/* Get info from stack frames; convert between frames, blocks,
functions and pc values.
- Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
- 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
- Foundation, Inc.
+ Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
+ 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
+ Free Software Foundation, Inc.
This file is part of GDB.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
+ Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ Boston, MA 02110-1301, USA. */
#include "defs.h"
#include "symtab.h"
#include "bfd.h"
-#include "symfile.h"
#include "objfiles.h"
#include "frame.h"
#include "gdbcore.h"
#include "annotate.h"
#include "regcache.h"
#include "gdb_assert.h"
+#include "dummy-frame.h"
+#include "command.h"
+#include "gdbcmd.h"
+#include "block.h"
/* Prototypes for exported functions. */
-static void generic_call_dummy_register_unwind (struct frame_info *frame,
- void **cache,
- int regnum,
- int *optimized,
- enum lval_type *lval,
- CORE_ADDR *addrp,
- int *realnum,
- void *raw_buffer);
-static void frame_saved_regs_register_unwind (struct frame_info *frame,
- void **cache,
- int regnum,
- int *optimized,
- enum lval_type *lval,
- CORE_ADDR *addrp,
- int *realnum,
- void *buffer);
-
-
void _initialize_blockframe (void);
-/* A default FRAME_CHAIN_VALID, in the form that is suitable for most
- targets. If FRAME_CHAIN_VALID returns zero it means that the given
- frame is the outermost one and has no caller. */
-
-int
-file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
-{
- return ((chain) != 0
- && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
-}
-
-/* Use the alternate method of avoiding running up off the end of the
- frame chain or following frames back into the startup code. See
- the comments in objfiles.h. */
-
-int
-func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
-{
- return ((chain) != 0
- && !inside_main_func ((thisframe)->pc)
- && !inside_entry_func ((thisframe)->pc));
-}
-
-/* A very simple method of determining a valid frame */
-
-int
-nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
-{
- return ((chain) != 0);
-}
-
-/* Is ADDR inside the startup file? Note that if your machine
- has a way to detect the bottom of the stack, there is no need
- to call this function from FRAME_CHAIN_VALID; the reason for
- doing so is that some machines have no way of detecting bottom
- of stack.
-
- A PC of zero is always considered to be the bottom of the stack. */
-
-int
-inside_entry_file (CORE_ADDR addr)
-{
- if (addr == 0)
- return 1;
- if (symfile_objfile == 0)
- return 0;
- if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
- {
- /* Do not stop backtracing if the pc is in the call dummy
- at the entry point. */
- /* FIXME: Won't always work with zeros for the last two arguments */
- if (PC_IN_CALL_DUMMY (addr, 0, 0))
- return 0;
- }
- return (addr >= symfile_objfile->ei.entry_file_lowpc &&
- addr < symfile_objfile->ei.entry_file_highpc);
-}
-
-/* Test a specified PC value to see if it is in the range of addresses
- that correspond to the main() function. See comments above for why
- we might want to do this.
-
- Typically called from FRAME_CHAIN_VALID.
-
- A PC of zero is always considered to be the bottom of the stack. */
-
-int
-inside_main_func (CORE_ADDR pc)
-{
- if (pc == 0)
- return 1;
- if (symfile_objfile == 0)
- return 0;
-
- /* If the addr range is not set up at symbol reading time, set it up now.
- This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
- it is unable to set it up and symbol reading time. */
-
- if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
- symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
- {
- struct symbol *mainsym;
-
- mainsym = lookup_symbol (main_name (), NULL, VAR_NAMESPACE, NULL, NULL);
- if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
- {
- symfile_objfile->ei.main_func_lowpc =
- BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
- symfile_objfile->ei.main_func_highpc =
- BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
- }
- }
- return (symfile_objfile->ei.main_func_lowpc <= pc &&
- symfile_objfile->ei.main_func_highpc > pc);
-}
-
-/* Test a specified PC value to see if it is in the range of addresses
- that correspond to the process entry point function. See comments
- in objfiles.h for why we might want to do this.
-
- Typically called from FRAME_CHAIN_VALID.
-
- A PC of zero is always considered to be the bottom of the stack. */
-
-int
-inside_entry_func (CORE_ADDR pc)
-{
- if (pc == 0)
- return 1;
- if (symfile_objfile == 0)
- return 0;
- if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
- {
- /* Do not stop backtracing if the pc is in the call dummy
- at the entry point. */
- /* FIXME: Won't always work with zeros for the last two arguments */
- if (PC_IN_CALL_DUMMY (pc, 0, 0))
- return 0;
- }
- return (symfile_objfile->ei.entry_func_lowpc <= pc &&
- symfile_objfile->ei.entry_func_highpc > pc);
-}
-
-/* Info about the innermost stack frame (contents of FP register) */
-
-static struct frame_info *current_frame;
-
-/* Cache for frame addresses already read by gdb. Valid only while
- inferior is stopped. Control variables for the frame cache should
- be local to this module. */
-
-static struct obstack frame_cache_obstack;
-
-void *
-frame_obstack_alloc (unsigned long size)
-{
- return obstack_alloc (&frame_cache_obstack, size);
-}
-
-void
-frame_saved_regs_zalloc (struct frame_info *fi)
-{
- fi->saved_regs = (CORE_ADDR *)
- frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
- memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
-}
-
-
-/* Return the innermost (currently executing) stack frame. */
-
-struct frame_info *
-get_current_frame (void)
-{
- if (current_frame == NULL)
- {
- if (target_has_stack)
- current_frame = create_new_frame (read_fp (), read_pc ());
- else
- error ("No stack.");
- }
- return current_frame;
-}
-
-void
-set_current_frame (struct frame_info *frame)
-{
- current_frame = frame;
-}
-
-
-/* Using the PC, select a mechanism for unwinding a frame returning
- the previous frame. The register unwind function should, on
- demand, initialize the ->context object. */
-
-static void
-set_unwind_by_pc (CORE_ADDR pc, CORE_ADDR fp,
- frame_register_unwind_ftype **unwind)
-{
- if (!USE_GENERIC_DUMMY_FRAMES)
- /* Still need to set this to something. The ``info frame'' code
- calls this function to find out where the saved registers are.
- Hopefully this is robust enough to stop any core dumps and
- return vaguely correct values.. */
- *unwind = frame_saved_regs_register_unwind;
- else if (PC_IN_CALL_DUMMY (pc, fp, fp))
- *unwind = generic_call_dummy_register_unwind;
- else
- *unwind = frame_saved_regs_register_unwind;
-}
-
-/* Create an arbitrary (i.e. address specified by user) or innermost frame.
- Always returns a non-NULL value. */
-
-struct frame_info *
-create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
-{
- struct frame_info *fi;
- char *name;
-
- fi = (struct frame_info *)
- obstack_alloc (&frame_cache_obstack,
- sizeof (struct frame_info));
-
- /* Zero all fields by default. */
- memset (fi, 0, sizeof (struct frame_info));
-
- fi->frame = addr;
- fi->pc = pc;
- find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
- fi->signal_handler_caller = PC_IN_SIGTRAMP (fi->pc, name);
-
- if (INIT_EXTRA_FRAME_INFO_P ())
- INIT_EXTRA_FRAME_INFO (0, fi);
-
- /* Select/initialize an unwind function. */
- set_unwind_by_pc (fi->pc, fi->frame, &fi->register_unwind);
-
- return fi;
-}
-
-/* Return the frame that FRAME calls (NULL if FRAME is the innermost
- frame). */
-
-struct frame_info *
-get_next_frame (struct frame_info *frame)
-{
- return frame->next;
-}
-
-/* Flush the entire frame cache. */
-
-void
-flush_cached_frames (void)
-{
- /* Since we can't really be sure what the first object allocated was */
- obstack_free (&frame_cache_obstack, 0);
- obstack_init (&frame_cache_obstack);
-
- current_frame = NULL; /* Invalidate cache */
- select_frame (NULL);
- annotate_frames_invalid ();
-}
-
-/* Flush the frame cache, and start a new one if necessary. */
-
-void
-reinit_frame_cache (void)
-{
- flush_cached_frames ();
-
- /* FIXME: The inferior_ptid test is wrong if there is a corefile. */
- if (PIDGET (inferior_ptid) != 0)
- {
- select_frame (get_current_frame ());
- }
-}
-
-/* Return nonzero if the function for this frame lacks a prologue. Many
- machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
- function. */
-
-int
-frameless_look_for_prologue (struct frame_info *frame)
-{
- CORE_ADDR func_start, after_prologue;
-
- func_start = get_pc_function_start (frame->pc);
- if (func_start)
- {
- func_start += FUNCTION_START_OFFSET;
- /* This is faster, since only care whether there *is* a
- prologue, not how long it is. */
- return PROLOGUE_FRAMELESS_P (func_start);
- }
- else if (frame->pc == 0)
- /* A frame with a zero PC is usually created by dereferencing a
- NULL function pointer, normally causing an immediate core dump
- of the inferior. Mark function as frameless, as the inferior
- has no chance of setting up a stack frame. */
- return 1;
- else
- /* If we can't find the start of the function, we don't really
- know whether the function is frameless, but we should be able
- to get a reasonable (i.e. best we can do under the
- circumstances) backtrace by saying that it isn't. */
- return 0;
-}
-
-/* Return a structure containing various interesting information
- about the frame that called NEXT_FRAME. Returns NULL
- if there is no such frame. */
-
-struct frame_info *
-get_prev_frame (struct frame_info *next_frame)
-{
- CORE_ADDR address = 0;
- struct frame_info *prev;
- int fromleaf = 0;
- char *name;
-
- /* If the requested entry is in the cache, return it.
- Otherwise, figure out what the address should be for the entry
- we're about to add to the cache. */
-
- if (!next_frame)
- {
-#if 0
- /* This screws value_of_variable, which just wants a nice clean
- NULL return from block_innermost_frame if there are no frames.
- I don't think I've ever seen this message happen otherwise.
- And returning NULL here is a perfectly legitimate thing to do. */
- if (!current_frame)
- {
- error ("You haven't set up a process's stack to examine.");
- }
-#endif
-
- return current_frame;
- }
-
- /* If we have the prev one, return it */
- if (next_frame->prev)
- return next_frame->prev;
-
- /* On some machines it is possible to call a function without
- setting up a stack frame for it. On these machines, we
- define this macro to take two args; a frameinfo pointer
- identifying a frame and a variable to set or clear if it is
- or isn't leafless. */
-
- /* Still don't want to worry about this except on the innermost
- frame. This macro will set FROMLEAF if NEXT_FRAME is a
- frameless function invocation. */
- if (!(next_frame->next))
- {
- fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
- if (fromleaf)
- address = FRAME_FP (next_frame);
- }
-
- if (!fromleaf)
- {
- /* Two macros defined in tm.h specify the machine-dependent
- actions to be performed here.
- First, get the frame's chain-pointer.
- If that is zero, the frame is the outermost frame or a leaf
- called by the outermost frame. This means that if start
- calls main without a frame, we'll return 0 (which is fine
- anyway).
-
- Nope; there's a problem. This also returns when the current
- routine is a leaf of main. This is unacceptable. We move
- this to after the ffi test; I'd rather have backtraces from
- start go curfluy than have an abort called from main not show
- main. */
- address = FRAME_CHAIN (next_frame);
-
- /* FIXME: cagney/2002-06-08: There should be two tests here.
- The first would check for a valid frame chain based on a user
- selectable policy. The default being ``stop at main'' (as
- implemented by generic_func_frame_chain_valid()). Other
- policies would be available - stop at NULL, .... The second
- test, if provided by the target architecture, would check for
- more exotic cases - most target architectures wouldn't bother
- with this second case. */
- if (!FRAME_CHAIN_VALID (address, next_frame))
- return 0;
- }
- if (address == 0)
- return 0;
-
- prev = (struct frame_info *)
- obstack_alloc (&frame_cache_obstack,
- sizeof (struct frame_info));
-
- /* Zero all fields by default. */
- memset (prev, 0, sizeof (struct frame_info));
-
- if (next_frame)
- next_frame->prev = prev;
- prev->next = next_frame;
- prev->frame = address;
- prev->level = next_frame->level + 1;
-
-/* This change should not be needed, FIXME! We should
- determine whether any targets *need* INIT_FRAME_PC to happen
- after INIT_EXTRA_FRAME_INFO and come up with a simple way to
- express what goes on here.
-
- INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
- (where the PC is already set up) and here (where it isn't).
- INIT_FRAME_PC is only called from here, always after
- INIT_EXTRA_FRAME_INFO.
-
- The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
- value (which hasn't been set yet). Some other machines appear to
- require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
-
- We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
-
- Assuming that some machines need INIT_FRAME_PC after
- INIT_EXTRA_FRAME_INFO, one possible scheme:
-
- SETUP_INNERMOST_FRAME()
- Default version is just create_new_frame (read_fp ()),
- read_pc ()). Machines with extra frame info would do that (or the
- local equivalent) and then set the extra fields.
- SETUP_ARBITRARY_FRAME(argc, argv)
- Only change here is that create_new_frame would no longer init extra
- frame info; SETUP_ARBITRARY_FRAME would have to do that.
- INIT_PREV_FRAME(fromleaf, prev)
- Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
- also return a flag saying whether to keep the new frame, or
- whether to discard it, because on some machines (e.g. mips) it
- is really awkward to have FRAME_CHAIN_VALID called *before*
- INIT_EXTRA_FRAME_INFO (there is no good way to get information
- deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
- std_frame_pc(fromleaf, prev)
- This is the default setting for INIT_PREV_FRAME. It just does what
- the default INIT_FRAME_PC does. Some machines will call it from
- INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
- Some machines won't use it.
-
- INIT_FRAME_PC_FIRST (fromleaf, prev);
-
- if (INIT_EXTRA_FRAME_INFO_P ())
- INIT_EXTRA_FRAME_INFO (fromleaf, prev);
-
- /* This entry is in the frame queue now, which is good since
- FRAME_SAVED_PC may use that queue to figure out its value
- (see tm-sparc.h). We want the pc saved in the inferior frame. */
- INIT_FRAME_PC (fromleaf, prev);
-
- /* If ->frame and ->pc are unchanged, we are in the process of getting
- ourselves into an infinite backtrace. Some architectures check this
- in FRAME_CHAIN or thereabouts, but it seems like there is no reason
- this can't be an architecture-independent check. */
- if (next_frame != NULL)
- {
- if (prev->frame == next_frame->frame
- && prev->pc == next_frame->pc)
- {
- next_frame->prev = NULL;
- obstack_free (&frame_cache_obstack, prev);
- return NULL;
- }
- }
-
- /* Initialize the code used to unwind the frame PREV based on the PC
- (and probably other architectural information). The PC lets you
- check things like the debug info at that point (dwarf2cfi?) and
- use that to decide how the frame should be unwound. */
- set_unwind_by_pc (prev->pc, prev->frame, &prev->register_unwind);
-
- find_pc_partial_function (prev->pc, &name,
- (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
- if (PC_IN_SIGTRAMP (prev->pc, name))
- prev->signal_handler_caller = 1;
-
- return prev;
-}
-
-CORE_ADDR
-get_frame_pc (struct frame_info *frame)
-{
- return frame->pc;
-}
-
-/* return the address of the PC for the given FRAME, ie the current PC value
- if FRAME is the innermost frame, or the address adjusted to point to the
- call instruction if not. */
-
-CORE_ADDR
-frame_address_in_block (struct frame_info *frame)
-{
- CORE_ADDR pc = frame->pc;
-
- /* If we are not in the innermost frame, and we are not interrupted
- by a signal, frame->pc points to the instruction following the
- call. As a consequence, we need to get the address of the previous
- instruction. Unfortunately, this is not straightforward to do, so
- we just use the address minus one, which is a good enough
- approximation. */
- if (frame->next != 0 && frame->next->signal_handler_caller == 0)
- --pc;
-
- return pc;
-}
-
-#ifdef FRAME_FIND_SAVED_REGS
-/* XXX - deprecated. This is a compatibility function for targets
- that do not yet implement FRAME_INIT_SAVED_REGS. */
-/* Find the addresses in which registers are saved in FRAME. */
-
-void
-get_frame_saved_regs (struct frame_info *frame,
- struct frame_saved_regs *saved_regs_addr)
-{
- if (frame->saved_regs == NULL)
- {
- frame->saved_regs = (CORE_ADDR *)
- frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
- }
- if (saved_regs_addr == NULL)
- {
- struct frame_saved_regs saved_regs;
- FRAME_FIND_SAVED_REGS (frame, saved_regs);
- memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
- }
- else
- {
- FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
- memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
- }
-}
-#endif
-
/* Return the innermost lexical block in execution
in a specified stack frame. The frame address is assumed valid.
struct block *
get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
{
- const CORE_ADDR pc = frame_address_in_block (frame);
-
- if (addr_in_block)
- *addr_in_block = pc;
-
- return block_for_pc (pc);
-}
-
-struct block *
-get_current_block (CORE_ADDR *addr_in_block)
-{
- CORE_ADDR pc = read_pc ();
+ const CORE_ADDR pc = get_frame_address_in_block (frame);
if (addr_in_block)
*addr_in_block = pc;
CORE_ADDR
get_pc_function_start (CORE_ADDR pc)
{
- register struct block *bl;
- register struct symbol *symbol;
- register struct minimal_symbol *msymbol;
- CORE_ADDR fstart;
+ struct block *bl;
+ struct minimal_symbol *msymbol;
- if ((bl = block_for_pc (pc)) != NULL &&
- (symbol = block_function (bl)) != NULL)
- {
- bl = SYMBOL_BLOCK_VALUE (symbol);
- fstart = BLOCK_START (bl);
- }
- else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
+ bl = block_for_pc (pc);
+ if (bl)
{
- fstart = SYMBOL_VALUE_ADDRESS (msymbol);
- if (!find_pc_section (fstart))
- return 0;
+ struct symbol *symbol = block_function (bl);
+
+ if (symbol)
+ {
+ bl = SYMBOL_BLOCK_VALUE (symbol);
+ return BLOCK_START (bl);
+ }
}
- else
+
+ msymbol = lookup_minimal_symbol_by_pc (pc);
+ if (msymbol)
{
- fstart = 0;
+ CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol);
+
+ if (find_pc_section (fstart))
+ return fstart;
}
- return (fstart);
+
+ return 0;
}
/* Return the symbol for the function executing in frame FRAME. */
struct symbol *
get_frame_function (struct frame_info *frame)
{
- register struct block *bl = get_frame_block (frame, 0);
+ struct block *bl = get_frame_block (frame, 0);
if (bl == 0)
return 0;
return block_function (bl);
}
\f
-/* Return the blockvector immediately containing the innermost lexical block
- containing the specified pc value and section, or 0 if there is none.
- PINDEX is a pointer to the index value of the block. If PINDEX
- is NULL, we don't pass this information back to the caller. */
-
-struct blockvector *
-blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
- int *pindex, struct symtab *symtab)
-{
- register struct block *b;
- register int bot, top, half;
- struct blockvector *bl;
-
- if (symtab == 0) /* if no symtab specified by caller */
- {
- /* First search all symtabs for one whose file contains our pc */
- if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
- return 0;
- }
-
- bl = BLOCKVECTOR (symtab);
- b = BLOCKVECTOR_BLOCK (bl, 0);
-
- /* Then search that symtab for the smallest block that wins. */
- /* Use binary search to find the last block that starts before PC. */
-
- bot = 0;
- top = BLOCKVECTOR_NBLOCKS (bl);
-
- while (top - bot > 1)
- {
- half = (top - bot + 1) >> 1;
- b = BLOCKVECTOR_BLOCK (bl, bot + half);
- if (BLOCK_START (b) <= pc)
- bot += half;
- else
- top = bot + half;
- }
-
- /* Now search backward for a block that ends after PC. */
-
- while (bot >= 0)
- {
- b = BLOCKVECTOR_BLOCK (bl, bot);
- if (BLOCK_END (b) > pc)
- {
- if (pindex)
- *pindex = bot;
- return bl;
- }
- bot--;
- }
- return 0;
-}
-
-/* Return the blockvector immediately containing the innermost lexical block
- containing the specified pc value, or 0 if there is none.
- Backward compatibility, no section. */
-
-struct blockvector *
-blockvector_for_pc (register CORE_ADDR pc, int *pindex)
-{
- return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
- pindex, NULL);
-}
-
-/* Return the innermost lexical block containing the specified pc value
- in the specified section, or 0 if there is none. */
-
-struct block *
-block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
-{
- register struct blockvector *bl;
- int index;
-
- bl = blockvector_for_pc_sect (pc, section, &index, NULL);
- if (bl)
- return BLOCKVECTOR_BLOCK (bl, index);
- return 0;
-}
-
-/* Return the innermost lexical block containing the specified pc value,
- or 0 if there is none. Backward compatibility, no section. */
-
-struct block *
-block_for_pc (register CORE_ADDR pc)
-{
- return block_for_pc_sect (pc, find_pc_mapped_section (pc));
-}
-
/* Return the function containing pc value PC in section SECTION.
Returns 0 if function is not known. */
struct symbol *
-find_pc_sect_function (CORE_ADDR pc, struct sec *section)
+find_pc_sect_function (CORE_ADDR pc, struct bfd_section *section)
{
- register struct block *b = block_for_pc_sect (pc, section);
+ struct block *b = block_for_pc_sect (pc, section);
if (b == 0)
return 0;
return block_function (b);
static CORE_ADDR cache_pc_function_low = 0;
static CORE_ADDR cache_pc_function_high = 0;
static char *cache_pc_function_name = 0;
-static struct sec *cache_pc_function_section = NULL;
+static struct bfd_section *cache_pc_function_section = NULL;
/* Clear cache, e.g. when symbol table is discarded. */
If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
returns 0. */
+/* Backward compatibility, no section argument. */
+
int
-find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
- CORE_ADDR *address, CORE_ADDR *endaddr)
+find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
+ CORE_ADDR *endaddr)
{
+ struct bfd_section *section;
struct partial_symtab *pst;
struct symbol *f;
struct minimal_symbol *msymbol;
int i;
CORE_ADDR mapped_pc;
+ /* To ensure that the symbol returned belongs to the correct setion
+ (and that the last [random] symbol from the previous section
+ isn't returned) try to find the section containing PC. First try
+ the overlay code (which by default returns NULL); and second try
+ the normal section code (which almost always succeeds). */
+ section = find_pc_overlay (pc);
+ if (section == NULL)
+ {
+ struct obj_section *obj_section = find_pc_section (pc);
+ if (obj_section == NULL)
+ section = NULL;
+ else
+ section = obj_section->the_bfd_section;
+ }
+
mapped_pc = overlay_mapped_address (pc, section);
if (mapped_pc >= cache_pc_function_low
&& section == cache_pc_function_section)
goto return_cached_value;
- /* If sigtramp is in the u area, it counts as a function (especially
- important for step_1). */
- if (SIGTRAMP_START_P () && PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
- {
- cache_pc_function_low = SIGTRAMP_START (mapped_pc);
- cache_pc_function_high = SIGTRAMP_END (mapped_pc);
- cache_pc_function_name = "<sigtramp>";
- cache_pc_function_section = section;
- goto return_cached_value;
- }
-
msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
pst = find_pc_sect_psymtab (mapped_pc, section);
if (pst)
{
cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
- cache_pc_function_name = SYMBOL_NAME (f);
+ cache_pc_function_name = DEPRECATED_SYMBOL_NAME (f);
cache_pc_function_section = section;
goto return_cached_value;
}
if (address)
*address = SYMBOL_VALUE_ADDRESS (psb);
if (name)
- *name = SYMBOL_NAME (psb);
+ *name = DEPRECATED_SYMBOL_NAME (psb);
/* endaddr non-NULL can't happen here. */
return 1;
}
}
cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
- cache_pc_function_name = SYMBOL_NAME (msymbol);
+ cache_pc_function_name = DEPRECATED_SYMBOL_NAME (msymbol);
cache_pc_function_section = section;
- /* Use the lesser of the next minimal symbol in the same section, or
- the end of the section, as the end of the function. */
+ /* If the minimal symbol has a size, use it for the cache.
+ Otherwise use the lesser of the next minimal symbol in the same
+ section, or the end of the section, as the end of the
+ function. */
- /* Step over other symbols at this same address, and symbols in
- other sections, to find the next symbol in this section with
- a different address. */
-
- for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
+ if (MSYMBOL_SIZE (msymbol) != 0)
+ cache_pc_function_high = cache_pc_function_low + MSYMBOL_SIZE (msymbol);
+ else
{
- if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
- && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
- break;
- }
+ /* Step over other symbols at this same address, and symbols in
+ other sections, to find the next symbol in this section with
+ a different address. */
- if (SYMBOL_NAME (msymbol + i) != NULL
- && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
- cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
- else
- /* We got the start address from the last msymbol in the objfile.
- So the end address is the end of the section. */
- cache_pc_function_high = osect->endaddr;
+ for (i = 1; DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL; i++)
+ {
+ if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
+ && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
+ break;
+ }
+
+ if (DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL
+ && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
+ cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
+ else
+ /* We got the start address from the last msymbol in the objfile.
+ So the end address is the end of the section. */
+ cache_pc_function_high = osect->endaddr;
+ }
return_cached_value:
return 1;
}
-/* Backward compatibility, no section argument. */
-
-int
-find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
- CORE_ADDR *endaddr)
-{
- asection *section;
-
- section = find_pc_overlay (pc);
- return find_pc_sect_partial_function (pc, section, name, address, endaddr);
-}
-
/* Return the innermost stack frame executing inside of BLOCK,
or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
block_innermost_frame (struct block *block)
{
struct frame_info *frame;
- register CORE_ADDR start;
- register CORE_ADDR end;
+ CORE_ADDR start;
+ CORE_ADDR end;
CORE_ADDR calling_pc;
if (block == NULL)
frame = get_prev_frame (frame);
if (frame == NULL)
return NULL;
- calling_pc = frame_address_in_block (frame);
+ calling_pc = get_frame_address_in_block (frame);
if (calling_pc >= start && calling_pc < end)
return frame;
}
}
-
-/* Return the full FRAME which corresponds to the given CORE_ADDR
- or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
-
-struct frame_info *
-find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
-{
- struct frame_info *frame = NULL;
-
- if (frame_addr == (CORE_ADDR) 0)
- return NULL;
-
- while (1)
- {
- frame = get_prev_frame (frame);
- if (frame == NULL)
- return NULL;
- if (FRAME_FP (frame) == frame_addr)
- return frame;
- }
-}
-
-#ifdef SIGCONTEXT_PC_OFFSET
-/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
-
-CORE_ADDR
-sigtramp_saved_pc (struct frame_info *frame)
-{
- CORE_ADDR sigcontext_addr;
- char *buf;
- int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
- int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
-
- buf = alloca (ptrbytes);
- /* Get sigcontext address, it is the third parameter on the stack. */
- if (frame->next)
- sigcontext_addr = read_memory_typed_address
- (FRAME_ARGS_ADDRESS (frame->next) + FRAME_ARGS_SKIP + sigcontext_offs,
- builtin_type_void_data_ptr);
- else
- sigcontext_addr = read_memory_typed_address
- (read_register (SP_REGNUM) + sigcontext_offs, builtin_type_void_data_ptr);
-
- /* Don't cause a memory_error when accessing sigcontext in case the stack
- layout has changed or the stack is corrupt. */
- target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
- return extract_typed_address (buf, builtin_type_void_data_ptr);
-}
-#endif /* SIGCONTEXT_PC_OFFSET */
-
-
-/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
- below is for infrun.c, which may give the macro a pc without that
- subtracted out. */
-
-extern CORE_ADDR text_end;
-
-int
-pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
- CORE_ADDR frame_address)
-{
- return ((pc) >= text_end - CALL_DUMMY_LENGTH
- && (pc) <= text_end + DECR_PC_AFTER_BREAK);
-}
-
-int
-pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
- CORE_ADDR frame_address)
-{
- return ((pc) >= text_end
- && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
-}
-
-/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
- top of the stack frame which we are checking, where "bottom" and
- "top" refer to some section of memory which contains the code for
- the call dummy. Calls to this macro assume that the contents of
- SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
- are the things to pass.
-
- This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
- have that meaning, but the 29k doesn't use ON_STACK. This could be
- fixed by generalizing this scheme, perhaps by passing in a frame
- and adding a few fields, at least on machines which need them for
- PC_IN_CALL_DUMMY.
-
- Something simpler, like checking for the stack segment, doesn't work,
- since various programs (threads implementations, gcc nested function
- stubs, etc) may either allocate stack frames in another segment, or
- allocate other kinds of code on the stack. */
-
-int
-pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
-{
- return (INNER_THAN ((sp), (pc))
- && (frame_address != 0)
- && INNER_THAN ((pc), (frame_address)));
-}
-
-int
-pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
- CORE_ADDR frame_address)
-{
- return ((pc) >= CALL_DUMMY_ADDRESS ()
- && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
-}
-
-
-/*
- * GENERIC DUMMY FRAMES
- *
- * The following code serves to maintain the dummy stack frames for
- * inferior function calls (ie. when gdb calls into the inferior via
- * call_function_by_hand). This code saves the machine state before
- * the call in host memory, so we must maintain an independent stack
- * and keep it consistant etc. I am attempting to make this code
- * generic enough to be used by many targets.
- *
- * The cheapest and most generic way to do CALL_DUMMY on a new target
- * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
- * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
- * to define PUSH_RETURN_ADDRESS, because no call instruction will be
- * being executed by the target. Also FRAME_CHAIN_VALID as
- * generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
- * generic_fix_call_dummy. */
-
-/* Dummy frame. This saves the processor state just prior to setting
- up the inferior function call. Older targets save the registers
- on the target stack (but that really slows down function calls). */
-
-struct dummy_frame
-{
- struct dummy_frame *next;
-
- CORE_ADDR pc;
- CORE_ADDR fp;
- CORE_ADDR sp;
- CORE_ADDR top;
- struct regcache *regcache;
-
- /* Address range of the call dummy code. Look for PC in the range
- [LO..HI) (after allowing for DECR_PC_AFTER_BREAK). */
- CORE_ADDR call_lo;
- CORE_ADDR call_hi;
-};
-
-static struct dummy_frame *dummy_frame_stack = NULL;
-
-/* Function: find_dummy_frame(pc, fp, sp)
-
- Search the stack of dummy frames for one matching the given PC and
- FP/SP. Unlike PC_IN_CALL_DUMMY, this function doesn't need to
- adjust for DECR_PC_AFTER_BREAK. This is because it is only legal
- to call this function after the PC has been adjusted. */
-
-static struct regcache *
-generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
-{
- struct dummy_frame *dummyframe;
-
- for (dummyframe = dummy_frame_stack; dummyframe != NULL;
- dummyframe = dummyframe->next)
- {
- /* Does the PC fall within the dummy frame's breakpoint
- instruction. If not, discard this one. */
- if (!(pc >= dummyframe->call_lo && pc < dummyframe->call_hi))
- continue;
- /* Does the FP match? */
- if (dummyframe->top != 0)
- {
- /* If the target architecture explicitly saved the
- top-of-stack before the inferior function call, assume
- that that same architecture will always pass in an FP
- (frame base) value that eactly matches that saved TOS.
- Don't check the saved SP and SP as they can lead to false
- hits. */
- if (fp != dummyframe->top)
- continue;
- }
- else
- {
- /* An older target that hasn't explicitly or implicitly
- saved the dummy frame's top-of-stack. Try matching the
- FP against the saved SP and FP. NOTE: If you're trying
- to fix a problem with GDB not correctly finding a dummy
- frame, check the comments that go with FRAME_ALIGN() and
- SAVE_DUMMY_FRAME_TOS(). */
- if (fp != dummyframe->fp && fp != dummyframe->sp)
- continue;
- }
- /* The FP matches this dummy frame. */
- return dummyframe->regcache;
- }
-
- return 0;
-}
-
-char *
-deprecated_generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
-{
- struct regcache *regcache = generic_find_dummy_frame (pc, fp);
- if (regcache == NULL)
- return NULL;
- return deprecated_grub_regcache_for_registers (regcache);
-}
-
-/* Function: pc_in_call_dummy (pc, sp, fp)
-
- Return true if the PC falls in a dummy frame created by gdb for an
- inferior call. The code below which allows DECR_PC_AFTER_BREAK is
- for infrun.c, which may give the function a PC without that
- subtracted out. */
-
-int
-generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
-{
- struct dummy_frame *dummyframe;
- for (dummyframe = dummy_frame_stack;
- dummyframe != NULL;
- dummyframe = dummyframe->next)
- {
- if ((pc >= dummyframe->call_lo)
- && (pc < dummyframe->call_hi + DECR_PC_AFTER_BREAK))
- return 1;
- }
- return 0;
-}
-
-/* Function: read_register_dummy
- Find a saved register from before GDB calls a function in the inferior */
-
-CORE_ADDR
-deprecated_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno)
-{
- struct regcache *dummy_regs = generic_find_dummy_frame (pc, fp);
-
- if (dummy_regs)
- {
- /* NOTE: cagney/2002-08-12: Replaced a call to
- regcache_raw_read_as_address() with a call to
- regcache_cooked_read_unsigned(). The old, ...as_address
- function was eventually calling extract_unsigned_integer (via
- extract_address) to unpack the registers value. The below is
- doing an unsigned extract so that it is functionally
- equivalent. The read needs to be cooked as, otherwise, it
- will never correctly return the value of a register in the
- [NUM_REGS .. NUM_REGS+NUM_PSEUDO_REGS) range. */
- ULONGEST val;
- regcache_cooked_read_unsigned (dummy_regs, regno, &val);
- return val;
- }
- else
- return 0;
-}
-
-/* Save all the registers on the dummy frame stack. Most ports save the
- registers on the target stack. This results in lots of unnecessary memory
- references, which are slow when debugging via a serial line. Instead, we
- save all the registers internally, and never write them to the stack. The
- registers get restored when the called function returns to the entry point,
- where a breakpoint is laying in wait. */
-
-void
-generic_push_dummy_frame (void)
-{
- struct dummy_frame *dummy_frame;
- CORE_ADDR fp = (get_current_frame ())->frame;
-
- /* check to see if there are stale dummy frames,
- perhaps left over from when a longjump took us out of a
- function that was called by the debugger */
-
- dummy_frame = dummy_frame_stack;
- while (dummy_frame)
- if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
- {
- dummy_frame_stack = dummy_frame->next;
- regcache_xfree (dummy_frame->regcache);
- xfree (dummy_frame);
- dummy_frame = dummy_frame_stack;
- }
- else
- dummy_frame = dummy_frame->next;
-
- dummy_frame = xmalloc (sizeof (struct dummy_frame));
- dummy_frame->regcache = regcache_xmalloc (current_gdbarch);
-
- dummy_frame->pc = read_pc ();
- dummy_frame->sp = read_sp ();
- dummy_frame->top = 0;
- dummy_frame->fp = fp;
- regcache_cpy (dummy_frame->regcache, current_regcache);
- dummy_frame->next = dummy_frame_stack;
- dummy_frame_stack = dummy_frame;
-}
-
-void
-generic_save_dummy_frame_tos (CORE_ADDR sp)
-{
- dummy_frame_stack->top = sp;
-}
-
-/* Record the upper/lower bounds on the address of the call dummy. */
-
-void
-generic_save_call_dummy_addr (CORE_ADDR lo, CORE_ADDR hi)
-{
- dummy_frame_stack->call_lo = lo;
- dummy_frame_stack->call_hi = hi;
-}
-
-/* Restore the machine state from either the saved dummy stack or a
- real stack frame. */
-
-void
-generic_pop_current_frame (void (*popper) (struct frame_info * frame))
-{
- struct frame_info *frame = get_current_frame ();
-
- if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
- generic_pop_dummy_frame ();
- else
- (*popper) (frame);
-}
-
-/* Function: pop_dummy_frame
- Restore the machine state from a saved dummy stack frame. */
-
-void
-generic_pop_dummy_frame (void)
-{
- struct dummy_frame *dummy_frame = dummy_frame_stack;
-
- /* FIXME: what if the first frame isn't the right one, eg..
- because one call-by-hand function has done a longjmp into another one? */
-
- if (!dummy_frame)
- error ("Can't pop dummy frame!");
- dummy_frame_stack = dummy_frame->next;
- regcache_cpy (current_regcache, dummy_frame->regcache);
- flush_cached_frames ();
-
- regcache_xfree (dummy_frame->regcache);
- xfree (dummy_frame);
-}
-
-/* Function: frame_chain_valid
- Returns true for a user frame or a call_function_by_hand dummy frame,
- and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
-
-int
-generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
-{
- if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
- return 1; /* don't prune CALL_DUMMY frames */
- else /* fall back to default algorithm (see frame.h) */
- return (fp != 0
- && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
- && !inside_entry_file (FRAME_SAVED_PC (fi)));
-}
-
-int
-generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
-{
- if (USE_GENERIC_DUMMY_FRAMES
- && PC_IN_CALL_DUMMY ((fi)->pc, 0, 0))
- return 1; /* don't prune CALL_DUMMY frames */
- else /* fall back to default algorithm (see frame.h) */
- return (fp != 0
- && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
- && !inside_main_func ((fi)->pc)
- && !inside_entry_func ((fi)->pc));
-}
-
-/* Function: fix_call_dummy
- Stub function. Generic dummy frames typically do not need to fix
- the frame being created */
-
-void
-generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
- struct value **args, struct type *type, int gcc_p)
-{
- return;
-}
-
-/* Given a call-dummy dummy-frame, return the registers. Here the
- register value is taken from the local copy of the register buffer. */
-
-static void
-generic_call_dummy_register_unwind (struct frame_info *frame, void **cache,
- int regnum, int *optimized,
- enum lval_type *lvalp, CORE_ADDR *addrp,
- int *realnum, void *bufferp)
-{
- gdb_assert (frame != NULL);
- gdb_assert (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame));
-
- /* Describe the register's location. Generic dummy frames always
- have the register value in an ``expression''. */
- *optimized = 0;
- *lvalp = not_lval;
- *addrp = 0;
- *realnum = -1;
-
- /* If needed, find and return the value of the register. */
- if (bufferp != NULL)
- {
- struct regcache *registers;
-#if 1
- /* Get the address of the register buffer that contains all the
- saved registers for this dummy frame. Cache that address. */
- registers = (*cache);
- if (registers == NULL)
- {
- registers = generic_find_dummy_frame (frame->pc, frame->frame);
- (*cache) = registers;
- }
-#else
- /* Get the address of the register buffer that contains the
- saved registers and then extract the value from that. */
- registers = generic_find_dummy_frame (frame->pc, frame->frame);
-#endif
- gdb_assert (registers != NULL);
- /* Return the actual value. */
- /* Use the regcache_cooked_read() method so that it, on the fly,
- constructs either a raw or pseudo register from the raw
- register cache. */
- regcache_cooked_read (registers, regnum, bufferp);
- }
-}
-
-/* Return the register saved in the simplistic ``saved_regs'' cache.
- If the value isn't here AND a value is needed, try the next inner
- most frame. */
-
-static void
-frame_saved_regs_register_unwind (struct frame_info *frame, void **cache,
- int regnum, int *optimizedp,
- enum lval_type *lvalp, CORE_ADDR *addrp,
- int *realnump, void *bufferp)
-{
- /* There is always a frame at this point. And THIS is the frame
- we're interested in. */
- gdb_assert (frame != NULL);
- /* If we're using generic dummy frames, we'd better not be in a call
- dummy. (generic_call_dummy_register_unwind ought to have been called
- instead.) */
- gdb_assert (!(USE_GENERIC_DUMMY_FRAMES
- && PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)));
-
- /* Load the saved_regs register cache. */
- if (frame->saved_regs == NULL)
- FRAME_INIT_SAVED_REGS (frame);
-
- if (frame->saved_regs != NULL
- && frame->saved_regs[regnum] != 0)
- {
- if (regnum == SP_REGNUM)
- {
- /* SP register treated specially. */
- *optimizedp = 0;
- *lvalp = not_lval;
- *addrp = 0;
- *realnump = -1;
- if (bufferp != NULL)
- store_address (bufferp, REGISTER_RAW_SIZE (regnum),
- frame->saved_regs[regnum]);
- }
- else
- {
- /* Any other register is saved in memory, fetch it but cache
- a local copy of its value. */
- *optimizedp = 0;
- *lvalp = lval_memory;
- *addrp = frame->saved_regs[regnum];
- *realnump = -1;
- if (bufferp != NULL)
- {
-#if 1
- /* Save each register value, as it is read in, in a
- frame based cache. */
- void **regs = (*cache);
- if (regs == NULL)
- {
- int sizeof_cache = ((NUM_REGS + NUM_PSEUDO_REGS)
- * sizeof (void *));
- regs = frame_obstack_alloc (sizeof_cache);
- memset (regs, 0, sizeof_cache);
- (*cache) = regs;
- }
- if (regs[regnum] == NULL)
- {
- regs[regnum]
- = frame_obstack_alloc (REGISTER_RAW_SIZE (regnum));
- read_memory (frame->saved_regs[regnum], regs[regnum],
- REGISTER_RAW_SIZE (regnum));
- }
- memcpy (bufferp, regs[regnum], REGISTER_RAW_SIZE (regnum));
-#else
- /* Read the value in from memory. */
- read_memory (frame->saved_regs[regnum], bufferp,
- REGISTER_RAW_SIZE (regnum));
-#endif
- }
- }
- return;
- }
-
- /* No luck, assume this and the next frame have the same register
- value. If a value is needed, pass the request on down the chain;
- otherwise just return an indication that the value is in the same
- register as the next frame. */
- if (bufferp == NULL)
- {
- *optimizedp = 0;
- *lvalp = lval_register;
- *addrp = 0;
- *realnump = regnum;
- }
- else
- {
- frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
- realnump, bufferp);
- }
-}
-
-/* Function: get_saved_register
- Find register number REGNUM relative to FRAME and put its (raw,
- target format) contents in *RAW_BUFFER.
-
- Set *OPTIMIZED if the variable was optimized out (and thus can't be
- fetched). Note that this is never set to anything other than zero
- in this implementation.
-
- Set *LVAL to lval_memory, lval_register, or not_lval, depending on
- whether the value was fetched from memory, from a register, or in a
- strange and non-modifiable way (e.g. a frame pointer which was
- calculated rather than fetched). We will use not_lval for values
- fetched from generic dummy frames.
-
- Set *ADDRP to the address, either in memory or as a REGISTER_BYTE
- offset into the registers array. If the value is stored in a dummy
- frame, set *ADDRP to zero.
-
- To use this implementation, define a function called
- "get_saved_register" in your target code, which simply passes all
- of its arguments to this function.
-
- The argument RAW_BUFFER must point to aligned memory. */
-
-void
-generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
- struct frame_info *frame, int regnum,
- enum lval_type *lval)
-{
- if (!target_has_registers)
- error ("No registers.");
-
- /* Normal systems don't optimize out things with register numbers. */
- if (optimized != NULL)
- *optimized = 0;
-
- if (addrp) /* default assumption: not found in memory */
- *addrp = 0;
-
- /* Note: since the current frame's registers could only have been
- saved by frames INTERIOR TO the current frame, we skip examining
- the current frame itself: otherwise, we would be getting the
- previous frame's registers which were saved by the current frame. */
-
- while (frame && ((frame = frame->next) != NULL))
- {
- if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
- {
- if (lval) /* found it in a CALL_DUMMY frame */
- *lval = not_lval;
- if (raw_buffer)
- /* FIXME: cagney/2002-06-26: This should be via the
- gdbarch_register_read() method so that it, on the fly,
- constructs either a raw or pseudo register from the raw
- register cache. */
- regcache_raw_read (generic_find_dummy_frame (frame->pc,
- frame->frame),
- regnum, raw_buffer);
- return;
- }
-
- FRAME_INIT_SAVED_REGS (frame);
- if (frame->saved_regs != NULL
- && frame->saved_regs[regnum] != 0)
- {
- if (lval) /* found it saved on the stack */
- *lval = lval_memory;
- if (regnum == SP_REGNUM)
- {
- if (raw_buffer) /* SP register treated specially */
- store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
- frame->saved_regs[regnum]);
- }
- else
- {
- if (addrp) /* any other register */
- *addrp = frame->saved_regs[regnum];
- if (raw_buffer)
- read_memory (frame->saved_regs[regnum], raw_buffer,
- REGISTER_RAW_SIZE (regnum));
- }
- return;
- }
- }
-
- /* If we get thru the loop to this point, it means the register was
- not saved in any frame. Return the actual live-register value. */
-
- if (lval) /* found it in a live register */
- *lval = lval_register;
- if (addrp)
- *addrp = REGISTER_BYTE (regnum);
- if (raw_buffer)
- read_register_gen (regnum, raw_buffer);
-}
-
-void
-_initialize_blockframe (void)
-{
- obstack_init (&frame_cache_obstack);
-}