# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
#
# Number of bits in a short or unsigned short for the target machine.
-v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
+v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
# Number of bits in an int or unsigned int for the target machine.
-v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
+v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
# Number of bits in a long or unsigned long for the target machine.
-v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
+v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
# Number of bits in a long long or unsigned long long for the target
# machine.
-v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
+v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
# The ABI default bit-size and format for "float", "double", and "long
# double". These bit/format pairs should eventually be combined into
# Each format describes both the big and little endian layouts (if
# useful).
-v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
-v:TARGET_FLOAT_FORMAT:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
-v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
-v:TARGET_DOUBLE_FORMAT:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
-v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
-v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
+v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
+v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
+v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
+v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
+v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
+v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
# For most targets, a pointer on the target and its representation as an
# address in GDB have the same size and "look the same". For such a
-# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
+# target, you need only set gdbarch_ptr_bit and TARGET_ADDR_BIT
# / addr_bit will be set from it.
#
-# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
+# If gdbarch_ptr_bit and TARGET_ADDR_BIT are different, you'll probably
# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
# as well.
#
# ptr_bit is the size of a pointer on the target
-v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
+v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
# addr_bit is the size of a target address as represented in gdb
-v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
+v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
# Number of bits in a BFD_VMA for the target object file format.
-v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
+v::int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
#
# One if \`char' acts like \`signed char', zero if \`unsigned char'.
v::int:char_signed:::1:-1:1
# Function for getting target's idea of a frame pointer. FIXME: GDB's
# whole scheme for dealing with "frames" and "frame pointers" needs a
# serious shakedown.
-f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
+f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
#
M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
v:=:int:ps_regnum:::-1:-1::0
v:=:int:fp0_regnum:::0:-1::0
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
-f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
+f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
-f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
+f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
# Provide a default mapping from a DWARF register number to a gdb REGNUM.
-f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
+f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
# Convert from an sdb register number to an internal gdb register number.
-f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
-f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
-f:=:const char *:register_name:int regnr:regnr
+f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
+f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
+f::const char *:register_name:int regnr:regnr
# Return the type of a register specified by the architecture. Only
# the register cache should call this function directly; others should
M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
# MAP a GDB RAW register number onto a simulator register number. See
# also include/...-sim.h.
-f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
-F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
+f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
# setjmp/longjmp support.
#
v:=:int:believe_pcc_promotion:::::::
#
-f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
-f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
-f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
+f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
+f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
+f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
# Construct a value representing the contents of register REGNUM in
# frame FRAME, interpreted as type TYPE. The routine needs to
# allocate and return a struct value with all value attributes
F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
#
-f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
+f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
-f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
+f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
-f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
-f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
-v:=:CORE_ADDR:decr_pc_after_break:::0:::0
+f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
+f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
+v::CORE_ADDR:decr_pc_after_break:::0:::0
# A function can be addressed by either it's "pointer" (possibly a
# descriptor address) or "entry point" (first executable instruction).
m::int:remote_register_number:int regno:regno::default_remote_register_number::0
# Fetch the target specific address used to represent a load module.
-F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
+F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
#
-v:=:CORE_ADDR:frame_args_skip:::0:::0
+v::CORE_ADDR:frame_args_skip:::0:::0
M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
# frame-base. Enable frame-base before frame-unwind.
-F:=:int:frame_num_args:struct frame_info *frame:frame
+F::int:frame_num_args:struct frame_info *frame:frame
#
-# DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
-# to frame_align and the requirement that methods such as
-# push_dummy_call and frame_red_zone_size maintain correct stack/frame
-# alignment.
-F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
M::CORE_ADDR:frame_align:CORE_ADDR address:address
# DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
# stabs_argument_has_addr.
m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
# On some machines there are bits in addresses which are not really
# part of the address, but are used by the kernel, the hardware, etc.
-# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
+# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
# we get a "real" address such as one would find in a symbol table.
# This is used only for addresses of instructions, and even then I'm
# not sure it's used in all contexts. It exists to deal with there
# being a few stray bits in the PC which would mislead us, not as some
# sort of generic thing to handle alignment or segmentation (it's
# possible it should be in TARGET_READ_PC instead).
-f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
-# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
-# ADDR_BITS_REMOVE.
-f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
+f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
+# It is not at all clear why gdbarch_smash_text_address is not folded into
+# gdbarch_addr_bits_remove.
+f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
# FIXME/cagney/2001-01-18: This should be split in two. A target method that
# indicates if the target needs software single step. An ISA method to
# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
# disassembler. Perhaps objdump can handle it?
f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
-f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
+f::CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
# a step-resume breakpoint to get us past the dynamic linker.
m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
# Some systems also have trampoline code for returning from shared libs.
-f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
+f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
# A target might have problems with watchpoints as soon as the stack
# frame of the current function has been destroyed. This mostly happens
# ARGC is the number of elements in the vector.
# ARGV is an array of strings, one per argument.
m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
-f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
-f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
-v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
-v:=:int:cannot_step_breakpoint:::0:0::0
-v:=:int:have_nonsteppable_watchpoint:::0:0::0
-F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
+f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
+f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
+v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
+v::int:cannot_step_breakpoint:::0:0::0
+v::int:have_nonsteppable_watchpoint:::0:0::0
+F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
# Is a register in a group
m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
# Fetch the pointer to the ith function argument.
-F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
+F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
# Return the appropriate register set for a core file section with
# name SECT_NAME and size SECT_SIZE.
struct gdbarch_tdep *tdep)
{
/* NOTE: The new architecture variable is named \`\`current_gdbarch''
- so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
+ so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
the current local architecture and not the previous global
architecture. This ensures that the new architectures initial
values are not influenced by the previous architecture. Once