *a, struct badness_vector *b)
{
- /* In the HP ANSI C++ runtime model, a class has a vtable only if it
- has virtual functions or virtual bases. */
-
int i;
+ int tmp;
+ short found_pos = 0; /* any positives in c? */
+ short found_neg = 0; /* any negatives in c? */
- if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
- return 0;
-
- /* First check for the presence of virtual bases */
- if (TYPE_FIELD_VIRTUAL_BITS (dclass))
- for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
- if (B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
- return 1;
-
- /* Next check for virtual functions */
- if (TYPE_FN_FIELDLISTS (dclass))
- for (i = 0; i < TYPE_NFN_FIELDS (dclass); i++)
- if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, i), 0))
- return 1;
-
- /* Recurse on non-virtual bases to see if any of them needs a vtable */
- if (TYPE_FIELD_VIRTUAL_BITS (dclass))
- for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
- if ((!B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i)) &&
- (has_vtable (TYPE_FIELD_TYPE (dclass, i))))
- return 1;
-
- /* Well, maybe we don't need a virtual table */
- return 0;
-}
+ /* differing lengths => incomparable */
+ if (a->length != b->length)
+ return 1;
-/* Return a pointer to the "primary base class" of DCLASS.
+ /* Subtract b from a */
+ for (i = 0; i < a->length; i++)
+ {
+ tmp = a->rank[i] - b->rank[i];
+ if (tmp > 0)
+ found_pos = 1;
+ else if (tmp < 0)
+ found_neg = 1;
+ }
- A NULL return indicates that DCLASS has no primary base, or that it
- couldn't be found (insufficient information).
+ if (found_pos)
+ {
+ if (found_neg)
+ return 1; /* incomparable */
+ else
+ return 3; /* A > B */
+ }
+ else
+ /* no positives */
+ {
+ if (found_neg)
+ return 2; /* A < B */
+ else
+ return 0; /* A == B */
+ }
+}
- This routine is aimed at the HP/Taligent ANSI C++ runtime model,
- and may not work with other runtime models. */
+/* Rank a function by comparing its parameter types (PARMS, length
+ NPARMS), to the types of an argument list (ARGS, length NARGS).
+ Return a pointer to a badness vector. This has NARGS + 1
+ entries. */
-struct type *
-primary_base_class (struct type *dclass)
+struct badness_vector *
+rank_function (struct type **parms, int nparms,
+ struct type **args, int nargs)
{
- /* In HP ANSI C++'s runtime model, a "primary base class" of a class
- is the first directly inherited, non-virtual base class that
- requires a virtual table */
-
int i;
+ struct badness_vector *bv;
+ int min_len = nparms < nargs ? nparms : nargs;
- if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
- return NULL;
-
- for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
- if (!TYPE_FIELD_VIRTUAL (dclass, i) &&
- has_vtable (TYPE_FIELD_TYPE (dclass, i)))
- return TYPE_FIELD_TYPE (dclass, i);
+ bv = xmalloc (sizeof (struct badness_vector));
+ bv->length = nargs + 1; /* add 1 for the length-match rank */
+ bv->rank = xmalloc ((nargs + 1) * sizeof (int));
- return NULL;
-}
+ /* First compare the lengths of the supplied lists.
+ If there is a mismatch, set it to a high value. */
-/* Global manipulated by virtual_base_list[_aux]() */
+ /* pai/1997-06-03 FIXME: when we have debug info about default
+ arguments and ellipsis parameter lists, we should consider those
+ and rank the length-match more finely. */
-static struct vbase *current_vbase_list = NULL;
+ LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
-/* Return a pointer to a null-terminated list of struct vbase
- items. The vbasetype pointer of each item in the list points to the
- type information for a virtual base of the argument DCLASS.
+ /* Now rank all the parameters of the candidate function */
+ for (i = 1; i <= min_len; i++)
+ bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
- Helper function for virtual_base_list().
- Note: the list goes backward, right-to-left. virtual_base_list()
- copies the items out in reverse order. */
+ /* If more arguments than parameters, add dummy entries */
+ for (i = min_len + 1; i <= nargs; i++)
+ bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
-static void
-virtual_base_list_aux (struct type *dclass)
-{
- struct vbase *tmp_vbase;
- int i;
+ return bv;
+}
- if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
- return;
+/* Compare the names of two integer types, assuming that any sign
+ qualifiers have been checked already. We do it this way because
+ there may be an "int" in the name of one of the types. */
- for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
- {
- /* Recurse on this ancestor, first */
- virtual_base_list_aux (TYPE_FIELD_TYPE (dclass, i));
+static int
+integer_types_same_name_p (const char *first, const char *second)
+{
+ int first_p, second_p;
- /* If this current base is itself virtual, add it to the list */
- if (BASETYPE_VIA_VIRTUAL (dclass, i))
- {
- struct type *basetype = TYPE_FIELD_TYPE (dclass, i);
+ /* If both are shorts, return 1; if neither is a short, keep
+ checking. */
+ first_p = (strstr (first, "short") != NULL);
+ second_p = (strstr (second, "short") != NULL);
+ if (first_p && second_p)
+ return 1;
+ if (first_p || second_p)
+ return 0;
- /* Check if base already recorded */
- tmp_vbase = current_vbase_list;
- while (tmp_vbase)
- {
- if (tmp_vbase->vbasetype == basetype)
- break; /* found it */
- tmp_vbase = tmp_vbase->next;
- }
+ /* Likewise for long. */
+ first_p = (strstr (first, "long") != NULL);
+ second_p = (strstr (second, "long") != NULL);
+ if (first_p && second_p)
+ return 1;
+ if (first_p || second_p)
+ return 0;
- if (!tmp_vbase) /* normal exit from loop */
- {
- /* Allocate new item for this virtual base */
- tmp_vbase = (struct vbase *) xmalloc (sizeof (struct vbase));
+ /* Likewise for char. */
+ first_p = (strstr (first, "char") != NULL);
+ second_p = (strstr (second, "char") != NULL);
+ if (first_p && second_p)
+ return 1;
+ if (first_p || second_p)
+ return 0;
- /* Stick it on at the end of the list */
- tmp_vbase->vbasetype = basetype;
- tmp_vbase->next = current_vbase_list;
- current_vbase_list = tmp_vbase;
- }
- } /* if virtual */
- } /* for loop over bases */
-}
-
-
-/* Compute the list of virtual bases in the right order. Virtual
- bases are laid out in the object's memory area in order of their
- occurrence in a depth-first, left-to-right search through the
- ancestors.
-
- Argument DCLASS is the type whose virtual bases are required.
- Return value is the address of a null-terminated array of pointers
- to struct type items.
-
- This routine is aimed at the HP/Taligent ANSI C++ runtime model,
- and may not work with other runtime models.
-
- This routine merely hands off the argument to virtual_base_list_aux()
- and then copies the result into an array to save space. */
-
-struct type **
-virtual_base_list (struct type *dclass)
-{
- struct vbase *tmp_vbase;
- struct vbase *tmp_vbase_2;
- int i;
- int count;
- struct type **vbase_array;
-
- current_vbase_list = NULL;
- virtual_base_list_aux (dclass);
-
- for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
- /* no body */ ;
-
- count = i;
-
- vbase_array = (struct type **) xmalloc ((count + 1) * sizeof (struct type *));
-
- for (i = count - 1, tmp_vbase = current_vbase_list; i >= 0; i--, tmp_vbase = tmp_vbase->next)
- vbase_array[i] = tmp_vbase->vbasetype;
-
- /* Get rid of constructed chain */
- tmp_vbase_2 = tmp_vbase = current_vbase_list;
- while (tmp_vbase)
- {
- tmp_vbase = tmp_vbase->next;
- xfree (tmp_vbase_2);
- tmp_vbase_2 = tmp_vbase;
- }
-
- vbase_array[count] = NULL;
- return vbase_array;
-}
-
-/* Return the length of the virtual base list of the type DCLASS. */
-
-int
-virtual_base_list_length (struct type *dclass)
-{
- int i;
- struct vbase *tmp_vbase;
-
- current_vbase_list = NULL;
- virtual_base_list_aux (dclass);
-
- for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
- /* no body */ ;
- return i;
-}
-
-/* Return the number of elements of the virtual base list of the type
- DCLASS, ignoring those appearing in the primary base (and its
- primary base, recursively). */
-
-int
-virtual_base_list_length_skip_primaries (struct type *dclass)
-{
- int i;
- struct vbase *tmp_vbase;
- struct type *primary;
-
- primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
-
- if (!primary)
- return virtual_base_list_length (dclass);
-
- current_vbase_list = NULL;
- virtual_base_list_aux (dclass);
-
- for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; tmp_vbase = tmp_vbase->next)
- {
- if (virtual_base_index (tmp_vbase->vbasetype, primary) >= 0)
- continue;
- i++;
- }
- return i;
-}
-
-
-/* Return the index (position) of type BASE, which is a virtual base
- class of DCLASS, in the latter's virtual base list. A return of -1
- indicates "not found" or a problem. */
-
-int
-virtual_base_index (struct type *base, struct type *dclass)
-{
- struct type *vbase;
- int i;
-
- if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
- (TYPE_CODE (base) != TYPE_CODE_CLASS))
- return -1;
-
- i = 0;
- vbase = virtual_base_list (dclass)[0];
- while (vbase)
- {
- if (vbase == base)
- break;
- vbase = virtual_base_list (dclass)[++i];
- }
-
- return vbase ? i : -1;
-}
-
-
-
-/* Return the index (position) of type BASE, which is a virtual base
- class of DCLASS, in the latter's virtual base list. Skip over all
- bases that may appear in the virtual base list of the primary base
- class of DCLASS (recursively). A return of -1 indicates "not
- found" or a problem. */
-
-int
-virtual_base_index_skip_primaries (struct type *base, struct type *dclass)
-{
- struct type *vbase;
- int i, j;
- struct type *primary;
-
- if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
- (TYPE_CODE (base) != TYPE_CODE_CLASS))
- return -1;
-
- primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
-
- j = -1;
- i = 0;
- vbase = virtual_base_list (dclass)[0];
- while (vbase)
- {
- if (!primary || (virtual_base_index_skip_primaries (vbase, primary) < 0))
- j++;
- if (vbase == base)
- break;
- vbase = virtual_base_list (dclass)[++i];
- }
-
- return vbase ? j : -1;
-}
-
-/* Return position of a derived class DCLASS in the list of
- * primary bases starting with the remotest ancestor.
- * Position returned is 0-based. */
-
-int
-class_index_in_primary_list (struct type *dclass)
-{
- struct type *pbc; /* primary base class */
-
- /* Simply recurse on primary base */
- pbc = TYPE_PRIMARY_BASE (dclass);
- if (pbc)
- return 1 + class_index_in_primary_list (pbc);
- else
- return 0;
-}
-
-/* Return a count of the number of virtual functions a type has.
- * This includes all the virtual functions it inherits from its
- * base classes too.
- */
-
-/* pai: FIXME This doesn't do the right thing: count redefined virtual
- * functions only once (latest redefinition)
- */
-
-int
-count_virtual_fns (struct type *dclass)
-{
- int fn, oi; /* function and overloaded instance indices */
- int vfuncs; /* count to return */
-
- /* recurse on bases that can share virtual table */
- struct type *pbc = primary_base_class (dclass);
- if (pbc)
- vfuncs = count_virtual_fns (pbc);
- else
- vfuncs = 0;
-
- for (fn = 0; fn < TYPE_NFN_FIELDS (dclass); fn++)
- for (oi = 0; oi < TYPE_FN_FIELDLIST_LENGTH (dclass, fn); oi++)
- if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, fn), oi))
- vfuncs++;
-
- return vfuncs;
-}
-\f
-
-
-/* Functions for overload resolution begin here */
-
-/* Compare two badness vectors A and B and return the result.
- * 0 => A and B are identical
- * 1 => A and B are incomparable
- * 2 => A is better than B
- * 3 => A is worse than B */
-
-int
-compare_badness (struct badness_vector *a, struct badness_vector *b)
-{
- int i;
- int tmp;
- short found_pos = 0; /* any positives in c? */
- short found_neg = 0; /* any negatives in c? */
-
- /* differing lengths => incomparable */
- if (a->length != b->length)
- return 1;
-
- /* Subtract b from a */
- for (i = 0; i < a->length; i++)
- {
- tmp = a->rank[i] - b->rank[i];
- if (tmp > 0)
- found_pos = 1;
- else if (tmp < 0)
- found_neg = 1;
- }
-
- if (found_pos)
- {
- if (found_neg)
- return 1; /* incomparable */
- else
- return 3; /* A > B */
- }
- else
- /* no positives */
- {
- if (found_neg)
- return 2; /* A < B */
- else
- return 0; /* A == B */
- }
-}
-
-/* Rank a function by comparing its parameter types (PARMS, length NPARMS),
- * to the types of an argument list (ARGS, length NARGS).
- * Return a pointer to a badness vector. This has NARGS + 1 entries. */
-
-struct badness_vector *
-rank_function (struct type **parms, int nparms, struct type **args, int nargs)
-{
- int i;
- struct badness_vector *bv;
- int min_len = nparms < nargs ? nparms : nargs;
-
- bv = xmalloc (sizeof (struct badness_vector));
- bv->length = nargs + 1; /* add 1 for the length-match rank */
- bv->rank = xmalloc ((nargs + 1) * sizeof (int));
-
- /* First compare the lengths of the supplied lists.
- * If there is a mismatch, set it to a high value. */
-
- /* pai/1997-06-03 FIXME: when we have debug info about default
- * arguments and ellipsis parameter lists, we should consider those
- * and rank the length-match more finely. */
-
- LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
-
- /* Now rank all the parameters of the candidate function */
- for (i = 1; i <= min_len; i++)
- bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
-
- /* If more arguments than parameters, add dummy entries */
- for (i = min_len + 1; i <= nargs; i++)
- bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
-
- return bv;
-}
-
-/* Compare the names of two integer types, assuming that any sign
- qualifiers have been checked already. We do it this way because
- there may be an "int" in the name of one of the types. */
-
-static int
-integer_types_same_name_p (const char *first, const char *second)
-{
- int first_p, second_p;
-
- /* If both are shorts, return 1; if neither is a short, keep checking. */
- first_p = (strstr (first, "short") != NULL);
- second_p = (strstr (second, "short") != NULL);
- if (first_p && second_p)
- return 1;
- if (first_p || second_p)
- return 0;
-
- /* Likewise for long. */
- first_p = (strstr (first, "long") != NULL);
- second_p = (strstr (second, "long") != NULL);
- if (first_p && second_p)
- return 1;
- if (first_p || second_p)
- return 0;
-
- /* Likewise for char. */
- first_p = (strstr (first, "char") != NULL);
- second_p = (strstr (second, "char") != NULL);
- if (first_p && second_p)
- return 1;
- if (first_p || second_p)
- return 0;
-
- /* They must both be ints. */
- return 1;
+ /* They must both be ints. */
+ return 1;
}
/* Compare one type (PARM) for compatibility with another (ARG).
*
* Return 0 if they are identical types;
* Otherwise, return an integer which corresponds to how compatible
- * PARM is to ARG. The higher the return value, the worse the match.
- * Generally the "bad" conversions are all uniformly assigned a 100 */
+ * PARM is to ARG. The higher the return value, the worse the match.
+ * Generally the "bad" conversions are all uniformly assigned a 100. */
int
rank_one_type (struct type *parm, struct type *arg)
{
- /* Identical type pointers */
+ /* Identical type pointers. */
/* However, this still doesn't catch all cases of same type for arg
- * and param. The reason is that builtin types are different from
- * the same ones constructed from the object. */
+ and param. The reason is that builtin types are different from
+ the same ones constructed from the object. */
if (parm == arg)
return 0;
arg = check_typedef (arg);
/*
- Well, damnit, if the names are exactly the same,
- i'll say they are exactly the same. This happens when we generate
- method stubs. The types won't point to the same address, but they
+ Well, damnit, if the names are exactly the same, I'll say they
+ are exactly the same. This happens when we generate method
+ stubs. The types won't point to the same address, but they
really are the same.
*/
- if (TYPE_NAME (parm) && TYPE_NAME (arg) &&
- !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
- return 0;
+ if (TYPE_NAME (parm) && TYPE_NAME (arg)
+ && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
+ return 0;
- /* Check if identical after resolving typedefs */
+ /* Check if identical after resolving typedefs. */
if (parm == arg)
return 0;
/* See through references, since we can almost make non-references
- references. */
+ references. */
if (TYPE_CODE (arg) == TYPE_CODE_REF)
return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
+ REFERENCE_CONVERSION_BADNESS);
return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
+ REFERENCE_CONVERSION_BADNESS);
if (overload_debug)
- /* Debugging only. */
- fprintf_filtered (gdb_stderr,"------ Arg is %s [%d], parm is %s [%d]\n",
- TYPE_NAME (arg), TYPE_CODE (arg), TYPE_NAME (parm), TYPE_CODE (parm));
+ /* Debugging only. */
+ fprintf_filtered (gdb_stderr,
+ "------ Arg is %s [%d], parm is %s [%d]\n",
+ TYPE_NAME (arg), TYPE_CODE (arg),
+ TYPE_NAME (parm), TYPE_CODE (parm));
/* x -> y means arg of type x being supplied for parameter of type y */
if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
return VOID_PTR_CONVERSION_BADNESS;
else
- return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
+ return rank_one_type (TYPE_TARGET_TYPE (parm),
+ TYPE_TARGET_TYPE (arg));
case TYPE_CODE_ARRAY:
- return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
+ return rank_one_type (TYPE_TARGET_TYPE (parm),
+ TYPE_TARGET_TYPE (arg));
case TYPE_CODE_FUNC:
return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
case TYPE_CODE_INT:
case TYPE_CODE_ENUM:
+ case TYPE_CODE_FLAGS:
case TYPE_CODE_CHAR:
case TYPE_CODE_RANGE:
case TYPE_CODE_BOOL:
{
case TYPE_CODE_PTR:
case TYPE_CODE_ARRAY:
- return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
+ return rank_one_type (TYPE_TARGET_TYPE (parm),
+ TYPE_TARGET_TYPE (arg));
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
{
/* Deal with signed, unsigned, and plain chars and
- signed and unsigned ints */
+ signed and unsigned ints. */
if (TYPE_NOSIGN (parm))
{
/* This case only for character types */
- if (TYPE_NOSIGN (arg)) /* plain char -> plain char */
- return 0;
- else
- return INTEGER_CONVERSION_BADNESS; /* signed/unsigned char -> plain char */
+ if (TYPE_NOSIGN (arg))
+ return 0; /* plain char -> plain char */
+ else /* signed/unsigned char -> plain char */
+ return INTEGER_CONVERSION_BADNESS;
}
else if (TYPE_UNSIGNED (parm))
{
if (TYPE_UNSIGNED (arg))
{
- /* unsigned int -> unsigned int, or unsigned long -> unsigned long */
- if (integer_types_same_name_p (TYPE_NAME (parm), TYPE_NAME (arg)))
+ /* unsigned int -> unsigned int, or
+ unsigned long -> unsigned long */
+ if (integer_types_same_name_p (TYPE_NAME (parm),
+ TYPE_NAME (arg)))
return 0;
- else if (integer_types_same_name_p (TYPE_NAME (arg), "int")
- && integer_types_same_name_p (TYPE_NAME (parm), "long"))
+ else if (integer_types_same_name_p (TYPE_NAME (arg),
+ "int")
+ && integer_types_same_name_p (TYPE_NAME (parm),
+ "long"))
return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
else
return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
}
else
{
- if (integer_types_same_name_p (TYPE_NAME (arg), "long")
- && integer_types_same_name_p (TYPE_NAME (parm), "int"))
+ if (integer_types_same_name_p (TYPE_NAME (arg),
+ "long")
+ && integer_types_same_name_p (TYPE_NAME (parm),
+ "int"))
return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
else
return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
}
else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
{
- if (integer_types_same_name_p (TYPE_NAME (parm), TYPE_NAME (arg)))
+ if (integer_types_same_name_p (TYPE_NAME (parm),
+ TYPE_NAME (arg)))
return 0;
- else if (integer_types_same_name_p (TYPE_NAME (arg), "int")
- && integer_types_same_name_p (TYPE_NAME (parm), "long"))
+ else if (integer_types_same_name_p (TYPE_NAME (arg),
+ "int")
+ && integer_types_same_name_p (TYPE_NAME (parm),
+ "long"))
return INTEGER_PROMOTION_BADNESS;
else
return INTEGER_CONVERSION_BADNESS;
else
return INTEGER_CONVERSION_BADNESS;
case TYPE_CODE_ENUM:
+ case TYPE_CODE_FLAGS:
case TYPE_CODE_CHAR:
case TYPE_CODE_RANGE:
case TYPE_CODE_BOOL:
return INTEGER_PROMOTION_BADNESS;
/* >>> !! else fall through !! <<< */
case TYPE_CODE_CHAR:
- /* Deal with signed, unsigned, and plain chars for C++
- and with int cases falling through from previous case */
+ /* Deal with signed, unsigned, and plain chars for C++ and
+ with int cases falling through from previous case. */
if (TYPE_NOSIGN (parm))
{
if (TYPE_NOSIGN (arg))
break;
case TYPE_CODE_COMPLEX:
switch (TYPE_CODE (arg))
- { /* Strictly not needed for C++, but... */
+ { /* Strictly not needed for C++, but... */
case TYPE_CODE_FLT:
return FLOAT_PROMOTION_BADNESS;
case TYPE_CODE_COMPLEX:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
- case TYPE_CODE_MEMBER:
+ case TYPE_CODE_MEMBERPTR:
switch (TYPE_CODE (arg))
{
default:
{
/* Not in C++ */
case TYPE_CODE_SET:
- return rank_one_type (TYPE_FIELD_TYPE (parm, 0), TYPE_FIELD_TYPE (arg, 0));
+ return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
+ TYPE_FIELD_TYPE (arg, 0));
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
puts_filtered (" ");
}
if (B_TST (bits, bitno))
- {
- printf_filtered ("1");
- }
+ printf_filtered (("1"));
else
- {
- printf_filtered ("0");
- }
+ printf_filtered (("0"));
}
}
/* Note the first arg should be the "this" pointer, we may not want to
- include it since we may get into a infinitely recursive situation. */
+ include it since we may get into a infinitely recursive
+ situation. */
static void
print_arg_types (struct field *args, int nargs, int spaces)
TYPE_FN_FIELDLIST_NAME (type, method_idx));
gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
gdb_stdout);
- printf_filtered (") length %d\n",
+ printf_filtered (_(") length %d\n"),
TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
for (overload_idx = 0;
overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
gdb_stdout);
printf_filtered (")\n");
printfi_filtered (spaces + 8, "type ");
- gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), gdb_stdout);
+ gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
+ gdb_stdout);
printf_filtered ("\n");
recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
spaces + 8 + 2);
printfi_filtered (spaces + 8, "args ");
- gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), gdb_stdout);
+ gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
+ gdb_stdout);
printf_filtered ("\n");
print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
- TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
+ TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
+ overload_idx)),
spaces);
printfi_filtered (spaces + 8, "fcontext ");
gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
{
printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
TYPE_N_BASECLASSES (type));
- gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), gdb_stdout);
+ gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
+ gdb_stdout);
printf_filtered (")");
print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
{
if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
{
- printfi_filtered (spaces, "private_field_bits (%d bits at *",
+ printfi_filtered (spaces,
+ "private_field_bits (%d bits at *",
TYPE_NFIELDS (type));
- gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), gdb_stdout);
+ gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
+ gdb_stdout);
printf_filtered (")");
print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
TYPE_NFIELDS (type));
}
if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
{
- printfi_filtered (spaces, "protected_field_bits (%d bits at *",
+ printfi_filtered (spaces,
+ "protected_field_bits (%d bits at *",
TYPE_NFIELDS (type));
- gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), gdb_stdout);
+ gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
+ gdb_stdout);
printf_filtered (")");
print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
TYPE_NFIELDS (type));
printf_filtered ("(BOUND_SIMPLE)");
break;
default:
- printf_filtered ("(unknown bound type)");
+ printf_filtered (_("(unknown bound type)"));
break;
}
}
|| (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
{
struct type **first_dont_print
- = (struct type **) obstack_base (&dont_print_type_obstack);
+ = (struct type **) obstack_base (&dont_print_type_obstack);
- int i = (struct type **) obstack_next_free (&dont_print_type_obstack)
- - first_dont_print;
+ int i = (struct type **)
+ obstack_next_free (&dont_print_type_obstack) - first_dont_print;
while (--i >= 0)
{
{
printfi_filtered (spaces, "type node ");
gdb_print_host_address (type, gdb_stdout);
- printf_filtered (" <same as already seen type>\n");
+ printf_filtered (_(" <same as already seen type>\n"));
return;
}
}
case TYPE_CODE_ENUM:
printf_filtered ("(TYPE_CODE_ENUM)");
break;
+ case TYPE_CODE_FLAGS:
+ printf_filtered ("(TYPE_CODE_FLAGS)");
+ break;
case TYPE_CODE_FUNC:
printf_filtered ("(TYPE_CODE_FUNC)");
break;
case TYPE_CODE_ERROR:
printf_filtered ("(TYPE_CODE_ERROR)");
break;
- case TYPE_CODE_MEMBER:
- printf_filtered ("(TYPE_CODE_MEMBER)");
+ case TYPE_CODE_MEMBERPTR:
+ printf_filtered ("(TYPE_CODE_MEMBERPTR)");
+ break;
+ case TYPE_CODE_METHODPTR:
+ printf_filtered ("(TYPE_CODE_METHODPTR)");
break;
case TYPE_CODE_METHOD:
printf_filtered ("(TYPE_CODE_METHOD)");
printfi_filtered (spaces, "type_chain ");
gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
printf_filtered ("\n");
- printfi_filtered (spaces, "instance_flags 0x%x", TYPE_INSTANCE_FLAGS (type));
+ printfi_filtered (spaces, "instance_flags 0x%x",
+ TYPE_INSTANCE_FLAGS (type));
if (TYPE_CONST (type))
{
puts_filtered (" TYPE_FLAG_CONST");
{
recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
}
- printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
+ printfi_filtered (spaces, "vptr_fieldno %d\n",
+ TYPE_VPTR_FIELDNO (type));
switch (TYPE_CODE (type))
{
case TYPE_CODE_STRUCT:
printfi_filtered (spaces, "cplus_stuff ");
- gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
+ gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
+ gdb_stdout);
puts_filtered ("\n");
print_cplus_stuff (type, spaces);
break;
case TYPE_CODE_FLT:
printfi_filtered (spaces, "floatformat ");
- if (TYPE_FLOATFORMAT (type) == NULL
- || TYPE_FLOATFORMAT (type)->name == NULL)
+ if (TYPE_FLOATFORMAT (type) == NULL)
puts_filtered ("(null)");
else
- puts_filtered (TYPE_FLOATFORMAT (type)->name);
+ {
+ puts_filtered ("{ ");
+ if (TYPE_FLOATFORMAT (type)[0] == NULL
+ || TYPE_FLOATFORMAT (type)[0]->name == NULL)
+ puts_filtered ("(null)");
+ else
+ puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
+
+ puts_filtered (", ");
+ if (TYPE_FLOATFORMAT (type)[1] == NULL
+ || TYPE_FLOATFORMAT (type)[1]->name == NULL)
+ puts_filtered ("(null)");
+ else
+ puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
+
+ puts_filtered (" }");
+ }
puts_filtered ("\n");
break;
default:
- /* We have to pick one of the union types to be able print and test
- the value. Pick cplus_struct_type, even though we know it isn't
- any particular one. */
+ /* We have to pick one of the union types to be able print and
+ test the value. Pick cplus_struct_type, even though we know
+ it isn't any particular one. */
printfi_filtered (spaces, "type_specific ");
gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
if (TYPE_CPLUS_SPECIFIC (type) != NULL)
{
- printf_filtered (" (unknown data form)");
+ printf_filtered (_(" (unknown data form)"));
}
printf_filtered ("\n");
break;
obstack_free (&dont_print_type_obstack, NULL);
}
-static void build_gdbtypes (void);
-static void
-build_gdbtypes (void)
+/* Trivial helpers for the libiberty hash table, for mapping one
+ type to another. */
+
+struct type_pair
{
- builtin_type_void =
- init_type (TYPE_CODE_VOID, 1,
- 0,
- "void", (struct objfile *) NULL);
- builtin_type_char =
- init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
- (TYPE_FLAG_NOSIGN
- | (TARGET_CHAR_SIGNED ? 0 : TYPE_FLAG_UNSIGNED)),
- "char", (struct objfile *) NULL);
- builtin_type_true_char =
- init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
- 0,
- "true character", (struct objfile *) NULL);
- builtin_type_signed_char =
- init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
- 0,
- "signed char", (struct objfile *) NULL);
- builtin_type_unsigned_char =
- init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
- TYPE_FLAG_UNSIGNED,
- "unsigned char", (struct objfile *) NULL);
- builtin_type_short =
- init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
- 0,
- "short", (struct objfile *) NULL);
- builtin_type_unsigned_short =
- init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
- TYPE_FLAG_UNSIGNED,
- "unsigned short", (struct objfile *) NULL);
- builtin_type_int =
- init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
- 0,
- "int", (struct objfile *) NULL);
- builtin_type_unsigned_int =
- init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
- TYPE_FLAG_UNSIGNED,
- "unsigned int", (struct objfile *) NULL);
- builtin_type_long =
- init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
- 0,
- "long", (struct objfile *) NULL);
- builtin_type_unsigned_long =
- init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
- TYPE_FLAG_UNSIGNED,
- "unsigned long", (struct objfile *) NULL);
- builtin_type_long_long =
- init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
- 0,
- "long long", (struct objfile *) NULL);
- builtin_type_unsigned_long_long =
- init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
- TYPE_FLAG_UNSIGNED,
- "unsigned long long", (struct objfile *) NULL);
- builtin_type_float =
- init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
- 0,
- "float", (struct objfile *) NULL);
- The below lines are disabled since they are doing the wrong
- thing for non-multiarch targets. They are setting the correct
- type of floats for the target but while on multiarch targets
- this is done everytime the architecture changes, it's done on
- non-multiarch targets only on startup, leaving the wrong values
- in even if the architecture changes (eg. from big-endian to
- little-endian). */
-#if 0
- TYPE_FLOATFORMAT (builtin_type_float) = TARGET_FLOAT_FORMAT;
-#endif
- builtin_type_double =
- init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
- 0,
- "double", (struct objfile *) NULL);
-#if 0
- TYPE_FLOATFORMAT (builtin_type_double) = TARGET_DOUBLE_FORMAT;
-#endif
- builtin_type_long_double =
- init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
- 0,
- "long double", (struct objfile *) NULL);
-#if 0
- TYPE_FLOATFORMAT (builtin_type_long_double) = TARGET_LONG_DOUBLE_FORMAT;
-#endif
- builtin_type_complex =
- init_type (TYPE_CODE_COMPLEX, 2 * TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
- 0,
- "complex", (struct objfile *) NULL);
- TYPE_TARGET_TYPE (builtin_type_complex) = builtin_type_float;
- builtin_type_double_complex =
- init_type (TYPE_CODE_COMPLEX, 2 * TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
- 0,
- "double complex", (struct objfile *) NULL);
- TYPE_TARGET_TYPE (builtin_type_double_complex) = builtin_type_double;
- builtin_type_string =
- init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
- 0,
- "string", (struct objfile *) NULL);
- builtin_type_int0 =
- init_type (TYPE_CODE_INT, 0 / 8,
- 0,
- "int0_t", (struct objfile *) NULL);
- builtin_type_int8 =
- init_type (TYPE_CODE_INT, 8 / 8,
- 0,
- "int8_t", (struct objfile *) NULL);
- builtin_type_uint8 =
- init_type (TYPE_CODE_INT, 8 / 8,
- TYPE_FLAG_UNSIGNED,
- "uint8_t", (struct objfile *) NULL);
- builtin_type_int16 =
- init_type (TYPE_CODE_INT, 16 / 8,
- 0,
- "int16_t", (struct objfile *) NULL);
- builtin_type_uint16 =
- init_type (TYPE_CODE_INT, 16 / 8,
- TYPE_FLAG_UNSIGNED,
- "uint16_t", (struct objfile *) NULL);
- builtin_type_int32 =
- init_type (TYPE_CODE_INT, 32 / 8,
- 0,
- "int32_t", (struct objfile *) NULL);
- builtin_type_uint32 =
- init_type (TYPE_CODE_INT, 32 / 8,
- TYPE_FLAG_UNSIGNED,
- "uint32_t", (struct objfile *) NULL);
- builtin_type_int64 =
- init_type (TYPE_CODE_INT, 64 / 8,
- 0,
- "int64_t", (struct objfile *) NULL);
- builtin_type_uint64 =
- init_type (TYPE_CODE_INT, 64 / 8,
- TYPE_FLAG_UNSIGNED,
- "uint64_t", (struct objfile *) NULL);
- builtin_type_int128 =
- init_type (TYPE_CODE_INT, 128 / 8,
- 0,
- "int128_t", (struct objfile *) NULL);
- builtin_type_uint128 =
- init_type (TYPE_CODE_INT, 128 / 8,
- TYPE_FLAG_UNSIGNED,
- "uint128_t", (struct objfile *) NULL);
- builtin_type_bool =
- init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
- 0,
- "bool", (struct objfile *) NULL);
+ struct type *old, *new;
+};
- /* Add user knob for controlling resolution of opaque types */
- deprecated_add_show_from_set
- (add_set_cmd ("opaque-type-resolution", class_support, var_boolean, (char *) &opaque_type_resolution,
- "Set resolution of opaque struct/class/union types (if set before loading symbols).",
- &setlist),
- &showlist);
- opaque_type_resolution = 1;
-
- /* Build SIMD types. */
- builtin_type_v4sf
- = init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4);
- builtin_type_v4si
- = init_simd_type ("__builtin_v4si", builtin_type_int32, "f", 4);
- builtin_type_v16qi
- = init_simd_type ("__builtin_v16qi", builtin_type_int8, "f", 16);
- builtin_type_v8qi
- = init_simd_type ("__builtin_v8qi", builtin_type_int8, "f", 8);
- builtin_type_v8hi
- = init_simd_type ("__builtin_v8hi", builtin_type_int16, "f", 8);
- builtin_type_v4hi
- = init_simd_type ("__builtin_v4hi", builtin_type_int16, "f", 4);
- builtin_type_v2si
- = init_simd_type ("__builtin_v2si", builtin_type_int32, "f", 2);
-
- /* 128 bit vectors. */
- builtin_type_v2_double = init_vector_type (builtin_type_double, 2);
- builtin_type_v4_float = init_vector_type (builtin_type_float, 4);
- builtin_type_v2_int64 = init_vector_type (builtin_type_int64, 2);
- builtin_type_v4_int32 = init_vector_type (builtin_type_int32, 4);
- builtin_type_v8_int16 = init_vector_type (builtin_type_int16, 8);
- builtin_type_v16_int8 = init_vector_type (builtin_type_int8, 16);
- /* 64 bit vectors. */
- builtin_type_v2_float = init_vector_type (builtin_type_float, 2);
- builtin_type_v2_int32 = init_vector_type (builtin_type_int32, 2);
- builtin_type_v4_int16 = init_vector_type (builtin_type_int16, 4);
- builtin_type_v8_int8 = init_vector_type (builtin_type_int8, 8);
-
- /* Vector types. */
- builtin_type_vec64 = build_builtin_type_vec64 ();
- builtin_type_vec64i = build_builtin_type_vec64i ();
- builtin_type_vec128 = build_builtin_type_vec128 ();
- builtin_type_vec128i = build_builtin_type_vec128i ();
-
- /* Pointer/Address types. */
+static hashval_t
+type_pair_hash (const void *item)
+{
+ const struct type_pair *pair = item;
+ return htab_hash_pointer (pair->old);
+}
- /* NOTE: on some targets, addresses and pointers are not necessarily
- the same --- for example, on the D10V, pointers are 16 bits long,
- but addresses are 32 bits long. See doc/gdbint.texinfo,
- ``Pointers Are Not Always Addresses''.
+static int
+type_pair_eq (const void *item_lhs, const void *item_rhs)
+{
+ const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
+ return lhs->old == rhs->old;
+}
- The upshot is:
- - gdb's `struct type' always describes the target's
- representation.
- - gdb's `struct value' objects should always hold values in
- target form.
- - gdb's CORE_ADDR values are addresses in the unified virtual
- address space that the assembler and linker work with. Thus,
- since target_read_memory takes a CORE_ADDR as an argument, it
- can access any memory on the target, even if the processor has
- separate code and data address spaces.
+/* Allocate the hash table used by copy_type_recursive to walk
+ types without duplicates. We use OBJFILE's obstack, because
+ OBJFILE is about to be deleted. */
- So, for example:
- - If v is a value holding a D10V code pointer, its contents are
- in target form: a big-endian address left-shifted two bits.
- - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
- sizeof (void *) == 2 on the target.
+htab_t
+create_copied_types_hash (struct objfile *objfile)
+{
+ return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
+ NULL, &objfile->objfile_obstack,
+ hashtab_obstack_allocate,
+ dummy_obstack_deallocate);
+}
- In this context, builtin_type_CORE_ADDR is a bit odd: it's a
- target type for a value the target will never see. It's only
- used to hold the values of (typeless) linker symbols, which are
- indeed in the unified virtual address space. */
- builtin_type_void_data_ptr = make_pointer_type (builtin_type_void, NULL);
- builtin_type_void_func_ptr
- = lookup_pointer_type (lookup_function_type (builtin_type_void));
- builtin_type_CORE_ADDR =
- init_type (TYPE_CODE_INT, TARGET_ADDR_BIT / 8,
- TYPE_FLAG_UNSIGNED,
- "__CORE_ADDR", (struct objfile *) NULL);
- builtin_type_bfd_vma =
- init_type (TYPE_CODE_INT, TARGET_BFD_VMA_BIT / 8,
- TYPE_FLAG_UNSIGNED,
- "__bfd_vma", (struct objfile *) NULL);
+/* Recursively copy (deep copy) TYPE, if it is associated with
+ OBJFILE. Return a new type allocated using malloc, a saved type if
+ we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
+ not associated with OBJFILE. */
+
+struct type *
+copy_type_recursive (struct objfile *objfile,
+ struct type *type,
+ htab_t copied_types)
+{
+ struct type_pair *stored, pair;
+ void **slot;
+ struct type *new_type;
+
+ if (TYPE_OBJFILE (type) == NULL)
+ return type;
+
+ /* This type shouldn't be pointing to any types in other objfiles;
+ if it did, the type might disappear unexpectedly. */
+ gdb_assert (TYPE_OBJFILE (type) == objfile);
+
+ pair.old = type;
+ slot = htab_find_slot (copied_types, &pair, INSERT);
+ if (*slot != NULL)
+ return ((struct type_pair *) *slot)->new;
+
+ new_type = alloc_type (NULL);
+
+ /* We must add the new type to the hash table immediately, in case
+ we encounter this type again during a recursive call below. */
+ stored = xmalloc (sizeof (struct type_pair));
+ stored->old = type;
+ stored->new = new_type;
+ *slot = stored;
+
+ /* Copy the common fields of types. */
+ TYPE_CODE (new_type) = TYPE_CODE (type);
+ TYPE_ARRAY_UPPER_BOUND_TYPE (new_type) =
+ TYPE_ARRAY_UPPER_BOUND_TYPE (type);
+ TYPE_ARRAY_LOWER_BOUND_TYPE (new_type) =
+ TYPE_ARRAY_LOWER_BOUND_TYPE (type);
+ if (TYPE_NAME (type))
+ TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
+ if (TYPE_TAG_NAME (type))
+ TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
+ TYPE_FLAGS (new_type) = TYPE_FLAGS (type);
+ TYPE_VPTR_FIELDNO (new_type) = TYPE_VPTR_FIELDNO (type);
+
+ TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
+ TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
+
+ /* Copy the fields. */
+ TYPE_NFIELDS (new_type) = TYPE_NFIELDS (type);
+ if (TYPE_NFIELDS (type))
+ {
+ int i, nfields;
+
+ nfields = TYPE_NFIELDS (type);
+ TYPE_FIELDS (new_type) = xmalloc (sizeof (struct field) * nfields);
+ for (i = 0; i < nfields; i++)
+ {
+ TYPE_FIELD_ARTIFICIAL (new_type, i) =
+ TYPE_FIELD_ARTIFICIAL (type, i);
+ TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
+ if (TYPE_FIELD_TYPE (type, i))
+ TYPE_FIELD_TYPE (new_type, i)
+ = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
+ copied_types);
+ if (TYPE_FIELD_NAME (type, i))
+ TYPE_FIELD_NAME (new_type, i) =
+ xstrdup (TYPE_FIELD_NAME (type, i));
+ if (TYPE_FIELD_STATIC_HAS_ADDR (type, i))
+ SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
+ TYPE_FIELD_STATIC_PHYSADDR (type, i));
+ else if (TYPE_FIELD_STATIC (type, i))
+ SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
+ xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
+ i)));
+ else
+ {
+ TYPE_FIELD_BITPOS (new_type, i) =
+ TYPE_FIELD_BITPOS (type, i);
+ TYPE_FIELD_STATIC_KIND (new_type, i) = 0;
+ }
+ }
+ }
+
+ /* Copy pointers to other types. */
+ if (TYPE_TARGET_TYPE (type))
+ TYPE_TARGET_TYPE (new_type) =
+ copy_type_recursive (objfile,
+ TYPE_TARGET_TYPE (type),
+ copied_types);
+ if (TYPE_VPTR_BASETYPE (type))
+ TYPE_VPTR_BASETYPE (new_type) =
+ copy_type_recursive (objfile,
+ TYPE_VPTR_BASETYPE (type),
+ copied_types);
+ /* Maybe copy the type_specific bits.
+
+ NOTE drow/2005-12-09: We do not copy the C++-specific bits like
+ base classes and methods. There's no fundamental reason why we
+ can't, but at the moment it is not needed. */
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT)
+ TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
+ else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
+ || TYPE_CODE (type) == TYPE_CODE_UNION
+ || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
+ || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
+ INIT_CPLUS_SPECIFIC (new_type);
+
+ return new_type;
+}
+
+static struct type *
+build_flt (int bit, char *name, const struct floatformat **floatformats)
+{
+ struct type *t;
+
+ if (bit == -1)
+ {
+ gdb_assert (floatformats != NULL);
+ gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
+ bit = floatformats[0]->totalsize;
+ }
+ gdb_assert (bit >= 0);
+
+ t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
+ TYPE_FLOATFORMAT (t) = floatformats;
+ return t;
}
static struct gdbarch_data *gdbtypes_data;
return gdbarch_data (gdbarch, gdbtypes_data);
}
+
+static struct type *
+build_complex (int bit, char *name, struct type *target_type)
+{
+ struct type *t;
+ if (bit <= 0 || target_type == builtin_type_error)
+ {
+ gdb_assert (builtin_type_error != NULL);
+ return builtin_type_error;
+ }
+ t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
+ 0, name, (struct objfile *) NULL);
+ TYPE_TARGET_TYPE (t) = target_type;
+ return t;
+}
+
static void *
gdbtypes_post_init (struct gdbarch *gdbarch)
{
builtin_type->builtin_char =
init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
(TYPE_FLAG_NOSIGN
- | (TARGET_CHAR_SIGNED ? 0 : TYPE_FLAG_UNSIGNED)),
+ | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
"char", (struct objfile *) NULL);
- builtin_type->true_char =
+ builtin_type->builtin_true_char =
init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
0,
"true character", (struct objfile *) NULL);
+ builtin_type->builtin_true_unsigned_char =
+ init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
+ TYPE_FLAG_UNSIGNED,
+ "true character", (struct objfile *) NULL);
builtin_type->builtin_signed_char =
init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
0,
TYPE_FLAG_UNSIGNED,
"unsigned char", (struct objfile *) NULL);
builtin_type->builtin_short =
- init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
- 0,
- "short", (struct objfile *) NULL);
+ init_type (TYPE_CODE_INT,
+ gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
+ 0, "short", (struct objfile *) NULL);
builtin_type->builtin_unsigned_short =
- init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
- TYPE_FLAG_UNSIGNED,
- "unsigned short", (struct objfile *) NULL);
+ init_type (TYPE_CODE_INT,
+ gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
+ TYPE_FLAG_UNSIGNED, "unsigned short",
+ (struct objfile *) NULL);
builtin_type->builtin_int =
- init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
- 0,
- "int", (struct objfile *) NULL);
+ init_type (TYPE_CODE_INT,
+ gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
+ 0, "int", (struct objfile *) NULL);
builtin_type->builtin_unsigned_int =
- init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
- TYPE_FLAG_UNSIGNED,
- "unsigned int", (struct objfile *) NULL);
+ init_type (TYPE_CODE_INT,
+ gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
+ TYPE_FLAG_UNSIGNED, "unsigned int",
+ (struct objfile *) NULL);
builtin_type->builtin_long =
- init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
- 0,
- "long", (struct objfile *) NULL);
+ init_type (TYPE_CODE_INT,
+ gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
+ 0, "long", (struct objfile *) NULL);
builtin_type->builtin_unsigned_long =
- init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
- TYPE_FLAG_UNSIGNED,
- "unsigned long", (struct objfile *) NULL);
+ init_type (TYPE_CODE_INT,
+ gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
+ TYPE_FLAG_UNSIGNED, "unsigned long",
+ (struct objfile *) NULL);
builtin_type->builtin_long_long =
- init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
- 0,
- "long long", (struct objfile *) NULL);
+ init_type (TYPE_CODE_INT,
+ gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
+ 0, "long long", (struct objfile *) NULL);
builtin_type->builtin_unsigned_long_long =
- init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
- TYPE_FLAG_UNSIGNED,
- "unsigned long long", (struct objfile *) NULL);
- builtin_type->builtin_float =
- init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
- 0,
- "float", (struct objfile *) NULL);
- TYPE_FLOATFORMAT (builtin_type->builtin_float) = TARGET_FLOAT_FORMAT;
- builtin_type->builtin_double =
- init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
- 0,
- "double", (struct objfile *) NULL);
- TYPE_FLOATFORMAT (builtin_type->builtin_double) = TARGET_DOUBLE_FORMAT;
- builtin_type->builtin_long_double =
- init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
- 0,
- "long double", (struct objfile *) NULL);
- TYPE_FLOATFORMAT (builtin_type->builtin_long_double) = TARGET_LONG_DOUBLE_FORMAT;
- builtin_type->builtin_complex =
- init_type (TYPE_CODE_COMPLEX, 2 * TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
- 0,
- "complex", (struct objfile *) NULL);
- TYPE_TARGET_TYPE (builtin_type->builtin_complex) = builtin_type->builtin_float;
- builtin_type->builtin_double_complex =
- init_type (TYPE_CODE_COMPLEX, 2 * TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
- 0,
- "double complex", (struct objfile *) NULL);
- TYPE_TARGET_TYPE (builtin_type->builtin_double_complex) = builtin_type->builtin_double;
+ init_type (TYPE_CODE_INT,
+ gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
+ TYPE_FLAG_UNSIGNED, "unsigned long long",
+ (struct objfile *) NULL);
+ builtin_type->builtin_float
+ = build_flt (gdbarch_float_bit (gdbarch), "float",
+ gdbarch_float_format (gdbarch));
+ builtin_type->builtin_double
+ = build_flt (gdbarch_double_bit (gdbarch), "double",
+ gdbarch_double_format (gdbarch));
+ builtin_type->builtin_long_double
+ = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
+ gdbarch_long_double_format (gdbarch));
+ builtin_type->builtin_complex
+ = build_complex (gdbarch_float_bit (gdbarch), "complex",
+ builtin_type->builtin_float);
+ builtin_type->builtin_double_complex
+ = build_complex (gdbarch_double_bit (gdbarch), "double complex",
+ builtin_type->builtin_double);
builtin_type->builtin_string =
init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
0,
"string", (struct objfile *) NULL);
- builtin_type->builtin_int0 =
- init_type (TYPE_CODE_INT, 0 / 8,
- 0,
- "int0_t", (struct objfile *) NULL);
- builtin_type->builtin_int8 =
- init_type (TYPE_CODE_INT, 8 / 8,
- 0,
- "int8_t", (struct objfile *) NULL);
- builtin_type->builtin_uint8 =
- init_type (TYPE_CODE_INT, 8 / 8,
- TYPE_FLAG_UNSIGNED,
- "uint8_t", (struct objfile *) NULL);
- builtin_type->builtin_int16 =
- init_type (TYPE_CODE_INT, 16 / 8,
- 0,
- "int16_t", (struct objfile *) NULL);
- builtin_type->builtin_uint16 =
- init_type (TYPE_CODE_INT, 16 / 8,
- TYPE_FLAG_UNSIGNED,
- "uint16_t", (struct objfile *) NULL);
- builtin_type->builtin_int32 =
- init_type (TYPE_CODE_INT, 32 / 8,
- 0,
- "int32_t", (struct objfile *) NULL);
- builtin_type->builtin_uint32 =
- init_type (TYPE_CODE_INT, 32 / 8,
- TYPE_FLAG_UNSIGNED,
- "uint32_t", (struct objfile *) NULL);
- builtin_type->builtin_int64 =
- init_type (TYPE_CODE_INT, 64 / 8,
- 0,
- "int64_t", (struct objfile *) NULL);
- builtin_type->builtin_uint64 =
- init_type (TYPE_CODE_INT, 64 / 8,
- TYPE_FLAG_UNSIGNED,
- "uint64_t", (struct objfile *) NULL);
- builtin_type->builtin_int128 =
- init_type (TYPE_CODE_INT, 128 / 8,
- 0,
- "int128_t", (struct objfile *) NULL);
- builtin_type->builtin_uint128 =
- init_type (TYPE_CODE_INT, 128 / 8,
- TYPE_FLAG_UNSIGNED,
- "uint128_t", (struct objfile *) NULL);
builtin_type->builtin_bool =
init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
0,
"bool", (struct objfile *) NULL);
- /* Pointer/Address types. */
+ /* The following three are about decimal floating point types, which
+ are 32-bits, 64-bits and 128-bits respectively. */
+ builtin_type->builtin_decfloat
+ = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
+ 0,
+ "_Decimal32", (struct objfile *) NULL);
+ builtin_type->builtin_decdouble
+ = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
+ 0,
+ "_Decimal64", (struct objfile *) NULL);
+ builtin_type->builtin_declong
+ = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
+ 0,
+ "_Decimal128", (struct objfile *) NULL);
+
+ /* Pointer/Address types. */
/* NOTE: on some targets, addresses and pointers are not necessarily
the same --- for example, on the D10V, pointers are 16 bits long,
target type for a value the target will never see. It's only
used to hold the values of (typeless) linker symbols, which are
indeed in the unified virtual address space. */
- builtin_type->builtin_data_ptr
- = make_pointer_type (builtin_type->builtin_void, NULL);
- builtin_type->builtin_func_ptr
- = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
+
+ builtin_type->builtin_data_ptr =
+ make_pointer_type (builtin_type->builtin_void, NULL);
+ builtin_type->builtin_func_ptr =
+ lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
builtin_type->builtin_core_addr =
- init_type (TYPE_CODE_INT, TARGET_ADDR_BIT / 8,
+ init_type (TYPE_CODE_INT,
+ gdbarch_addr_bit (gdbarch) / 8,
TYPE_FLAG_UNSIGNED,
"__CORE_ADDR", (struct objfile *) NULL);
+
+ /* The following set of types is used for symbols with no
+ debug information. */
+ builtin_type->nodebug_text_symbol =
+ init_type (TYPE_CODE_FUNC, 1, 0,
+ "<text variable, no debug info>", NULL);
+ TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
+ builtin_type->builtin_int;
+ builtin_type->nodebug_data_symbol =
+ init_type (TYPE_CODE_INT,
+ gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
+ "<data variable, no debug info>", NULL);
+ builtin_type->nodebug_unknown_symbol =
+ init_type (TYPE_CODE_INT, 1, 0,
+ "<variable (not text or data), no debug info>", NULL);
+ builtin_type->nodebug_tls_symbol =
+ init_type (TYPE_CODE_INT,
+ gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
+ "<thread local variable, no debug info>", NULL);
+
return builtin_type;
}
void
_initialize_gdbtypes (void)
{
- struct cmd_list_element *c;
- build_gdbtypes ();
-
gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
- /* FIXME - For the moment, handle types by swapping them in and out.
- Should be using the per-architecture data-pointer and a large
- struct. */
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_void);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_char);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_short);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_int);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_long);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_long_long);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_signed_char);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_char);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_short);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_int);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_long);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_long_long);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_float);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_double);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_long_double);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_complex);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_double_complex);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_string);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_int8);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_uint8);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_int16);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_uint16);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_int32);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_uint32);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_int64);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_uint64);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_int128);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_uint128);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4sf);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4si);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v16qi);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v8qi);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v8hi);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4hi);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2si);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2_double);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4_float);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2_int64);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4_int32);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v8_int16);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v16_int8);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2_float);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2_int32);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v8_int8);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4_int16);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_vec128);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_vec128i);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_void_data_ptr);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_void_func_ptr);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_CORE_ADDR);
- DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_bfd_vma);
- deprecated_register_gdbarch_swap (NULL, 0, build_gdbtypes);
-
- /* Note: These types do not need to be swapped - they are target
- neutral. */
- builtin_type_ieee_single_big =
- init_type (TYPE_CODE_FLT, floatformat_ieee_single_big.totalsize / 8,
- 0, "builtin_type_ieee_single_big", NULL);
- TYPE_FLOATFORMAT (builtin_type_ieee_single_big) = &floatformat_ieee_single_big;
- builtin_type_ieee_single_little =
- init_type (TYPE_CODE_FLT, floatformat_ieee_single_little.totalsize / 8,
- 0, "builtin_type_ieee_single_little", NULL);
- TYPE_FLOATFORMAT (builtin_type_ieee_single_little) = &floatformat_ieee_single_little;
- builtin_type_ieee_double_big =
- init_type (TYPE_CODE_FLT, floatformat_ieee_double_big.totalsize / 8,
- 0, "builtin_type_ieee_double_big", NULL);
- TYPE_FLOATFORMAT (builtin_type_ieee_double_big) = &floatformat_ieee_double_big;
- builtin_type_ieee_double_little =
- init_type (TYPE_CODE_FLT, floatformat_ieee_double_little.totalsize / 8,
- 0, "builtin_type_ieee_double_little", NULL);
- TYPE_FLOATFORMAT (builtin_type_ieee_double_little) = &floatformat_ieee_double_little;
- builtin_type_ieee_double_littlebyte_bigword =
- init_type (TYPE_CODE_FLT, floatformat_ieee_double_littlebyte_bigword.totalsize / 8,
- 0, "builtin_type_ieee_double_littlebyte_bigword", NULL);
- TYPE_FLOATFORMAT (builtin_type_ieee_double_littlebyte_bigword) = &floatformat_ieee_double_littlebyte_bigword;
+ /* FIXME: The following types are architecture-neutral. However,
+ they contain pointer_type and reference_type fields potentially
+ caching pointer or reference types that *are* architecture
+ dependent. */
+
+ builtin_type_int0 =
+ init_type (TYPE_CODE_INT, 0 / 8,
+ 0,
+ "int0_t", (struct objfile *) NULL);
+ builtin_type_int8 =
+ init_type (TYPE_CODE_INT, 8 / 8,
+ TYPE_FLAG_NOTTEXT,
+ "int8_t", (struct objfile *) NULL);
+ builtin_type_uint8 =
+ init_type (TYPE_CODE_INT, 8 / 8,
+ TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
+ "uint8_t", (struct objfile *) NULL);
+ builtin_type_int16 =
+ init_type (TYPE_CODE_INT, 16 / 8,
+ 0,
+ "int16_t", (struct objfile *) NULL);
+ builtin_type_uint16 =
+ init_type (TYPE_CODE_INT, 16 / 8,
+ TYPE_FLAG_UNSIGNED,
+ "uint16_t", (struct objfile *) NULL);
+ builtin_type_int32 =
+ init_type (TYPE_CODE_INT, 32 / 8,
+ 0,
+ "int32_t", (struct objfile *) NULL);
+ builtin_type_uint32 =
+ init_type (TYPE_CODE_INT, 32 / 8,
+ TYPE_FLAG_UNSIGNED,
+ "uint32_t", (struct objfile *) NULL);
+ builtin_type_int64 =
+ init_type (TYPE_CODE_INT, 64 / 8,
+ 0,
+ "int64_t", (struct objfile *) NULL);
+ builtin_type_uint64 =
+ init_type (TYPE_CODE_INT, 64 / 8,
+ TYPE_FLAG_UNSIGNED,
+ "uint64_t", (struct objfile *) NULL);
+ builtin_type_int128 =
+ init_type (TYPE_CODE_INT, 128 / 8,
+ 0,
+ "int128_t", (struct objfile *) NULL);
+ builtin_type_uint128 =
+ init_type (TYPE_CODE_INT, 128 / 8,
+ TYPE_FLAG_UNSIGNED,
+ "uint128_t", (struct objfile *) NULL);
+
+ builtin_type_ieee_single =
+ build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
+ builtin_type_ieee_double =
+ build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
builtin_type_i387_ext =
- init_type (TYPE_CODE_FLT, floatformat_i387_ext.totalsize / 8,
- 0, "builtin_type_i387_ext", NULL);
- TYPE_FLOATFORMAT (builtin_type_i387_ext) = &floatformat_i387_ext;
+ build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
builtin_type_m68881_ext =
- init_type (TYPE_CODE_FLT, floatformat_m68881_ext.totalsize / 8,
- 0, "builtin_type_m68881_ext", NULL);
- TYPE_FLOATFORMAT (builtin_type_m68881_ext) = &floatformat_m68881_ext;
- builtin_type_i960_ext =
- init_type (TYPE_CODE_FLT, floatformat_i960_ext.totalsize / 8,
- 0, "builtin_type_i960_ext", NULL);
- TYPE_FLOATFORMAT (builtin_type_i960_ext) = &floatformat_i960_ext;
- builtin_type_m88110_ext =
- init_type (TYPE_CODE_FLT, floatformat_m88110_ext.totalsize / 8,
- 0, "builtin_type_m88110_ext", NULL);
- TYPE_FLOATFORMAT (builtin_type_m88110_ext) = &floatformat_m88110_ext;
- builtin_type_m88110_harris_ext =
- init_type (TYPE_CODE_FLT, floatformat_m88110_harris_ext.totalsize / 8,
- 0, "builtin_type_m88110_harris_ext", NULL);
- TYPE_FLOATFORMAT (builtin_type_m88110_harris_ext) = &floatformat_m88110_harris_ext;
- builtin_type_arm_ext_big =
- init_type (TYPE_CODE_FLT, floatformat_arm_ext_big.totalsize / 8,
- 0, "builtin_type_arm_ext_big", NULL);
- TYPE_FLOATFORMAT (builtin_type_arm_ext_big) = &floatformat_arm_ext_big;
- builtin_type_arm_ext_littlebyte_bigword =
- init_type (TYPE_CODE_FLT, floatformat_arm_ext_littlebyte_bigword.totalsize / 8,
- 0, "builtin_type_arm_ext_littlebyte_bigword", NULL);
- TYPE_FLOATFORMAT (builtin_type_arm_ext_littlebyte_bigword) = &floatformat_arm_ext_littlebyte_bigword;
- builtin_type_ia64_spill_big =
- init_type (TYPE_CODE_FLT, floatformat_ia64_spill_big.totalsize / 8,
- 0, "builtin_type_ia64_spill_big", NULL);
- TYPE_FLOATFORMAT (builtin_type_ia64_spill_big) = &floatformat_ia64_spill_big;
- builtin_type_ia64_spill_little =
- init_type (TYPE_CODE_FLT, floatformat_ia64_spill_little.totalsize / 8,
- 0, "builtin_type_ia64_spill_little", NULL);
- TYPE_FLOATFORMAT (builtin_type_ia64_spill_little) = &floatformat_ia64_spill_little;
- builtin_type_ia64_quad_big =
- init_type (TYPE_CODE_FLT, floatformat_ia64_quad_big.totalsize / 8,
- 0, "builtin_type_ia64_quad_big", NULL);
- TYPE_FLOATFORMAT (builtin_type_ia64_quad_big) = &floatformat_ia64_quad_big;
- builtin_type_ia64_quad_little =
- init_type (TYPE_CODE_FLT, floatformat_ia64_quad_little.totalsize / 8,
- 0, "builtin_type_ia64_quad_little", NULL);
- TYPE_FLOATFORMAT (builtin_type_ia64_quad_little) = &floatformat_ia64_quad_little;
-
- deprecated_add_show_from_set
- (add_set_cmd ("overload", no_class, var_zinteger, (char *) &overload_debug,
- "Set debugging of C++ overloading.\n\
-When enabled, ranking of the functions is displayed.", &setdebuglist),
- &showdebuglist);
+ build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
+ builtin_type_arm_ext =
+ build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
+ builtin_type_ia64_spill =
+ build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
+ builtin_type_ia64_quad =
+ build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
+
+ add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
+Set debugging of C++ overloading."), _("\
+Show debugging of C++ overloading."), _("\
+When enabled, ranking of the functions is displayed."),
+ NULL,
+ show_overload_debug,
+ &setdebuglist, &showdebuglist);
+
+ /* Add user knob for controlling resolution of opaque types. */
+ add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
+ &opaque_type_resolution, _("\
+Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
+Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
+ NULL,
+ show_opaque_type_resolution,
+ &setlist, &showlist);
}