/* Interface between GDB and target environments, including files and processes
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
- 2000, 2001 Free Software Foundation, Inc.
+ 2000, 2001, 2002 Free Software Foundation, Inc.
Contributed by Cygnus Support. Written by John Gilmore.
This file is part of GDB.
#if !defined (TARGET_H)
#define TARGET_H
+struct objfile;
+struct ui_file;
+struct mem_attrib;
+struct target_ops;
+
/* This include file defines the interface between the main part
of the debugger, and the part which is target-specific, or
specific to the communications interface between us and the
inferior. */
TARGET_WAITKIND_SPURIOUS,
- /* This is used for target async and extended-async
- only. Remote_async_wait() returns this when there is an event
+ /* An event has occured, but we should wait again.
+ Remote_async_wait() returns this when there is an event
on the inferior, but the rest of the world is not interested in
it. The inferior has not stopped, but has just sent some output
to the console, for instance. In this case, we want to go back
/* Given a name (SIGHUP, etc.), return its signal. */
enum target_signal target_signal_from_name (char *);
\f
+/* Request the transfer of up to LEN 8-bit bytes of the target's
+ OBJECT. The OFFSET, for a seekable object, specifies the starting
+ point. The ANNEX can be used to provide additional data-specific
+ information to the target.
+
+ Return the number of bytes actually transfered, zero when no
+ further transfer is possible, and -1 when the transfer is not
+ supported.
+
+ NOTE: cagney/2003-10-17: The current interface does not support a
+ "retry" mechanism. Instead it assumes that at least one byte will
+ be transfered on each call.
+
+ NOTE: cagney/2003-10-17: The current interface can lead to
+ fragmented transfers. Lower target levels should not implement
+ hacks, such as enlarging the transfer, in an attempt to compensate
+ for this. Instead, the target stack should be extended so that it
+ implements supply/collect methods and a look-aside object cache.
+ With that available, the lowest target can safely and freely "push"
+ data up the stack.
+
+ NOTE: cagney/2003-10-17: Unlike the old query and the memory
+ transfer mechanisms, these methods are explicitly parameterized by
+ the target that it should be applied to.
+
+ NOTE: cagney/2003-10-17: Just like the old query and memory xfer
+ methods, these new methods perform partial transfers. The only
+ difference is that these new methods thought to include "partial"
+ in the name. The old code's failure to do this lead to much
+ confusion and duplication of effort as each target object attempted
+ to locally take responsibility for something it didn't have to
+ worry about.
+
+ NOTE: cagney/2003-10-17: For backward compatibility with the
+ "target_query" method that this replaced, when BUF, OFFSET and LEN
+ are NULL/zero, return the "minimum" buffer size. See "remote.c"
+ for further information. */
+
+enum target_object
+{
+ /* Kernel Object Display transfer. See "kod.c" and "remote.c". */
+ TARGET_OBJECT_KOD,
+ /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
+ TARGET_OBJECT_AVR,
+ /* Transfer up-to LEN bytes of memory starting at OFFSET. */
+ TARGET_OBJECT_MEORY
+ /* Possible future ojbects: TARGET_OJBECT_FILE, TARGET_OBJECT_PROC,
+ TARGET_OBJECT_AUXV, ... */
+};
+
+extern LONGEST target_read_partial (struct target_ops *ops,
+ enum target_object object,
+ const char *annex, void *buf,
+ ULONGEST offset, LONGEST len);
+
+extern LONGEST target_write_partial (struct target_ops *ops,
+ enum target_object object,
+ const char *annex, const void *buf,
+ ULONGEST offset, LONGEST len);
+
+/* Wrappers to perform the full transfer. */
+extern LONGEST target_read (struct target_ops *ops,
+ enum target_object object,
+ const char *annex, void *buf,
+ ULONGEST offset, LONGEST len);
+
+extern LONGEST target_write (struct target_ops *ops,
+ enum target_object object,
+ const char *annex, const void *buf,
+ ULONGEST offset, LONGEST len);
+\f
/* If certain kinds of activity happen, target_wait should perform
callbacks. */
struct target_ops
{
+ struct target_ops *beneath; /* To the target under this one. */
char *to_shortname; /* Name this target type */
char *to_longname; /* Name for printing */
char *to_doc; /* Documentation. Does not include trailing
void (*to_close) (int);
void (*to_attach) (char *, int);
void (*to_post_attach) (int);
- void (*to_require_attach) (char *, int);
void (*to_detach) (char *, int);
- void (*to_require_detach) (int, char *, int);
+ void (*to_disconnect) (char *, int);
void (*to_resume) (ptid_t, int, enum target_signal);
ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
void (*to_post_wait) (ptid_t, int);
struct mem_attrib *attrib,
struct target_ops *target);
-#if 0
- /* Enable this after 4.12. */
-
- /* Search target memory. Start at STARTADDR and take LEN bytes of
- target memory, and them with MASK, and compare to DATA. If they
- match, set *ADDR_FOUND to the address we found it at, store the data
- we found at LEN bytes starting at DATA_FOUND, and return. If
- not, add INCREMENT to the search address and keep trying until
- the search address is outside of the range [LORANGE,HIRANGE).
-
- If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
- return. */
-
- void (*to_search) (int len, char *data, char *mask,
- CORE_ADDR startaddr, int increment,
- CORE_ADDR lorange, CORE_ADDR hirange,
- CORE_ADDR * addr_found, char *data_found);
-
-#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
- (*current_target.to_search) (len, data, mask, startaddr, increment, \
- lorange, hirange, addr_found, data_found)
-#endif /* 0 */
-
void (*to_files_info) (struct target_ops *);
int (*to_insert_breakpoint) (CORE_ADDR, char *);
int (*to_remove_breakpoint) (CORE_ADDR, char *);
+ int (*to_can_use_hw_breakpoint) (int, int, int);
+ int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
+ int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
+ int (*to_remove_watchpoint) (CORE_ADDR, int, int);
+ int (*to_insert_watchpoint) (CORE_ADDR, int, int);
+ int (*to_stopped_by_watchpoint) (void);
+ int to_have_continuable_watchpoint;
+ CORE_ADDR (*to_stopped_data_address) (void);
+ int (*to_region_size_ok_for_hw_watchpoint) (int);
void (*to_terminal_init) (void);
void (*to_terminal_inferior) (void);
void (*to_terminal_ours_for_output) (void);
void (*to_terminal_ours) (void);
+ void (*to_terminal_save_ours) (void);
void (*to_terminal_info) (char *, int);
void (*to_kill) (void);
void (*to_load) (char *, int);
void (*to_create_inferior) (char *, char *, char **);
void (*to_post_startup_inferior) (ptid_t);
void (*to_acknowledge_created_inferior) (int);
- void (*to_clone_and_follow_inferior) (int, int *);
- void (*to_post_follow_inferior_by_clone) (void);
int (*to_insert_fork_catchpoint) (int);
int (*to_remove_fork_catchpoint) (int);
int (*to_insert_vfork_catchpoint) (int);
int (*to_remove_vfork_catchpoint) (int);
- int (*to_has_forked) (int, int *);
- int (*to_has_vforked) (int, int *);
- int (*to_can_follow_vfork_prior_to_exec) (void);
- void (*to_post_follow_vfork) (int, int, int, int);
+ int (*to_follow_fork) (int);
int (*to_insert_exec_catchpoint) (int);
int (*to_remove_exec_catchpoint) (int);
- int (*to_has_execd) (int, char **);
int (*to_reported_exec_events_per_exec_call) (void);
- int (*to_has_syscall_event) (int, enum target_waitkind *, int *);
int (*to_has_exited) (int, int, int *);
void (*to_mourn_inferior) (void);
int (*to_can_run) (void);
char *(*to_pid_to_str) (ptid_t);
char *(*to_extra_thread_info) (struct thread_info *);
void (*to_stop) (void);
- int (*to_query) (int /*char */ , char *, char *, int *);
void (*to_rcmd) (char *command, struct ui_file *output);
struct symtab_and_line *(*to_enable_exception_callback) (enum
exception_event_kind,
struct exception_event_record *(*to_get_current_exception_event) (void);
char *(*to_pid_to_exec_file) (int pid);
enum strata to_stratum;
- struct target_ops
- *DONT_USE; /* formerly to_next */
int to_has_all_memory;
int to_has_memory;
int to_has_stack;
void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
void *context);
int to_async_mask_value;
+ int (*to_find_memory_regions) (int (*) (CORE_ADDR,
+ unsigned long,
+ int, int, int,
+ void *),
+ void *);
+ char * (*to_make_corefile_notes) (bfd *, int *);
+
+ /* Return the thread-local address at OFFSET in the
+ thread-local storage for the thread PTID and the shared library
+ or executable file given by OBJFILE. If that block of
+ thread-local storage hasn't been allocated yet, this function
+ may return an error. */
+ CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
+ struct objfile *objfile,
+ CORE_ADDR offset);
+
+ /* See above. */
+ LONGEST (*to_read_partial) (struct target_ops *ops,
+ enum target_object object,
+ const char *annex, void *buf,
+ ULONGEST offset, LONGEST len);
+ LONGEST (*to_write_partial) (struct target_ops *ops,
+ enum target_object object,
+ const char *annex, const void *buf,
+ ULONGEST offset, LONGEST len);
+
int to_magic;
/* Need sub-structure for target machine related rather than comm related?
*/
extern struct target_ops current_target;
-/* An item on the target stack. */
-
-struct target_stack_item
- {
- struct target_stack_item *next;
- struct target_ops *target_ops;
- };
-
-/* The target stack. */
-
-extern struct target_stack_item *target_stack;
-
/* Define easy words for doing these operations on our current target. */
#define target_shortname (current_target.to_shortname)
#define target_post_attach(pid) \
(*current_target.to_post_attach) (pid)
-/* Attaches to a process on the target side, if not already attached.
- (If already attached, takes no action.)
-
- This operation can be used to follow the child process of a fork.
- On some targets, such child processes of an original inferior process
- are automatically under debugger control, and thus do not require an
- actual attach operation. */
-
-#define target_require_attach(args, from_tty) \
- (*current_target.to_require_attach) (args, from_tty)
-
/* Takes a program previously attached to and detaches it.
The program may resume execution (some targets do, some don't) and will
no longer stop on signals, etc. We better not have left any breakpoints
extern void target_detach (char *, int);
-/* Detaches from a process on the target side, if not already dettached.
- (If already detached, takes no action.)
-
- This operation can be used to follow the parent process of a fork.
- On some targets, such child processes of an original inferior process
- are automatically under debugger control, and thus do require an actual
- detach operation.
+/* Disconnect from the current target without resuming it (leaving it
+ waiting for a debugger). */
- PID is the process id of the child to detach from.
- ARGS is arguments typed by the user (e.g. a signal to send the process).
- FROM_TTY says whether to be verbose or not. */
-
-#define target_require_detach(pid, args, from_tty) \
- (*current_target.to_require_detach) (pid, args, from_tty)
+extern void target_disconnect (char *, int);
/* Resume execution of the target process PTID. STEP says whether to
single-step or to run free; SIGGNAL is the signal to be given to
(*current_target.to_resume) (ptid, step, siggnal); \
} while (0)
-/* Wait for process pid to do something. PTID = -1 to wait for any pid
- to do something. Return pid of child, or -1 in case of error;
+/* Wait for process pid to do something. PTID = -1 to wait for any
+ pid to do something. Return pid of child, or -1 in case of error;
store status through argument pointer STATUS. Note that it is
- *not* OK to return_to_top_level out of target_wait without popping
+ _NOT_ OK to throw_exception() out of target_wait() without popping
the debugging target from the stack; GDB isn't prepared to get back
to the prompt with a debugging target but without the frame cache,
stop_pc, etc., set up. */
of bytes actually transfered is not defined) and ERR is set to a
non-zero error indication. */
-extern int
-target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
+extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
+ int *err);
-extern int
-target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
+extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
+ int *err);
extern char *child_pid_to_exec_file (int);
extern void child_acknowledge_created_inferior (int);
-extern void child_clone_and_follow_inferior (int, int *);
-
-extern void child_post_follow_inferior_by_clone (void);
-
extern int child_insert_fork_catchpoint (int);
extern int child_remove_fork_catchpoint (int);
extern int child_remove_vfork_catchpoint (int);
-extern int child_has_forked (int, int *);
-
-extern int child_has_vforked (int, int *);
-
extern void child_acknowledge_created_inferior (int);
-extern int child_can_follow_vfork_prior_to_exec (void);
-
-extern void child_post_follow_vfork (int, int, int, int);
+extern int child_follow_fork (int);
extern int child_insert_exec_catchpoint (int);
extern int child_remove_exec_catchpoint (int);
-extern int child_has_execd (int, char **);
-
extern int child_reported_exec_events_per_exec_call (void);
-extern int child_has_syscall_event (int, enum target_waitkind *, int *);
-
extern int child_has_exited (int, int, int *);
extern int child_thread_alive (ptid_t);
+/* From infrun.c. */
+
+extern int inferior_has_forked (int pid, int *child_pid);
+
+extern int inferior_has_vforked (int pid, int *child_pid);
+
+extern int inferior_has_execd (int pid, char **execd_pathname);
+
/* From exec.c */
extern void print_section_info (struct target_ops *, bfd *);
#define target_files_info() \
(*current_target.to_files_info) (¤t_target)
-/* Insert a breakpoint at address ADDR in the target machine.
- SAVE is a pointer to memory allocated for saving the
- target contents. It is guaranteed by the caller to be long enough
- to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
- an errno value. */
+/* Insert a breakpoint at address ADDR in the target machine. SAVE is
+ a pointer to memory allocated for saving the target contents. It
+ is guaranteed by the caller to be long enough to save the number of
+ breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
+ success, or an errno value. */
#define target_insert_breakpoint(addr, save) \
(*current_target.to_insert_breakpoint) (addr, save)
#define target_terminal_ours() \
(*current_target.to_terminal_ours) ()
+/* Save our terminal settings.
+ This is called from TUI after entering or leaving the curses
+ mode. Since curses modifies our terminal this call is here
+ to take this change into account. */
+
+#define target_terminal_save_ours() \
+ (*current_target.to_terminal_save_ours) ()
+
/* Print useful information about our terminal status, if such a thing
exists. */
#define target_acknowledge_created_inferior(pid) \
(*current_target.to_acknowledge_created_inferior) (pid)
-/* An inferior process has been created via a fork() or similar
- system call. This function will clone the debugger, then ensure
- that CHILD_PID is attached to by that debugger.
-
- FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
- and FALSE otherwise. (The original and clone debuggers can use this
- to determine which they are, if need be.)
-
- (This is not a terribly useful feature without a GUI to prevent
- the two debuggers from competing for shell input.) */
-
-#define target_clone_and_follow_inferior(child_pid,followed_child) \
- (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
-
-/* This operation is intended to be used as the last in a sequence of
- steps taken when following both parent and child of a fork. This
- is used by a clone of the debugger, which will follow the child.
-
- The original debugger has detached from this process, and the
- clone has attached to it.
-
- On some targets, this requires a bit of cleanup to make it work
- correctly. */
-
-#define target_post_follow_inferior_by_clone() \
- (*current_target.to_post_follow_inferior_by_clone) ()
-
/* On some targets, we can catch an inferior fork or vfork event when
it occurs. These functions insert/remove an already-created
catchpoint for such events. */
#define target_remove_vfork_catchpoint(pid) \
(*current_target.to_remove_vfork_catchpoint) (pid)
-/* Returns TRUE if PID has invoked the fork() system call. And,
- also sets CHILD_PID to the process id of the other ("child")
- inferior process that was created by that call. */
+/* If the inferior forks or vforks, this function will be called at
+ the next resume in order to perform any bookkeeping and fiddling
+ necessary to continue debugging either the parent or child, as
+ requested, and releasing the other. Information about the fork
+ or vfork event is available via get_last_target_status ().
+ This function returns 1 if the inferior should not be resumed
+ (i.e. there is another event pending). */
-#define target_has_forked(pid,child_pid) \
- (*current_target.to_has_forked) (pid,child_pid)
-
-/* Returns TRUE if PID has invoked the vfork() system call. And,
- also sets CHILD_PID to the process id of the other ("child")
- inferior process that was created by that call. */
-
-#define target_has_vforked(pid,child_pid) \
- (*current_target.to_has_vforked) (pid,child_pid)
-
-/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
- anything to a vforked child before it subsequently calls exec().
- On such platforms, we say that the debugger cannot "follow" the
- child until it has vforked.
-
- This function should be defined to return 1 by those targets
- which can allow the debugger to immediately follow a vforked
- child, and 0 if they cannot. */
-
-#define target_can_follow_vfork_prior_to_exec() \
- (*current_target.to_can_follow_vfork_prior_to_exec) ()
-
-/* An inferior process has been created via a vfork() system call.
- The debugger has followed the parent, the child, or both. The
- process of setting up for that follow may have required some
- target-specific trickery to track the sequence of reported events.
- If so, this function should be defined by those targets that
- require the debugger to perform cleanup or initialization after
- the vfork follow. */
-
-#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
- (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
+#define target_follow_fork(follow_child) \
+ (*current_target.to_follow_fork) (follow_child)
/* On some targets, we can catch an inferior exec event when it
occurs. These functions insert/remove an already-created
#define target_remove_exec_catchpoint(pid) \
(*current_target.to_remove_exec_catchpoint) (pid)
-/* Returns TRUE if PID has invoked a flavor of the exec() system call.
- And, also sets EXECD_PATHNAME to the pathname of the executable
- file that was passed to exec(), and is now being executed. */
-
-#define target_has_execd(pid,execd_pathname) \
- (*current_target.to_has_execd) (pid,execd_pathname)
-
/* Returns the number of exec events that are reported when a process
invokes a flavor of the exec() system call on this target, if exec
events are being reported. */
#define target_reported_exec_events_per_exec_call() \
(*current_target.to_reported_exec_events_per_exec_call) ()
-/* Returns TRUE if PID has reported a syscall event. And, also sets
- KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
- the unique integer ID of the syscall. */
-
-#define target_has_syscall_event(pid,kind,syscall_id) \
- (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
-
/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
exit code of PID, if any. */
#define target_stop current_target.to_stop
-/* Queries the target side for some information. The first argument is a
- letter specifying the type of the query, which is used to determine who
- should process it. The second argument is a string that specifies which
- information is desired and the third is a buffer that carries back the
- response from the target side. The fourth parameter is the size of the
- output buffer supplied. */
-
-#define target_query(query_type, query, resp_buffer, bufffer_size) \
- (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
-
/* Send the specified COMMAND to the target's monitor
(shell,interpreter) for execution. The result of the query is
placed in OUTBUF. */
#define target_get_current_exception_event() \
(*current_target.to_get_current_exception_event) ()
-/* Pointer to next target in the chain, e.g. a core file and an exec file. */
-
-#define target_next \
- (current_target.to_next)
-
/* Does the target include all of memory, or only part of it? This
determines whether we look up the target chain for other parts of
memory if this target can't satisfy a request. */
#define target_async(CALLBACK,CONTEXT) \
(current_target.to_async((CALLBACK), (CONTEXT)))
-/* This is to be used ONLY within run_stack_dummy(). It
- provides a workaround, to have inferior function calls done in
- sychronous mode, even though the target is asynchronous. After
+/* This is to be used ONLY within call_function_by_hand(). It provides
+ a workaround, to have inferior function calls done in sychronous
+ mode, even though the target is asynchronous. After
target_async_mask(0) is called, calls to target_can_async_p() will
return FALSE , so that target_resume() will not try to start the
target asynchronously. After the inferior stops, we IMMEDIATELY
restore the previous nature of the target, by calling
target_async_mask(1). After that, target_can_async_p() will return
- TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
+ TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
FIXME ezannoni 1999-12-13: we won't need this once we move
the turning async on and off to the single execution commands,
#define target_pid_to_exec_file(pid) \
(current_target.to_pid_to_exec_file) (pid)
-/* Hook to call target-dependent code after reading in a new symbol table. */
+/*
+ * Iterator function for target memory regions.
+ * Calls a callback function once for each memory region 'mapped'
+ * in the child process. Defined as a simple macro rather than
+ * as a function macro so that it can be tested for nullity.
+ */
-#ifndef TARGET_SYMFILE_POSTREAD
-#define TARGET_SYMFILE_POSTREAD(OBJFILE)
-#endif
+#define target_find_memory_regions(FUNC, DATA) \
+ (current_target.to_find_memory_regions) (FUNC, DATA)
+
+/*
+ * Compose corefile .note section.
+ */
+
+#define target_make_corefile_notes(BFD, SIZE_P) \
+ (current_target.to_make_corefile_notes) (BFD, SIZE_P)
+
+/* Thread-local values. */
+#define target_get_thread_local_address \
+ (current_target.to_get_thread_local_address)
+#define target_get_thread_local_address_p() \
+ (target_get_thread_local_address != NULL)
/* Hook to call target dependent code just after inferior target process has
started. */
write). */
#ifndef STOPPED_BY_WATCHPOINT
-#define STOPPED_BY_WATCHPOINT(w) 0
+#define STOPPED_BY_WATCHPOINT(w) \
+ (*current_target.to_stopped_by_watchpoint) ()
+#endif
+
+/* Non-zero if we have continuable watchpoints */
+
+#ifndef HAVE_CONTINUABLE_WATCHPOINT
+#define HAVE_CONTINUABLE_WATCHPOINT \
+ (current_target.to_have_continuable_watchpoint)
#endif
/* HP-UX supplies these operations, which respectively disable and enable
#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
#endif
-/* Provide defaults for systems that don't support hardware watchpoints. */
+/* Provide defaults for hardware watchpoint functions. */
-#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
+/* If the *_hw_beakpoint functions have not been defined
+ elsewhere use the definitions in the target vector. */
/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
(including this one?). OTHERTYPE is who knows what... */
-#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
+#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
+#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
+ (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
+#endif
#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
- ((LONGEST)(byte_count) <= REGISTER_SIZE)
-#endif
-
-/* However, some addresses may not be profitable to use hardware to watch,
- or may be difficult to understand when the addressed object is out of
- scope, and hence should be unwatched. On some targets, this may have
- severe performance penalties, such that we might as well use regular
- watchpoints, and save (possibly precious) hardware watchpoints for other
- locations. */
-
-#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
-#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
+ (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
#endif
for write, 1 for read, and 2 for read/write accesses. Returns 0 for
success, non-zero for failure. */
-#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
-#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
+#ifndef target_insert_watchpoint
+#define target_insert_watchpoint(addr, len, type) \
+ (*current_target.to_insert_watchpoint) (addr, len, type)
-#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
+#define target_remove_watchpoint(addr, len, type) \
+ (*current_target.to_remove_watchpoint) (addr, len, type)
+#endif
#ifndef target_insert_hw_breakpoint
-#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
-#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
+#define target_insert_hw_breakpoint(addr, save) \
+ (*current_target.to_insert_hw_breakpoint) (addr, save)
+
+#define target_remove_hw_breakpoint(addr, save) \
+ (*current_target.to_remove_hw_breakpoint) (addr, save)
#endif
#ifndef target_stopped_data_address
-#define target_stopped_data_address() 0
+#define target_stopped_data_address() \
+ (*current_target.to_stopped_data_address) ()
#endif
/* If defined, then we need to decr pc by this much after a hardware break-
bfd *bfd; /* BFD file pointer */
};
+/* Return the "section" containing the specified address. */
+struct section_table *target_section_by_addr (struct target_ops *target,
+ CORE_ADDR addr);
+
+
/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
Returns 0 if OK, 1 on error. */
-extern int
-build_section_table (bfd *, struct section_table **, struct section_table **);
+extern int build_section_table (bfd *, struct section_table **,
+ struct section_table **);
/* From mem-break.c */
extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
-extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
-
/* From target.c */
extern void find_default_attach (char *, int);
-extern void find_default_require_attach (char *, int);
-
-extern void find_default_require_detach (int, char *, int);
-
extern void find_default_create_inferior (char *, char *, char **);
-extern void find_default_clone_and_follow_inferior (int, int *);
-
extern struct target_ops *find_run_target (void);
extern struct target_ops *find_core_target (void);
extern struct target_ops *find_target_beneath (struct target_ops *);
-extern int
-target_resize_to_sections (struct target_ops *target, int num_added);
+extern int target_resize_to_sections (struct target_ops *target,
+ int num_added);
extern void remove_target_sections (bfd *abfd);
/* Blank target vector entries are initialized to target_ignore. */
void target_ignore (void);
-/* Macro for getting target's idea of a frame pointer.
- FIXME: GDB's whole scheme for dealing with "frames" and
- "frame pointers" needs a serious shakedown. */
-#ifndef TARGET_VIRTUAL_FRAME_POINTER
-#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
- do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
-#endif /* TARGET_VIRTUAL_FRAME_POINTER */
-
#endif /* !defined (TARGET_H) */