-/* Target-machine dependent code for Hitachi H8/500, for GDB.
- Copyright (C) 1993 Free Software Foundation, Inc.
+/* Target-dependent code for Hitachi H8/500, for GDB.
+ Copyright 1993, 1994, 1995 Free Software Foundation, Inc.
This file is part of GDB.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
-Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
/*
Contributed by Steve Chamberlain
#include "gdbcmd.h"
#include "value.h"
#include "dis-asm.h"
-#include "../opcodes/h8500-opc.h"
-;
+#include "gdbcore.h"
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
-int code_size = 2;
-int data_size = 2;
-/* Shape of an H8/500 frame :
+static int code_size = 2;
+
+static int data_size = 2;
+/* Shape of an H8/500 frame :
arg-n
..
*/
-
/* an easy to debug H8 stack frame looks like:
0x6df6 push r6
0x0d76 mov.w r7,r6
#define LINK_16 0x1f
int minimum_mode = 1;
-CORE_ADDR examine_prologue ();
-
-void frame_find_saved_regs ();
-
CORE_ADDR
h8500_skip_prologue (start_pc)
CORE_ADDR start_pc;
-
{
short int w;
- w = read_memory_integer (start_pc, 1);
+ w = read_memory_integer (start_pc, 1);
if (w == LINK_8)
{
start_pc += 2;
return start_pc;
}
-int
-print_insn (memaddr, stream)
- CORE_ADDR memaddr;
- GDB_FILE *stream;
-{
- disassemble_info info;
- GDB_INIT_DISASSEMBLE_INFO (info, stream);
- return print_insn_h8500 (memaddr, &info);
-}
-
/* Given a GDB frame, determine the address of the calling function's frame.
This will be used to create a new GDB frame struct, and then
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
For us, the frame address is its stack pointer value, so we look up
the function prologue to determine the caller's sp value, and return it. */
-FRAME_ADDR
+CORE_ADDR
h8500_frame_chain (thisframe)
- FRAME thisframe;
+ struct frame_info *thisframe;
{
if (!inside_entry_file (thisframe->pc))
return (read_memory_integer (FRAME_FP (thisframe), PTR_SIZE));
return 0;
}
-
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
is not the address of a valid instruction, the address of the next
instruction beyond ADDR otherwise. *PWORD1 receives the first word
return 0;
}
-/* Examine the prologue of a function. `ip' points to the first instruction.
- `limit' is the limit of the prologue (e.g. the addr of the first
- linenumber, or perhaps the program counter if we're stepping through).
- `frame_sp' is the stack pointer value in use in this frame.
- `fsr' is a pointer to a frame_saved_regs structure into which we put
- info about the registers saved by this frame.
- `fi' is a struct frame_info pointer; we fill in various fields in it
- to reflect the offsets of the arg pointer and the locals pointer. */
-
+/* Examine the prologue of a function. `ip' points to the first
+ instruction. `limit' is the limit of the prologue (e.g. the addr
+ of the first linenumber, or perhaps the program counter if we're
+ stepping through). `frame_sp' is the stack pointer value in use in
+ this frame. `fsr' is a pointer to a frame_saved_regs structure
+ into which we put info about the registers saved by this frame.
+ `fi' is a struct frame_info pointer; we fill in various fields in
+ it to reflect the offsets of the arg pointer and the locals
+ pointer. */
/* Return the saved PC from this frame. */
CORE_ADDR
frame_saved_pc (frame)
- FRAME frame;
-{
- return read_memory_integer ((frame)->frame + 2, PTR_SIZE);
-}
-
-CORE_ADDR
-frame_locals_address (fi)
- struct frame_info *fi;
+ struct frame_info *frame;
{
- return fi->frame;
+ return read_memory_integer (FRAME_FP (frame) + 2, PTR_SIZE);
}
-/* Return the address of the argument block for the frame
- described by FI. Returns 0 if the address is unknown. */
-
-CORE_ADDR
-frame_args_address (fi)
- struct frame_info *fi;
-{
- return fi->frame;
-}
-
-void
-h8300_pop_frame ()
+void
+h8500_pop_frame ()
{
unsigned regnum;
struct frame_saved_regs fsr;
- struct frame_info *fi;
-
- FRAME frame = get_current_frame ();
+ struct frame_info *frame = get_current_frame ();
- fi = get_frame_info (frame);
- get_frame_saved_regs (fi, &fsr);
+ get_frame_saved_regs (frame, &fsr);
for (regnum = 0; regnum < 8; regnum++)
{
if (fsr.regs[regnum])
- {
- write_register (regnum, read_memory_short (fsr.regs[regnum]));
- }
+ write_register (regnum, read_memory_short (fsr.regs[regnum]));
flush_cached_frames ();
}
-
}
void
print_register_hook (regno)
+ int regno;
{
if (regno == CCR_REGNUM)
{
h8500_register_size (regno)
int regno;
{
- switch (regno) {
- case SEG_C_REGNUM:
- case SEG_D_REGNUM:
- case SEG_E_REGNUM:
- case SEG_T_REGNUM:
- return 1;
- case R0_REGNUM:
- case R1_REGNUM:
- case R2_REGNUM:
- case R3_REGNUM:
- case R4_REGNUM:
- case R5_REGNUM:
- case R6_REGNUM:
- case R7_REGNUM:
- case CCR_REGNUM:
- return 2;
-
- case PR0_REGNUM:
- case PR1_REGNUM:
- case PR2_REGNUM:
- case PR3_REGNUM:
- case PR4_REGNUM:
- case PR5_REGNUM:
- case PR6_REGNUM:
- case PR7_REGNUM:
- case PC_REGNUM:
- return 4;
- }
+ switch (regno)
+ {
+ case SEG_C_REGNUM:
+ case SEG_D_REGNUM:
+ case SEG_E_REGNUM:
+ case SEG_T_REGNUM:
+ return 1;
+ case R0_REGNUM:
+ case R1_REGNUM:
+ case R2_REGNUM:
+ case R3_REGNUM:
+ case R4_REGNUM:
+ case R5_REGNUM:
+ case R6_REGNUM:
+ case R7_REGNUM:
+ case CCR_REGNUM:
+ return 2;
+
+ case PR0_REGNUM:
+ case PR1_REGNUM:
+ case PR2_REGNUM:
+ case PR3_REGNUM:
+ case PR4_REGNUM:
+ case PR5_REGNUM:
+ case PR6_REGNUM:
+ case PR7_REGNUM:
+ case PC_REGNUM:
+ return 4;
+ default:
+ abort ();
+ }
}
struct type *
frame_find_saved_regs (frame_info, frame_saved_regs)
struct frame_info *frame_info;
struct frame_saved_regs *frame_saved_regs;
-
{
register int regnum;
register int regmask;
(frame_saved_regs)->regs[PC_REGNUM] = (frame_info)->frame + 2;
}
-saved_pc_after_call (frame)
+CORE_ADDR
+saved_pc_after_call ()
{
int x;
int a = read_register (SP_REGNUM);
+
x = read_memory_integer (a, code_size);
if (code_size == 2)
{
return x;
}
-
+#if 0 /* never called */
/* Nonzero if instruction at PC is a return instruction. */
+int
about_to_return (pc)
+ CORE_ADDR pc;
{
int b1 = read_memory_integer (pc, 1);
}
return 0;
}
-
+#endif
void
h8500_set_pointer_size (newsize)
}
}
+static void
+big_command ()
+{
+ h8500_set_pointer_size (32);
+ code_size = 4;
+ data_size = 4;
+}
-struct cmd_list_element *setmemorylist;
+static void
+medium_command ()
+{
+ h8500_set_pointer_size (32);
+ code_size = 4;
+ data_size = 2;
+}
+static void
+compact_command ()
+{
+ h8500_set_pointer_size (32);
+ code_size = 2;
+ data_size = 4;
+}
-#define C(name,a,b,c) name () { h8500_set_pointer_size(a); code_size = b; data_size = c; }
+static void
+small_command ()
+{
+ h8500_set_pointer_size (16);
+ code_size = 2;
+ data_size = 2;
+}
-C(big_command, 32,4,4);
-C(medium_command, 32, 4,2);
-C(compact_command, 32,2,4);
-C(small_command, 16,2,2);
+static struct cmd_list_element *setmemorylist;
static void
set_memory (args, from_tty)
struct type *type;
enum type_code newval_type_code;
- type = VALUE_TYPE (newval);
+ type = check_typedef (VALUE_TYPE (newval));
newval_type_code = TYPE_CODE (type);
if ((newval_type_code != TYPE_CODE_INT
&& newval_type_code != TYPE_CODE_PTR)
|| TYPE_LENGTH (type) != sizeof (new_regval))
error ("Illegal type (%s) for assignment to $%s\n",
- TYPE_NAME (type), var->name);
+ TYPE_NAME (VALUE_TYPE (newval)), var->name);
new_regval = *(long *) VALUE_CONTENTS_RAW (newval);
parse_and_eval (expression);
}
-void
-_initialize_h8500_tdep ()
-{
- add_prefix_cmd ("memory", no_class, set_memory,
- "set the memory model", &setmemorylist, "set memory ", 0,
- &setlist);
-
- add_cmd ("small", class_support, small_command,
- "Set small memory model. (16 bit code, 16 bit data)", &setmemorylist);
-
- add_cmd ("big", class_support, big_command,
- "Set big memory model. (32 bit code, 32 bit data)", &setmemorylist);
-
- add_cmd ("medium", class_support, medium_command,
- "Set medium memory model. (32 bit code, 16 bit data)", &setmemorylist);
-
- add_cmd ("compact", class_support, compact_command,
- "Set compact memory model. (16 bit code, 32 bit data)", &setmemorylist);
-
-}
-
CORE_ADDR
-target_read_sp ()
+h8500_read_sp ()
{
return read_register (PR7_REGNUM);
}
void
-target_write_sp (v)
+h8500_write_sp (v)
CORE_ADDR v;
{
write_register (PR7_REGNUM, v);
}
CORE_ADDR
-target_read_pc ()
+h8500_read_pc (pid)
+ int pid;
{
return read_register (PC_REGNUM);
}
void
-target_write_pc (v)
+h8500_write_pc (v, pid)
CORE_ADDR v;
+ int pid;
{
write_register (PC_REGNUM, v);
}
CORE_ADDR
-target_read_fp ()
+h8500_read_fp ()
{
return read_register (PR6_REGNUM);
}
void
-target_write_fp (v)
+h8500_write_fp (v)
CORE_ADDR v;
{
write_register (PR6_REGNUM, v);
}
+void
+_initialize_h8500_tdep ()
+{
+ tm_print_insn = print_insn_h8500;
+
+ add_prefix_cmd ("memory", no_class, set_memory,
+ "set the memory model", &setmemorylist, "set memory ", 0,
+ &setlist);
+
+ add_cmd ("small", class_support, small_command,
+ "Set small memory model. (16 bit code, 16 bit data)", &setmemorylist);
+
+ add_cmd ("big", class_support, big_command,
+ "Set big memory model. (32 bit code, 32 bit data)", &setmemorylist);
+
+ add_cmd ("medium", class_support, medium_command,
+ "Set medium memory model. (32 bit code, 16 bit data)", &setmemorylist);
+
+ add_cmd ("compact", class_support, compact_command,
+ "Set compact memory model. (16 bit code, 32 bit data)", &setmemorylist);
+
+}