/* Target-dependent code for GNU/Linux on MIPS processors.
- Copyright 2001, 2002 Free Software Foundation, Inc.
+ Copyright (C) 2001, 2002, 2004, 2005, 2006
+ Free Software Foundation, Inc.
This file is part of GDB.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
+ Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ Boston, MA 02110-1301, USA. */
#include "defs.h"
#include "gdbcore.h"
#include "mips-tdep.h"
#include "gdb_string.h"
#include "gdb_assert.h"
-
-/* Copied from <asm/elf.h>. */
-#define ELF_NGREG 45
-#define ELF_NFPREG 33
-
-typedef unsigned char elf_greg_t[4];
-typedef elf_greg_t elf_gregset_t[ELF_NGREG];
-
-typedef unsigned char elf_fpreg_t[8];
-typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG];
-
-/* 0 - 31 are integer registers, 32 - 63 are fp registers. */
-#define FPR_BASE 32
-#define PC 64
-#define CAUSE 65
-#define BADVADDR 66
-#define MMHI 67
-#define MMLO 68
-#define FPC_CSR 69
-#define FPC_EIR 70
-
-#define EF_REG0 6
-#define EF_REG31 37
-#define EF_LO 38
-#define EF_HI 39
-#define EF_CP0_EPC 40
-#define EF_CP0_BADVADDR 41
-#define EF_CP0_STATUS 42
-#define EF_CP0_CAUSE 43
-
-#define EF_SIZE 180
+#include "frame.h"
+#include "regcache.h"
+#include "trad-frame.h"
+#include "tramp-frame.h"
+#include "floatformat.h"
+#include "mips-linux-tdep.h"
/* Figure out where the longjmp will land.
- We expect the first arg to be a pointer to the jmp_buf structure from
- which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
- is copied into PC. This routine returns 1 on success. */
+ We expect the first arg to be a pointer to the jmp_buf structure
+ from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
+ at. The pc is copied into PC. This routine returns 1 on
+ success. */
#define MIPS_LINUX_JB_ELEMENT_SIZE 4
#define MIPS_LINUX_JB_PC 0
CORE_ADDR jb_addr;
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
- jb_addr = read_register (A0_REGNUM);
+ jb_addr = read_register (MIPS_A0_REGNUM);
if (target_read_memory (jb_addr
+ MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
return 1;
}
-/* Transform the bits comprising a 32-bit register to the right
- size for supply_register(). This is needed when MIPS_REGSIZE is 8. */
+/* Transform the bits comprising a 32-bit register to the right size
+ for regcache_raw_supply(). This is needed when mips_isa_regsize()
+ is 8. */
static void
supply_32bit_reg (int regnum, const void *addr)
{
- char buf[MAX_REGISTER_SIZE];
- store_signed_integer (buf, REGISTER_RAW_SIZE (regnum),
+ gdb_byte buf[MAX_REGISTER_SIZE];
+ store_signed_integer (buf, register_size (current_gdbarch, regnum),
extract_signed_integer (addr, 4));
- supply_register (regnum, buf);
+ regcache_raw_supply (current_regcache, regnum, buf);
}
/* Unpack an elf_gregset_t into GDB's register cache. */
-void
-supply_gregset (elf_gregset_t *gregsetp)
+void
+mips_supply_gregset (mips_elf_gregset_t *gregsetp)
{
int regi;
- elf_greg_t *regp = *gregsetp;
+ mips_elf_greg_t *regp = *gregsetp;
char zerobuf[MAX_REGISTER_SIZE];
memset (zerobuf, 0, MAX_REGISTER_SIZE);
for (regi = EF_REG0; regi <= EF_REG31; regi++)
supply_32bit_reg ((regi - EF_REG0), (char *)(regp + regi));
- supply_32bit_reg (LO_REGNUM, (char *)(regp + EF_LO));
- supply_32bit_reg (HI_REGNUM, (char *)(regp + EF_HI));
+ supply_32bit_reg (mips_regnum (current_gdbarch)->lo,
+ (char *)(regp + EF_LO));
+ supply_32bit_reg (mips_regnum (current_gdbarch)->hi,
+ (char *)(regp + EF_HI));
- supply_32bit_reg (PC_REGNUM, (char *)(regp + EF_CP0_EPC));
- supply_32bit_reg (BADVADDR_REGNUM, (char *)(regp + EF_CP0_BADVADDR));
- supply_32bit_reg (PS_REGNUM, (char *)(regp + EF_CP0_STATUS));
- supply_32bit_reg (CAUSE_REGNUM, (char *)(regp + EF_CP0_CAUSE));
+ supply_32bit_reg (mips_regnum (current_gdbarch)->pc,
+ (char *)(regp + EF_CP0_EPC));
+ supply_32bit_reg (mips_regnum (current_gdbarch)->badvaddr,
+ (char *)(regp + EF_CP0_BADVADDR));
+ supply_32bit_reg (MIPS_PS_REGNUM, (char *)(regp + EF_CP0_STATUS));
+ supply_32bit_reg (mips_regnum (current_gdbarch)->cause,
+ (char *)(regp + EF_CP0_CAUSE));
/* Fill inaccessible registers with zero. */
- supply_register (UNUSED_REGNUM, zerobuf);
- for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
- supply_register (regi, zerobuf);
+ regcache_raw_supply (current_regcache, MIPS_UNUSED_REGNUM, zerobuf);
+ for (regi = MIPS_FIRST_EMBED_REGNUM;
+ regi < MIPS_LAST_EMBED_REGNUM;
+ regi++)
+ regcache_raw_supply (current_regcache, regi, zerobuf);
}
/* Pack our registers (or one register) into an elf_gregset_t. */
void
-fill_gregset (elf_gregset_t *gregsetp, int regno)
+mips_fill_gregset (mips_elf_gregset_t *gregsetp, int regno)
{
int regaddr, regi;
- elf_greg_t *regp = *gregsetp;
+ mips_elf_greg_t *regp = *gregsetp;
void *dst;
if (regno == -1)
{
- memset (regp, 0, sizeof (elf_gregset_t));
+ memset (regp, 0, sizeof (mips_elf_gregset_t));
for (regi = 0; regi < 32; regi++)
- fill_gregset (gregsetp, regi);
- fill_gregset (gregsetp, LO_REGNUM);
- fill_gregset (gregsetp, HI_REGNUM);
- fill_gregset (gregsetp, PC_REGNUM);
- fill_gregset (gregsetp, BADVADDR_REGNUM);
- fill_gregset (gregsetp, PS_REGNUM);
- fill_gregset (gregsetp, CAUSE_REGNUM);
+ mips_fill_gregset (gregsetp, regi);
+ mips_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
+ mips_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
+ mips_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
+ mips_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr);
+ mips_fill_gregset (gregsetp, MIPS_PS_REGNUM);
+ mips_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause);
return;
}
if (regno < 32)
{
dst = regp + regno + EF_REG0;
- regcache_collect (regno, dst);
+ regcache_raw_collect (current_regcache, regno, dst);
return;
}
- regaddr = -1;
- switch (regno)
- {
- case LO_REGNUM:
- regaddr = EF_LO;
- break;
- case HI_REGNUM:
- regaddr = EF_HI;
- break;
- case PC_REGNUM:
- regaddr = EF_CP0_EPC;
- break;
- case BADVADDR_REGNUM:
- regaddr = EF_CP0_BADVADDR;
- break;
- case PS_REGNUM:
- regaddr = EF_CP0_STATUS;
- break;
- case CAUSE_REGNUM:
- regaddr = EF_CP0_CAUSE;
- break;
- }
+ if (regno == mips_regnum (current_gdbarch)->lo)
+ regaddr = EF_LO;
+ else if (regno == mips_regnum (current_gdbarch)->hi)
+ regaddr = EF_HI;
+ else if (regno == mips_regnum (current_gdbarch)->pc)
+ regaddr = EF_CP0_EPC;
+ else if (regno == mips_regnum (current_gdbarch)->badvaddr)
+ regaddr = EF_CP0_BADVADDR;
+ else if (regno == MIPS_PS_REGNUM)
+ regaddr = EF_CP0_STATUS;
+ else if (regno == mips_regnum (current_gdbarch)->cause)
+ regaddr = EF_CP0_CAUSE;
+ else
+ regaddr = -1;
if (regaddr != -1)
{
dst = regp + regaddr;
- regcache_collect (regno, dst);
+ regcache_raw_collect (current_regcache, regno, dst);
}
}
/* Likewise, unpack an elf_fpregset_t. */
void
-supply_fpregset (elf_fpregset_t *fpregsetp)
+mips_supply_fpregset (mips_elf_fpregset_t *fpregsetp)
{
int regi;
char zerobuf[MAX_REGISTER_SIZE];
memset (zerobuf, 0, MAX_REGISTER_SIZE);
for (regi = 0; regi < 32; regi++)
- supply_register (FP0_REGNUM + regi,
- (char *)(*fpregsetp + regi));
+ regcache_raw_supply (current_regcache, FP0_REGNUM + regi,
+ (char *)(*fpregsetp + regi));
- supply_register (FCRCS_REGNUM, (char *)(*fpregsetp + 32));
+ regcache_raw_supply (current_regcache,
+ mips_regnum (current_gdbarch)->fp_control_status,
+ (char *)(*fpregsetp + 32));
- /* FIXME: how can we supply FCRIR_REGNUM? The ABI doesn't tell us. */
- supply_register (FCRIR_REGNUM, zerobuf);
+ /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
+ regcache_raw_supply (current_regcache,
+ mips_regnum (current_gdbarch)->fp_implementation_revision,
+ zerobuf);
}
/* Likewise, pack one or all floating point registers into an
elf_fpregset_t. */
void
-fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
+mips_fill_fpregset (mips_elf_fpregset_t *fpregsetp, int regno)
{
char *from, *to;
if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
{
- from = (char *) &deprecated_registers[REGISTER_BYTE (regno)];
to = (char *) (*fpregsetp + regno - FP0_REGNUM);
- memcpy (to, from, REGISTER_RAW_SIZE (regno - FP0_REGNUM));
+ regcache_raw_collect (current_regcache, regno, to);
}
- else if (regno == FCRCS_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
{
- from = (char *) &deprecated_registers[REGISTER_BYTE (regno)];
to = (char *) (*fpregsetp + 32);
- memcpy (to, from, REGISTER_RAW_SIZE (regno));
+ regcache_raw_collect (current_regcache, regno, to);
}
else if (regno == -1)
{
int regi;
for (regi = 0; regi < 32; regi++)
- fill_fpregset (fpregsetp, FP0_REGNUM + regi);
- fill_fpregset(fpregsetp, FCRCS_REGNUM);
+ mips_fill_fpregset (fpregsetp, FP0_REGNUM + regi);
+ mips_fill_fpregset (fpregsetp,
+ mips_regnum (current_gdbarch)->fp_control_status);
}
}
int regaddr;
if (regno < 0 || regno >= NUM_REGS)
- error ("Bogon register number %d.", regno);
+ error (_("Bogon register number %d."), regno);
if (regno < 32)
regaddr = regno;
- else if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
- regaddr = FPR_BASE + (regno - FP0_REGNUM);
- else if (regno == PC_REGNUM)
+ else if ((regno >= mips_regnum (current_gdbarch)->fp0)
+ && (regno < mips_regnum (current_gdbarch)->fp0 + 32))
+ regaddr = FPR_BASE + (regno - mips_regnum (current_gdbarch)->fp0);
+ else if (regno == mips_regnum (current_gdbarch)->pc)
regaddr = PC;
- else if (regno == CAUSE_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->cause)
regaddr = CAUSE;
- else if (regno == BADVADDR_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->badvaddr)
regaddr = BADVADDR;
- else if (regno == LO_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->lo)
regaddr = MMLO;
- else if (regno == HI_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->hi)
regaddr = MMHI;
- else if (regno == FCRCS_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
regaddr = FPC_CSR;
- else if (regno == FCRIR_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
regaddr = FPC_EIR;
else
- error ("Unknowable register number %d.", regno);
+ error (_("Unknowable register number %d."), regno);
return regaddr;
}
-
-/* Fetch (and possibly build) an appropriate link_map_offsets
- structure for native GNU/Linux MIPS targets using the struct offsets
- defined in link.h (but without actual reference to that file).
-
- This makes it possible to access GNU/Linux MIPS shared libraries from a
- GDB that was built on a different host platform (for cross debugging). */
-
-static struct link_map_offsets *
-mips_linux_svr4_fetch_link_map_offsets (void)
-{
- static struct link_map_offsets lmo;
- static struct link_map_offsets *lmp = NULL;
-
- if (lmp == NULL)
- {
- lmp = &lmo;
-
- lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
- this is all we need. */
- lmo.r_map_offset = 4;
- lmo.r_map_size = 4;
-
- lmo.link_map_size = 20;
-
- lmo.l_addr_offset = 0;
- lmo.l_addr_size = 4;
-
- lmo.l_name_offset = 4;
- lmo.l_name_size = 4;
-
- lmo.l_next_offset = 12;
- lmo.l_next_size = 4;
-
- lmo.l_prev_offset = 16;
- lmo.l_prev_size = 4;
- }
-
- return lmp;
-}
-
/* Support for 64-bit ABIs. */
-/* Copied from <asm/elf.h>. */
-#define MIPS64_ELF_NGREG 45
-#define MIPS64_ELF_NFPREG 33
-
-typedef unsigned char mips64_elf_greg_t[8];
-typedef mips64_elf_greg_t mips64_elf_gregset_t[MIPS64_ELF_NGREG];
-
-typedef unsigned char mips64_elf_fpreg_t[8];
-typedef mips64_elf_fpreg_t mips64_elf_fpregset_t[MIPS64_ELF_NFPREG];
-
-/* 0 - 31 are integer registers, 32 - 63 are fp registers. */
-#define MIPS64_FPR_BASE 32
-#define MIPS64_PC 64
-#define MIPS64_CAUSE 65
-#define MIPS64_BADVADDR 66
-#define MIPS64_MMHI 67
-#define MIPS64_MMLO 68
-#define MIPS64_FPC_CSR 69
-#define MIPS64_FPC_EIR 70
-
-#define MIPS64_EF_REG0 0
-#define MIPS64_EF_REG31 31
-#define MIPS64_EF_LO 32
-#define MIPS64_EF_HI 33
-#define MIPS64_EF_CP0_EPC 34
-#define MIPS64_EF_CP0_BADVADDR 35
-#define MIPS64_EF_CP0_STATUS 36
-#define MIPS64_EF_CP0_CAUSE 37
-
-#define MIPS64_EF_SIZE 304
-
/* Figure out where the longjmp will land.
- We expect the first arg to be a pointer to the jmp_buf structure from
- which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
- is copied into PC. This routine returns 1 on success. */
+ We expect the first arg to be a pointer to the jmp_buf structure
+ from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
+ at. The pc is copied into PC. This routine returns 1 on
+ success. */
/* Details about jmp_buf. */
void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;
- jb_addr = read_register (A0_REGNUM);
+ jb_addr = read_register (MIPS_A0_REGNUM);
if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
return 1;
}
-/* Unpack an elf_gregset_t into GDB's register cache. */
+/* Register set support functions. These operate on standard 64-bit
+ regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
+ target will still use the 64-bit format for PTRACE_GETREGS. */
+
+/* Supply a 64-bit register. */
+
+void
+supply_64bit_reg (int regnum, const gdb_byte *buf)
+{
+ if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
+ && register_size (current_gdbarch, regnum) == 4)
+ regcache_raw_supply (current_regcache, regnum, buf + 4);
+ else
+ regcache_raw_supply (current_regcache, regnum, buf);
+}
-static void
+/* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
+
+void
mips64_supply_gregset (mips64_elf_gregset_t *gregsetp)
{
int regi;
mips64_elf_greg_t *regp = *gregsetp;
- char zerobuf[MAX_REGISTER_SIZE];
+ gdb_byte zerobuf[MAX_REGISTER_SIZE];
memset (zerobuf, 0, MAX_REGISTER_SIZE);
for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
- supply_register ((regi - MIPS64_EF_REG0), (char *)(regp + regi));
-
- supply_register (LO_REGNUM, (char *)(regp + MIPS64_EF_LO));
- supply_register (HI_REGNUM, (char *)(regp + MIPS64_EF_HI));
-
- supply_register (PC_REGNUM, (char *)(regp + MIPS64_EF_CP0_EPC));
- supply_register (BADVADDR_REGNUM, (char *)(regp + MIPS64_EF_CP0_BADVADDR));
- supply_register (PS_REGNUM, (char *)(regp + MIPS64_EF_CP0_STATUS));
- supply_register (CAUSE_REGNUM, (char *)(regp + MIPS64_EF_CP0_CAUSE));
+ supply_64bit_reg (regi - MIPS64_EF_REG0, (gdb_byte *)(regp + regi));
+
+ supply_64bit_reg (mips_regnum (current_gdbarch)->lo,
+ (gdb_byte *) (regp + MIPS64_EF_LO));
+ supply_64bit_reg (mips_regnum (current_gdbarch)->hi,
+ (gdb_byte *) (regp + MIPS64_EF_HI));
+
+ supply_64bit_reg (mips_regnum (current_gdbarch)->pc,
+ (gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
+ supply_64bit_reg (mips_regnum (current_gdbarch)->badvaddr,
+ (gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
+ supply_64bit_reg (MIPS_PS_REGNUM,
+ (gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
+ supply_64bit_reg (mips_regnum (current_gdbarch)->cause,
+ (gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
/* Fill inaccessible registers with zero. */
- supply_register (UNUSED_REGNUM, zerobuf);
- for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
- supply_register (regi, zerobuf);
+ regcache_raw_supply (current_regcache, MIPS_UNUSED_REGNUM, zerobuf);
+ for (regi = MIPS_FIRST_EMBED_REGNUM;
+ regi < MIPS_LAST_EMBED_REGNUM;
+ regi++)
+ regcache_raw_supply (current_regcache, regi, zerobuf);
}
-/* Pack our registers (or one register) into an elf_gregset_t. */
+/* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
-static void
+void
mips64_fill_gregset (mips64_elf_gregset_t *gregsetp, int regno)
{
int regaddr, regi;
memset (regp, 0, sizeof (mips64_elf_gregset_t));
for (regi = 0; regi < 32; regi++)
mips64_fill_gregset (gregsetp, regi);
- mips64_fill_gregset (gregsetp, LO_REGNUM);
- mips64_fill_gregset (gregsetp, HI_REGNUM);
- mips64_fill_gregset (gregsetp, PC_REGNUM);
- mips64_fill_gregset (gregsetp, BADVADDR_REGNUM);
- mips64_fill_gregset (gregsetp, PS_REGNUM);
- mips64_fill_gregset (gregsetp, CAUSE_REGNUM);
+ mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
+ mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
+ mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
+ mips64_fill_gregset (gregsetp,
+ mips_regnum (current_gdbarch)->badvaddr);
+ mips64_fill_gregset (gregsetp, MIPS_PS_REGNUM);
+ mips64_fill_gregset (gregsetp,
+ mips_regnum (current_gdbarch)->cause);
return;
}
if (regno < 32)
- {
- dst = regp + regno + MIPS64_EF_REG0;
- regcache_collect (regno, dst);
- return;
- }
-
- regaddr = -1;
- switch (regno)
- {
- case LO_REGNUM:
- regaddr = MIPS64_EF_LO;
- break;
- case HI_REGNUM:
- regaddr = MIPS64_EF_HI;
- break;
- case PC_REGNUM:
- regaddr = MIPS64_EF_CP0_EPC;
- break;
- case BADVADDR_REGNUM:
- regaddr = MIPS64_EF_CP0_BADVADDR;
- break;
- case PS_REGNUM:
- regaddr = MIPS64_EF_CP0_STATUS;
- break;
- case CAUSE_REGNUM:
- regaddr = MIPS64_EF_CP0_CAUSE;
- break;
- }
+ regaddr = regno + MIPS64_EF_REG0;
+ else if (regno == mips_regnum (current_gdbarch)->lo)
+ regaddr = MIPS64_EF_LO;
+ else if (regno == mips_regnum (current_gdbarch)->hi)
+ regaddr = MIPS64_EF_HI;
+ else if (regno == mips_regnum (current_gdbarch)->pc)
+ regaddr = MIPS64_EF_CP0_EPC;
+ else if (regno == mips_regnum (current_gdbarch)->badvaddr)
+ regaddr = MIPS64_EF_CP0_BADVADDR;
+ else if (regno == MIPS_PS_REGNUM)
+ regaddr = MIPS64_EF_CP0_STATUS;
+ else if (regno == mips_regnum (current_gdbarch)->cause)
+ regaddr = MIPS64_EF_CP0_CAUSE;
+ else
+ regaddr = -1;
if (regaddr != -1)
{
+ gdb_byte buf[MAX_REGISTER_SIZE];
+ LONGEST val;
+
+ regcache_raw_collect (current_regcache, regno, buf);
+ val = extract_signed_integer (buf,
+ register_size (current_gdbarch, regno));
dst = regp + regaddr;
- regcache_collect (regno, dst);
+ store_signed_integer (dst, 8, val);
}
}
/* Likewise, unpack an elf_fpregset_t. */
-static void
+void
mips64_supply_fpregset (mips64_elf_fpregset_t *fpregsetp)
{
int regi;
- char zerobuf[MAX_REGISTER_SIZE];
-
- memset (zerobuf, 0, MAX_REGISTER_SIZE);
- for (regi = 0; regi < 32; regi++)
- supply_register (FP0_REGNUM + regi,
- (char *)(*fpregsetp + regi));
-
- supply_register (FCRCS_REGNUM, (char *)(*fpregsetp + 32));
-
- /* FIXME: how can we supply FCRIR_REGNUM? The ABI doesn't tell us. */
- supply_register (FCRIR_REGNUM, zerobuf);
+ /* See mips_linux_o32_sigframe_init for a description of the
+ peculiar FP register layout. */
+ if (register_size (current_gdbarch, FP0_REGNUM) == 4)
+ for (regi = 0; regi < 32; regi++)
+ {
+ gdb_byte *reg_ptr = (gdb_byte *) (*fpregsetp + (regi & ~1));
+ if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (regi & 1))
+ reg_ptr += 4;
+ regcache_raw_supply (current_regcache, FP0_REGNUM + regi, reg_ptr);
+ }
+ else
+ for (regi = 0; regi < 32; regi++)
+ regcache_raw_supply (current_regcache, FP0_REGNUM + regi,
+ (char *)(*fpregsetp + regi));
+
+ supply_32bit_reg (mips_regnum (current_gdbarch)->fp_control_status,
+ (gdb_byte *)(*fpregsetp + 32));
+
+ /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
+ include it - but the result of PTRACE_GETFPREGS does. The best we
+ can do is to assume that its value is present. */
+ supply_32bit_reg (mips_regnum (current_gdbarch)->fp_implementation_revision,
+ (gdb_byte *)(*fpregsetp + 32) + 4);
}
/* Likewise, pack one or all floating point registers into an
elf_fpregset_t. */
-static void
+void
mips64_fill_fpregset (mips64_elf_fpregset_t *fpregsetp, int regno)
{
- char *from, *to;
+ gdb_byte *to;
if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
{
- from = (char *) &deprecated_registers[REGISTER_BYTE (regno)];
- to = (char *) (*fpregsetp + regno - FP0_REGNUM);
- memcpy (to, from, REGISTER_RAW_SIZE (regno - FP0_REGNUM));
+ /* See mips_linux_o32_sigframe_init for a description of the
+ peculiar FP register layout. */
+ if (register_size (current_gdbarch, regno) == 4)
+ {
+ int regi = regno - FP0_REGNUM;
+
+ to = (gdb_byte *) (*fpregsetp + (regi & ~1));
+ if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (regi & 1))
+ to += 4;
+ regcache_raw_collect (current_regcache, regno, to);
+ }
+ else
+ {
+ to = (gdb_byte *) (*fpregsetp + regno - FP0_REGNUM);
+ regcache_raw_collect (current_regcache, regno, to);
+ }
}
- else if (regno == FCRCS_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
{
- from = (char *) &deprecated_registers[REGISTER_BYTE (regno)];
- to = (char *) (*fpregsetp + 32);
- memcpy (to, from, REGISTER_RAW_SIZE (regno));
+ gdb_byte buf[MAX_REGISTER_SIZE];
+ LONGEST val;
+
+ regcache_raw_collect (current_regcache, regno, buf);
+ val = extract_signed_integer (buf,
+ register_size (current_gdbarch, regno));
+ to = (gdb_byte *) (*fpregsetp + 32);
+ store_signed_integer (to, 4, val);
+ }
+ else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
+ {
+ gdb_byte buf[MAX_REGISTER_SIZE];
+ LONGEST val;
+
+ regcache_raw_collect (current_regcache, regno, buf);
+ val = extract_signed_integer (buf,
+ register_size (current_gdbarch, regno));
+ to = (gdb_byte *) (*fpregsetp + 32) + 4;
+ store_signed_integer (to, 4, val);
}
else if (regno == -1)
{
for (regi = 0; regi < 32; regi++)
mips64_fill_fpregset (fpregsetp, FP0_REGNUM + regi);
- mips64_fill_fpregset(fpregsetp, FCRCS_REGNUM);
+ mips64_fill_fpregset (fpregsetp,
+ mips_regnum (current_gdbarch)->fp_control_status);
+ mips64_fill_fpregset (fpregsetp, (mips_regnum (current_gdbarch)
+ ->fp_implementation_revision));
}
}
int regaddr;
if (regno < 0 || regno >= NUM_REGS)
- error ("Bogon register number %d.", regno);
+ error (_("Bogon register number %d."), regno);
if (regno < 32)
regaddr = regno;
- else if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
+ else if ((regno >= mips_regnum (current_gdbarch)->fp0)
+ && (regno < mips_regnum (current_gdbarch)->fp0 + 32))
regaddr = MIPS64_FPR_BASE + (regno - FP0_REGNUM);
- else if (regno == PC_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->pc)
regaddr = MIPS64_PC;
- else if (regno == CAUSE_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->cause)
regaddr = MIPS64_CAUSE;
- else if (regno == BADVADDR_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->badvaddr)
regaddr = MIPS64_BADVADDR;
- else if (regno == LO_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->lo)
regaddr = MIPS64_MMLO;
- else if (regno == HI_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->hi)
regaddr = MIPS64_MMHI;
- else if (regno == FCRCS_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
regaddr = MIPS64_FPC_CSR;
- else if (regno == FCRIR_REGNUM)
+ else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
regaddr = MIPS64_FPC_EIR;
else
- error ("Unknowable register number %d.", regno);
+ error (_("Unknowable register number %d."), regno);
return regaddr;
}
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
int which, CORE_ADDR reg_addr)
{
- elf_gregset_t gregset;
- elf_fpregset_t fpregset;
+ mips_elf_gregset_t gregset;
+ mips_elf_fpregset_t fpregset;
mips64_elf_gregset_t gregset64;
mips64_elf_fpregset_t fpregset64;
if (core_reg_size == sizeof (gregset))
{
memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
- supply_gregset (&gregset);
+ mips_supply_gregset (&gregset);
}
else if (core_reg_size == sizeof (gregset64))
{
}
else
{
- warning ("wrong size gregset struct in core file");
+ warning (_("wrong size gregset struct in core file"));
}
}
else if (which == 2)
if (core_reg_size == sizeof (fpregset))
{
memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
- supply_fpregset (&fpregset);
+ mips_supply_fpregset (&fpregset);
}
else if (core_reg_size == sizeof (fpregset64))
{
- memcpy ((char *) &fpregset64, core_reg_sect, sizeof (fpregset64));
+ memcpy ((char *) &fpregset64, core_reg_sect,
+ sizeof (fpregset64));
mips64_supply_fpregset (&fpregset64);
}
else
{
- warning ("wrong size fpregset struct in core file");
+ warning (_("wrong size fpregset struct in core file"));
}
}
}
NULL /* next */
};
-/* Fetch (and possibly build) an appropriate link_map_offsets
- structure for native GNU/Linux MIPS targets using the struct offsets
- defined in link.h (but without actual reference to that file).
+/* Handle for obtaining pointer to the current register_addr()
+ function for a given architecture. */
+static struct gdbarch_data *register_addr_data;
- This makes it possible to access GNU/Linux MIPS shared libraries from a
- GDB that was built on a different host platform (for cross debugging). */
+CORE_ADDR
+register_addr (int regno, CORE_ADDR blockend)
+{
+ CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR) =
+ gdbarch_data (current_gdbarch, register_addr_data);
-static struct link_map_offsets *
-mips64_linux_svr4_fetch_link_map_offsets (void)
-{
- static struct link_map_offsets lmo;
- static struct link_map_offsets *lmp = NULL;
+ gdb_assert (register_addr_ptr != 0);
- if (lmp == NULL)
- {
- lmp = &lmo;
+ return register_addr_ptr (regno, blockend);
+}
- lmo.r_debug_size = 16; /* The actual size is 40 bytes, but
- this is all we need. */
- lmo.r_map_offset = 8;
- lmo.r_map_size = 8;
+static void
+set_mips_linux_register_addr (struct gdbarch *gdbarch,
+ CORE_ADDR (*register_addr_ptr) (int,
+ CORE_ADDR))
+{
+ deprecated_set_gdbarch_data (gdbarch, register_addr_data,
+ register_addr_ptr);
+}
- lmo.link_map_size = 40;
+static void *
+init_register_addr_data (struct gdbarch *gdbarch)
+{
+ return 0;
+}
- lmo.l_addr_offset = 0;
- lmo.l_addr_size = 8;
+/* Check the code at PC for a dynamic linker lazy resolution stub.
+ Because they aren't in the .plt section, we pattern-match on the
+ code generated by GNU ld. They look like this:
- lmo.l_name_offset = 8;
- lmo.l_name_size = 8;
+ lw t9,0x8010(gp)
+ addu t7,ra
+ jalr t9,ra
+ addiu t8,zero,INDEX
- lmo.l_next_offset = 24;
- lmo.l_next_size = 8;
+ (with the appropriate doubleword instructions for N64). Also
+ return the dynamic symbol index used in the last instruction. */
- lmo.l_prev_offset = 32;
- lmo.l_prev_size = 8;
+static int
+mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
+{
+ unsigned char buf[28], *p;
+ ULONGEST insn, insn1;
+ int n64 = (mips_abi (current_gdbarch) == MIPS_ABI_N64);
+
+ read_memory (pc - 12, buf, 28);
+
+ if (n64)
+ {
+ /* ld t9,0x8010(gp) */
+ insn1 = 0xdf998010;
+ }
+ else
+ {
+ /* lw t9,0x8010(gp) */
+ insn1 = 0x8f998010;
+ }
+
+ p = buf + 12;
+ while (p >= buf)
+ {
+ insn = extract_unsigned_integer (p, 4);
+ if (insn == insn1)
+ break;
+ p -= 4;
}
+ if (p < buf)
+ return 0;
+
+ insn = extract_unsigned_integer (p + 4, 4);
+ if (n64)
+ {
+ /* daddu t7,ra */
+ if (insn != 0x03e0782d)
+ return 0;
+ }
+ else
+ {
+ /* addu t7,ra */
+ if (insn != 0x03e07821)
+ return 0;
+ }
+
+ insn = extract_unsigned_integer (p + 8, 4);
+ /* jalr t9,ra */
+ if (insn != 0x0320f809)
+ return 0;
- return lmp;
+ insn = extract_unsigned_integer (p + 12, 4);
+ if (n64)
+ {
+ /* daddiu t8,zero,0 */
+ if ((insn & 0xffff0000) != 0x64180000)
+ return 0;
+ }
+ else
+ {
+ /* addiu t8,zero,0 */
+ if ((insn & 0xffff0000) != 0x24180000)
+ return 0;
+ }
+
+ return (insn & 0xffff);
}
-/* Handle for obtaining pointer to the current register_addr() function
- for a given architecture. */
-static struct gdbarch_data *register_addr_data;
+/* Return non-zero iff PC belongs to the dynamic linker resolution
+ code or to a stub. */
-CORE_ADDR
-register_addr (int regno, CORE_ADDR blockend)
+int
+mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
{
- CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR) =
- gdbarch_data (current_gdbarch, register_addr_data);
+ /* Check whether PC is in the dynamic linker. This also checks
+ whether it is in the .plt section, which MIPS does not use. */
+ if (in_solib_dynsym_resolve_code (pc))
+ return 1;
- gdb_assert (register_addr_ptr != 0);
+ /* Pattern match for the stub. It would be nice if there were a
+ more efficient way to avoid this check. */
+ if (mips_linux_in_dynsym_stub (pc, NULL))
+ return 1;
- return register_addr_ptr (regno, blockend);
+ return 0;
+}
+
+/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
+ and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
+ implementation of this triggers at "fixup" from the same objfile as
+ "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
+ "__dl_runtime_resolve" directly. An unresolved PLT entry will
+ point to _dl_runtime_resolve, which will first call
+ __dl_runtime_resolve, and then pass control to the resolved
+ function. */
+
+static CORE_ADDR
+mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+ struct minimal_symbol *resolver;
+
+ resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
+
+ if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
+ return frame_pc_unwind (get_current_frame ());
+
+ return 0;
+}
+
+/* Signal trampoline support. There are four supported layouts for a
+ signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
+ n64 rt_sigframe. We handle them all independently; not the most
+ efficient way, but simplest. First, declare all the unwinders. */
+
+static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
+ struct frame_info *next_frame,
+ struct trad_frame_cache *this_cache,
+ CORE_ADDR func);
+
+static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
+ struct frame_info *next_frame,
+ struct trad_frame_cache *this_cache,
+ CORE_ADDR func);
+
+#define MIPS_NR_LINUX 4000
+#define MIPS_NR_N64_LINUX 5000
+#define MIPS_NR_N32_LINUX 6000
+
+#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
+#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
+#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
+#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
+
+#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
+#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
+#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
+#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
+#define MIPS_INST_SYSCALL 0x0000000c
+
+static const struct tramp_frame mips_linux_o32_sigframe = {
+ SIGTRAMP_FRAME,
+ 4,
+ {
+ { MIPS_INST_LI_V0_SIGRETURN, -1 },
+ { MIPS_INST_SYSCALL, -1 },
+ { TRAMP_SENTINEL_INSN, -1 }
+ },
+ mips_linux_o32_sigframe_init
+};
+
+static const struct tramp_frame mips_linux_o32_rt_sigframe = {
+ SIGTRAMP_FRAME,
+ 4,
+ {
+ { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
+ { MIPS_INST_SYSCALL, -1 },
+ { TRAMP_SENTINEL_INSN, -1 } },
+ mips_linux_o32_sigframe_init
+};
+
+static const struct tramp_frame mips_linux_n32_rt_sigframe = {
+ SIGTRAMP_FRAME,
+ 4,
+ {
+ { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
+ { MIPS_INST_SYSCALL, -1 },
+ { TRAMP_SENTINEL_INSN, -1 }
+ },
+ mips_linux_n32n64_sigframe_init
+};
+
+static const struct tramp_frame mips_linux_n64_rt_sigframe = {
+ SIGTRAMP_FRAME,
+ 4,
+ { MIPS_INST_LI_V0_N64_RT_SIGRETURN,
+ MIPS_INST_SYSCALL,
+ TRAMP_SENTINEL_INSN },
+ mips_linux_n32n64_sigframe_init
+};
+
+/* *INDENT-OFF* */
+/* The unwinder for o32 signal frames. The legacy structures look
+ like this:
+
+ struct sigframe {
+ u32 sf_ass[4]; [argument save space for o32]
+ u32 sf_code[2]; [signal trampoline]
+ struct sigcontext sf_sc;
+ sigset_t sf_mask;
+ };
+
+ struct sigcontext {
+ unsigned int sc_regmask; [Unused]
+ unsigned int sc_status;
+ unsigned long long sc_pc;
+ unsigned long long sc_regs[32];
+ unsigned long long sc_fpregs[32];
+ unsigned int sc_ownedfp;
+ unsigned int sc_fpc_csr;
+ unsigned int sc_fpc_eir; [Unused]
+ unsigned int sc_used_math;
+ unsigned int sc_ssflags; [Unused]
+ [Alignment hole of four bytes]
+ unsigned long long sc_mdhi;
+ unsigned long long sc_mdlo;
+
+ unsigned int sc_cause; [Unused]
+ unsigned int sc_badvaddr; [Unused]
+
+ unsigned long sc_sigset[4]; [kernel's sigset_t]
+ };
+
+ The RT signal frames look like this:
+
+ struct rt_sigframe {
+ u32 rs_ass[4]; [argument save space for o32]
+ u32 rs_code[2] [signal trampoline]
+ struct siginfo rs_info;
+ struct ucontext rs_uc;
+ };
+
+ struct ucontext {
+ unsigned long uc_flags;
+ struct ucontext *uc_link;
+ stack_t uc_stack;
+ [Alignment hole of four bytes]
+ struct sigcontext uc_mcontext;
+ sigset_t uc_sigmask;
+ }; */
+/* *INDENT-ON* */
+
+#define SIGFRAME_CODE_OFFSET (4 * 4)
+#define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
+
+#define RTSIGFRAME_SIGINFO_SIZE 128
+#define STACK_T_SIZE (3 * 4)
+#define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
+#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
+ + RTSIGFRAME_SIGINFO_SIZE \
+ + UCONTEXT_SIGCONTEXT_OFFSET)
+
+#define SIGCONTEXT_PC (1 * 8)
+#define SIGCONTEXT_REGS (2 * 8)
+#define SIGCONTEXT_FPREGS (34 * 8)
+#define SIGCONTEXT_FPCSR (66 * 8 + 4)
+#define SIGCONTEXT_HI (69 * 8)
+#define SIGCONTEXT_LO (70 * 8)
+#define SIGCONTEXT_CAUSE (71 * 8 + 0)
+#define SIGCONTEXT_BADVADDR (71 * 8 + 4)
+
+#define SIGCONTEXT_REG_SIZE 8
+
+static void
+mips_linux_o32_sigframe_init (const struct tramp_frame *self,
+ struct frame_info *next_frame,
+ struct trad_frame_cache *this_cache,
+ CORE_ADDR func)
+{
+ int ireg, reg_position;
+ CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
+ const struct mips_regnum *regs = mips_regnum (current_gdbarch);
+ CORE_ADDR regs_base;
+
+ if (self == &mips_linux_o32_sigframe)
+ sigcontext_base += SIGFRAME_SIGCONTEXT_OFFSET;
+ else
+ sigcontext_base += RTSIGFRAME_SIGCONTEXT_OFFSET;
+
+ /* I'm not proud of this hack. Eventually we will have the
+ infrastructure to indicate the size of saved registers on a
+ per-frame basis, but right now we don't; the kernel saves eight
+ bytes but we only want four. Use regs_base to access any
+ 64-bit fields. */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ regs_base = sigcontext_base + 4;
+ else
+ regs_base = sigcontext_base;
+
+#if 0
+ trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
+ regs_base + SIGCONTEXT_REGS);
+#endif
+
+ for (ireg = 1; ireg < 32; ireg++)
+ trad_frame_set_reg_addr (this_cache,
+ ireg + MIPS_ZERO_REGNUM + NUM_REGS,
+ regs_base + SIGCONTEXT_REGS
+ + ireg * SIGCONTEXT_REG_SIZE);
+
+ /* The way that floating point registers are saved, unfortunately,
+ depends on the architecture the kernel is built for. For the r3000 and
+ tx39, four bytes of each register are at the beginning of each of the
+ 32 eight byte slots. For everything else, the registers are saved
+ using double precision; only the even-numbered slots are initialized,
+ and the high bits are the odd-numbered register. Assume the latter
+ layout, since we can't tell, and it's much more common. Which bits are
+ the "high" bits depends on endianness. */
+ for (ireg = 0; ireg < 32; ireg++)
+ if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (ireg & 1))
+ trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
+ sigcontext_base + SIGCONTEXT_FPREGS + 4
+ + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
+ else
+ trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
+ sigcontext_base + SIGCONTEXT_FPREGS
+ + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
+
+ trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
+ regs_base + SIGCONTEXT_PC);
+
+ trad_frame_set_reg_addr (this_cache,
+ regs->fp_control_status + NUM_REGS,
+ sigcontext_base + SIGCONTEXT_FPCSR);
+ trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
+ regs_base + SIGCONTEXT_HI);
+ trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
+ regs_base + SIGCONTEXT_LO);
+ trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
+ sigcontext_base + SIGCONTEXT_CAUSE);
+ trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
+ sigcontext_base + SIGCONTEXT_BADVADDR);
+
+ /* Choice of the bottom of the sigframe is somewhat arbitrary. */
+ trad_frame_set_id (this_cache,
+ frame_id_build (func - SIGFRAME_CODE_OFFSET,
+ func));
}
+/* *INDENT-OFF* */
+/* For N32/N64 things look different. There is no non-rt signal frame.
+
+ struct rt_sigframe_n32 {
+ u32 rs_ass[4]; [ argument save space for o32 ]
+ u32 rs_code[2]; [ signal trampoline ]
+ struct siginfo rs_info;
+ struct ucontextn32 rs_uc;
+ };
+
+ struct ucontextn32 {
+ u32 uc_flags;
+ s32 uc_link;
+ stack32_t uc_stack;
+ struct sigcontext uc_mcontext;
+ sigset_t uc_sigmask; [ mask last for extensibility ]
+ };
+
+ struct rt_sigframe_n32 {
+ u32 rs_ass[4]; [ argument save space for o32 ]
+ u32 rs_code[2]; [ signal trampoline ]
+ struct siginfo rs_info;
+ struct ucontext rs_uc;
+ };
+
+ struct ucontext {
+ unsigned long uc_flags;
+ struct ucontext *uc_link;
+ stack_t uc_stack;
+ struct sigcontext uc_mcontext;
+ sigset_t uc_sigmask; [ mask last for extensibility ]
+ };
+
+ And the sigcontext is different (this is for both n32 and n64):
+
+ struct sigcontext {
+ unsigned long long sc_regs[32];
+ unsigned long long sc_fpregs[32];
+ unsigned long long sc_mdhi;
+ unsigned long long sc_mdlo;
+ unsigned long long sc_pc;
+ unsigned int sc_status;
+ unsigned int sc_fpc_csr;
+ unsigned int sc_fpc_eir;
+ unsigned int sc_used_math;
+ unsigned int sc_cause;
+ unsigned int sc_badvaddr;
+ }; */
+/* *INDENT-ON* */
+
+#define N32_STACK_T_SIZE STACK_T_SIZE
+#define N64_STACK_T_SIZE (2 * 8 + 4)
+#define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
+#define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
+#define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
+ + RTSIGFRAME_SIGINFO_SIZE \
+ + N32_UCONTEXT_SIGCONTEXT_OFFSET)
+#define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
+ + RTSIGFRAME_SIGINFO_SIZE \
+ + N64_UCONTEXT_SIGCONTEXT_OFFSET)
+
+#define N64_SIGCONTEXT_REGS (0 * 8)
+#define N64_SIGCONTEXT_FPREGS (32 * 8)
+#define N64_SIGCONTEXT_HI (64 * 8)
+#define N64_SIGCONTEXT_LO (65 * 8)
+#define N64_SIGCONTEXT_PC (66 * 8)
+#define N64_SIGCONTEXT_FPCSR (67 * 8 + 1 * 4)
+#define N64_SIGCONTEXT_FIR (67 * 8 + 2 * 4)
+#define N64_SIGCONTEXT_CAUSE (67 * 8 + 4 * 4)
+#define N64_SIGCONTEXT_BADVADDR (67 * 8 + 5 * 4)
+
+#define N64_SIGCONTEXT_REG_SIZE 8
+
static void
-set_mips_linux_register_addr (struct gdbarch *gdbarch,
- CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR))
+mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
+ struct frame_info *next_frame,
+ struct trad_frame_cache *this_cache,
+ CORE_ADDR func)
{
- set_gdbarch_data (gdbarch, register_addr_data, register_addr_ptr);
+ int ireg, reg_position;
+ CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
+ const struct mips_regnum *regs = mips_regnum (current_gdbarch);
+
+ if (self == &mips_linux_n32_rt_sigframe)
+ sigcontext_base += N32_SIGFRAME_SIGCONTEXT_OFFSET;
+ else
+ sigcontext_base += N64_SIGFRAME_SIGCONTEXT_OFFSET;
+
+#if 0
+ trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
+ sigcontext_base + N64_SIGCONTEXT_REGS);
+#endif
+
+ for (ireg = 1; ireg < 32; ireg++)
+ trad_frame_set_reg_addr (this_cache,
+ ireg + MIPS_ZERO_REGNUM + NUM_REGS,
+ sigcontext_base + N64_SIGCONTEXT_REGS
+ + ireg * N64_SIGCONTEXT_REG_SIZE);
+
+ for (ireg = 0; ireg < 32; ireg++)
+ trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
+ sigcontext_base + N64_SIGCONTEXT_FPREGS
+ + ireg * N64_SIGCONTEXT_REG_SIZE);
+
+ trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
+ sigcontext_base + N64_SIGCONTEXT_PC);
+
+ trad_frame_set_reg_addr (this_cache,
+ regs->fp_control_status + NUM_REGS,
+ sigcontext_base + N64_SIGCONTEXT_FPCSR);
+ trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
+ sigcontext_base + N64_SIGCONTEXT_HI);
+ trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
+ sigcontext_base + N64_SIGCONTEXT_LO);
+ trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
+ sigcontext_base + N64_SIGCONTEXT_CAUSE);
+ trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
+ sigcontext_base + N64_SIGCONTEXT_BADVADDR);
+
+ /* Choice of the bottom of the sigframe is somewhat arbitrary. */
+ trad_frame_set_id (this_cache,
+ frame_id_build (func - SIGFRAME_CODE_OFFSET,
+ func));
}
-static void *
-init_register_addr_data (struct gdbarch *gdbarch)
+/* Wrapper functions. These are only used by libthread_db. */
+
+void
+supply_gregset (mips_elf_gregset_t *gregsetp)
{
- return 0;
+ if (mips_isa_regsize (current_gdbarch) == 4)
+ mips_supply_gregset (gregsetp);
+ else
+ mips64_supply_gregset ((void *) gregsetp);
}
+void
+fill_gregset (mips_elf_gregset_t *gregsetp, int regno)
+{
+ if (mips_isa_regsize (current_gdbarch) == 4)
+ mips_fill_gregset (gregsetp, regno);
+ else
+ mips64_fill_gregset ((void *) gregsetp, regno);
+}
+
+/* Likewise, unpack an elf_fpregset_t. */
+
+void
+supply_fpregset (mips_elf_fpregset_t *fpregsetp)
+{
+ if (mips_isa_regsize (current_gdbarch) == 4)
+ mips_supply_fpregset (fpregsetp);
+ else
+ mips64_supply_fpregset ((void *) fpregsetp);
+}
+
+/* Likewise, pack one or all floating point registers into an
+ elf_fpregset_t. */
+
+void
+fill_fpregset (mips_elf_fpregset_t *fpregsetp, int regno)
+{
+ if (mips_isa_regsize (current_gdbarch) == 4)
+ mips_fill_fpregset (fpregsetp, regno);
+ else
+ mips64_fill_fpregset ((void *) fpregsetp, regno);
+}
+
+/* Initialize one of the GNU/Linux OS ABIs. */
+
static void
-mips_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
+mips_linux_init_abi (struct gdbarch_info info,
+ struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum mips_abi abi = mips_abi (gdbarch);
set_gdbarch_get_longjmp_target (gdbarch,
mips_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
- (gdbarch, mips_linux_svr4_fetch_link_map_offsets);
+ (gdbarch, svr4_ilp32_fetch_link_map_offsets);
set_mips_linux_register_addr (gdbarch, mips_linux_register_addr);
+ tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
+ tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
break;
case MIPS_ABI_N32:
set_gdbarch_get_longjmp_target (gdbarch,
mips_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
- (gdbarch, mips_linux_svr4_fetch_link_map_offsets);
+ (gdbarch, svr4_ilp32_fetch_link_map_offsets);
set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
+ set_gdbarch_long_double_bit (gdbarch, 128);
+ /* These floatformats should probably be renamed. MIPS uses
+ the same 128-bit IEEE floating point format that IA-64 uses,
+ except that the quiet/signalling NaN bit is reversed (GDB
+ does not distinguish between quiet and signalling NaNs). */
+ if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+ set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
+ else
+ set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_little);
+ tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
break;
case MIPS_ABI_N64:
set_gdbarch_get_longjmp_target (gdbarch,
mips64_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
- (gdbarch, mips64_linux_svr4_fetch_link_map_offsets);
+ (gdbarch, svr4_lp64_fetch_link_map_offsets);
set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
+ set_gdbarch_long_double_bit (gdbarch, 128);
+ /* These floatformats should probably be renamed. MIPS uses
+ the same 128-bit IEEE floating point format that IA-64 uses,
+ except that the quiet/signalling NaN bit is reversed (GDB
+ does not distinguish between quiet and signalling NaNs). */
+ if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+ set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
+ else
+ set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_little);
+ tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
break;
default:
- internal_error (__FILE__, __LINE__, "can't handle ABI");
+ internal_error (__FILE__, __LINE__, _("can't handle ABI"));
break;
}
+
+ set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
+
+ set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
+
+ /* Enable TLS support. */
+ set_gdbarch_fetch_tls_load_module_address (gdbarch,
+ svr4_fetch_objfile_link_map);
}
void
const struct bfd_arch_info *arch_info;
register_addr_data =
- register_gdbarch_data (init_register_addr_data);
+ gdbarch_data_register_post_init (init_register_addr_data);
for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
arch_info != NULL;
arch_info = arch_info->next)
{
- gdbarch_register_osabi (bfd_arch_mips, arch_info->mach, GDB_OSABI_LINUX,
+ gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
+ GDB_OSABI_LINUX,
mips_linux_init_abi);
}
- add_core_fns (®set_core_fns);
+ deprecated_add_core_fns (®set_core_fns);
}