/* Find a variable's value in memory, for GDB, the GNU debugger.
- Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
+ Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996 Free Software Foundation, Inc.
This file is part of GDB.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
-Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "symtab.h"
#include "gdbcore.h"
#include "inferior.h"
#include "target.h"
+#include "gdb_string.h"
+#include "floatformat.h"
+
+/* This is used to indicate that we don't know the format of the floating point
+ number. Typically, this is useful for native ports, where the actual format
+ is irrelevant, since no conversions will be taking place. */
+
+const struct floatformat floatformat_unknown;
+
+/* Registers we shouldn't try to store. */
+#if !defined (CANNOT_STORE_REGISTER)
+#define CANNOT_STORE_REGISTER(regno) 0
+#endif
+
+static void write_register_pid PARAMS ((int regno, LONGEST val, int pid));
/* Basic byte-swapping routines. GDB has needed these for a long time...
All extract a target-format integer at ADDR which is LEN bytes long. */
unsigned char *startaddr = (unsigned char *)addr;
unsigned char *endaddr = startaddr + len;
- if (len > sizeof (LONGEST))
+ if (len > (int) sizeof (LONGEST))
error ("\
That operation is not available on integers of more than %d bytes.",
sizeof (LONGEST));
/* Start at the most significant end of the integer, and work towards
the least significant. */
-#if TARGET_BYTE_ORDER == BIG_ENDIAN
- p = startaddr;
-#else
- p = endaddr - 1;
-#endif
- /* Do the sign extension once at the start. */
- retval = ((LONGEST)*p ^ 0x80) - 0x80;
-#if TARGET_BYTE_ORDER == BIG_ENDIAN
- for (++p; p < endaddr; ++p)
-#else
- for (--p; p >= startaddr; --p)
-#endif
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ p = startaddr;
+ /* Do the sign extension once at the start. */
+ retval = ((LONGEST)*p ^ 0x80) - 0x80;
+ for (++p; p < endaddr; ++p)
+ retval = (retval << 8) | *p;
+ }
+ else
{
- retval = (retval << 8) | *p;
+ p = endaddr - 1;
+ /* Do the sign extension once at the start. */
+ retval = ((LONGEST)*p ^ 0x80) - 0x80;
+ for (--p; p >= startaddr; --p)
+ retval = (retval << 8) | *p;
}
return retval;
}
unsigned char *startaddr = (unsigned char *)addr;
unsigned char *endaddr = startaddr + len;
- if (len > sizeof (unsigned LONGEST))
+ if (len > (int) sizeof (unsigned LONGEST))
error ("\
That operation is not available on integers of more than %d bytes.",
sizeof (unsigned LONGEST));
/* Start at the most significant end of the integer, and work towards
the least significant. */
retval = 0;
-#if TARGET_BYTE_ORDER == BIG_ENDIAN
- for (p = startaddr; p < endaddr; ++p)
-#else
- for (p = endaddr - 1; p >= startaddr; --p)
-#endif
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ for (p = startaddr; p < endaddr; ++p)
+ retval = (retval << 8) | *p;
+ }
+ else
{
- retval = (retval << 8) | *p;
+ for (p = endaddr - 1; p >= startaddr; --p)
+ retval = (retval << 8) | *p;
}
return retval;
}
+/* Sometimes a long long unsigned integer can be extracted as a
+ LONGEST value. This is done so that we can print these values
+ better. If this integer can be converted to a LONGEST, this
+ function returns 1 and sets *PVAL. Otherwise it returns 0. */
+
+int
+extract_long_unsigned_integer (addr, orig_len, pval)
+ PTR addr;
+ int orig_len;
+ LONGEST *pval;
+{
+ char *p, *first_addr;
+ int len;
+
+ len = orig_len;
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ for (p = (char *) addr;
+ len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
+ p++)
+ {
+ if (*p == 0)
+ len--;
+ else
+ break;
+ }
+ first_addr = p;
+ }
+ else
+ {
+ first_addr = (char *) addr;
+ for (p = (char *) addr + orig_len - 1;
+ len > (int) sizeof (LONGEST) && p >= (char *) addr;
+ p--)
+ {
+ if (*p == 0)
+ len--;
+ else
+ break;
+ }
+ }
+
+ if (len <= (int) sizeof (LONGEST))
+ {
+ *pval = (LONGEST) extract_unsigned_integer (first_addr,
+ sizeof (LONGEST));
+ return 1;
+ }
+
+ return 0;
+}
+
CORE_ADDR
extract_address (addr, len)
PTR addr;
/* Start at the least significant end of the integer, and work towards
the most significant. */
-#if TARGET_BYTE_ORDER == BIG_ENDIAN
- for (p = endaddr - 1; p >= startaddr; --p)
-#else
- for (p = startaddr; p < endaddr; ++p)
-#endif
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ for (p = endaddr - 1; p >= startaddr; --p)
+ {
+ *p = val & 0xff;
+ val >>= 8;
+ }
+ }
+ else
{
- *p = val & 0xff;
- val >>= 8;
+ for (p = startaddr; p < endaddr; ++p)
+ {
+ *p = val & 0xff;
+ val >>= 8;
+ }
}
}
/* Start at the least significant end of the integer, and work towards
the most significant. */
-#if TARGET_BYTE_ORDER == BIG_ENDIAN
- for (p = endaddr - 1; p >= startaddr; --p)
-#else
- for (p = startaddr; p < endaddr; ++p)
-#endif
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ for (p = endaddr - 1; p >= startaddr; --p)
+ {
+ *p = val & 0xff;
+ val >>= 8;
+ }
+ }
+ else
{
- *p = val & 0xff;
- val >>= 8;
+ for (p = startaddr; p < endaddr; ++p)
+ {
+ *p = val & 0xff;
+ val >>= 8;
+ }
}
}
store_unsigned_integer (addr, len, (LONGEST)val);
}
\f
+/* Swap LEN bytes at BUFFER between target and host byte-order. */
+#define SWAP_FLOATING(buffer,len) \
+ do \
+ { \
+ if (TARGET_BYTE_ORDER != HOST_BYTE_ORDER) \
+ { \
+ char tmp; \
+ char *p = (char *)(buffer); \
+ char *q = ((char *)(buffer)) + len - 1; \
+ for (; p < q; p++, q--) \
+ { \
+ tmp = *q; \
+ *q = *p; \
+ *p = tmp; \
+ } \
+ } \
+ } \
+ while (0)
+
+/* There are various problems with the extract_floating and store_floating
+ routines.
+
+ 1. These routines only handle byte-swapping, not conversion of
+ formats. So if host is IEEE floating and target is VAX floating,
+ or vice-versa, it loses. This means that we can't (yet) use these
+ routines for extendeds. Extendeds are handled by
+ REGISTER_CONVERTIBLE. What we want is to use floatformat.h, but that
+ doesn't yet handle VAX floating at all.
+
+ 2. We can't deal with it if there is more than one floating point
+ format in use. This has to be fixed at the unpack_double level.
+
+ 3. We probably should have a LONGEST_DOUBLE or DOUBLEST or whatever
+ we want to call it which is long double where available. */
+
+DOUBLEST
+extract_floating (addr, len)
+ PTR addr;
+ int len;
+{
+ DOUBLEST dretval;
+
+ if (len == sizeof (float))
+ {
+ if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
+ {
+ float retval;
+
+ memcpy (&retval, addr, sizeof (retval));
+ return retval;
+ }
+ else
+ FLOATFORMAT_TO_DOUBLEST (TARGET_FLOAT_FORMAT, addr, &dretval);
+ }
+ else if (len == sizeof (double))
+ {
+ if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
+ {
+ double retval;
+
+ memcpy (&retval, addr, sizeof (retval));
+ return retval;
+ }
+ else
+ FLOATFORMAT_TO_DOUBLEST (TARGET_DOUBLE_FORMAT, addr, &dretval);
+ }
+ else if (len == sizeof (DOUBLEST))
+ {
+ if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
+ {
+ DOUBLEST retval;
+
+ memcpy (&retval, addr, sizeof (retval));
+ return retval;
+ }
+ else
+ FLOATFORMAT_TO_DOUBLEST (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
+ }
+ else
+ {
+ error ("Can't deal with a floating point number of %d bytes.", len);
+ }
+
+ return dretval;
+}
+
+void
+store_floating (addr, len, val)
+ PTR addr;
+ int len;
+ DOUBLEST val;
+{
+ if (len == sizeof (float))
+ {
+ if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
+ {
+ float floatval = val;
+
+ memcpy (addr, &floatval, sizeof (floatval));
+ }
+ else
+ FLOATFORMAT_FROM_DOUBLEST (TARGET_FLOAT_FORMAT, &val, addr);
+ }
+ else if (len == sizeof (double))
+ {
+ if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
+ {
+ double doubleval = val;
+
+ memcpy (addr, &doubleval, sizeof (doubleval));
+ }
+ else
+ FLOATFORMAT_FROM_DOUBLEST (TARGET_DOUBLE_FORMAT, &val, addr);
+ }
+ else if (len == sizeof (DOUBLEST))
+ {
+ if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
+ memcpy (addr, &val, sizeof (val));
+ else
+ FLOATFORMAT_FROM_DOUBLEST (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
+ }
+ else
+ {
+ error ("Can't deal with a floating point number of %d bytes.", len);
+ }
+}
+\f
#if !defined (GET_SAVED_REGISTER)
/* Return the address in which frame FRAME's value of register REGNUM
CORE_ADDR
find_saved_register (frame, regnum)
- FRAME frame;
+ struct frame_info *frame;
int regnum;
{
- struct frame_info *fi;
struct frame_saved_regs saved_regs;
- register FRAME frame1 = 0;
+ register struct frame_info *frame1 = NULL;
register CORE_ADDR addr = 0;
- if (frame == 0) /* No regs saved if want current frame */
+ if (frame == NULL) /* No regs saved if want current frame */
return 0;
#ifdef HAVE_REGISTER_WINDOWS
stack pointer saved for *this* frame; this is returned from the
next frame. */
-
if (REGISTER_IN_WINDOW_P(regnum))
{
frame1 = get_next_frame (frame);
- if (!frame1) return 0; /* Registers of this frame are
- active. */
+ if (!frame1) return 0; /* Registers of this frame are active. */
/* Get the SP from the next frame in; it will be this
current frame. */
if (regnum != SP_REGNUM)
frame1 = frame;
- fi = get_frame_info (frame1);
- get_frame_saved_regs (fi, &saved_regs);
+ get_frame_saved_regs (frame1, &saved_regs);
return saved_regs.regs[regnum]; /* ... which might be zero */
}
#endif /* HAVE_REGISTER_WINDOWS */
frame1 = get_prev_frame (frame1);
if (frame1 == 0 || frame1 == frame)
break;
- fi = get_frame_info (frame1);
- get_frame_saved_regs (fi, &saved_regs);
+ get_frame_saved_regs (frame1, &saved_regs);
if (saved_regs.regs[regnum])
addr = saved_regs.regs[regnum];
}
char *raw_buffer;
int *optimized;
CORE_ADDR *addrp;
- FRAME frame;
+ struct frame_info *frame;
int regnum;
enum lval_type *lval;
{
CORE_ADDR addr;
+
+ if (!target_has_registers)
+ error ("No registers.");
+
/* Normal systems don't optimize out things with register numbers. */
if (optimized != NULL)
*optimized = 0;
in its virtual format, with the type specified by
REGISTER_VIRTUAL_TYPE. */
-value
+value_ptr
value_of_register (regnum)
int regnum;
{
CORE_ADDR addr;
int optim;
- register value val;
+ register value_ptr reg_val;
char raw_buffer[MAX_REGISTER_RAW_SIZE];
- char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
enum lval_type lval;
get_saved_register (raw_buffer, &optim, &addr,
selected_frame, regnum, &lval);
- REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer);
- val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
- memcpy (VALUE_CONTENTS_RAW (val), virtual_buffer,
- REGISTER_VIRTUAL_SIZE (regnum));
- VALUE_LVAL (val) = lval;
- VALUE_ADDRESS (val) = addr;
- VALUE_REGNO (val) = regnum;
- VALUE_OPTIMIZED_OUT (val) = optim;
- return val;
+ reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
+
+ /* Convert raw data to virtual format if necessary. */
+
+#ifdef REGISTER_CONVERTIBLE
+ if (REGISTER_CONVERTIBLE (regnum))
+ {
+ REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
+ raw_buffer, VALUE_CONTENTS_RAW (reg_val));
+ }
+ else
+#endif
+ memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
+ REGISTER_RAW_SIZE (regnum));
+ VALUE_LVAL (reg_val) = lval;
+ VALUE_ADDRESS (reg_val) = addr;
+ VALUE_REGNO (reg_val) = regnum;
+ VALUE_OPTIMIZED_OUT (reg_val) = optim;
+ return reg_val;
}
\f
/* Low level examining and depositing of registers.
/* Nonzero if that register has been fetched. */
char register_valid[NUM_REGS];
+/* The thread/process associated with the current set of registers. For now,
+ -1 is special, and means `no current process'. */
+int registers_pid = -1;
+
/* Indicate that registers may have changed, so invalidate the cache. */
+
void
registers_changed ()
{
int i;
- for (i = 0; i < NUM_REGS; i++)
+ int numregs = ARCH_NUM_REGS;
+
+ registers_pid = -1;
+
+ for (i = 0; i < numregs; i++)
register_valid[i] = 0;
+
+ if (registers_changed_hook)
+ registers_changed_hook ();
}
/* Indicate that all registers have been fetched, so mark them all valid. */
registers_fetched ()
{
int i;
- for (i = 0; i < NUM_REGS; i++)
+ int numregs = ARCH_NUM_REGS;
+ for (i = 0; i < numregs; i++)
register_valid[i] = 1;
}
-/* Copy LEN bytes of consecutive data from registers
- starting with the REGBYTE'th byte of register data
+/* read_register_bytes and write_register_bytes are generally a *BAD* idea.
+ They are inefficient because they need to check for partial updates, which
+ can only be done by scanning through all of the registers and seeing if the
+ bytes that are being read/written fall inside of an invalid register. [The
+ main reason this is necessary is that register sizes can vary, so a simple
+ index won't suffice.] It is far better to call read_register_gen if you
+ want to get at the raw register contents, as it only takes a regno as an
+ argument, and therefore can't do a partial register update. It would also
+ be good to have a write_register_gen for similar reasons.
+
+ Prior to the recent fixes to check for partial updates, both read and
+ write_register_bytes always checked to see if any registers were stale, and
+ then called target_fetch_registers (-1) to update the whole set. This
+ caused really slowed things down for remote targets. */
+
+/* Copy INLEN bytes of consecutive data from registers
+ starting with the INREGBYTE'th byte of register data
into memory at MYADDR. */
void
-read_register_bytes (regbyte, myaddr, len)
- int regbyte;
+read_register_bytes (inregbyte, myaddr, inlen)
+ int inregbyte;
char *myaddr;
- int len;
+ int inlen;
{
- /* Fetch all registers. */
- int i;
- for (i = 0; i < NUM_REGS; i++)
- if (!register_valid[i])
- {
- target_fetch_registers (-1);
- break;
- }
+ int inregend = inregbyte + inlen;
+ int regno;
+
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
+ /* See if we are trying to read bytes from out-of-date registers. If so,
+ update just those registers. */
+
+ for (regno = 0; regno < NUM_REGS; regno++)
+ {
+ int regstart, regend;
+ int startin, endin;
+
+ if (register_valid[regno])
+ continue;
+
+ regstart = REGISTER_BYTE (regno);
+ regend = regstart + REGISTER_RAW_SIZE (regno);
+
+ startin = regstart >= inregbyte && regstart < inregend;
+ endin = regend > inregbyte && regend <= inregend;
+
+ if (!startin && !endin)
+ continue;
+
+ /* We've found an invalid register where at least one byte will be read.
+ Update it from the target. */
+
+ target_fetch_registers (regno);
+
+ if (!register_valid[regno])
+ error ("read_register_bytes: Couldn't update register %d.", regno);
+ }
+
if (myaddr != NULL)
- memcpy (myaddr, ®isters[regbyte], len);
+ memcpy (myaddr, ®isters[inregbyte], inlen);
}
/* Read register REGNO into memory at MYADDR, which must be large enough
int regno;
char *myaddr;
{
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
if (!register_valid[regno])
target_fetch_registers (regno);
memcpy (myaddr, ®isters[REGISTER_BYTE (regno)],
REGISTER_RAW_SIZE (regno));
}
-/* Copy LEN bytes of consecutive data from memory at MYADDR
- into registers starting with the REGBYTE'th byte of register data. */
+/* Write register REGNO at MYADDR to the target. MYADDR points at
+ REGISTER_RAW_BYTES(REGNO), which must be in target byte-order. */
void
-write_register_bytes (regbyte, myaddr, len)
- int regbyte;
+write_register_gen (regno, myaddr)
+ int regno;
char *myaddr;
- int len;
{
- /* Make sure the entire registers array is valid. */
- read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
- memcpy (®isters[regbyte], myaddr, len);
- target_store_registers (-1);
+ int size;
+
+ /* On the sparc, writing %g0 is a no-op, so we don't even want to change
+ the registers array if something writes to this register. */
+ if (CANNOT_STORE_REGISTER (regno))
+ return;
+
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
+ size = REGISTER_RAW_SIZE(regno);
+
+ /* If we have a valid copy of the register, and new value == old value,
+ then don't bother doing the actual store. */
+
+ if (register_valid [regno]
+ && memcmp (®isters[REGISTER_BYTE (regno)], myaddr, size) == 0)
+ return;
+
+ target_prepare_to_store ();
+
+ memcpy (®isters[REGISTER_BYTE (regno)], myaddr, size);
+
+ register_valid [regno] = 1;
+
+ target_store_registers (regno);
+}
+
+/* Copy INLEN bytes of consecutive data from memory at MYADDR
+ into registers starting with the MYREGSTART'th byte of register data. */
+
+void
+write_register_bytes (myregstart, myaddr, inlen)
+ int myregstart;
+ char *myaddr;
+ int inlen;
+{
+ int myregend = myregstart + inlen;
+ int regno;
+
+ target_prepare_to_store ();
+
+ /* Scan through the registers updating any that are covered by the range
+ myregstart<=>myregend using write_register_gen, which does nice things
+ like handling threads, and avoiding updates when the new and old contents
+ are the same. */
+
+ for (regno = 0; regno < NUM_REGS; regno++)
+ {
+ int regstart, regend;
+ int startin, endin;
+ char regbuf[MAX_REGISTER_RAW_SIZE];
+
+ regstart = REGISTER_BYTE (regno);
+ regend = regstart + REGISTER_RAW_SIZE (regno);
+
+ startin = regstart >= myregstart && regstart < myregend;
+ endin = regend > myregstart && regend <= myregend;
+
+ if (!startin && !endin)
+ continue; /* Register is completely out of range */
+
+ if (startin && endin) /* register is completely in range */
+ {
+ write_register_gen (regno, myaddr + (regstart - myregstart));
+ continue;
+ }
+
+ /* We may be doing a partial update of an invalid register. Update it
+ from the target before scribbling on it. */
+ read_register_gen (regno, regbuf);
+
+ if (startin)
+ memcpy (registers + regstart,
+ myaddr + regstart - myregstart,
+ myregend - regstart);
+ else /* endin */
+ memcpy (registers + myregstart,
+ myaddr,
+ regend - myregstart);
+ target_store_registers (regno);
+ }
}
/* Return the raw contents of register REGNO, regarding it as an integer. */
read_register (regno)
int regno;
{
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
if (!register_valid[regno])
target_fetch_registers (regno);
REGISTER_RAW_SIZE(regno));
}
-/* Registers we shouldn't try to store. */
-#if !defined (CANNOT_STORE_REGISTER)
-#define CANNOT_STORE_REGISTER(regno) 0
-#endif
+CORE_ADDR
+read_register_pid (regno, pid)
+ int regno, pid;
+{
+ int save_pid;
+ CORE_ADDR retval;
+
+ if (pid == inferior_pid)
+ return read_register (regno);
+
+ save_pid = inferior_pid;
+
+ inferior_pid = pid;
+
+ retval = read_register (regno);
+
+ inferior_pid = save_pid;
+
+ return retval;
+}
/* Store VALUE, into the raw contents of register number REGNO. */
-/* FIXME: The val arg should probably be a LONGEST. */
void
write_register (regno, val)
if (CANNOT_STORE_REGISTER (regno))
return;
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
size = REGISTER_RAW_SIZE(regno);
buf = alloca (size);
store_signed_integer (buf, size, (LONGEST) val);
/* If we have a valid copy of the register, and new value == old value,
then don't bother doing the actual store. */
- if (register_valid [regno])
- {
- if (memcmp (®isters[REGISTER_BYTE (regno)], buf, size) == 0)
- return;
- }
+ if (register_valid [regno]
+ && memcmp (®isters[REGISTER_BYTE (regno)], buf, size) == 0)
+ return;
target_prepare_to_store ();
target_store_registers (regno);
}
+static void
+write_register_pid (regno, val, pid)
+ int regno;
+ LONGEST val;
+ int pid;
+{
+ int save_pid;
+
+ if (pid == inferior_pid)
+ {
+ write_register (regno, val);
+ return;
+ }
+
+ save_pid = inferior_pid;
+
+ inferior_pid = pid;
+
+ write_register (regno, val);
+
+ inferior_pid = save_pid;
+}
+
/* Record that register REGNO contains VAL.
This is used when the value is obtained from the inferior or core dump,
so there is no need to store the value there. */
int regno;
char *val;
{
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
register_valid[regno] = 1;
memcpy (®isters[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
CLEAN_UP_REGISTER_VALUE(regno, ®isters[REGISTER_BYTE(regno)]);
#endif
}
+
+
+/* This routine is getting awfully cluttered with #if's. It's probably
+ time to turn this into READ_PC and define it in the tm.h file.
+ Ditto for write_pc. */
+
+CORE_ADDR
+read_pc ()
+{
+#ifdef TARGET_READ_PC
+ return TARGET_READ_PC (inferior_pid);
+#else
+ return ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, inferior_pid));
+#endif
+}
+
+CORE_ADDR
+read_pc_pid (pid)
+ int pid;
+{
+#ifdef TARGET_READ_PC
+ return TARGET_READ_PC (pid);
+#else
+ return ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
+#endif
+}
+
+void
+write_pc (val)
+ CORE_ADDR val;
+{
+#ifdef TARGET_WRITE_PC
+ TARGET_WRITE_PC (val, inferior_pid);
+#else
+ write_register_pid (PC_REGNUM, val, inferior_pid);
+#ifdef NPC_REGNUM
+ write_register_pid (NPC_REGNUM, val + 4, inferior_pid);
+#ifdef NNPC_REGNUM
+ write_register_pid (NNPC_REGNUM, val + 8, inferior_pid);
+#endif
+#endif
+#endif
+}
+
+void
+write_pc_pid (val, pid)
+ CORE_ADDR val;
+ int pid;
+{
+#ifdef TARGET_WRITE_PC
+ TARGET_WRITE_PC (val, pid);
+#else
+ write_register_pid (PC_REGNUM, val, pid);
+#ifdef NPC_REGNUM
+ write_register_pid (NPC_REGNUM, val + 4, pid);
+#ifdef NNPC_REGNUM
+ write_register_pid (NNPC_REGNUM, val + 8, pid);
+#endif
+#endif
+#endif
+}
+
+/* Cope with strage ways of getting to the stack and frame pointers */
+
+CORE_ADDR
+read_sp ()
+{
+#ifdef TARGET_READ_SP
+ return TARGET_READ_SP ();
+#else
+ return read_register (SP_REGNUM);
+#endif
+}
+
+void
+write_sp (val)
+ CORE_ADDR val;
+{
+#ifdef TARGET_WRITE_SP
+ TARGET_WRITE_SP (val);
+#else
+ write_register (SP_REGNUM, val);
+#endif
+}
+
+CORE_ADDR
+read_fp ()
+{
+#ifdef TARGET_READ_FP
+ return TARGET_READ_FP ();
+#else
+ return read_register (FP_REGNUM);
+#endif
+}
+
+void
+write_fp (val)
+ CORE_ADDR val;
+{
+#ifdef TARGET_WRITE_FP
+ TARGET_WRITE_FP (val);
+#else
+ write_register (FP_REGNUM, val);
+#endif
+}
\f
/* Will calling read_var_value or locate_var_value on SYM end
up caring what frame it is being evaluated relative to? SYM must
case LOC_BLOCK:
case LOC_CONST_BYTES:
+ case LOC_UNRESOLVED:
case LOC_OPTIMIZED_OUT:
return 0;
}
If the variable cannot be found, return a zero pointer.
If FRAME is NULL, use the selected_frame. */
-value
+value_ptr
read_var_value (var, frame)
register struct symbol *var;
- FRAME frame;
+ struct frame_info *frame;
{
- register value v;
- struct frame_info *fi;
+ register value_ptr v;
struct type *type = SYMBOL_TYPE (var);
CORE_ADDR addr;
register int len;
VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
len = TYPE_LENGTH (type);
- if (frame == 0) frame = selected_frame;
+ if (frame == NULL) frame = selected_frame;
switch (SYMBOL_CLASS (var))
{
break;
case LOC_ARG:
- fi = get_frame_info (frame);
- if (fi == NULL)
+ if (frame == NULL)
return 0;
- addr = FRAME_ARGS_ADDRESS (fi);
+ addr = FRAME_ARGS_ADDRESS (frame);
if (!addr)
- {
- return 0;
- }
+ return 0;
addr += SYMBOL_VALUE (var);
break;
case LOC_REF_ARG:
- fi = get_frame_info (frame);
- if (fi == NULL)
+ if (frame == NULL)
return 0;
- addr = FRAME_ARGS_ADDRESS (fi);
+ addr = FRAME_ARGS_ADDRESS (frame);
if (!addr)
- {
- return 0;
- }
+ return 0;
addr += SYMBOL_VALUE (var);
addr = read_memory_unsigned_integer
(addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
case LOC_LOCAL:
case LOC_LOCAL_ARG:
- fi = get_frame_info (frame);
- if (fi == NULL)
+ if (frame == NULL)
return 0;
- addr = FRAME_LOCALS_ADDRESS (fi);
+ addr = FRAME_LOCALS_ADDRESS (frame);
addr += SYMBOL_VALUE (var);
break;
return 0;
b = get_frame_block (frame);
- v = value_from_register (type, SYMBOL_VALUE (var), frame);
if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
{
- addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
+ addr =
+ value_as_pointer (value_from_register (lookup_pointer_type (type),
+ SYMBOL_VALUE (var),
+ frame));
VALUE_LVAL (v) = lval_memory;
}
else
- return v;
+ return value_from_register (type, SYMBOL_VALUE (var), frame);
+ }
+ break;
+
+ case LOC_UNRESOLVED:
+ {
+ struct minimal_symbol *msym;
+
+ msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
+ if (msym == NULL)
+ return 0;
+ addr = SYMBOL_VALUE_ADDRESS (msym);
}
break;
/* Return a value of type TYPE, stored in register REGNUM, in frame
FRAME. */
-value
+value_ptr
value_from_register (type, regnum, frame)
struct type *type;
int regnum;
- FRAME frame;
+ struct frame_info *frame;
{
char raw_buffer [MAX_REGISTER_RAW_SIZE];
- char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
CORE_ADDR addr;
int optim;
- value v = allocate_value (type);
- int len = TYPE_LENGTH (type);
+ value_ptr v = allocate_value (type);
char *value_bytes = 0;
int value_bytes_copied = 0;
int num_storage_locs;
enum lval_type lval;
+ int len;
+
+ CHECK_TYPEDEF (type);
+ len = TYPE_LENGTH (type);
VALUE_REGNO (v) = regnum;
VALUE_OPTIMIZED_OUT (v) = optim;
VALUE_LVAL (v) = lval;
VALUE_ADDRESS (v) = addr;
+
+ /* Convert raw data to virtual format if necessary. */
- /* Convert the raw contents to virtual contents.
- (Just copy them if the formats are the same.) */
-
- REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer);
-
+#ifdef REGISTER_CONVERTIBLE
if (REGISTER_CONVERTIBLE (regnum))
{
- /* When the raw and virtual formats differ, the virtual format
- corresponds to a specific data type. If we want that type,
- copy the data into the value.
- Otherwise, do a type-conversion. */
-
- if (type != REGISTER_VIRTUAL_TYPE (regnum))
- {
- /* eg a variable of type `float' in a 68881 register
- with raw type `extended' and virtual type `double'.
- Fetch it as a `double' and then convert to `float'. */
- /* FIXME: This value will be not_lval, which means we can't assign
- to it. Probably the right fix is to do the cast on a temporary
- value, and just copy the VALUE_CONTENTS over. */
- v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
- memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer,
- REGISTER_VIRTUAL_SIZE (regnum));
- v = value_cast (type, v);
- }
- else
- memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len);
+ REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
+ raw_buffer, VALUE_CONTENTS_RAW (v));
}
else
+#endif
{
/* Raw and virtual formats are the same for this register. */
-#if TARGET_BYTE_ORDER == BIG_ENDIAN
- if (len < REGISTER_RAW_SIZE (regnum))
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum))
{
/* Big-endian, and we want less than full size. */
VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
}
-#endif
- memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer + VALUE_OFFSET (v), len);
+ memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
}
return v;
return a (pointer to a) struct value containing the properly typed
address. */
-value
+value_ptr
locate_var_value (var, frame)
register struct symbol *var;
- FRAME frame;
+ struct frame_info *frame;
{
CORE_ADDR addr = 0;
struct type *type = SYMBOL_TYPE (var);
- value lazy_value;
+ value_ptr lazy_value;
/* Evaluate it first; if the result is a memory address, we're fine.
Lazy evaluation pays off here. */