-/* Target-dependent code for MItsubishi D10V, for GDB.
- Copyright (C) 1996 Free Software Foundation, Inc.
-This file is part of GDB.
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+/* Target-dependent code for Mitsubishi D10V, for GDB.
+ Copyright (C) 1996, 1997 Free Software Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
#include "gdb_string.h"
#include "value.h"
#include "inferior.h"
-#include "dis-asm.h"
+#include "dis-asm.h"
#include "symfile.h"
#include "objfiles.h"
-void d10v_frame_find_saved_regs PARAMS ((struct frame_info *fi, struct frame_saved_regs *fsr));
-static void d10v_pop_dummy_frame PARAMS ((struct frame_info *fi));
+struct frame_extra_info
+ {
+ CORE_ADDR return_pc;
+ int frameless;
+ int size;
+ };
+
+/* these are the addresses the D10V-EVA board maps data */
+/* and instruction memory to. */
+
+#define DMEM_START 0x0000000
+#define IMEM_START 0x1000000
+#define STACK_START 0x0007ffe
+
+/* d10v register naming conventions */
+
+#define ARG1_REGNUM R0_REGNUM
+#define ARGN_REGNUM 3
+#define RET1_REGNUM R0_REGNUM
+
+/* Local functions */
+
+extern void _initialize_d10v_tdep PARAMS ((void));
+
+static void d10v_eva_prepare_to_trace PARAMS ((void));
+
+static void d10v_eva_get_trace_data PARAMS ((void));
+
+static int prologue_find_regs PARAMS ((unsigned short op, struct frame_info * fi, CORE_ADDR addr));
+
+extern void d10v_frame_init_saved_regs PARAMS ((struct frame_info *));
+
+static void do_d10v_pop_frame PARAMS ((struct frame_info * fi));
+
+/* FIXME */
+extern void remote_d10v_translate_xfer_address PARAMS ((CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR * rem_addr, int *rem_len));
+
+int
+d10v_frame_chain_valid (chain, frame)
+ CORE_ADDR chain;
+ struct frame_info *frame; /* not used here */
+{
+ return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
+}
+
+
+/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
+ EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
+ and TYPE is the type (which is known to be struct, union or array).
+
+ The d10v returns anything less than 8 bytes in size in
+ registers. */
+
+int
+d10v_use_struct_convention (gcc_p, type)
+ int gcc_p;
+ struct type *type;
+{
+ return (TYPE_LENGTH (type) > 8);
+}
+
+
+unsigned char *
+d10v_breakpoint_from_pc (pcptr, lenptr)
+ CORE_ADDR *pcptr;
+ int *lenptr;
+{
+ static unsigned char breakpoint[] =
+ {0x2f, 0x90, 0x5e, 0x00};
+ *lenptr = sizeof (breakpoint);
+ return breakpoint;
+}
+
+char *
+d10v_register_name (reg_nr)
+ int reg_nr;
+{
+ static char *register_names[] =
+ {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
+ "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
+ "imap0", "imap1", "dmap", "a0", "a1"
+ };
+ if (reg_nr < 0)
+ return NULL;
+ if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
+ return NULL;
+ return register_names[reg_nr];
+}
+
+
+/* Index within `registers' of the first byte of the space for
+ register REG_NR. */
+
+int
+d10v_register_byte (reg_nr)
+ int reg_nr;
+{
+ if (reg_nr > A0_REGNUM)
+ return ((reg_nr - A0_REGNUM) * 8 + (A0_REGNUM * 2));
+ else
+ return (reg_nr * 2);
+}
+
+/* Number of bytes of storage in the actual machine representation for
+ register REG_NR. */
-/* Discard from the stack the innermost frame,
- restoring all saved registers. */
+int
+d10v_register_raw_size (reg_nr)
+ int reg_nr;
+{
+ if (reg_nr >= A0_REGNUM)
+ return 8;
+ else
+ return 2;
+}
+
+/* Number of bytes of storage in the program's representation
+ for register N. */
+
+int
+d10v_register_virtual_size (reg_nr)
+ int reg_nr;
+{
+ if (reg_nr >= A0_REGNUM)
+ return 8;
+ else if (reg_nr == PC_REGNUM || reg_nr == SP_REGNUM)
+ return 4;
+ else
+ return 2;
+}
+
+/* Return the GDB type object for the "standard" data type
+ of data in register N. */
+
+struct type *
+d10v_register_virtual_type (reg_nr)
+ int reg_nr;
+{
+ if (reg_nr >= A0_REGNUM)
+ return builtin_type_long_long;
+ else if (reg_nr == PC_REGNUM || reg_nr == SP_REGNUM)
+ return builtin_type_long;
+ else
+ return builtin_type_short;
+}
+
+/* convert $pc and $sp to/from virtual addresses */
+int
+d10v_register_convertible (nr)
+ int nr;
+{
+ return ((nr) == PC_REGNUM || (nr) == SP_REGNUM);
+}
+
+void
+d10v_register_convert_to_virtual (regnum, type, from, to)
+ int regnum;
+ struct type *type;
+ char *from;
+ char *to;
+{
+ ULONGEST x = extract_unsigned_integer (from, REGISTER_RAW_SIZE (regnum));
+ if (regnum == PC_REGNUM)
+ x = (x << 2) | IMEM_START;
+ else
+ x |= DMEM_START;
+ store_unsigned_integer (to, TYPE_LENGTH (type), x);
+}
+
+void
+d10v_register_convert_to_raw (type, regnum, from, to)
+ struct type *type;
+ int regnum;
+ char *from;
+ char *to;
+{
+ ULONGEST x = extract_unsigned_integer (from, TYPE_LENGTH (type));
+ x &= 0x3ffff;
+ if (regnum == PC_REGNUM)
+ x >>= 2;
+ store_unsigned_integer (to, 2, x);
+}
+
+
+CORE_ADDR
+d10v_make_daddr (x)
+ CORE_ADDR x;
+{
+ return ((x) | DMEM_START);
+}
+
+CORE_ADDR
+d10v_make_iaddr (x)
+ CORE_ADDR x;
+{
+ return (((x) << 2) | IMEM_START);
+}
+
+int
+d10v_daddr_p (x)
+ CORE_ADDR x;
+{
+ return (((x) & 0x3000000) == DMEM_START);
+}
+
+int
+d10v_iaddr_p (x)
+ CORE_ADDR x;
+{
+ return (((x) & 0x3000000) == IMEM_START);
+}
+
+
+CORE_ADDR
+d10v_convert_iaddr_to_raw (x)
+ CORE_ADDR x;
+{
+ return (((x) >> 2) & 0xffff);
+}
+
+CORE_ADDR
+d10v_convert_daddr_to_raw (x)
+ CORE_ADDR x;
+{
+ return ((x) & 0xffff);
+}
+
+/* Store the address of the place in which to copy the structure the
+ subroutine will return. This is called from call_function.
+
+ We store structs through a pointer passed in the first Argument
+ register. */
+
+void
+d10v_store_struct_return (addr, sp)
+ CORE_ADDR addr;
+ CORE_ADDR sp;
+{
+ write_register (ARG1_REGNUM, (addr));
+}
+
+/* Write into appropriate registers a function return value
+ of type TYPE, given in virtual format.
+
+ Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
+
+void
+d10v_store_return_value (type, valbuf)
+ struct type *type;
+ char *valbuf;
+{
+ write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
+ valbuf,
+ TYPE_LENGTH (type));
+}
+
+/* Extract from an array REGBUF containing the (raw) register state
+ the address in which a function should return its structure value,
+ as a CORE_ADDR (or an expression that can be used as one). */
+
+CORE_ADDR
+d10v_extract_struct_value_address (regbuf)
+ char *regbuf;
+{
+ return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
+ REGISTER_RAW_SIZE (ARG1_REGNUM))
+ | DMEM_START);
+}
+
+CORE_ADDR
+d10v_frame_saved_pc (frame)
+ struct frame_info *frame;
+{
+ return ((frame)->extra_info->return_pc);
+}
+
+CORE_ADDR
+d10v_frame_args_address (fi)
+ struct frame_info *fi;
+{
+ return (fi)->frame;
+}
+
+CORE_ADDR
+d10v_frame_locals_address (fi)
+ struct frame_info *fi;
+{
+ return (fi)->frame;
+}
+
+/* Immediately after a function call, return the saved pc. We can't
+ use frame->return_pc beause that is determined by reading R13 off
+ the stack and that may not be written yet. */
+
+CORE_ADDR
+d10v_saved_pc_after_call (frame)
+ struct frame_info *frame;
+{
+ return ((read_register (LR_REGNUM) << 2)
+ | IMEM_START);
+}
+
+/* Discard from the stack the innermost frame, restoring all saved
+ registers. */
void
d10v_pop_frame ()
{
- struct frame_info *frame = get_current_frame ();
+ generic_pop_current_frame (do_d10v_pop_frame);
+}
+
+static void
+do_d10v_pop_frame (fi)
+ struct frame_info *fi;
+{
CORE_ADDR fp;
int regnum;
- struct frame_saved_regs fsr;
char raw_buffer[8];
- fp = FRAME_FP (frame);
- printf("pop_frame %x\n",(int)fp);
- if (frame->dummy)
- {
- d10v_pop_dummy_frame(frame);
- return;
- }
-
+ fp = FRAME_FP (fi);
/* fill out fsr with the address of where each */
/* register was stored in the frame */
- get_frame_saved_regs (frame, &fsr);
-
+ d10v_frame_init_saved_regs (fi);
+
/* now update the current registers with the old values */
- for (regnum = A0_REGNUM; regnum < A0_REGNUM+2 ; regnum++)
+ for (regnum = A0_REGNUM; regnum < A0_REGNUM + 2; regnum++)
{
- if (fsr.regs[regnum])
+ if (fi->saved_regs[regnum])
{
- read_memory (fsr.regs[regnum], raw_buffer, 8);
- write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 8);
+ read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
+ write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
}
}
for (regnum = 0; regnum < SP_REGNUM; regnum++)
{
- if (fsr.regs[regnum])
+ if (fi->saved_regs[regnum])
{
- write_register (regnum, read_memory_unsigned_integer (fsr.regs[regnum], 2));
+ write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
}
}
- if (fsr.regs[PSW_REGNUM])
+ if (fi->saved_regs[PSW_REGNUM])
{
- write_register (PSW_REGNUM, read_memory_unsigned_integer (fsr.regs[PSW_REGNUM], 2));
+ write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
}
- write_register (PC_REGNUM, read_register(13));
- write_register (SP_REGNUM, fp + frame->size);
+ write_register (PC_REGNUM, read_register (LR_REGNUM));
+ write_register (SP_REGNUM, fp + fi->extra_info->size);
target_store_registers (-1);
flush_cached_frames ();
}
-static int
+static int
check_prologue (op)
unsigned short op;
{
return 1;
/* st2w rn, @sp */
- if ((op & 0x7E3F) == 0x3A1E)
- return 1;
+ if ((op & 0x7E3F) == 0x3A1E)
+ return 1;
return 0;
}
{
unsigned long op;
unsigned short op1, op2;
+ CORE_ADDR func_addr, func_end;
+ struct symtab_and_line sal;
+
+ /* If we have line debugging information, then the end of the */
+ /* prologue should the first assembly instruction of the first source line */
+ if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
+ {
+ sal = find_pc_line (func_addr, 0);
+ if (sal.end && sal.end < func_end)
+ return sal.end;
+ }
- if (target_read_memory (pc, (char *)&op, 4))
+ if (target_read_memory (pc, (char *) &op, 4))
return pc; /* Can't access it -- assume no prologue. */
while (1)
{
- op = (unsigned long)read_memory_integer (pc, 4);
+ op = (unsigned long) read_memory_integer (pc, 4);
if ((op & 0xC0000000) == 0xC0000000)
{
/* long instruction */
- if ( ((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
- ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
- ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
+ if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
+ ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
+ ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
break;
}
else
{
/* short instructions */
- op1 = (op & 0x3FFF8000) >> 15;
- op2 = op & 0x7FFF;
- if (!check_prologue(op1) || !check_prologue(op2))
+ if ((op & 0xC0000000) == 0x80000000)
+ {
+ op2 = (op & 0x3FFF8000) >> 15;
+ op1 = op & 0x7FFF;
+ }
+ else
+ {
+ op1 = (op & 0x3FFF8000) >> 15;
+ op2 = op & 0x7FFF;
+ }
+ if (check_prologue (op1))
+ {
+ if (!check_prologue (op2))
+ {
+ /* if the previous opcode was really part of the prologue */
+ /* and not just a NOP, then we want to break after both instructions */
+ if (op1 != 0x5E00)
+ pc += 4;
+ break;
+ }
+ }
+ else
break;
}
pc += 4;
/* Given a GDB frame, determine the address of the calling function's frame.
This will be used to create a new GDB frame struct, and then
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
-*/
+ */
CORE_ADDR
-d10v_frame_chain (frame)
- struct frame_info *frame;
+d10v_frame_chain (fi)
+ struct frame_info *fi;
{
- struct frame_saved_regs fsr;
-
- if (inside_entry_file (frame->pc))
- return 0;
+ d10v_frame_init_saved_regs (fi);
- d10v_frame_find_saved_regs (frame, &fsr);
+ if (fi->extra_info->return_pc == IMEM_START
+ || inside_entry_file (fi->extra_info->return_pc))
+ return (CORE_ADDR) 0;
- if (!fsr.regs[FP_REGNUM])
+ if (!fi->saved_regs[FP_REGNUM])
{
- return (CORE_ADDR)fsr.regs[SP_REGNUM]+0x2000000;
+ if (!fi->saved_regs[SP_REGNUM]
+ || fi->saved_regs[SP_REGNUM] == STACK_START)
+ return (CORE_ADDR) 0;
+
+ return fi->saved_regs[SP_REGNUM];
}
- return read_memory_unsigned_integer(fsr.regs[FP_REGNUM],2)+0x2000000;
-}
-static int next_addr;
+ if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
+ REGISTER_RAW_SIZE (FP_REGNUM)))
+ return (CORE_ADDR) 0;
+
+ return D10V_MAKE_DADDR (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
+ REGISTER_RAW_SIZE (FP_REGNUM)));
+}
+
+static int next_addr, uses_frame;
-static int
-prologue_find_regs (op, fsr, addr)
+static int
+prologue_find_regs (op, fi, addr)
unsigned short op;
- struct frame_saved_regs *fsr;
+ struct frame_info *fi;
CORE_ADDR addr;
{
int n;
{
n = (op & 0x1E0) >> 5;
next_addr -= 2;
- fsr->regs[n] = next_addr;
+ fi->saved_regs[n] = next_addr;
return 1;
}
{
n = (op & 0x1E0) >> 5;
next_addr -= 4;
- fsr->regs[n] = next_addr;
- fsr->regs[n+1] = next_addr+2;
+ fi->saved_regs[n] = next_addr;
+ fi->saved_regs[n + 1] = next_addr + 2;
return 1;
}
/* mv r11, sp */
if (op == 0x417E)
+ {
+ uses_frame = 1;
return 1;
+ }
/* nop */
if (op == 0x5E00)
if ((op & 0x7E1F) == 0x681E)
{
n = (op & 0x1E0) >> 5;
- fsr->regs[n] = next_addr;
+ fi->saved_regs[n] = next_addr;
return 1;
}
if ((op & 0x7E3F) == 0x3A1E)
{
n = (op & 0x1E0) >> 5;
- fsr->regs[n] = next_addr;
- fsr->regs[n+1] = next_addr+2;
+ fi->saved_regs[n] = next_addr;
+ fi->saved_regs[n + 1] = next_addr + 2;
return 1;
}
return 0;
}
-/* Put here the code to store, into a struct frame_saved_regs, the
- addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special: the address we
- return for it IS the sp for the next frame. */
+/* Put here the code to store, into fi->saved_regs, the addresses of
+ the saved registers of frame described by FRAME_INFO. This
+ includes special registers such as pc and fp saved in special ways
+ in the stack frame. sp is even more special: the address we return
+ for it IS the sp for the next frame. */
+
void
-d10v_frame_find_saved_regs (fi, fsr)
+d10v_frame_init_saved_regs (fi)
struct frame_info *fi;
- struct frame_saved_regs *fsr;
{
CORE_ADDR fp, pc;
unsigned long op;
int i;
fp = fi->frame;
- memset (fsr, 0, sizeof (*fsr));
+ memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
next_addr = 0;
pc = get_pc_function_start (fi->pc);
+ uses_frame = 0;
while (1)
{
- op = (unsigned long)read_memory_integer (pc, 4);
+ op = (unsigned long) read_memory_integer (pc, 4);
if ((op & 0xC0000000) == 0xC0000000)
{
/* long instruction */
/* st rn, @(offset,sp) */
short offset = op & 0xFFFF;
short n = (op >> 20) & 0xF;
- fsr->regs[n] = next_addr + offset;
+ fi->saved_regs[n] = next_addr + offset;
}
else if ((op & 0x3F1F0000) == 0x350F0000)
{
/* st2w rn, @(offset,sp) */
short offset = op & 0xFFFF;
short n = (op >> 20) & 0xF;
- fsr->regs[n] = next_addr + offset;
- fsr->regs[n+1] = next_addr + offset + 2;
+ fi->saved_regs[n] = next_addr + offset;
+ fi->saved_regs[n + 1] = next_addr + offset + 2;
}
else
break;
else
{
/* short instructions */
- op1 = (op & 0x3FFF8000) >> 15;
- op2 = op & 0x7FFF;
- if (!prologue_find_regs(op1,fsr,pc) || !prologue_find_regs(op2,fsr,pc))
+ if ((op & 0xC0000000) == 0x80000000)
+ {
+ op2 = (op & 0x3FFF8000) >> 15;
+ op1 = op & 0x7FFF;
+ }
+ else
+ {
+ op1 = (op & 0x3FFF8000) >> 15;
+ op2 = op & 0x7FFF;
+ }
+ if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
break;
}
pc += 4;
}
-
- fi->size = -next_addr;
- for (i=0; i<NUM_REGS-1; i++)
- if (fsr->regs[i])
+ fi->extra_info->size = -next_addr;
+
+ if (!(fp & 0xffff))
+ fp = D10V_MAKE_DADDR (read_register (SP_REGNUM));
+
+ for (i = 0; i < NUM_REGS - 1; i++)
+ if (fi->saved_regs[i])
{
- fsr->regs[i] = fp - (next_addr - fsr->regs[i]);
+ fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
}
- if (fsr->regs[13])
- fi->return_pc = ((read_memory_unsigned_integer(fsr->regs[13],2)-1) << 2) + 0x1000000;
+ if (fi->saved_regs[LR_REGNUM])
+ {
+ CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
+ fi->extra_info->return_pc = D10V_MAKE_IADDR (return_pc);
+ }
else
- fi->return_pc = ((read_register(13) - 1) << 2) + 0x1000000;
+ {
+ fi->extra_info->return_pc = D10V_MAKE_IADDR (read_register (LR_REGNUM));
+ }
/* th SP is not normally (ever?) saved, but check anyway */
- if (!fsr->regs[SP_REGNUM])
+ if (!fi->saved_regs[SP_REGNUM])
{
/* if the FP was saved, that means the current FP is valid, */
/* otherwise, it isn't being used, so we use the SP instead */
- if (fsr->regs[FP_REGNUM])
- fsr->regs[SP_REGNUM] = read_register(FP_REGNUM) + fi->size;
+ if (uses_frame)
+ fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
else
- fsr->regs[SP_REGNUM] = read_register(SP_REGNUM) + fi->size;
+ {
+ fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
+ fi->extra_info->frameless = 1;
+ fi->saved_regs[FP_REGNUM] = 0;
+ }
}
}
int fromleaf;
struct frame_info *fi;
{
- struct frame_saved_regs dummy;
+ fi->extra_info = (struct frame_extra_info *)
+ frame_obstack_alloc (sizeof (struct frame_extra_info));
+ frame_saved_regs_zalloc (fi);
- if (fi->next && (fi->pc == 0))
- fi->pc = fi->next->return_pc;
+ fi->extra_info->frameless = 0;
+ fi->extra_info->size = 0;
+ fi->extra_info->return_pc = 0;
- /*
- printf("init_extra_frame_info: fi->pc=%x frame=%x PC=%x SP=%x\n",
- (int)fi->pc,(int)fi->frame,(int)read_register(PC_REGNUM)<<2,(int)read_register(SP_REGNUM));
- */
-
- d10v_frame_find_saved_regs (fi, &dummy);
- if (!dummy.regs[FP_REGNUM])
+ /* The call dummy doesn't save any registers on the stack, so we can
+ return now. */
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ {
+ return;
+ }
+ else
{
- /* printf("init_extra_frame_info: sp=%x size=%x\n",dummy.regs[SP_REGNUM],fi->size);; */
- fi->frame = dummy.regs[SP_REGNUM] - fi->size + 0x2000000;
- d10v_frame_find_saved_regs (fi, &dummy);
+ d10v_frame_init_saved_regs (fi);
}
- /* printf("init_extra_frame_info end: pc=%x frame=%x\n",(int)fi->pc,(int)fi->frame); */
}
static void
char *args;
int from_tty;
{
- long long num1, num2;
+ int a;
printf_filtered ("PC=%04x (0x%x) PSW=%04x RPT_S=%04x RPT_E=%04x RPT_C=%04x\n",
- read_register (PC_REGNUM), read_register (PC_REGNUM) << 2,
- read_register (PSW_REGNUM),
- read_register (24),
- read_register (25),
- read_register (23));
+ read_register (PC_REGNUM), D10V_MAKE_IADDR (read_register (PC_REGNUM)),
+ read_register (PSW_REGNUM),
+ read_register (24),
+ read_register (25),
+ read_register (23));
printf_filtered ("R0-R7 %04x %04x %04x %04x %04x %04x %04x %04x\n",
- read_register (0),
- read_register (1),
- read_register (2),
- read_register (3),
- read_register (4),
- read_register (5),
- read_register (6),
- read_register (7));
+ read_register (0),
+ read_register (1),
+ read_register (2),
+ read_register (3),
+ read_register (4),
+ read_register (5),
+ read_register (6),
+ read_register (7));
printf_filtered ("R8-R15 %04x %04x %04x %04x %04x %04x %04x %04x\n",
- read_register (8),
- read_register (9),
- read_register (10),
- read_register (11),
- read_register (12),
- read_register (13),
- read_register (14),
- read_register (15));
+ read_register (8),
+ read_register (9),
+ read_register (10),
+ read_register (11),
+ read_register (12),
+ read_register (13),
+ read_register (14),
+ read_register (15));
printf_filtered ("IMAP0 %04x IMAP1 %04x DMAP %04x\n",
- read_register (IMAP0_REGNUM),
- read_register (IMAP1_REGNUM),
- read_register (DMAP_REGNUM));
- read_register_gen (A0_REGNUM, (char *)&num1);
- read_register_gen (A0_REGNUM+1, (char *)&num2);
- printf_filtered ("A0-A1 %010llx %010llx\n",num1, num2);
-}
-
-void
-_initialize_d10v_tdep ()
-{
- tm_print_insn = print_insn_d10v;
- add_com ("regs", class_vars, show_regs, "Print all registers");
-}
-
-static CORE_ADDR
-d10v_xlate_addr (addr)
- int addr;
-{
- int imap;
-
- if (addr < 0x20000)
- imap = (int)read_register(IMAP0_REGNUM);
- else
- imap = (int)read_register(IMAP1_REGNUM);
-
- if (imap & 0x1000)
- return (CORE_ADDR)(addr + 0x1000000);
- return (CORE_ADDR)(addr + (imap & 0xff)*0x20000);
+ read_register (IMAP0_REGNUM),
+ read_register (IMAP1_REGNUM),
+ read_register (DMAP_REGNUM));
+ printf_filtered ("A0-A1");
+ for (a = A0_REGNUM; a <= A0_REGNUM + 1; a++)
+ {
+ char num[MAX_REGISTER_RAW_SIZE];
+ int i;
+ printf_filtered (" ");
+ read_register_gen (a, (char *) &num);
+ for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
+ {
+ printf_filtered ("%02x", (num[i] & 0xff));
+ }
+ }
+ printf_filtered ("\n");
}
-
CORE_ADDR
d10v_read_pc (pid)
int pid;
{
- int save_pid, retval;
+ int save_pid;
+ CORE_ADDR pc;
+ CORE_ADDR retval;
save_pid = inferior_pid;
inferior_pid = pid;
- retval = (int)read_register (PC_REGNUM);
+ pc = (int) read_register (PC_REGNUM);
inferior_pid = save_pid;
- return d10v_xlate_addr(retval << 2);
+ retval = D10V_MAKE_IADDR (pc);
+ return retval;
}
void
d10v_write_pc (val, pid)
- LONGEST val;
+ CORE_ADDR val;
int pid;
{
int save_pid;
save_pid = inferior_pid;
inferior_pid = pid;
- write_register (PC_REGNUM, (val & 0x3ffff) >> 2);
+ write_register (PC_REGNUM, D10V_CONVERT_IADDR_TO_RAW (val));
inferior_pid = save_pid;
}
CORE_ADDR
-d10v_read_fp ()
+d10v_read_sp ()
{
- return (read_register(FP_REGNUM) + 0x2000000);
+ return (D10V_MAKE_DADDR (read_register (SP_REGNUM)));
}
void
-d10v_write_fp (val)
- LONGEST val;
+d10v_write_sp (val)
+ CORE_ADDR val;
{
- write_register (FP_REGNUM, val & 0xffff);
+ write_register (SP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
}
void
-d10v_fix_call_dummy (dummyname, start_sp, fun, nargs, args, type, gcc_p)
- char *dummyname;
- CORE_ADDR start_sp;
- CORE_ADDR fun;
- int nargs;
- value_ptr *args;
- struct type *type;
- int gcc_p;
+d10v_write_fp (val)
+ CORE_ADDR val;
{
- int regnum, i;
- CORE_ADDR sp;
- char buffer[MAX_REGISTER_RAW_SIZE];
- struct frame_info *frame = get_current_frame ();
- frame->dummy = 1;
- printf("D10v_fix_call_dummy: %x %x %d frame=%x\n",(int)start_sp,(int)fun,nargs,(int)frame->frame);
- sp = start_sp;
- for (regnum = 0; regnum < NUM_REGS-1; regnum++)
- {
- store_address (buffer, REGISTER_RAW_SIZE(regnum), read_register(regnum));
- write_memory (sp, buffer, REGISTER_RAW_SIZE(regnum));
- sp -= REGISTER_RAW_SIZE(regnum);
- }
- write_register (SP_REGNUM, (LONGEST)sp);
- printf("writing %x to sp\n",(int)sp);
- /* now we need to load LR with the return address */
- write_register (LR_REGNUM, (LONGEST)d10v_call_dummy_address()>>2);
+ write_register (FP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
}
-static void
-d10v_pop_dummy_frame (fi)
- struct frame_info *fi;
+CORE_ADDR
+d10v_read_fp ()
{
- printf("pop_dummy_frame: start_sp=%x\n",(int)fi->frame);
- /*
- sp = start_sp;
- for (regnum = 0; regnum < NUM_REGS-1; regnum++)
- {
- store_address (buffer, REGISTER_RAW_SIZE(regnum), read_register(regnum));
- write_memory (sp, buffer, REGISTER_RAW_SIZE(regnum));
- sp -= REGISTER_RAW_SIZE(regnum);
- }
- */
+ return (D10V_MAKE_DADDR (read_register (FP_REGNUM)));
+}
+
+/* Function: push_return_address (pc)
+ Set up the return address for the inferior function call.
+ Needed for targets where we don't actually execute a JSR/BSR instruction */
+
+CORE_ADDR
+d10v_push_return_address (pc, sp)
+ CORE_ADDR pc;
+ CORE_ADDR sp;
+{
+ write_register (LR_REGNUM, D10V_CONVERT_IADDR_TO_RAW (CALL_DUMMY_ADDRESS ()));
+ return sp;
+}
+
+
+/* When arguments must be pushed onto the stack, they go on in reverse
+ order. The below implements a FILO (stack) to do this. */
+
+struct stack_item
+{
+ int len;
+ struct stack_item *prev;
+ void *data;
+};
+
+static struct stack_item *push_stack_item PARAMS ((struct stack_item * prev, void *contents, int len));
+static struct stack_item *
+push_stack_item (prev, contents, len)
+ struct stack_item *prev;
+ void *contents;
+ int len;
+{
+ struct stack_item *si;
+ si = xmalloc (sizeof (struct stack_item));
+ si->data = xmalloc (len);
+ si->len = len;
+ si->prev = prev;
+ memcpy (si->data, contents, len);
+ return si;
+}
+
+static struct stack_item *pop_stack_item PARAMS ((struct stack_item * si));
+static struct stack_item *
+pop_stack_item (si)
+ struct stack_item *si;
+{
+ struct stack_item *dead = si;
+ si = si->prev;
+ free (dead->data);
+ free (dead);
+ return si;
}
int struct_return;
CORE_ADDR struct_addr;
{
- int i, len, regnum=2;
- char *contents;
- LONGEST val;
-
+ int i;
+ int regnum = ARG1_REGNUM;
+ struct stack_item *si = NULL;
+
+ /* Fill in registers and arg lists */
for (i = 0; i < nargs; i++)
{
value_ptr arg = args[i];
- struct type *arg_type = check_typedef (VALUE_TYPE (arg));
- switch (TYPE_CODE (arg_type))
- {
- case TYPE_CODE_INT:
- case TYPE_CODE_BOOL:
- case TYPE_CODE_CHAR:
- case TYPE_CODE_RANGE:
- case TYPE_CODE_ENUM:
- break;
- default:
- break;
+ struct type *type = check_typedef (VALUE_TYPE (arg));
+ char *contents = VALUE_CONTENTS (arg);
+ int len = TYPE_LENGTH (type);
+ /* printf ("push: type=%d len=%d\n", type->code, len); */
+ if (TYPE_CODE (type) == TYPE_CODE_PTR)
+ {
+ /* pointers require special handling - first convert and
+ then store */
+ long val = extract_signed_integer (contents, len);
+ len = 2;
+ if (TYPE_TARGET_TYPE (type)
+ && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
+ {
+ /* function pointer */
+ val = D10V_CONVERT_IADDR_TO_RAW (val);
+ }
+ else if (D10V_IADDR_P (val))
+ {
+ /* also function pointer! */
+ val = D10V_CONVERT_DADDR_TO_RAW (val);
+ }
+ else
+ {
+ /* data pointer */
+ val &= 0xFFFF;
+ }
+ if (regnum <= ARGN_REGNUM)
+ write_register (regnum++, val & 0xffff);
+ else
+ {
+ char ptr[2];
+ /* arg will go onto stack */
+ store_address (ptr, 2, val & 0xffff);
+ si = push_stack_item (si, ptr, 2);
+ }
+ }
+ else
+ {
+ int aligned_regnum = (regnum + 1) & ~1;
+ if (len <= 2 && regnum <= ARGN_REGNUM)
+ /* fits in a single register, do not align */
+ {
+ long val = extract_unsigned_integer (contents, len);
+ write_register (regnum++, val);
+ }
+ else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
+ /* value fits in remaining registers, store keeping left
+ aligned */
+ {
+ int b;
+ regnum = aligned_regnum;
+ for (b = 0; b < (len & ~1); b += 2)
+ {
+ long val = extract_unsigned_integer (&contents[b], 2);
+ write_register (regnum++, val);
+ }
+ if (b < len)
+ {
+ long val = extract_unsigned_integer (&contents[b], 1);
+ write_register (regnum++, (val << 8));
+ }
+ }
+ else
+ {
+ /* arg will go onto stack */
+ regnum = ARGN_REGNUM + 1;
+ si = push_stack_item (si, contents, len);
+ }
}
- len = TYPE_LENGTH (arg_type);
- contents = VALUE_CONTENTS(arg);
- val = extract_signed_integer (contents, len);
- printf("arg %d: len=%d contents=%x\n",i,len,(int)val);
- if (len == 4)
- write_register (regnum++, val>>16);
- write_register (regnum++, val & 0xffff);
}
+
+ while (si)
+ {
+ sp = (sp - si->len) & ~1;
+ write_memory (sp, si->data, si->len);
+ si = pop_stack_item (si);
+ }
+
+ return sp;
}
-CORE_ADDR
-d10v_call_dummy_address ()
+/* Given a return value in `regbuf' with a type `valtype',
+ extract and copy its value into `valbuf'. */
+
+void
+d10v_extract_return_value (type, regbuf, valbuf)
+ struct type *type;
+ char regbuf[REGISTER_BYTES];
+ char *valbuf;
+{
+ int len;
+ /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
+ if (TYPE_CODE (type) == TYPE_CODE_PTR
+ && TYPE_TARGET_TYPE (type)
+ && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
+ {
+ /* pointer to function */
+ int num;
+ short snum;
+ snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
+ store_address (valbuf, 4, D10V_MAKE_IADDR (snum));
+ }
+ else if (TYPE_CODE (type) == TYPE_CODE_PTR)
+ {
+ /* pointer to data */
+ int num;
+ short snum;
+ snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
+ store_address (valbuf, 4, D10V_MAKE_DADDR (snum));
+ }
+ else
+ {
+ len = TYPE_LENGTH (type);
+ if (len == 1)
+ {
+ unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
+ store_unsigned_integer (valbuf, 1, c);
+ }
+ else if ((len & 1) == 0)
+ memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
+ else
+ {
+ /* For return values of odd size, the first byte is in the
+ least significant part of the first register. The
+ remaining bytes in remaining registers. Interestingly,
+ when such values are passed in, the last byte is in the
+ most significant byte of that same register - wierd. */
+ memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
+ }
+ }
+}
+
+/* The following code implements access to, and display of, the D10V's
+ instruction trace buffer. The buffer consists of 64K or more
+ 4-byte words of data, of which each words includes an 8-bit count,
+ an 8-bit segment number, and a 16-bit instruction address.
+
+ In theory, the trace buffer is continuously capturing instruction
+ data that the CPU presents on its "debug bus", but in practice, the
+ ROMified GDB stub only enables tracing when it continues or steps
+ the program, and stops tracing when the program stops; so it
+ actually works for GDB to read the buffer counter out of memory and
+ then read each trace word. The counter records where the tracing
+ stops, but there is no record of where it started, so we remember
+ the PC when we resumed and then search backwards in the trace
+ buffer for a word that includes that address. This is not perfect,
+ because you will miss trace data if the resumption PC is the target
+ of a branch. (The value of the buffer counter is semi-random, any
+ trace data from a previous program stop is gone.) */
+
+/* The address of the last word recorded in the trace buffer. */
+
+#define DBBC_ADDR (0xd80000)
+
+/* The base of the trace buffer, at least for the "Board_0". */
+
+#define TRACE_BUFFER_BASE (0xf40000)
+
+static void trace_command PARAMS ((char *, int));
+
+static void untrace_command PARAMS ((char *, int));
+
+static void trace_info PARAMS ((char *, int));
+
+static void tdisassemble_command PARAMS ((char *, int));
+
+static void display_trace PARAMS ((int, int));
+
+/* True when instruction traces are being collected. */
+
+static int tracing;
+
+/* Remembered PC. */
+
+static CORE_ADDR last_pc;
+
+/* True when trace output should be displayed whenever program stops. */
+
+static int trace_display;
+
+/* True when trace listing should include source lines. */
+
+static int default_trace_show_source = 1;
+
+struct trace_buffer
+ {
+ int size;
+ short *counts;
+ CORE_ADDR *addrs;
+ }
+trace_data;
+
+static void
+trace_command (args, from_tty)
+ char *args;
+ int from_tty;
{
- CORE_ADDR entry;
- struct minimal_symbol *sym;
+ /* Clear the host-side trace buffer, allocating space if needed. */
+ trace_data.size = 0;
+ if (trace_data.counts == NULL)
+ trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
+ if (trace_data.addrs == NULL)
+ trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
- entry = entry_point_address ();
+ tracing = 1;
+
+ printf_filtered ("Tracing is now on.\n");
+}
- if (entry != 0)
- return entry;
+static void
+untrace_command (args, from_tty)
+ char *args;
+ int from_tty;
+{
+ tracing = 0;
+
+ printf_filtered ("Tracing is now off.\n");
+}
+
+static void
+trace_info (args, from_tty)
+ char *args;
+ int from_tty;
+{
+ int i;
- sym = lookup_minimal_symbol ("_start", NULL, symfile_objfile);
+ if (trace_data.size)
+ {
+ printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
- if (!sym || MSYMBOL_TYPE (sym) != mst_text)
- return 0;
+ for (i = 0; i < trace_data.size; ++i)
+ {
+ printf_filtered ("%d: %d instruction%s at 0x%x\n",
+ i, trace_data.counts[i],
+ (trace_data.counts[i] == 1 ? "" : "s"),
+ trace_data.addrs[i]);
+ }
+ }
else
- return SYMBOL_VALUE_ADDRESS (sym);
+ printf_filtered ("No entries in trace buffer.\n");
+
+ printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
}
-/* Given a return value in `regbuf' with a type `valtype',
- extract and copy its value into `valbuf'. */
+/* Print the instruction at address MEMADDR in debugged memory,
+ on STREAM. Returns length of the instruction, in bytes. */
+
+static int
+print_insn (memaddr, stream)
+ CORE_ADDR memaddr;
+ GDB_FILE *stream;
+{
+ /* If there's no disassembler, something is very wrong. */
+ if (tm_print_insn == NULL)
+ abort ();
+
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ tm_print_insn_info.endian = BFD_ENDIAN_BIG;
+ else
+ tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
+ return (*tm_print_insn) (memaddr, &tm_print_insn_info);
+}
+
+static void
+d10v_eva_prepare_to_trace ()
+{
+ if (!tracing)
+ return;
+
+ last_pc = read_register (PC_REGNUM);
+}
+
+/* Collect trace data from the target board and format it into a form
+ more useful for display. */
+
+static void
+d10v_eva_get_trace_data ()
+{
+ int count, i, j, oldsize;
+ int trace_addr, trace_seg, trace_cnt, next_cnt;
+ unsigned int last_trace, trace_word, next_word;
+ unsigned int *tmpspace;
+
+ if (!tracing)
+ return;
+
+ tmpspace = xmalloc (65536 * sizeof (unsigned int));
+
+ last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
+
+ /* Collect buffer contents from the target, stopping when we reach
+ the word recorded when execution resumed. */
+
+ count = 0;
+ while (last_trace > 0)
+ {
+ QUIT;
+ trace_word =
+ read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
+ trace_addr = trace_word & 0xffff;
+ last_trace -= 4;
+ /* Ignore an apparently nonsensical entry. */
+ if (trace_addr == 0xffd5)
+ continue;
+ tmpspace[count++] = trace_word;
+ if (trace_addr == last_pc)
+ break;
+ if (count > 65535)
+ break;
+ }
+
+ /* Move the data to the host-side trace buffer, adjusting counts to
+ include the last instruction executed and transforming the address
+ into something that GDB likes. */
+
+ for (i = 0; i < count; ++i)
+ {
+ trace_word = tmpspace[i];
+ next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
+ trace_addr = trace_word & 0xffff;
+ next_cnt = (next_word >> 24) & 0xff;
+ j = trace_data.size + count - i - 1;
+ trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
+ trace_data.counts[j] = next_cnt + 1;
+ }
+
+ oldsize = trace_data.size;
+ trace_data.size += count;
+
+ free (tmpspace);
+
+ if (trace_display)
+ display_trace (oldsize, trace_data.size);
+}
+
+static void
+tdisassemble_command (arg, from_tty)
+ char *arg;
+ int from_tty;
+{
+ int i, count;
+ CORE_ADDR low, high;
+ char *space_index;
+
+ if (!arg)
+ {
+ low = 0;
+ high = trace_data.size;
+ }
+ else if (!(space_index = (char *) strchr (arg, ' ')))
+ {
+ low = parse_and_eval_address (arg);
+ high = low + 5;
+ }
+ else
+ {
+ /* Two arguments. */
+ *space_index = '\0';
+ low = parse_and_eval_address (arg);
+ high = parse_and_eval_address (space_index + 1);
+ if (high < low)
+ high = low;
+ }
+
+ printf_filtered ("Dump of trace from %d to %d:\n", low, high);
+
+ display_trace (low, high);
+
+ printf_filtered ("End of trace dump.\n");
+ gdb_flush (gdb_stdout);
+}
+
+static void
+display_trace (low, high)
+ int low, high;
+{
+ int i, count, trace_show_source, first, suppress;
+ CORE_ADDR next_address;
+
+ trace_show_source = default_trace_show_source;
+ if (!have_full_symbols () && !have_partial_symbols ())
+ {
+ trace_show_source = 0;
+ printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
+ printf_filtered ("Trace will not display any source.\n");
+ }
+
+ first = 1;
+ suppress = 0;
+ for (i = low; i < high; ++i)
+ {
+ next_address = trace_data.addrs[i];
+ count = trace_data.counts[i];
+ while (count-- > 0)
+ {
+ QUIT;
+ if (trace_show_source)
+ {
+ struct symtab_and_line sal, sal_prev;
+
+ sal_prev = find_pc_line (next_address - 4, 0);
+ sal = find_pc_line (next_address, 0);
+
+ if (sal.symtab)
+ {
+ if (first || sal.line != sal_prev.line)
+ print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
+ suppress = 0;
+ }
+ else
+ {
+ if (!suppress)
+ /* FIXME-32x64--assumes sal.pc fits in long. */
+ printf_filtered ("No source file for address %s.\n",
+ local_hex_string ((unsigned long) sal.pc));
+ suppress = 1;
+ }
+ }
+ first = 0;
+ print_address (next_address, gdb_stdout);
+ printf_filtered (":");
+ printf_filtered ("\t");
+ wrap_here (" ");
+ next_address = next_address + print_insn (next_address, gdb_stdout);
+ printf_filtered ("\n");
+ gdb_flush (gdb_stdout);
+ }
+ }
+}
+
+
+static gdbarch_init_ftype d10v_gdbarch_init;
+static struct gdbarch *
+d10v_gdbarch_init (info, arches)
+ struct gdbarch_info info;
+ struct gdbarch_list *arches;
+{
+ static LONGEST d10v_call_dummy_words[] =
+ {0};
+ struct gdbarch *gdbarch;
+ int d10v_num_regs = 37;
+
+ /* there is only one d10v architecture */
+ if (arches != NULL)
+ return arches->gdbarch;
+ gdbarch = gdbarch_alloc (&info, NULL);
+
+ set_gdbarch_read_pc (gdbarch, d10v_read_pc);
+ set_gdbarch_write_pc (gdbarch, d10v_write_pc);
+ set_gdbarch_read_fp (gdbarch, d10v_read_fp);
+ set_gdbarch_write_fp (gdbarch, d10v_write_fp);
+ set_gdbarch_read_sp (gdbarch, d10v_read_sp);
+ set_gdbarch_write_sp (gdbarch, d10v_write_sp);
+
+ set_gdbarch_num_regs (gdbarch, d10v_num_regs);
+ set_gdbarch_sp_regnum (gdbarch, 15);
+ set_gdbarch_fp_regnum (gdbarch, 11);
+ set_gdbarch_pc_regnum (gdbarch, 18);
+ set_gdbarch_register_name (gdbarch, d10v_register_name);
+ set_gdbarch_register_size (gdbarch, 2);
+ set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
+ set_gdbarch_register_byte (gdbarch, d10v_register_byte);
+ set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
+ set_gdbarch_max_register_raw_size (gdbarch, 8);
+ set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
+ set_gdbarch_max_register_virtual_size (gdbarch, 8);
+ set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
+
+ set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+
+ set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
+ set_gdbarch_call_dummy_length (gdbarch, 0);
+ set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
+ set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
+ set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
+ set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_start_offset (gdbarch, 0);
+ set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
+ set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
+ set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
+ set_gdbarch_call_dummy_p (gdbarch, 1);
+ set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
+ set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
+ set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
+
+ set_gdbarch_register_convertible (gdbarch, d10v_register_convertible);
+ set_gdbarch_register_convert_to_virtual (gdbarch, d10v_register_convert_to_virtual);
+ set_gdbarch_register_convert_to_raw (gdbarch, d10v_register_convert_to_raw);
+
+ set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
+ set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
+ set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
+ set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
+
+ set_gdbarch_d10v_make_daddr (gdbarch, d10v_make_daddr);
+ set_gdbarch_d10v_make_iaddr (gdbarch, d10v_make_iaddr);
+ set_gdbarch_d10v_daddr_p (gdbarch, d10v_daddr_p);
+ set_gdbarch_d10v_iaddr_p (gdbarch, d10v_iaddr_p);
+ set_gdbarch_d10v_convert_daddr_to_raw (gdbarch, d10v_convert_daddr_to_raw);
+ set_gdbarch_d10v_convert_iaddr_to_raw (gdbarch, d10v_convert_iaddr_to_raw);
+
+ set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
+ set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
+ set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
+ set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
+
+ set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
+ set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
+
+ set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
+
+ set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ set_gdbarch_decr_pc_after_break (gdbarch, 4);
+ set_gdbarch_function_start_offset (gdbarch, 0);
+ set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
+
+ set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
+
+ set_gdbarch_frame_args_skip (gdbarch, 0);
+ set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
+ set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
+ set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
+ set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
+ set_gdbarch_frame_args_address (gdbarch, d10v_frame_args_address);
+ set_gdbarch_frame_locals_address (gdbarch, d10v_frame_locals_address);
+ set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
+ set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
+
+ return gdbarch;
+}
+
+
+extern void (*target_resume_hook) PARAMS ((void));
+extern void (*target_wait_loop_hook) PARAMS ((void));
void
-d10v_extract_return_value (valtype, regbuf, valbuf)
- struct type *valtype;
- char regbuf[REGISTER_BYTES];
- char *valbuf;
+_initialize_d10v_tdep ()
{
- printf("EXTRACT: regbuf=%x, *regbuf=%x %x %x %x len=%d %d\n",(int)regbuf,*(int *)regbuf,
- *(int *)(regbuf+4),*(int *)(regbuf+8),*(int *)(regbuf+12),TYPE_LENGTH (valtype),REGISTER_BYTE (2) );
- memcpy (valbuf, regbuf + REGISTER_BYTE (2), TYPE_LENGTH (valtype));
+ register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
+
+ tm_print_insn = print_insn_d10v;
+
+ target_resume_hook = d10v_eva_prepare_to_trace;
+ target_wait_loop_hook = d10v_eva_get_trace_data;
+
+ add_com ("regs", class_vars, show_regs, "Print all registers");
+
+ add_com ("trace", class_support, trace_command,
+ "Enable tracing of instruction execution.");
+
+ add_com ("untrace", class_support, untrace_command,
+ "Disable tracing of instruction execution.");
+
+ add_com ("tdisassemble", class_vars, tdisassemble_command,
+ "Disassemble the trace buffer.\n\
+Two optional arguments specify a range of trace buffer entries\n\
+as reported by info trace (NOT addresses!).");
+
+ add_info ("trace", trace_info,
+ "Display info about the trace data buffer.");
+
+ add_show_from_set (add_set_cmd ("tracedisplay", no_class,
+ var_integer, (char *) &trace_display,
+ "Set automatic display of trace.\n", &setlist),
+ &showlist);
+ add_show_from_set (add_set_cmd ("tracesource", no_class,
+ var_integer, (char *) &default_trace_show_source,
+ "Set display of source code with trace.\n", &setlist),
+ &showlist);
+
}