/* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
- Copyright 1986, 1987, 1989, 1991, 1992, 1994, 1995, 1996, 1997, 1998
+ Copyright 1986, 1987, 1989, 1991, 1992, 1994, 1995, 1996, 1997,
+ 1998, 2001
Free Software Foundation, Inc.
This file is part of GDB.
#include "libbfd.h" /* For bfd_cache_lookup (FIXME) */
#include "bfd.h"
#include "gdb-stabs.h"
+#include "regcache.h"
#include <sys/ptrace.h>
#include <sys/reg.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <fcntl.h>
+#include <errno.h>
#include <a.out.h>
#include <sys/file.h>
#include "gdb_stat.h"
#include <sys/core.h>
+#define __LDINFO_PTRACE32__ /* for __ld_info32 */
+#define __LDINFO_PTRACE64__ /* for __ld_info64 */
#include <sys/ldr.h>
+#include <sys/systemcfg.h>
-extern int errno;
+/* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
+ debugging 32-bit and 64-bit processes. Define a typedef and macros for
+ accessing fields in the appropriate structures. */
-extern struct vmap *map_vmap PARAMS ((bfd * bf, bfd * arch));
+/* In 32-bit compilation mode (which is the only mode from which ptrace()
+ works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
+
+#ifdef __ld_info32
+# define ARCH3264
+#endif
+
+/* Return whether the current architecture is 64-bit. */
+
+#ifndef ARCH3264
+# define ARCH64() 0
+#else
+# define ARCH64() (REGISTER_RAW_SIZE (0) == 8)
+#endif
+
+/* Union of 32-bit and 64-bit ".reg" core file sections. */
+
+typedef union {
+#ifdef ARCH3264
+ struct __context64 r64;
+#else
+ struct mstsave r64;
+#endif
+ struct mstsave r32;
+} CoreRegs;
+
+/* Union of 32-bit and 64-bit versions of ld_info. */
+
+typedef union {
+#ifndef ARCH3264
+ struct ld_info l32;
+ struct ld_info l64;
+#else
+ struct __ld_info32 l32;
+ struct __ld_info64 l64;
+#endif
+} LdInfo;
+
+/* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
+ declare and initialize a variable named VAR suitable for use as the arch64
+ parameter to the various LDI_*() macros. */
+
+#ifndef ARCH3264
+# define ARCH64_DECL(var)
+#else
+# define ARCH64_DECL(var) int var = ARCH64 ()
+#endif
+
+/* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
+ otherwise. This technique only works for FIELDs with the same data type in
+ 32-bit and 64-bit versions of ld_info. */
+
+#ifndef ARCH3264
+# define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
+#else
+# define LDI_FIELD(ldi, arch64, field) \
+ (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
+#endif
+
+/* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
+ process otherwise. */
+
+#define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
+#define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
+#define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
+
+extern struct vmap *map_vmap (bfd * bf, bfd * arch);
extern struct target_ops exec_ops;
-static void
-vmap_exec PARAMS ((void));
+static void vmap_exec (void);
-static void
-vmap_ldinfo PARAMS ((struct ld_info *));
+static void vmap_ldinfo (LdInfo *);
-static struct vmap *
- add_vmap PARAMS ((struct ld_info *));
+static struct vmap *add_vmap (LdInfo *);
-static int
-objfile_symbol_add PARAMS ((char *));
+static int objfile_symbol_add (void *);
-static void
-vmap_symtab PARAMS ((struct vmap *));
+static void vmap_symtab (struct vmap *);
-static void
-fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
+static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
-static void
-exec_one_dummy_insn PARAMS ((void));
+static void exec_one_dummy_insn (void);
extern void
-fixup_breakpoints PARAMS ((CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta));
+fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
-/* Conversion from gdb-to-system special purpose register numbers.. */
+/* Conversion from gdb-to-system special purpose register numbers. */
static int special_regs[] =
{
MQ /* MQ_REGNUM */
};
-void
-fetch_inferior_registers (regno)
- int regno;
+/* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
+
+static int
+ptrace32 (int req, int id, int *addr, int data, int *buf)
{
- int ii;
+ int ret = ptrace (req, id, (int *)addr, data, buf);
+#if 0
+ printf ("ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
+ req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
+#endif
+ return ret;
+}
- if (regno < 0)
- { /* for all registers */
+/* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
- /* read 32 general purpose registers. */
+static int
+ptrace64 (int req, int id, long long addr, int data, int *buf)
+{
+#ifdef ARCH3264
+ int ret = ptracex (req, id, addr, data, buf);
+#else
+ int ret = 0;
+#endif
+#if 0
+ printf ("ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
+ req, id, addr, data, (unsigned int)buf, ret);
+#endif
+ return ret;
+}
- for (ii = 0; ii < 32; ++ii)
- *(int *) ®isters[REGISTER_BYTE (ii)] =
- ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) ii, 0, 0);
+/* Fetch register REGNO from the inferior. */
- /* read general purpose floating point registers. */
+static void
+fetch_register (int regno)
+{
+ int *addr = (int *) ®isters[REGISTER_BYTE (regno)];
+ int nr;
+
+ /* Retrieved values may be -1, so infer errors from errno. */
+ errno = 0;
- for (ii = 0; ii < 32; ++ii)
- ptrace (PT_READ_FPR, inferior_pid,
- (PTRACE_ARG3_TYPE) & registers[REGISTER_BYTE (FP0_REGNUM + ii)],
- FPR0 + ii, 0);
+ /* Floating-point registers. */
+ if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM)
+ {
+ nr = regno - FP0_REGNUM + FPR0;
+ ptrace32 (PT_READ_FPR, inferior_pid, addr, nr, 0);
+ }
- /* read special registers. */
- for (ii = 0; ii <= LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM; ++ii)
- *(int *) ®isters[REGISTER_BYTE (FIRST_UISA_SP_REGNUM + ii)] =
- ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) special_regs[ii],
- 0, 0);
+ /* Bogus register number. */
+ else if (regno > LAST_UISA_SP_REGNUM)
+ fprintf_unfiltered (gdb_stderr,
+ "gdb error: register no %d not implemented.\n",
+ regno);
- registers_fetched ();
- return;
+ /* Fixed-point registers. */
+ else
+ {
+ if (regno >= FIRST_UISA_SP_REGNUM)
+ nr = special_regs[regno - FIRST_UISA_SP_REGNUM];
+ else
+ nr = regno;
+
+ if (!ARCH64 ())
+ *addr = ptrace32 (PT_READ_GPR, inferior_pid, (int *)nr, 0, 0);
+ else
+ {
+ /* PT_READ_GPR requires the buffer parameter to point to long long,
+ even if the register is really only 32 bits. */
+ long long buf;
+ ptrace64 (PT_READ_GPR, inferior_pid, nr, 0, (int *)&buf);
+ if (REGISTER_RAW_SIZE (regno) == 8)
+ memcpy (addr, &buf, 8);
+ else
+ *addr = buf;
+ }
}
- /* else an individual register is addressed. */
+ if (!errno)
+ register_valid[regno] = 1;
+ else
+ {
+#if 0
+ /* FIXME: this happens 3 times at the start of each 64-bit program. */
+ perror ("ptrace read");
+#endif
+ errno = 0;
+ }
+}
+
+/* Store register REGNO back into the inferior. */
+
+static void
+store_register (int regno)
+{
+ int *addr = (int *) ®isters[REGISTER_BYTE (regno)];
+ int nr;
+
+ /* -1 can be a successful return value, so infer errors from errno. */
+ errno = 0;
- else if (regno < FP0_REGNUM)
- { /* a GPR */
- *(int *) ®isters[REGISTER_BYTE (regno)] =
- ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) regno, 0, 0);
+ /* Floating-point registers. */
+ if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM)
+ {
+ nr = regno - FP0_REGNUM + FPR0;
+ ptrace32 (PT_WRITE_FPR, inferior_pid, addr, nr, 0);
+ }
+
+ /* Bogus register number. */
+ else if (regno > LAST_UISA_SP_REGNUM)
+ {
+ if (regno >= NUM_REGS)
+ fprintf_unfiltered (gdb_stderr,
+ "gdb error: register no %d not implemented.\n",
+ regno);
}
- else if (regno <= FPLAST_REGNUM)
- { /* a FPR */
- ptrace (PT_READ_FPR, inferior_pid,
- (PTRACE_ARG3_TYPE) & registers[REGISTER_BYTE (regno)],
- (regno - FP0_REGNUM + FPR0), 0);
+
+ /* Fixed-point registers. */
+ else
+ {
+ if (regno == SP_REGNUM)
+ /* Execute one dummy instruction (which is a breakpoint) in inferior
+ process to give kernel a chance to do internal housekeeping.
+ Otherwise the following ptrace(2) calls will mess up user stack
+ since kernel will get confused about the bottom of the stack
+ (%sp). */
+ exec_one_dummy_insn ();
+
+ if (regno >= FIRST_UISA_SP_REGNUM)
+ nr = special_regs[regno - FIRST_UISA_SP_REGNUM];
+ else
+ nr = regno;
+
+ if (!ARCH64 ())
+ ptrace32 (PT_WRITE_GPR, inferior_pid, (int *)nr, *addr, 0);
+ else
+ {
+ /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
+ area, even if the register is really only 32 bits. */
+ long long buf;
+ if (REGISTER_RAW_SIZE (regno) == 8)
+ memcpy (&buf, addr, 8);
+ else
+ buf = *addr;
+ ptrace64 (PT_WRITE_GPR, inferior_pid, nr, 0, (int *)&buf);
+ }
}
- else if (regno <= LAST_UISA_SP_REGNUM)
- { /* a special register */
- *(int *) ®isters[REGISTER_BYTE (regno)] =
- ptrace (PT_READ_GPR, inferior_pid,
- (PTRACE_ARG3_TYPE) special_regs[regno - FIRST_UISA_SP_REGNUM],
- 0, 0);
+
+ if (errno)
+ {
+ perror ("ptrace write");
+ errno = 0;
}
+}
+
+/* Read from the inferior all registers if REGNO == -1 and just register
+ REGNO otherwise. */
+
+void
+fetch_inferior_registers (int regno)
+{
+ if (regno != -1)
+ fetch_register (regno);
+
else
- fprintf_unfiltered (gdb_stderr,
- "gdb error: register no %d not implemented.\n",
- regno);
+ {
+ /* read 32 general purpose registers. */
+ for (regno = 0; regno < 32; regno++)
+ fetch_register (regno);
- register_valid[regno] = 1;
+ /* read general purpose floating point registers. */
+ for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
+ fetch_register (regno);
+
+ /* read special registers. */
+ for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++)
+ fetch_register (regno);
+ }
}
/* Store our register values back into the inferior.
Otherwise, REGNO specifies which register (so we can save time). */
void
-store_inferior_registers (regno)
- int regno;
+store_inferior_registers (int regno)
{
+ if (regno != -1)
+ store_register (regno);
+
+ else
+ {
+ /* write general purpose registers first! */
+ for (regno = GPR0; regno <= GPR31; regno++)
+ store_register (regno);
+
+ /* write floating point registers now. */
+ for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
+ store_register (regno);
+
+ /* write special registers. */
+
+ for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++)
+ store_register (regno);
+ }
+}
+
+/* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
+ process, which is 64-bit if ARCH64 and 32-bit otherwise. Return
+ success. */
+static int
+read_word (CORE_ADDR from, int *to, int arch64)
+{
+ /* Retrieved values may be -1, so infer errors from errno. */
errno = 0;
- if (regno == -1)
- { /* for all registers.. */
- int ii;
+ if (arch64)
+ *to = ptrace64 (PT_READ_I, inferior_pid, from, 0, NULL);
+ else
+ *to = ptrace32 (PT_READ_I, inferior_pid, (int *)(long) from, 0, NULL);
- /* execute one dummy instruction (which is a breakpoint) in inferior
- process. So give kernel a chance to do internal house keeping.
- Otherwise the following ptrace(2) calls will mess up user stack
- since kernel will get confused about the bottom of the stack (%sp) */
+ return !errno;
+}
- exec_one_dummy_insn ();
+/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
+ to debugger memory starting at MYADDR. Copy to inferior if
+ WRITE is nonzero.
- /* write general purpose registers first! */
- for (ii = GPR0; ii <= GPR31; ++ii)
- {
- ptrace (PT_WRITE_GPR, inferior_pid, (PTRACE_ARG3_TYPE) ii,
- *(int *) ®isters[REGISTER_BYTE (ii)], 0);
- if (errno)
- {
- perror ("ptrace write_gpr");
- errno = 0;
- }
- }
+ Returns the length copied, which is either the LEN argument or zero.
+ This xfer function does not do partial moves, since child_ops
+ doesn't allow memory operations to cross below us in the target stack
+ anyway. */
- /* write floating point registers now. */
- for (ii = 0; ii < 32; ++ii)
- {
- ptrace (PT_WRITE_FPR, inferior_pid,
- (PTRACE_ARG3_TYPE) & registers[REGISTER_BYTE (FP0_REGNUM + ii)],
- FPR0 + ii, 0);
- if (errno)
- {
- perror ("ptrace write_fpr");
- errno = 0;
- }
- }
+int
+child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
+ int write, struct mem_attrib *attrib,
+ struct target_ops *target)
+{
+ /* Round starting address down to 32-bit word boundary. */
+ int mask = sizeof (int) - 1;
+ CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
- /* write special registers. */
- for (ii = 0; ii <= LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM; ++ii)
- {
- ptrace (PT_WRITE_GPR, inferior_pid,
- (PTRACE_ARG3_TYPE) special_regs[ii],
- *(int *) ®isters[REGISTER_BYTE (FIRST_UISA_SP_REGNUM + ii)],
- 0);
- if (errno)
- {
- perror ("ptrace write_gpr");
- errno = 0;
- }
- }
- }
+ /* Round ending address up to 32-bit word boundary. */
+ int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
+ / sizeof (int);
- /* else, a specific register number is given... */
+ /* Allocate word transfer buffer. */
+ int *buf = (int *) alloca (count * sizeof (int));
- else if (regno < FP0_REGNUM) /* a GPR */
- {
- ptrace (PT_WRITE_GPR, inferior_pid, (PTRACE_ARG3_TYPE) regno,
- *(int *) ®isters[REGISTER_BYTE (regno)], 0);
- }
+ int arch64 = ARCH64 ();
+ int i;
- else if (regno <= FPLAST_REGNUM) /* a FPR */
+ if (!write)
{
- ptrace (PT_WRITE_FPR, inferior_pid,
- (PTRACE_ARG3_TYPE) & registers[REGISTER_BYTE (regno)],
- regno - FP0_REGNUM + FPR0, 0);
- }
+ /* Retrieve memory a word at a time. */
+ for (i = 0; i < count; i++, addr += sizeof (int))
+ {
+ if (!read_word (addr, buf + i, arch64))
+ return 0;
+ QUIT;
+ }
- else if (regno <= LAST_UISA_SP_REGNUM) /* a special register */
- {
- ptrace (PT_WRITE_GPR, inferior_pid,
- (PTRACE_ARG3_TYPE) special_regs[regno - FIRST_UISA_SP_REGNUM],
- *(int *) ®isters[REGISTER_BYTE (regno)], 0);
+ /* Copy memory to supplied buffer. */
+ addr -= count * sizeof (int);
+ memcpy (myaddr, (char *)buf + (memaddr - addr), len);
}
-
else
- fprintf_unfiltered (gdb_stderr,
- "Gdb error: register no %d not implemented.\n",
- regno);
-
- if (errno)
{
- perror ("ptrace write");
- errno = 0;
+ /* Fetch leading memory needed for alignment. */
+ if (addr < memaddr)
+ if (!read_word (addr, buf, arch64))
+ return 0;
+
+ /* Fetch trailing memory needed for alignment. */
+ if (addr + count * sizeof (int) > memaddr + len)
+ if (!read_word (addr, buf + count - 1, arch64))
+ return 0;
+
+ /* Copy supplied data into memory buffer. */
+ memcpy ((char *)buf + (memaddr - addr), myaddr, len);
+
+ /* Store memory one word at a time. */
+ for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
+ {
+ if (arch64)
+ ptrace64 (PT_WRITE_D, inferior_pid, addr, buf[i], NULL);
+ else
+ ptrace32 (PT_WRITE_D, inferior_pid, (int *)(long) addr,
+ buf[i], NULL);
+
+ if (errno)
+ return 0;
+ QUIT;
+ }
}
+
+ return len;
}
/* Execute one dummy breakpoint instruction. This way we give the kernel
including u_area. */
static void
-exec_one_dummy_insn ()
+exec_one_dummy_insn (void)
{
#define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
- int status, pid;
+ int ret, status, pid;
CORE_ADDR prev_pc;
/* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
- errno = 0;
-
/* You might think this could be done with a single ptrace call, and
you'd be correct for just about every platform I've ever worked
on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
powerpc-ibm-aix4.1.3 works correctly). */
prev_pc = read_pc ();
write_pc (DUMMY_INSN_ADDR);
- ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, 0, 0);
+ if (ARCH64 ())
+ ret = ptrace64 (PT_CONTINUE, inferior_pid, 1, 0, NULL);
+ else
+ ret = ptrace32 (PT_CONTINUE, inferior_pid, (int *)1, 0, NULL);
- if (errno)
+ if (ret != 0)
perror ("pt_continue");
do
target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
}
+/* Fetch registers from the register section in core bfd. */
+
static void
-fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
- char *core_reg_sect;
- unsigned core_reg_size;
- int which;
- CORE_ADDR reg_addr; /* Unused in this version */
+fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
+ int which, CORE_ADDR reg_addr)
{
- /* fetch GPRs and special registers from the first register section
- in core bfd. */
- if (which == 0)
- {
- /* copy GPRs first. */
- memcpy (registers, core_reg_sect, 32 * 4);
+ CoreRegs *regs;
+ double *fprs;
+ int arch64, i, size;
+ void *gprs, *sprs[7];
- /* gdb's internal register template and bfd's register section layout
- should share a common include file. FIXMEmgo */
- /* then comes special registes. They are supposed to be in the same
- order in gdb template and bfd `.reg' section. */
- core_reg_sect += (32 * 4);
- memcpy (®isters[REGISTER_BYTE (FIRST_UISA_SP_REGNUM)],
- core_reg_sect,
- (LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM + 1) * 4);
+ if (which != 0)
+ {
+ fprintf_unfiltered
+ (gdb_stderr,
+ "Gdb error: unknown parameter to fetch_core_registers().\n");
+ return;
}
- /* fetch floating point registers from register section 2 in core bfd. */
- else if (which == 2)
- memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], core_reg_sect, 32 * 8);
+ arch64 = ARCH64 ();
+ regs = (CoreRegs *) core_reg_sect;
+ /* Retrieve register pointers. */
+
+ if (arch64)
+ {
+ gprs = regs->r64.gpr;
+ fprs = regs->r64.fpr;
+ sprs[0] = ®s->r64.iar;
+ sprs[1] = ®s->r64.msr;
+ sprs[2] = ®s->r64.cr;
+ sprs[3] = ®s->r64.lr;
+ sprs[4] = ®s->r64.ctr;
+ sprs[5] = ®s->r64.xer;
+ }
else
- fprintf_unfiltered
- (gdb_stderr,
- "Gdb error: unknown parameter to fetch_core_registers().\n");
+ {
+ gprs = regs->r32.gpr;
+ fprs = regs->r32.fpr;
+ sprs[0] = ®s->r32.iar;
+ sprs[1] = ®s->r32.msr;
+ sprs[2] = ®s->r32.cr;
+ sprs[3] = ®s->r32.lr;
+ sprs[4] = ®s->r32.ctr;
+ sprs[5] = ®s->r32.xer;
+ sprs[6] = ®s->r32.mq;
+ }
+
+ /* Copy from pointers to registers[]. */
+
+ memcpy (registers, gprs, 32 * (arch64 ? 8 : 4));
+ memcpy (registers + REGISTER_BYTE (FP0_REGNUM), fprs, 32 * 8);
+ for (i = FIRST_UISA_SP_REGNUM; i <= LAST_UISA_SP_REGNUM; i++)
+ {
+ size = REGISTER_RAW_SIZE (i);
+ if (size)
+ memcpy (registers + REGISTER_BYTE (i),
+ sprs[i - FIRST_UISA_SP_REGNUM], size);
+ }
}
\f
+
+/* Copy information about text and data sections from LDI to VP for a 64-bit
+ process if ARCH64 and for a 32-bit process otherwise. */
+
+static void
+vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
+{
+ if (arch64)
+ {
+ vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
+ vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
+ vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
+ vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
+ }
+ else
+ {
+ vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
+ vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
+ vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
+ vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
+ }
+
+ /* The run time loader maps the file header in addition to the text
+ section and returns a pointer to the header in ldinfo_textorg.
+ Adjust the text start address to point to the real start address
+ of the text section. */
+ vp->tstart += vp->toffs;
+}
+
/* handle symbol translation on vmapping */
static void
-vmap_symtab (vp)
- register struct vmap *vp;
+vmap_symtab (struct vmap *vp)
{
register struct objfile *objfile;
struct section_offsets *new_offsets;
return;
objfile = symfile_objfile;
}
+ else if (!vp->loaded)
+ /* If symbols are not yet loaded, offsets are not yet valid. */
+ return;
new_offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
for (i = 0; i < objfile->num_sections; ++i)
- ANOFFSET (new_offsets, i) = ANOFFSET (objfile->section_offsets, i);
+ new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
/* The symbols in the object file are linked to the VMA of the section,
relocate them VMA relative. */
- ANOFFSET (new_offsets, SECT_OFF_TEXT) = vp->tstart - vp->tvma;
- ANOFFSET (new_offsets, SECT_OFF_DATA) = vp->dstart - vp->dvma;
- ANOFFSET (new_offsets, SECT_OFF_BSS) = vp->dstart - vp->dvma;
+ new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
+ new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
+ new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
objfile_relocate (objfile, new_offsets);
}
/* Add symbols for an objfile. */
static int
-objfile_symbol_add (arg)
- char *arg;
+objfile_symbol_add (void *arg)
{
struct objfile *obj = (struct objfile *) arg;
return 1;
}
+/* Add symbols for a vmap. Return zero upon error. */
+
+int
+vmap_add_symbols (struct vmap *vp)
+{
+ if (catch_errors (objfile_symbol_add, vp->objfile,
+ "Error while reading shared library symbols:\n",
+ RETURN_MASK_ALL))
+ {
+ /* Note this is only done if symbol reading was successful. */
+ vp->loaded = 1;
+ vmap_symtab (vp);
+ return 1;
+ }
+ return 0;
+}
+
/* Add a new vmap entry based on ldinfo() information.
If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
Return the vmap new entry. */
static struct vmap *
-add_vmap (ldi)
- register struct ld_info *ldi;
+add_vmap (LdInfo *ldi)
{
bfd *abfd, *last;
- register char *mem, *objname;
+ register char *mem, *objname, *filename;
struct objfile *obj;
struct vmap *vp;
+ int fd;
+ ARCH64_DECL (arch64);
/* This ldi structure was allocated using alloca() in
xcoff_relocate_symtab(). Now we need to have persistent object
and member names, so we should save them. */
- mem = ldi->ldinfo_filename + strlen (ldi->ldinfo_filename) + 1;
+ filename = LDI_FILENAME (ldi, arch64);
+ mem = filename + strlen (filename) + 1;
mem = savestring (mem, strlen (mem));
- objname = savestring (ldi->ldinfo_filename, strlen (ldi->ldinfo_filename));
+ objname = savestring (filename, strlen (filename));
- if (ldi->ldinfo_fd < 0)
+ fd = LDI_FD (ldi, arch64);
+ if (fd < 0)
/* Note that this opens it once for every member; a possible
enhancement would be to only open it once for every object. */
abfd = bfd_openr (objname, gnutarget);
else
- abfd = bfd_fdopenr (objname, gnutarget, ldi->ldinfo_fd);
+ abfd = bfd_fdopenr (objname, gnutarget, fd);
if (!abfd)
- error ("Could not open `%s' as an executable file: %s",
- objname, bfd_errmsg (bfd_get_error ()));
+ {
+ warning ("Could not open `%s' as an executable file: %s",
+ objname, bfd_errmsg (bfd_get_error ()));
+ return NULL;
+ }
/* make sure we have an object file */
if (!last)
{
+ warning ("\"%s\": member \"%s\" missing.", objname, mem);
bfd_close (abfd);
- /* FIXME -- should be error */
- warning ("\"%s\": member \"%s\" missing.", abfd->filename, mem);
- return 0;
+ return NULL;
}
if (!bfd_check_format (last, bfd_object))
{
- bfd_close (last); /* XXX??? */
- goto obj_err;
+ warning ("\"%s\": member \"%s\" not in executable format: %s.",
+ objname, mem, bfd_errmsg (bfd_get_error ()));
+ bfd_close (last);
+ bfd_close (abfd);
+ return NULL;
}
vp = map_vmap (last, abfd);
}
else
{
- obj_err:
+ warning ("\"%s\": not in executable format: %s.",
+ objname, bfd_errmsg (bfd_get_error ()));
bfd_close (abfd);
- error ("\"%s\": not in executable format: %s.",
- objname, bfd_errmsg (bfd_get_error ()));
- /*NOTREACHED */
+ return NULL;
}
obj = allocate_objfile (vp->bfd, 0);
vp->objfile = obj;
-#ifndef SOLIB_SYMBOLS_MANUAL
- if (catch_errors (objfile_symbol_add, (char *) obj,
- "Error while reading shared library symbols:\n",
- RETURN_MASK_ALL))
- {
- /* Note this is only done if symbol reading was successful. */
- vmap_symtab (vp);
- vp->loaded = 1;
- }
-#endif
+ /* Always add symbols for the main objfile. */
+ if (vp == vmap || auto_solib_add)
+ vmap_add_symbols (vp);
return vp;
}
\f
Input is ptr to ldinfo() results. */
static void
-vmap_ldinfo (ldi)
- register struct ld_info *ldi;
+vmap_ldinfo (LdInfo *ldi)
{
struct stat ii, vi;
register struct vmap *vp;
int got_one, retried;
int got_exec_file = 0;
+ uint next;
+ int arch64 = ARCH64 ();
/* For each *ldi, see if we have a corresponding *vp.
If so, update the mapping, and symbol table.
do
{
- char *name = ldi->ldinfo_filename;
+ char *name = LDI_FILENAME (ldi, arch64);
char *memb = name + strlen (name) + 1;
+ int fd = LDI_FD (ldi, arch64);
retried = 0;
- if (fstat (ldi->ldinfo_fd, &ii) < 0)
+ if (fstat (fd, &ii) < 0)
{
/* The kernel sets ld_info to -1, if the process is still using the
object, and the object is removed. Keep the symbol info for the
removed object and issue a warning. */
warning ("%s (fd=%d) has disappeared, keeping its symbols",
- name, ldi->ldinfo_fd);
+ name, fd);
continue;
}
retry:
continue;
if (!retried)
- close (ldi->ldinfo_fd);
+ close (fd);
++got_one;
/* Found a corresponding VMAP. Remap! */
- /* We can assume pointer == CORE_ADDR, this code is native only. */
- vp->tstart = (CORE_ADDR) ldi->ldinfo_textorg;
- vp->tend = vp->tstart + ldi->ldinfo_textsize;
- vp->dstart = (CORE_ADDR) ldi->ldinfo_dataorg;
- vp->dend = vp->dstart + ldi->ldinfo_datasize;
-
- /* The run time loader maps the file header in addition to the text
- section and returns a pointer to the header in ldinfo_textorg.
- Adjust the text start address to point to the real start address
- of the text section. */
- vp->tstart += vp->toffs;
+ vmap_secs (vp, ldi, arch64);
/* The objfile is only NULL for the exec file. */
if (vp->objfile == NULL)
goto retry;
}
}
- while (ldi->ldinfo_next
- && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
+ while ((next = LDI_NEXT (ldi, arch64))
+ && (ldi = (void *) (next + (char *) ldi)));
/* If we don't find the symfile_objfile anywhere in the ldinfo, it
is unlikely that the symbol file is relocated to the proper
*/
static void
-vmap_exec ()
+vmap_exec (void)
{
static bfd *execbfd;
int i;
}
}
}
-\f
-/* xcoff_relocate_symtab - hook for symbol table relocation.
- also reads shared libraries.. */
-void
-xcoff_relocate_symtab (pid)
- unsigned int pid;
+/* Set the current architecture from the host running GDB. Called when
+ starting a child process. */
+
+static void
+set_host_arch (int pid)
{
-#define MAX_LOAD_SEGS 64 /* maximum number of load segments */
+ enum bfd_architecture arch;
+ unsigned long mach;
+ bfd abfd;
+ struct gdbarch_info info;
- struct ld_info *ldi;
+ if (__power_rs ())
+ {
+ arch = bfd_arch_rs6000;
+ mach = bfd_mach_rs6k;
+ }
+ else
+ {
+ arch = bfd_arch_powerpc;
+ mach = bfd_mach_ppc;
+ }
+ bfd_default_set_arch_mach (&abfd, arch, mach);
- ldi = (void *) alloca (MAX_LOAD_SEGS * sizeof (*ldi));
+ memset (&info, 0, sizeof info);
+ info.bfd_arch_info = bfd_get_arch_info (&abfd);
- /* According to my humble theory, AIX has some timing problems and
- when the user stack grows, kernel doesn't update stack info in time
- and ptrace calls step on user stack. That is why we sleep here a little,
- and give kernel to update its internals. */
+ if (!gdbarch_update_p (info))
+ {
+ internal_error (__FILE__, __LINE__,
+ "set_host_arch: failed to select architecture");
+ }
+}
- usleep (36000);
+\f
+/* xcoff_relocate_symtab - hook for symbol table relocation.
+ also reads shared libraries.. */
- errno = 0;
- ptrace (PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
- MAX_LOAD_SEGS * sizeof (*ldi), (int *) ldi);
- if (errno)
- perror_with_name ("ptrace ldinfo");
+void
+xcoff_relocate_symtab (unsigned int pid)
+{
+ int load_segs = 64; /* number of load segments */
+ int rc;
+ LdInfo *ldi = NULL;
+ int arch64 = ARCH64 ();
+ int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
+ int size;
- vmap_ldinfo (ldi);
+ do
+ {
+ size = load_segs * ldisize;
+ ldi = (void *) xrealloc (ldi, size);
+
+#if 0
+ /* According to my humble theory, AIX has some timing problems and
+ when the user stack grows, kernel doesn't update stack info in time
+ and ptrace calls step on user stack. That is why we sleep here a
+ little, and give kernel to update its internals. */
+ usleep (36000);
+#endif
- /* relocate the exec and core sections as well. */
- vmap_exec ();
+ if (arch64)
+ rc = ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
+ else
+ rc = ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
+
+ if (rc == -1)
+ {
+ if (errno == ENOMEM)
+ load_segs *= 2;
+ else
+ perror_with_name ("ptrace ldinfo");
+ }
+ else
+ {
+ vmap_ldinfo (ldi);
+ vmap_exec (); /* relocate the exec and core sections as well. */
+ }
+ } while (rc == -1);
+ if (ldi)
+ xfree (ldi);
}
\f
/* Core file stuff. */
from the core file. */
void
-xcoff_relocate_core (target)
- struct target_ops *target;
+xcoff_relocate_core (struct target_ops *target)
{
-/* Offset of member MEMBER in a struct of type TYPE. */
-#ifndef offsetof
-#define offsetof(TYPE, MEMBER) ((int) &((TYPE *)0)->MEMBER)
-#endif
-
-/* Size of a struct ld_info except for the variable-length filename. */
-#define LDINFO_SIZE (offsetof (struct ld_info, ldinfo_filename))
-
sec_ptr ldinfo_sec;
int offset = 0;
- struct ld_info *ldip;
+ LdInfo *ldi;
struct vmap *vp;
+ int arch64 = ARCH64 ();
+
+ /* Size of a struct ld_info except for the variable-length filename. */
+ int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
/* Allocated size of buffer. */
- int buffer_size = LDINFO_SIZE;
+ int buffer_size = nonfilesz;
char *buffer = xmalloc (buffer_size);
struct cleanup *old = make_cleanup (free_current_contents, &buffer);
- /* FIXME, this restriction should not exist. For now, though I'll
- avoid coredumps with error() pending a real fix. */
- if (vmap == NULL)
- error
- ("Can't debug a core file without an executable file (on the RS/6000)");
-
ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
if (ldinfo_sec == NULL)
{
/* Read in everything but the name. */
if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
- offset, LDINFO_SIZE) == 0)
+ offset, nonfilesz) == 0)
goto bfd_err;
/* Now the name. */
- i = LDINFO_SIZE;
+ i = nonfilesz;
do
{
if (i == buffer_size)
}
while (names_found < 2);
- ldip = (struct ld_info *) buffer;
+ ldi = (LdInfo *) buffer;
/* Can't use a file descriptor from the core file; need to open it. */
- ldip->ldinfo_fd = -1;
+ if (arch64)
+ ldi->l64.ldinfo_fd = -1;
+ else
+ ldi->l32.ldinfo_fd = -1;
/* The first ldinfo is for the exec file, allocated elsewhere. */
- if (offset == 0)
+ if (offset == 0 && vmap != NULL)
vp = vmap;
else
- vp = add_vmap (ldip);
-
- offset += ldip->ldinfo_next;
+ vp = add_vmap (ldi);
- /* We can assume pointer == CORE_ADDR, this code is native only. */
- vp->tstart = (CORE_ADDR) ldip->ldinfo_textorg;
- vp->tend = vp->tstart + ldip->ldinfo_textsize;
- vp->dstart = (CORE_ADDR) ldip->ldinfo_dataorg;
- vp->dend = vp->dstart + ldip->ldinfo_datasize;
+ /* Process next shared library upon error. */
+ offset += LDI_NEXT (ldi, arch64);
+ if (vp == NULL)
+ continue;
- /* The run time loader maps the file header in addition to the text
- section and returns a pointer to the header in ldinfo_textorg.
- Adjust the text start address to point to the real start address
- of the text section. */
- vp->tstart += vp->toffs;
+ vmap_secs (vp, ldi, arch64);
/* Unless this is the exec file,
add our sections to the section table for the core target. */
vmap_symtab (vp);
}
- while (ldip->ldinfo_next != 0);
+ while (LDI_NEXT (ldi, arch64) != 0);
vmap_exec ();
breakpoint_re_set ();
do_cleanups (old);
}
int
-kernel_u_size ()
+kernel_u_size (void)
{
return (sizeof (struct user));
}
and add the current load address of the data segment from the vmap. */
static CORE_ADDR
-find_toc_address (pc)
- CORE_ADDR pc;
+find_toc_address (CORE_ADDR pc)
{
struct vmap *vp;
+ extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
for (vp = vmap; vp; vp = vp->nxt)
{
static struct core_fns rs6000_core_fns =
{
- bfd_target_coff_flavour, /* core_flavour */
+ bfd_target_xcoff_flavour, /* core_flavour */
default_check_format, /* check_format */
default_core_sniffer, /* core_sniffer */
fetch_core_registers, /* core_read_registers */
};
void
-_initialize_core_rs6000 ()
+_initialize_core_rs6000 (void)
{
/* Initialize hook in rs6000-tdep.c for determining the TOC address when
calling functions in the inferior. */
- find_toc_address_hook = &find_toc_address;
+ rs6000_find_toc_address_hook = find_toc_address;
+
+ /* Initialize hook in rs6000-tdep.c to set the current architecture when
+ starting a child process. */
+ rs6000_set_host_arch_hook = set_host_arch;
- /* For native configurations, where this module is included, inform
- the xcoffsolib module where it can find the function for symbol table
- relocation at runtime. */
- xcoff_relocate_symtab_hook = &xcoff_relocate_symtab;
add_core_fns (&rs6000_core_fns);
}