1 /* Perform non-arithmetic operations on values, for GDB.
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
41 #include "extension.h"
43 #include "gdbsupport/byte-vector.h"
45 /* Local functions. */
47 static int typecmp (int staticp, int varargs, int nargs,
48 struct field t1[], struct value *t2[]);
50 static struct value *search_struct_field (const char *, struct value *,
53 static struct value *search_struct_method (const char *, struct value **,
55 LONGEST, int *, struct type *);
57 static int find_oload_champ_namespace (gdb::array_view<value *> args,
58 const char *, const char *,
59 std::vector<symbol *> *oload_syms,
63 static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
64 const char *, const char *,
65 int, std::vector<symbol *> *oload_syms,
66 badness_vector *, int *,
69 static int find_oload_champ (gdb::array_view<value *> args,
72 xmethod_worker_up *xmethods,
74 badness_vector *oload_champ_bv);
76 static int oload_method_static_p (struct fn_field *, int);
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
80 static enum oload_classification classify_oload_match
81 (const badness_vector &, int, int);
83 static struct value *value_struct_elt_for_reference (struct type *,
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
92 static struct value *value_maybe_namespace_elt (const struct type *,
96 static CORE_ADDR allocate_space_in_inferior (int);
98 static struct value *cast_into_complex (struct type *, struct value *);
100 bool overload_resolution = false;
102 show_overload_resolution (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c,
106 fprintf_filtered (file, _("Overload resolution in evaluating "
107 "C++ functions is %s.\n"),
111 /* Find the address of function name NAME in the inferior. If OBJF_P
112 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
116 find_function_in_inferior (const char *name, struct objfile **objf_p)
118 struct block_symbol sym;
120 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
121 if (sym.symbol != NULL)
123 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
125 error (_("\"%s\" exists in this program but is not a function."),
130 *objf_p = symbol_objfile (sym.symbol);
132 return value_of_variable (sym.symbol, sym.block);
136 struct bound_minimal_symbol msymbol =
137 lookup_bound_minimal_symbol (name);
139 if (msymbol.minsym != NULL)
141 struct objfile *objfile = msymbol.objfile;
142 struct gdbarch *gdbarch = objfile->arch ();
146 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
147 type = lookup_function_type (type);
148 type = lookup_pointer_type (type);
149 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
154 return value_from_pointer (type, maddr);
158 if (!target_has_execution ())
159 error (_("evaluation of this expression "
160 "requires the target program to be active"));
162 error (_("evaluation of this expression requires the "
163 "program to have a function \"%s\"."),
169 /* Allocate NBYTES of space in the inferior using the inferior's
170 malloc and return a value that is a pointer to the allocated
174 value_allocate_space_in_inferior (int len)
176 struct objfile *objf;
177 struct value *val = find_function_in_inferior ("malloc", &objf);
178 struct gdbarch *gdbarch = objf->arch ();
179 struct value *blocklen;
181 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
182 val = call_function_by_hand (val, NULL, blocklen);
183 if (value_logical_not (val))
185 if (!target_has_execution ())
186 error (_("No memory available to program now: "
187 "you need to start the target first"));
189 error (_("No memory available to program: call to malloc failed"));
195 allocate_space_in_inferior (int len)
197 return value_as_long (value_allocate_space_in_inferior (len));
200 /* Cast struct value VAL to type TYPE and return as a value.
201 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
202 for this to work. Typedef to one of the codes is permitted.
203 Returns NULL if the cast is neither an upcast nor a downcast. */
205 static struct value *
206 value_cast_structs (struct type *type, struct value *v2)
212 gdb_assert (type != NULL && v2 != NULL);
214 t1 = check_typedef (type);
215 t2 = check_typedef (value_type (v2));
217 /* Check preconditions. */
218 gdb_assert ((t1->code () == TYPE_CODE_STRUCT
219 || t1->code () == TYPE_CODE_UNION)
220 && !!"Precondition is that type is of STRUCT or UNION kind.");
221 gdb_assert ((t2->code () == TYPE_CODE_STRUCT
222 || t2->code () == TYPE_CODE_UNION)
223 && !!"Precondition is that value is of STRUCT or UNION kind");
225 if (t1->name () != NULL
226 && t2->name () != NULL
227 && !strcmp (t1->name (), t2->name ()))
230 /* Upcasting: look in the type of the source to see if it contains the
231 type of the target as a superclass. If so, we'll need to
232 offset the pointer rather than just change its type. */
233 if (t1->name () != NULL)
235 v = search_struct_field (t1->name (),
241 /* Downcasting: look in the type of the target to see if it contains the
242 type of the source as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (t2->name () != NULL)
246 /* Try downcasting using the run-time type of the value. */
249 struct type *real_type;
251 real_type = value_rtti_type (v2, &full, &top, &using_enc);
254 v = value_full_object (v2, real_type, full, top, using_enc);
255 v = value_at_lazy (real_type, value_address (v));
256 real_type = value_type (v);
258 /* We might be trying to cast to the outermost enclosing
259 type, in which case search_struct_field won't work. */
260 if (real_type->name () != NULL
261 && !strcmp (real_type->name (), t1->name ()))
264 v = search_struct_field (t2->name (), v, real_type, 1);
269 /* Try downcasting using information from the destination type
270 T2. This wouldn't work properly for classes with virtual
271 bases, but those were handled above. */
272 v = search_struct_field (t2->name (),
273 value_zero (t1, not_lval), t1, 1);
276 /* Downcasting is possible (t1 is superclass of v2). */
277 CORE_ADDR addr2 = value_address (v2);
279 addr2 -= value_address (v) + value_embedded_offset (v);
280 return value_at (type, addr2);
287 /* Cast one pointer or reference type to another. Both TYPE and
288 the type of ARG2 should be pointer types, or else both should be
289 reference types. If SUBCLASS_CHECK is non-zero, this will force a
290 check to see whether TYPE is a superclass of ARG2's type. If
291 SUBCLASS_CHECK is zero, then the subclass check is done only when
292 ARG2 is itself non-zero. Returns the new pointer or reference. */
295 value_cast_pointers (struct type *type, struct value *arg2,
298 struct type *type1 = check_typedef (type);
299 struct type *type2 = check_typedef (value_type (arg2));
300 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
301 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
303 if (t1->code () == TYPE_CODE_STRUCT
304 && t2->code () == TYPE_CODE_STRUCT
305 && (subclass_check || !value_logical_not (arg2)))
309 if (TYPE_IS_REFERENCE (type2))
310 v2 = coerce_ref (arg2);
312 v2 = value_ind (arg2);
313 gdb_assert (check_typedef (value_type (v2))->code ()
314 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
315 v2 = value_cast_structs (t1, v2);
316 /* At this point we have what we can have, un-dereference if needed. */
319 struct value *v = value_addr (v2);
321 deprecated_set_value_type (v, type);
326 /* No superclass found, just change the pointer type. */
327 arg2 = value_copy (arg2);
328 deprecated_set_value_type (arg2, type);
329 set_value_enclosing_type (arg2, type);
330 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
337 value_to_gdb_mpq (struct value *value)
339 struct type *type = check_typedef (value_type (value));
342 if (is_floating_type (type))
344 double d = target_float_to_host_double (value_contents (value),
346 mpq_set_d (result.val, d);
350 gdb_assert (is_integral_type (type)
351 || is_fixed_point_type (type));
354 vz.read (gdb::make_array_view (value_contents (value),
356 type_byte_order (type), type->is_unsigned ());
357 mpq_set_z (result.val, vz.val);
359 if (is_fixed_point_type (type))
360 mpq_mul (result.val, result.val,
361 type->fixed_point_scaling_factor ().val);
367 /* Assuming that TO_TYPE is a fixed point type, return a value
368 corresponding to the cast of FROM_VAL to that type. */
370 static struct value *
371 value_cast_to_fixed_point (struct type *to_type, struct value *from_val)
373 struct type *from_type = value_type (from_val);
375 if (from_type == to_type)
378 if (!is_floating_type (from_type)
379 && !is_integral_type (from_type)
380 && !is_fixed_point_type (from_type))
381 error (_("Invalid conversion from type %s to fixed point type %s"),
382 from_type->name (), to_type->name ());
384 gdb_mpq vq = value_to_gdb_mpq (from_val);
386 /* Divide that value by the scaling factor to obtain the unscaled
387 value, first in rational form, and then in integer form. */
389 mpq_div (vq.val, vq.val, to_type->fixed_point_scaling_factor ().val);
390 gdb_mpz unscaled = vq.get_rounded ();
392 /* Finally, create the result value, and pack the unscaled value
394 struct value *result = allocate_value (to_type);
395 unscaled.write (gdb::make_array_view (value_contents_raw (result),
396 TYPE_LENGTH (to_type)),
397 type_byte_order (to_type),
398 to_type->is_unsigned ());
403 /* Cast value ARG2 to type TYPE and return as a value.
404 More general than a C cast: accepts any two types of the same length,
405 and if ARG2 is an lvalue it can be cast into anything at all. */
406 /* In C++, casts may change pointer or object representations. */
409 value_cast (struct type *type, struct value *arg2)
411 enum type_code code1;
412 enum type_code code2;
416 int convert_to_boolean = 0;
418 if (value_type (arg2) == type)
421 if (is_fixed_point_type (type))
422 return value_cast_to_fixed_point (type, arg2);
424 /* Check if we are casting struct reference to struct reference. */
425 if (TYPE_IS_REFERENCE (check_typedef (type)))
427 /* We dereference type; then we recurse and finally
428 we generate value of the given reference. Nothing wrong with
430 struct type *t1 = check_typedef (type);
431 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
432 struct value *val = value_cast (dereftype, arg2);
434 return value_ref (val, t1->code ());
437 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
438 /* We deref the value and then do the cast. */
439 return value_cast (type, coerce_ref (arg2));
441 /* Strip typedefs / resolve stubs in order to get at the type's
442 code/length, but remember the original type, to use as the
443 resulting type of the cast, in case it was a typedef. */
444 struct type *to_type = type;
446 type = check_typedef (type);
447 code1 = type->code ();
448 arg2 = coerce_ref (arg2);
449 type2 = check_typedef (value_type (arg2));
451 /* You can't cast to a reference type. See value_cast_pointers
453 gdb_assert (!TYPE_IS_REFERENCE (type));
455 /* A cast to an undetermined-length array_type, such as
456 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
457 where N is sizeof(OBJECT)/sizeof(TYPE). */
458 if (code1 == TYPE_CODE_ARRAY)
460 struct type *element_type = TYPE_TARGET_TYPE (type);
461 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
463 if (element_length > 0 && type->bounds ()->high.kind () == PROP_UNDEFINED)
465 struct type *range_type = type->index_type ();
466 int val_length = TYPE_LENGTH (type2);
467 LONGEST low_bound, high_bound, new_length;
469 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
470 low_bound = 0, high_bound = 0;
471 new_length = val_length / element_length;
472 if (val_length % element_length != 0)
473 warning (_("array element type size does not "
474 "divide object size in cast"));
475 /* FIXME-type-allocation: need a way to free this type when
476 we are done with it. */
477 range_type = create_static_range_type (NULL,
478 TYPE_TARGET_TYPE (range_type),
480 new_length + low_bound - 1);
481 deprecated_set_value_type (arg2,
482 create_array_type (NULL,
489 if (current_language->c_style_arrays_p ()
490 && type2->code () == TYPE_CODE_ARRAY
491 && !type2->is_vector ())
492 arg2 = value_coerce_array (arg2);
494 if (type2->code () == TYPE_CODE_FUNC)
495 arg2 = value_coerce_function (arg2);
497 type2 = check_typedef (value_type (arg2));
498 code2 = type2->code ();
500 if (code1 == TYPE_CODE_COMPLEX)
501 return cast_into_complex (to_type, arg2);
502 if (code1 == TYPE_CODE_BOOL)
504 code1 = TYPE_CODE_INT;
505 convert_to_boolean = 1;
507 if (code1 == TYPE_CODE_CHAR)
508 code1 = TYPE_CODE_INT;
509 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
510 code2 = TYPE_CODE_INT;
512 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
513 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
514 || code2 == TYPE_CODE_RANGE
515 || is_fixed_point_type (type2));
517 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
518 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
519 && type->name () != 0)
521 struct value *v = value_cast_structs (to_type, arg2);
527 if (is_floating_type (type) && scalar)
529 if (is_floating_value (arg2))
531 struct value *v = allocate_value (to_type);
532 target_float_convert (value_contents (arg2), type2,
533 value_contents_raw (v), type);
536 else if (is_fixed_point_type (type2))
540 fp_val.read_fixed_point
541 (gdb::make_array_view (value_contents (arg2), TYPE_LENGTH (type2)),
542 type_byte_order (type2), type2->is_unsigned (),
543 type2->fixed_point_scaling_factor ());
545 struct value *v = allocate_value (to_type);
546 target_float_from_host_double (value_contents_raw (v),
547 to_type, mpq_get_d (fp_val.val));
551 /* The only option left is an integral type. */
552 if (type2->is_unsigned ())
553 return value_from_ulongest (to_type, value_as_long (arg2));
555 return value_from_longest (to_type, value_as_long (arg2));
557 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
558 || code1 == TYPE_CODE_RANGE)
559 && (scalar || code2 == TYPE_CODE_PTR
560 || code2 == TYPE_CODE_MEMBERPTR))
564 /* When we cast pointers to integers, we mustn't use
565 gdbarch_pointer_to_address to find the address the pointer
566 represents, as value_as_long would. GDB should evaluate
567 expressions just as the compiler would --- and the compiler
568 sees a cast as a simple reinterpretation of the pointer's
570 if (code2 == TYPE_CODE_PTR)
571 longest = extract_unsigned_integer
572 (value_contents (arg2), TYPE_LENGTH (type2),
573 type_byte_order (type2));
575 longest = value_as_long (arg2);
576 return value_from_longest (to_type, convert_to_boolean ?
577 (LONGEST) (longest ? 1 : 0) : longest);
579 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
580 || code2 == TYPE_CODE_ENUM
581 || code2 == TYPE_CODE_RANGE))
583 /* TYPE_LENGTH (type) is the length of a pointer, but we really
584 want the length of an address! -- we are really dealing with
585 addresses (i.e., gdb representations) not pointers (i.e.,
586 target representations) here.
588 This allows things like "print *(int *)0x01000234" to work
589 without printing a misleading message -- which would
590 otherwise occur when dealing with a target having two byte
591 pointers and four byte addresses. */
593 int addr_bit = gdbarch_addr_bit (type2->arch ());
594 LONGEST longest = value_as_long (arg2);
596 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
598 if (longest >= ((LONGEST) 1 << addr_bit)
599 || longest <= -((LONGEST) 1 << addr_bit))
600 warning (_("value truncated"));
602 return value_from_longest (to_type, longest);
604 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
605 && value_as_long (arg2) == 0)
607 struct value *result = allocate_value (to_type);
609 cplus_make_method_ptr (to_type, value_contents_writeable (result), 0, 0);
612 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
613 && value_as_long (arg2) == 0)
615 /* The Itanium C++ ABI represents NULL pointers to members as
616 minus one, instead of biasing the normal case. */
617 return value_from_longest (to_type, -1);
619 else if (code1 == TYPE_CODE_ARRAY && type->is_vector ()
620 && code2 == TYPE_CODE_ARRAY && type2->is_vector ()
621 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
622 error (_("Cannot convert between vector values of different sizes"));
623 else if (code1 == TYPE_CODE_ARRAY && type->is_vector () && scalar
624 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
625 error (_("can only cast scalar to vector of same size"));
626 else if (code1 == TYPE_CODE_VOID)
628 return value_zero (to_type, not_lval);
630 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
632 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
633 return value_cast_pointers (to_type, arg2, 0);
635 arg2 = value_copy (arg2);
636 deprecated_set_value_type (arg2, to_type);
637 set_value_enclosing_type (arg2, to_type);
638 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
641 else if (VALUE_LVAL (arg2) == lval_memory)
642 return value_at_lazy (to_type, value_address (arg2));
645 if (current_language->la_language == language_ada)
646 error (_("Invalid type conversion."));
647 error (_("Invalid cast."));
651 /* The C++ reinterpret_cast operator. */
654 value_reinterpret_cast (struct type *type, struct value *arg)
656 struct value *result;
657 struct type *real_type = check_typedef (type);
658 struct type *arg_type, *dest_type;
660 enum type_code dest_code, arg_code;
662 /* Do reference, function, and array conversion. */
663 arg = coerce_array (arg);
665 /* Attempt to preserve the type the user asked for. */
668 /* If we are casting to a reference type, transform
669 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
670 if (TYPE_IS_REFERENCE (real_type))
673 arg = value_addr (arg);
674 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
675 real_type = lookup_pointer_type (real_type);
678 arg_type = value_type (arg);
680 dest_code = real_type->code ();
681 arg_code = arg_type->code ();
683 /* We can convert pointer types, or any pointer type to int, or int
685 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
686 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
687 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
688 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
689 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
690 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
691 || (dest_code == arg_code
692 && (dest_code == TYPE_CODE_PTR
693 || dest_code == TYPE_CODE_METHODPTR
694 || dest_code == TYPE_CODE_MEMBERPTR)))
695 result = value_cast (dest_type, arg);
697 error (_("Invalid reinterpret_cast"));
700 result = value_cast (type, value_ref (value_ind (result),
706 /* A helper for value_dynamic_cast. This implements the first of two
707 runtime checks: we iterate over all the base classes of the value's
708 class which are equal to the desired class; if only one of these
709 holds the value, then it is the answer. */
712 dynamic_cast_check_1 (struct type *desired_type,
713 const gdb_byte *valaddr,
714 LONGEST embedded_offset,
717 struct type *search_type,
719 struct type *arg_type,
720 struct value **result)
722 int i, result_count = 0;
724 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
726 LONGEST offset = baseclass_offset (search_type, i, valaddr,
730 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
732 if (address + embedded_offset + offset >= arg_addr
733 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
737 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
738 address + embedded_offset + offset);
742 result_count += dynamic_cast_check_1 (desired_type,
744 embedded_offset + offset,
746 TYPE_BASECLASS (search_type, i),
755 /* A helper for value_dynamic_cast. This implements the second of two
756 runtime checks: we look for a unique public sibling class of the
757 argument's declared class. */
760 dynamic_cast_check_2 (struct type *desired_type,
761 const gdb_byte *valaddr,
762 LONGEST embedded_offset,
765 struct type *search_type,
766 struct value **result)
768 int i, result_count = 0;
770 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
774 if (! BASETYPE_VIA_PUBLIC (search_type, i))
777 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
779 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
783 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
784 address + embedded_offset + offset);
787 result_count += dynamic_cast_check_2 (desired_type,
789 embedded_offset + offset,
791 TYPE_BASECLASS (search_type, i),
798 /* The C++ dynamic_cast operator. */
801 value_dynamic_cast (struct type *type, struct value *arg)
805 struct type *resolved_type = check_typedef (type);
806 struct type *arg_type = check_typedef (value_type (arg));
807 struct type *class_type, *rtti_type;
808 struct value *result, *tem, *original_arg = arg;
810 int is_ref = TYPE_IS_REFERENCE (resolved_type);
812 if (resolved_type->code () != TYPE_CODE_PTR
813 && !TYPE_IS_REFERENCE (resolved_type))
814 error (_("Argument to dynamic_cast must be a pointer or reference type"));
815 if (TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_VOID
816 && TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_STRUCT)
817 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
819 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
820 if (resolved_type->code () == TYPE_CODE_PTR)
822 if (arg_type->code () != TYPE_CODE_PTR
823 && ! (arg_type->code () == TYPE_CODE_INT
824 && value_as_long (arg) == 0))
825 error (_("Argument to dynamic_cast does not have pointer type"));
826 if (arg_type->code () == TYPE_CODE_PTR)
828 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
829 if (arg_type->code () != TYPE_CODE_STRUCT)
830 error (_("Argument to dynamic_cast does "
831 "not have pointer to class type"));
834 /* Handle NULL pointers. */
835 if (value_as_long (arg) == 0)
836 return value_zero (type, not_lval);
838 arg = value_ind (arg);
842 if (arg_type->code () != TYPE_CODE_STRUCT)
843 error (_("Argument to dynamic_cast does not have class type"));
846 /* If the classes are the same, just return the argument. */
847 if (class_types_same_p (class_type, arg_type))
848 return value_cast (type, arg);
850 /* If the target type is a unique base class of the argument's
851 declared type, just cast it. */
852 if (is_ancestor (class_type, arg_type))
854 if (is_unique_ancestor (class_type, arg))
855 return value_cast (type, original_arg);
856 error (_("Ambiguous dynamic_cast"));
859 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
861 error (_("Couldn't determine value's most derived type for dynamic_cast"));
863 /* Compute the most derived object's address. */
864 addr = value_address (arg);
872 addr += top + value_embedded_offset (arg);
874 /* dynamic_cast<void *> means to return a pointer to the
875 most-derived object. */
876 if (resolved_type->code () == TYPE_CODE_PTR
877 && TYPE_TARGET_TYPE (resolved_type)->code () == TYPE_CODE_VOID)
878 return value_at_lazy (type, addr);
880 tem = value_at (type, addr);
881 type = value_type (tem);
883 /* The first dynamic check specified in 5.2.7. */
884 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
886 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
889 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
890 value_contents_for_printing (tem),
891 value_embedded_offset (tem),
892 value_address (tem), tem,
896 return value_cast (type,
898 ? value_ref (result, resolved_type->code ())
899 : value_addr (result));
902 /* The second dynamic check specified in 5.2.7. */
904 if (is_public_ancestor (arg_type, rtti_type)
905 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
906 value_contents_for_printing (tem),
907 value_embedded_offset (tem),
908 value_address (tem), tem,
909 rtti_type, &result) == 1)
910 return value_cast (type,
912 ? value_ref (result, resolved_type->code ())
913 : value_addr (result));
915 if (resolved_type->code () == TYPE_CODE_PTR)
916 return value_zero (type, not_lval);
918 error (_("dynamic_cast failed"));
921 /* Create a value of type TYPE that is zero, and return it. */
924 value_zero (struct type *type, enum lval_type lv)
926 struct value *val = allocate_value (type);
928 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
932 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
935 value_one (struct type *type)
937 struct type *type1 = check_typedef (type);
940 if (is_integral_type (type1) || is_floating_type (type1))
942 val = value_from_longest (type, (LONGEST) 1);
944 else if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
946 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
948 LONGEST low_bound, high_bound;
951 if (!get_array_bounds (type1, &low_bound, &high_bound))
952 error (_("Could not determine the vector bounds"));
954 val = allocate_value (type);
955 for (i = 0; i < high_bound - low_bound + 1; i++)
957 tmp = value_one (eltype);
958 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
959 value_contents_all (tmp), TYPE_LENGTH (eltype));
964 error (_("Not a numeric type."));
967 /* value_one result is never used for assignments to. */
968 gdb_assert (VALUE_LVAL (val) == not_lval);
973 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
974 The type of the created value may differ from the passed type TYPE.
975 Make sure to retrieve the returned values's new type after this call
976 e.g. in case the type is a variable length array. */
978 static struct value *
979 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
983 if (check_typedef (type)->code () == TYPE_CODE_VOID)
984 error (_("Attempt to dereference a generic pointer."));
986 val = value_from_contents_and_address (type, NULL, addr);
989 value_fetch_lazy (val);
994 /* Return a value with type TYPE located at ADDR.
996 Call value_at only if the data needs to be fetched immediately;
997 if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
998 value_at_lazy instead. value_at_lazy simply records the address of
999 the data and sets the lazy-evaluation-required flag. The lazy flag
1000 is tested in the value_contents macro, which is used if and when
1001 the contents are actually required. The type of the created value
1002 may differ from the passed type TYPE. Make sure to retrieve the
1003 returned values's new type after this call e.g. in case the type
1004 is a variable length array.
1006 Note: value_at does *NOT* handle embedded offsets; perform such
1007 adjustments before or after calling it. */
1010 value_at (struct type *type, CORE_ADDR addr)
1012 return get_value_at (type, addr, 0);
1015 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
1016 The type of the created value may differ from the passed type TYPE.
1017 Make sure to retrieve the returned values's new type after this call
1018 e.g. in case the type is a variable length array. */
1021 value_at_lazy (struct type *type, CORE_ADDR addr)
1023 return get_value_at (type, addr, 1);
1027 read_value_memory (struct value *val, LONGEST bit_offset,
1028 int stack, CORE_ADDR memaddr,
1029 gdb_byte *buffer, size_t length)
1031 ULONGEST xfered_total = 0;
1032 struct gdbarch *arch = get_value_arch (val);
1033 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1034 enum target_object object;
1036 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
1038 while (xfered_total < length)
1040 enum target_xfer_status status;
1041 ULONGEST xfered_partial;
1043 status = target_xfer_partial (current_inferior ()->top_target (),
1045 buffer + xfered_total * unit_size, NULL,
1046 memaddr + xfered_total,
1047 length - xfered_total,
1050 if (status == TARGET_XFER_OK)
1052 else if (status == TARGET_XFER_UNAVAILABLE)
1053 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
1055 xfered_partial * HOST_CHAR_BIT);
1056 else if (status == TARGET_XFER_EOF)
1057 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
1059 memory_error (status, memaddr + xfered_total);
1061 xfered_total += xfered_partial;
1066 /* Store the contents of FROMVAL into the location of TOVAL.
1067 Return a new value with the location of TOVAL and contents of FROMVAL. */
1070 value_assign (struct value *toval, struct value *fromval)
1074 struct frame_id old_frame;
1076 if (!deprecated_value_modifiable (toval))
1077 error (_("Left operand of assignment is not a modifiable lvalue."));
1079 toval = coerce_ref (toval);
1081 type = value_type (toval);
1082 if (VALUE_LVAL (toval) != lval_internalvar)
1083 fromval = value_cast (type, fromval);
1086 /* Coerce arrays and functions to pointers, except for arrays
1087 which only live in GDB's storage. */
1088 if (!value_must_coerce_to_target (fromval))
1089 fromval = coerce_array (fromval);
1092 type = check_typedef (type);
1094 /* Since modifying a register can trash the frame chain, and
1095 modifying memory can trash the frame cache, we save the old frame
1096 and then restore the new frame afterwards. */
1097 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1099 switch (VALUE_LVAL (toval))
1101 case lval_internalvar:
1102 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1103 return value_of_internalvar (type->arch (),
1104 VALUE_INTERNALVAR (toval));
1106 case lval_internalvar_component:
1108 LONGEST offset = value_offset (toval);
1110 /* Are we dealing with a bitfield?
1112 It is important to mention that `value_parent (toval)' is
1113 non-NULL iff `value_bitsize (toval)' is non-zero. */
1114 if (value_bitsize (toval))
1116 /* VALUE_INTERNALVAR below refers to the parent value, while
1117 the offset is relative to this parent value. */
1118 gdb_assert (value_parent (value_parent (toval)) == NULL);
1119 offset += value_offset (value_parent (toval));
1122 set_internalvar_component (VALUE_INTERNALVAR (toval),
1124 value_bitpos (toval),
1125 value_bitsize (toval),
1132 const gdb_byte *dest_buffer;
1133 CORE_ADDR changed_addr;
1135 gdb_byte buffer[sizeof (LONGEST)];
1137 if (value_bitsize (toval))
1139 struct value *parent = value_parent (toval);
1141 changed_addr = value_address (parent) + value_offset (toval);
1142 changed_len = (value_bitpos (toval)
1143 + value_bitsize (toval)
1144 + HOST_CHAR_BIT - 1)
1147 /* If we can read-modify-write exactly the size of the
1148 containing type (e.g. short or int) then do so. This
1149 is safer for volatile bitfields mapped to hardware
1151 if (changed_len < TYPE_LENGTH (type)
1152 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1153 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1154 changed_len = TYPE_LENGTH (type);
1156 if (changed_len > (int) sizeof (LONGEST))
1157 error (_("Can't handle bitfields which "
1158 "don't fit in a %d bit word."),
1159 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1161 read_memory (changed_addr, buffer, changed_len);
1162 modify_field (type, buffer, value_as_long (fromval),
1163 value_bitpos (toval), value_bitsize (toval));
1164 dest_buffer = buffer;
1168 changed_addr = value_address (toval);
1169 changed_len = type_length_units (type);
1170 dest_buffer = value_contents (fromval);
1173 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1179 struct frame_info *frame;
1180 struct gdbarch *gdbarch;
1183 /* Figure out which frame this is in currently.
1185 We use VALUE_FRAME_ID for obtaining the value's frame id instead of
1186 VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
1187 put_frame_register_bytes() below. That function will (eventually)
1188 perform the necessary unwind operation by first obtaining the next
1190 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1192 value_reg = VALUE_REGNUM (toval);
1195 error (_("Value being assigned to is no longer active."));
1197 gdbarch = get_frame_arch (frame);
1199 if (value_bitsize (toval))
1201 struct value *parent = value_parent (toval);
1202 LONGEST offset = value_offset (parent) + value_offset (toval);
1204 gdb_byte buffer[sizeof (LONGEST)];
1207 changed_len = (value_bitpos (toval)
1208 + value_bitsize (toval)
1209 + HOST_CHAR_BIT - 1)
1212 if (changed_len > sizeof (LONGEST))
1213 error (_("Can't handle bitfields which "
1214 "don't fit in a %d bit word."),
1215 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1217 if (!get_frame_register_bytes (frame, value_reg, offset,
1218 {buffer, changed_len},
1222 throw_error (OPTIMIZED_OUT_ERROR,
1223 _("value has been optimized out"));
1225 throw_error (NOT_AVAILABLE_ERROR,
1226 _("value is not available"));
1229 modify_field (type, buffer, value_as_long (fromval),
1230 value_bitpos (toval), value_bitsize (toval));
1232 put_frame_register_bytes (frame, value_reg, offset,
1233 {buffer, changed_len});
1237 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1240 /* If TOVAL is a special machine register requiring
1241 conversion of program values to a special raw
1243 gdbarch_value_to_register (gdbarch, frame,
1244 VALUE_REGNUM (toval), type,
1245 value_contents (fromval));
1249 gdb::array_view<const gdb_byte> contents
1250 = gdb::make_array_view (value_contents (fromval),
1251 TYPE_LENGTH (type));
1252 put_frame_register_bytes (frame, value_reg,
1253 value_offset (toval),
1258 gdb::observers::register_changed.notify (frame, value_reg);
1264 const struct lval_funcs *funcs = value_computed_funcs (toval);
1266 if (funcs->write != NULL)
1268 funcs->write (toval, fromval);
1275 error (_("Left operand of assignment is not an lvalue."));
1278 /* Assigning to the stack pointer, frame pointer, and other
1279 (architecture and calling convention specific) registers may
1280 cause the frame cache and regcache to be out of date. Assigning to memory
1281 also can. We just do this on all assignments to registers or
1282 memory, for simplicity's sake; I doubt the slowdown matters. */
1283 switch (VALUE_LVAL (toval))
1289 gdb::observers::target_changed.notify
1290 (current_inferior ()->top_target ());
1292 /* Having destroyed the frame cache, restore the selected
1295 /* FIXME: cagney/2002-11-02: There has to be a better way of
1296 doing this. Instead of constantly saving/restoring the
1297 frame. Why not create a get_selected_frame() function that,
1298 having saved the selected frame's ID can automatically
1299 re-find the previously selected frame automatically. */
1302 struct frame_info *fi = frame_find_by_id (old_frame);
1313 /* If the field does not entirely fill a LONGEST, then zero the sign
1314 bits. If the field is signed, and is negative, then sign
1316 if ((value_bitsize (toval) > 0)
1317 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1319 LONGEST fieldval = value_as_long (fromval);
1320 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1322 fieldval &= valmask;
1323 if (!type->is_unsigned ()
1324 && (fieldval & (valmask ^ (valmask >> 1))))
1325 fieldval |= ~valmask;
1327 fromval = value_from_longest (type, fieldval);
1330 /* The return value is a copy of TOVAL so it shares its location
1331 information, but its contents are updated from FROMVAL. This
1332 implies the returned value is not lazy, even if TOVAL was. */
1333 val = value_copy (toval);
1334 set_value_lazy (val, 0);
1335 memcpy (value_contents_raw (val), value_contents (fromval),
1336 TYPE_LENGTH (type));
1338 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1339 in the case of pointer types. For object types, the enclosing type
1340 and embedded offset must *not* be copied: the target object refered
1341 to by TOVAL retains its original dynamic type after assignment. */
1342 if (type->code () == TYPE_CODE_PTR)
1344 set_value_enclosing_type (val, value_enclosing_type (fromval));
1345 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1351 /* Extend a value ARG1 to COUNT repetitions of its type. */
1354 value_repeat (struct value *arg1, int count)
1358 if (VALUE_LVAL (arg1) != lval_memory)
1359 error (_("Only values in memory can be extended with '@'."));
1361 error (_("Invalid number %d of repetitions."), count);
1363 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1365 VALUE_LVAL (val) = lval_memory;
1366 set_value_address (val, value_address (arg1));
1368 read_value_memory (val, 0, value_stack (val), value_address (val),
1369 value_contents_all_raw (val),
1370 type_length_units (value_enclosing_type (val)));
1376 value_of_variable (struct symbol *var, const struct block *b)
1378 struct frame_info *frame = NULL;
1380 if (symbol_read_needs_frame (var))
1381 frame = get_selected_frame (_("No frame selected."));
1383 return read_var_value (var, b, frame);
1387 address_of_variable (struct symbol *var, const struct block *b)
1389 struct type *type = SYMBOL_TYPE (var);
1392 /* Evaluate it first; if the result is a memory address, we're fine.
1393 Lazy evaluation pays off here. */
1395 val = value_of_variable (var, b);
1396 type = value_type (val);
1398 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1399 || type->code () == TYPE_CODE_FUNC)
1401 CORE_ADDR addr = value_address (val);
1403 return value_from_pointer (lookup_pointer_type (type), addr);
1406 /* Not a memory address; check what the problem was. */
1407 switch (VALUE_LVAL (val))
1411 struct frame_info *frame;
1412 const char *regname;
1414 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1417 regname = gdbarch_register_name (get_frame_arch (frame),
1418 VALUE_REGNUM (val));
1419 gdb_assert (regname && *regname);
1421 error (_("Address requested for identifier "
1422 "\"%s\" which is in register $%s"),
1423 var->print_name (), regname);
1428 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1429 var->print_name ());
1439 value_must_coerce_to_target (struct value *val)
1441 struct type *valtype;
1443 /* The only lval kinds which do not live in target memory. */
1444 if (VALUE_LVAL (val) != not_lval
1445 && VALUE_LVAL (val) != lval_internalvar
1446 && VALUE_LVAL (val) != lval_xcallable)
1449 valtype = check_typedef (value_type (val));
1451 switch (valtype->code ())
1453 case TYPE_CODE_ARRAY:
1454 return valtype->is_vector () ? 0 : 1;
1455 case TYPE_CODE_STRING:
1462 /* Make sure that VAL lives in target memory if it's supposed to. For
1463 instance, strings are constructed as character arrays in GDB's
1464 storage, and this function copies them to the target. */
1467 value_coerce_to_target (struct value *val)
1472 if (!value_must_coerce_to_target (val))
1475 length = TYPE_LENGTH (check_typedef (value_type (val)));
1476 addr = allocate_space_in_inferior (length);
1477 write_memory (addr, value_contents (val), length);
1478 return value_at_lazy (value_type (val), addr);
1481 /* Given a value which is an array, return a value which is a pointer
1482 to its first element, regardless of whether or not the array has a
1483 nonzero lower bound.
1485 FIXME: A previous comment here indicated that this routine should
1486 be substracting the array's lower bound. It's not clear to me that
1487 this is correct. Given an array subscripting operation, it would
1488 certainly work to do the adjustment here, essentially computing:
1490 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1492 However I believe a more appropriate and logical place to account
1493 for the lower bound is to do so in value_subscript, essentially
1496 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1498 As further evidence consider what would happen with operations
1499 other than array subscripting, where the caller would get back a
1500 value that had an address somewhere before the actual first element
1501 of the array, and the information about the lower bound would be
1502 lost because of the coercion to pointer type. */
1505 value_coerce_array (struct value *arg1)
1507 struct type *type = check_typedef (value_type (arg1));
1509 /* If the user tries to do something requiring a pointer with an
1510 array that has not yet been pushed to the target, then this would
1511 be a good time to do so. */
1512 arg1 = value_coerce_to_target (arg1);
1514 if (VALUE_LVAL (arg1) != lval_memory)
1515 error (_("Attempt to take address of value not located in memory."));
1517 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1518 value_address (arg1));
1521 /* Given a value which is a function, return a value which is a pointer
1525 value_coerce_function (struct value *arg1)
1527 struct value *retval;
1529 if (VALUE_LVAL (arg1) != lval_memory)
1530 error (_("Attempt to take address of value not located in memory."));
1532 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1533 value_address (arg1));
1537 /* Return a pointer value for the object for which ARG1 is the
1541 value_addr (struct value *arg1)
1544 struct type *type = check_typedef (value_type (arg1));
1546 if (TYPE_IS_REFERENCE (type))
1548 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1549 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1550 arg1 = coerce_ref (arg1);
1553 /* Copy the value, but change the type from (T&) to (T*). We
1554 keep the same location information, which is efficient, and
1555 allows &(&X) to get the location containing the reference.
1556 Do the same to its enclosing type for consistency. */
1557 struct type *type_ptr
1558 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1559 struct type *enclosing_type
1560 = check_typedef (value_enclosing_type (arg1));
1561 struct type *enclosing_type_ptr
1562 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1564 arg2 = value_copy (arg1);
1565 deprecated_set_value_type (arg2, type_ptr);
1566 set_value_enclosing_type (arg2, enclosing_type_ptr);
1571 if (type->code () == TYPE_CODE_FUNC)
1572 return value_coerce_function (arg1);
1574 /* If this is an array that has not yet been pushed to the target,
1575 then this would be a good time to force it to memory. */
1576 arg1 = value_coerce_to_target (arg1);
1578 if (VALUE_LVAL (arg1) != lval_memory)
1579 error (_("Attempt to take address of value not located in memory."));
1581 /* Get target memory address. */
1582 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1583 (value_address (arg1)
1584 + value_embedded_offset (arg1)));
1586 /* This may be a pointer to a base subobject; so remember the
1587 full derived object's type ... */
1588 set_value_enclosing_type (arg2,
1589 lookup_pointer_type (value_enclosing_type (arg1)));
1590 /* ... and also the relative position of the subobject in the full
1592 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1596 /* Return a reference value for the object for which ARG1 is the
1600 value_ref (struct value *arg1, enum type_code refcode)
1603 struct type *type = check_typedef (value_type (arg1));
1605 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1607 if ((type->code () == TYPE_CODE_REF
1608 || type->code () == TYPE_CODE_RVALUE_REF)
1609 && type->code () == refcode)
1612 arg2 = value_addr (arg1);
1613 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1617 /* Given a value of a pointer type, apply the C unary * operator to
1621 value_ind (struct value *arg1)
1623 struct type *base_type;
1626 arg1 = coerce_array (arg1);
1628 base_type = check_typedef (value_type (arg1));
1630 if (VALUE_LVAL (arg1) == lval_computed)
1632 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1634 if (funcs->indirect)
1636 struct value *result = funcs->indirect (arg1);
1643 if (base_type->code () == TYPE_CODE_PTR)
1645 struct type *enc_type;
1647 /* We may be pointing to something embedded in a larger object.
1648 Get the real type of the enclosing object. */
1649 enc_type = check_typedef (value_enclosing_type (arg1));
1650 enc_type = TYPE_TARGET_TYPE (enc_type);
1652 CORE_ADDR base_addr;
1653 if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
1654 || check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
1656 /* For functions, go through find_function_addr, which knows
1657 how to handle function descriptors. */
1658 base_addr = find_function_addr (arg1, NULL);
1662 /* Retrieve the enclosing object pointed to. */
1663 base_addr = (value_as_address (arg1)
1664 - value_pointed_to_offset (arg1));
1666 arg2 = value_at_lazy (enc_type, base_addr);
1667 enc_type = value_type (arg2);
1668 return readjust_indirect_value_type (arg2, enc_type, base_type,
1672 error (_("Attempt to take contents of a non-pointer value."));
1675 /* Create a value for an array by allocating space in GDB, copying the
1676 data into that space, and then setting up an array value.
1678 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1679 is populated from the values passed in ELEMVEC.
1681 The element type of the array is inherited from the type of the
1682 first element, and all elements must have the same size (though we
1683 don't currently enforce any restriction on their types). */
1686 value_array (int lowbound, int highbound, struct value **elemvec)
1690 ULONGEST typelength;
1692 struct type *arraytype;
1694 /* Validate that the bounds are reasonable and that each of the
1695 elements have the same size. */
1697 nelem = highbound - lowbound + 1;
1700 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1702 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1703 for (idx = 1; idx < nelem; idx++)
1705 if (type_length_units (value_enclosing_type (elemvec[idx]))
1708 error (_("array elements must all be the same size"));
1712 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1713 lowbound, highbound);
1715 if (!current_language->c_style_arrays_p ())
1717 val = allocate_value (arraytype);
1718 for (idx = 0; idx < nelem; idx++)
1719 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1724 /* Allocate space to store the array, and then initialize it by
1725 copying in each element. */
1727 val = allocate_value (arraytype);
1728 for (idx = 0; idx < nelem; idx++)
1729 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1734 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1737 int lowbound = current_language->string_lower_bound ();
1738 ssize_t highbound = len / TYPE_LENGTH (char_type);
1739 struct type *stringtype
1740 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1742 val = allocate_value (stringtype);
1743 memcpy (value_contents_raw (val), ptr, len);
1747 /* Create a value for a string constant by allocating space in the
1748 inferior, copying the data into that space, and returning the
1749 address with type TYPE_CODE_STRING. PTR points to the string
1750 constant data; LEN is number of characters.
1752 Note that string types are like array of char types with a lower
1753 bound of zero and an upper bound of LEN - 1. Also note that the
1754 string may contain embedded null bytes. */
1757 value_string (const char *ptr, ssize_t len, struct type *char_type)
1760 int lowbound = current_language->string_lower_bound ();
1761 ssize_t highbound = len / TYPE_LENGTH (char_type);
1762 struct type *stringtype
1763 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1765 val = allocate_value (stringtype);
1766 memcpy (value_contents_raw (val), ptr, len);
1771 /* See if we can pass arguments in T2 to a function which takes
1772 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1773 a NULL-terminated vector. If some arguments need coercion of some
1774 sort, then the coerced values are written into T2. Return value is
1775 0 if the arguments could be matched, or the position at which they
1778 STATICP is nonzero if the T1 argument list came from a static
1779 member function. T2 will still include the ``this'' pointer, but
1782 For non-static member functions, we ignore the first argument,
1783 which is the type of the instance variable. This is because we
1784 want to handle calls with objects from derived classes. This is
1785 not entirely correct: we should actually check to make sure that a
1786 requested operation is type secure, shouldn't we? FIXME. */
1789 typecmp (int staticp, int varargs, int nargs,
1790 struct field t1[], struct value *t2[])
1795 internal_error (__FILE__, __LINE__,
1796 _("typecmp: no argument list"));
1798 /* Skip ``this'' argument if applicable. T2 will always include
1804 (i < nargs) && t1[i].type ()->code () != TYPE_CODE_VOID;
1807 struct type *tt1, *tt2;
1812 tt1 = check_typedef (t1[i].type ());
1813 tt2 = check_typedef (value_type (t2[i]));
1815 if (TYPE_IS_REFERENCE (tt1)
1816 /* We should be doing hairy argument matching, as below. */
1817 && (check_typedef (TYPE_TARGET_TYPE (tt1))->code ()
1820 if (tt2->code () == TYPE_CODE_ARRAY)
1821 t2[i] = value_coerce_array (t2[i]);
1823 t2[i] = value_ref (t2[i], tt1->code ());
1827 /* djb - 20000715 - Until the new type structure is in the
1828 place, and we can attempt things like implicit conversions,
1829 we need to do this so you can take something like a map<const
1830 char *>, and properly access map["hello"], because the
1831 argument to [] will be a reference to a pointer to a char,
1832 and the argument will be a pointer to a char. */
1833 while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
1835 tt1 = check_typedef ( TYPE_TARGET_TYPE (tt1) );
1837 while (tt2->code () == TYPE_CODE_ARRAY
1838 || tt2->code () == TYPE_CODE_PTR
1839 || TYPE_IS_REFERENCE (tt2))
1841 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
1843 if (tt1->code () == tt2->code ())
1845 /* Array to pointer is a `trivial conversion' according to the
1848 /* We should be doing much hairier argument matching (see
1849 section 13.2 of the ARM), but as a quick kludge, just check
1850 for the same type code. */
1851 if (t1[i].type ()->code () != value_type (t2[i])->code ())
1854 if (varargs || t2[i] == NULL)
1859 /* Helper class for search_struct_field that keeps track of found
1860 results and possibly throws an exception if the search yields
1861 ambiguous results. See search_struct_field for description of
1862 LOOKING_FOR_BASECLASS. */
1864 struct struct_field_searcher
1866 /* A found field. */
1869 /* Path to the structure where the field was found. */
1870 std::vector<struct type *> path;
1872 /* The field found. */
1873 struct value *field_value;
1876 /* See corresponding fields for description of parameters. */
1877 struct_field_searcher (const char *name,
1878 struct type *outermost_type,
1879 bool looking_for_baseclass)
1881 m_looking_for_baseclass (looking_for_baseclass),
1882 m_outermost_type (outermost_type)
1886 /* The search entry point. If LOOKING_FOR_BASECLASS is true and the
1887 base class search yields ambiguous results, this throws an
1888 exception. If LOOKING_FOR_BASECLASS is false, the found fields
1889 are accumulated and the caller (search_struct_field) takes care
1890 of throwing an error if the field search yields ambiguous
1891 results. The latter is done that way so that the error message
1892 can include a list of all the found candidates. */
1893 void search (struct value *arg, LONGEST offset, struct type *type);
1895 const std::vector<found_field> &fields ()
1900 struct value *baseclass ()
1906 /* Update results to include V, a found field/baseclass. */
1907 void update_result (struct value *v, LONGEST boffset);
1909 /* The name of the field/baseclass we're searching for. */
1912 /* Whether we're looking for a baseclass, or a field. */
1913 const bool m_looking_for_baseclass;
1915 /* The offset of the baseclass containing the field/baseclass we
1917 LONGEST m_last_boffset = 0;
1919 /* If looking for a baseclass, then the result is stored here. */
1920 struct value *m_baseclass = nullptr;
1922 /* When looking for fields, the found candidates are stored
1924 std::vector<found_field> m_fields;
1926 /* The type of the initial type passed to search_struct_field; this
1927 is used for error reporting when the lookup is ambiguous. */
1928 struct type *m_outermost_type;
1930 /* The full path to the struct being inspected. E.g. for field 'x'
1931 defined in class B inherited by class A, we have A and B pushed
1933 std::vector <struct type *> m_struct_path;
1937 struct_field_searcher::update_result (struct value *v, LONGEST boffset)
1941 if (m_looking_for_baseclass)
1943 if (m_baseclass != nullptr
1944 /* The result is not ambiguous if all the classes that are
1945 found occupy the same space. */
1946 && m_last_boffset != boffset)
1947 error (_("base class '%s' is ambiguous in type '%s'"),
1948 m_name, TYPE_SAFE_NAME (m_outermost_type));
1951 m_last_boffset = boffset;
1955 /* The field is not ambiguous if it occupies the same
1957 if (m_fields.empty () || m_last_boffset != boffset)
1958 m_fields.push_back ({m_struct_path, v});
1963 /* A helper for search_struct_field. This does all the work; most
1964 arguments are as passed to search_struct_field. */
1967 struct_field_searcher::search (struct value *arg1, LONGEST offset,
1973 m_struct_path.push_back (type);
1974 SCOPE_EXIT { m_struct_path.pop_back (); };
1976 type = check_typedef (type);
1977 nbases = TYPE_N_BASECLASSES (type);
1979 if (!m_looking_for_baseclass)
1980 for (i = type->num_fields () - 1; i >= nbases; i--)
1982 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1984 if (t_field_name && (strcmp_iw (t_field_name, m_name) == 0))
1988 if (field_is_static (&type->field (i)))
1989 v = value_static_field (type, i);
1991 v = value_primitive_field (arg1, offset, i, type);
1993 update_result (v, offset);
1998 && t_field_name[0] == '\0')
2000 struct type *field_type = type->field (i).type ();
2002 if (field_type->code () == TYPE_CODE_UNION
2003 || field_type->code () == TYPE_CODE_STRUCT)
2005 /* Look for a match through the fields of an anonymous
2006 union, or anonymous struct. C++ provides anonymous
2009 In the GNU Chill (now deleted from GDB)
2010 implementation of variant record types, each
2011 <alternative field> has an (anonymous) union type,
2012 each member of the union represents a <variant
2013 alternative>. Each <variant alternative> is
2014 represented as a struct, with a member for each
2017 LONGEST new_offset = offset;
2019 /* This is pretty gross. In G++, the offset in an
2020 anonymous union is relative to the beginning of the
2021 enclosing struct. In the GNU Chill (now deleted
2022 from GDB) implementation of variant records, the
2023 bitpos is zero in an anonymous union field, so we
2024 have to add the offset of the union here. */
2025 if (field_type->code () == TYPE_CODE_STRUCT
2026 || (field_type->num_fields () > 0
2027 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2028 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2030 search (arg1, new_offset, field_type);
2035 for (i = 0; i < nbases; i++)
2037 struct value *v = NULL;
2038 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2039 /* If we are looking for baseclasses, this is what we get when
2040 we hit them. But it could happen that the base part's member
2041 name is not yet filled in. */
2042 int found_baseclass = (m_looking_for_baseclass
2043 && TYPE_BASECLASS_NAME (type, i) != NULL
2044 && (strcmp_iw (m_name,
2045 TYPE_BASECLASS_NAME (type,
2047 LONGEST boffset = value_embedded_offset (arg1) + offset;
2049 if (BASETYPE_VIA_VIRTUAL (type, i))
2053 boffset = baseclass_offset (type, i,
2054 value_contents_for_printing (arg1),
2055 value_embedded_offset (arg1) + offset,
2056 value_address (arg1),
2059 /* The virtual base class pointer might have been clobbered
2060 by the user program. Make sure that it still points to a
2061 valid memory location. */
2063 boffset += value_embedded_offset (arg1) + offset;
2065 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2067 CORE_ADDR base_addr;
2069 base_addr = value_address (arg1) + boffset;
2070 v2 = value_at_lazy (basetype, base_addr);
2071 if (target_read_memory (base_addr,
2072 value_contents_raw (v2),
2073 TYPE_LENGTH (value_type (v2))) != 0)
2074 error (_("virtual baseclass botch"));
2078 v2 = value_copy (arg1);
2079 deprecated_set_value_type (v2, basetype);
2080 set_value_embedded_offset (v2, boffset);
2083 if (found_baseclass)
2086 search (v2, 0, TYPE_BASECLASS (type, i));
2088 else if (found_baseclass)
2089 v = value_primitive_field (arg1, offset, i, type);
2092 search (arg1, offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2096 update_result (v, boffset);
2100 /* Helper function used by value_struct_elt to recurse through
2101 baseclasses. Look for a field NAME in ARG1. Search in it assuming
2102 it has (class) type TYPE. If found, return value, else return NULL.
2104 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2105 fields, look for a baseclass named NAME. */
2107 static struct value *
2108 search_struct_field (const char *name, struct value *arg1,
2109 struct type *type, int looking_for_baseclass)
2111 struct_field_searcher searcher (name, type, looking_for_baseclass);
2113 searcher.search (arg1, 0, type);
2115 if (!looking_for_baseclass)
2117 const auto &fields = searcher.fields ();
2119 if (fields.empty ())
2121 else if (fields.size () == 1)
2122 return fields[0].field_value;
2125 std::string candidates;
2127 for (auto &&candidate : fields)
2129 gdb_assert (!candidate.path.empty ());
2131 struct type *field_type = value_type (candidate.field_value);
2132 struct type *struct_type = candidate.path.back ();
2136 for (struct type *t : candidate.path)
2145 candidates += string_printf ("\n '%s %s::%s' (%s)",
2146 TYPE_SAFE_NAME (field_type),
2147 TYPE_SAFE_NAME (struct_type),
2152 error (_("Request for member '%s' is ambiguous in type '%s'."
2153 " Candidates are:%s"),
2154 name, TYPE_SAFE_NAME (type),
2155 candidates.c_str ());
2159 return searcher.baseclass ();
2162 /* Helper function used by value_struct_elt to recurse through
2163 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2164 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2167 If found, return value, else if name matched and args not return
2168 (value) -1, else return NULL. */
2170 static struct value *
2171 search_struct_method (const char *name, struct value **arg1p,
2172 struct value **args, LONGEST offset,
2173 int *static_memfuncp, struct type *type)
2177 int name_matched = 0;
2179 type = check_typedef (type);
2180 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2182 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2184 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2186 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2187 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2190 check_stub_method_group (type, i);
2191 if (j > 0 && args == 0)
2192 error (_("cannot resolve overloaded method "
2193 "`%s': no arguments supplied"), name);
2194 else if (j == 0 && args == 0)
2196 v = value_fn_field (arg1p, f, j, type, offset);
2203 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2204 TYPE_FN_FIELD_TYPE (f, j)->has_varargs (),
2205 TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
2206 TYPE_FN_FIELD_ARGS (f, j), args))
2208 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2209 return value_virtual_fn_field (arg1p, f, j,
2211 if (TYPE_FN_FIELD_STATIC_P (f, j)
2213 *static_memfuncp = 1;
2214 v = value_fn_field (arg1p, f, j, type, offset);
2223 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2225 LONGEST base_offset;
2226 LONGEST this_offset;
2228 if (BASETYPE_VIA_VIRTUAL (type, i))
2230 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2231 struct value *base_val;
2232 const gdb_byte *base_valaddr;
2234 /* The virtual base class pointer might have been
2235 clobbered by the user program. Make sure that it
2236 still points to a valid memory location. */
2238 if (offset < 0 || offset >= TYPE_LENGTH (type))
2242 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2243 address = value_address (*arg1p);
2245 if (target_read_memory (address + offset,
2246 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2247 error (_("virtual baseclass botch"));
2249 base_val = value_from_contents_and_address (baseclass,
2252 base_valaddr = value_contents_for_printing (base_val);
2258 base_valaddr = value_contents_for_printing (*arg1p);
2259 this_offset = offset;
2262 base_offset = baseclass_offset (type, i, base_valaddr,
2263 this_offset, value_address (base_val),
2268 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2270 v = search_struct_method (name, arg1p, args, base_offset + offset,
2271 static_memfuncp, TYPE_BASECLASS (type, i));
2272 if (v == (struct value *) - 1)
2278 /* FIXME-bothner: Why is this commented out? Why is it here? */
2279 /* *arg1p = arg1_tmp; */
2284 return (struct value *) - 1;
2289 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2290 extract the component named NAME from the ultimate target
2291 structure/union and return it as a value with its appropriate type.
2292 ERR is used in the error message if *ARGP's type is wrong.
2294 C++: ARGS is a list of argument types to aid in the selection of
2295 an appropriate method. Also, handle derived types.
2297 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2298 where the truthvalue of whether the function that was resolved was
2299 a static member function or not is stored.
2301 ERR is an error message to be printed in case the field is not
2305 value_struct_elt (struct value **argp, struct value **args,
2306 const char *name, int *static_memfuncp, const char *err)
2311 *argp = coerce_array (*argp);
2313 t = check_typedef (value_type (*argp));
2315 /* Follow pointers until we get to a non-pointer. */
2317 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2319 *argp = value_ind (*argp);
2320 /* Don't coerce fn pointer to fn and then back again! */
2321 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2322 *argp = coerce_array (*argp);
2323 t = check_typedef (value_type (*argp));
2326 if (t->code () != TYPE_CODE_STRUCT
2327 && t->code () != TYPE_CODE_UNION)
2328 error (_("Attempt to extract a component of a value that is not a %s."),
2331 /* Assume it's not, unless we see that it is. */
2332 if (static_memfuncp)
2333 *static_memfuncp = 0;
2337 /* if there are no arguments ...do this... */
2339 /* Try as a field first, because if we succeed, there is less
2341 v = search_struct_field (name, *argp, t, 0);
2345 /* C++: If it was not found as a data field, then try to
2346 return it as a pointer to a method. */
2347 v = search_struct_method (name, argp, args, 0,
2348 static_memfuncp, t);
2350 if (v == (struct value *) - 1)
2351 error (_("Cannot take address of method %s."), name);
2354 if (TYPE_NFN_FIELDS (t))
2355 error (_("There is no member or method named %s."), name);
2357 error (_("There is no member named %s."), name);
2362 v = search_struct_method (name, argp, args, 0,
2363 static_memfuncp, t);
2365 if (v == (struct value *) - 1)
2367 error (_("One of the arguments you tried to pass to %s could not "
2368 "be converted to what the function wants."), name);
2372 /* See if user tried to invoke data as function. If so, hand it
2373 back. If it's not callable (i.e., a pointer to function),
2374 gdb should give an error. */
2375 v = search_struct_field (name, *argp, t, 0);
2376 /* If we found an ordinary field, then it is not a method call.
2377 So, treat it as if it were a static member function. */
2378 if (v && static_memfuncp)
2379 *static_memfuncp = 1;
2383 throw_error (NOT_FOUND_ERROR,
2384 _("Structure has no component named %s."), name);
2388 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2389 to a structure or union, extract and return its component (field) of
2390 type FTYPE at the specified BITPOS.
2391 Throw an exception on error. */
2394 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2400 *argp = coerce_array (*argp);
2402 t = check_typedef (value_type (*argp));
2404 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2406 *argp = value_ind (*argp);
2407 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2408 *argp = coerce_array (*argp);
2409 t = check_typedef (value_type (*argp));
2412 if (t->code () != TYPE_CODE_STRUCT
2413 && t->code () != TYPE_CODE_UNION)
2414 error (_("Attempt to extract a component of a value that is not a %s."),
2417 for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
2419 if (!field_is_static (&t->field (i))
2420 && bitpos == TYPE_FIELD_BITPOS (t, i)
2421 && types_equal (ftype, t->field (i).type ()))
2422 return value_primitive_field (*argp, 0, i, t);
2425 error (_("No field with matching bitpos and type."));
2431 /* Search through the methods of an object (and its bases) to find a
2432 specified method. Return a reference to the fn_field list METHODS of
2433 overloaded instances defined in the source language. If available
2434 and matching, a vector of matching xmethods defined in extension
2435 languages are also returned in XMETHODS.
2437 Helper function for value_find_oload_list.
2438 ARGP is a pointer to a pointer to a value (the object).
2439 METHOD is a string containing the method name.
2440 OFFSET is the offset within the value.
2441 TYPE is the assumed type of the object.
2442 METHODS is a pointer to the matching overloaded instances defined
2443 in the source language. Since this is a recursive function,
2444 *METHODS should be set to NULL when calling this function.
2445 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2446 0 when calling this function.
2447 XMETHODS is the vector of matching xmethod workers. *XMETHODS
2448 should also be set to NULL when calling this function.
2449 BASETYPE is set to the actual type of the subobject where the
2451 BOFFSET is the offset of the base subobject where the method is found. */
2454 find_method_list (struct value **argp, const char *method,
2455 LONGEST offset, struct type *type,
2456 gdb::array_view<fn_field> *methods,
2457 std::vector<xmethod_worker_up> *xmethods,
2458 struct type **basetype, LONGEST *boffset)
2461 struct fn_field *f = NULL;
2463 gdb_assert (methods != NULL && xmethods != NULL);
2464 type = check_typedef (type);
2466 /* First check in object itself.
2467 This function is called recursively to search through base classes.
2468 If there is a source method match found at some stage, then we need not
2469 look for source methods in consequent recursive calls. */
2470 if (methods->empty ())
2472 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2474 /* pai: FIXME What about operators and type conversions? */
2475 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2477 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2479 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2480 f = TYPE_FN_FIELDLIST1 (type, i);
2481 *methods = gdb::make_array_view (f, len);
2486 /* Resolve any stub methods. */
2487 check_stub_method_group (type, i);
2494 /* Unlike source methods, xmethods can be accumulated over successive
2495 recursive calls. In other words, an xmethod named 'm' in a class
2496 will not hide an xmethod named 'm' in its base class(es). We want
2497 it to be this way because xmethods are after all convenience functions
2498 and hence there is no point restricting them with something like method
2499 hiding. Moreover, if hiding is done for xmethods as well, then we will
2500 have to provide a mechanism to un-hide (like the 'using' construct). */
2501 get_matching_xmethod_workers (type, method, xmethods);
2503 /* If source methods are not found in current class, look for them in the
2504 base classes. We also have to go through the base classes to gather
2505 extension methods. */
2506 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2508 LONGEST base_offset;
2510 if (BASETYPE_VIA_VIRTUAL (type, i))
2512 base_offset = baseclass_offset (type, i,
2513 value_contents_for_printing (*argp),
2514 value_offset (*argp) + offset,
2515 value_address (*argp), *argp);
2517 else /* Non-virtual base, simply use bit position from debug
2520 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2523 find_method_list (argp, method, base_offset + offset,
2524 TYPE_BASECLASS (type, i), methods,
2525 xmethods, basetype, boffset);
2529 /* Return the list of overloaded methods of a specified name. The methods
2530 could be those GDB finds in the binary, or xmethod. Methods found in
2531 the binary are returned in METHODS, and xmethods are returned in
2534 ARGP is a pointer to a pointer to a value (the object).
2535 METHOD is the method name.
2536 OFFSET is the offset within the value contents.
2537 METHODS is the list of matching overloaded instances defined in
2538 the source language.
2539 XMETHODS is the vector of matching xmethod workers defined in
2540 extension languages.
2541 BASETYPE is set to the type of the base subobject that defines the
2543 BOFFSET is the offset of the base subobject which defines the method. */
2546 value_find_oload_method_list (struct value **argp, const char *method,
2548 gdb::array_view<fn_field> *methods,
2549 std::vector<xmethod_worker_up> *xmethods,
2550 struct type **basetype, LONGEST *boffset)
2554 t = check_typedef (value_type (*argp));
2556 /* Code snarfed from value_struct_elt. */
2557 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2559 *argp = value_ind (*argp);
2560 /* Don't coerce fn pointer to fn and then back again! */
2561 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2562 *argp = coerce_array (*argp);
2563 t = check_typedef (value_type (*argp));
2566 if (t->code () != TYPE_CODE_STRUCT
2567 && t->code () != TYPE_CODE_UNION)
2568 error (_("Attempt to extract a component of a "
2569 "value that is not a struct or union"));
2571 gdb_assert (methods != NULL && xmethods != NULL);
2573 /* Clear the lists. */
2577 find_method_list (argp, method, 0, t, methods, xmethods,
2581 /* Given an array of arguments (ARGS) (which includes an entry for
2582 "this" in the case of C++ methods), the NAME of a function, and
2583 whether it's a method or not (METHOD), find the best function that
2584 matches on the argument types according to the overload resolution
2587 METHOD can be one of three values:
2588 NON_METHOD for non-member functions.
2589 METHOD: for member functions.
2590 BOTH: used for overload resolution of operators where the
2591 candidates are expected to be either member or non member
2592 functions. In this case the first argument ARGTYPES
2593 (representing 'this') is expected to be a reference to the
2594 target object, and will be dereferenced when attempting the
2597 In the case of class methods, the parameter OBJ is an object value
2598 in which to search for overloaded methods.
2600 In the case of non-method functions, the parameter FSYM is a symbol
2601 corresponding to one of the overloaded functions.
2603 Return value is an integer: 0 -> good match, 10 -> debugger applied
2604 non-standard coercions, 100 -> incompatible.
2606 If a method is being searched for, VALP will hold the value.
2607 If a non-method is being searched for, SYMP will hold the symbol
2610 If a method is being searched for, and it is a static method,
2611 then STATICP will point to a non-zero value.
2613 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2614 ADL overload candidates when performing overload resolution for a fully
2617 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2618 read while picking the best overload match (it may be all zeroes and thus
2619 not have a vtable pointer), in which case skip virtual function lookup.
2620 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2623 Note: This function does *not* check the value of
2624 overload_resolution. Caller must check it to see whether overload
2625 resolution is permitted. */
2628 find_overload_match (gdb::array_view<value *> args,
2629 const char *name, enum oload_search_type method,
2630 struct value **objp, struct symbol *fsym,
2631 struct value **valp, struct symbol **symp,
2632 int *staticp, const int no_adl,
2633 const enum noside noside)
2635 struct value *obj = (objp ? *objp : NULL);
2636 struct type *obj_type = obj ? value_type (obj) : NULL;
2637 /* Index of best overloaded function. */
2638 int func_oload_champ = -1;
2639 int method_oload_champ = -1;
2640 int src_method_oload_champ = -1;
2641 int ext_method_oload_champ = -1;
2643 /* The measure for the current best match. */
2644 badness_vector method_badness;
2645 badness_vector func_badness;
2646 badness_vector ext_method_badness;
2647 badness_vector src_method_badness;
2649 struct value *temp = obj;
2650 /* For methods, the list of overloaded methods. */
2651 gdb::array_view<fn_field> methods;
2652 /* For non-methods, the list of overloaded function symbols. */
2653 std::vector<symbol *> functions;
2654 /* For xmethods, the vector of xmethod workers. */
2655 std::vector<xmethod_worker_up> xmethods;
2656 struct type *basetype = NULL;
2659 const char *obj_type_name = NULL;
2660 const char *func_name = NULL;
2661 gdb::unique_xmalloc_ptr<char> temp_func;
2662 enum oload_classification match_quality;
2663 enum oload_classification method_match_quality = INCOMPATIBLE;
2664 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2665 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2666 enum oload_classification func_match_quality = INCOMPATIBLE;
2668 /* Get the list of overloaded methods or functions. */
2669 if (method == METHOD || method == BOTH)
2673 /* OBJ may be a pointer value rather than the object itself. */
2674 obj = coerce_ref (obj);
2675 while (check_typedef (value_type (obj))->code () == TYPE_CODE_PTR)
2676 obj = coerce_ref (value_ind (obj));
2677 obj_type_name = value_type (obj)->name ();
2679 /* First check whether this is a data member, e.g. a pointer to
2681 if (check_typedef (value_type (obj))->code () == TYPE_CODE_STRUCT)
2683 *valp = search_struct_field (name, obj,
2684 check_typedef (value_type (obj)), 0);
2692 /* Retrieve the list of methods with the name NAME. */
2693 value_find_oload_method_list (&temp, name, 0, &methods,
2694 &xmethods, &basetype, &boffset);
2695 /* If this is a method only search, and no methods were found
2696 the search has failed. */
2697 if (method == METHOD && methods.empty () && xmethods.empty ())
2698 error (_("Couldn't find method %s%s%s"),
2700 (obj_type_name && *obj_type_name) ? "::" : "",
2702 /* If we are dealing with stub method types, they should have
2703 been resolved by find_method_list via
2704 value_find_oload_method_list above. */
2705 if (!methods.empty ())
2707 gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
2709 src_method_oload_champ
2710 = find_oload_champ (args,
2712 methods.data (), NULL, NULL,
2713 &src_method_badness);
2715 src_method_match_quality = classify_oload_match
2716 (src_method_badness, args.size (),
2717 oload_method_static_p (methods.data (), src_method_oload_champ));
2720 if (!xmethods.empty ())
2722 ext_method_oload_champ
2723 = find_oload_champ (args,
2725 NULL, xmethods.data (), NULL,
2726 &ext_method_badness);
2727 ext_method_match_quality = classify_oload_match (ext_method_badness,
2731 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2733 switch (compare_badness (ext_method_badness, src_method_badness))
2735 case 0: /* Src method and xmethod are equally good. */
2736 /* If src method and xmethod are equally good, then
2737 xmethod should be the winner. Hence, fall through to the
2738 case where a xmethod is better than the source
2739 method, except when the xmethod match quality is
2742 case 1: /* Src method and ext method are incompatible. */
2743 /* If ext method match is not standard, then let source method
2744 win. Otherwise, fallthrough to let xmethod win. */
2745 if (ext_method_match_quality != STANDARD)
2747 method_oload_champ = src_method_oload_champ;
2748 method_badness = src_method_badness;
2749 ext_method_oload_champ = -1;
2750 method_match_quality = src_method_match_quality;
2754 case 2: /* Ext method is champion. */
2755 method_oload_champ = ext_method_oload_champ;
2756 method_badness = ext_method_badness;
2757 src_method_oload_champ = -1;
2758 method_match_quality = ext_method_match_quality;
2760 case 3: /* Src method is champion. */
2761 method_oload_champ = src_method_oload_champ;
2762 method_badness = src_method_badness;
2763 ext_method_oload_champ = -1;
2764 method_match_quality = src_method_match_quality;
2767 gdb_assert_not_reached ("Unexpected overload comparison "
2772 else if (src_method_oload_champ >= 0)
2774 method_oload_champ = src_method_oload_champ;
2775 method_badness = src_method_badness;
2776 method_match_quality = src_method_match_quality;
2778 else if (ext_method_oload_champ >= 0)
2780 method_oload_champ = ext_method_oload_champ;
2781 method_badness = ext_method_badness;
2782 method_match_quality = ext_method_match_quality;
2786 if (method == NON_METHOD || method == BOTH)
2788 const char *qualified_name = NULL;
2790 /* If the overload match is being search for both as a method
2791 and non member function, the first argument must now be
2794 args[0] = value_ind (args[0]);
2798 qualified_name = fsym->natural_name ();
2800 /* If we have a function with a C++ name, try to extract just
2801 the function part. Do not try this for non-functions (e.g.
2802 function pointers). */
2804 && (check_typedef (SYMBOL_TYPE (fsym))->code ()
2807 temp_func = cp_func_name (qualified_name);
2809 /* If cp_func_name did not remove anything, the name of the
2810 symbol did not include scope or argument types - it was
2811 probably a C-style function. */
2812 if (temp_func != nullptr)
2814 if (strcmp (temp_func.get (), qualified_name) == 0)
2817 func_name = temp_func.get ();
2824 qualified_name = name;
2827 /* If there was no C++ name, this must be a C-style function or
2828 not a function at all. Just return the same symbol. Do the
2829 same if cp_func_name fails for some reason. */
2830 if (func_name == NULL)
2836 func_oload_champ = find_oload_champ_namespace (args,
2843 if (func_oload_champ >= 0)
2844 func_match_quality = classify_oload_match (func_badness,
2848 /* Did we find a match ? */
2849 if (method_oload_champ == -1 && func_oload_champ == -1)
2850 throw_error (NOT_FOUND_ERROR,
2851 _("No symbol \"%s\" in current context."),
2854 /* If we have found both a method match and a function
2855 match, find out which one is better, and calculate match
2857 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2859 switch (compare_badness (func_badness, method_badness))
2861 case 0: /* Top two contenders are equally good. */
2862 /* FIXME: GDB does not support the general ambiguous case.
2863 All candidates should be collected and presented the
2865 error (_("Ambiguous overload resolution"));
2867 case 1: /* Incomparable top contenders. */
2868 /* This is an error incompatible candidates
2869 should not have been proposed. */
2870 error (_("Internal error: incompatible "
2871 "overload candidates proposed"));
2873 case 2: /* Function champion. */
2874 method_oload_champ = -1;
2875 match_quality = func_match_quality;
2877 case 3: /* Method champion. */
2878 func_oload_champ = -1;
2879 match_quality = method_match_quality;
2882 error (_("Internal error: unexpected overload comparison result"));
2888 /* We have either a method match or a function match. */
2889 if (method_oload_champ >= 0)
2890 match_quality = method_match_quality;
2892 match_quality = func_match_quality;
2895 if (match_quality == INCOMPATIBLE)
2897 if (method == METHOD)
2898 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2900 (obj_type_name && *obj_type_name) ? "::" : "",
2903 error (_("Cannot resolve function %s to any overloaded instance"),
2906 else if (match_quality == NON_STANDARD)
2908 if (method == METHOD)
2909 warning (_("Using non-standard conversion to match "
2910 "method %s%s%s to supplied arguments"),
2912 (obj_type_name && *obj_type_name) ? "::" : "",
2915 warning (_("Using non-standard conversion to match "
2916 "function %s to supplied arguments"),
2920 if (staticp != NULL)
2921 *staticp = oload_method_static_p (methods.data (), method_oload_champ);
2923 if (method_oload_champ >= 0)
2925 if (src_method_oload_champ >= 0)
2927 if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
2928 && noside != EVAL_AVOID_SIDE_EFFECTS)
2930 *valp = value_virtual_fn_field (&temp, methods.data (),
2931 method_oload_champ, basetype,
2935 *valp = value_fn_field (&temp, methods.data (),
2936 method_oload_champ, basetype, boffset);
2939 *valp = value_from_xmethod
2940 (std::move (xmethods[ext_method_oload_champ]));
2943 *symp = functions[func_oload_champ];
2947 struct type *temp_type = check_typedef (value_type (temp));
2948 struct type *objtype = check_typedef (obj_type);
2950 if (temp_type->code () != TYPE_CODE_PTR
2951 && (objtype->code () == TYPE_CODE_PTR
2952 || TYPE_IS_REFERENCE (objtype)))
2954 temp = value_addr (temp);
2959 switch (match_quality)
2965 default: /* STANDARD */
2970 /* Find the best overload match, searching for FUNC_NAME in namespaces
2971 contained in QUALIFIED_NAME until it either finds a good match or
2972 runs out of namespaces. It stores the overloaded functions in
2973 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
2974 argument dependent lookup is not performed. */
2977 find_oload_champ_namespace (gdb::array_view<value *> args,
2978 const char *func_name,
2979 const char *qualified_name,
2980 std::vector<symbol *> *oload_syms,
2981 badness_vector *oload_champ_bv,
2986 find_oload_champ_namespace_loop (args,
2989 oload_syms, oload_champ_bv,
2996 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2997 how deep we've looked for namespaces, and the champ is stored in
2998 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2999 if it isn't. Other arguments are the same as in
3000 find_oload_champ_namespace. */
3003 find_oload_champ_namespace_loop (gdb::array_view<value *> args,
3004 const char *func_name,
3005 const char *qualified_name,
3007 std::vector<symbol *> *oload_syms,
3008 badness_vector *oload_champ_bv,
3012 int next_namespace_len = namespace_len;
3013 int searched_deeper = 0;
3014 int new_oload_champ;
3015 char *new_namespace;
3017 if (next_namespace_len != 0)
3019 gdb_assert (qualified_name[next_namespace_len] == ':');
3020 next_namespace_len += 2;
3022 next_namespace_len +=
3023 cp_find_first_component (qualified_name + next_namespace_len);
3025 /* First, see if we have a deeper namespace we can search in.
3026 If we get a good match there, use it. */
3028 if (qualified_name[next_namespace_len] == ':')
3030 searched_deeper = 1;
3032 if (find_oload_champ_namespace_loop (args,
3033 func_name, qualified_name,
3035 oload_syms, oload_champ_bv,
3036 oload_champ, no_adl))
3042 /* If we reach here, either we're in the deepest namespace or we
3043 didn't find a good match in a deeper namespace. But, in the
3044 latter case, we still have a bad match in a deeper namespace;
3045 note that we might not find any match at all in the current
3046 namespace. (There's always a match in the deepest namespace,
3047 because this overload mechanism only gets called if there's a
3048 function symbol to start off with.) */
3050 new_namespace = (char *) alloca (namespace_len + 1);
3051 strncpy (new_namespace, qualified_name, namespace_len);
3052 new_namespace[namespace_len] = '\0';
3054 std::vector<symbol *> new_oload_syms
3055 = make_symbol_overload_list (func_name, new_namespace);
3057 /* If we have reached the deepest level perform argument
3058 determined lookup. */
3059 if (!searched_deeper && !no_adl)
3062 struct type **arg_types;
3064 /* Prepare list of argument types for overload resolution. */
3065 arg_types = (struct type **)
3066 alloca (args.size () * (sizeof (struct type *)));
3067 for (ix = 0; ix < args.size (); ix++)
3068 arg_types[ix] = value_type (args[ix]);
3069 add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
3073 badness_vector new_oload_champ_bv;
3074 new_oload_champ = find_oload_champ (args,
3075 new_oload_syms.size (),
3076 NULL, NULL, new_oload_syms.data (),
3077 &new_oload_champ_bv);
3079 /* Case 1: We found a good match. Free earlier matches (if any),
3080 and return it. Case 2: We didn't find a good match, but we're
3081 not the deepest function. Then go with the bad match that the
3082 deeper function found. Case 3: We found a bad match, and we're
3083 the deepest function. Then return what we found, even though
3084 it's a bad match. */
3086 if (new_oload_champ != -1
3087 && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
3089 *oload_syms = std::move (new_oload_syms);
3090 *oload_champ = new_oload_champ;
3091 *oload_champ_bv = std::move (new_oload_champ_bv);
3094 else if (searched_deeper)
3100 *oload_syms = std::move (new_oload_syms);
3101 *oload_champ = new_oload_champ;
3102 *oload_champ_bv = std::move (new_oload_champ_bv);
3107 /* Look for a function to take ARGS. Find the best match from among
3108 the overloaded methods or functions given by METHODS or FUNCTIONS
3109 or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
3110 and XMETHODS can be non-NULL.
3112 NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
3113 or XMETHODS, whichever is non-NULL.
3115 Return the index of the best match; store an indication of the
3116 quality of the match in OLOAD_CHAMP_BV. */
3119 find_oload_champ (gdb::array_view<value *> args,
3122 xmethod_worker_up *xmethods,
3124 badness_vector *oload_champ_bv)
3126 /* A measure of how good an overloaded instance is. */
3128 /* Index of best overloaded function. */
3129 int oload_champ = -1;
3130 /* Current ambiguity state for overload resolution. */
3131 int oload_ambiguous = 0;
3132 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3134 /* A champion can be found among methods alone, or among functions
3135 alone, or in xmethods alone, but not in more than one of these
3137 gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
3140 /* Consider each candidate in turn. */
3141 for (size_t ix = 0; ix < num_fns; ix++)
3144 int static_offset = 0;
3145 std::vector<type *> parm_types;
3147 if (xmethods != NULL)
3148 parm_types = xmethods[ix]->get_arg_types ();
3153 if (methods != NULL)
3155 nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
3156 static_offset = oload_method_static_p (methods, ix);
3159 nparms = SYMBOL_TYPE (functions[ix])->num_fields ();
3161 parm_types.reserve (nparms);
3162 for (jj = 0; jj < nparms; jj++)
3164 type *t = (methods != NULL
3165 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type ())
3166 : SYMBOL_TYPE (functions[ix])->field (jj).type ());
3167 parm_types.push_back (t);
3171 /* Compare parameter types to supplied argument types. Skip
3172 THIS for static methods. */
3173 bv = rank_function (parm_types,
3174 args.slice (static_offset));
3178 if (methods != NULL)
3179 fprintf_filtered (gdb_stderr,
3180 "Overloaded method instance %s, # of parms %d\n",
3181 methods[ix].physname, (int) parm_types.size ());
3182 else if (xmethods != NULL)
3183 fprintf_filtered (gdb_stderr,
3184 "Xmethod worker, # of parms %d\n",
3185 (int) parm_types.size ());
3187 fprintf_filtered (gdb_stderr,
3188 "Overloaded function instance "
3189 "%s # of parms %d\n",
3190 functions[ix]->demangled_name (),
3191 (int) parm_types.size ());
3193 fprintf_filtered (gdb_stderr,
3194 "...Badness of length : {%d, %d}\n",
3195 bv[0].rank, bv[0].subrank);
3197 for (jj = 1; jj < bv.size (); jj++)
3198 fprintf_filtered (gdb_stderr,
3199 "...Badness of arg %d : {%d, %d}\n",
3200 jj, bv[jj].rank, bv[jj].subrank);
3203 if (oload_champ_bv->empty ())
3205 *oload_champ_bv = std::move (bv);
3208 else /* See whether current candidate is better or worse than
3210 switch (compare_badness (bv, *oload_champ_bv))
3212 case 0: /* Top two contenders are equally good. */
3213 oload_ambiguous = 1;
3215 case 1: /* Incomparable top contenders. */
3216 oload_ambiguous = 2;
3218 case 2: /* New champion, record details. */
3219 *oload_champ_bv = std::move (bv);
3220 oload_ambiguous = 0;
3228 fprintf_filtered (gdb_stderr, "Overload resolution "
3229 "champion is %d, ambiguous? %d\n",
3230 oload_champ, oload_ambiguous);
3236 /* Return 1 if we're looking at a static method, 0 if we're looking at
3237 a non-static method or a function that isn't a method. */
3240 oload_method_static_p (struct fn_field *fns_ptr, int index)
3242 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3248 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3250 static enum oload_classification
3251 classify_oload_match (const badness_vector &oload_champ_bv,
3256 enum oload_classification worst = STANDARD;
3258 for (ix = 1; ix <= nargs - static_offset; ix++)
3260 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3261 or worse return INCOMPATIBLE. */
3262 if (compare_ranks (oload_champ_bv[ix],
3263 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3264 return INCOMPATIBLE; /* Truly mismatched types. */
3265 /* Otherwise If this conversion is as bad as
3266 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3267 else if (compare_ranks (oload_champ_bv[ix],
3268 NS_POINTER_CONVERSION_BADNESS) <= 0)
3269 worst = NON_STANDARD; /* Non-standard type conversions
3273 /* If no INCOMPATIBLE classification was found, return the worst one
3274 that was found (if any). */
3278 /* C++: return 1 is NAME is a legitimate name for the destructor of
3279 type TYPE. If TYPE does not have a destructor, or if NAME is
3280 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3281 have CHECK_TYPEDEF applied, this function will apply it itself. */
3284 destructor_name_p (const char *name, struct type *type)
3288 const char *dname = type_name_or_error (type);
3289 const char *cp = strchr (dname, '<');
3292 /* Do not compare the template part for template classes. */
3294 len = strlen (dname);
3297 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3298 error (_("name of destructor must equal name of class"));
3305 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3306 class". If the name is found, return a value representing it;
3307 otherwise throw an exception. */
3309 static struct value *
3310 enum_constant_from_type (struct type *type, const char *name)
3313 int name_len = strlen (name);
3315 gdb_assert (type->code () == TYPE_CODE_ENUM
3316 && TYPE_DECLARED_CLASS (type));
3318 for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
3320 const char *fname = TYPE_FIELD_NAME (type, i);
3323 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3327 /* Look for the trailing "::NAME", since enum class constant
3328 names are qualified here. */
3329 len = strlen (fname);
3330 if (len + 2 >= name_len
3331 && fname[len - name_len - 2] == ':'
3332 && fname[len - name_len - 1] == ':'
3333 && strcmp (&fname[len - name_len], name) == 0)
3334 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3337 error (_("no constant named \"%s\" in enum \"%s\""),
3338 name, type->name ());
3341 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3342 return the appropriate member (or the address of the member, if
3343 WANT_ADDRESS). This function is used to resolve user expressions
3344 of the form "DOMAIN::NAME". For more details on what happens, see
3345 the comment before value_struct_elt_for_reference. */
3348 value_aggregate_elt (struct type *curtype, const char *name,
3349 struct type *expect_type, int want_address,
3352 switch (curtype->code ())
3354 case TYPE_CODE_STRUCT:
3355 case TYPE_CODE_UNION:
3356 return value_struct_elt_for_reference (curtype, 0, curtype,
3358 want_address, noside);
3359 case TYPE_CODE_NAMESPACE:
3360 return value_namespace_elt (curtype, name,
3361 want_address, noside);
3363 case TYPE_CODE_ENUM:
3364 return enum_constant_from_type (curtype, name);
3367 internal_error (__FILE__, __LINE__,
3368 _("non-aggregate type in value_aggregate_elt"));
3372 /* Compares the two method/function types T1 and T2 for "equality"
3373 with respect to the methods' parameters. If the types of the
3374 two parameter lists are the same, returns 1; 0 otherwise. This
3375 comparison may ignore any artificial parameters in T1 if
3376 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3377 the first artificial parameter in T1, assumed to be a 'this' pointer.
3379 The type T2 is expected to have come from make_params (in eval.c). */
3382 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3386 if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3389 /* If skipping artificial fields, find the first real field
3391 if (skip_artificial)
3393 while (start < t1->num_fields ()
3394 && TYPE_FIELD_ARTIFICIAL (t1, start))
3398 /* Now compare parameters. */
3400 /* Special case: a method taking void. T1 will contain no
3401 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3402 if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
3403 && t2->field (0).type ()->code () == TYPE_CODE_VOID)
3406 if ((t1->num_fields () - start) == t2->num_fields ())
3410 for (i = 0; i < t2->num_fields (); ++i)
3412 if (compare_ranks (rank_one_type (t1->field (start + i).type (),
3413 t2->field (i).type (), NULL),
3414 EXACT_MATCH_BADNESS) != 0)
3424 /* C++: Given an aggregate type VT, and a class type CLS, search
3425 recursively for CLS using value V; If found, store the offset
3426 which is either fetched from the virtual base pointer if CLS
3427 is virtual or accumulated offset of its parent classes if
3428 CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
3429 is virtual, and return true. If not found, return false. */
3432 get_baseclass_offset (struct type *vt, struct type *cls,
3433 struct value *v, int *boffs, bool *isvirt)
3435 for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
3437 struct type *t = vt->field (i).type ();
3438 if (types_equal (t, cls))
3440 if (BASETYPE_VIA_VIRTUAL (vt, i))
3442 const gdb_byte *adr = value_contents_for_printing (v);
3443 *boffs = baseclass_offset (vt, i, adr, value_offset (v),
3444 value_as_long (v), v);
3452 if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
3454 if (*isvirt == false) /* Add non-virtual base offset. */
3456 const gdb_byte *adr = value_contents_for_printing (v);
3457 *boffs += baseclass_offset (vt, i, adr, value_offset (v),
3458 value_as_long (v), v);
3467 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3468 return the address of this member as a "pointer to member" type.
3469 If INTYPE is non-null, then it will be the type of the member we
3470 are looking for. This will help us resolve "pointers to member
3471 functions". This function is used to resolve user expressions of
3472 the form "DOMAIN::NAME". */
3474 static struct value *
3475 value_struct_elt_for_reference (struct type *domain, int offset,
3476 struct type *curtype, const char *name,
3477 struct type *intype,
3481 struct type *t = check_typedef (curtype);
3483 struct value *result;
3485 if (t->code () != TYPE_CODE_STRUCT
3486 && t->code () != TYPE_CODE_UNION)
3487 error (_("Internal error: non-aggregate type "
3488 "to value_struct_elt_for_reference"));
3490 for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
3492 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3494 if (t_field_name && strcmp (t_field_name, name) == 0)
3496 if (field_is_static (&t->field (i)))
3498 struct value *v = value_static_field (t, i);
3503 if (TYPE_FIELD_PACKED (t, i))
3504 error (_("pointers to bitfield members not allowed"));
3507 return value_from_longest
3508 (lookup_memberptr_type (t->field (i).type (), domain),
3509 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3510 else if (noside != EVAL_NORMAL)
3511 return allocate_value (t->field (i).type ());
3514 /* Try to evaluate NAME as a qualified name with implicit
3515 this pointer. In this case, attempt to return the
3516 equivalent to `this->*(&TYPE::NAME)'. */
3517 struct value *v = value_of_this_silent (current_language);
3520 struct value *ptr, *this_v = v;
3522 struct type *type, *tmp;
3524 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3525 type = check_typedef (value_type (ptr));
3526 gdb_assert (type != NULL
3527 && type->code () == TYPE_CODE_MEMBERPTR);
3528 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3529 v = value_cast_pointers (tmp, v, 1);
3530 mem_offset = value_as_long (ptr);
3531 if (domain != curtype)
3533 /* Find class offset of type CURTYPE from either its
3534 parent type DOMAIN or the type of implied this. */
3536 bool isvirt = false;
3537 if (get_baseclass_offset (domain, curtype, v, &boff,
3542 struct type *p = check_typedef (value_type (this_v));
3543 p = check_typedef (TYPE_TARGET_TYPE (p));
3544 if (get_baseclass_offset (p, curtype, this_v,
3549 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3550 result = value_from_pointer (tmp,
3551 value_as_long (v) + mem_offset);
3552 return value_ind (result);
3555 error (_("Cannot reference non-static field \"%s\""), name);
3560 /* C++: If it was not found as a data field, then try to return it
3561 as a pointer to a method. */
3563 /* Perform all necessary dereferencing. */
3564 while (intype && intype->code () == TYPE_CODE_PTR)
3565 intype = TYPE_TARGET_TYPE (intype);
3567 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3569 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3571 if (t_field_name && strcmp (t_field_name, name) == 0)
3574 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3575 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3577 check_stub_method_group (t, i);
3581 for (j = 0; j < len; ++j)
3583 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3585 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3588 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3589 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3595 error (_("no member function matches "
3596 "that type instantiation"));
3603 for (ii = 0; ii < len; ++ii)
3605 /* Skip artificial methods. This is necessary if,
3606 for example, the user wants to "print
3607 subclass::subclass" with only one user-defined
3608 constructor. There is no ambiguity in this case.
3609 We are careful here to allow artificial methods
3610 if they are the unique result. */
3611 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3618 /* Desired method is ambiguous if more than one
3619 method is defined. */
3620 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3621 error (_("non-unique member `%s' requires "
3622 "type instantiation"), name);
3628 error (_("no matching member function"));
3631 if (TYPE_FN_FIELD_STATIC_P (f, j))
3634 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3635 0, VAR_DOMAIN, 0).symbol;
3641 return value_addr (read_var_value (s, 0, 0));
3643 return read_var_value (s, 0, 0);
3646 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3650 result = allocate_value
3651 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3652 cplus_make_method_ptr (value_type (result),
3653 value_contents_writeable (result),
3654 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3656 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3657 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3659 error (_("Cannot reference virtual member function \"%s\""),
3665 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3666 0, VAR_DOMAIN, 0).symbol;
3671 struct value *v = read_var_value (s, 0, 0);
3676 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3677 cplus_make_method_ptr (value_type (result),
3678 value_contents_writeable (result),
3679 value_address (v), 0);
3685 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3690 if (BASETYPE_VIA_VIRTUAL (t, i))
3693 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3694 v = value_struct_elt_for_reference (domain,
3695 offset + base_offset,
3696 TYPE_BASECLASS (t, i),
3698 want_address, noside);
3703 /* As a last chance, pretend that CURTYPE is a namespace, and look
3704 it up that way; this (frequently) works for types nested inside
3707 return value_maybe_namespace_elt (curtype, name,
3708 want_address, noside);
3711 /* C++: Return the member NAME of the namespace given by the type
3714 static struct value *
3715 value_namespace_elt (const struct type *curtype,
3716 const char *name, int want_address,
3719 struct value *retval = value_maybe_namespace_elt (curtype, name,
3724 error (_("No symbol \"%s\" in namespace \"%s\"."),
3725 name, curtype->name ());
3730 /* A helper function used by value_namespace_elt and
3731 value_struct_elt_for_reference. It looks up NAME inside the
3732 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3733 is a class and NAME refers to a type in CURTYPE itself (as opposed
3734 to, say, some base class of CURTYPE). */
3736 static struct value *
3737 value_maybe_namespace_elt (const struct type *curtype,
3738 const char *name, int want_address,
3741 const char *namespace_name = curtype->name ();
3742 struct block_symbol sym;
3743 struct value *result;
3745 sym = cp_lookup_symbol_namespace (namespace_name, name,
3746 get_selected_block (0), VAR_DOMAIN);
3748 if (sym.symbol == NULL)
3750 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3751 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3752 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3754 result = value_of_variable (sym.symbol, sym.block);
3757 result = value_addr (result);
3762 /* Given a pointer or a reference value V, find its real (RTTI) type.
3764 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3765 and refer to the values computed for the object pointed to. */
3768 value_rtti_indirect_type (struct value *v, int *full,
3769 LONGEST *top, int *using_enc)
3771 struct value *target = NULL;
3772 struct type *type, *real_type, *target_type;
3774 type = value_type (v);
3775 type = check_typedef (type);
3776 if (TYPE_IS_REFERENCE (type))
3777 target = coerce_ref (v);
3778 else if (type->code () == TYPE_CODE_PTR)
3783 target = value_ind (v);
3785 catch (const gdb_exception_error &except)
3787 if (except.error == MEMORY_ERROR)
3789 /* value_ind threw a memory error. The pointer is NULL or
3790 contains an uninitialized value: we can't determine any
3800 real_type = value_rtti_type (target, full, top, using_enc);
3804 /* Copy qualifiers to the referenced object. */
3805 target_type = value_type (target);
3806 real_type = make_cv_type (TYPE_CONST (target_type),
3807 TYPE_VOLATILE (target_type), real_type, NULL);
3808 if (TYPE_IS_REFERENCE (type))
3809 real_type = lookup_reference_type (real_type, type->code ());
3810 else if (type->code () == TYPE_CODE_PTR)
3811 real_type = lookup_pointer_type (real_type);
3813 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3815 /* Copy qualifiers to the pointer/reference. */
3816 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3823 /* Given a value pointed to by ARGP, check its real run-time type, and
3824 if that is different from the enclosing type, create a new value
3825 using the real run-time type as the enclosing type (and of the same
3826 type as ARGP) and return it, with the embedded offset adjusted to
3827 be the correct offset to the enclosed object. RTYPE is the type,
3828 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3829 by value_rtti_type(). If these are available, they can be supplied
3830 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3831 NULL if they're not available. */
3834 value_full_object (struct value *argp,
3836 int xfull, int xtop,
3839 struct type *real_type;
3843 struct value *new_val;
3850 using_enc = xusing_enc;
3853 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3855 /* If no RTTI data, or if object is already complete, do nothing. */
3856 if (!real_type || real_type == value_enclosing_type (argp))
3859 /* In a destructor we might see a real type that is a superclass of
3860 the object's type. In this case it is better to leave the object
3863 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3866 /* If we have the full object, but for some reason the enclosing
3867 type is wrong, set it. */
3868 /* pai: FIXME -- sounds iffy */
3871 argp = value_copy (argp);
3872 set_value_enclosing_type (argp, real_type);
3876 /* Check if object is in memory. */
3877 if (VALUE_LVAL (argp) != lval_memory)
3879 warning (_("Couldn't retrieve complete object of RTTI "
3880 "type %s; object may be in register(s)."),
3881 real_type->name ());
3886 /* All other cases -- retrieve the complete object. */
3887 /* Go back by the computed top_offset from the beginning of the
3888 object, adjusting for the embedded offset of argp if that's what
3889 value_rtti_type used for its computation. */
3890 new_val = value_at_lazy (real_type, value_address (argp) - top +
3891 (using_enc ? 0 : value_embedded_offset (argp)));
3892 deprecated_set_value_type (new_val, value_type (argp));
3893 set_value_embedded_offset (new_val, (using_enc
3894 ? top + value_embedded_offset (argp)
3900 /* Return the value of the local variable, if one exists. Throw error
3901 otherwise, such as if the request is made in an inappropriate context. */
3904 value_of_this (const struct language_defn *lang)
3906 struct block_symbol sym;
3907 const struct block *b;
3908 struct frame_info *frame;
3910 if (lang->name_of_this () == NULL)
3911 error (_("no `this' in current language"));
3913 frame = get_selected_frame (_("no frame selected"));
3915 b = get_frame_block (frame, NULL);
3917 sym = lookup_language_this (lang, b);
3918 if (sym.symbol == NULL)
3919 error (_("current stack frame does not contain a variable named `%s'"),
3920 lang->name_of_this ());
3922 return read_var_value (sym.symbol, sym.block, frame);
3925 /* Return the value of the local variable, if one exists. Return NULL
3926 otherwise. Never throw error. */
3929 value_of_this_silent (const struct language_defn *lang)
3931 struct value *ret = NULL;
3935 ret = value_of_this (lang);
3937 catch (const gdb_exception_error &except)
3944 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3945 elements long, starting at LOWBOUND. The result has the same lower
3946 bound as the original ARRAY. */
3949 value_slice (struct value *array, int lowbound, int length)
3951 struct type *slice_range_type, *slice_type, *range_type;
3952 LONGEST lowerbound, upperbound;
3953 struct value *slice;
3954 struct type *array_type;
3956 array_type = check_typedef (value_type (array));
3957 if (array_type->code () != TYPE_CODE_ARRAY
3958 && array_type->code () != TYPE_CODE_STRING)
3959 error (_("cannot take slice of non-array"));
3961 if (type_not_allocated (array_type))
3962 error (_("array not allocated"));
3963 if (type_not_associated (array_type))
3964 error (_("array not associated"));
3966 range_type = array_type->index_type ();
3967 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
3968 error (_("slice from bad array or bitstring"));
3970 if (lowbound < lowerbound || length < 0
3971 || lowbound + length - 1 > upperbound)
3972 error (_("slice out of range"));
3974 /* FIXME-type-allocation: need a way to free this type when we are
3976 slice_range_type = create_static_range_type (NULL,
3977 TYPE_TARGET_TYPE (range_type),
3979 lowbound + length - 1);
3982 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3984 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3986 slice_type = create_array_type (NULL,
3989 slice_type->set_code (array_type->code ());
3991 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3992 slice = allocate_value_lazy (slice_type);
3995 slice = allocate_value (slice_type);
3996 value_contents_copy (slice, 0, array, offset,
3997 type_length_units (slice_type));
4000 set_value_component_location (slice, array);
4001 set_value_offset (slice, value_offset (array) + offset);
4010 value_literal_complex (struct value *arg1,
4015 struct type *real_type = TYPE_TARGET_TYPE (type);
4017 val = allocate_value (type);
4018 arg1 = value_cast (real_type, arg1);
4019 arg2 = value_cast (real_type, arg2);
4021 memcpy (value_contents_raw (val),
4022 value_contents (arg1), TYPE_LENGTH (real_type));
4023 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
4024 value_contents (arg2), TYPE_LENGTH (real_type));
4031 value_real_part (struct value *value)
4033 struct type *type = check_typedef (value_type (value));
4034 struct type *ttype = TYPE_TARGET_TYPE (type);
4036 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4037 return value_from_component (value, ttype, 0);
4043 value_imaginary_part (struct value *value)
4045 struct type *type = check_typedef (value_type (value));
4046 struct type *ttype = TYPE_TARGET_TYPE (type);
4048 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4049 return value_from_component (value, ttype,
4050 TYPE_LENGTH (check_typedef (ttype)));
4053 /* Cast a value into the appropriate complex data type. */
4055 static struct value *
4056 cast_into_complex (struct type *type, struct value *val)
4058 struct type *real_type = TYPE_TARGET_TYPE (type);
4060 if (value_type (val)->code () == TYPE_CODE_COMPLEX)
4062 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
4063 struct value *re_val = allocate_value (val_real_type);
4064 struct value *im_val = allocate_value (val_real_type);
4066 memcpy (value_contents_raw (re_val),
4067 value_contents (val), TYPE_LENGTH (val_real_type));
4068 memcpy (value_contents_raw (im_val),
4069 value_contents (val) + TYPE_LENGTH (val_real_type),
4070 TYPE_LENGTH (val_real_type));
4072 return value_literal_complex (re_val, im_val, type);
4074 else if (value_type (val)->code () == TYPE_CODE_FLT
4075 || value_type (val)->code () == TYPE_CODE_INT)
4076 return value_literal_complex (val,
4077 value_zero (real_type, not_lval),
4080 error (_("cannot cast non-number to complex"));
4083 void _initialize_valops ();
4085 _initialize_valops ()
4087 add_setshow_boolean_cmd ("overload-resolution", class_support,
4088 &overload_resolution, _("\
4089 Set overload resolution in evaluating C++ functions."), _("\
4090 Show overload resolution in evaluating C++ functions."),
4092 show_overload_resolution,
4093 &setlist, &showlist);
4094 overload_resolution = 1;