/* Target-dependent code for GDB, the GNU debugger.
Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
- 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
This file is part of GDB.
#include "frame-unwind.h"
#include "frame-base.h"
-#include "rs6000-tdep.h"
-
#include "features/rs6000/powerpc-32.c"
+#include "features/rs6000/powerpc-altivec32.c"
+#include "features/rs6000/powerpc-vsx32.c"
#include "features/rs6000/powerpc-403.c"
#include "features/rs6000/powerpc-403gc.c"
#include "features/rs6000/powerpc-505.c"
#include "features/rs6000/powerpc-603.c"
#include "features/rs6000/powerpc-604.c"
#include "features/rs6000/powerpc-64.c"
+#include "features/rs6000/powerpc-altivec64.c"
+#include "features/rs6000/powerpc-vsx64.c"
#include "features/rs6000/powerpc-7400.c"
#include "features/rs6000/powerpc-750.c"
#include "features/rs6000/powerpc-860.c"
&& (regnum) >= (tdep)->ppc_dl0_regnum \
&& (regnum) < (tdep)->ppc_dl0_regnum + 16)
+/* Determine if regnum is a POWER7 VSX register. */
+#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
+ && (regnum) >= (tdep)->ppc_vsr0_regnum \
+ && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
+
+/* Determine if regnum is a POWER7 Extended FP register. */
+#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
+ && (regnum) >= (tdep)->ppc_efpr0_regnum \
+ && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_fprs)
+
/* The list of available "set powerpc ..." and "show powerpc ..."
commands. */
static struct cmd_list_element *setpowerpccmdlist = NULL;
static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
static const char *powerpc_vector_abi_string = "auto";
-/* If the kernel has to deliver a signal, it pushes a sigcontext
- structure on the stack and then calls the signal handler, passing
- the address of the sigcontext in an argument register. Usually
- the signal handler doesn't save this register, so we have to
- access the sigcontext structure via an offset from the signal handler
- frame.
- The following constants were determined by experimentation on AIX 3.2. */
-#define SIG_FRAME_PC_OFFSET 96
-#define SIG_FRAME_LR_OFFSET 108
-#define SIG_FRAME_FP_OFFSET 284
-
/* To be used by skip_prologue. */
struct rs6000_framedata
by which we decrement sp to allocate
the frame */
int saved_gpr; /* smallest # of saved gpr */
+ unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
int saved_fpr; /* smallest # of saved fpr */
int saved_vr; /* smallest # of saved vr */
int saved_ev; /* smallest # of saved ev */
int alloca_reg; /* alloca register number (frame ptr) */
char frameless; /* true if frameless functions. */
char nosavedpc; /* true if pc not saved. */
+ char used_bl; /* true if link register clobbered */
int gpr_offset; /* offset of saved gprs from prev sp */
int fpr_offset; /* offset of saved fprs from prev sp */
int vr_offset; /* offset of saved vrs from prev sp */
int ev_offset; /* offset of saved evs from prev sp */
int lr_offset; /* offset of saved lr */
+ int lr_register; /* register of saved lr, if trustworthy */
int cr_offset; /* offset of saved cr */
int vrsave_offset; /* offset of saved vrsave register */
};
-/* Description of a single register. */
-
-struct reg
- {
- char *name; /* name of register */
- unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
- unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
- unsigned char fpr; /* whether register is floating-point */
- unsigned char pseudo; /* whether register is pseudo */
- int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
- This is an ISA SPR number, not a GDB
- register number. */
- };
-
-/* Hook for determining the TOC address when calling functions in the
- inferior under AIX. The initialization code in rs6000-nat.c sets
- this hook to point to find_toc_address. */
-CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
-
-/* Static function prototypes */
-
-static CORE_ADDR branch_dest (struct frame_info *frame, int opcode,
- int instr, CORE_ADDR pc, CORE_ADDR safety);
-static CORE_ADDR skip_prologue (struct gdbarch *, CORE_ADDR, CORE_ADDR,
- struct rs6000_framedata *);
+/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
+int
+vsx_register_p (struct gdbarch *gdbarch, int regno)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ if (tdep->ppc_vsr0_regnum < 0)
+ return 0;
+ else
+ return (regno >= tdep->ppc_vsr0_upper_regnum && regno
+ <= tdep->ppc_vsr0_upper_regnum + 31);
+}
/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
int
&& tdep->ppc_fpscr_regnum >= 0);
}
+/* Return non-zero if the architecture described by GDBARCH has
+ VSX registers (vsr0 --- vsr63). */
+static int
+ppc_vsx_support_p (struct gdbarch *gdbarch)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ return tdep->ppc_vsr0_regnum >= 0;
+}
+
/* Return non-zero if the architecture described by GDBARCH has
Altivec registers (vr0 --- vr31, vrsave and vscr). */
int
/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
Write the register to REGCACHE. */
-static void
+void
ppc_supply_reg (struct regcache *regcache, int regnum,
const gdb_byte *regs, size_t offset, int regsize)
{
/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
in a field REGSIZE wide. Zero pad as necessary. */
-static void
+void
ppc_collect_reg (const struct regcache *regcache, int regnum,
gdb_byte *regs, size_t offset, int regsize)
{
regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
}
+/* Supply register REGNUM in the VSX register set REGSET
+ from the buffer specified by VSXREGS and LEN to register cache
+ REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
+
+void
+ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
+ int regnum, const void *vsxregs, size_t len)
+{
+ struct gdbarch *gdbarch = get_regcache_arch (regcache);
+ struct gdbarch_tdep *tdep;
+
+ if (!ppc_vsx_support_p (gdbarch))
+ return;
+
+ tdep = gdbarch_tdep (gdbarch);
+
+ if (regnum == -1)
+ {
+ int i;
+
+ for (i = tdep->ppc_vsr0_upper_regnum;
+ i < tdep->ppc_vsr0_upper_regnum + 32;
+ i++)
+ ppc_supply_reg (regcache, i, vsxregs, 0, 8);
+
+ return;
+ }
+ else
+ ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
+}
+
/* Supply register REGNUM in the Altivec register set REGSET
from the buffer specified by VRREGS and LEN to register cache
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
}
+/* Collect register REGNUM in the VSX register set
+ REGSET from register cache REGCACHE into the buffer specified by
+ VSXREGS and LEN. If REGNUM is -1, do this for all registers in
+ REGSET. */
+
+void
+ppc_collect_vsxregset (const struct regset *regset,
+ const struct regcache *regcache,
+ int regnum, void *vsxregs, size_t len)
+{
+ struct gdbarch *gdbarch = get_regcache_arch (regcache);
+ struct gdbarch_tdep *tdep;
+
+ if (!ppc_vsx_support_p (gdbarch))
+ return;
+
+ tdep = gdbarch_tdep (gdbarch);
+
+ if (regnum == -1)
+ {
+ int i;
+
+ for (i = tdep->ppc_vsr0_upper_regnum;
+ i < tdep->ppc_vsr0_upper_regnum + 32;
+ i++)
+ ppc_collect_reg (regcache, i, vsxregs, 0, 8);
+
+ return;
+ }
+ else
+ ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
+}
+
+
/* Collect register REGNUM in the Altivec register set
REGSET from register cache REGCACHE into the buffer specified by
VRREGS and LEN. If REGNUM is -1, do this for all registers in
}
\f
-/* Read a LEN-byte address from debugged memory address MEMADDR. */
-
-static CORE_ADDR
-read_memory_addr (CORE_ADDR memaddr, int len)
-{
- return read_memory_unsigned_integer (memaddr, len);
-}
-
-static CORE_ADDR
-rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
- struct rs6000_framedata frame;
- CORE_ADDR limit_pc, func_addr;
-
- /* See if we can determine the end of the prologue via the symbol table.
- If so, then return either PC, or the PC after the prologue, whichever
- is greater. */
- if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
- {
- CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
- if (post_prologue_pc != 0)
- return max (pc, post_prologue_pc);
- }
-
- /* Can't determine prologue from the symbol table, need to examine
- instructions. */
-
- /* Find an upper limit on the function prologue using the debug
- information. If the debug information could not be used to provide
- that bound, then use an arbitrary large number as the upper bound. */
- limit_pc = skip_prologue_using_sal (pc);
- if (limit_pc == 0)
- limit_pc = pc + 100; /* Magic. */
-
- pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
- return pc;
-}
-
static int
insn_changes_sp_or_jumps (unsigned long insn)
{
static int
rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bfd_byte insn_buf[PPC_INSN_SIZE];
CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
unsigned long insn;
{
if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
return 0;
- insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
+ insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
if (insn == 0x4e800020)
break;
+ /* Assume a bctr is a tail call unless it points strictly within
+ this function. */
+ if (insn == 0x4e800420)
+ {
+ CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
+ tdep->ppc_ctr_regnum);
+ if (ctr > func_start && ctr < func_end)
+ return 0;
+ else
+ break;
+ }
if (insn_changes_sp_or_jumps (insn))
return 0;
}
{
if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
return 0;
- insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
+ insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
if (insn_changes_sp_or_jumps (insn))
return 1;
}
return get_frame_register_unsigned (frame, 3 + argi);
}
-/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
+/* Sequence of bytes for breakpoint instruction. */
-static CORE_ADDR
-branch_dest (struct frame_info *frame, int opcode, int instr,
- CORE_ADDR pc, CORE_ADDR safety)
+const static unsigned char *
+rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
+ int *bp_size)
{
- struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
- CORE_ADDR dest;
- int immediate;
- int absolute;
- int ext_op;
+ static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
+ static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
+ *bp_size = 4;
+ if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+ return big_breakpoint;
+ else
+ return little_breakpoint;
+}
- absolute = (int) ((instr >> 1) & 1);
+/* Instruction masks for displaced stepping. */
+#define BRANCH_MASK 0xfc000000
+#define BP_MASK 0xFC0007FE
+#define B_INSN 0x48000000
+#define BC_INSN 0x40000000
+#define BXL_INSN 0x4c000000
+#define BP_INSN 0x7C000008
- switch (opcode)
- {
- case 18:
- immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
- if (absolute)
- dest = immediate;
- else
- dest = pc + immediate;
- break;
+/* Fix up the state of registers and memory after having single-stepped
+ a displaced instruction. */
+static void
+ppc_displaced_step_fixup (struct gdbarch *gdbarch,
+ struct displaced_step_closure *closure,
+ CORE_ADDR from, CORE_ADDR to,
+ struct regcache *regs)
+{
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ /* Since we use simple_displaced_step_copy_insn, our closure is a
+ copy of the instruction. */
+ ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
+ PPC_INSN_SIZE, byte_order);
+ ULONGEST opcode = 0;
+ /* Offset for non PC-relative instructions. */
+ LONGEST offset = PPC_INSN_SIZE;
- case 16:
- immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
- if (absolute)
- dest = immediate;
- else
- dest = pc + immediate;
- break;
+ opcode = insn & BRANCH_MASK;
- case 19:
- ext_op = (instr >> 1) & 0x3ff;
+ if (debug_displaced)
+ fprintf_unfiltered (gdb_stdlog,
+ "displaced: (ppc) fixup (%s, %s)\n",
+ paddress (gdbarch, from), paddress (gdbarch, to));
- if (ext_op == 16) /* br conditional register */
+
+ /* Handle PC-relative branch instructions. */
+ if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
+ {
+ ULONGEST current_pc;
+
+ /* Read the current PC value after the instruction has been executed
+ in a displaced location. Calculate the offset to be applied to the
+ original PC value before the displaced stepping. */
+ regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+ ¤t_pc);
+ offset = current_pc - to;
+
+ if (opcode != BXL_INSN)
{
- dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
-
- /* If we are about to return from a signal handler, dest is
- something like 0x3c90. The current frame is a signal handler
- caller frame, upon completion of the sigreturn system call
- execution will return to the saved PC in the frame. */
- if (dest < tdep->text_segment_base)
- dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
- tdep->wordsize);
+ /* Check for AA bit indicating whether this is an absolute
+ addressing or PC-relative (1: absolute, 0: relative). */
+ if (!(insn & 0x2))
+ {
+ /* PC-relative addressing is being used in the branch. */
+ if (debug_displaced)
+ fprintf_unfiltered
+ (gdb_stdlog,
+ "displaced: (ppc) branch instruction: %s\n"
+ "displaced: (ppc) adjusted PC from %s to %s\n",
+ paddress (gdbarch, insn), paddress (gdbarch, current_pc),
+ paddress (gdbarch, from + offset));
+
+ regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+ from + offset);
+ }
+ }
+ else
+ {
+ /* If we're here, it means we have a branch to LR or CTR. If the
+ branch was taken, the offset is probably greater than 4 (the next
+ instruction), so it's safe to assume that an offset of 4 means we
+ did not take the branch. */
+ if (offset == PPC_INSN_SIZE)
+ regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+ from + PPC_INSN_SIZE);
}
- else if (ext_op == 528) /* br cond to count reg */
+ /* Check for LK bit indicating whether we should set the link
+ register to point to the next instruction
+ (1: Set, 0: Don't set). */
+ if (insn & 0x1)
{
- dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
+ /* Link register needs to be set to the next instruction's PC. */
+ regcache_cooked_write_unsigned (regs,
+ gdbarch_tdep (gdbarch)->ppc_lr_regnum,
+ from + PPC_INSN_SIZE);
+ if (debug_displaced)
+ fprintf_unfiltered (gdb_stdlog,
+ "displaced: (ppc) adjusted LR to %s\n",
+ paddress (gdbarch, from + PPC_INSN_SIZE));
- /* If we are about to execute a system call, dest is something
- like 0x22fc or 0x3b00. Upon completion the system call
- will return to the address in the link register. */
- if (dest < tdep->text_segment_base)
- dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
}
- else
- return -1;
- break;
-
- default:
- return -1;
}
- return (dest < tdep->text_segment_base) ? safety : dest;
-}
-
-
-/* Sequence of bytes for breakpoint instruction. */
-
-const static unsigned char *
-rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
- int *bp_size)
-{
- static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
- static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
- *bp_size = 4;
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- return big_breakpoint;
+ /* Check for breakpoints in the inferior. If we've found one, place the PC
+ right at the breakpoint instruction. */
+ else if ((insn & BP_MASK) == BP_INSN)
+ regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
else
- return little_breakpoint;
+ /* Handle any other instructions that do not fit in the categories above. */
+ regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+ from + offset);
}
-
/* Instruction masks used during single-stepping of atomic sequences. */
#define LWARX_MASK 0xfc0007fe
#define LWARX_INSTRUCTION 0x7c000028
#define STWCX_MASK 0xfc0007ff
#define STWCX_INSTRUCTION 0x7c00012d
#define STDCX_INSTRUCTION 0x7c0001ad
-#define BC_MASK 0xfc000000
-#define BC_INSTRUCTION 0x40000000
/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
instruction and ending with a STWCX/STDCX instruction. If such a sequence
is found, attempt to step through it. A breakpoint is placed at the end of
the sequence. */
-static int
-deal_with_atomic_sequence (struct frame_info *frame)
+int
+ppc_deal_with_atomic_sequence (struct frame_info *frame)
{
+ struct gdbarch *gdbarch = get_frame_arch (frame);
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR pc = get_frame_pc (frame);
CORE_ADDR breaks[2] = {-1, -1};
CORE_ADDR loc = pc;
- CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
- int insn = read_memory_integer (loc, PPC_INSN_SIZE);
+ int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
int insn_count;
int index;
int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
{
loc += PPC_INSN_SIZE;
- insn = read_memory_integer (loc, PPC_INSN_SIZE);
+ insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
/* Assume that there is at most one conditional branch in the atomic
sequence. If a conditional branch is found, put a breakpoint in
its destination address. */
- if ((insn & BC_MASK) == BC_INSTRUCTION)
+ if ((insn & BRANCH_MASK) == BC_INSN)
{
+ int immediate = ((insn & ~3) << 16) >> 16;
+ int absolute = ((insn >> 1) & 1);
+
if (bc_insn_count >= 1)
return 0; /* More than one conditional branch found, fallback
to the standard single-step code. */
-
- opcode = insn >> 26;
- branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]);
-
- if (branch_bp != -1)
- {
- breaks[1] = branch_bp;
- bc_insn_count++;
- last_breakpoint++;
- }
+
+ if (absolute)
+ breaks[1] = immediate;
+ else
+ breaks[1] = pc + immediate;
+
+ bc_insn_count++;
+ last_breakpoint++;
}
if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
closing_insn = loc;
loc += PPC_INSN_SIZE;
- insn = read_memory_integer (loc, PPC_INSN_SIZE);
+ insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
/* Insert a breakpoint right after the end of the atomic sequence. */
breaks[0] = loc;
/* Effectively inserts the breakpoints. */
for (index = 0; index <= last_breakpoint; index++)
- insert_single_step_breakpoint (breaks[index]);
+ insert_single_step_breakpoint (gdbarch, breaks[index]);
return 1;
}
-/* AIX does not support PT_STEP. Simulate it. */
-
-int
-rs6000_software_single_step (struct frame_info *frame)
-{
- CORE_ADDR dummy;
- int breakp_sz;
- const gdb_byte *breakp
- = rs6000_breakpoint_from_pc (get_frame_arch (frame), &dummy, &breakp_sz);
- int ii, insn;
- CORE_ADDR loc;
- CORE_ADDR breaks[2];
- int opcode;
-
- loc = get_frame_pc (frame);
-
- insn = read_memory_integer (loc, 4);
-
- if (deal_with_atomic_sequence (frame))
- return 1;
-
- breaks[0] = loc + breakp_sz;
- opcode = insn >> 26;
- breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
-
- /* Don't put two breakpoints on the same address. */
- if (breaks[1] == breaks[0])
- breaks[1] = -1;
-
- for (ii = 0; ii < 2; ++ii)
- {
- /* ignore invalid breakpoint. */
- if (breaks[ii] == -1)
- continue;
- insert_single_step_breakpoint (breaks[ii]);
- }
-
- errno = 0; /* FIXME, don't ignore errors! */
- /* What errors? {read,write}_memory call error(). */
- return 1;
-}
-
#define SIGNED_SHORT(x) \
((sizeof (short) == 2) \
they can use to access PIC data using PC-relative offsets. */
static int
-bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
+bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
{
CORE_ADDR dest;
int immediate;
else
dest = pc + immediate;
- dest_insn = read_memory_integer (dest, 4);
+ dest_insn = read_memory_integer (dest, 4, byte_order);
if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
return 1;
return 0;
}
+/* Masks for decoding a branch-and-link (bl) instruction.
+
+ BL_MASK and BL_INSTRUCTION are used in combination with each other.
+ The former is anded with the opcode in question; if the result of
+ this masking operation is equal to BL_INSTRUCTION, then the opcode in
+ question is a ``bl'' instruction.
+
+ BL_DISPLACMENT_MASK is anded with the opcode in order to extract
+ the branch displacement. */
+
+#define BL_MASK 0xfc000001
+#define BL_INSTRUCTION 0x48000001
+#define BL_DISPLACEMENT_MASK 0x03fffffc
+
+static unsigned long
+rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
+{
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ gdb_byte buf[4];
+ unsigned long op;
+
+ /* Fetch the instruction and convert it to an integer. */
+ if (target_read_memory (pc, buf, 4))
+ return 0;
+ op = extract_unsigned_integer (buf, 4, byte_order);
+
+ return op;
+}
+
+/* GCC generates several well-known sequences of instructions at the begining
+ of each function prologue when compiling with -fstack-check. If one of
+ such sequences starts at START_PC, then return the address of the
+ instruction immediately past this sequence. Otherwise, return START_PC. */
+
+static CORE_ADDR
+rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
+{
+ CORE_ADDR pc = start_pc;
+ unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
+
+ /* First possible sequence: A small number of probes.
+ stw 0, -<some immediate>(1)
+ [repeat this instruction any (small) number of times]
+ */
+
+ if ((op & 0xffff0000) == 0x90010000)
+ {
+ while ((op & 0xffff0000) == 0x90010000)
+ {
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ }
+ return pc;
+ }
+
+ /* Second sequence: A probing loop.
+ addi 12,1,-<some immediate>
+ lis 0,-<some immediate>
+ [possibly ori 0,0,<some immediate>]
+ add 0,12,0
+ cmpw 0,12,0
+ beq 0,<disp>
+ addi 12,12,-<some immediate>
+ stw 0,0(12)
+ b <disp>
+ [possibly one last probe: stw 0,<some immediate>(12)]
+ */
+
+ while (1)
+ {
+ /* addi 12,1,-<some immediate> */
+ if ((op & 0xffff0000) != 0x39810000)
+ break;
+
+ /* lis 0,-<some immediate> */
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ if ((op & 0xffff0000) != 0x3c000000)
+ break;
+
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ /* [possibly ori 0,0,<some immediate>] */
+ if ((op & 0xffff0000) == 0x60000000)
+ {
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ }
+ /* add 0,12,0 */
+ if (op != 0x7c0c0214)
+ break;
+
+ /* cmpw 0,12,0 */
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ if (op != 0x7c0c0000)
+ break;
+
+ /* beq 0,<disp> */
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ if ((op & 0xff9f0001) != 0x41820000)
+ break;
+
+ /* addi 12,12,-<some immediate> */
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ if ((op & 0xffff0000) != 0x398c0000)
+ break;
+
+ /* stw 0,0(12) */
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ if (op != 0x900c0000)
+ break;
+
+ /* b <disp> */
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ if ((op & 0xfc000001) != 0x48000000)
+ break;
+
+ /* [possibly one last probe: stw 0,<some immediate>(12)] */
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ if ((op & 0xffff0000) == 0x900c0000)
+ {
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ }
+
+ /* We found a valid stack-check sequence, return the new PC. */
+ return pc;
+ }
+
+ /* Third sequence: No probe; instead, a comparizon between the stack size
+ limit (saved in a run-time global variable) and the current stack
+ pointer:
+
+ addi 0,1,-<some immediate>
+ lis 12,__gnat_stack_limit@ha
+ lwz 12,__gnat_stack_limit@l(12)
+ twllt 0,12
+
+ or, with a small variant in the case of a bigger stack frame:
+ addis 0,1,<some immediate>
+ addic 0,0,-<some immediate>
+ lis 12,__gnat_stack_limit@ha
+ lwz 12,__gnat_stack_limit@l(12)
+ twllt 0,12
+ */
+ while (1)
+ {
+ /* addi 0,1,-<some immediate> */
+ if ((op & 0xffff0000) != 0x38010000)
+ {
+ /* small stack frame variant not recognized; try the
+ big stack frame variant: */
+
+ /* addis 0,1,<some immediate> */
+ if ((op & 0xffff0000) != 0x3c010000)
+ break;
+
+ /* addic 0,0,-<some immediate> */
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ if ((op & 0xffff0000) != 0x30000000)
+ break;
+ }
+
+ /* lis 12,<some immediate> */
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ if ((op & 0xffff0000) != 0x3d800000)
+ break;
+
+ /* lwz 12,<some immediate>(12) */
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ if ((op & 0xffff0000) != 0x818c0000)
+ break;
+
+ /* twllt 0,12 */
+ pc = pc + 4;
+ op = rs6000_fetch_instruction (gdbarch, pc);
+ if ((op & 0xfffffffe) != 0x7c406008)
+ break;
+
+ /* We found a valid stack-check sequence, return the new PC. */
+ return pc;
+ }
+
+ /* No stack check code in our prologue, return the start_pc. */
+ return start_pc;
+}
+
/* return pc value after skipping a function prologue and also return
information about a function frame.
int r0_contains_arg = 0;
const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
memset (fdata, 0, sizeof (struct rs6000_framedata));
fdata->saved_gpr = -1;
fdata->alloca_reg = -1;
fdata->frameless = 1;
fdata->nosavedpc = 1;
+ fdata->lr_register = -1;
+
+ pc = rs6000_skip_stack_check (gdbarch, pc);
+ if (pc >= lim_pc)
+ pc = lim_pc;
for (;; pc += 4)
{
/* Fetch the instruction and convert it to an integer. */
if (target_read_memory (pc, buf, 4))
break;
- op = extract_unsigned_integer (buf, 4);
+ op = extract_unsigned_integer (buf, 4, byte_order);
if ((op & 0xfc1fffff) == 0x7c0802a6)
{ /* mflr Rx */
remember just the first one, but skip over additional
ones. */
if (lr_reg == -1)
- lr_reg = (op & 0x03e00000);
+ lr_reg = (op & 0x03e00000) >> 21;
if (lr_reg == 0)
r0_contains_arg = 0;
continue;
{
reg = GET_SRC_REG (op);
+ if ((op & 0xfc1f0000) == 0xbc010000)
+ fdata->gpr_mask |= ~((1U << reg) - 1);
+ else
+ fdata->gpr_mask |= 1U << reg;
if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
{
fdata->saved_gpr = reg;
else if (op == 0x48000005)
{ /* bl .+4 used in
-mrelocatable */
+ fdata->used_bl = 1;
continue;
}
/* If the return address has already been saved, we can skip
calls to blrl (for PIC). */
- if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
- continue;
+ if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
+ {
+ fdata->used_bl = 1;
+ continue;
+ }
/* Don't skip over the subroutine call if it is not within
the first three instructions of the prologue and either
break;
}
- op = read_memory_integer (pc + 4, 4);
+ op = read_memory_integer (pc + 4, 4, byte_order);
/* At this point, make sure this is not a trampoline
function (a function that simply calls another functions,
if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
break; /* don't skip over
this branch */
- continue;
+ fdata->used_bl = 1;
+ continue;
}
/* update stack pointer */
else if ((op & 0xfc1f0000) == 0x94010000)
else
{
+ unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
+
/* Not a recognized prologue instruction.
Handle optimizer code motions into the prologue by continuing
the search if we have no valid frame yet or if the return
- address is not yet saved in the frame. */
- if (fdata->frameless == 0 && fdata->nosavedpc == 0)
+ address is not yet saved in the frame. Also skip instructions
+ if some of the GPRs expected to be saved are not yet saved. */
+ if (fdata->frameless == 0 && fdata->nosavedpc == 0
+ && (fdata->gpr_mask & all_mask) == all_mask)
break;
if (op == 0x4e800020 /* blr */
if ((op & 0xfc000001) == 0x48000001)
{ /* bl foo, an initializer function? */
- op = read_memory_integer (pc + 4, 4);
+ op = read_memory_integer (pc + 4, 4, byte_order);
if (op == 0x4def7b82)
{ /* cror 0xf, 0xf, 0xf (nop) */
}
#endif /* 0 */
+ if (pc == lim_pc && lr_reg >= 0)
+ fdata->lr_register = lr_reg;
+
fdata->offset = -fdata->offset;
return last_prologue_pc;
}
-
-/*************************************************************************
- Support for creating pushing a dummy frame into the stack, and popping
- frames, etc.
-*************************************************************************/
-
-
-/* All the ABI's require 16 byte alignment. */
-static CORE_ADDR
-rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
-{
- return (addr & -16);
-}
-
-/* Pass the arguments in either registers, or in the stack. In RS/6000,
- the first eight words of the argument list (that might be less than
- eight parameters if some parameters occupy more than one word) are
- passed in r3..r10 registers. float and double parameters are
- passed in fpr's, in addition to that. Rest of the parameters if any
- are passed in user stack. There might be cases in which half of the
- parameter is copied into registers, the other half is pushed into
- stack.
-
- Stack must be aligned on 64-bit boundaries when synthesizing
- function calls.
-
- If the function is returning a structure, then the return address is passed
- in r3, then the first 7 words of the parameters can be passed in registers,
- starting from r4. */
-
static CORE_ADDR
-rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
- struct regcache *regcache, CORE_ADDR bp_addr,
- int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
+rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- int ii;
- int len = 0;
- int argno; /* current argument number */
- int argbytes; /* current argument byte */
- gdb_byte tmp_buffer[50];
- int f_argno = 0; /* current floating point argno */
- int wordsize = gdbarch_tdep (gdbarch)->wordsize;
- CORE_ADDR func_addr = find_function_addr (function, NULL);
-
- struct value *arg = 0;
- struct type *type;
-
- ULONGEST saved_sp;
-
- /* The calling convention this function implements assumes the
- processor has floating-point registers. We shouldn't be using it
- on PPC variants that lack them. */
- gdb_assert (ppc_floating_point_unit_p (gdbarch));
-
- /* The first eight words of ther arguments are passed in registers.
- Copy them appropriately. */
- ii = 0;
-
- /* If the function is returning a `struct', then the first word
- (which will be passed in r3) is used for struct return address.
- In that case we should advance one word and start from r4
- register to copy parameters. */
- if (struct_return)
- {
- regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
- struct_addr);
- ii++;
- }
-
-/*
- effectively indirect call... gcc does...
-
- return_val example( float, int);
-
- eabi:
- float in fp0, int in r3
- offset of stack on overflow 8/16
- for varargs, must go by type.
- power open:
- float in r3&r4, int in r5
- offset of stack on overflow different
- both:
- return in r3 or f0. If no float, must study how gcc emulates floats;
- pay attention to arg promotion.
- User may have to cast\args to handle promotion correctly
- since gdb won't know if prototype supplied or not.
- */
-
- for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
- {
- int reg_size = register_size (gdbarch, ii + 3);
-
- arg = args[argno];
- type = check_typedef (value_type (arg));
- len = TYPE_LENGTH (type);
-
- if (TYPE_CODE (type) == TYPE_CODE_FLT)
- {
-
- /* Floating point arguments are passed in fpr's, as well as gpr's.
- There are 13 fpr's reserved for passing parameters. At this point
- there is no way we would run out of them. */
-
- gdb_assert (len <= 8);
-
- regcache_cooked_write (regcache,
- tdep->ppc_fp0_regnum + 1 + f_argno,
- value_contents (arg));
- ++f_argno;
- }
-
- if (len > reg_size)
- {
-
- /* Argument takes more than one register. */
- while (argbytes < len)
- {
- gdb_byte word[MAX_REGISTER_SIZE];
- memset (word, 0, reg_size);
- memcpy (word,
- ((char *) value_contents (arg)) + argbytes,
- (len - argbytes) > reg_size
- ? reg_size : len - argbytes);
- regcache_cooked_write (regcache,
- tdep->ppc_gp0_regnum + 3 + ii,
- word);
- ++ii, argbytes += reg_size;
-
- if (ii >= 8)
- goto ran_out_of_registers_for_arguments;
- }
- argbytes = 0;
- --ii;
- }
- else
- {
- /* Argument can fit in one register. No problem. */
- int adj = gdbarch_byte_order (gdbarch)
- == BFD_ENDIAN_BIG ? reg_size - len : 0;
- gdb_byte word[MAX_REGISTER_SIZE];
-
- memset (word, 0, reg_size);
- memcpy (word, value_contents (arg), len);
- regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
- }
- ++argno;
- }
-
-ran_out_of_registers_for_arguments:
-
- regcache_cooked_read_unsigned (regcache,
- gdbarch_sp_regnum (gdbarch),
- &saved_sp);
-
- /* Location for 8 parameters are always reserved. */
- sp -= wordsize * 8;
-
- /* Another six words for back chain, TOC register, link register, etc. */
- sp -= wordsize * 6;
-
- /* Stack pointer must be quadword aligned. */
- sp &= -16;
-
- /* If there are more arguments, allocate space for them in
- the stack, then push them starting from the ninth one. */
+ struct rs6000_framedata frame;
+ CORE_ADDR limit_pc, func_addr;
- if ((argno < nargs) || argbytes)
+ /* See if we can determine the end of the prologue via the symbol table.
+ If so, then return either PC, or the PC after the prologue, whichever
+ is greater. */
+ if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
{
- int space = 0, jj;
-
- if (argbytes)
- {
- space += ((len - argbytes + 3) & -4);
- jj = argno + 1;
- }
- else
- jj = argno;
-
- for (; jj < nargs; ++jj)
- {
- struct value *val = args[jj];
- space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
- }
-
- /* Add location required for the rest of the parameters. */
- space = (space + 15) & -16;
- sp -= space;
-
- /* This is another instance we need to be concerned about
- securing our stack space. If we write anything underneath %sp
- (r1), we might conflict with the kernel who thinks he is free
- to use this area. So, update %sp first before doing anything
- else. */
-
- regcache_raw_write_signed (regcache,
- gdbarch_sp_regnum (gdbarch), sp);
-
- /* If the last argument copied into the registers didn't fit there
- completely, push the rest of it into stack. */
-
- if (argbytes)
- {
- write_memory (sp + 24 + (ii * 4),
- value_contents (arg) + argbytes,
- len - argbytes);
- ++argno;
- ii += ((len - argbytes + 3) & -4) / 4;
- }
-
- /* Push the rest of the arguments into stack. */
- for (; argno < nargs; ++argno)
- {
-
- arg = args[argno];
- type = check_typedef (value_type (arg));
- len = TYPE_LENGTH (type);
-
-
- /* Float types should be passed in fpr's, as well as in the
- stack. */
- if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
- {
-
- gdb_assert (len <= 8);
-
- regcache_cooked_write (regcache,
- tdep->ppc_fp0_regnum + 1 + f_argno,
- value_contents (arg));
- ++f_argno;
- }
-
- write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
- ii += ((len + 3) & -4) / 4;
- }
+ CORE_ADDR post_prologue_pc
+ = skip_prologue_using_sal (gdbarch, func_addr);
+ if (post_prologue_pc != 0)
+ return max (pc, post_prologue_pc);
}
- /* Set the stack pointer. According to the ABI, the SP is meant to
- be set _before_ the corresponding stack space is used. On AIX,
- this even applies when the target has been completely stopped!
- Not doing this can lead to conflicts with the kernel which thinks
- that it still has control over this not-yet-allocated stack
- region. */
- regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
-
- /* Set back chain properly. */
- store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
- write_memory (sp, tmp_buffer, wordsize);
-
- /* Point the inferior function call's return address at the dummy's
- breakpoint. */
- regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
+ /* Can't determine prologue from the symbol table, need to examine
+ instructions. */
- /* Set the TOC register, get the value from the objfile reader
- which, in turn, gets it from the VMAP table. */
- if (rs6000_find_toc_address_hook != NULL)
- {
- CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
- regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
- }
+ /* Find an upper limit on the function prologue using the debug
+ information. If the debug information could not be used to provide
+ that bound, then use an arbitrary large number as the upper bound. */
+ limit_pc = skip_prologue_using_sal (gdbarch, pc);
+ if (limit_pc == 0)
+ limit_pc = pc + 100; /* Magic. */
- target_store_registers (regcache, -1);
- return sp;
+ pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
+ return pc;
}
-static enum return_value_convention
-rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
- struct regcache *regcache, gdb_byte *readbuf,
- const gdb_byte *writebuf)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- gdb_byte buf[8];
-
- /* The calling convention this function implements assumes the
- processor has floating-point registers. We shouldn't be using it
- on PowerPC variants that lack them. */
- gdb_assert (ppc_floating_point_unit_p (gdbarch));
-
- /* AltiVec extension: Functions that declare a vector data type as a
- return value place that return value in VR2. */
- if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
- && TYPE_LENGTH (valtype) == 16)
- {
- if (readbuf)
- regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
- if (writebuf)
- regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
-
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
-
- /* If the called subprogram returns an aggregate, there exists an
- implicit first argument, whose value is the address of a caller-
- allocated buffer into which the callee is assumed to store its
- return value. All explicit parameters are appropriately
- relabeled. */
- if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
- || TYPE_CODE (valtype) == TYPE_CODE_UNION
- || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
- return RETURN_VALUE_STRUCT_CONVENTION;
-
- /* Scalar floating-point values are returned in FPR1 for float or
- double, and in FPR1:FPR2 for quadword precision. Fortran
- complex*8 and complex*16 are returned in FPR1:FPR2, and
- complex*32 is returned in FPR1:FPR4. */
- if (TYPE_CODE (valtype) == TYPE_CODE_FLT
- && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
- {
- struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
- gdb_byte regval[8];
-
- /* FIXME: kettenis/2007-01-01: Add support for quadword
- precision and complex. */
-
- if (readbuf)
- {
- regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
- convert_typed_floating (regval, regtype, readbuf, valtype);
- }
- if (writebuf)
- {
- convert_typed_floating (writebuf, valtype, regval, regtype);
- regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
- }
-
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
+/* When compiling for EABI, some versions of GCC emit a call to __eabi
+ in the prologue of main().
- /* Values of the types int, long, short, pointer, and char (length
- is less than or equal to four bytes), as well as bit values of
- lengths less than or equal to 32 bits, must be returned right
- justified in GPR3 with signed values sign extended and unsigned
- values zero extended, as necessary. */
- if (TYPE_LENGTH (valtype) <= tdep->wordsize)
- {
- if (readbuf)
- {
- ULONGEST regval;
-
- /* For reading we don't have to worry about sign extension. */
- regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
- ®val);
- store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
- }
- if (writebuf)
- {
- /* For writing, use unpack_long since that should handle any
- required sign extension. */
- regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
- unpack_long (valtype, writebuf));
- }
+ The function below examines the code pointed at by PC and checks to
+ see if it corresponds to a call to __eabi. If so, it returns the
+ address of the instruction following that call. Otherwise, it simply
+ returns PC. */
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
+static CORE_ADDR
+rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ gdb_byte buf[4];
+ unsigned long op;
- /* Eight-byte non-floating-point scalar values must be returned in
- GPR3:GPR4. */
+ if (target_read_memory (pc, buf, 4))
+ return pc;
+ op = extract_unsigned_integer (buf, 4, byte_order);
- if (TYPE_LENGTH (valtype) == 8)
+ if ((op & BL_MASK) == BL_INSTRUCTION)
{
- gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
- gdb_assert (tdep->wordsize == 4);
-
- if (readbuf)
- {
- gdb_byte regval[8];
+ CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
+ CORE_ADDR call_dest = pc + 4 + displ;
+ struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest);
- regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
- regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
- regval + 4);
- memcpy (readbuf, regval, 8);
- }
- if (writebuf)
- {
- regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
- regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
- writebuf + 4);
- }
-
- return RETURN_VALUE_REGISTER_CONVENTION;
+ /* We check for ___eabi (three leading underscores) in addition
+ to __eabi in case the GCC option "-fleading-underscore" was
+ used to compile the program. */
+ if (s != NULL
+ && SYMBOL_LINKAGE_NAME (s) != NULL
+ && (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0
+ || strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0))
+ pc += 4;
}
+ return pc;
+}
- return RETURN_VALUE_STRUCT_CONVENTION;
+/* All the ABI's require 16 byte alignment. */
+static CORE_ADDR
+rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+ return (addr & -16);
}
/* Return whether handle_inferior_event() should proceed through code
gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
@FIX code. */
-int
-rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
+static int
+rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
+ CORE_ADDR pc, char *name)
{
return name && !strncmp (name, "@FIX", 4);
}
Result is desired PC to step until, or NULL if we are not in
code that should be skipped. */
-CORE_ADDR
+static CORE_ADDR
rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
+ struct gdbarch *gdbarch = get_frame_arch (frame);
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
unsigned int ii, op;
int rel;
CORE_ADDR solib_target_pc;
/* Check for bigtoc fixup code. */
msymbol = lookup_minimal_symbol_by_pc (pc);
if (msymbol
- && rs6000_in_solib_return_trampoline (pc,
- DEPRECATED_SYMBOL_NAME (msymbol)))
+ && rs6000_in_solib_return_trampoline (gdbarch, pc,
+ SYMBOL_LINKAGE_NAME (msymbol)))
{
/* Double-check that the third instruction from PC is relative "b". */
- op = read_memory_integer (pc + 8, 4);
+ op = read_memory_integer (pc + 8, 4, byte_order);
if ((op & 0xfc000003) == 0x48000000)
{
/* Extract bits 6-29 as a signed 24-bit relative word address and
for (ii = 0; trampoline_code[ii]; ++ii)
{
- op = read_memory_integer (pc + (ii * 4), 4);
+ op = read_memory_integer (pc + (ii * 4), 4, byte_order);
if (op != trampoline_code[ii])
return 0;
}
ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
- pc = read_memory_addr (ii,
- gdbarch_tdep (get_frame_arch (frame))->wordsize); /* (r11) value */
+ pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
return pc;
}
if (!tdep->ppc_builtin_type_vec64)
{
+ const struct builtin_type *bt = builtin_type (gdbarch);
+
/* The type we're building is this: */
#if 0
union __gdb_builtin_type_vec64
struct type *t;
- t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
- append_composite_type_field (t, "uint64", builtin_type_int64);
+ t = arch_composite_type (gdbarch,
+ "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
+ append_composite_type_field (t, "uint64", bt->builtin_int64);
append_composite_type_field (t, "v2_float",
- init_vector_type (builtin_type_float, 2));
+ init_vector_type (bt->builtin_float, 2));
append_composite_type_field (t, "v2_int32",
- init_vector_type (builtin_type_int32, 2));
+ init_vector_type (bt->builtin_int32, 2));
append_composite_type_field (t, "v4_int16",
- init_vector_type (builtin_type_int16, 4));
+ init_vector_type (bt->builtin_int16, 4));
append_composite_type_field (t, "v8_int8",
- init_vector_type (builtin_type_int8, 8));
+ init_vector_type (bt->builtin_int8, 8));
- TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
+ TYPE_VECTOR (t) = 1;
TYPE_NAME (t) = "ppc_builtin_type_vec64";
tdep->ppc_builtin_type_vec64 = t;
}
return tdep->ppc_builtin_type_vec64;
}
-/* Return the size of register REG when words are WORDSIZE bytes long. If REG
- isn't available with that word size, return 0. */
+/* Vector 128 type. */
-static int
-regsize (const struct reg *reg, int wordsize)
+static struct type *
+rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
{
- return wordsize == 8 ? reg->sz64 : reg->sz32;
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ if (!tdep->ppc_builtin_type_vec128)
+ {
+ const struct builtin_type *bt = builtin_type (gdbarch);
+
+ /* The type we're building is this
+
+ type = union __ppc_builtin_type_vec128 {
+ uint128_t uint128;
+ float v4_float[4];
+ int32_t v4_int32[4];
+ int16_t v8_int16[8];
+ int8_t v16_int8[16];
+ }
+ */
+
+ struct type *t;
+
+ t = arch_composite_type (gdbarch,
+ "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
+ append_composite_type_field (t, "uint128", bt->builtin_uint128);
+ append_composite_type_field (t, "v4_float",
+ init_vector_type (bt->builtin_float, 4));
+ append_composite_type_field (t, "v4_int32",
+ init_vector_type (bt->builtin_int32, 4));
+ append_composite_type_field (t, "v8_int16",
+ init_vector_type (bt->builtin_int16, 8));
+ append_composite_type_field (t, "v16_int8",
+ init_vector_type (bt->builtin_int8, 16));
+
+ TYPE_VECTOR (t) = 1;
+ TYPE_NAME (t) = "ppc_builtin_type_vec128";
+ tdep->ppc_builtin_type_vec128 = t;
+ }
+
+ return tdep->ppc_builtin_type_vec128;
}
/* Return the name of register number REGNO, or the empty string if it
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
return "";
+ /* Hide the upper halves of the vs0~vs31 registers. */
+ if (tdep->ppc_vsr0_regnum >= 0
+ && tdep->ppc_vsr0_upper_regnum <= regno
+ && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
+ return "";
+
/* Check if the SPE pseudo registers are available. */
if (IS_SPE_PSEUDOREG (tdep, regno))
{
return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
}
+ /* Check if this is a VSX pseudo-register. */
+ if (IS_VSX_PSEUDOREG (tdep, regno))
+ {
+ static const char *const vsx_regnames[] = {
+ "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
+ "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
+ "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
+ "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
+ "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
+ "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
+ "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
+ "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
+ "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
+ };
+ return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
+ }
+
+ /* Check if the this is a Extended FP pseudo-register. */
+ if (IS_EFP_PSEUDOREG (tdep, regno))
+ {
+ static const char *const efpr_regnames[] = {
+ "f32", "f33", "f34", "f35", "f36", "f37", "f38",
+ "f39", "f40", "f41", "f42", "f43", "f44", "f45",
+ "f46", "f47", "f48", "f49", "f50", "f51",
+ "f52", "f53", "f54", "f55", "f56", "f57",
+ "f58", "f59", "f60", "f61", "f62", "f63"
+ };
+ return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
+ }
+
return tdesc_register_name (gdbarch, regno);
}
/* These are the only pseudo-registers we support. */
gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
- || IS_DFP_PSEUDOREG (tdep, regnum));
+ || IS_DFP_PSEUDOREG (tdep, regnum)
+ || IS_VSX_PSEUDOREG (tdep, regnum)
+ || IS_EFP_PSEUDOREG (tdep, regnum));
/* These are the e500 pseudo-registers. */
if (IS_SPE_PSEUDOREG (tdep, regnum))
return rs6000_builtin_type_vec64 (gdbarch);
- else
- /* Could only be the ppc decimal128 pseudo-registers. */
+ else if (IS_DFP_PSEUDOREG (tdep, regnum))
+ /* PPC decimal128 pseudo-registers. */
return builtin_type (gdbarch)->builtin_declong;
+ else if (IS_VSX_PSEUDOREG (tdep, regnum))
+ /* POWER7 VSX pseudo-registers. */
+ return rs6000_builtin_type_vec128 (gdbarch);
+ else
+ /* POWER7 Extended FP pseudo-registers. */
+ return builtin_type (gdbarch)->builtin_double;
}
/* Is REGNUM a member of REGGROUP? */
/* These are the only pseudo-registers we support. */
gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
- || IS_DFP_PSEUDOREG (tdep, regnum));
+ || IS_DFP_PSEUDOREG (tdep, regnum)
+ || IS_VSX_PSEUDOREG (tdep, regnum)
+ || IS_EFP_PSEUDOREG (tdep, regnum));
- /* These are the e500 pseudo-registers. */
- if (IS_SPE_PSEUDOREG (tdep, regnum))
+ /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
+ if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
return group == all_reggroup || group == vector_reggroup;
else
- /* Could only be the ppc decimal128 pseudo-registers. */
+ /* PPC decimal128 or Extended FP pseudo-registers. */
return group == all_reggroup || group == float_reggroup;
}
&& regnum >= tdep->ppc_fp0_regnum
&& regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
&& TYPE_CODE (type) == TYPE_CODE_FLT
- && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
+ && TYPE_LENGTH (type)
+ != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
}
static void
struct type *type,
gdb_byte *to)
{
+ struct gdbarch *gdbarch = get_frame_arch (frame);
gdb_byte from[MAX_REGISTER_SIZE];
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
get_frame_register (frame, regnum, from);
- convert_typed_floating (from, builtin_type_double, to, type);
+ convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
+ to, type);
}
static void
struct type *type,
const gdb_byte *from)
{
+ struct gdbarch *gdbarch = get_frame_arch (frame);
gdb_byte to[MAX_REGISTER_SIZE];
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
- convert_typed_floating (from, type, to, builtin_type_double);
+ convert_typed_floating (from, type,
+ to, builtin_type (gdbarch)->builtin_double);
put_frame_register (frame, regnum, to);
}
regcache, reg_nr, (gdb_byte *) buffer);
}
-/* Read method for PPC pseudo-registers. Currently this is handling the
- 16 decimal128 registers that map into 16 pairs of FP registers. */
+/* Read method for DFP pseudo-registers. */
static void
-ppc_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, gdb_byte *buffer)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
}
}
-/* Write method for PPC pseudo-registers. Currently this is handling the
- 16 decimal128 registers that map into 16 pairs of FP registers. */
+/* Write method for DFP pseudo-registers. */
static void
-ppc_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, const gdb_byte *buffer)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
}
}
+/* Read method for POWER7 VSX pseudo-registers. */
+static void
+vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+ int reg_nr, gdb_byte *buffer)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
+
+ /* Read the portion that overlaps the VMX registers. */
+ if (reg_index > 31)
+ regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
+ reg_index - 32, buffer);
+ else
+ /* Read the portion that overlaps the FPR registers. */
+ if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+ {
+ regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+ reg_index, buffer);
+ regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
+ reg_index, buffer + 8);
+ }
+ else
+ {
+ regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+ reg_index, buffer + 8);
+ regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
+ reg_index, buffer);
+ }
+}
+
+/* Write method for POWER7 VSX pseudo-registers. */
+static void
+vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+ int reg_nr, const gdb_byte *buffer)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
+
+ /* Write the portion that overlaps the VMX registers. */
+ if (reg_index > 31)
+ regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
+ reg_index - 32, buffer);
+ else
+ /* Write the portion that overlaps the FPR registers. */
+ if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+ {
+ regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+ reg_index, buffer);
+ regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
+ reg_index, buffer + 8);
+ }
+ else
+ {
+ regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+ reg_index, buffer + 8);
+ regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
+ reg_index, buffer);
+ }
+}
+
+/* Read method for POWER7 Extended FP pseudo-registers. */
+static void
+efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+ int reg_nr, gdb_byte *buffer)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
+
+ /* Read the portion that overlaps the VMX registers. */
+ regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
+ reg_index, buffer);
+}
+
+/* Write method for POWER7 Extended FP pseudo-registers. */
+static void
+efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+ int reg_nr, const gdb_byte *buffer)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
+
+ /* Write the portion that overlaps the VMX registers. */
+ regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
+ reg_index, buffer);
+}
+
static void
rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, gdb_byte *buffer)
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
- ppc_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+ dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+ else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
+ vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+ else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
+ efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
else
internal_error (__FILE__, __LINE__,
_("rs6000_pseudo_register_read: "
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
- ppc_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
+ dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
+ else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
+ vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
+ else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
+ efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
else
internal_error (__FILE__, __LINE__,
_("rs6000_pseudo_register_write: "
}
}
\f
-/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
-
- Usually a function pointer's representation is simply the address
- of the function. On the RS/6000 however, a function pointer is
- represented by a pointer to an OPD entry. This OPD entry contains
- three words, the first word is the address of the function, the
- second word is the TOC pointer (r2), and the third word is the
- static chain value. Throughout GDB it is currently assumed that a
- function pointer contains the address of the function, which is not
- easy to fix. In addition, the conversion of a function address to
- a function pointer would require allocation of an OPD entry in the
- inferior's memory space, with all its drawbacks. To be able to
- call C++ virtual methods in the inferior (which are called via
- function pointers), find_function_addr uses this function to get the
- function address from a function pointer. */
-
-/* Return real function address if ADDR (a function pointer) is in the data
- space and is therefore a special function pointer. */
-
-static CORE_ADDR
-rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
- CORE_ADDR addr,
- struct target_ops *targ)
-{
- struct obj_section *s;
-
- s = find_pc_section (addr);
- if (s && s->the_bfd_section->flags & SEC_CODE)
- return addr;
-
- /* ADDR is in the data space, so it's a special function pointer. */
- return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
-}
-\f
/* Handling the various POWER/PowerPC variants. */
static struct variant variants[] =
{
{"powerpc", "PowerPC user-level", bfd_arch_powerpc,
- bfd_mach_ppc, &tdesc_powerpc_32},
+ bfd_mach_ppc, &tdesc_powerpc_altivec32},
{"power", "POWER user-level", bfd_arch_rs6000,
bfd_mach_rs6k, &tdesc_rs6000},
{"403", "IBM PowerPC 403", bfd_arch_powerpc,
/* 64-bit */
{"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
- bfd_mach_ppc64, &tdesc_powerpc_64},
+ bfd_mach_ppc64, &tdesc_powerpc_altivec64},
{"620", "Motorola PowerPC 620", bfd_arch_powerpc,
bfd_mach_ppc_620, &tdesc_powerpc_64},
{"630", "Motorola PowerPC 630", bfd_arch_powerpc,
}
static struct frame_id
-rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
+rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
- return frame_id_build (frame_unwind_register_unsigned
- (next_frame, gdbarch_sp_regnum (gdbarch)),
- frame_pc_unwind (next_frame));
+ return frame_id_build (get_frame_register_unsigned
+ (this_frame, gdbarch_sp_regnum (gdbarch)),
+ get_frame_pc (this_frame));
}
struct rs6000_frame_cache
};
static struct rs6000_frame_cache *
-rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
+rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
{
struct rs6000_frame_cache *cache;
- struct gdbarch *gdbarch = get_frame_arch (next_frame);
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct rs6000_framedata fdata;
int wordsize = tdep->wordsize;
CORE_ADDR func, pc;
return (*this_cache);
cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
(*this_cache) = cache;
- cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
+ cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
- func = frame_func_unwind (next_frame, NORMAL_FRAME);
- pc = frame_pc_unwind (next_frame);
+ func = get_frame_func (this_frame);
+ pc = get_frame_pc (this_frame);
skip_prologue (gdbarch, func, pc, &fdata);
/* Figure out the parent's stack pointer. */
->frame pointed to the outer-most address of the frame. In
the mean time, the address of the prev frame is used as the
base address of this frame. */
- cache->base = frame_unwind_register_unsigned
- (next_frame, gdbarch_sp_regnum (gdbarch));
+ cache->base = get_frame_register_unsigned
+ (this_frame, gdbarch_sp_regnum (gdbarch));
/* If the function appears to be frameless, check a couple of likely
indicators that we have simply failed to find the frame setup.
Two common cases of this are missing symbols (i.e.
- frame_func_unwind returns the wrong address or 0), and assembly
+ get_frame_func returns the wrong address or 0), and assembly
stubs which have a fast exit path but set up a frame on the slow
path.
CORE_ADDR saved_lr;
int make_frame = 0;
- saved_lr = frame_unwind_register_unsigned (next_frame,
- tdep->ppc_lr_regnum);
+ saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
if (func == 0 && saved_lr == pc)
make_frame = 1;
else if (func != 0)
if (!fdata.frameless)
/* Frameless really means stackless. */
- cache->base = read_memory_addr (cache->base, wordsize);
+ cache->base
+ = read_memory_unsigned_integer (cache->base, wordsize, byte_order);
trad_frame_set_value (cache->saved_regs,
gdbarch_sp_regnum (gdbarch), cache->base);
}
/* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
- All gpr's from saved_gpr to gpr31 are saved. */
+ All gpr's from saved_gpr to gpr31 are saved (except during the
+ prologue). */
if (fdata.saved_gpr >= 0)
{
CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
{
- cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
+ if (fdata.gpr_mask & (1U << i))
+ cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
gpr_addr += wordsize;
}
}
holds the LR. */
if (fdata.lr_offset != 0)
cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
+ else if (fdata.lr_register != -1)
+ cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
/* The PC is found in the link register. */
cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
cache->saved_regs[tdep->ppc_lr_regnum];
if (fdata.alloca_reg < 0)
/* If no alloca register used, then fi->frame is the value of the
%sp for this frame, and it is good enough. */
- cache->initial_sp = frame_unwind_register_unsigned
- (next_frame, gdbarch_sp_regnum (gdbarch));
+ cache->initial_sp
+ = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
else
- cache->initial_sp = frame_unwind_register_unsigned (next_frame,
- fdata.alloca_reg);
+ cache->initial_sp
+ = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
return cache;
}
static void
-rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
+rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
struct frame_id *this_id)
{
- struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
+ struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
this_cache);
- (*this_id) = frame_id_build (info->base,
- frame_func_unwind (next_frame, NORMAL_FRAME));
+ /* This marks the outermost frame. */
+ if (info->base == 0)
+ return;
+
+ (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}
-static void
-rs6000_frame_prev_register (struct frame_info *next_frame,
- void **this_cache,
- int regnum, int *optimizedp,
- enum lval_type *lvalp, CORE_ADDR *addrp,
- int *realnump, gdb_byte *valuep)
+static struct value *
+rs6000_frame_prev_register (struct frame_info *this_frame,
+ void **this_cache, int regnum)
{
- struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
+ struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
this_cache);
- trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
- optimizedp, lvalp, addrp, realnump, valuep);
+ return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}
static const struct frame_unwind rs6000_frame_unwind =
{
NORMAL_FRAME,
rs6000_frame_this_id,
- rs6000_frame_prev_register
+ rs6000_frame_prev_register,
+ NULL,
+ default_frame_sniffer
};
-
-static const struct frame_unwind *
-rs6000_frame_sniffer (struct frame_info *next_frame)
-{
- return &rs6000_frame_unwind;
-}
-
\f
static CORE_ADDR
-rs6000_frame_base_address (struct frame_info *next_frame,
- void **this_cache)
+rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
- struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
+ struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
this_cache);
return info->initial_sp;
}
};
static const struct frame_base *
-rs6000_frame_base_sniffer (struct frame_info *next_frame)
+rs6000_frame_base_sniffer (struct frame_info *this_frame)
{
return &rs6000_frame_base;
}
static void
ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
struct dwarf2_frame_state_reg *reg,
- struct frame_info *next_frame)
+ struct frame_info *this_frame)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_architecture arch;
unsigned long mach;
bfd abfd;
- int sysv_abi;
asection *sect;
enum auto_boolean soft_float_flag = powerpc_soft_float_global;
int soft_float;
enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
- int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0;
+ int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
+ have_vsx = 0;
int tdesc_wordsize = -1;
const struct target_desc *tdesc = info.target_desc;
struct tdesc_arch_data *tdesc_data = NULL;
int num_pseudoregs = 0;
+ int cur_reg;
from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
- sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
-
/* Check word size. If INFO is from a binary file, infer it from
that, else choose a likely default. */
if (from_xcoff_exec)
wordsize = 4;
}
- if (!from_xcoff_exec)
- {
- arch = info.bfd_arch_info->arch;
- mach = info.bfd_arch_info->mach;
- }
- else
- {
- arch = bfd_arch_powerpc;
- bfd_default_set_arch_mach (&abfd, arch, 0);
- info.bfd_arch_info = bfd_get_arch_info (&abfd);
- mach = info.bfd_arch_info->mach;
- }
+ /* Get the architecture and machine from the BFD. */
+ arch = info.bfd_arch_info->arch;
+ mach = info.bfd_arch_info->mach;
/* For e500 executables, the apuinfo section is of help here. Such
section contains the identifier and revision number of each
else
have_altivec = 0;
+ /* Check for POWER7 VSX registers support. */
+ feature = tdesc_find_feature (tdesc,
+ "org.gnu.gdb.power.vsx");
+
+ if (feature != NULL)
+ {
+ static const char *const vsx_regs[] = {
+ "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
+ "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
+ "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
+ "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
+ "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
+ "vs30h", "vs31h"
+ };
+
+ valid_p = 1;
+
+ for (i = 0; i < ppc_num_vshrs; i++)
+ valid_p &= tdesc_numbered_register (feature, tdesc_data,
+ PPC_VSR0_UPPER_REGNUM + i,
+ vsx_regs[i]);
+ if (!valid_p)
+ {
+ tdesc_data_cleanup (tdesc_data);
+ return NULL;
+ }
+
+ have_vsx = 1;
+ }
+ else
+ have_vsx = 0;
+
/* On machines supporting the SPE APU, the general-purpose registers
are 64 bits long. There are SIMD vector instructions to treat them
as pairs of floats, but the rest of the instruction set treats them
tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
+ tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
alias. */
set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
- if (sysv_abi && wordsize == 8)
+ if (wordsize == 8)
set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
- else if (sysv_abi && wordsize == 4)
- set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
else
- set_gdbarch_return_value (gdbarch, rs6000_return_value);
+ set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
/* Set lr_frame_offset. */
if (wordsize == 8)
tdep->lr_frame_offset = 16;
- else if (sysv_abi)
- tdep->lr_frame_offset = 4;
else
- tdep->lr_frame_offset = 8;
+ tdep->lr_frame_offset = 4;
- if (have_spe || have_dfp)
+ if (have_spe || have_dfp || have_vsx)
{
set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write);
num_pseudoregs += 32;
if (have_dfp)
num_pseudoregs += 16;
+ if (have_vsx)
+ /* Include both VSX and Extended FP registers. */
+ num_pseudoregs += 96;
set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
- if (sysv_abi)
- set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
- else
- set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
set_gdbarch_char_signed (gdbarch, 0);
set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
- if (sysv_abi && wordsize == 8)
+ if (wordsize == 8)
/* PPC64 SYSV. */
set_gdbarch_frame_red_zone_size (gdbarch, 288);
- else if (!sysv_abi && wordsize == 4)
- /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
- 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
- Problem is, 220 isn't frame (16 byte) aligned. Round it up to
- 224. */
- set_gdbarch_frame_red_zone_size (gdbarch, 224);
set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
- if (sysv_abi && wordsize == 4)
+ if (wordsize == 4)
set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
- else if (sysv_abi && wordsize == 8)
+ else if (wordsize == 8)
set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
- else
- set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
+ set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
/* Handles single stepping of atomic sequences. */
- set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
+ set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
- /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
- for the descriptor and ".FN" for the entry-point -- a user
- specifying "break FN" will unexpectedly end up with a breakpoint
- on the descriptor and not the function. This architecture method
- transforms any breakpoints on descriptors into breakpoints on the
- corresponding entry point. */
- if (sysv_abi && wordsize == 8)
- set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
-
/* Not sure on this. FIXMEmgo */
set_gdbarch_frame_args_skip (gdbarch, 8);
- if (!sysv_abi)
- {
- /* Handle RS/6000 function pointers (which are really function
- descriptors). */
- set_gdbarch_convert_from_func_ptr_addr (gdbarch,
- rs6000_convert_from_func_ptr_addr);
- }
-
/* Helpers for function argument information. */
set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
/* Hook in the DWARF CFI frame unwinder. */
- frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
+ dwarf2_append_unwinders (gdbarch);
dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
/* Frame handling. */
dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
+ /* Setup displaced stepping. */
+ set_gdbarch_displaced_step_copy_insn (gdbarch,
+ simple_displaced_step_copy_insn);
+ set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
+ set_gdbarch_displaced_step_free_closure (gdbarch,
+ simple_displaced_step_free_closure);
+ set_gdbarch_displaced_step_location (gdbarch,
+ displaced_step_at_entry_point);
+
+ set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
+
/* Hook in ABI-specific overrides, if they have been registered. */
+ info.target_desc = tdesc;
+ info.tdep_info = (void *) tdesc_data;
gdbarch_init_osabi (info, gdbarch);
switch (info.osabi)
case GDB_OSABI_NETBSD_ELF:
case GDB_OSABI_UNKNOWN:
set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
- frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
- set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
+ frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
+ set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
break;
default:
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
- frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
- set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
+ frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
+ set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
}
halves anonymous. */
set_gdbarch_register_name (gdbarch, rs6000_register_name);
- /* Recording the numbering of pseudo registers. */
- tdep->ppc_ev0_regnum = have_spe ? gdbarch_num_regs (gdbarch) : -1;
+ /* Choose register numbers for all supported pseudo-registers. */
+ tdep->ppc_ev0_regnum = -1;
+ tdep->ppc_dl0_regnum = -1;
+ tdep->ppc_vsr0_regnum = -1;
+ tdep->ppc_efpr0_regnum = -1;
- /* Set the register number for _Decimal128 pseudo-registers. */
- tdep->ppc_dl0_regnum = have_dfp? gdbarch_num_regs (gdbarch) : -1;
+ cur_reg = gdbarch_num_regs (gdbarch);
+
+ if (have_spe)
+ {
+ tdep->ppc_ev0_regnum = cur_reg;
+ cur_reg += 32;
+ }
+ if (have_dfp)
+ {
+ tdep->ppc_dl0_regnum = cur_reg;
+ cur_reg += 16;
+ }
+ if (have_vsx)
+ {
+ tdep->ppc_vsr0_regnum = cur_reg;
+ cur_reg += 64;
+ tdep->ppc_efpr0_regnum = cur_reg;
+ cur_reg += 32;
+ }
- if (have_dfp && have_spe)
- /* Put the _Decimal128 pseudo-registers after the SPE registers. */
- tdep->ppc_dl0_regnum += 32;
+ gdb_assert (gdbarch_num_regs (gdbarch)
+ + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
return gdbarch;
}
/* Initialize the standard target descriptions. */
initialize_tdesc_powerpc_32 ();
+ initialize_tdesc_powerpc_altivec32 ();
+ initialize_tdesc_powerpc_vsx32 ();
initialize_tdesc_powerpc_403 ();
initialize_tdesc_powerpc_403gc ();
initialize_tdesc_powerpc_505 ();
initialize_tdesc_powerpc_603 ();
initialize_tdesc_powerpc_604 ();
initialize_tdesc_powerpc_64 ();
+ initialize_tdesc_powerpc_altivec64 ();
+ initialize_tdesc_powerpc_vsx64 ();
initialize_tdesc_powerpc_7400 ();
initialize_tdesc_powerpc_750 ();
initialize_tdesc_powerpc_860 ();