1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 static struct type *desc_base_type (struct type *);
73 static struct type *desc_bounds_type (struct type *);
75 static struct value *desc_bounds (struct value *);
77 static int fat_pntr_bounds_bitpos (struct type *);
79 static int fat_pntr_bounds_bitsize (struct type *);
81 static struct type *desc_data_target_type (struct type *);
83 static struct value *desc_data (struct value *);
85 static int fat_pntr_data_bitpos (struct type *);
87 static int fat_pntr_data_bitsize (struct type *);
89 static struct value *desc_one_bound (struct value *, int, int);
91 static int desc_bound_bitpos (struct type *, int, int);
93 static int desc_bound_bitsize (struct type *, int, int);
95 static struct type *desc_index_type (struct type *, int);
97 static int desc_arity (struct type *);
99 static int ada_args_match (struct symbol *, struct value **, int);
101 static struct value *make_array_descriptor (struct type *, struct value *);
103 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
108 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
113 static int is_nonfunction (const std::vector<struct block_symbol> &);
115 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 const struct block *);
119 static int possible_user_operator_p (enum exp_opcode, struct value **);
121 static const char *ada_decoded_op_name (enum exp_opcode);
123 static int numeric_type_p (struct type *);
125 static int integer_type_p (struct type *);
127 static int scalar_type_p (struct type *);
129 static int discrete_type_p (struct type *);
131 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
134 static struct type *ada_find_parallel_type_with_name (struct type *,
137 static int is_dynamic_field (struct type *, int);
139 static struct type *to_fixed_variant_branch_type (struct type *,
141 CORE_ADDR, struct value *);
143 static struct type *to_fixed_array_type (struct type *, struct value *, int);
145 static struct type *to_fixed_range_type (struct type *, struct value *);
147 static struct type *to_static_fixed_type (struct type *);
148 static struct type *static_unwrap_type (struct type *type);
150 static struct value *unwrap_value (struct value *);
152 static struct type *constrained_packed_array_type (struct type *, long *);
154 static struct type *decode_constrained_packed_array_type (struct type *);
156 static long decode_packed_array_bitsize (struct type *);
158 static struct value *decode_constrained_packed_array (struct value *);
160 static int ada_is_unconstrained_packed_array_type (struct type *);
162 static struct value *value_subscript_packed (struct value *, int,
165 static struct value *coerce_unspec_val_to_type (struct value *,
168 static int lesseq_defined_than (struct symbol *, struct symbol *);
170 static int equiv_types (struct type *, struct type *);
172 static int is_name_suffix (const char *);
174 static int advance_wild_match (const char **, const char *, char);
176 static bool wild_match (const char *name, const char *patn);
178 static struct value *ada_coerce_ref (struct value *);
180 static LONGEST pos_atr (struct value *);
182 static struct value *val_atr (struct type *, LONGEST);
184 static struct symbol *standard_lookup (const char *, const struct block *,
187 static struct value *ada_search_struct_field (const char *, struct value *, int,
190 static int find_struct_field (const char *, struct type *, int,
191 struct type **, int *, int *, int *, int *);
193 static int ada_resolve_function (std::vector<struct block_symbol> &,
194 struct value **, int, const char *,
195 struct type *, bool);
197 static int ada_is_direct_array_type (struct type *);
199 static struct value *ada_index_struct_field (int, struct value *, int,
202 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
205 static struct type *ada_find_any_type (const char *name);
207 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
212 /* The result of a symbol lookup to be stored in our symbol cache. */
216 /* The name used to perform the lookup. */
218 /* The namespace used during the lookup. */
220 /* The symbol returned by the lookup, or NULL if no matching symbol
223 /* The block where the symbol was found, or NULL if no matching
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
230 /* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
239 #define HASH_SIZE 1009
241 struct ada_symbol_cache
243 /* An obstack used to store the entries in our cache. */
244 struct auto_obstack cache_space;
246 /* The root of the hash table used to implement our symbol cache. */
247 struct cache_entry *root[HASH_SIZE] {};
250 /* Maximum-sized dynamic type. */
251 static unsigned int varsize_limit;
253 static const char ada_completer_word_break_characters[] =
255 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
257 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
260 /* The name of the symbol to use to get the name of the main subprogram. */
261 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
262 = "__gnat_ada_main_program_name";
264 /* Limit on the number of warnings to raise per expression evaluation. */
265 static int warning_limit = 2;
267 /* Number of warning messages issued; reset to 0 by cleanups after
268 expression evaluation. */
269 static int warnings_issued = 0;
271 static const char * const known_runtime_file_name_patterns[] = {
272 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
275 static const char * const known_auxiliary_function_name_patterns[] = {
276 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
279 /* Maintenance-related settings for this module. */
281 static struct cmd_list_element *maint_set_ada_cmdlist;
282 static struct cmd_list_element *maint_show_ada_cmdlist;
284 /* The "maintenance ada set/show ignore-descriptive-type" value. */
286 static bool ada_ignore_descriptive_types_p = false;
288 /* Inferior-specific data. */
290 /* Per-inferior data for this module. */
292 struct ada_inferior_data
294 /* The ada__tags__type_specific_data type, which is used when decoding
295 tagged types. With older versions of GNAT, this type was directly
296 accessible through a component ("tsd") in the object tag. But this
297 is no longer the case, so we cache it for each inferior. */
298 struct type *tsd_type = nullptr;
300 /* The exception_support_info data. This data is used to determine
301 how to implement support for Ada exception catchpoints in a given
303 const struct exception_support_info *exception_info = nullptr;
306 /* Our key to this module's inferior data. */
307 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
309 /* Return our inferior data for the given inferior (INF).
311 This function always returns a valid pointer to an allocated
312 ada_inferior_data structure. If INF's inferior data has not
313 been previously set, this functions creates a new one with all
314 fields set to zero, sets INF's inferior to it, and then returns
315 a pointer to that newly allocated ada_inferior_data. */
317 static struct ada_inferior_data *
318 get_ada_inferior_data (struct inferior *inf)
320 struct ada_inferior_data *data;
322 data = ada_inferior_data.get (inf);
324 data = ada_inferior_data.emplace (inf);
329 /* Perform all necessary cleanups regarding our module's inferior data
330 that is required after the inferior INF just exited. */
333 ada_inferior_exit (struct inferior *inf)
335 ada_inferior_data.clear (inf);
339 /* program-space-specific data. */
341 /* This module's per-program-space data. */
342 struct ada_pspace_data
344 /* The Ada symbol cache. */
345 std::unique_ptr<ada_symbol_cache> sym_cache;
348 /* Key to our per-program-space data. */
349 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
351 /* Return this module's data for the given program space (PSPACE).
352 If not is found, add a zero'ed one now.
354 This function always returns a valid object. */
356 static struct ada_pspace_data *
357 get_ada_pspace_data (struct program_space *pspace)
359 struct ada_pspace_data *data;
361 data = ada_pspace_data_handle.get (pspace);
363 data = ada_pspace_data_handle.emplace (pspace);
370 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
371 all typedef layers have been peeled. Otherwise, return TYPE.
373 Normally, we really expect a typedef type to only have 1 typedef layer.
374 In other words, we really expect the target type of a typedef type to be
375 a non-typedef type. This is particularly true for Ada units, because
376 the language does not have a typedef vs not-typedef distinction.
377 In that respect, the Ada compiler has been trying to eliminate as many
378 typedef definitions in the debugging information, since they generally
379 do not bring any extra information (we still use typedef under certain
380 circumstances related mostly to the GNAT encoding).
382 Unfortunately, we have seen situations where the debugging information
383 generated by the compiler leads to such multiple typedef layers. For
384 instance, consider the following example with stabs:
386 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
387 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
389 This is an error in the debugging information which causes type
390 pck__float_array___XUP to be defined twice, and the second time,
391 it is defined as a typedef of a typedef.
393 This is on the fringe of legality as far as debugging information is
394 concerned, and certainly unexpected. But it is easy to handle these
395 situations correctly, so we can afford to be lenient in this case. */
398 ada_typedef_target_type (struct type *type)
400 while (type->code () == TYPE_CODE_TYPEDEF)
401 type = TYPE_TARGET_TYPE (type);
405 /* Given DECODED_NAME a string holding a symbol name in its
406 decoded form (ie using the Ada dotted notation), returns
407 its unqualified name. */
410 ada_unqualified_name (const char *decoded_name)
414 /* If the decoded name starts with '<', it means that the encoded
415 name does not follow standard naming conventions, and thus that
416 it is not your typical Ada symbol name. Trying to unqualify it
417 is therefore pointless and possibly erroneous. */
418 if (decoded_name[0] == '<')
421 result = strrchr (decoded_name, '.');
423 result++; /* Skip the dot... */
425 result = decoded_name;
430 /* Return a string starting with '<', followed by STR, and '>'. */
433 add_angle_brackets (const char *str)
435 return string_printf ("<%s>", str);
438 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
439 suffix of FIELD_NAME beginning "___". */
442 field_name_match (const char *field_name, const char *target)
444 int len = strlen (target);
447 (strncmp (field_name, target, len) == 0
448 && (field_name[len] == '\0'
449 || (startswith (field_name + len, "___")
450 && strcmp (field_name + strlen (field_name) - 6,
455 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
456 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
457 and return its index. This function also handles fields whose name
458 have ___ suffixes because the compiler sometimes alters their name
459 by adding such a suffix to represent fields with certain constraints.
460 If the field could not be found, return a negative number if
461 MAYBE_MISSING is set. Otherwise raise an error. */
464 ada_get_field_index (const struct type *type, const char *field_name,
468 struct type *struct_type = check_typedef ((struct type *) type);
470 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
471 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
475 error (_("Unable to find field %s in struct %s. Aborting"),
476 field_name, struct_type->name ());
481 /* The length of the prefix of NAME prior to any "___" suffix. */
484 ada_name_prefix_len (const char *name)
490 const char *p = strstr (name, "___");
493 return strlen (name);
499 /* Return non-zero if SUFFIX is a suffix of STR.
500 Return zero if STR is null. */
503 is_suffix (const char *str, const char *suffix)
510 len2 = strlen (suffix);
511 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
514 /* The contents of value VAL, treated as a value of type TYPE. The
515 result is an lval in memory if VAL is. */
517 static struct value *
518 coerce_unspec_val_to_type (struct value *val, struct type *type)
520 type = ada_check_typedef (type);
521 if (value_type (val) == type)
525 struct value *result;
527 /* Make sure that the object size is not unreasonable before
528 trying to allocate some memory for it. */
529 ada_ensure_varsize_limit (type);
531 if (value_optimized_out (val))
532 result = allocate_optimized_out_value (type);
533 else if (value_lazy (val)
534 /* Be careful not to make a lazy not_lval value. */
535 || (VALUE_LVAL (val) != not_lval
536 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
537 result = allocate_value_lazy (type);
540 result = allocate_value (type);
541 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
543 set_value_component_location (result, val);
544 set_value_bitsize (result, value_bitsize (val));
545 set_value_bitpos (result, value_bitpos (val));
546 if (VALUE_LVAL (result) == lval_memory)
547 set_value_address (result, value_address (val));
552 static const gdb_byte *
553 cond_offset_host (const gdb_byte *valaddr, long offset)
558 return valaddr + offset;
562 cond_offset_target (CORE_ADDR address, long offset)
567 return address + offset;
570 /* Issue a warning (as for the definition of warning in utils.c, but
571 with exactly one argument rather than ...), unless the limit on the
572 number of warnings has passed during the evaluation of the current
575 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
576 provided by "complaint". */
577 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
580 lim_warning (const char *format, ...)
584 va_start (args, format);
585 warnings_issued += 1;
586 if (warnings_issued <= warning_limit)
587 vwarning (format, args);
592 /* Issue an error if the size of an object of type T is unreasonable,
593 i.e. if it would be a bad idea to allocate a value of this type in
597 ada_ensure_varsize_limit (const struct type *type)
599 if (TYPE_LENGTH (type) > varsize_limit)
600 error (_("object size is larger than varsize-limit"));
603 /* Maximum value of a SIZE-byte signed integer type. */
605 max_of_size (int size)
607 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
609 return top_bit | (top_bit - 1);
612 /* Minimum value of a SIZE-byte signed integer type. */
614 min_of_size (int size)
616 return -max_of_size (size) - 1;
619 /* Maximum value of a SIZE-byte unsigned integer type. */
621 umax_of_size (int size)
623 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
625 return top_bit | (top_bit - 1);
628 /* Maximum value of integral type T, as a signed quantity. */
630 max_of_type (struct type *t)
632 if (t->is_unsigned ())
633 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
635 return max_of_size (TYPE_LENGTH (t));
638 /* Minimum value of integral type T, as a signed quantity. */
640 min_of_type (struct type *t)
642 if (t->is_unsigned ())
645 return min_of_size (TYPE_LENGTH (t));
648 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
650 ada_discrete_type_high_bound (struct type *type)
652 type = resolve_dynamic_type (type, {}, 0);
653 switch (type->code ())
655 case TYPE_CODE_RANGE:
657 const dynamic_prop &high = type->bounds ()->high;
659 if (high.kind () == PROP_CONST)
660 return high.const_val ();
663 gdb_assert (high.kind () == PROP_UNDEFINED);
665 /* This happens when trying to evaluate a type's dynamic bound
666 without a live target. There is nothing relevant for us to
667 return here, so return 0. */
672 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
677 return max_of_type (type);
679 error (_("Unexpected type in ada_discrete_type_high_bound."));
683 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
685 ada_discrete_type_low_bound (struct type *type)
687 type = resolve_dynamic_type (type, {}, 0);
688 switch (type->code ())
690 case TYPE_CODE_RANGE:
692 const dynamic_prop &low = type->bounds ()->low;
694 if (low.kind () == PROP_CONST)
695 return low.const_val ();
698 gdb_assert (low.kind () == PROP_UNDEFINED);
700 /* This happens when trying to evaluate a type's dynamic bound
701 without a live target. There is nothing relevant for us to
702 return here, so return 0. */
707 return TYPE_FIELD_ENUMVAL (type, 0);
712 return min_of_type (type);
714 error (_("Unexpected type in ada_discrete_type_low_bound."));
718 /* The identity on non-range types. For range types, the underlying
719 non-range scalar type. */
722 get_base_type (struct type *type)
724 while (type != NULL && type->code () == TYPE_CODE_RANGE)
726 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
728 type = TYPE_TARGET_TYPE (type);
733 /* Return a decoded version of the given VALUE. This means returning
734 a value whose type is obtained by applying all the GNAT-specific
735 encodings, making the resulting type a static but standard description
736 of the initial type. */
739 ada_get_decoded_value (struct value *value)
741 struct type *type = ada_check_typedef (value_type (value));
743 if (ada_is_array_descriptor_type (type)
744 || (ada_is_constrained_packed_array_type (type)
745 && type->code () != TYPE_CODE_PTR))
747 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
748 value = ada_coerce_to_simple_array_ptr (value);
750 value = ada_coerce_to_simple_array (value);
753 value = ada_to_fixed_value (value);
758 /* Same as ada_get_decoded_value, but with the given TYPE.
759 Because there is no associated actual value for this type,
760 the resulting type might be a best-effort approximation in
761 the case of dynamic types. */
764 ada_get_decoded_type (struct type *type)
766 type = to_static_fixed_type (type);
767 if (ada_is_constrained_packed_array_type (type))
768 type = ada_coerce_to_simple_array_type (type);
774 /* Language Selection */
776 /* If the main program is in Ada, return language_ada, otherwise return LANG
777 (the main program is in Ada iif the adainit symbol is found). */
780 ada_update_initial_language (enum language lang)
782 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
788 /* If the main procedure is written in Ada, then return its name.
789 The result is good until the next call. Return NULL if the main
790 procedure doesn't appear to be in Ada. */
795 struct bound_minimal_symbol msym;
796 static gdb::unique_xmalloc_ptr<char> main_program_name;
798 /* For Ada, the name of the main procedure is stored in a specific
799 string constant, generated by the binder. Look for that symbol,
800 extract its address, and then read that string. If we didn't find
801 that string, then most probably the main procedure is not written
803 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
805 if (msym.minsym != NULL)
807 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
808 if (main_program_name_addr == 0)
809 error (_("Invalid address for Ada main program name."));
811 main_program_name = target_read_string (main_program_name_addr, 1024);
812 return main_program_name.get ();
815 /* The main procedure doesn't seem to be in Ada. */
821 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
824 const struct ada_opname_map ada_opname_table[] = {
825 {"Oadd", "\"+\"", BINOP_ADD},
826 {"Osubtract", "\"-\"", BINOP_SUB},
827 {"Omultiply", "\"*\"", BINOP_MUL},
828 {"Odivide", "\"/\"", BINOP_DIV},
829 {"Omod", "\"mod\"", BINOP_MOD},
830 {"Orem", "\"rem\"", BINOP_REM},
831 {"Oexpon", "\"**\"", BINOP_EXP},
832 {"Olt", "\"<\"", BINOP_LESS},
833 {"Ole", "\"<=\"", BINOP_LEQ},
834 {"Ogt", "\">\"", BINOP_GTR},
835 {"Oge", "\">=\"", BINOP_GEQ},
836 {"Oeq", "\"=\"", BINOP_EQUAL},
837 {"One", "\"/=\"", BINOP_NOTEQUAL},
838 {"Oand", "\"and\"", BINOP_BITWISE_AND},
839 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
840 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
841 {"Oconcat", "\"&\"", BINOP_CONCAT},
842 {"Oabs", "\"abs\"", UNOP_ABS},
843 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
844 {"Oadd", "\"+\"", UNOP_PLUS},
845 {"Osubtract", "\"-\"", UNOP_NEG},
849 /* The "encoded" form of DECODED, according to GNAT conventions. If
850 THROW_ERRORS, throw an error if invalid operator name is found.
851 Otherwise, return the empty string in that case. */
854 ada_encode_1 (const char *decoded, bool throw_errors)
859 std::string encoding_buffer;
860 for (const char *p = decoded; *p != '\0'; p += 1)
863 encoding_buffer.append ("__");
866 const struct ada_opname_map *mapping;
868 for (mapping = ada_opname_table;
869 mapping->encoded != NULL
870 && !startswith (p, mapping->decoded); mapping += 1)
872 if (mapping->encoded == NULL)
875 error (_("invalid Ada operator name: %s"), p);
879 encoding_buffer.append (mapping->encoded);
883 encoding_buffer.push_back (*p);
886 return encoding_buffer;
889 /* The "encoded" form of DECODED, according to GNAT conventions. */
892 ada_encode (const char *decoded)
894 return ada_encode_1 (decoded, true);
897 /* Return NAME folded to lower case, or, if surrounded by single
898 quotes, unfolded, but with the quotes stripped away. Result good
902 ada_fold_name (gdb::string_view name)
904 static std::string fold_storage;
906 if (!name.empty () && name[0] == '\'')
907 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
910 fold_storage = gdb::to_string (name);
911 for (int i = 0; i < name.size (); i += 1)
912 fold_storage[i] = tolower (fold_storage[i]);
915 return fold_storage.c_str ();
918 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
921 is_lower_alphanum (const char c)
923 return (isdigit (c) || (isalpha (c) && islower (c)));
926 /* ENCODED is the linkage name of a symbol and LEN contains its length.
927 This function saves in LEN the length of that same symbol name but
928 without either of these suffixes:
934 These are suffixes introduced by the compiler for entities such as
935 nested subprogram for instance, in order to avoid name clashes.
936 They do not serve any purpose for the debugger. */
939 ada_remove_trailing_digits (const char *encoded, int *len)
941 if (*len > 1 && isdigit (encoded[*len - 1]))
945 while (i > 0 && isdigit (encoded[i]))
947 if (i >= 0 && encoded[i] == '.')
949 else if (i >= 0 && encoded[i] == '$')
951 else if (i >= 2 && startswith (encoded + i - 2, "___"))
953 else if (i >= 1 && startswith (encoded + i - 1, "__"))
958 /* Remove the suffix introduced by the compiler for protected object
962 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
964 /* Remove trailing N. */
966 /* Protected entry subprograms are broken into two
967 separate subprograms: The first one is unprotected, and has
968 a 'N' suffix; the second is the protected version, and has
969 the 'P' suffix. The second calls the first one after handling
970 the protection. Since the P subprograms are internally generated,
971 we leave these names undecoded, giving the user a clue that this
972 entity is internal. */
975 && encoded[*len - 1] == 'N'
976 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
980 /* See ada-lang.h. */
983 ada_decode (const char *encoded, bool wrap)
991 /* With function descriptors on PPC64, the value of a symbol named
992 ".FN", if it exists, is the entry point of the function "FN". */
993 if (encoded[0] == '.')
996 /* The name of the Ada main procedure starts with "_ada_".
997 This prefix is not part of the decoded name, so skip this part
998 if we see this prefix. */
999 if (startswith (encoded, "_ada_"))
1002 /* If the name starts with '_', then it is not a properly encoded
1003 name, so do not attempt to decode it. Similarly, if the name
1004 starts with '<', the name should not be decoded. */
1005 if (encoded[0] == '_' || encoded[0] == '<')
1008 len0 = strlen (encoded);
1010 ada_remove_trailing_digits (encoded, &len0);
1011 ada_remove_po_subprogram_suffix (encoded, &len0);
1013 /* Remove the ___X.* suffix if present. Do not forget to verify that
1014 the suffix is located before the current "end" of ENCODED. We want
1015 to avoid re-matching parts of ENCODED that have previously been
1016 marked as discarded (by decrementing LEN0). */
1017 p = strstr (encoded, "___");
1018 if (p != NULL && p - encoded < len0 - 3)
1026 /* Remove any trailing TKB suffix. It tells us that this symbol
1027 is for the body of a task, but that information does not actually
1028 appear in the decoded name. */
1030 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1033 /* Remove any trailing TB suffix. The TB suffix is slightly different
1034 from the TKB suffix because it is used for non-anonymous task
1037 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1040 /* Remove trailing "B" suffixes. */
1041 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1043 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1046 /* Make decoded big enough for possible expansion by operator name. */
1048 decoded.resize (2 * len0 + 1, 'X');
1050 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1052 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1055 while ((i >= 0 && isdigit (encoded[i]))
1056 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1058 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1060 else if (encoded[i] == '$')
1064 /* The first few characters that are not alphabetic are not part
1065 of any encoding we use, so we can copy them over verbatim. */
1067 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1068 decoded[j] = encoded[i];
1073 /* Is this a symbol function? */
1074 if (at_start_name && encoded[i] == 'O')
1078 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1080 int op_len = strlen (ada_opname_table[k].encoded);
1081 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1083 && !isalnum (encoded[i + op_len]))
1085 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1088 j += strlen (ada_opname_table[k].decoded);
1092 if (ada_opname_table[k].encoded != NULL)
1097 /* Replace "TK__" with "__", which will eventually be translated
1098 into "." (just below). */
1100 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1103 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1104 be translated into "." (just below). These are internal names
1105 generated for anonymous blocks inside which our symbol is nested. */
1107 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1108 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1109 && isdigit (encoded [i+4]))
1113 while (k < len0 && isdigit (encoded[k]))
1114 k++; /* Skip any extra digit. */
1116 /* Double-check that the "__B_{DIGITS}+" sequence we found
1117 is indeed followed by "__". */
1118 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1122 /* Remove _E{DIGITS}+[sb] */
1124 /* Just as for protected object subprograms, there are 2 categories
1125 of subprograms created by the compiler for each entry. The first
1126 one implements the actual entry code, and has a suffix following
1127 the convention above; the second one implements the barrier and
1128 uses the same convention as above, except that the 'E' is replaced
1131 Just as above, we do not decode the name of barrier functions
1132 to give the user a clue that the code he is debugging has been
1133 internally generated. */
1135 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1136 && isdigit (encoded[i+2]))
1140 while (k < len0 && isdigit (encoded[k]))
1144 && (encoded[k] == 'b' || encoded[k] == 's'))
1147 /* Just as an extra precaution, make sure that if this
1148 suffix is followed by anything else, it is a '_'.
1149 Otherwise, we matched this sequence by accident. */
1151 || (k < len0 && encoded[k] == '_'))
1156 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1157 the GNAT front-end in protected object subprograms. */
1160 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1162 /* Backtrack a bit up until we reach either the begining of
1163 the encoded name, or "__". Make sure that we only find
1164 digits or lowercase characters. */
1165 const char *ptr = encoded + i - 1;
1167 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1170 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1174 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1176 /* This is a X[bn]* sequence not separated from the previous
1177 part of the name with a non-alpha-numeric character (in other
1178 words, immediately following an alpha-numeric character), then
1179 verify that it is placed at the end of the encoded name. If
1180 not, then the encoding is not valid and we should abort the
1181 decoding. Otherwise, just skip it, it is used in body-nested
1185 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1189 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1191 /* Replace '__' by '.'. */
1199 /* It's a character part of the decoded name, so just copy it
1201 decoded[j] = encoded[i];
1208 /* Decoded names should never contain any uppercase character.
1209 Double-check this, and abort the decoding if we find one. */
1211 for (i = 0; i < decoded.length(); ++i)
1212 if (isupper (decoded[i]) || decoded[i] == ' ')
1221 if (encoded[0] == '<')
1224 decoded = '<' + std::string(encoded) + '>';
1228 /* Table for keeping permanent unique copies of decoded names. Once
1229 allocated, names in this table are never released. While this is a
1230 storage leak, it should not be significant unless there are massive
1231 changes in the set of decoded names in successive versions of a
1232 symbol table loaded during a single session. */
1233 static struct htab *decoded_names_store;
1235 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1236 in the language-specific part of GSYMBOL, if it has not been
1237 previously computed. Tries to save the decoded name in the same
1238 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1239 in any case, the decoded symbol has a lifetime at least that of
1241 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1242 const, but nevertheless modified to a semantically equivalent form
1243 when a decoded name is cached in it. */
1246 ada_decode_symbol (const struct general_symbol_info *arg)
1248 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1249 const char **resultp =
1250 &gsymbol->language_specific.demangled_name;
1252 if (!gsymbol->ada_mangled)
1254 std::string decoded = ada_decode (gsymbol->linkage_name ());
1255 struct obstack *obstack = gsymbol->language_specific.obstack;
1257 gsymbol->ada_mangled = 1;
1259 if (obstack != NULL)
1260 *resultp = obstack_strdup (obstack, decoded.c_str ());
1263 /* Sometimes, we can't find a corresponding objfile, in
1264 which case, we put the result on the heap. Since we only
1265 decode when needed, we hope this usually does not cause a
1266 significant memory leak (FIXME). */
1268 char **slot = (char **) htab_find_slot (decoded_names_store,
1269 decoded.c_str (), INSERT);
1272 *slot = xstrdup (decoded.c_str ());
1281 ada_la_decode (const char *encoded, int options)
1283 return xstrdup (ada_decode (encoded).c_str ());
1290 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1291 generated by the GNAT compiler to describe the index type used
1292 for each dimension of an array, check whether it follows the latest
1293 known encoding. If not, fix it up to conform to the latest encoding.
1294 Otherwise, do nothing. This function also does nothing if
1295 INDEX_DESC_TYPE is NULL.
1297 The GNAT encoding used to describe the array index type evolved a bit.
1298 Initially, the information would be provided through the name of each
1299 field of the structure type only, while the type of these fields was
1300 described as unspecified and irrelevant. The debugger was then expected
1301 to perform a global type lookup using the name of that field in order
1302 to get access to the full index type description. Because these global
1303 lookups can be very expensive, the encoding was later enhanced to make
1304 the global lookup unnecessary by defining the field type as being
1305 the full index type description.
1307 The purpose of this routine is to allow us to support older versions
1308 of the compiler by detecting the use of the older encoding, and by
1309 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1310 we essentially replace each field's meaningless type by the associated
1314 ada_fixup_array_indexes_type (struct type *index_desc_type)
1318 if (index_desc_type == NULL)
1320 gdb_assert (index_desc_type->num_fields () > 0);
1322 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1323 to check one field only, no need to check them all). If not, return
1326 If our INDEX_DESC_TYPE was generated using the older encoding,
1327 the field type should be a meaningless integer type whose name
1328 is not equal to the field name. */
1329 if (index_desc_type->field (0).type ()->name () != NULL
1330 && strcmp (index_desc_type->field (0).type ()->name (),
1331 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1334 /* Fixup each field of INDEX_DESC_TYPE. */
1335 for (i = 0; i < index_desc_type->num_fields (); i++)
1337 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1338 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1341 index_desc_type->field (i).set_type (raw_type);
1345 /* The desc_* routines return primitive portions of array descriptors
1348 /* The descriptor or array type, if any, indicated by TYPE; removes
1349 level of indirection, if needed. */
1351 static struct type *
1352 desc_base_type (struct type *type)
1356 type = ada_check_typedef (type);
1357 if (type->code () == TYPE_CODE_TYPEDEF)
1358 type = ada_typedef_target_type (type);
1361 && (type->code () == TYPE_CODE_PTR
1362 || type->code () == TYPE_CODE_REF))
1363 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1368 /* True iff TYPE indicates a "thin" array pointer type. */
1371 is_thin_pntr (struct type *type)
1374 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1375 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1378 /* The descriptor type for thin pointer type TYPE. */
1380 static struct type *
1381 thin_descriptor_type (struct type *type)
1383 struct type *base_type = desc_base_type (type);
1385 if (base_type == NULL)
1387 if (is_suffix (ada_type_name (base_type), "___XVE"))
1391 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1393 if (alt_type == NULL)
1400 /* A pointer to the array data for thin-pointer value VAL. */
1402 static struct value *
1403 thin_data_pntr (struct value *val)
1405 struct type *type = ada_check_typedef (value_type (val));
1406 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1408 data_type = lookup_pointer_type (data_type);
1410 if (type->code () == TYPE_CODE_PTR)
1411 return value_cast (data_type, value_copy (val));
1413 return value_from_longest (data_type, value_address (val));
1416 /* True iff TYPE indicates a "thick" array pointer type. */
1419 is_thick_pntr (struct type *type)
1421 type = desc_base_type (type);
1422 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1423 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1426 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1427 pointer to one, the type of its bounds data; otherwise, NULL. */
1429 static struct type *
1430 desc_bounds_type (struct type *type)
1434 type = desc_base_type (type);
1438 else if (is_thin_pntr (type))
1440 type = thin_descriptor_type (type);
1443 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1445 return ada_check_typedef (r);
1447 else if (type->code () == TYPE_CODE_STRUCT)
1449 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1451 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1456 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1457 one, a pointer to its bounds data. Otherwise NULL. */
1459 static struct value *
1460 desc_bounds (struct value *arr)
1462 struct type *type = ada_check_typedef (value_type (arr));
1464 if (is_thin_pntr (type))
1466 struct type *bounds_type =
1467 desc_bounds_type (thin_descriptor_type (type));
1470 if (bounds_type == NULL)
1471 error (_("Bad GNAT array descriptor"));
1473 /* NOTE: The following calculation is not really kosher, but
1474 since desc_type is an XVE-encoded type (and shouldn't be),
1475 the correct calculation is a real pain. FIXME (and fix GCC). */
1476 if (type->code () == TYPE_CODE_PTR)
1477 addr = value_as_long (arr);
1479 addr = value_address (arr);
1482 value_from_longest (lookup_pointer_type (bounds_type),
1483 addr - TYPE_LENGTH (bounds_type));
1486 else if (is_thick_pntr (type))
1488 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1489 _("Bad GNAT array descriptor"));
1490 struct type *p_bounds_type = value_type (p_bounds);
1493 && p_bounds_type->code () == TYPE_CODE_PTR)
1495 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1497 if (target_type->is_stub ())
1498 p_bounds = value_cast (lookup_pointer_type
1499 (ada_check_typedef (target_type)),
1503 error (_("Bad GNAT array descriptor"));
1511 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1512 position of the field containing the address of the bounds data. */
1515 fat_pntr_bounds_bitpos (struct type *type)
1517 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1520 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1521 size of the field containing the address of the bounds data. */
1524 fat_pntr_bounds_bitsize (struct type *type)
1526 type = desc_base_type (type);
1528 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1529 return TYPE_FIELD_BITSIZE (type, 1);
1531 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1534 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1535 pointer to one, the type of its array data (a array-with-no-bounds type);
1536 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1539 static struct type *
1540 desc_data_target_type (struct type *type)
1542 type = desc_base_type (type);
1544 /* NOTE: The following is bogus; see comment in desc_bounds. */
1545 if (is_thin_pntr (type))
1546 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1547 else if (is_thick_pntr (type))
1549 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1552 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1553 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1559 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1562 static struct value *
1563 desc_data (struct value *arr)
1565 struct type *type = value_type (arr);
1567 if (is_thin_pntr (type))
1568 return thin_data_pntr (arr);
1569 else if (is_thick_pntr (type))
1570 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1571 _("Bad GNAT array descriptor"));
1577 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1578 position of the field containing the address of the data. */
1581 fat_pntr_data_bitpos (struct type *type)
1583 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1586 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1587 size of the field containing the address of the data. */
1590 fat_pntr_data_bitsize (struct type *type)
1592 type = desc_base_type (type);
1594 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1595 return TYPE_FIELD_BITSIZE (type, 0);
1597 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1600 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1601 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1602 bound, if WHICH is 1. The first bound is I=1. */
1604 static struct value *
1605 desc_one_bound (struct value *bounds, int i, int which)
1607 char bound_name[20];
1608 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1609 which ? 'U' : 'L', i - 1);
1610 return value_struct_elt (&bounds, {}, bound_name, NULL,
1611 _("Bad GNAT array descriptor bounds"));
1614 /* If BOUNDS is an array-bounds structure type, return the bit position
1615 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1616 bound, if WHICH is 1. The first bound is I=1. */
1619 desc_bound_bitpos (struct type *type, int i, int which)
1621 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1624 /* If BOUNDS is an array-bounds structure type, return the bit field size
1625 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1626 bound, if WHICH is 1. The first bound is I=1. */
1629 desc_bound_bitsize (struct type *type, int i, int which)
1631 type = desc_base_type (type);
1633 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1634 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1636 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1639 /* If TYPE is the type of an array-bounds structure, the type of its
1640 Ith bound (numbering from 1). Otherwise, NULL. */
1642 static struct type *
1643 desc_index_type (struct type *type, int i)
1645 type = desc_base_type (type);
1647 if (type->code () == TYPE_CODE_STRUCT)
1649 char bound_name[20];
1650 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1651 return lookup_struct_elt_type (type, bound_name, 1);
1657 /* The number of index positions in the array-bounds type TYPE.
1658 Return 0 if TYPE is NULL. */
1661 desc_arity (struct type *type)
1663 type = desc_base_type (type);
1666 return type->num_fields () / 2;
1670 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1671 an array descriptor type (representing an unconstrained array
1675 ada_is_direct_array_type (struct type *type)
1679 type = ada_check_typedef (type);
1680 return (type->code () == TYPE_CODE_ARRAY
1681 || ada_is_array_descriptor_type (type));
1684 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1688 ada_is_array_type (struct type *type)
1691 && (type->code () == TYPE_CODE_PTR
1692 || type->code () == TYPE_CODE_REF))
1693 type = TYPE_TARGET_TYPE (type);
1694 return ada_is_direct_array_type (type);
1697 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1700 ada_is_simple_array_type (struct type *type)
1704 type = ada_check_typedef (type);
1705 return (type->code () == TYPE_CODE_ARRAY
1706 || (type->code () == TYPE_CODE_PTR
1707 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1708 == TYPE_CODE_ARRAY)));
1711 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1714 ada_is_array_descriptor_type (struct type *type)
1716 struct type *data_type = desc_data_target_type (type);
1720 type = ada_check_typedef (type);
1721 return (data_type != NULL
1722 && data_type->code () == TYPE_CODE_ARRAY
1723 && desc_arity (desc_bounds_type (type)) > 0);
1726 /* Non-zero iff type is a partially mal-formed GNAT array
1727 descriptor. FIXME: This is to compensate for some problems with
1728 debugging output from GNAT. Re-examine periodically to see if it
1732 ada_is_bogus_array_descriptor (struct type *type)
1736 && type->code () == TYPE_CODE_STRUCT
1737 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1738 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1739 && !ada_is_array_descriptor_type (type);
1743 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1744 (fat pointer) returns the type of the array data described---specifically,
1745 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1746 in from the descriptor; otherwise, they are left unspecified. If
1747 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1748 returns NULL. The result is simply the type of ARR if ARR is not
1751 static struct type *
1752 ada_type_of_array (struct value *arr, int bounds)
1754 if (ada_is_constrained_packed_array_type (value_type (arr)))
1755 return decode_constrained_packed_array_type (value_type (arr));
1757 if (!ada_is_array_descriptor_type (value_type (arr)))
1758 return value_type (arr);
1762 struct type *array_type =
1763 ada_check_typedef (desc_data_target_type (value_type (arr)));
1765 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1766 TYPE_FIELD_BITSIZE (array_type, 0) =
1767 decode_packed_array_bitsize (value_type (arr));
1773 struct type *elt_type;
1775 struct value *descriptor;
1777 elt_type = ada_array_element_type (value_type (arr), -1);
1778 arity = ada_array_arity (value_type (arr));
1780 if (elt_type == NULL || arity == 0)
1781 return ada_check_typedef (value_type (arr));
1783 descriptor = desc_bounds (arr);
1784 if (value_as_long (descriptor) == 0)
1788 struct type *range_type = alloc_type_copy (value_type (arr));
1789 struct type *array_type = alloc_type_copy (value_type (arr));
1790 struct value *low = desc_one_bound (descriptor, arity, 0);
1791 struct value *high = desc_one_bound (descriptor, arity, 1);
1794 create_static_range_type (range_type, value_type (low),
1795 longest_to_int (value_as_long (low)),
1796 longest_to_int (value_as_long (high)));
1797 elt_type = create_array_type (array_type, elt_type, range_type);
1799 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1801 /* We need to store the element packed bitsize, as well as
1802 recompute the array size, because it was previously
1803 computed based on the unpacked element size. */
1804 LONGEST lo = value_as_long (low);
1805 LONGEST hi = value_as_long (high);
1807 TYPE_FIELD_BITSIZE (elt_type, 0) =
1808 decode_packed_array_bitsize (value_type (arr));
1809 /* If the array has no element, then the size is already
1810 zero, and does not need to be recomputed. */
1814 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1816 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1821 return lookup_pointer_type (elt_type);
1825 /* If ARR does not represent an array, returns ARR unchanged.
1826 Otherwise, returns either a standard GDB array with bounds set
1827 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1828 GDB array. Returns NULL if ARR is a null fat pointer. */
1831 ada_coerce_to_simple_array_ptr (struct value *arr)
1833 if (ada_is_array_descriptor_type (value_type (arr)))
1835 struct type *arrType = ada_type_of_array (arr, 1);
1837 if (arrType == NULL)
1839 return value_cast (arrType, value_copy (desc_data (arr)));
1841 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1842 return decode_constrained_packed_array (arr);
1847 /* If ARR does not represent an array, returns ARR unchanged.
1848 Otherwise, returns a standard GDB array describing ARR (which may
1849 be ARR itself if it already is in the proper form). */
1852 ada_coerce_to_simple_array (struct value *arr)
1854 if (ada_is_array_descriptor_type (value_type (arr)))
1856 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1859 error (_("Bounds unavailable for null array pointer."));
1860 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1861 return value_ind (arrVal);
1863 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1864 return decode_constrained_packed_array (arr);
1869 /* If TYPE represents a GNAT array type, return it translated to an
1870 ordinary GDB array type (possibly with BITSIZE fields indicating
1871 packing). For other types, is the identity. */
1874 ada_coerce_to_simple_array_type (struct type *type)
1876 if (ada_is_constrained_packed_array_type (type))
1877 return decode_constrained_packed_array_type (type);
1879 if (ada_is_array_descriptor_type (type))
1880 return ada_check_typedef (desc_data_target_type (type));
1885 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1888 ada_is_gnat_encoded_packed_array_type (struct type *type)
1892 type = desc_base_type (type);
1893 type = ada_check_typedef (type);
1895 ada_type_name (type) != NULL
1896 && strstr (ada_type_name (type), "___XP") != NULL;
1899 /* Non-zero iff TYPE represents a standard GNAT constrained
1900 packed-array type. */
1903 ada_is_constrained_packed_array_type (struct type *type)
1905 return ada_is_gnat_encoded_packed_array_type (type)
1906 && !ada_is_array_descriptor_type (type);
1909 /* Non-zero iff TYPE represents an array descriptor for a
1910 unconstrained packed-array type. */
1913 ada_is_unconstrained_packed_array_type (struct type *type)
1915 if (!ada_is_array_descriptor_type (type))
1918 if (ada_is_gnat_encoded_packed_array_type (type))
1921 /* If we saw GNAT encodings, then the above code is sufficient.
1922 However, with minimal encodings, we will just have a thick
1924 if (is_thick_pntr (type))
1926 type = desc_base_type (type);
1927 /* The structure's first field is a pointer to an array, so this
1928 fetches the array type. */
1929 type = TYPE_TARGET_TYPE (type->field (0).type ());
1930 /* Now we can see if the array elements are packed. */
1931 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1937 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1938 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1941 ada_is_any_packed_array_type (struct type *type)
1943 return (ada_is_constrained_packed_array_type (type)
1944 || (type->code () == TYPE_CODE_ARRAY
1945 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1948 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1949 return the size of its elements in bits. */
1952 decode_packed_array_bitsize (struct type *type)
1954 const char *raw_name;
1958 /* Access to arrays implemented as fat pointers are encoded as a typedef
1959 of the fat pointer type. We need the name of the fat pointer type
1960 to do the decoding, so strip the typedef layer. */
1961 if (type->code () == TYPE_CODE_TYPEDEF)
1962 type = ada_typedef_target_type (type);
1964 raw_name = ada_type_name (ada_check_typedef (type));
1966 raw_name = ada_type_name (desc_base_type (type));
1971 tail = strstr (raw_name, "___XP");
1972 if (tail == nullptr)
1974 gdb_assert (is_thick_pntr (type));
1975 /* The structure's first field is a pointer to an array, so this
1976 fetches the array type. */
1977 type = TYPE_TARGET_TYPE (type->field (0).type ());
1978 /* Now we can see if the array elements are packed. */
1979 return TYPE_FIELD_BITSIZE (type, 0);
1982 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1985 (_("could not understand bit size information on packed array"));
1992 /* Given that TYPE is a standard GDB array type with all bounds filled
1993 in, and that the element size of its ultimate scalar constituents
1994 (that is, either its elements, or, if it is an array of arrays, its
1995 elements' elements, etc.) is *ELT_BITS, return an identical type,
1996 but with the bit sizes of its elements (and those of any
1997 constituent arrays) recorded in the BITSIZE components of its
1998 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2001 Note that, for arrays whose index type has an XA encoding where
2002 a bound references a record discriminant, getting that discriminant,
2003 and therefore the actual value of that bound, is not possible
2004 because none of the given parameters gives us access to the record.
2005 This function assumes that it is OK in the context where it is being
2006 used to return an array whose bounds are still dynamic and where
2007 the length is arbitrary. */
2009 static struct type *
2010 constrained_packed_array_type (struct type *type, long *elt_bits)
2012 struct type *new_elt_type;
2013 struct type *new_type;
2014 struct type *index_type_desc;
2015 struct type *index_type;
2016 LONGEST low_bound, high_bound;
2018 type = ada_check_typedef (type);
2019 if (type->code () != TYPE_CODE_ARRAY)
2022 index_type_desc = ada_find_parallel_type (type, "___XA");
2023 if (index_type_desc)
2024 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2027 index_type = type->index_type ();
2029 new_type = alloc_type_copy (type);
2031 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2033 create_array_type (new_type, new_elt_type, index_type);
2034 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2035 new_type->set_name (ada_type_name (type));
2037 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2038 && is_dynamic_type (check_typedef (index_type)))
2039 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2040 low_bound = high_bound = 0;
2041 if (high_bound < low_bound)
2042 *elt_bits = TYPE_LENGTH (new_type) = 0;
2045 *elt_bits *= (high_bound - low_bound + 1);
2046 TYPE_LENGTH (new_type) =
2047 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2050 new_type->set_is_fixed_instance (true);
2054 /* The array type encoded by TYPE, where
2055 ada_is_constrained_packed_array_type (TYPE). */
2057 static struct type *
2058 decode_constrained_packed_array_type (struct type *type)
2060 const char *raw_name = ada_type_name (ada_check_typedef (type));
2063 struct type *shadow_type;
2067 raw_name = ada_type_name (desc_base_type (type));
2072 name = (char *) alloca (strlen (raw_name) + 1);
2073 tail = strstr (raw_name, "___XP");
2074 type = desc_base_type (type);
2076 memcpy (name, raw_name, tail - raw_name);
2077 name[tail - raw_name] = '\000';
2079 shadow_type = ada_find_parallel_type_with_name (type, name);
2081 if (shadow_type == NULL)
2083 lim_warning (_("could not find bounds information on packed array"));
2086 shadow_type = check_typedef (shadow_type);
2088 if (shadow_type->code () != TYPE_CODE_ARRAY)
2090 lim_warning (_("could not understand bounds "
2091 "information on packed array"));
2095 bits = decode_packed_array_bitsize (type);
2096 return constrained_packed_array_type (shadow_type, &bits);
2099 /* Helper function for decode_constrained_packed_array. Set the field
2100 bitsize on a series of packed arrays. Returns the number of
2101 elements in TYPE. */
2104 recursively_update_array_bitsize (struct type *type)
2106 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2109 if (!get_discrete_bounds (type->index_type (), &low, &high)
2112 LONGEST our_len = high - low + 1;
2114 struct type *elt_type = TYPE_TARGET_TYPE (type);
2115 if (elt_type->code () == TYPE_CODE_ARRAY)
2117 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2118 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2119 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2121 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2128 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2129 array, returns a simple array that denotes that array. Its type is a
2130 standard GDB array type except that the BITSIZEs of the array
2131 target types are set to the number of bits in each element, and the
2132 type length is set appropriately. */
2134 static struct value *
2135 decode_constrained_packed_array (struct value *arr)
2139 /* If our value is a pointer, then dereference it. Likewise if
2140 the value is a reference. Make sure that this operation does not
2141 cause the target type to be fixed, as this would indirectly cause
2142 this array to be decoded. The rest of the routine assumes that
2143 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2144 and "value_ind" routines to perform the dereferencing, as opposed
2145 to using "ada_coerce_ref" or "ada_value_ind". */
2146 arr = coerce_ref (arr);
2147 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2148 arr = value_ind (arr);
2150 type = decode_constrained_packed_array_type (value_type (arr));
2153 error (_("can't unpack array"));
2157 /* Decoding the packed array type could not correctly set the field
2158 bitsizes for any dimension except the innermost, because the
2159 bounds may be variable and were not passed to that function. So,
2160 we further resolve the array bounds here and then update the
2162 const gdb_byte *valaddr = value_contents_for_printing (arr);
2163 CORE_ADDR address = value_address (arr);
2164 gdb::array_view<const gdb_byte> view
2165 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2166 type = resolve_dynamic_type (type, view, address);
2167 recursively_update_array_bitsize (type);
2169 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2170 && ada_is_modular_type (value_type (arr)))
2172 /* This is a (right-justified) modular type representing a packed
2173 array with no wrapper. In order to interpret the value through
2174 the (left-justified) packed array type we just built, we must
2175 first left-justify it. */
2176 int bit_size, bit_pos;
2179 mod = ada_modulus (value_type (arr)) - 1;
2186 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2187 arr = ada_value_primitive_packed_val (arr, NULL,
2188 bit_pos / HOST_CHAR_BIT,
2189 bit_pos % HOST_CHAR_BIT,
2194 return coerce_unspec_val_to_type (arr, type);
2198 /* The value of the element of packed array ARR at the ARITY indices
2199 given in IND. ARR must be a simple array. */
2201 static struct value *
2202 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2205 int bits, elt_off, bit_off;
2206 long elt_total_bit_offset;
2207 struct type *elt_type;
2211 elt_total_bit_offset = 0;
2212 elt_type = ada_check_typedef (value_type (arr));
2213 for (i = 0; i < arity; i += 1)
2215 if (elt_type->code () != TYPE_CODE_ARRAY
2216 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2218 (_("attempt to do packed indexing of "
2219 "something other than a packed array"));
2222 struct type *range_type = elt_type->index_type ();
2223 LONGEST lowerbound, upperbound;
2226 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2228 lim_warning (_("don't know bounds of array"));
2229 lowerbound = upperbound = 0;
2232 idx = pos_atr (ind[i]);
2233 if (idx < lowerbound || idx > upperbound)
2234 lim_warning (_("packed array index %ld out of bounds"),
2236 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2237 elt_total_bit_offset += (idx - lowerbound) * bits;
2238 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2241 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2242 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2244 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2249 /* Non-zero iff TYPE includes negative integer values. */
2252 has_negatives (struct type *type)
2254 switch (type->code ())
2259 return !type->is_unsigned ();
2260 case TYPE_CODE_RANGE:
2261 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2265 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2266 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2267 the unpacked buffer.
2269 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2270 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2272 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2275 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2277 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2280 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2281 gdb_byte *unpacked, int unpacked_len,
2282 int is_big_endian, int is_signed_type,
2285 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2286 int src_idx; /* Index into the source area */
2287 int src_bytes_left; /* Number of source bytes left to process. */
2288 int srcBitsLeft; /* Number of source bits left to move */
2289 int unusedLS; /* Number of bits in next significant
2290 byte of source that are unused */
2292 int unpacked_idx; /* Index into the unpacked buffer */
2293 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2295 unsigned long accum; /* Staging area for bits being transferred */
2296 int accumSize; /* Number of meaningful bits in accum */
2299 /* Transmit bytes from least to most significant; delta is the direction
2300 the indices move. */
2301 int delta = is_big_endian ? -1 : 1;
2303 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2305 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2306 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2307 bit_size, unpacked_len);
2309 srcBitsLeft = bit_size;
2310 src_bytes_left = src_len;
2311 unpacked_bytes_left = unpacked_len;
2316 src_idx = src_len - 1;
2318 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2322 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2328 unpacked_idx = unpacked_len - 1;
2332 /* Non-scalar values must be aligned at a byte boundary... */
2334 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2335 /* ... And are placed at the beginning (most-significant) bytes
2337 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2338 unpacked_bytes_left = unpacked_idx + 1;
2343 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2345 src_idx = unpacked_idx = 0;
2346 unusedLS = bit_offset;
2349 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2354 while (src_bytes_left > 0)
2356 /* Mask for removing bits of the next source byte that are not
2357 part of the value. */
2358 unsigned int unusedMSMask =
2359 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2361 /* Sign-extend bits for this byte. */
2362 unsigned int signMask = sign & ~unusedMSMask;
2365 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2366 accumSize += HOST_CHAR_BIT - unusedLS;
2367 if (accumSize >= HOST_CHAR_BIT)
2369 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2370 accumSize -= HOST_CHAR_BIT;
2371 accum >>= HOST_CHAR_BIT;
2372 unpacked_bytes_left -= 1;
2373 unpacked_idx += delta;
2375 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2377 src_bytes_left -= 1;
2380 while (unpacked_bytes_left > 0)
2382 accum |= sign << accumSize;
2383 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2384 accumSize -= HOST_CHAR_BIT;
2387 accum >>= HOST_CHAR_BIT;
2388 unpacked_bytes_left -= 1;
2389 unpacked_idx += delta;
2393 /* Create a new value of type TYPE from the contents of OBJ starting
2394 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2395 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2396 assigning through the result will set the field fetched from.
2397 VALADDR is ignored unless OBJ is NULL, in which case,
2398 VALADDR+OFFSET must address the start of storage containing the
2399 packed value. The value returned in this case is never an lval.
2400 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2403 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2404 long offset, int bit_offset, int bit_size,
2408 const gdb_byte *src; /* First byte containing data to unpack */
2410 const int is_scalar = is_scalar_type (type);
2411 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2412 gdb::byte_vector staging;
2414 type = ada_check_typedef (type);
2417 src = valaddr + offset;
2419 src = value_contents (obj) + offset;
2421 if (is_dynamic_type (type))
2423 /* The length of TYPE might by dynamic, so we need to resolve
2424 TYPE in order to know its actual size, which we then use
2425 to create the contents buffer of the value we return.
2426 The difficulty is that the data containing our object is
2427 packed, and therefore maybe not at a byte boundary. So, what
2428 we do, is unpack the data into a byte-aligned buffer, and then
2429 use that buffer as our object's value for resolving the type. */
2430 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2431 staging.resize (staging_len);
2433 ada_unpack_from_contents (src, bit_offset, bit_size,
2434 staging.data (), staging.size (),
2435 is_big_endian, has_negatives (type),
2437 type = resolve_dynamic_type (type, staging, 0);
2438 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2440 /* This happens when the length of the object is dynamic,
2441 and is actually smaller than the space reserved for it.
2442 For instance, in an array of variant records, the bit_size
2443 we're given is the array stride, which is constant and
2444 normally equal to the maximum size of its element.
2445 But, in reality, each element only actually spans a portion
2447 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2453 v = allocate_value (type);
2454 src = valaddr + offset;
2456 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2458 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2461 v = value_at (type, value_address (obj) + offset);
2462 buf = (gdb_byte *) alloca (src_len);
2463 read_memory (value_address (v), buf, src_len);
2468 v = allocate_value (type);
2469 src = value_contents (obj) + offset;
2474 long new_offset = offset;
2476 set_value_component_location (v, obj);
2477 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2478 set_value_bitsize (v, bit_size);
2479 if (value_bitpos (v) >= HOST_CHAR_BIT)
2482 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2484 set_value_offset (v, new_offset);
2486 /* Also set the parent value. This is needed when trying to
2487 assign a new value (in inferior memory). */
2488 set_value_parent (v, obj);
2491 set_value_bitsize (v, bit_size);
2492 unpacked = value_contents_writeable (v);
2496 memset (unpacked, 0, TYPE_LENGTH (type));
2500 if (staging.size () == TYPE_LENGTH (type))
2502 /* Small short-cut: If we've unpacked the data into a buffer
2503 of the same size as TYPE's length, then we can reuse that,
2504 instead of doing the unpacking again. */
2505 memcpy (unpacked, staging.data (), staging.size ());
2508 ada_unpack_from_contents (src, bit_offset, bit_size,
2509 unpacked, TYPE_LENGTH (type),
2510 is_big_endian, has_negatives (type), is_scalar);
2515 /* Store the contents of FROMVAL into the location of TOVAL.
2516 Return a new value with the location of TOVAL and contents of
2517 FROMVAL. Handles assignment into packed fields that have
2518 floating-point or non-scalar types. */
2520 static struct value *
2521 ada_value_assign (struct value *toval, struct value *fromval)
2523 struct type *type = value_type (toval);
2524 int bits = value_bitsize (toval);
2526 toval = ada_coerce_ref (toval);
2527 fromval = ada_coerce_ref (fromval);
2529 if (ada_is_direct_array_type (value_type (toval)))
2530 toval = ada_coerce_to_simple_array (toval);
2531 if (ada_is_direct_array_type (value_type (fromval)))
2532 fromval = ada_coerce_to_simple_array (fromval);
2534 if (!deprecated_value_modifiable (toval))
2535 error (_("Left operand of assignment is not a modifiable lvalue."));
2537 if (VALUE_LVAL (toval) == lval_memory
2539 && (type->code () == TYPE_CODE_FLT
2540 || type->code () == TYPE_CODE_STRUCT))
2542 int len = (value_bitpos (toval)
2543 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2545 gdb_byte *buffer = (gdb_byte *) alloca (len);
2547 CORE_ADDR to_addr = value_address (toval);
2549 if (type->code () == TYPE_CODE_FLT)
2550 fromval = value_cast (type, fromval);
2552 read_memory (to_addr, buffer, len);
2553 from_size = value_bitsize (fromval);
2555 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2557 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2558 ULONGEST from_offset = 0;
2559 if (is_big_endian && is_scalar_type (value_type (fromval)))
2560 from_offset = from_size - bits;
2561 copy_bitwise (buffer, value_bitpos (toval),
2562 value_contents (fromval), from_offset,
2563 bits, is_big_endian);
2564 write_memory_with_notification (to_addr, buffer, len);
2566 val = value_copy (toval);
2567 memcpy (value_contents_raw (val), value_contents (fromval),
2568 TYPE_LENGTH (type));
2569 deprecated_set_value_type (val, type);
2574 return value_assign (toval, fromval);
2578 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2579 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2580 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2581 COMPONENT, and not the inferior's memory. The current contents
2582 of COMPONENT are ignored.
2584 Although not part of the initial design, this function also works
2585 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2586 had a null address, and COMPONENT had an address which is equal to
2587 its offset inside CONTAINER. */
2590 value_assign_to_component (struct value *container, struct value *component,
2593 LONGEST offset_in_container =
2594 (LONGEST) (value_address (component) - value_address (container));
2595 int bit_offset_in_container =
2596 value_bitpos (component) - value_bitpos (container);
2599 val = value_cast (value_type (component), val);
2601 if (value_bitsize (component) == 0)
2602 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2604 bits = value_bitsize (component);
2606 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2610 if (is_scalar_type (check_typedef (value_type (component))))
2612 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2615 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2616 value_bitpos (container) + bit_offset_in_container,
2617 value_contents (val), src_offset, bits, 1);
2620 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2621 value_bitpos (container) + bit_offset_in_container,
2622 value_contents (val), 0, bits, 0);
2625 /* Determine if TYPE is an access to an unconstrained array. */
2628 ada_is_access_to_unconstrained_array (struct type *type)
2630 return (type->code () == TYPE_CODE_TYPEDEF
2631 && is_thick_pntr (ada_typedef_target_type (type)));
2634 /* The value of the element of array ARR at the ARITY indices given in IND.
2635 ARR may be either a simple array, GNAT array descriptor, or pointer
2639 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2643 struct type *elt_type;
2645 elt = ada_coerce_to_simple_array (arr);
2647 elt_type = ada_check_typedef (value_type (elt));
2648 if (elt_type->code () == TYPE_CODE_ARRAY
2649 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2650 return value_subscript_packed (elt, arity, ind);
2652 for (k = 0; k < arity; k += 1)
2654 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2656 if (elt_type->code () != TYPE_CODE_ARRAY)
2657 error (_("too many subscripts (%d expected)"), k);
2659 elt = value_subscript (elt, pos_atr (ind[k]));
2661 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2662 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2664 /* The element is a typedef to an unconstrained array,
2665 except that the value_subscript call stripped the
2666 typedef layer. The typedef layer is GNAT's way to
2667 specify that the element is, at the source level, an
2668 access to the unconstrained array, rather than the
2669 unconstrained array. So, we need to restore that
2670 typedef layer, which we can do by forcing the element's
2671 type back to its original type. Otherwise, the returned
2672 value is going to be printed as the array, rather
2673 than as an access. Another symptom of the same issue
2674 would be that an expression trying to dereference the
2675 element would also be improperly rejected. */
2676 deprecated_set_value_type (elt, saved_elt_type);
2679 elt_type = ada_check_typedef (value_type (elt));
2685 /* Assuming ARR is a pointer to a GDB array, the value of the element
2686 of *ARR at the ARITY indices given in IND.
2687 Does not read the entire array into memory.
2689 Note: Unlike what one would expect, this function is used instead of
2690 ada_value_subscript for basically all non-packed array types. The reason
2691 for this is that a side effect of doing our own pointer arithmetics instead
2692 of relying on value_subscript is that there is no implicit typedef peeling.
2693 This is important for arrays of array accesses, where it allows us to
2694 preserve the fact that the array's element is an array access, where the
2695 access part os encoded in a typedef layer. */
2697 static struct value *
2698 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2701 struct value *array_ind = ada_value_ind (arr);
2703 = check_typedef (value_enclosing_type (array_ind));
2705 if (type->code () == TYPE_CODE_ARRAY
2706 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2707 return value_subscript_packed (array_ind, arity, ind);
2709 for (k = 0; k < arity; k += 1)
2713 if (type->code () != TYPE_CODE_ARRAY)
2714 error (_("too many subscripts (%d expected)"), k);
2715 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2717 get_discrete_bounds (type->index_type (), &lwb, &upb);
2718 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2719 type = TYPE_TARGET_TYPE (type);
2722 return value_ind (arr);
2725 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2726 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2727 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2728 this array is LOW, as per Ada rules. */
2729 static struct value *
2730 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2733 struct type *type0 = ada_check_typedef (type);
2734 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2735 struct type *index_type
2736 = create_static_range_type (NULL, base_index_type, low, high);
2737 struct type *slice_type = create_array_type_with_stride
2738 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2739 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2740 TYPE_FIELD_BITSIZE (type0, 0));
2741 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2742 gdb::optional<LONGEST> base_low_pos, low_pos;
2745 low_pos = discrete_position (base_index_type, low);
2746 base_low_pos = discrete_position (base_index_type, base_low);
2748 if (!low_pos.has_value () || !base_low_pos.has_value ())
2750 warning (_("unable to get positions in slice, use bounds instead"));
2752 base_low_pos = base_low;
2755 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2757 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2759 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2760 return value_at_lazy (slice_type, base);
2764 static struct value *
2765 ada_value_slice (struct value *array, int low, int high)
2767 struct type *type = ada_check_typedef (value_type (array));
2768 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2769 struct type *index_type
2770 = create_static_range_type (NULL, type->index_type (), low, high);
2771 struct type *slice_type = create_array_type_with_stride
2772 (NULL, TYPE_TARGET_TYPE (type), index_type,
2773 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2774 TYPE_FIELD_BITSIZE (type, 0));
2775 gdb::optional<LONGEST> low_pos, high_pos;
2778 low_pos = discrete_position (base_index_type, low);
2779 high_pos = discrete_position (base_index_type, high);
2781 if (!low_pos.has_value () || !high_pos.has_value ())
2783 warning (_("unable to get positions in slice, use bounds instead"));
2788 return value_cast (slice_type,
2789 value_slice (array, low, *high_pos - *low_pos + 1));
2792 /* If type is a record type in the form of a standard GNAT array
2793 descriptor, returns the number of dimensions for type. If arr is a
2794 simple array, returns the number of "array of"s that prefix its
2795 type designation. Otherwise, returns 0. */
2798 ada_array_arity (struct type *type)
2805 type = desc_base_type (type);
2808 if (type->code () == TYPE_CODE_STRUCT)
2809 return desc_arity (desc_bounds_type (type));
2811 while (type->code () == TYPE_CODE_ARRAY)
2814 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2820 /* If TYPE is a record type in the form of a standard GNAT array
2821 descriptor or a simple array type, returns the element type for
2822 TYPE after indexing by NINDICES indices, or by all indices if
2823 NINDICES is -1. Otherwise, returns NULL. */
2826 ada_array_element_type (struct type *type, int nindices)
2828 type = desc_base_type (type);
2830 if (type->code () == TYPE_CODE_STRUCT)
2833 struct type *p_array_type;
2835 p_array_type = desc_data_target_type (type);
2837 k = ada_array_arity (type);
2841 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2842 if (nindices >= 0 && k > nindices)
2844 while (k > 0 && p_array_type != NULL)
2846 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2849 return p_array_type;
2851 else if (type->code () == TYPE_CODE_ARRAY)
2853 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2855 type = TYPE_TARGET_TYPE (type);
2864 /* See ada-lang.h. */
2867 ada_index_type (struct type *type, int n, const char *name)
2869 struct type *result_type;
2871 type = desc_base_type (type);
2873 if (n < 0 || n > ada_array_arity (type))
2874 error (_("invalid dimension number to '%s"), name);
2876 if (ada_is_simple_array_type (type))
2880 for (i = 1; i < n; i += 1)
2882 type = ada_check_typedef (type);
2883 type = TYPE_TARGET_TYPE (type);
2885 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
2886 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2887 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2888 perhaps stabsread.c would make more sense. */
2889 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2894 result_type = desc_index_type (desc_bounds_type (type), n);
2895 if (result_type == NULL)
2896 error (_("attempt to take bound of something that is not an array"));
2902 /* Given that arr is an array type, returns the lower bound of the
2903 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2904 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2905 array-descriptor type. It works for other arrays with bounds supplied
2906 by run-time quantities other than discriminants. */
2909 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2911 struct type *type, *index_type_desc, *index_type;
2914 gdb_assert (which == 0 || which == 1);
2916 if (ada_is_constrained_packed_array_type (arr_type))
2917 arr_type = decode_constrained_packed_array_type (arr_type);
2919 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2920 return (LONGEST) - which;
2922 if (arr_type->code () == TYPE_CODE_PTR)
2923 type = TYPE_TARGET_TYPE (arr_type);
2927 if (type->is_fixed_instance ())
2929 /* The array has already been fixed, so we do not need to
2930 check the parallel ___XA type again. That encoding has
2931 already been applied, so ignore it now. */
2932 index_type_desc = NULL;
2936 index_type_desc = ada_find_parallel_type (type, "___XA");
2937 ada_fixup_array_indexes_type (index_type_desc);
2940 if (index_type_desc != NULL)
2941 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2945 struct type *elt_type = check_typedef (type);
2947 for (i = 1; i < n; i++)
2948 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2950 index_type = elt_type->index_type ();
2954 (LONGEST) (which == 0
2955 ? ada_discrete_type_low_bound (index_type)
2956 : ada_discrete_type_high_bound (index_type));
2959 /* Given that arr is an array value, returns the lower bound of the
2960 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2961 WHICH is 1. This routine will also work for arrays with bounds
2962 supplied by run-time quantities other than discriminants. */
2965 ada_array_bound (struct value *arr, int n, int which)
2967 struct type *arr_type;
2969 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2970 arr = value_ind (arr);
2971 arr_type = value_enclosing_type (arr);
2973 if (ada_is_constrained_packed_array_type (arr_type))
2974 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2975 else if (ada_is_simple_array_type (arr_type))
2976 return ada_array_bound_from_type (arr_type, n, which);
2978 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2981 /* Given that arr is an array value, returns the length of the
2982 nth index. This routine will also work for arrays with bounds
2983 supplied by run-time quantities other than discriminants.
2984 Does not work for arrays indexed by enumeration types with representation
2985 clauses at the moment. */
2988 ada_array_length (struct value *arr, int n)
2990 struct type *arr_type, *index_type;
2993 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2994 arr = value_ind (arr);
2995 arr_type = value_enclosing_type (arr);
2997 if (ada_is_constrained_packed_array_type (arr_type))
2998 return ada_array_length (decode_constrained_packed_array (arr), n);
3000 if (ada_is_simple_array_type (arr_type))
3002 low = ada_array_bound_from_type (arr_type, n, 0);
3003 high = ada_array_bound_from_type (arr_type, n, 1);
3007 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3008 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3011 arr_type = check_typedef (arr_type);
3012 index_type = ada_index_type (arr_type, n, "length");
3013 if (index_type != NULL)
3015 struct type *base_type;
3016 if (index_type->code () == TYPE_CODE_RANGE)
3017 base_type = TYPE_TARGET_TYPE (index_type);
3019 base_type = index_type;
3021 low = pos_atr (value_from_longest (base_type, low));
3022 high = pos_atr (value_from_longest (base_type, high));
3024 return high - low + 1;
3027 /* An array whose type is that of ARR_TYPE (an array type), with
3028 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3029 less than LOW, then LOW-1 is used. */
3031 static struct value *
3032 empty_array (struct type *arr_type, int low, int high)
3034 struct type *arr_type0 = ada_check_typedef (arr_type);
3035 struct type *index_type
3036 = create_static_range_type
3037 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3038 high < low ? low - 1 : high);
3039 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3041 return allocate_value (create_array_type (NULL, elt_type, index_type));
3045 /* Name resolution */
3047 /* The "decoded" name for the user-definable Ada operator corresponding
3051 ada_decoded_op_name (enum exp_opcode op)
3055 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3057 if (ada_opname_table[i].op == op)
3058 return ada_opname_table[i].decoded;
3060 error (_("Could not find operator name for opcode"));
3063 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3064 in a listing of choices during disambiguation (see sort_choices, below).
3065 The idea is that overloadings of a subprogram name from the
3066 same package should sort in their source order. We settle for ordering
3067 such symbols by their trailing number (__N or $N). */
3070 encoded_ordered_before (const char *N0, const char *N1)
3074 else if (N0 == NULL)
3080 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3082 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3084 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3085 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3090 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3093 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3095 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3096 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3098 return (strcmp (N0, N1) < 0);
3102 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3106 sort_choices (struct block_symbol syms[], int nsyms)
3110 for (i = 1; i < nsyms; i += 1)
3112 struct block_symbol sym = syms[i];
3115 for (j = i - 1; j >= 0; j -= 1)
3117 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3118 sym.symbol->linkage_name ()))
3120 syms[j + 1] = syms[j];
3126 /* Whether GDB should display formals and return types for functions in the
3127 overloads selection menu. */
3128 static bool print_signatures = true;
3130 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3131 all but functions, the signature is just the name of the symbol. For
3132 functions, this is the name of the function, the list of types for formals
3133 and the return type (if any). */
3136 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3137 const struct type_print_options *flags)
3139 struct type *type = SYMBOL_TYPE (sym);
3141 fprintf_filtered (stream, "%s", sym->print_name ());
3142 if (!print_signatures
3144 || type->code () != TYPE_CODE_FUNC)
3147 if (type->num_fields () > 0)
3151 fprintf_filtered (stream, " (");
3152 for (i = 0; i < type->num_fields (); ++i)
3155 fprintf_filtered (stream, "; ");
3156 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3159 fprintf_filtered (stream, ")");
3161 if (TYPE_TARGET_TYPE (type) != NULL
3162 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3164 fprintf_filtered (stream, " return ");
3165 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3169 /* Read and validate a set of numeric choices from the user in the
3170 range 0 .. N_CHOICES-1. Place the results in increasing
3171 order in CHOICES[0 .. N-1], and return N.
3173 The user types choices as a sequence of numbers on one line
3174 separated by blanks, encoding them as follows:
3176 + A choice of 0 means to cancel the selection, throwing an error.
3177 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3178 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3180 The user is not allowed to choose more than MAX_RESULTS values.
3182 ANNOTATION_SUFFIX, if present, is used to annotate the input
3183 prompts (for use with the -f switch). */
3186 get_selections (int *choices, int n_choices, int max_results,
3187 int is_all_choice, const char *annotation_suffix)
3192 int first_choice = is_all_choice ? 2 : 1;
3194 prompt = getenv ("PS2");
3198 args = command_line_input (prompt, annotation_suffix);
3201 error_no_arg (_("one or more choice numbers"));
3205 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3206 order, as given in args. Choices are validated. */
3212 args = skip_spaces (args);
3213 if (*args == '\0' && n_chosen == 0)
3214 error_no_arg (_("one or more choice numbers"));
3215 else if (*args == '\0')
3218 choice = strtol (args, &args2, 10);
3219 if (args == args2 || choice < 0
3220 || choice > n_choices + first_choice - 1)
3221 error (_("Argument must be choice number"));
3225 error (_("cancelled"));
3227 if (choice < first_choice)
3229 n_chosen = n_choices;
3230 for (j = 0; j < n_choices; j += 1)
3234 choice -= first_choice;
3236 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3240 if (j < 0 || choice != choices[j])
3244 for (k = n_chosen - 1; k > j; k -= 1)
3245 choices[k + 1] = choices[k];
3246 choices[j + 1] = choice;
3251 if (n_chosen > max_results)
3252 error (_("Select no more than %d of the above"), max_results);
3257 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3258 by asking the user (if necessary), returning the number selected,
3259 and setting the first elements of SYMS items. Error if no symbols
3262 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3263 to be re-integrated one of these days. */
3266 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3269 int *chosen = XALLOCAVEC (int , nsyms);
3271 int first_choice = (max_results == 1) ? 1 : 2;
3272 const char *select_mode = multiple_symbols_select_mode ();
3274 if (max_results < 1)
3275 error (_("Request to select 0 symbols!"));
3279 if (select_mode == multiple_symbols_cancel)
3281 canceled because the command is ambiguous\n\
3282 See set/show multiple-symbol."));
3284 /* If select_mode is "all", then return all possible symbols.
3285 Only do that if more than one symbol can be selected, of course.
3286 Otherwise, display the menu as usual. */
3287 if (select_mode == multiple_symbols_all && max_results > 1)
3290 printf_filtered (_("[0] cancel\n"));
3291 if (max_results > 1)
3292 printf_filtered (_("[1] all\n"));
3294 sort_choices (syms, nsyms);
3296 for (i = 0; i < nsyms; i += 1)
3298 if (syms[i].symbol == NULL)
3301 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3303 struct symtab_and_line sal =
3304 find_function_start_sal (syms[i].symbol, 1);
3306 printf_filtered ("[%d] ", i + first_choice);
3307 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3308 &type_print_raw_options);
3309 if (sal.symtab == NULL)
3310 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3311 metadata_style.style ().ptr (), nullptr, sal.line);
3315 styled_string (file_name_style.style (),
3316 symtab_to_filename_for_display (sal.symtab)),
3323 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3324 && SYMBOL_TYPE (syms[i].symbol) != NULL
3325 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3326 struct symtab *symtab = NULL;
3328 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3329 symtab = symbol_symtab (syms[i].symbol);
3331 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3333 printf_filtered ("[%d] ", i + first_choice);
3334 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3335 &type_print_raw_options);
3336 printf_filtered (_(" at %s:%d\n"),
3337 symtab_to_filename_for_display (symtab),
3338 SYMBOL_LINE (syms[i].symbol));
3340 else if (is_enumeral
3341 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3343 printf_filtered (("[%d] "), i + first_choice);
3344 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3345 gdb_stdout, -1, 0, &type_print_raw_options);
3346 printf_filtered (_("'(%s) (enumeral)\n"),
3347 syms[i].symbol->print_name ());
3351 printf_filtered ("[%d] ", i + first_choice);
3352 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3353 &type_print_raw_options);
3356 printf_filtered (is_enumeral
3357 ? _(" in %s (enumeral)\n")
3359 symtab_to_filename_for_display (symtab));
3361 printf_filtered (is_enumeral
3362 ? _(" (enumeral)\n")
3368 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3371 for (i = 0; i < n_chosen; i += 1)
3372 syms[i] = syms[chosen[i]];
3377 /* See ada-lang.h. */
3380 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3381 int nargs, value *argvec[])
3383 if (possible_user_operator_p (op, argvec))
3385 std::vector<struct block_symbol> candidates
3386 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3389 int i = ada_resolve_function (candidates, argvec,
3390 nargs, ada_decoded_op_name (op), NULL,
3393 return candidates[i];
3398 /* See ada-lang.h. */
3401 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3402 struct type *context_type,
3403 bool parse_completion,
3404 int nargs, value *argvec[],
3405 innermost_block_tracker *tracker)
3407 std::vector<struct block_symbol> candidates
3408 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3411 if (candidates.size () == 1)
3415 i = ada_resolve_function
3418 sym->linkage_name (),
3419 context_type, parse_completion);
3421 error (_("Could not find a match for %s"), sym->print_name ());
3424 tracker->update (candidates[i]);
3425 return candidates[i];
3428 /* See ada-lang.h. */
3431 ada_resolve_variable (struct symbol *sym, const struct block *block,
3432 struct type *context_type,
3433 bool parse_completion,
3435 innermost_block_tracker *tracker)
3437 std::vector<struct block_symbol> candidates
3438 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3440 if (std::any_of (candidates.begin (),
3442 [] (block_symbol &bsym)
3444 switch (SYMBOL_CLASS (bsym.symbol))
3449 case LOC_REGPARM_ADDR:
3458 /* Types tend to get re-introduced locally, so if there
3459 are any local symbols that are not types, first filter
3463 (candidates.begin (),
3465 [] (block_symbol &bsym)
3467 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3473 if (candidates.empty ())
3474 error (_("No definition found for %s"), sym->print_name ());
3475 else if (candidates.size () == 1)
3477 else if (deprocedure_p && !is_nonfunction (candidates))
3479 i = ada_resolve_function
3480 (candidates, NULL, 0,
3481 sym->linkage_name (),
3482 context_type, parse_completion);
3484 error (_("Could not find a match for %s"), sym->print_name ());
3488 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3489 user_select_syms (candidates.data (), candidates.size (), 1);
3493 tracker->update (candidates[i]);
3494 return candidates[i];
3497 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3498 /* The term "match" here is rather loose. The match is heuristic and
3502 ada_type_match (struct type *ftype, struct type *atype)
3504 ftype = ada_check_typedef (ftype);
3505 atype = ada_check_typedef (atype);
3507 if (ftype->code () == TYPE_CODE_REF)
3508 ftype = TYPE_TARGET_TYPE (ftype);
3509 if (atype->code () == TYPE_CODE_REF)
3510 atype = TYPE_TARGET_TYPE (atype);
3512 switch (ftype->code ())
3515 return ftype->code () == atype->code ();
3517 if (atype->code () != TYPE_CODE_PTR)
3519 atype = TYPE_TARGET_TYPE (atype);
3520 /* This can only happen if the actual argument is 'null'. */
3521 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3523 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3525 case TYPE_CODE_ENUM:
3526 case TYPE_CODE_RANGE:
3527 switch (atype->code ())
3530 case TYPE_CODE_ENUM:
3531 case TYPE_CODE_RANGE:
3537 case TYPE_CODE_ARRAY:
3538 return (atype->code () == TYPE_CODE_ARRAY
3539 || ada_is_array_descriptor_type (atype));
3541 case TYPE_CODE_STRUCT:
3542 if (ada_is_array_descriptor_type (ftype))
3543 return (atype->code () == TYPE_CODE_ARRAY
3544 || ada_is_array_descriptor_type (atype));
3546 return (atype->code () == TYPE_CODE_STRUCT
3547 && !ada_is_array_descriptor_type (atype));
3549 case TYPE_CODE_UNION:
3551 return (atype->code () == ftype->code ());
3555 /* Return non-zero if the formals of FUNC "sufficiently match" the
3556 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3557 may also be an enumeral, in which case it is treated as a 0-
3558 argument function. */
3561 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3564 struct type *func_type = SYMBOL_TYPE (func);
3566 if (SYMBOL_CLASS (func) == LOC_CONST
3567 && func_type->code () == TYPE_CODE_ENUM)
3568 return (n_actuals == 0);
3569 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3572 if (func_type->num_fields () != n_actuals)
3575 for (i = 0; i < n_actuals; i += 1)
3577 if (actuals[i] == NULL)
3581 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3582 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3584 if (!ada_type_match (ftype, atype))
3591 /* False iff function type FUNC_TYPE definitely does not produce a value
3592 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3593 FUNC_TYPE is not a valid function type with a non-null return type
3594 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3597 return_match (struct type *func_type, struct type *context_type)
3599 struct type *return_type;
3601 if (func_type == NULL)
3604 if (func_type->code () == TYPE_CODE_FUNC)
3605 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3607 return_type = get_base_type (func_type);
3608 if (return_type == NULL)
3611 context_type = get_base_type (context_type);
3613 if (return_type->code () == TYPE_CODE_ENUM)
3614 return context_type == NULL || return_type == context_type;
3615 else if (context_type == NULL)
3616 return return_type->code () != TYPE_CODE_VOID;
3618 return return_type->code () == context_type->code ();
3622 /* Returns the index in SYMS that contains the symbol for the
3623 function (if any) that matches the types of the NARGS arguments in
3624 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3625 that returns that type, then eliminate matches that don't. If
3626 CONTEXT_TYPE is void and there is at least one match that does not
3627 return void, eliminate all matches that do.
3629 Asks the user if there is more than one match remaining. Returns -1
3630 if there is no such symbol or none is selected. NAME is used
3631 solely for messages. May re-arrange and modify SYMS in
3632 the process; the index returned is for the modified vector. */
3635 ada_resolve_function (std::vector<struct block_symbol> &syms,
3636 struct value **args, int nargs,
3637 const char *name, struct type *context_type,
3638 bool parse_completion)
3642 int m; /* Number of hits */
3645 /* In the first pass of the loop, we only accept functions matching
3646 context_type. If none are found, we add a second pass of the loop
3647 where every function is accepted. */
3648 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3650 for (k = 0; k < syms.size (); k += 1)
3652 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3654 if (ada_args_match (syms[k].symbol, args, nargs)
3655 && (fallback || return_match (type, context_type)))
3663 /* If we got multiple matches, ask the user which one to use. Don't do this
3664 interactive thing during completion, though, as the purpose of the
3665 completion is providing a list of all possible matches. Prompting the
3666 user to filter it down would be completely unexpected in this case. */
3669 else if (m > 1 && !parse_completion)
3671 printf_filtered (_("Multiple matches for %s\n"), name);
3672 user_select_syms (syms.data (), m, 1);
3678 /* Type-class predicates */
3680 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3684 numeric_type_p (struct type *type)
3690 switch (type->code ())
3694 case TYPE_CODE_FIXED_POINT:
3696 case TYPE_CODE_RANGE:
3697 return (type == TYPE_TARGET_TYPE (type)
3698 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3705 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3708 integer_type_p (struct type *type)
3714 switch (type->code ())
3718 case TYPE_CODE_RANGE:
3719 return (type == TYPE_TARGET_TYPE (type)
3720 || integer_type_p (TYPE_TARGET_TYPE (type)));
3727 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3730 scalar_type_p (struct type *type)
3736 switch (type->code ())
3739 case TYPE_CODE_RANGE:
3740 case TYPE_CODE_ENUM:
3742 case TYPE_CODE_FIXED_POINT:
3750 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3753 discrete_type_p (struct type *type)
3759 switch (type->code ())
3762 case TYPE_CODE_RANGE:
3763 case TYPE_CODE_ENUM:
3764 case TYPE_CODE_BOOL:
3772 /* Returns non-zero if OP with operands in the vector ARGS could be
3773 a user-defined function. Errs on the side of pre-defined operators
3774 (i.e., result 0). */
3777 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3779 struct type *type0 =
3780 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3781 struct type *type1 =
3782 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3796 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3800 case BINOP_BITWISE_AND:
3801 case BINOP_BITWISE_IOR:
3802 case BINOP_BITWISE_XOR:
3803 return (!(integer_type_p (type0) && integer_type_p (type1)));
3806 case BINOP_NOTEQUAL:
3811 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3814 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3817 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3821 case UNOP_LOGICAL_NOT:
3823 return (!numeric_type_p (type0));
3832 1. In the following, we assume that a renaming type's name may
3833 have an ___XD suffix. It would be nice if this went away at some
3835 2. We handle both the (old) purely type-based representation of
3836 renamings and the (new) variable-based encoding. At some point,
3837 it is devoutly to be hoped that the former goes away
3838 (FIXME: hilfinger-2007-07-09).
3839 3. Subprogram renamings are not implemented, although the XRS
3840 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3842 /* If SYM encodes a renaming,
3844 <renaming> renames <renamed entity>,
3846 sets *LEN to the length of the renamed entity's name,
3847 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3848 the string describing the subcomponent selected from the renamed
3849 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3850 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3851 are undefined). Otherwise, returns a value indicating the category
3852 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3853 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3854 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3855 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3856 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3857 may be NULL, in which case they are not assigned.
3859 [Currently, however, GCC does not generate subprogram renamings.] */
3861 enum ada_renaming_category
3862 ada_parse_renaming (struct symbol *sym,
3863 const char **renamed_entity, int *len,
3864 const char **renaming_expr)
3866 enum ada_renaming_category kind;
3871 return ADA_NOT_RENAMING;
3872 switch (SYMBOL_CLASS (sym))
3875 return ADA_NOT_RENAMING;
3879 case LOC_OPTIMIZED_OUT:
3880 info = strstr (sym->linkage_name (), "___XR");
3882 return ADA_NOT_RENAMING;
3886 kind = ADA_OBJECT_RENAMING;
3890 kind = ADA_EXCEPTION_RENAMING;
3894 kind = ADA_PACKAGE_RENAMING;
3898 kind = ADA_SUBPROGRAM_RENAMING;
3902 return ADA_NOT_RENAMING;
3906 if (renamed_entity != NULL)
3907 *renamed_entity = info;
3908 suffix = strstr (info, "___XE");
3909 if (suffix == NULL || suffix == info)
3910 return ADA_NOT_RENAMING;
3912 *len = strlen (info) - strlen (suffix);
3914 if (renaming_expr != NULL)
3915 *renaming_expr = suffix;
3919 /* Compute the value of the given RENAMING_SYM, which is expected to
3920 be a symbol encoding a renaming expression. BLOCK is the block
3921 used to evaluate the renaming. */
3923 static struct value *
3924 ada_read_renaming_var_value (struct symbol *renaming_sym,
3925 const struct block *block)
3927 const char *sym_name;
3929 sym_name = renaming_sym->linkage_name ();
3930 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3931 return evaluate_expression (expr.get ());
3935 /* Evaluation: Function Calls */
3937 /* Return an lvalue containing the value VAL. This is the identity on
3938 lvalues, and otherwise has the side-effect of allocating memory
3939 in the inferior where a copy of the value contents is copied. */
3941 static struct value *
3942 ensure_lval (struct value *val)
3944 if (VALUE_LVAL (val) == not_lval
3945 || VALUE_LVAL (val) == lval_internalvar)
3947 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3948 const CORE_ADDR addr =
3949 value_as_long (value_allocate_space_in_inferior (len));
3951 VALUE_LVAL (val) = lval_memory;
3952 set_value_address (val, addr);
3953 write_memory (addr, value_contents (val), len);
3959 /* Given ARG, a value of type (pointer or reference to a)*
3960 structure/union, extract the component named NAME from the ultimate
3961 target structure/union and return it as a value with its
3964 The routine searches for NAME among all members of the structure itself
3965 and (recursively) among all members of any wrapper members
3968 If NO_ERR, then simply return NULL in case of error, rather than
3971 static struct value *
3972 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
3974 struct type *t, *t1;
3979 t1 = t = ada_check_typedef (value_type (arg));
3980 if (t->code () == TYPE_CODE_REF)
3982 t1 = TYPE_TARGET_TYPE (t);
3985 t1 = ada_check_typedef (t1);
3986 if (t1->code () == TYPE_CODE_PTR)
3988 arg = coerce_ref (arg);
3993 while (t->code () == TYPE_CODE_PTR)
3995 t1 = TYPE_TARGET_TYPE (t);
3998 t1 = ada_check_typedef (t1);
3999 if (t1->code () == TYPE_CODE_PTR)
4001 arg = value_ind (arg);
4008 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4012 v = ada_search_struct_field (name, arg, 0, t);
4015 int bit_offset, bit_size, byte_offset;
4016 struct type *field_type;
4019 if (t->code () == TYPE_CODE_PTR)
4020 address = value_address (ada_value_ind (arg));
4022 address = value_address (ada_coerce_ref (arg));
4024 /* Check to see if this is a tagged type. We also need to handle
4025 the case where the type is a reference to a tagged type, but
4026 we have to be careful to exclude pointers to tagged types.
4027 The latter should be shown as usual (as a pointer), whereas
4028 a reference should mostly be transparent to the user. */
4030 if (ada_is_tagged_type (t1, 0)
4031 || (t1->code () == TYPE_CODE_REF
4032 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4034 /* We first try to find the searched field in the current type.
4035 If not found then let's look in the fixed type. */
4037 if (!find_struct_field (name, t1, 0,
4038 &field_type, &byte_offset, &bit_offset,
4047 /* Convert to fixed type in all cases, so that we have proper
4048 offsets to each field in unconstrained record types. */
4049 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4050 address, NULL, check_tag);
4052 /* Resolve the dynamic type as well. */
4053 arg = value_from_contents_and_address (t1, nullptr, address);
4054 t1 = value_type (arg);
4056 if (find_struct_field (name, t1, 0,
4057 &field_type, &byte_offset, &bit_offset,
4062 if (t->code () == TYPE_CODE_REF)
4063 arg = ada_coerce_ref (arg);
4065 arg = ada_value_ind (arg);
4066 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4067 bit_offset, bit_size,
4071 v = value_at_lazy (field_type, address + byte_offset);
4075 if (v != NULL || no_err)
4078 error (_("There is no member named %s."), name);
4084 error (_("Attempt to extract a component of "
4085 "a value that is not a record."));
4088 /* Return the value ACTUAL, converted to be an appropriate value for a
4089 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4090 allocating any necessary descriptors (fat pointers), or copies of
4091 values not residing in memory, updating it as needed. */
4094 ada_convert_actual (struct value *actual, struct type *formal_type0)
4096 struct type *actual_type = ada_check_typedef (value_type (actual));
4097 struct type *formal_type = ada_check_typedef (formal_type0);
4098 struct type *formal_target =
4099 formal_type->code () == TYPE_CODE_PTR
4100 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4101 struct type *actual_target =
4102 actual_type->code () == TYPE_CODE_PTR
4103 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4105 if (ada_is_array_descriptor_type (formal_target)
4106 && actual_target->code () == TYPE_CODE_ARRAY)
4107 return make_array_descriptor (formal_type, actual);
4108 else if (formal_type->code () == TYPE_CODE_PTR
4109 || formal_type->code () == TYPE_CODE_REF)
4111 struct value *result;
4113 if (formal_target->code () == TYPE_CODE_ARRAY
4114 && ada_is_array_descriptor_type (actual_target))
4115 result = desc_data (actual);
4116 else if (formal_type->code () != TYPE_CODE_PTR)
4118 if (VALUE_LVAL (actual) != lval_memory)
4122 actual_type = ada_check_typedef (value_type (actual));
4123 val = allocate_value (actual_type);
4124 memcpy ((char *) value_contents_raw (val),
4125 (char *) value_contents (actual),
4126 TYPE_LENGTH (actual_type));
4127 actual = ensure_lval (val);
4129 result = value_addr (actual);
4133 return value_cast_pointers (formal_type, result, 0);
4135 else if (actual_type->code () == TYPE_CODE_PTR)
4136 return ada_value_ind (actual);
4137 else if (ada_is_aligner_type (formal_type))
4139 /* We need to turn this parameter into an aligner type
4141 struct value *aligner = allocate_value (formal_type);
4142 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4144 value_assign_to_component (aligner, component, actual);
4151 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4157 value_pointer (struct value *value, struct type *type)
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = (gdb_byte *) alloca (len);
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4198 bounds = ensure_lval (bounds);
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 desc_type->field (0).type ()),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 desc_type->field (1).type ()),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4214 descriptor = ensure_lval (descriptor);
4216 if (type->code () == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4222 /* Symbol Cache Module */
4224 /* Performance measurements made as of 2010-01-15 indicate that
4225 this cache does bring some noticeable improvements. Depending
4226 on the type of entity being printed, the cache can make it as much
4227 as an order of magnitude faster than without it.
4229 The descriptive type DWARF extension has significantly reduced
4230 the need for this cache, at least when DWARF is being used. However,
4231 even in this case, some expensive name-based symbol searches are still
4232 sometimes necessary - to find an XVZ variable, mostly. */
4234 /* Return the symbol cache associated to the given program space PSPACE.
4235 If not allocated for this PSPACE yet, allocate and initialize one. */
4237 static struct ada_symbol_cache *
4238 ada_get_symbol_cache (struct program_space *pspace)
4240 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4242 if (pspace_data->sym_cache == nullptr)
4243 pspace_data->sym_cache.reset (new ada_symbol_cache);
4245 return pspace_data->sym_cache.get ();
4248 /* Clear all entries from the symbol cache. */
4251 ada_clear_symbol_cache ()
4253 struct ada_pspace_data *pspace_data
4254 = get_ada_pspace_data (current_program_space);
4256 if (pspace_data->sym_cache != nullptr)
4257 pspace_data->sym_cache.reset ();
4260 /* Search our cache for an entry matching NAME and DOMAIN.
4261 Return it if found, or NULL otherwise. */
4263 static struct cache_entry **
4264 find_entry (const char *name, domain_enum domain)
4266 struct ada_symbol_cache *sym_cache
4267 = ada_get_symbol_cache (current_program_space);
4268 int h = msymbol_hash (name) % HASH_SIZE;
4269 struct cache_entry **e;
4271 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4273 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4279 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4280 Return 1 if found, 0 otherwise.
4282 If an entry was found and SYM is not NULL, set *SYM to the entry's
4283 SYM. Same principle for BLOCK if not NULL. */
4286 lookup_cached_symbol (const char *name, domain_enum domain,
4287 struct symbol **sym, const struct block **block)
4289 struct cache_entry **e = find_entry (name, domain);
4296 *block = (*e)->block;
4300 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4301 in domain DOMAIN, save this result in our symbol cache. */
4304 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4305 const struct block *block)
4307 struct ada_symbol_cache *sym_cache
4308 = ada_get_symbol_cache (current_program_space);
4310 struct cache_entry *e;
4312 /* Symbols for builtin types don't have a block.
4313 For now don't cache such symbols. */
4314 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4317 /* If the symbol is a local symbol, then do not cache it, as a search
4318 for that symbol depends on the context. To determine whether
4319 the symbol is local or not, we check the block where we found it
4320 against the global and static blocks of its associated symtab. */
4322 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4323 GLOBAL_BLOCK) != block
4324 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4325 STATIC_BLOCK) != block)
4328 h = msymbol_hash (name) % HASH_SIZE;
4329 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4330 e->next = sym_cache->root[h];
4331 sym_cache->root[h] = e;
4332 e->name = obstack_strdup (&sym_cache->cache_space, name);
4340 /* Return the symbol name match type that should be used used when
4341 searching for all symbols matching LOOKUP_NAME.
4343 LOOKUP_NAME is expected to be a symbol name after transformation
4346 static symbol_name_match_type
4347 name_match_type_from_name (const char *lookup_name)
4349 return (strstr (lookup_name, "__") == NULL
4350 ? symbol_name_match_type::WILD
4351 : symbol_name_match_type::FULL);
4354 /* Return the result of a standard (literal, C-like) lookup of NAME in
4355 given DOMAIN, visible from lexical block BLOCK. */
4357 static struct symbol *
4358 standard_lookup (const char *name, const struct block *block,
4361 /* Initialize it just to avoid a GCC false warning. */
4362 struct block_symbol sym = {};
4364 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4366 ada_lookup_encoded_symbol (name, block, domain, &sym);
4367 cache_symbol (name, domain, sym.symbol, sym.block);
4372 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4373 in the symbol fields of SYMS. We treat enumerals as functions,
4374 since they contend in overloading in the same way. */
4376 is_nonfunction (const std::vector<struct block_symbol> &syms)
4378 for (const block_symbol &sym : syms)
4379 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4380 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4381 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4387 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4388 struct types. Otherwise, they may not. */
4391 equiv_types (struct type *type0, struct type *type1)
4395 if (type0 == NULL || type1 == NULL
4396 || type0->code () != type1->code ())
4398 if ((type0->code () == TYPE_CODE_STRUCT
4399 || type0->code () == TYPE_CODE_ENUM)
4400 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4401 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4407 /* True iff SYM0 represents the same entity as SYM1, or one that is
4408 no more defined than that of SYM1. */
4411 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4415 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4416 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4419 switch (SYMBOL_CLASS (sym0))
4425 struct type *type0 = SYMBOL_TYPE (sym0);
4426 struct type *type1 = SYMBOL_TYPE (sym1);
4427 const char *name0 = sym0->linkage_name ();
4428 const char *name1 = sym1->linkage_name ();
4429 int len0 = strlen (name0);
4432 type0->code () == type1->code ()
4433 && (equiv_types (type0, type1)
4434 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4435 && startswith (name1 + len0, "___XV")));
4438 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4439 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4443 const char *name0 = sym0->linkage_name ();
4444 const char *name1 = sym1->linkage_name ();
4445 return (strcmp (name0, name1) == 0
4446 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4454 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4455 records in RESULT. Do nothing if SYM is a duplicate. */
4458 add_defn_to_vec (std::vector<struct block_symbol> &result,
4460 const struct block *block)
4462 /* Do not try to complete stub types, as the debugger is probably
4463 already scanning all symbols matching a certain name at the
4464 time when this function is called. Trying to replace the stub
4465 type by its associated full type will cause us to restart a scan
4466 which may lead to an infinite recursion. Instead, the client
4467 collecting the matching symbols will end up collecting several
4468 matches, with at least one of them complete. It can then filter
4469 out the stub ones if needed. */
4471 for (int i = result.size () - 1; i >= 0; i -= 1)
4473 if (lesseq_defined_than (sym, result[i].symbol))
4475 else if (lesseq_defined_than (result[i].symbol, sym))
4477 result[i].symbol = sym;
4478 result[i].block = block;
4483 struct block_symbol info;
4486 result.push_back (info);
4489 /* Return a bound minimal symbol matching NAME according to Ada
4490 decoding rules. Returns an invalid symbol if there is no such
4491 minimal symbol. Names prefixed with "standard__" are handled
4492 specially: "standard__" is first stripped off, and only static and
4493 global symbols are searched. */
4495 struct bound_minimal_symbol
4496 ada_lookup_simple_minsym (const char *name)
4498 struct bound_minimal_symbol result;
4500 memset (&result, 0, sizeof (result));
4502 symbol_name_match_type match_type = name_match_type_from_name (name);
4503 lookup_name_info lookup_name (name, match_type);
4505 symbol_name_matcher_ftype *match_name
4506 = ada_get_symbol_name_matcher (lookup_name);
4508 for (objfile *objfile : current_program_space->objfiles ())
4510 for (minimal_symbol *msymbol : objfile->msymbols ())
4512 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4513 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4515 result.minsym = msymbol;
4516 result.objfile = objfile;
4525 /* True if TYPE is definitely an artificial type supplied to a symbol
4526 for which no debugging information was given in the symbol file. */
4529 is_nondebugging_type (struct type *type)
4531 const char *name = ada_type_name (type);
4533 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4536 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4537 that are deemed "identical" for practical purposes.
4539 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4540 types and that their number of enumerals is identical (in other
4541 words, type1->num_fields () == type2->num_fields ()). */
4544 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4548 /* The heuristic we use here is fairly conservative. We consider
4549 that 2 enumerate types are identical if they have the same
4550 number of enumerals and that all enumerals have the same
4551 underlying value and name. */
4553 /* All enums in the type should have an identical underlying value. */
4554 for (i = 0; i < type1->num_fields (); i++)
4555 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4558 /* All enumerals should also have the same name (modulo any numerical
4560 for (i = 0; i < type1->num_fields (); i++)
4562 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4563 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4564 int len_1 = strlen (name_1);
4565 int len_2 = strlen (name_2);
4567 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4568 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4570 || strncmp (TYPE_FIELD_NAME (type1, i),
4571 TYPE_FIELD_NAME (type2, i),
4579 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4580 that are deemed "identical" for practical purposes. Sometimes,
4581 enumerals are not strictly identical, but their types are so similar
4582 that they can be considered identical.
4584 For instance, consider the following code:
4586 type Color is (Black, Red, Green, Blue, White);
4587 type RGB_Color is new Color range Red .. Blue;
4589 Type RGB_Color is a subrange of an implicit type which is a copy
4590 of type Color. If we call that implicit type RGB_ColorB ("B" is
4591 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4592 As a result, when an expression references any of the enumeral
4593 by name (Eg. "print green"), the expression is technically
4594 ambiguous and the user should be asked to disambiguate. But
4595 doing so would only hinder the user, since it wouldn't matter
4596 what choice he makes, the outcome would always be the same.
4597 So, for practical purposes, we consider them as the same. */
4600 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4604 /* Before performing a thorough comparison check of each type,
4605 we perform a series of inexpensive checks. We expect that these
4606 checks will quickly fail in the vast majority of cases, and thus
4607 help prevent the unnecessary use of a more expensive comparison.
4608 Said comparison also expects us to make some of these checks
4609 (see ada_identical_enum_types_p). */
4611 /* Quick check: All symbols should have an enum type. */
4612 for (i = 0; i < syms.size (); i++)
4613 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4616 /* Quick check: They should all have the same value. */
4617 for (i = 1; i < syms.size (); i++)
4618 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4621 /* Quick check: They should all have the same number of enumerals. */
4622 for (i = 1; i < syms.size (); i++)
4623 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4624 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4627 /* All the sanity checks passed, so we might have a set of
4628 identical enumeration types. Perform a more complete
4629 comparison of the type of each symbol. */
4630 for (i = 1; i < syms.size (); i++)
4631 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4632 SYMBOL_TYPE (syms[0].symbol)))
4638 /* Remove any non-debugging symbols in SYMS that definitely
4639 duplicate other symbols in the list (The only case I know of where
4640 this happens is when object files containing stabs-in-ecoff are
4641 linked with files containing ordinary ecoff debugging symbols (or no
4642 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4645 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4649 /* We should never be called with less than 2 symbols, as there
4650 cannot be any extra symbol in that case. But it's easy to
4651 handle, since we have nothing to do in that case. */
4652 if (syms->size () < 2)
4656 while (i < syms->size ())
4660 /* If two symbols have the same name and one of them is a stub type,
4661 the get rid of the stub. */
4663 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4664 && (*syms)[i].symbol->linkage_name () != NULL)
4666 for (j = 0; j < syms->size (); j++)
4669 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4670 && (*syms)[j].symbol->linkage_name () != NULL
4671 && strcmp ((*syms)[i].symbol->linkage_name (),
4672 (*syms)[j].symbol->linkage_name ()) == 0)
4677 /* Two symbols with the same name, same class and same address
4678 should be identical. */
4680 else if ((*syms)[i].symbol->linkage_name () != NULL
4681 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4682 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4684 for (j = 0; j < syms->size (); j += 1)
4687 && (*syms)[j].symbol->linkage_name () != NULL
4688 && strcmp ((*syms)[i].symbol->linkage_name (),
4689 (*syms)[j].symbol->linkage_name ()) == 0
4690 && SYMBOL_CLASS ((*syms)[i].symbol)
4691 == SYMBOL_CLASS ((*syms)[j].symbol)
4692 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4693 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4699 syms->erase (syms->begin () + i);
4704 /* If all the remaining symbols are identical enumerals, then
4705 just keep the first one and discard the rest.
4707 Unlike what we did previously, we do not discard any entry
4708 unless they are ALL identical. This is because the symbol
4709 comparison is not a strict comparison, but rather a practical
4710 comparison. If all symbols are considered identical, then
4711 we can just go ahead and use the first one and discard the rest.
4712 But if we cannot reduce the list to a single element, we have
4713 to ask the user to disambiguate anyways. And if we have to
4714 present a multiple-choice menu, it's less confusing if the list
4715 isn't missing some choices that were identical and yet distinct. */
4716 if (symbols_are_identical_enums (*syms))
4720 /* Given a type that corresponds to a renaming entity, use the type name
4721 to extract the scope (package name or function name, fully qualified,
4722 and following the GNAT encoding convention) where this renaming has been
4726 xget_renaming_scope (struct type *renaming_type)
4728 /* The renaming types adhere to the following convention:
4729 <scope>__<rename>___<XR extension>.
4730 So, to extract the scope, we search for the "___XR" extension,
4731 and then backtrack until we find the first "__". */
4733 const char *name = renaming_type->name ();
4734 const char *suffix = strstr (name, "___XR");
4737 /* Now, backtrack a bit until we find the first "__". Start looking
4738 at suffix - 3, as the <rename> part is at least one character long. */
4740 for (last = suffix - 3; last > name; last--)
4741 if (last[0] == '_' && last[1] == '_')
4744 /* Make a copy of scope and return it. */
4745 return std::string (name, last);
4748 /* Return nonzero if NAME corresponds to a package name. */
4751 is_package_name (const char *name)
4753 /* Here, We take advantage of the fact that no symbols are generated
4754 for packages, while symbols are generated for each function.
4755 So the condition for NAME represent a package becomes equivalent
4756 to NAME not existing in our list of symbols. There is only one
4757 small complication with library-level functions (see below). */
4759 /* If it is a function that has not been defined at library level,
4760 then we should be able to look it up in the symbols. */
4761 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4764 /* Library-level function names start with "_ada_". See if function
4765 "_ada_" followed by NAME can be found. */
4767 /* Do a quick check that NAME does not contain "__", since library-level
4768 functions names cannot contain "__" in them. */
4769 if (strstr (name, "__") != NULL)
4772 std::string fun_name = string_printf ("_ada_%s", name);
4774 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4777 /* Return nonzero if SYM corresponds to a renaming entity that is
4778 not visible from FUNCTION_NAME. */
4781 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4783 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4786 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4788 /* If the rename has been defined in a package, then it is visible. */
4789 if (is_package_name (scope.c_str ()))
4792 /* Check that the rename is in the current function scope by checking
4793 that its name starts with SCOPE. */
4795 /* If the function name starts with "_ada_", it means that it is
4796 a library-level function. Strip this prefix before doing the
4797 comparison, as the encoding for the renaming does not contain
4799 if (startswith (function_name, "_ada_"))
4802 return !startswith (function_name, scope.c_str ());
4805 /* Remove entries from SYMS that corresponds to a renaming entity that
4806 is not visible from the function associated with CURRENT_BLOCK or
4807 that is superfluous due to the presence of more specific renaming
4808 information. Places surviving symbols in the initial entries of
4812 First, in cases where an object renaming is implemented as a
4813 reference variable, GNAT may produce both the actual reference
4814 variable and the renaming encoding. In this case, we discard the
4817 Second, GNAT emits a type following a specified encoding for each renaming
4818 entity. Unfortunately, STABS currently does not support the definition
4819 of types that are local to a given lexical block, so all renamings types
4820 are emitted at library level. As a consequence, if an application
4821 contains two renaming entities using the same name, and a user tries to
4822 print the value of one of these entities, the result of the ada symbol
4823 lookup will also contain the wrong renaming type.
4825 This function partially covers for this limitation by attempting to
4826 remove from the SYMS list renaming symbols that should be visible
4827 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4828 method with the current information available. The implementation
4829 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4831 - When the user tries to print a rename in a function while there
4832 is another rename entity defined in a package: Normally, the
4833 rename in the function has precedence over the rename in the
4834 package, so the latter should be removed from the list. This is
4835 currently not the case.
4837 - This function will incorrectly remove valid renames if
4838 the CURRENT_BLOCK corresponds to a function which symbol name
4839 has been changed by an "Export" pragma. As a consequence,
4840 the user will be unable to print such rename entities. */
4843 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4844 const struct block *current_block)
4846 struct symbol *current_function;
4847 const char *current_function_name;
4849 int is_new_style_renaming;
4851 /* If there is both a renaming foo___XR... encoded as a variable and
4852 a simple variable foo in the same block, discard the latter.
4853 First, zero out such symbols, then compress. */
4854 is_new_style_renaming = 0;
4855 for (i = 0; i < syms->size (); i += 1)
4857 struct symbol *sym = (*syms)[i].symbol;
4858 const struct block *block = (*syms)[i].block;
4862 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4864 name = sym->linkage_name ();
4865 suffix = strstr (name, "___XR");
4869 int name_len = suffix - name;
4872 is_new_style_renaming = 1;
4873 for (j = 0; j < syms->size (); j += 1)
4874 if (i != j && (*syms)[j].symbol != NULL
4875 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4877 && block == (*syms)[j].block)
4878 (*syms)[j].symbol = NULL;
4881 if (is_new_style_renaming)
4885 for (j = k = 0; j < syms->size (); j += 1)
4886 if ((*syms)[j].symbol != NULL)
4888 (*syms)[k] = (*syms)[j];
4895 /* Extract the function name associated to CURRENT_BLOCK.
4896 Abort if unable to do so. */
4898 if (current_block == NULL)
4901 current_function = block_linkage_function (current_block);
4902 if (current_function == NULL)
4905 current_function_name = current_function->linkage_name ();
4906 if (current_function_name == NULL)
4909 /* Check each of the symbols, and remove it from the list if it is
4910 a type corresponding to a renaming that is out of the scope of
4911 the current block. */
4914 while (i < syms->size ())
4916 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4917 == ADA_OBJECT_RENAMING
4918 && old_renaming_is_invisible ((*syms)[i].symbol,
4919 current_function_name))
4920 syms->erase (syms->begin () + i);
4926 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4927 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
4929 Note: This function assumes that RESULT is empty. */
4932 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4933 const lookup_name_info &lookup_name,
4934 const struct block *block, domain_enum domain)
4936 while (block != NULL)
4938 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4940 /* If we found a non-function match, assume that's the one. */
4941 if (is_nonfunction (result))
4944 block = BLOCK_SUPERBLOCK (block);
4948 /* An object of this type is used as the callback argument when
4949 calling the map_matching_symbols method. */
4953 explicit match_data (std::vector<struct block_symbol> *rp)
4957 DISABLE_COPY_AND_ASSIGN (match_data);
4959 bool operator() (struct block_symbol *bsym);
4961 struct objfile *objfile = nullptr;
4962 std::vector<struct block_symbol> *resultp;
4963 struct symbol *arg_sym = nullptr;
4964 bool found_sym = false;
4967 /* A callback for add_nonlocal_symbols that adds symbol, found in
4968 BSYM, to a list of symbols. */
4971 match_data::operator() (struct block_symbol *bsym)
4973 const struct block *block = bsym->block;
4974 struct symbol *sym = bsym->symbol;
4978 if (!found_sym && arg_sym != NULL)
4979 add_defn_to_vec (*resultp,
4980 fixup_symbol_section (arg_sym, objfile),
4987 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4989 else if (SYMBOL_IS_ARGUMENT (sym))
4994 add_defn_to_vec (*resultp,
4995 fixup_symbol_section (sym, objfile),
5002 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5003 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5004 symbols to RESULT. Return whether we found such symbols. */
5007 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5008 const struct block *block,
5009 const lookup_name_info &lookup_name,
5012 struct using_direct *renaming;
5013 int defns_mark = result.size ();
5015 symbol_name_matcher_ftype *name_match
5016 = ada_get_symbol_name_matcher (lookup_name);
5018 for (renaming = block_using (block);
5020 renaming = renaming->next)
5024 /* Avoid infinite recursions: skip this renaming if we are actually
5025 already traversing it.
5027 Currently, symbol lookup in Ada don't use the namespace machinery from
5028 C++/Fortran support: skip namespace imports that use them. */
5029 if (renaming->searched
5030 || (renaming->import_src != NULL
5031 && renaming->import_src[0] != '\0')
5032 || (renaming->import_dest != NULL
5033 && renaming->import_dest[0] != '\0'))
5035 renaming->searched = 1;
5037 /* TODO: here, we perform another name-based symbol lookup, which can
5038 pull its own multiple overloads. In theory, we should be able to do
5039 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5040 not a simple name. But in order to do this, we would need to enhance
5041 the DWARF reader to associate a symbol to this renaming, instead of a
5042 name. So, for now, we do something simpler: re-use the C++/Fortran
5043 namespace machinery. */
5044 r_name = (renaming->alias != NULL
5046 : renaming->declaration);
5047 if (name_match (r_name, lookup_name, NULL))
5049 lookup_name_info decl_lookup_name (renaming->declaration,
5050 lookup_name.match_type ());
5051 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5054 renaming->searched = 0;
5056 return result.size () != defns_mark;
5059 /* Implements compare_names, but only applying the comparision using
5060 the given CASING. */
5063 compare_names_with_case (const char *string1, const char *string2,
5064 enum case_sensitivity casing)
5066 while (*string1 != '\0' && *string2 != '\0')
5070 if (isspace (*string1) || isspace (*string2))
5071 return strcmp_iw_ordered (string1, string2);
5073 if (casing == case_sensitive_off)
5075 c1 = tolower (*string1);
5076 c2 = tolower (*string2);
5093 return strcmp_iw_ordered (string1, string2);
5095 if (*string2 == '\0')
5097 if (is_name_suffix (string1))
5104 if (*string2 == '(')
5105 return strcmp_iw_ordered (string1, string2);
5108 if (casing == case_sensitive_off)
5109 return tolower (*string1) - tolower (*string2);
5111 return *string1 - *string2;
5116 /* Compare STRING1 to STRING2, with results as for strcmp.
5117 Compatible with strcmp_iw_ordered in that...
5119 strcmp_iw_ordered (STRING1, STRING2) <= 0
5123 compare_names (STRING1, STRING2) <= 0
5125 (they may differ as to what symbols compare equal). */
5128 compare_names (const char *string1, const char *string2)
5132 /* Similar to what strcmp_iw_ordered does, we need to perform
5133 a case-insensitive comparison first, and only resort to
5134 a second, case-sensitive, comparison if the first one was
5135 not sufficient to differentiate the two strings. */
5137 result = compare_names_with_case (string1, string2, case_sensitive_off);
5139 result = compare_names_with_case (string1, string2, case_sensitive_on);
5144 /* Convenience function to get at the Ada encoded lookup name for
5145 LOOKUP_NAME, as a C string. */
5148 ada_lookup_name (const lookup_name_info &lookup_name)
5150 return lookup_name.ada ().lookup_name ().c_str ();
5153 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5154 for OBJFILE, then walk the objfile's symtabs and update the
5158 map_matching_symbols (struct objfile *objfile,
5159 const lookup_name_info &lookup_name,
5165 data.objfile = objfile;
5166 objfile->expand_matching_symbols (lookup_name, domain, global,
5167 is_wild_match ? nullptr : compare_names);
5169 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5170 for (compunit_symtab *symtab : objfile->compunits ())
5172 const struct block *block
5173 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5174 if (!iterate_over_symbols_terminated (block, lookup_name,
5180 /* Add to RESULT all non-local symbols whose name and domain match
5181 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5182 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5183 symbols otherwise. */
5186 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5187 const lookup_name_info &lookup_name,
5188 domain_enum domain, int global)
5190 struct match_data data (&result);
5192 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5194 for (objfile *objfile : current_program_space->objfiles ())
5196 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5199 for (compunit_symtab *cu : objfile->compunits ())
5201 const struct block *global_block
5202 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5204 if (ada_add_block_renamings (result, global_block, lookup_name,
5206 data.found_sym = true;
5210 if (result.empty () && global && !is_wild_match)
5212 const char *name = ada_lookup_name (lookup_name);
5213 std::string bracket_name = std::string ("<_ada_") + name + '>';
5214 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5216 for (objfile *objfile : current_program_space->objfiles ())
5217 map_matching_symbols (objfile, name1, false, domain, global, data);
5221 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5222 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5223 returning the number of matches. Add these to RESULT.
5225 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5226 symbol match within the nest of blocks whose innermost member is BLOCK,
5227 is the one match returned (no other matches in that or
5228 enclosing blocks is returned). If there are any matches in or
5229 surrounding BLOCK, then these alone are returned.
5231 Names prefixed with "standard__" are handled specially:
5232 "standard__" is first stripped off (by the lookup_name
5233 constructor), and only static and global symbols are searched.
5235 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5236 to lookup global symbols. */
5239 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5240 const struct block *block,
5241 const lookup_name_info &lookup_name,
5244 int *made_global_lookup_p)
5248 if (made_global_lookup_p)
5249 *made_global_lookup_p = 0;
5251 /* Special case: If the user specifies a symbol name inside package
5252 Standard, do a non-wild matching of the symbol name without
5253 the "standard__" prefix. This was primarily introduced in order
5254 to allow the user to specifically access the standard exceptions
5255 using, for instance, Standard.Constraint_Error when Constraint_Error
5256 is ambiguous (due to the user defining its own Constraint_Error
5257 entity inside its program). */
5258 if (lookup_name.ada ().standard_p ())
5261 /* Check the non-global symbols. If we have ANY match, then we're done. */
5266 ada_add_local_symbols (result, lookup_name, block, domain);
5269 /* In the !full_search case we're are being called by
5270 iterate_over_symbols, and we don't want to search
5272 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5274 if (!result.empty () || !full_search)
5278 /* No non-global symbols found. Check our cache to see if we have
5279 already performed this search before. If we have, then return
5282 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5283 domain, &sym, &block))
5286 add_defn_to_vec (result, sym, block);
5290 if (made_global_lookup_p)
5291 *made_global_lookup_p = 1;
5293 /* Search symbols from all global blocks. */
5295 add_nonlocal_symbols (result, lookup_name, domain, 1);
5297 /* Now add symbols from all per-file blocks if we've gotten no hits
5298 (not strictly correct, but perhaps better than an error). */
5300 if (result.empty ())
5301 add_nonlocal_symbols (result, lookup_name, domain, 0);
5304 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5305 is non-zero, enclosing scope and in global scopes.
5307 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5308 blocks and symbol tables (if any) in which they were found.
5310 When full_search is non-zero, any non-function/non-enumeral
5311 symbol match within the nest of blocks whose innermost member is BLOCK,
5312 is the one match returned (no other matches in that or
5313 enclosing blocks is returned). If there are any matches in or
5314 surrounding BLOCK, then these alone are returned.
5316 Names prefixed with "standard__" are handled specially: "standard__"
5317 is first stripped off, and only static and global symbols are searched. */
5319 static std::vector<struct block_symbol>
5320 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5321 const struct block *block,
5325 int syms_from_global_search;
5326 std::vector<struct block_symbol> results;
5328 ada_add_all_symbols (results, block, lookup_name,
5329 domain, full_search, &syms_from_global_search);
5331 remove_extra_symbols (&results);
5333 if (results.empty () && full_search && syms_from_global_search)
5334 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5336 if (results.size () == 1 && full_search && syms_from_global_search)
5337 cache_symbol (ada_lookup_name (lookup_name), domain,
5338 results[0].symbol, results[0].block);
5340 remove_irrelevant_renamings (&results, block);
5344 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5345 in global scopes, returning (SYM,BLOCK) tuples.
5347 See ada_lookup_symbol_list_worker for further details. */
5349 std::vector<struct block_symbol>
5350 ada_lookup_symbol_list (const char *name, const struct block *block,
5353 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5354 lookup_name_info lookup_name (name, name_match_type);
5356 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5359 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5360 to 1, but choosing the first symbol found if there are multiple
5363 The result is stored in *INFO, which must be non-NULL.
5364 If no match is found, INFO->SYM is set to NULL. */
5367 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5369 struct block_symbol *info)
5371 /* Since we already have an encoded name, wrap it in '<>' to force a
5372 verbatim match. Otherwise, if the name happens to not look like
5373 an encoded name (because it doesn't include a "__"),
5374 ada_lookup_name_info would re-encode/fold it again, and that
5375 would e.g., incorrectly lowercase object renaming names like
5376 "R28b" -> "r28b". */
5377 std::string verbatim = add_angle_brackets (name);
5379 gdb_assert (info != NULL);
5380 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5383 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5384 scope and in global scopes, or NULL if none. NAME is folded and
5385 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5386 choosing the first symbol if there are multiple choices. */
5389 ada_lookup_symbol (const char *name, const struct block *block0,
5392 std::vector<struct block_symbol> candidates
5393 = ada_lookup_symbol_list (name, block0, domain);
5395 if (candidates.empty ())
5398 block_symbol info = candidates[0];
5399 info.symbol = fixup_symbol_section (info.symbol, NULL);
5404 /* True iff STR is a possible encoded suffix of a normal Ada name
5405 that is to be ignored for matching purposes. Suffixes of parallel
5406 names (e.g., XVE) are not included here. Currently, the possible suffixes
5407 are given by any of the regular expressions:
5409 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5410 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5411 TKB [subprogram suffix for task bodies]
5412 _E[0-9]+[bs]$ [protected object entry suffixes]
5413 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5415 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5416 match is performed. This sequence is used to differentiate homonyms,
5417 is an optional part of a valid name suffix. */
5420 is_name_suffix (const char *str)
5423 const char *matching;
5424 const int len = strlen (str);
5426 /* Skip optional leading __[0-9]+. */
5428 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5431 while (isdigit (str[0]))
5437 if (str[0] == '.' || str[0] == '$')
5440 while (isdigit (matching[0]))
5442 if (matching[0] == '\0')
5448 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5451 while (isdigit (matching[0]))
5453 if (matching[0] == '\0')
5457 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5459 if (strcmp (str, "TKB") == 0)
5463 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5464 with a N at the end. Unfortunately, the compiler uses the same
5465 convention for other internal types it creates. So treating
5466 all entity names that end with an "N" as a name suffix causes
5467 some regressions. For instance, consider the case of an enumerated
5468 type. To support the 'Image attribute, it creates an array whose
5470 Having a single character like this as a suffix carrying some
5471 information is a bit risky. Perhaps we should change the encoding
5472 to be something like "_N" instead. In the meantime, do not do
5473 the following check. */
5474 /* Protected Object Subprograms */
5475 if (len == 1 && str [0] == 'N')
5480 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5483 while (isdigit (matching[0]))
5485 if ((matching[0] == 'b' || matching[0] == 's')
5486 && matching [1] == '\0')
5490 /* ??? We should not modify STR directly, as we are doing below. This
5491 is fine in this case, but may become problematic later if we find
5492 that this alternative did not work, and want to try matching
5493 another one from the begining of STR. Since we modified it, we
5494 won't be able to find the begining of the string anymore! */
5498 while (str[0] != '_' && str[0] != '\0')
5500 if (str[0] != 'n' && str[0] != 'b')
5506 if (str[0] == '\000')
5511 if (str[1] != '_' || str[2] == '\000')
5515 if (strcmp (str + 3, "JM") == 0)
5517 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5518 the LJM suffix in favor of the JM one. But we will
5519 still accept LJM as a valid suffix for a reasonable
5520 amount of time, just to allow ourselves to debug programs
5521 compiled using an older version of GNAT. */
5522 if (strcmp (str + 3, "LJM") == 0)
5526 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5527 || str[4] == 'U' || str[4] == 'P')
5529 if (str[4] == 'R' && str[5] != 'T')
5533 if (!isdigit (str[2]))
5535 for (k = 3; str[k] != '\0'; k += 1)
5536 if (!isdigit (str[k]) && str[k] != '_')
5540 if (str[0] == '$' && isdigit (str[1]))
5542 for (k = 2; str[k] != '\0'; k += 1)
5543 if (!isdigit (str[k]) && str[k] != '_')
5550 /* Return non-zero if the string starting at NAME and ending before
5551 NAME_END contains no capital letters. */
5554 is_valid_name_for_wild_match (const char *name0)
5556 std::string decoded_name = ada_decode (name0);
5559 /* If the decoded name starts with an angle bracket, it means that
5560 NAME0 does not follow the GNAT encoding format. It should then
5561 not be allowed as a possible wild match. */
5562 if (decoded_name[0] == '<')
5565 for (i=0; decoded_name[i] != '\0'; i++)
5566 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5572 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5573 character which could start a simple name. Assumes that *NAMEP points
5574 somewhere inside the string beginning at NAME0. */
5577 advance_wild_match (const char **namep, const char *name0, char target0)
5579 const char *name = *namep;
5589 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5592 if (name == name0 + 5 && startswith (name0, "_ada"))
5597 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5598 || name[2] == target0))
5603 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5605 /* Names like "pkg__B_N__name", where N is a number, are
5606 block-local. We can handle these by simply skipping
5613 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5623 /* Return true iff NAME encodes a name of the form prefix.PATN.
5624 Ignores any informational suffixes of NAME (i.e., for which
5625 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5629 wild_match (const char *name, const char *patn)
5632 const char *name0 = name;
5636 const char *match = name;
5640 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5643 if (*p == '\0' && is_name_suffix (name))
5644 return match == name0 || is_valid_name_for_wild_match (name0);
5646 if (name[-1] == '_')
5649 if (!advance_wild_match (&name, name0, *patn))
5654 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5655 necessary). OBJFILE is the section containing BLOCK. */
5658 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5659 const struct block *block,
5660 const lookup_name_info &lookup_name,
5661 domain_enum domain, struct objfile *objfile)
5663 struct block_iterator iter;
5664 /* A matching argument symbol, if any. */
5665 struct symbol *arg_sym;
5666 /* Set true when we find a matching non-argument symbol. */
5672 for (sym = block_iter_match_first (block, lookup_name, &iter);
5674 sym = block_iter_match_next (lookup_name, &iter))
5676 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5678 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5680 if (SYMBOL_IS_ARGUMENT (sym))
5685 add_defn_to_vec (result,
5686 fixup_symbol_section (sym, objfile),
5693 /* Handle renamings. */
5695 if (ada_add_block_renamings (result, block, lookup_name, domain))
5698 if (!found_sym && arg_sym != NULL)
5700 add_defn_to_vec (result,
5701 fixup_symbol_section (arg_sym, objfile),
5705 if (!lookup_name.ada ().wild_match_p ())
5709 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5710 const char *name = ada_lookup_name.c_str ();
5711 size_t name_len = ada_lookup_name.size ();
5713 ALL_BLOCK_SYMBOLS (block, iter, sym)
5715 if (symbol_matches_domain (sym->language (),
5716 SYMBOL_DOMAIN (sym), domain))
5720 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5723 cmp = !startswith (sym->linkage_name (), "_ada_");
5725 cmp = strncmp (name, sym->linkage_name () + 5,
5730 && is_name_suffix (sym->linkage_name () + name_len + 5))
5732 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5734 if (SYMBOL_IS_ARGUMENT (sym))
5739 add_defn_to_vec (result,
5740 fixup_symbol_section (sym, objfile),
5748 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5749 They aren't parameters, right? */
5750 if (!found_sym && arg_sym != NULL)
5752 add_defn_to_vec (result,
5753 fixup_symbol_section (arg_sym, objfile),
5760 /* Symbol Completion */
5765 ada_lookup_name_info::matches
5766 (const char *sym_name,
5767 symbol_name_match_type match_type,
5768 completion_match_result *comp_match_res) const
5771 const char *text = m_encoded_name.c_str ();
5772 size_t text_len = m_encoded_name.size ();
5774 /* First, test against the fully qualified name of the symbol. */
5776 if (strncmp (sym_name, text, text_len) == 0)
5779 std::string decoded_name = ada_decode (sym_name);
5780 if (match && !m_encoded_p)
5782 /* One needed check before declaring a positive match is to verify
5783 that iff we are doing a verbatim match, the decoded version
5784 of the symbol name starts with '<'. Otherwise, this symbol name
5785 is not a suitable completion. */
5787 bool has_angle_bracket = (decoded_name[0] == '<');
5788 match = (has_angle_bracket == m_verbatim_p);
5791 if (match && !m_verbatim_p)
5793 /* When doing non-verbatim match, another check that needs to
5794 be done is to verify that the potentially matching symbol name
5795 does not include capital letters, because the ada-mode would
5796 not be able to understand these symbol names without the
5797 angle bracket notation. */
5800 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5805 /* Second: Try wild matching... */
5807 if (!match && m_wild_match_p)
5809 /* Since we are doing wild matching, this means that TEXT
5810 may represent an unqualified symbol name. We therefore must
5811 also compare TEXT against the unqualified name of the symbol. */
5812 sym_name = ada_unqualified_name (decoded_name.c_str ());
5814 if (strncmp (sym_name, text, text_len) == 0)
5818 /* Finally: If we found a match, prepare the result to return. */
5823 if (comp_match_res != NULL)
5825 std::string &match_str = comp_match_res->match.storage ();
5828 match_str = ada_decode (sym_name);
5832 match_str = add_angle_brackets (sym_name);
5834 match_str = sym_name;
5838 comp_match_res->set_match (match_str.c_str ());
5846 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5847 for tagged types. */
5850 ada_is_dispatch_table_ptr_type (struct type *type)
5854 if (type->code () != TYPE_CODE_PTR)
5857 name = TYPE_TARGET_TYPE (type)->name ();
5861 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5864 /* Return non-zero if TYPE is an interface tag. */
5867 ada_is_interface_tag (struct type *type)
5869 const char *name = type->name ();
5874 return (strcmp (name, "ada__tags__interface_tag") == 0);
5877 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5878 to be invisible to users. */
5881 ada_is_ignored_field (struct type *type, int field_num)
5883 if (field_num < 0 || field_num > type->num_fields ())
5886 /* Check the name of that field. */
5888 const char *name = TYPE_FIELD_NAME (type, field_num);
5890 /* Anonymous field names should not be printed.
5891 brobecker/2007-02-20: I don't think this can actually happen
5892 but we don't want to print the value of anonymous fields anyway. */
5896 /* Normally, fields whose name start with an underscore ("_")
5897 are fields that have been internally generated by the compiler,
5898 and thus should not be printed. The "_parent" field is special,
5899 however: This is a field internally generated by the compiler
5900 for tagged types, and it contains the components inherited from
5901 the parent type. This field should not be printed as is, but
5902 should not be ignored either. */
5903 if (name[0] == '_' && !startswith (name, "_parent"))
5907 /* If this is the dispatch table of a tagged type or an interface tag,
5909 if (ada_is_tagged_type (type, 1)
5910 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5911 || ada_is_interface_tag (type->field (field_num).type ())))
5914 /* Not a special field, so it should not be ignored. */
5918 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5919 pointer or reference type whose ultimate target has a tag field. */
5922 ada_is_tagged_type (struct type *type, int refok)
5924 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5927 /* True iff TYPE represents the type of X'Tag */
5930 ada_is_tag_type (struct type *type)
5932 type = ada_check_typedef (type);
5934 if (type == NULL || type->code () != TYPE_CODE_PTR)
5938 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5940 return (name != NULL
5941 && strcmp (name, "ada__tags__dispatch_table") == 0);
5945 /* The type of the tag on VAL. */
5947 static struct type *
5948 ada_tag_type (struct value *val)
5950 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
5953 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
5954 retired at Ada 05). */
5957 is_ada95_tag (struct value *tag)
5959 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
5962 /* The value of the tag on VAL. */
5964 static struct value *
5965 ada_value_tag (struct value *val)
5967 return ada_value_struct_elt (val, "_tag", 0);
5970 /* The value of the tag on the object of type TYPE whose contents are
5971 saved at VALADDR, if it is non-null, or is at memory address
5974 static struct value *
5975 value_tag_from_contents_and_address (struct type *type,
5976 const gdb_byte *valaddr,
5979 int tag_byte_offset;
5980 struct type *tag_type;
5982 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5985 const gdb_byte *valaddr1 = ((valaddr == NULL)
5987 : valaddr + tag_byte_offset);
5988 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5990 return value_from_contents_and_address (tag_type, valaddr1, address1);
5995 static struct type *
5996 type_from_tag (struct value *tag)
5998 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6000 if (type_name != NULL)
6001 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6005 /* Given a value OBJ of a tagged type, return a value of this
6006 type at the base address of the object. The base address, as
6007 defined in Ada.Tags, it is the address of the primary tag of
6008 the object, and therefore where the field values of its full
6009 view can be fetched. */
6012 ada_tag_value_at_base_address (struct value *obj)
6015 LONGEST offset_to_top = 0;
6016 struct type *ptr_type, *obj_type;
6018 CORE_ADDR base_address;
6020 obj_type = value_type (obj);
6022 /* It is the responsability of the caller to deref pointers. */
6024 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6027 tag = ada_value_tag (obj);
6031 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6033 if (is_ada95_tag (tag))
6036 ptr_type = language_lookup_primitive_type
6037 (language_def (language_ada), target_gdbarch(), "storage_offset");
6038 ptr_type = lookup_pointer_type (ptr_type);
6039 val = value_cast (ptr_type, tag);
6043 /* It is perfectly possible that an exception be raised while
6044 trying to determine the base address, just like for the tag;
6045 see ada_tag_name for more details. We do not print the error
6046 message for the same reason. */
6050 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6053 catch (const gdb_exception_error &e)
6058 /* If offset is null, nothing to do. */
6060 if (offset_to_top == 0)
6063 /* -1 is a special case in Ada.Tags; however, what should be done
6064 is not quite clear from the documentation. So do nothing for
6067 if (offset_to_top == -1)
6070 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6071 from the base address. This was however incompatible with
6072 C++ dispatch table: C++ uses a *negative* value to *add*
6073 to the base address. Ada's convention has therefore been
6074 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6075 use the same convention. Here, we support both cases by
6076 checking the sign of OFFSET_TO_TOP. */
6078 if (offset_to_top > 0)
6079 offset_to_top = -offset_to_top;
6081 base_address = value_address (obj) + offset_to_top;
6082 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6084 /* Make sure that we have a proper tag at the new address.
6085 Otherwise, offset_to_top is bogus (which can happen when
6086 the object is not initialized yet). */
6091 obj_type = type_from_tag (tag);
6096 return value_from_contents_and_address (obj_type, NULL, base_address);
6099 /* Return the "ada__tags__type_specific_data" type. */
6101 static struct type *
6102 ada_get_tsd_type (struct inferior *inf)
6104 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6106 if (data->tsd_type == 0)
6107 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6108 return data->tsd_type;
6111 /* Return the TSD (type-specific data) associated to the given TAG.
6112 TAG is assumed to be the tag of a tagged-type entity.
6114 May return NULL if we are unable to get the TSD. */
6116 static struct value *
6117 ada_get_tsd_from_tag (struct value *tag)
6122 /* First option: The TSD is simply stored as a field of our TAG.
6123 Only older versions of GNAT would use this format, but we have
6124 to test it first, because there are no visible markers for
6125 the current approach except the absence of that field. */
6127 val = ada_value_struct_elt (tag, "tsd", 1);
6131 /* Try the second representation for the dispatch table (in which
6132 there is no explicit 'tsd' field in the referent of the tag pointer,
6133 and instead the tsd pointer is stored just before the dispatch
6136 type = ada_get_tsd_type (current_inferior());
6139 type = lookup_pointer_type (lookup_pointer_type (type));
6140 val = value_cast (type, tag);
6143 return value_ind (value_ptradd (val, -1));
6146 /* Given the TSD of a tag (type-specific data), return a string
6147 containing the name of the associated type.
6149 May return NULL if we are unable to determine the tag name. */
6151 static gdb::unique_xmalloc_ptr<char>
6152 ada_tag_name_from_tsd (struct value *tsd)
6157 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6160 gdb::unique_xmalloc_ptr<char> buffer
6161 = target_read_string (value_as_address (val), INT_MAX);
6162 if (buffer == nullptr)
6165 for (p = buffer.get (); *p != '\0'; ++p)
6174 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6177 Return NULL if the TAG is not an Ada tag, or if we were unable to
6178 determine the name of that tag. */
6180 gdb::unique_xmalloc_ptr<char>
6181 ada_tag_name (struct value *tag)
6183 gdb::unique_xmalloc_ptr<char> name;
6185 if (!ada_is_tag_type (value_type (tag)))
6188 /* It is perfectly possible that an exception be raised while trying
6189 to determine the TAG's name, even under normal circumstances:
6190 The associated variable may be uninitialized or corrupted, for
6191 instance. We do not let any exception propagate past this point.
6192 instead we return NULL.
6194 We also do not print the error message either (which often is very
6195 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6196 the caller print a more meaningful message if necessary. */
6199 struct value *tsd = ada_get_tsd_from_tag (tag);
6202 name = ada_tag_name_from_tsd (tsd);
6204 catch (const gdb_exception_error &e)
6211 /* The parent type of TYPE, or NULL if none. */
6214 ada_parent_type (struct type *type)
6218 type = ada_check_typedef (type);
6220 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6223 for (i = 0; i < type->num_fields (); i += 1)
6224 if (ada_is_parent_field (type, i))
6226 struct type *parent_type = type->field (i).type ();
6228 /* If the _parent field is a pointer, then dereference it. */
6229 if (parent_type->code () == TYPE_CODE_PTR)
6230 parent_type = TYPE_TARGET_TYPE (parent_type);
6231 /* If there is a parallel XVS type, get the actual base type. */
6232 parent_type = ada_get_base_type (parent_type);
6234 return ada_check_typedef (parent_type);
6240 /* True iff field number FIELD_NUM of structure type TYPE contains the
6241 parent-type (inherited) fields of a derived type. Assumes TYPE is
6242 a structure type with at least FIELD_NUM+1 fields. */
6245 ada_is_parent_field (struct type *type, int field_num)
6247 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6249 return (name != NULL
6250 && (startswith (name, "PARENT")
6251 || startswith (name, "_parent")));
6254 /* True iff field number FIELD_NUM of structure type TYPE is a
6255 transparent wrapper field (which should be silently traversed when doing
6256 field selection and flattened when printing). Assumes TYPE is a
6257 structure type with at least FIELD_NUM+1 fields. Such fields are always
6261 ada_is_wrapper_field (struct type *type, int field_num)
6263 const char *name = TYPE_FIELD_NAME (type, field_num);
6265 if (name != NULL && strcmp (name, "RETVAL") == 0)
6267 /* This happens in functions with "out" or "in out" parameters
6268 which are passed by copy. For such functions, GNAT describes
6269 the function's return type as being a struct where the return
6270 value is in a field called RETVAL, and where the other "out"
6271 or "in out" parameters are fields of that struct. This is not
6276 return (name != NULL
6277 && (startswith (name, "PARENT")
6278 || strcmp (name, "REP") == 0
6279 || startswith (name, "_parent")
6280 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6283 /* True iff field number FIELD_NUM of structure or union type TYPE
6284 is a variant wrapper. Assumes TYPE is a structure type with at least
6285 FIELD_NUM+1 fields. */
6288 ada_is_variant_part (struct type *type, int field_num)
6290 /* Only Ada types are eligible. */
6291 if (!ADA_TYPE_P (type))
6294 struct type *field_type = type->field (field_num).type ();
6296 return (field_type->code () == TYPE_CODE_UNION
6297 || (is_dynamic_field (type, field_num)
6298 && (TYPE_TARGET_TYPE (field_type)->code ()
6299 == TYPE_CODE_UNION)));
6302 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6303 whose discriminants are contained in the record type OUTER_TYPE,
6304 returns the type of the controlling discriminant for the variant.
6305 May return NULL if the type could not be found. */
6308 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6310 const char *name = ada_variant_discrim_name (var_type);
6312 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6315 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6316 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6317 represents a 'when others' clause; otherwise 0. */
6320 ada_is_others_clause (struct type *type, int field_num)
6322 const char *name = TYPE_FIELD_NAME (type, field_num);
6324 return (name != NULL && name[0] == 'O');
6327 /* Assuming that TYPE0 is the type of the variant part of a record,
6328 returns the name of the discriminant controlling the variant.
6329 The value is valid until the next call to ada_variant_discrim_name. */
6332 ada_variant_discrim_name (struct type *type0)
6334 static std::string result;
6337 const char *discrim_end;
6338 const char *discrim_start;
6340 if (type0->code () == TYPE_CODE_PTR)
6341 type = TYPE_TARGET_TYPE (type0);
6345 name = ada_type_name (type);
6347 if (name == NULL || name[0] == '\000')
6350 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6353 if (startswith (discrim_end, "___XVN"))
6356 if (discrim_end == name)
6359 for (discrim_start = discrim_end; discrim_start != name + 3;
6362 if (discrim_start == name + 1)
6364 if ((discrim_start > name + 3
6365 && startswith (discrim_start - 3, "___"))
6366 || discrim_start[-1] == '.')
6370 result = std::string (discrim_start, discrim_end - discrim_start);
6371 return result.c_str ();
6374 /* Scan STR for a subtype-encoded number, beginning at position K.
6375 Put the position of the character just past the number scanned in
6376 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6377 Return 1 if there was a valid number at the given position, and 0
6378 otherwise. A "subtype-encoded" number consists of the absolute value
6379 in decimal, followed by the letter 'm' to indicate a negative number.
6380 Assumes 0m does not occur. */
6383 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6387 if (!isdigit (str[k]))
6390 /* Do it the hard way so as not to make any assumption about
6391 the relationship of unsigned long (%lu scan format code) and
6394 while (isdigit (str[k]))
6396 RU = RU * 10 + (str[k] - '0');
6403 *R = (-(LONGEST) (RU - 1)) - 1;
6409 /* NOTE on the above: Technically, C does not say what the results of
6410 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6411 number representable as a LONGEST (although either would probably work
6412 in most implementations). When RU>0, the locution in the then branch
6413 above is always equivalent to the negative of RU. */
6420 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6421 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6422 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6425 ada_in_variant (LONGEST val, struct type *type, int field_num)
6427 const char *name = TYPE_FIELD_NAME (type, field_num);
6441 if (!ada_scan_number (name, p + 1, &W, &p))
6451 if (!ada_scan_number (name, p + 1, &L, &p)
6452 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6454 if (val >= L && val <= U)
6466 /* FIXME: Lots of redundancy below. Try to consolidate. */
6468 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6469 ARG_TYPE, extract and return the value of one of its (non-static)
6470 fields. FIELDNO says which field. Differs from value_primitive_field
6471 only in that it can handle packed values of arbitrary type. */
6474 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6475 struct type *arg_type)
6479 arg_type = ada_check_typedef (arg_type);
6480 type = arg_type->field (fieldno).type ();
6482 /* Handle packed fields. It might be that the field is not packed
6483 relative to its containing structure, but the structure itself is
6484 packed; in this case we must take the bit-field path. */
6485 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6487 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6488 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6490 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6491 offset + bit_pos / 8,
6492 bit_pos % 8, bit_size, type);
6495 return value_primitive_field (arg1, offset, fieldno, arg_type);
6498 /* Find field with name NAME in object of type TYPE. If found,
6499 set the following for each argument that is non-null:
6500 - *FIELD_TYPE_P to the field's type;
6501 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6502 an object of that type;
6503 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6504 - *BIT_SIZE_P to its size in bits if the field is packed, and
6506 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6507 fields up to but not including the desired field, or by the total
6508 number of fields if not found. A NULL value of NAME never
6509 matches; the function just counts visible fields in this case.
6511 Notice that we need to handle when a tagged record hierarchy
6512 has some components with the same name, like in this scenario:
6514 type Top_T is tagged record
6520 type Middle_T is new Top.Top_T with record
6521 N : Character := 'a';
6525 type Bottom_T is new Middle.Middle_T with record
6527 C : Character := '5';
6529 A : Character := 'J';
6532 Let's say we now have a variable declared and initialized as follow:
6534 TC : Top_A := new Bottom_T;
6536 And then we use this variable to call this function
6538 procedure Assign (Obj: in out Top_T; TV : Integer);
6542 Assign (Top_T (B), 12);
6544 Now, we're in the debugger, and we're inside that procedure
6545 then and we want to print the value of obj.c:
6547 Usually, the tagged record or one of the parent type owns the
6548 component to print and there's no issue but in this particular
6549 case, what does it mean to ask for Obj.C? Since the actual
6550 type for object is type Bottom_T, it could mean two things: type
6551 component C from the Middle_T view, but also component C from
6552 Bottom_T. So in that "undefined" case, when the component is
6553 not found in the non-resolved type (which includes all the
6554 components of the parent type), then resolve it and see if we
6555 get better luck once expanded.
6557 In the case of homonyms in the derived tagged type, we don't
6558 guaranty anything, and pick the one that's easiest for us
6561 Returns 1 if found, 0 otherwise. */
6564 find_struct_field (const char *name, struct type *type, int offset,
6565 struct type **field_type_p,
6566 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6570 int parent_offset = -1;
6572 type = ada_check_typedef (type);
6574 if (field_type_p != NULL)
6575 *field_type_p = NULL;
6576 if (byte_offset_p != NULL)
6578 if (bit_offset_p != NULL)
6580 if (bit_size_p != NULL)
6583 for (i = 0; i < type->num_fields (); i += 1)
6585 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6586 int fld_offset = offset + bit_pos / 8;
6587 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6589 if (t_field_name == NULL)
6592 else if (ada_is_parent_field (type, i))
6594 /* This is a field pointing us to the parent type of a tagged
6595 type. As hinted in this function's documentation, we give
6596 preference to fields in the current record first, so what
6597 we do here is just record the index of this field before
6598 we skip it. If it turns out we couldn't find our field
6599 in the current record, then we'll get back to it and search
6600 inside it whether the field might exist in the parent. */
6606 else if (name != NULL && field_name_match (t_field_name, name))
6608 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6610 if (field_type_p != NULL)
6611 *field_type_p = type->field (i).type ();
6612 if (byte_offset_p != NULL)
6613 *byte_offset_p = fld_offset;
6614 if (bit_offset_p != NULL)
6615 *bit_offset_p = bit_pos % 8;
6616 if (bit_size_p != NULL)
6617 *bit_size_p = bit_size;
6620 else if (ada_is_wrapper_field (type, i))
6622 if (find_struct_field (name, type->field (i).type (), fld_offset,
6623 field_type_p, byte_offset_p, bit_offset_p,
6624 bit_size_p, index_p))
6627 else if (ada_is_variant_part (type, i))
6629 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6632 struct type *field_type
6633 = ada_check_typedef (type->field (i).type ());
6635 for (j = 0; j < field_type->num_fields (); j += 1)
6637 if (find_struct_field (name, field_type->field (j).type (),
6639 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6640 field_type_p, byte_offset_p,
6641 bit_offset_p, bit_size_p, index_p))
6645 else if (index_p != NULL)
6649 /* Field not found so far. If this is a tagged type which
6650 has a parent, try finding that field in the parent now. */
6652 if (parent_offset != -1)
6654 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6655 int fld_offset = offset + bit_pos / 8;
6657 if (find_struct_field (name, type->field (parent_offset).type (),
6658 fld_offset, field_type_p, byte_offset_p,
6659 bit_offset_p, bit_size_p, index_p))
6666 /* Number of user-visible fields in record type TYPE. */
6669 num_visible_fields (struct type *type)
6674 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6678 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6679 and search in it assuming it has (class) type TYPE.
6680 If found, return value, else return NULL.
6682 Searches recursively through wrapper fields (e.g., '_parent').
6684 In the case of homonyms in the tagged types, please refer to the
6685 long explanation in find_struct_field's function documentation. */
6687 static struct value *
6688 ada_search_struct_field (const char *name, struct value *arg, int offset,
6692 int parent_offset = -1;
6694 type = ada_check_typedef (type);
6695 for (i = 0; i < type->num_fields (); i += 1)
6697 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6699 if (t_field_name == NULL)
6702 else if (ada_is_parent_field (type, i))
6704 /* This is a field pointing us to the parent type of a tagged
6705 type. As hinted in this function's documentation, we give
6706 preference to fields in the current record first, so what
6707 we do here is just record the index of this field before
6708 we skip it. If it turns out we couldn't find our field
6709 in the current record, then we'll get back to it and search
6710 inside it whether the field might exist in the parent. */
6716 else if (field_name_match (t_field_name, name))
6717 return ada_value_primitive_field (arg, offset, i, type);
6719 else if (ada_is_wrapper_field (type, i))
6721 struct value *v = /* Do not let indent join lines here. */
6722 ada_search_struct_field (name, arg,
6723 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6724 type->field (i).type ());
6730 else if (ada_is_variant_part (type, i))
6732 /* PNH: Do we ever get here? See find_struct_field. */
6734 struct type *field_type = ada_check_typedef (type->field (i).type ());
6735 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6737 for (j = 0; j < field_type->num_fields (); j += 1)
6739 struct value *v = ada_search_struct_field /* Force line
6742 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6743 field_type->field (j).type ());
6751 /* Field not found so far. If this is a tagged type which
6752 has a parent, try finding that field in the parent now. */
6754 if (parent_offset != -1)
6756 struct value *v = ada_search_struct_field (
6757 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
6758 type->field (parent_offset).type ());
6767 static struct value *ada_index_struct_field_1 (int *, struct value *,
6768 int, struct type *);
6771 /* Return field #INDEX in ARG, where the index is that returned by
6772 * find_struct_field through its INDEX_P argument. Adjust the address
6773 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6774 * If found, return value, else return NULL. */
6776 static struct value *
6777 ada_index_struct_field (int index, struct value *arg, int offset,
6780 return ada_index_struct_field_1 (&index, arg, offset, type);
6784 /* Auxiliary function for ada_index_struct_field. Like
6785 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6788 static struct value *
6789 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6793 type = ada_check_typedef (type);
6795 for (i = 0; i < type->num_fields (); i += 1)
6797 if (TYPE_FIELD_NAME (type, i) == NULL)
6799 else if (ada_is_wrapper_field (type, i))
6801 struct value *v = /* Do not let indent join lines here. */
6802 ada_index_struct_field_1 (index_p, arg,
6803 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6804 type->field (i).type ());
6810 else if (ada_is_variant_part (type, i))
6812 /* PNH: Do we ever get here? See ada_search_struct_field,
6813 find_struct_field. */
6814 error (_("Cannot assign this kind of variant record"));
6816 else if (*index_p == 0)
6817 return ada_value_primitive_field (arg, offset, i, type);
6824 /* Return a string representation of type TYPE. */
6827 type_as_string (struct type *type)
6829 string_file tmp_stream;
6831 type_print (type, "", &tmp_stream, -1);
6833 return std::move (tmp_stream.string ());
6836 /* Given a type TYPE, look up the type of the component of type named NAME.
6837 If DISPP is non-null, add its byte displacement from the beginning of a
6838 structure (pointed to by a value) of type TYPE to *DISPP (does not
6839 work for packed fields).
6841 Matches any field whose name has NAME as a prefix, possibly
6844 TYPE can be either a struct or union. If REFOK, TYPE may also
6845 be a (pointer or reference)+ to a struct or union, and the
6846 ultimate target type will be searched.
6848 Looks recursively into variant clauses and parent types.
6850 In the case of homonyms in the tagged types, please refer to the
6851 long explanation in find_struct_field's function documentation.
6853 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6854 TYPE is not a type of the right kind. */
6856 static struct type *
6857 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6861 int parent_offset = -1;
6866 if (refok && type != NULL)
6869 type = ada_check_typedef (type);
6870 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6872 type = TYPE_TARGET_TYPE (type);
6876 || (type->code () != TYPE_CODE_STRUCT
6877 && type->code () != TYPE_CODE_UNION))
6882 error (_("Type %s is not a structure or union type"),
6883 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6886 type = to_static_fixed_type (type);
6888 for (i = 0; i < type->num_fields (); i += 1)
6890 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6893 if (t_field_name == NULL)
6896 else if (ada_is_parent_field (type, i))
6898 /* This is a field pointing us to the parent type of a tagged
6899 type. As hinted in this function's documentation, we give
6900 preference to fields in the current record first, so what
6901 we do here is just record the index of this field before
6902 we skip it. If it turns out we couldn't find our field
6903 in the current record, then we'll get back to it and search
6904 inside it whether the field might exist in the parent. */
6910 else if (field_name_match (t_field_name, name))
6911 return type->field (i).type ();
6913 else if (ada_is_wrapper_field (type, i))
6915 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6921 else if (ada_is_variant_part (type, i))
6924 struct type *field_type = ada_check_typedef (type->field (i).type ());
6926 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
6928 /* FIXME pnh 2008/01/26: We check for a field that is
6929 NOT wrapped in a struct, since the compiler sometimes
6930 generates these for unchecked variant types. Revisit
6931 if the compiler changes this practice. */
6932 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6934 if (v_field_name != NULL
6935 && field_name_match (v_field_name, name))
6936 t = field_type->field (j).type ();
6938 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
6948 /* Field not found so far. If this is a tagged type which
6949 has a parent, try finding that field in the parent now. */
6951 if (parent_offset != -1)
6955 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
6964 const char *name_str = name != NULL ? name : _("<null>");
6966 error (_("Type %s has no component named %s"),
6967 type_as_string (type).c_str (), name_str);
6973 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6974 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6975 represents an unchecked union (that is, the variant part of a
6976 record that is named in an Unchecked_Union pragma). */
6979 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6981 const char *discrim_name = ada_variant_discrim_name (var_type);
6983 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
6987 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6988 within OUTER, determine which variant clause (field number in VAR_TYPE,
6989 numbering from 0) is applicable. Returns -1 if none are. */
6992 ada_which_variant_applies (struct type *var_type, struct value *outer)
6996 const char *discrim_name = ada_variant_discrim_name (var_type);
6997 struct value *discrim;
6998 LONGEST discrim_val;
7000 /* Using plain value_from_contents_and_address here causes problems
7001 because we will end up trying to resolve a type that is currently
7002 being constructed. */
7003 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7004 if (discrim == NULL)
7006 discrim_val = value_as_long (discrim);
7009 for (i = 0; i < var_type->num_fields (); i += 1)
7011 if (ada_is_others_clause (var_type, i))
7013 else if (ada_in_variant (discrim_val, var_type, i))
7017 return others_clause;
7022 /* Dynamic-Sized Records */
7024 /* Strategy: The type ostensibly attached to a value with dynamic size
7025 (i.e., a size that is not statically recorded in the debugging
7026 data) does not accurately reflect the size or layout of the value.
7027 Our strategy is to convert these values to values with accurate,
7028 conventional types that are constructed on the fly. */
7030 /* There is a subtle and tricky problem here. In general, we cannot
7031 determine the size of dynamic records without its data. However,
7032 the 'struct value' data structure, which GDB uses to represent
7033 quantities in the inferior process (the target), requires the size
7034 of the type at the time of its allocation in order to reserve space
7035 for GDB's internal copy of the data. That's why the
7036 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7037 rather than struct value*s.
7039 However, GDB's internal history variables ($1, $2, etc.) are
7040 struct value*s containing internal copies of the data that are not, in
7041 general, the same as the data at their corresponding addresses in
7042 the target. Fortunately, the types we give to these values are all
7043 conventional, fixed-size types (as per the strategy described
7044 above), so that we don't usually have to perform the
7045 'to_fixed_xxx_type' conversions to look at their values.
7046 Unfortunately, there is one exception: if one of the internal
7047 history variables is an array whose elements are unconstrained
7048 records, then we will need to create distinct fixed types for each
7049 element selected. */
7051 /* The upshot of all of this is that many routines take a (type, host
7052 address, target address) triple as arguments to represent a value.
7053 The host address, if non-null, is supposed to contain an internal
7054 copy of the relevant data; otherwise, the program is to consult the
7055 target at the target address. */
7057 /* Assuming that VAL0 represents a pointer value, the result of
7058 dereferencing it. Differs from value_ind in its treatment of
7059 dynamic-sized types. */
7062 ada_value_ind (struct value *val0)
7064 struct value *val = value_ind (val0);
7066 if (ada_is_tagged_type (value_type (val), 0))
7067 val = ada_tag_value_at_base_address (val);
7069 return ada_to_fixed_value (val);
7072 /* The value resulting from dereferencing any "reference to"
7073 qualifiers on VAL0. */
7075 static struct value *
7076 ada_coerce_ref (struct value *val0)
7078 if (value_type (val0)->code () == TYPE_CODE_REF)
7080 struct value *val = val0;
7082 val = coerce_ref (val);
7084 if (ada_is_tagged_type (value_type (val), 0))
7085 val = ada_tag_value_at_base_address (val);
7087 return ada_to_fixed_value (val);
7093 /* Return the bit alignment required for field #F of template type TYPE. */
7096 field_alignment (struct type *type, int f)
7098 const char *name = TYPE_FIELD_NAME (type, f);
7102 /* The field name should never be null, unless the debugging information
7103 is somehow malformed. In this case, we assume the field does not
7104 require any alignment. */
7108 len = strlen (name);
7110 if (!isdigit (name[len - 1]))
7113 if (isdigit (name[len - 2]))
7114 align_offset = len - 2;
7116 align_offset = len - 1;
7118 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7119 return TARGET_CHAR_BIT;
7121 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7124 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7126 static struct symbol *
7127 ada_find_any_type_symbol (const char *name)
7131 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7132 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7135 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7139 /* Find a type named NAME. Ignores ambiguity. This routine will look
7140 solely for types defined by debug info, it will not search the GDB
7143 static struct type *
7144 ada_find_any_type (const char *name)
7146 struct symbol *sym = ada_find_any_type_symbol (name);
7149 return SYMBOL_TYPE (sym);
7154 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7155 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7156 symbol, in which case it is returned. Otherwise, this looks for
7157 symbols whose name is that of NAME_SYM suffixed with "___XR".
7158 Return symbol if found, and NULL otherwise. */
7161 ada_is_renaming_symbol (struct symbol *name_sym)
7163 const char *name = name_sym->linkage_name ();
7164 return strstr (name, "___XR") != NULL;
7167 /* Because of GNAT encoding conventions, several GDB symbols may match a
7168 given type name. If the type denoted by TYPE0 is to be preferred to
7169 that of TYPE1 for purposes of type printing, return non-zero;
7170 otherwise return 0. */
7173 ada_prefer_type (struct type *type0, struct type *type1)
7177 else if (type0 == NULL)
7179 else if (type1->code () == TYPE_CODE_VOID)
7181 else if (type0->code () == TYPE_CODE_VOID)
7183 else if (type1->name () == NULL && type0->name () != NULL)
7185 else if (ada_is_constrained_packed_array_type (type0))
7187 else if (ada_is_array_descriptor_type (type0)
7188 && !ada_is_array_descriptor_type (type1))
7192 const char *type0_name = type0->name ();
7193 const char *type1_name = type1->name ();
7195 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7196 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7202 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7206 ada_type_name (struct type *type)
7210 return type->name ();
7213 /* Search the list of "descriptive" types associated to TYPE for a type
7214 whose name is NAME. */
7216 static struct type *
7217 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7219 struct type *result, *tmp;
7221 if (ada_ignore_descriptive_types_p)
7224 /* If there no descriptive-type info, then there is no parallel type
7226 if (!HAVE_GNAT_AUX_INFO (type))
7229 result = TYPE_DESCRIPTIVE_TYPE (type);
7230 while (result != NULL)
7232 const char *result_name = ada_type_name (result);
7234 if (result_name == NULL)
7236 warning (_("unexpected null name on descriptive type"));
7240 /* If the names match, stop. */
7241 if (strcmp (result_name, name) == 0)
7244 /* Otherwise, look at the next item on the list, if any. */
7245 if (HAVE_GNAT_AUX_INFO (result))
7246 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7250 /* If not found either, try after having resolved the typedef. */
7255 result = check_typedef (result);
7256 if (HAVE_GNAT_AUX_INFO (result))
7257 result = TYPE_DESCRIPTIVE_TYPE (result);
7263 /* If we didn't find a match, see whether this is a packed array. With
7264 older compilers, the descriptive type information is either absent or
7265 irrelevant when it comes to packed arrays so the above lookup fails.
7266 Fall back to using a parallel lookup by name in this case. */
7267 if (result == NULL && ada_is_constrained_packed_array_type (type))
7268 return ada_find_any_type (name);
7273 /* Find a parallel type to TYPE with the specified NAME, using the
7274 descriptive type taken from the debugging information, if available,
7275 and otherwise using the (slower) name-based method. */
7277 static struct type *
7278 ada_find_parallel_type_with_name (struct type *type, const char *name)
7280 struct type *result = NULL;
7282 if (HAVE_GNAT_AUX_INFO (type))
7283 result = find_parallel_type_by_descriptive_type (type, name);
7285 result = ada_find_any_type (name);
7290 /* Same as above, but specify the name of the parallel type by appending
7291 SUFFIX to the name of TYPE. */
7294 ada_find_parallel_type (struct type *type, const char *suffix)
7297 const char *type_name = ada_type_name (type);
7300 if (type_name == NULL)
7303 len = strlen (type_name);
7305 name = (char *) alloca (len + strlen (suffix) + 1);
7307 strcpy (name, type_name);
7308 strcpy (name + len, suffix);
7310 return ada_find_parallel_type_with_name (type, name);
7313 /* If TYPE is a variable-size record type, return the corresponding template
7314 type describing its fields. Otherwise, return NULL. */
7316 static struct type *
7317 dynamic_template_type (struct type *type)
7319 type = ada_check_typedef (type);
7321 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7322 || ada_type_name (type) == NULL)
7326 int len = strlen (ada_type_name (type));
7328 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7331 return ada_find_parallel_type (type, "___XVE");
7335 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7336 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7339 is_dynamic_field (struct type *templ_type, int field_num)
7341 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7344 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7345 && strstr (name, "___XVL") != NULL;
7348 /* The index of the variant field of TYPE, or -1 if TYPE does not
7349 represent a variant record type. */
7352 variant_field_index (struct type *type)
7356 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7359 for (f = 0; f < type->num_fields (); f += 1)
7361 if (ada_is_variant_part (type, f))
7367 /* A record type with no fields. */
7369 static struct type *
7370 empty_record (struct type *templ)
7372 struct type *type = alloc_type_copy (templ);
7374 type->set_code (TYPE_CODE_STRUCT);
7375 INIT_NONE_SPECIFIC (type);
7376 type->set_name ("<empty>");
7377 TYPE_LENGTH (type) = 0;
7381 /* An ordinary record type (with fixed-length fields) that describes
7382 the value of type TYPE at VALADDR or ADDRESS (see comments at
7383 the beginning of this section) VAL according to GNAT conventions.
7384 DVAL0 should describe the (portion of a) record that contains any
7385 necessary discriminants. It should be NULL if value_type (VAL) is
7386 an outer-level type (i.e., as opposed to a branch of a variant.) A
7387 variant field (unless unchecked) is replaced by a particular branch
7390 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7391 length are not statically known are discarded. As a consequence,
7392 VALADDR, ADDRESS and DVAL0 are ignored.
7394 NOTE: Limitations: For now, we assume that dynamic fields and
7395 variants occupy whole numbers of bytes. However, they need not be
7399 ada_template_to_fixed_record_type_1 (struct type *type,
7400 const gdb_byte *valaddr,
7401 CORE_ADDR address, struct value *dval0,
7402 int keep_dynamic_fields)
7404 struct value *mark = value_mark ();
7407 int nfields, bit_len;
7413 /* Compute the number of fields in this record type that are going
7414 to be processed: unless keep_dynamic_fields, this includes only
7415 fields whose position and length are static will be processed. */
7416 if (keep_dynamic_fields)
7417 nfields = type->num_fields ();
7421 while (nfields < type->num_fields ()
7422 && !ada_is_variant_part (type, nfields)
7423 && !is_dynamic_field (type, nfields))
7427 rtype = alloc_type_copy (type);
7428 rtype->set_code (TYPE_CODE_STRUCT);
7429 INIT_NONE_SPECIFIC (rtype);
7430 rtype->set_num_fields (nfields);
7432 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7433 rtype->set_name (ada_type_name (type));
7434 rtype->set_is_fixed_instance (true);
7440 for (f = 0; f < nfields; f += 1)
7442 off = align_up (off, field_alignment (type, f))
7443 + TYPE_FIELD_BITPOS (type, f);
7444 SET_FIELD_BITPOS (rtype->field (f), off);
7445 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7447 if (ada_is_variant_part (type, f))
7452 else if (is_dynamic_field (type, f))
7454 const gdb_byte *field_valaddr = valaddr;
7455 CORE_ADDR field_address = address;
7456 struct type *field_type =
7457 TYPE_TARGET_TYPE (type->field (f).type ());
7461 /* rtype's length is computed based on the run-time
7462 value of discriminants. If the discriminants are not
7463 initialized, the type size may be completely bogus and
7464 GDB may fail to allocate a value for it. So check the
7465 size first before creating the value. */
7466 ada_ensure_varsize_limit (rtype);
7467 /* Using plain value_from_contents_and_address here
7468 causes problems because we will end up trying to
7469 resolve a type that is currently being
7471 dval = value_from_contents_and_address_unresolved (rtype,
7474 rtype = value_type (dval);
7479 /* If the type referenced by this field is an aligner type, we need
7480 to unwrap that aligner type, because its size might not be set.
7481 Keeping the aligner type would cause us to compute the wrong
7482 size for this field, impacting the offset of the all the fields
7483 that follow this one. */
7484 if (ada_is_aligner_type (field_type))
7486 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7488 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7489 field_address = cond_offset_target (field_address, field_offset);
7490 field_type = ada_aligned_type (field_type);
7493 field_valaddr = cond_offset_host (field_valaddr,
7494 off / TARGET_CHAR_BIT);
7495 field_address = cond_offset_target (field_address,
7496 off / TARGET_CHAR_BIT);
7498 /* Get the fixed type of the field. Note that, in this case,
7499 we do not want to get the real type out of the tag: if
7500 the current field is the parent part of a tagged record,
7501 we will get the tag of the object. Clearly wrong: the real
7502 type of the parent is not the real type of the child. We
7503 would end up in an infinite loop. */
7504 field_type = ada_get_base_type (field_type);
7505 field_type = ada_to_fixed_type (field_type, field_valaddr,
7506 field_address, dval, 0);
7507 /* If the field size is already larger than the maximum
7508 object size, then the record itself will necessarily
7509 be larger than the maximum object size. We need to make
7510 this check now, because the size might be so ridiculously
7511 large (due to an uninitialized variable in the inferior)
7512 that it would cause an overflow when adding it to the
7514 ada_ensure_varsize_limit (field_type);
7516 rtype->field (f).set_type (field_type);
7517 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7518 /* The multiplication can potentially overflow. But because
7519 the field length has been size-checked just above, and
7520 assuming that the maximum size is a reasonable value,
7521 an overflow should not happen in practice. So rather than
7522 adding overflow recovery code to this already complex code,
7523 we just assume that it's not going to happen. */
7525 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7529 /* Note: If this field's type is a typedef, it is important
7530 to preserve the typedef layer.
7532 Otherwise, we might be transforming a typedef to a fat
7533 pointer (encoding a pointer to an unconstrained array),
7534 into a basic fat pointer (encoding an unconstrained
7535 array). As both types are implemented using the same
7536 structure, the typedef is the only clue which allows us
7537 to distinguish between the two options. Stripping it
7538 would prevent us from printing this field appropriately. */
7539 rtype->field (f).set_type (type->field (f).type ());
7540 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7541 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7543 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7546 struct type *field_type = type->field (f).type ();
7548 /* We need to be careful of typedefs when computing
7549 the length of our field. If this is a typedef,
7550 get the length of the target type, not the length
7552 if (field_type->code () == TYPE_CODE_TYPEDEF)
7553 field_type = ada_typedef_target_type (field_type);
7556 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7559 if (off + fld_bit_len > bit_len)
7560 bit_len = off + fld_bit_len;
7562 TYPE_LENGTH (rtype) =
7563 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7566 /* We handle the variant part, if any, at the end because of certain
7567 odd cases in which it is re-ordered so as NOT to be the last field of
7568 the record. This can happen in the presence of representation
7570 if (variant_field >= 0)
7572 struct type *branch_type;
7574 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7578 /* Using plain value_from_contents_and_address here causes
7579 problems because we will end up trying to resolve a type
7580 that is currently being constructed. */
7581 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7583 rtype = value_type (dval);
7589 to_fixed_variant_branch_type
7590 (type->field (variant_field).type (),
7591 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7592 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7593 if (branch_type == NULL)
7595 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7596 rtype->field (f - 1) = rtype->field (f);
7597 rtype->set_num_fields (rtype->num_fields () - 1);
7601 rtype->field (variant_field).set_type (branch_type);
7602 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7604 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7606 if (off + fld_bit_len > bit_len)
7607 bit_len = off + fld_bit_len;
7608 TYPE_LENGTH (rtype) =
7609 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7613 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7614 should contain the alignment of that record, which should be a strictly
7615 positive value. If null or negative, then something is wrong, most
7616 probably in the debug info. In that case, we don't round up the size
7617 of the resulting type. If this record is not part of another structure,
7618 the current RTYPE length might be good enough for our purposes. */
7619 if (TYPE_LENGTH (type) <= 0)
7622 warning (_("Invalid type size for `%s' detected: %s."),
7623 rtype->name (), pulongest (TYPE_LENGTH (type)));
7625 warning (_("Invalid type size for <unnamed> detected: %s."),
7626 pulongest (TYPE_LENGTH (type)));
7630 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7631 TYPE_LENGTH (type));
7634 value_free_to_mark (mark);
7635 if (TYPE_LENGTH (rtype) > varsize_limit)
7636 error (_("record type with dynamic size is larger than varsize-limit"));
7640 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7643 static struct type *
7644 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7645 CORE_ADDR address, struct value *dval0)
7647 return ada_template_to_fixed_record_type_1 (type, valaddr,
7651 /* An ordinary record type in which ___XVL-convention fields and
7652 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7653 static approximations, containing all possible fields. Uses
7654 no runtime values. Useless for use in values, but that's OK,
7655 since the results are used only for type determinations. Works on both
7656 structs and unions. Representation note: to save space, we memorize
7657 the result of this function in the TYPE_TARGET_TYPE of the
7660 static struct type *
7661 template_to_static_fixed_type (struct type *type0)
7667 /* No need no do anything if the input type is already fixed. */
7668 if (type0->is_fixed_instance ())
7671 /* Likewise if we already have computed the static approximation. */
7672 if (TYPE_TARGET_TYPE (type0) != NULL)
7673 return TYPE_TARGET_TYPE (type0);
7675 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7677 nfields = type0->num_fields ();
7679 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7680 recompute all over next time. */
7681 TYPE_TARGET_TYPE (type0) = type;
7683 for (f = 0; f < nfields; f += 1)
7685 struct type *field_type = type0->field (f).type ();
7686 struct type *new_type;
7688 if (is_dynamic_field (type0, f))
7690 field_type = ada_check_typedef (field_type);
7691 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7694 new_type = static_unwrap_type (field_type);
7696 if (new_type != field_type)
7698 /* Clone TYPE0 only the first time we get a new field type. */
7701 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7702 type->set_code (type0->code ());
7703 INIT_NONE_SPECIFIC (type);
7704 type->set_num_fields (nfields);
7708 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7709 memcpy (fields, type0->fields (),
7710 sizeof (struct field) * nfields);
7711 type->set_fields (fields);
7713 type->set_name (ada_type_name (type0));
7714 type->set_is_fixed_instance (true);
7715 TYPE_LENGTH (type) = 0;
7717 type->field (f).set_type (new_type);
7718 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7725 /* Given an object of type TYPE whose contents are at VALADDR and
7726 whose address in memory is ADDRESS, returns a revision of TYPE,
7727 which should be a non-dynamic-sized record, in which the variant
7728 part, if any, is replaced with the appropriate branch. Looks
7729 for discriminant values in DVAL0, which can be NULL if the record
7730 contains the necessary discriminant values. */
7732 static struct type *
7733 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7734 CORE_ADDR address, struct value *dval0)
7736 struct value *mark = value_mark ();
7739 struct type *branch_type;
7740 int nfields = type->num_fields ();
7741 int variant_field = variant_field_index (type);
7743 if (variant_field == -1)
7748 dval = value_from_contents_and_address (type, valaddr, address);
7749 type = value_type (dval);
7754 rtype = alloc_type_copy (type);
7755 rtype->set_code (TYPE_CODE_STRUCT);
7756 INIT_NONE_SPECIFIC (rtype);
7757 rtype->set_num_fields (nfields);
7760 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7761 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7762 rtype->set_fields (fields);
7764 rtype->set_name (ada_type_name (type));
7765 rtype->set_is_fixed_instance (true);
7766 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7768 branch_type = to_fixed_variant_branch_type
7769 (type->field (variant_field).type (),
7770 cond_offset_host (valaddr,
7771 TYPE_FIELD_BITPOS (type, variant_field)
7773 cond_offset_target (address,
7774 TYPE_FIELD_BITPOS (type, variant_field)
7775 / TARGET_CHAR_BIT), dval);
7776 if (branch_type == NULL)
7780 for (f = variant_field + 1; f < nfields; f += 1)
7781 rtype->field (f - 1) = rtype->field (f);
7782 rtype->set_num_fields (rtype->num_fields () - 1);
7786 rtype->field (variant_field).set_type (branch_type);
7787 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7788 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7789 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7791 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7793 value_free_to_mark (mark);
7797 /* An ordinary record type (with fixed-length fields) that describes
7798 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7799 beginning of this section]. Any necessary discriminants' values
7800 should be in DVAL, a record value; it may be NULL if the object
7801 at ADDR itself contains any necessary discriminant values.
7802 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7803 values from the record are needed. Except in the case that DVAL,
7804 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7805 unchecked) is replaced by a particular branch of the variant.
7807 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7808 is questionable and may be removed. It can arise during the
7809 processing of an unconstrained-array-of-record type where all the
7810 variant branches have exactly the same size. This is because in
7811 such cases, the compiler does not bother to use the XVS convention
7812 when encoding the record. I am currently dubious of this
7813 shortcut and suspect the compiler should be altered. FIXME. */
7815 static struct type *
7816 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7817 CORE_ADDR address, struct value *dval)
7819 struct type *templ_type;
7821 if (type0->is_fixed_instance ())
7824 templ_type = dynamic_template_type (type0);
7826 if (templ_type != NULL)
7827 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7828 else if (variant_field_index (type0) >= 0)
7830 if (dval == NULL && valaddr == NULL && address == 0)
7832 return to_record_with_fixed_variant_part (type0, valaddr, address,
7837 type0->set_is_fixed_instance (true);
7843 /* An ordinary record type (with fixed-length fields) that describes
7844 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7845 union type. Any necessary discriminants' values should be in DVAL,
7846 a record value. That is, this routine selects the appropriate
7847 branch of the union at ADDR according to the discriminant value
7848 indicated in the union's type name. Returns VAR_TYPE0 itself if
7849 it represents a variant subject to a pragma Unchecked_Union. */
7851 static struct type *
7852 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7853 CORE_ADDR address, struct value *dval)
7856 struct type *templ_type;
7857 struct type *var_type;
7859 if (var_type0->code () == TYPE_CODE_PTR)
7860 var_type = TYPE_TARGET_TYPE (var_type0);
7862 var_type = var_type0;
7864 templ_type = ada_find_parallel_type (var_type, "___XVU");
7866 if (templ_type != NULL)
7867 var_type = templ_type;
7869 if (is_unchecked_variant (var_type, value_type (dval)))
7871 which = ada_which_variant_applies (var_type, dval);
7874 return empty_record (var_type);
7875 else if (is_dynamic_field (var_type, which))
7876 return to_fixed_record_type
7877 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7878 valaddr, address, dval);
7879 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7881 to_fixed_record_type
7882 (var_type->field (which).type (), valaddr, address, dval);
7884 return var_type->field (which).type ();
7887 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7888 ENCODING_TYPE, a type following the GNAT conventions for discrete
7889 type encodings, only carries redundant information. */
7892 ada_is_redundant_range_encoding (struct type *range_type,
7893 struct type *encoding_type)
7895 const char *bounds_str;
7899 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7901 if (get_base_type (range_type)->code ()
7902 != get_base_type (encoding_type)->code ())
7904 /* The compiler probably used a simple base type to describe
7905 the range type instead of the range's actual base type,
7906 expecting us to get the real base type from the encoding
7907 anyway. In this situation, the encoding cannot be ignored
7912 if (is_dynamic_type (range_type))
7915 if (encoding_type->name () == NULL)
7918 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7919 if (bounds_str == NULL)
7922 n = 8; /* Skip "___XDLU_". */
7923 if (!ada_scan_number (bounds_str, n, &lo, &n))
7925 if (range_type->bounds ()->low.const_val () != lo)
7928 n += 2; /* Skip the "__" separator between the two bounds. */
7929 if (!ada_scan_number (bounds_str, n, &hi, &n))
7931 if (range_type->bounds ()->high.const_val () != hi)
7937 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7938 a type following the GNAT encoding for describing array type
7939 indices, only carries redundant information. */
7942 ada_is_redundant_index_type_desc (struct type *array_type,
7943 struct type *desc_type)
7945 struct type *this_layer = check_typedef (array_type);
7948 for (i = 0; i < desc_type->num_fields (); i++)
7950 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
7951 desc_type->field (i).type ()))
7953 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
7959 /* Assuming that TYPE0 is an array type describing the type of a value
7960 at ADDR, and that DVAL describes a record containing any
7961 discriminants used in TYPE0, returns a type for the value that
7962 contains no dynamic components (that is, no components whose sizes
7963 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7964 true, gives an error message if the resulting type's size is over
7967 static struct type *
7968 to_fixed_array_type (struct type *type0, struct value *dval,
7971 struct type *index_type_desc;
7972 struct type *result;
7973 int constrained_packed_array_p;
7974 static const char *xa_suffix = "___XA";
7976 type0 = ada_check_typedef (type0);
7977 if (type0->is_fixed_instance ())
7980 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7981 if (constrained_packed_array_p)
7983 type0 = decode_constrained_packed_array_type (type0);
7984 if (type0 == nullptr)
7985 error (_("could not decode constrained packed array type"));
7988 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
7990 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
7991 encoding suffixed with 'P' may still be generated. If so,
7992 it should be used to find the XA type. */
7994 if (index_type_desc == NULL)
7996 const char *type_name = ada_type_name (type0);
7998 if (type_name != NULL)
8000 const int len = strlen (type_name);
8001 char *name = (char *) alloca (len + strlen (xa_suffix));
8003 if (type_name[len - 1] == 'P')
8005 strcpy (name, type_name);
8006 strcpy (name + len - 1, xa_suffix);
8007 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8012 ada_fixup_array_indexes_type (index_type_desc);
8013 if (index_type_desc != NULL
8014 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8016 /* Ignore this ___XA parallel type, as it does not bring any
8017 useful information. This allows us to avoid creating fixed
8018 versions of the array's index types, which would be identical
8019 to the original ones. This, in turn, can also help avoid
8020 the creation of fixed versions of the array itself. */
8021 index_type_desc = NULL;
8024 if (index_type_desc == NULL)
8026 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8028 /* NOTE: elt_type---the fixed version of elt_type0---should never
8029 depend on the contents of the array in properly constructed
8031 /* Create a fixed version of the array element type.
8032 We're not providing the address of an element here,
8033 and thus the actual object value cannot be inspected to do
8034 the conversion. This should not be a problem, since arrays of
8035 unconstrained objects are not allowed. In particular, all
8036 the elements of an array of a tagged type should all be of
8037 the same type specified in the debugging info. No need to
8038 consult the object tag. */
8039 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8041 /* Make sure we always create a new array type when dealing with
8042 packed array types, since we're going to fix-up the array
8043 type length and element bitsize a little further down. */
8044 if (elt_type0 == elt_type && !constrained_packed_array_p)
8047 result = create_array_type (alloc_type_copy (type0),
8048 elt_type, type0->index_type ());
8053 struct type *elt_type0;
8056 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8057 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8059 /* NOTE: result---the fixed version of elt_type0---should never
8060 depend on the contents of the array in properly constructed
8062 /* Create a fixed version of the array element type.
8063 We're not providing the address of an element here,
8064 and thus the actual object value cannot be inspected to do
8065 the conversion. This should not be a problem, since arrays of
8066 unconstrained objects are not allowed. In particular, all
8067 the elements of an array of a tagged type should all be of
8068 the same type specified in the debugging info. No need to
8069 consult the object tag. */
8071 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8074 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8076 struct type *range_type =
8077 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8079 result = create_array_type (alloc_type_copy (elt_type0),
8080 result, range_type);
8081 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8083 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8084 error (_("array type with dynamic size is larger than varsize-limit"));
8087 /* We want to preserve the type name. This can be useful when
8088 trying to get the type name of a value that has already been
8089 printed (for instance, if the user did "print VAR; whatis $". */
8090 result->set_name (type0->name ());
8092 if (constrained_packed_array_p)
8094 /* So far, the resulting type has been created as if the original
8095 type was a regular (non-packed) array type. As a result, the
8096 bitsize of the array elements needs to be set again, and the array
8097 length needs to be recomputed based on that bitsize. */
8098 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8099 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8101 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8102 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8103 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8104 TYPE_LENGTH (result)++;
8107 result->set_is_fixed_instance (true);
8112 /* A standard type (containing no dynamically sized components)
8113 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8114 DVAL describes a record containing any discriminants used in TYPE0,
8115 and may be NULL if there are none, or if the object of type TYPE at
8116 ADDRESS or in VALADDR contains these discriminants.
8118 If CHECK_TAG is not null, in the case of tagged types, this function
8119 attempts to locate the object's tag and use it to compute the actual
8120 type. However, when ADDRESS is null, we cannot use it to determine the
8121 location of the tag, and therefore compute the tagged type's actual type.
8122 So we return the tagged type without consulting the tag. */
8124 static struct type *
8125 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8126 CORE_ADDR address, struct value *dval, int check_tag)
8128 type = ada_check_typedef (type);
8130 /* Only un-fixed types need to be handled here. */
8131 if (!HAVE_GNAT_AUX_INFO (type))
8134 switch (type->code ())
8138 case TYPE_CODE_STRUCT:
8140 struct type *static_type = to_static_fixed_type (type);
8141 struct type *fixed_record_type =
8142 to_fixed_record_type (type, valaddr, address, NULL);
8144 /* If STATIC_TYPE is a tagged type and we know the object's address,
8145 then we can determine its tag, and compute the object's actual
8146 type from there. Note that we have to use the fixed record
8147 type (the parent part of the record may have dynamic fields
8148 and the way the location of _tag is expressed may depend on
8151 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8154 value_tag_from_contents_and_address
8158 struct type *real_type = type_from_tag (tag);
8160 value_from_contents_and_address (fixed_record_type,
8163 fixed_record_type = value_type (obj);
8164 if (real_type != NULL)
8165 return to_fixed_record_type
8167 value_address (ada_tag_value_at_base_address (obj)), NULL);
8170 /* Check to see if there is a parallel ___XVZ variable.
8171 If there is, then it provides the actual size of our type. */
8172 else if (ada_type_name (fixed_record_type) != NULL)
8174 const char *name = ada_type_name (fixed_record_type);
8176 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8177 bool xvz_found = false;
8180 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8183 xvz_found = get_int_var_value (xvz_name, size);
8185 catch (const gdb_exception_error &except)
8187 /* We found the variable, but somehow failed to read
8188 its value. Rethrow the same error, but with a little
8189 bit more information, to help the user understand
8190 what went wrong (Eg: the variable might have been
8192 throw_error (except.error,
8193 _("unable to read value of %s (%s)"),
8194 xvz_name, except.what ());
8197 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8199 fixed_record_type = copy_type (fixed_record_type);
8200 TYPE_LENGTH (fixed_record_type) = size;
8202 /* The FIXED_RECORD_TYPE may have be a stub. We have
8203 observed this when the debugging info is STABS, and
8204 apparently it is something that is hard to fix.
8206 In practice, we don't need the actual type definition
8207 at all, because the presence of the XVZ variable allows us
8208 to assume that there must be a XVS type as well, which we
8209 should be able to use later, when we need the actual type
8212 In the meantime, pretend that the "fixed" type we are
8213 returning is NOT a stub, because this can cause trouble
8214 when using this type to create new types targeting it.
8215 Indeed, the associated creation routines often check
8216 whether the target type is a stub and will try to replace
8217 it, thus using a type with the wrong size. This, in turn,
8218 might cause the new type to have the wrong size too.
8219 Consider the case of an array, for instance, where the size
8220 of the array is computed from the number of elements in
8221 our array multiplied by the size of its element. */
8222 fixed_record_type->set_is_stub (false);
8225 return fixed_record_type;
8227 case TYPE_CODE_ARRAY:
8228 return to_fixed_array_type (type, dval, 1);
8229 case TYPE_CODE_UNION:
8233 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8237 /* The same as ada_to_fixed_type_1, except that it preserves the type
8238 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8240 The typedef layer needs be preserved in order to differentiate between
8241 arrays and array pointers when both types are implemented using the same
8242 fat pointer. In the array pointer case, the pointer is encoded as
8243 a typedef of the pointer type. For instance, considering:
8245 type String_Access is access String;
8246 S1 : String_Access := null;
8248 To the debugger, S1 is defined as a typedef of type String. But
8249 to the user, it is a pointer. So if the user tries to print S1,
8250 we should not dereference the array, but print the array address
8253 If we didn't preserve the typedef layer, we would lose the fact that
8254 the type is to be presented as a pointer (needs de-reference before
8255 being printed). And we would also use the source-level type name. */
8258 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8259 CORE_ADDR address, struct value *dval, int check_tag)
8262 struct type *fixed_type =
8263 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8265 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8266 then preserve the typedef layer.
8268 Implementation note: We can only check the main-type portion of
8269 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8270 from TYPE now returns a type that has the same instance flags
8271 as TYPE. For instance, if TYPE is a "typedef const", and its
8272 target type is a "struct", then the typedef elimination will return
8273 a "const" version of the target type. See check_typedef for more
8274 details about how the typedef layer elimination is done.
8276 brobecker/2010-11-19: It seems to me that the only case where it is
8277 useful to preserve the typedef layer is when dealing with fat pointers.
8278 Perhaps, we could add a check for that and preserve the typedef layer
8279 only in that situation. But this seems unnecessary so far, probably
8280 because we call check_typedef/ada_check_typedef pretty much everywhere.
8282 if (type->code () == TYPE_CODE_TYPEDEF
8283 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8284 == TYPE_MAIN_TYPE (fixed_type)))
8290 /* A standard (static-sized) type corresponding as well as possible to
8291 TYPE0, but based on no runtime data. */
8293 static struct type *
8294 to_static_fixed_type (struct type *type0)
8301 if (type0->is_fixed_instance ())
8304 type0 = ada_check_typedef (type0);
8306 switch (type0->code ())
8310 case TYPE_CODE_STRUCT:
8311 type = dynamic_template_type (type0);
8313 return template_to_static_fixed_type (type);
8315 return template_to_static_fixed_type (type0);
8316 case TYPE_CODE_UNION:
8317 type = ada_find_parallel_type (type0, "___XVU");
8319 return template_to_static_fixed_type (type);
8321 return template_to_static_fixed_type (type0);
8325 /* A static approximation of TYPE with all type wrappers removed. */
8327 static struct type *
8328 static_unwrap_type (struct type *type)
8330 if (ada_is_aligner_type (type))
8332 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8333 if (ada_type_name (type1) == NULL)
8334 type1->set_name (ada_type_name (type));
8336 return static_unwrap_type (type1);
8340 struct type *raw_real_type = ada_get_base_type (type);
8342 if (raw_real_type == type)
8345 return to_static_fixed_type (raw_real_type);
8349 /* In some cases, incomplete and private types require
8350 cross-references that are not resolved as records (for example,
8352 type FooP is access Foo;
8354 type Foo is array ...;
8355 ). In these cases, since there is no mechanism for producing
8356 cross-references to such types, we instead substitute for FooP a
8357 stub enumeration type that is nowhere resolved, and whose tag is
8358 the name of the actual type. Call these types "non-record stubs". */
8360 /* A type equivalent to TYPE that is not a non-record stub, if one
8361 exists, otherwise TYPE. */
8364 ada_check_typedef (struct type *type)
8369 /* If our type is an access to an unconstrained array, which is encoded
8370 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8371 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8372 what allows us to distinguish between fat pointers that represent
8373 array types, and fat pointers that represent array access types
8374 (in both cases, the compiler implements them as fat pointers). */
8375 if (ada_is_access_to_unconstrained_array (type))
8378 type = check_typedef (type);
8379 if (type == NULL || type->code () != TYPE_CODE_ENUM
8380 || !type->is_stub ()
8381 || type->name () == NULL)
8385 const char *name = type->name ();
8386 struct type *type1 = ada_find_any_type (name);
8391 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8392 stubs pointing to arrays, as we don't create symbols for array
8393 types, only for the typedef-to-array types). If that's the case,
8394 strip the typedef layer. */
8395 if (type1->code () == TYPE_CODE_TYPEDEF)
8396 type1 = ada_check_typedef (type1);
8402 /* A value representing the data at VALADDR/ADDRESS as described by
8403 type TYPE0, but with a standard (static-sized) type that correctly
8404 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8405 type, then return VAL0 [this feature is simply to avoid redundant
8406 creation of struct values]. */
8408 static struct value *
8409 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8412 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8414 if (type == type0 && val0 != NULL)
8417 if (VALUE_LVAL (val0) != lval_memory)
8419 /* Our value does not live in memory; it could be a convenience
8420 variable, for instance. Create a not_lval value using val0's
8422 return value_from_contents (type, value_contents (val0));
8425 return value_from_contents_and_address (type, 0, address);
8428 /* A value representing VAL, but with a standard (static-sized) type
8429 that correctly describes it. Does not necessarily create a new
8433 ada_to_fixed_value (struct value *val)
8435 val = unwrap_value (val);
8436 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8443 /* Table mapping attribute numbers to names.
8444 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8446 static const char * const attribute_names[] = {
8464 ada_attribute_name (enum exp_opcode n)
8466 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8467 return attribute_names[n - OP_ATR_FIRST + 1];
8469 return attribute_names[0];
8472 /* Evaluate the 'POS attribute applied to ARG. */
8475 pos_atr (struct value *arg)
8477 struct value *val = coerce_ref (arg);
8478 struct type *type = value_type (val);
8480 if (!discrete_type_p (type))
8481 error (_("'POS only defined on discrete types"));
8483 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8484 if (!result.has_value ())
8485 error (_("enumeration value is invalid: can't find 'POS"));
8491 ada_pos_atr (struct type *expect_type,
8492 struct expression *exp,
8493 enum noside noside, enum exp_opcode op,
8496 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8497 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8498 return value_zero (type, not_lval);
8499 return value_from_longest (type, pos_atr (arg));
8502 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8504 static struct value *
8505 val_atr (struct type *type, LONGEST val)
8507 gdb_assert (discrete_type_p (type));
8508 if (type->code () == TYPE_CODE_RANGE)
8509 type = TYPE_TARGET_TYPE (type);
8510 if (type->code () == TYPE_CODE_ENUM)
8512 if (val < 0 || val >= type->num_fields ())
8513 error (_("argument to 'VAL out of range"));
8514 val = TYPE_FIELD_ENUMVAL (type, val);
8516 return value_from_longest (type, val);
8520 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8522 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8523 return value_zero (type, not_lval);
8525 if (!discrete_type_p (type))
8526 error (_("'VAL only defined on discrete types"));
8527 if (!integer_type_p (value_type (arg)))
8528 error (_("'VAL requires integral argument"));
8530 return val_atr (type, value_as_long (arg));
8536 /* True if TYPE appears to be an Ada character type.
8537 [At the moment, this is true only for Character and Wide_Character;
8538 It is a heuristic test that could stand improvement]. */
8541 ada_is_character_type (struct type *type)
8545 /* If the type code says it's a character, then assume it really is,
8546 and don't check any further. */
8547 if (type->code () == TYPE_CODE_CHAR)
8550 /* Otherwise, assume it's a character type iff it is a discrete type
8551 with a known character type name. */
8552 name = ada_type_name (type);
8553 return (name != NULL
8554 && (type->code () == TYPE_CODE_INT
8555 || type->code () == TYPE_CODE_RANGE)
8556 && (strcmp (name, "character") == 0
8557 || strcmp (name, "wide_character") == 0
8558 || strcmp (name, "wide_wide_character") == 0
8559 || strcmp (name, "unsigned char") == 0));
8562 /* True if TYPE appears to be an Ada string type. */
8565 ada_is_string_type (struct type *type)
8567 type = ada_check_typedef (type);
8569 && type->code () != TYPE_CODE_PTR
8570 && (ada_is_simple_array_type (type)
8571 || ada_is_array_descriptor_type (type))
8572 && ada_array_arity (type) == 1)
8574 struct type *elttype = ada_array_element_type (type, 1);
8576 return ada_is_character_type (elttype);
8582 /* The compiler sometimes provides a parallel XVS type for a given
8583 PAD type. Normally, it is safe to follow the PAD type directly,
8584 but older versions of the compiler have a bug that causes the offset
8585 of its "F" field to be wrong. Following that field in that case
8586 would lead to incorrect results, but this can be worked around
8587 by ignoring the PAD type and using the associated XVS type instead.
8589 Set to True if the debugger should trust the contents of PAD types.
8590 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8591 static bool trust_pad_over_xvs = true;
8593 /* True if TYPE is a struct type introduced by the compiler to force the
8594 alignment of a value. Such types have a single field with a
8595 distinctive name. */
8598 ada_is_aligner_type (struct type *type)
8600 type = ada_check_typedef (type);
8602 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8605 return (type->code () == TYPE_CODE_STRUCT
8606 && type->num_fields () == 1
8607 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8610 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8611 the parallel type. */
8614 ada_get_base_type (struct type *raw_type)
8616 struct type *real_type_namer;
8617 struct type *raw_real_type;
8619 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8622 if (ada_is_aligner_type (raw_type))
8623 /* The encoding specifies that we should always use the aligner type.
8624 So, even if this aligner type has an associated XVS type, we should
8627 According to the compiler gurus, an XVS type parallel to an aligner
8628 type may exist because of a stabs limitation. In stabs, aligner
8629 types are empty because the field has a variable-sized type, and
8630 thus cannot actually be used as an aligner type. As a result,
8631 we need the associated parallel XVS type to decode the type.
8632 Since the policy in the compiler is to not change the internal
8633 representation based on the debugging info format, we sometimes
8634 end up having a redundant XVS type parallel to the aligner type. */
8637 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8638 if (real_type_namer == NULL
8639 || real_type_namer->code () != TYPE_CODE_STRUCT
8640 || real_type_namer->num_fields () != 1)
8643 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8645 /* This is an older encoding form where the base type needs to be
8646 looked up by name. We prefer the newer encoding because it is
8648 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8649 if (raw_real_type == NULL)
8652 return raw_real_type;
8655 /* The field in our XVS type is a reference to the base type. */
8656 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8659 /* The type of value designated by TYPE, with all aligners removed. */
8662 ada_aligned_type (struct type *type)
8664 if (ada_is_aligner_type (type))
8665 return ada_aligned_type (type->field (0).type ());
8667 return ada_get_base_type (type);
8671 /* The address of the aligned value in an object at address VALADDR
8672 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8675 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8677 if (ada_is_aligner_type (type))
8678 return ada_aligned_value_addr (type->field (0).type (),
8680 TYPE_FIELD_BITPOS (type,
8681 0) / TARGET_CHAR_BIT);
8688 /* The printed representation of an enumeration literal with encoded
8689 name NAME. The value is good to the next call of ada_enum_name. */
8691 ada_enum_name (const char *name)
8693 static std::string storage;
8696 /* First, unqualify the enumeration name:
8697 1. Search for the last '.' character. If we find one, then skip
8698 all the preceding characters, the unqualified name starts
8699 right after that dot.
8700 2. Otherwise, we may be debugging on a target where the compiler
8701 translates dots into "__". Search forward for double underscores,
8702 but stop searching when we hit an overloading suffix, which is
8703 of the form "__" followed by digits. */
8705 tmp = strrchr (name, '.');
8710 while ((tmp = strstr (name, "__")) != NULL)
8712 if (isdigit (tmp[2]))
8723 if (name[1] == 'U' || name[1] == 'W')
8725 if (sscanf (name + 2, "%x", &v) != 1)
8728 else if (((name[1] >= '0' && name[1] <= '9')
8729 || (name[1] >= 'a' && name[1] <= 'z'))
8732 storage = string_printf ("'%c'", name[1]);
8733 return storage.c_str ();
8738 if (isascii (v) && isprint (v))
8739 storage = string_printf ("'%c'", v);
8740 else if (name[1] == 'U')
8741 storage = string_printf ("[\"%02x\"]", v);
8743 storage = string_printf ("[\"%04x\"]", v);
8745 return storage.c_str ();
8749 tmp = strstr (name, "__");
8751 tmp = strstr (name, "$");
8754 storage = std::string (name, tmp - name);
8755 return storage.c_str ();
8762 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8765 static struct value *
8766 unwrap_value (struct value *val)
8768 struct type *type = ada_check_typedef (value_type (val));
8770 if (ada_is_aligner_type (type))
8772 struct value *v = ada_value_struct_elt (val, "F", 0);
8773 struct type *val_type = ada_check_typedef (value_type (v));
8775 if (ada_type_name (val_type) == NULL)
8776 val_type->set_name (ada_type_name (type));
8778 return unwrap_value (v);
8782 struct type *raw_real_type =
8783 ada_check_typedef (ada_get_base_type (type));
8785 /* If there is no parallel XVS or XVE type, then the value is
8786 already unwrapped. Return it without further modification. */
8787 if ((type == raw_real_type)
8788 && ada_find_parallel_type (type, "___XVE") == NULL)
8792 coerce_unspec_val_to_type
8793 (val, ada_to_fixed_type (raw_real_type, 0,
8794 value_address (val),
8799 /* Given two array types T1 and T2, return nonzero iff both arrays
8800 contain the same number of elements. */
8803 ada_same_array_size_p (struct type *t1, struct type *t2)
8805 LONGEST lo1, hi1, lo2, hi2;
8807 /* Get the array bounds in order to verify that the size of
8808 the two arrays match. */
8809 if (!get_array_bounds (t1, &lo1, &hi1)
8810 || !get_array_bounds (t2, &lo2, &hi2))
8811 error (_("unable to determine array bounds"));
8813 /* To make things easier for size comparison, normalize a bit
8814 the case of empty arrays by making sure that the difference
8815 between upper bound and lower bound is always -1. */
8821 return (hi1 - lo1 == hi2 - lo2);
8824 /* Assuming that VAL is an array of integrals, and TYPE represents
8825 an array with the same number of elements, but with wider integral
8826 elements, return an array "casted" to TYPE. In practice, this
8827 means that the returned array is built by casting each element
8828 of the original array into TYPE's (wider) element type. */
8830 static struct value *
8831 ada_promote_array_of_integrals (struct type *type, struct value *val)
8833 struct type *elt_type = TYPE_TARGET_TYPE (type);
8838 /* Verify that both val and type are arrays of scalars, and
8839 that the size of val's elements is smaller than the size
8840 of type's element. */
8841 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8842 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8843 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8844 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8845 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8846 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8848 if (!get_array_bounds (type, &lo, &hi))
8849 error (_("unable to determine array bounds"));
8851 res = allocate_value (type);
8853 /* Promote each array element. */
8854 for (i = 0; i < hi - lo + 1; i++)
8856 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8858 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8859 value_contents_all (elt), TYPE_LENGTH (elt_type));
8865 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8866 return the converted value. */
8868 static struct value *
8869 coerce_for_assign (struct type *type, struct value *val)
8871 struct type *type2 = value_type (val);
8876 type2 = ada_check_typedef (type2);
8877 type = ada_check_typedef (type);
8879 if (type2->code () == TYPE_CODE_PTR
8880 && type->code () == TYPE_CODE_ARRAY)
8882 val = ada_value_ind (val);
8883 type2 = value_type (val);
8886 if (type2->code () == TYPE_CODE_ARRAY
8887 && type->code () == TYPE_CODE_ARRAY)
8889 if (!ada_same_array_size_p (type, type2))
8890 error (_("cannot assign arrays of different length"));
8892 if (is_integral_type (TYPE_TARGET_TYPE (type))
8893 && is_integral_type (TYPE_TARGET_TYPE (type2))
8894 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8895 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8897 /* Allow implicit promotion of the array elements to
8899 return ada_promote_array_of_integrals (type, val);
8902 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8903 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8904 error (_("Incompatible types in assignment"));
8905 deprecated_set_value_type (val, type);
8910 static struct value *
8911 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8914 struct type *type1, *type2;
8917 arg1 = coerce_ref (arg1);
8918 arg2 = coerce_ref (arg2);
8919 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8920 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8922 if (type1->code () != TYPE_CODE_INT
8923 || type2->code () != TYPE_CODE_INT)
8924 return value_binop (arg1, arg2, op);
8933 return value_binop (arg1, arg2, op);
8936 v2 = value_as_long (arg2);
8940 if (op == BINOP_MOD)
8942 else if (op == BINOP_DIV)
8946 gdb_assert (op == BINOP_REM);
8950 error (_("second operand of %s must not be zero."), name);
8953 if (type1->is_unsigned () || op == BINOP_MOD)
8954 return value_binop (arg1, arg2, op);
8956 v1 = value_as_long (arg1);
8961 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8962 v += v > 0 ? -1 : 1;
8970 /* Should not reach this point. */
8974 val = allocate_value (type1);
8975 store_unsigned_integer (value_contents_raw (val),
8976 TYPE_LENGTH (value_type (val)),
8977 type_byte_order (type1), v);
8982 ada_value_equal (struct value *arg1, struct value *arg2)
8984 if (ada_is_direct_array_type (value_type (arg1))
8985 || ada_is_direct_array_type (value_type (arg2)))
8987 struct type *arg1_type, *arg2_type;
8989 /* Automatically dereference any array reference before
8990 we attempt to perform the comparison. */
8991 arg1 = ada_coerce_ref (arg1);
8992 arg2 = ada_coerce_ref (arg2);
8994 arg1 = ada_coerce_to_simple_array (arg1);
8995 arg2 = ada_coerce_to_simple_array (arg2);
8997 arg1_type = ada_check_typedef (value_type (arg1));
8998 arg2_type = ada_check_typedef (value_type (arg2));
9000 if (arg1_type->code () != TYPE_CODE_ARRAY
9001 || arg2_type->code () != TYPE_CODE_ARRAY)
9002 error (_("Attempt to compare array with non-array"));
9003 /* FIXME: The following works only for types whose
9004 representations use all bits (no padding or undefined bits)
9005 and do not have user-defined equality. */
9006 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9007 && memcmp (value_contents (arg1), value_contents (arg2),
9008 TYPE_LENGTH (arg1_type)) == 0);
9010 return value_equal (arg1, arg2);
9017 check_objfile (const std::unique_ptr<ada_component> &comp,
9018 struct objfile *objfile)
9020 return comp->uses_objfile (objfile);
9023 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9024 component of LHS (a simple array or a record). Does not modify the
9025 inferior's memory, nor does it modify LHS (unless LHS ==
9029 assign_component (struct value *container, struct value *lhs, LONGEST index,
9030 struct expression *exp, operation_up &arg)
9032 scoped_value_mark mark;
9035 struct type *lhs_type = check_typedef (value_type (lhs));
9037 if (lhs_type->code () == TYPE_CODE_ARRAY)
9039 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9040 struct value *index_val = value_from_longest (index_type, index);
9042 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9046 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9047 elt = ada_to_fixed_value (elt);
9050 ada_aggregate_operation *ag_op
9051 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9052 if (ag_op != nullptr)
9053 ag_op->assign_aggregate (container, elt, exp);
9055 value_assign_to_component (container, elt,
9056 arg->evaluate (nullptr, exp,
9061 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9063 for (const auto &item : m_components)
9064 if (item->uses_objfile (objfile))
9070 ada_aggregate_component::dump (ui_file *stream, int depth)
9072 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9073 for (const auto &item : m_components)
9074 item->dump (stream, depth + 1);
9078 ada_aggregate_component::assign (struct value *container,
9079 struct value *lhs, struct expression *exp,
9080 std::vector<LONGEST> &indices,
9081 LONGEST low, LONGEST high)
9083 for (auto &item : m_components)
9084 item->assign (container, lhs, exp, indices, low, high);
9087 /* See ada-exp.h. */
9090 ada_aggregate_operation::assign_aggregate (struct value *container,
9092 struct expression *exp)
9094 struct type *lhs_type;
9095 LONGEST low_index, high_index;
9097 container = ada_coerce_ref (container);
9098 if (ada_is_direct_array_type (value_type (container)))
9099 container = ada_coerce_to_simple_array (container);
9100 lhs = ada_coerce_ref (lhs);
9101 if (!deprecated_value_modifiable (lhs))
9102 error (_("Left operand of assignment is not a modifiable lvalue."));
9104 lhs_type = check_typedef (value_type (lhs));
9105 if (ada_is_direct_array_type (lhs_type))
9107 lhs = ada_coerce_to_simple_array (lhs);
9108 lhs_type = check_typedef (value_type (lhs));
9109 low_index = lhs_type->bounds ()->low.const_val ();
9110 high_index = lhs_type->bounds ()->high.const_val ();
9112 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9115 high_index = num_visible_fields (lhs_type) - 1;
9118 error (_("Left-hand side must be array or record."));
9120 std::vector<LONGEST> indices (4);
9121 indices[0] = indices[1] = low_index - 1;
9122 indices[2] = indices[3] = high_index + 1;
9124 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9125 low_index, high_index);
9131 ada_positional_component::uses_objfile (struct objfile *objfile)
9133 return m_op->uses_objfile (objfile);
9137 ada_positional_component::dump (ui_file *stream, int depth)
9139 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9140 depth, "", m_index);
9141 m_op->dump (stream, depth + 1);
9144 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9145 construct, given that the positions are relative to lower bound
9146 LOW, where HIGH is the upper bound. Record the position in
9147 INDICES. CONTAINER is as for assign_aggregate. */
9149 ada_positional_component::assign (struct value *container,
9150 struct value *lhs, struct expression *exp,
9151 std::vector<LONGEST> &indices,
9152 LONGEST low, LONGEST high)
9154 LONGEST ind = m_index + low;
9156 if (ind - 1 == high)
9157 warning (_("Extra components in aggregate ignored."));
9160 add_component_interval (ind, ind, indices);
9161 assign_component (container, lhs, ind, exp, m_op);
9166 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9168 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9172 ada_discrete_range_association::dump (ui_file *stream, int depth)
9174 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9175 m_low->dump (stream, depth + 1);
9176 m_high->dump (stream, depth + 1);
9180 ada_discrete_range_association::assign (struct value *container,
9182 struct expression *exp,
9183 std::vector<LONGEST> &indices,
9184 LONGEST low, LONGEST high,
9187 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9188 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9190 if (lower <= upper && (lower < low || upper > high))
9191 error (_("Index in component association out of bounds."));
9193 add_component_interval (lower, upper, indices);
9194 while (lower <= upper)
9196 assign_component (container, lhs, lower, exp, op);
9202 ada_name_association::uses_objfile (struct objfile *objfile)
9204 return m_val->uses_objfile (objfile);
9208 ada_name_association::dump (ui_file *stream, int depth)
9210 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9211 m_val->dump (stream, depth + 1);
9215 ada_name_association::assign (struct value *container,
9217 struct expression *exp,
9218 std::vector<LONGEST> &indices,
9219 LONGEST low, LONGEST high,
9224 if (ada_is_direct_array_type (value_type (lhs)))
9225 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9229 ada_string_operation *strop
9230 = dynamic_cast<ada_string_operation *> (m_val.get ());
9233 if (strop != nullptr)
9234 name = strop->get_name ();
9237 ada_var_value_operation *vvo
9238 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9240 error (_("Invalid record component association."));
9241 name = vvo->get_symbol ()->natural_name ();
9245 if (! find_struct_field (name, value_type (lhs), 0,
9246 NULL, NULL, NULL, NULL, &index))
9247 error (_("Unknown component name: %s."), name);
9250 add_component_interval (index, index, indices);
9251 assign_component (container, lhs, index, exp, op);
9255 ada_choices_component::uses_objfile (struct objfile *objfile)
9257 if (m_op->uses_objfile (objfile))
9259 for (const auto &item : m_assocs)
9260 if (item->uses_objfile (objfile))
9266 ada_choices_component::dump (ui_file *stream, int depth)
9268 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9269 m_op->dump (stream, depth + 1);
9270 for (const auto &item : m_assocs)
9271 item->dump (stream, depth + 1);
9274 /* Assign into the components of LHS indexed by the OP_CHOICES
9275 construct at *POS, updating *POS past the construct, given that
9276 the allowable indices are LOW..HIGH. Record the indices assigned
9277 to in INDICES. CONTAINER is as for assign_aggregate. */
9279 ada_choices_component::assign (struct value *container,
9280 struct value *lhs, struct expression *exp,
9281 std::vector<LONGEST> &indices,
9282 LONGEST low, LONGEST high)
9284 for (auto &item : m_assocs)
9285 item->assign (container, lhs, exp, indices, low, high, m_op);
9289 ada_others_component::uses_objfile (struct objfile *objfile)
9291 return m_op->uses_objfile (objfile);
9295 ada_others_component::dump (ui_file *stream, int depth)
9297 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9298 m_op->dump (stream, depth + 1);
9301 /* Assign the value of the expression in the OP_OTHERS construct in
9302 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9303 have not been previously assigned. The index intervals already assigned
9304 are in INDICES. CONTAINER is as for assign_aggregate. */
9306 ada_others_component::assign (struct value *container,
9307 struct value *lhs, struct expression *exp,
9308 std::vector<LONGEST> &indices,
9309 LONGEST low, LONGEST high)
9311 int num_indices = indices.size ();
9312 for (int i = 0; i < num_indices - 2; i += 2)
9314 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9315 assign_component (container, lhs, ind, exp, m_op);
9320 ada_assign_operation::evaluate (struct type *expect_type,
9321 struct expression *exp,
9324 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9326 ada_aggregate_operation *ag_op
9327 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9328 if (ag_op != nullptr)
9330 if (noside != EVAL_NORMAL)
9333 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9334 return ada_value_assign (arg1, arg1);
9336 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9337 except if the lhs of our assignment is a convenience variable.
9338 In the case of assigning to a convenience variable, the lhs
9339 should be exactly the result of the evaluation of the rhs. */
9340 struct type *type = value_type (arg1);
9341 if (VALUE_LVAL (arg1) == lval_internalvar)
9343 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9344 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9346 if (VALUE_LVAL (arg1) == lval_internalvar)
9351 arg2 = coerce_for_assign (value_type (arg1), arg2);
9352 return ada_value_assign (arg1, arg2);
9355 } /* namespace expr */
9357 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9358 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9361 add_component_interval (LONGEST low, LONGEST high,
9362 std::vector<LONGEST> &indices)
9366 int size = indices.size ();
9367 for (i = 0; i < size; i += 2) {
9368 if (high >= indices[i] && low <= indices[i + 1])
9372 for (kh = i + 2; kh < size; kh += 2)
9373 if (high < indices[kh])
9375 if (low < indices[i])
9377 indices[i + 1] = indices[kh - 1];
9378 if (high > indices[i + 1])
9379 indices[i + 1] = high;
9380 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9381 indices.resize (kh - i - 2);
9384 else if (high < indices[i])
9388 indices.resize (indices.size () + 2);
9389 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9390 indices[j] = indices[j - 2];
9392 indices[i + 1] = high;
9395 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9398 static struct value *
9399 ada_value_cast (struct type *type, struct value *arg2)
9401 if (type == ada_check_typedef (value_type (arg2)))
9404 return value_cast (type, arg2);
9407 /* Evaluating Ada expressions, and printing their result.
9408 ------------------------------------------------------
9413 We usually evaluate an Ada expression in order to print its value.
9414 We also evaluate an expression in order to print its type, which
9415 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9416 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9417 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9418 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9421 Evaluating expressions is a little more complicated for Ada entities
9422 than it is for entities in languages such as C. The main reason for
9423 this is that Ada provides types whose definition might be dynamic.
9424 One example of such types is variant records. Or another example
9425 would be an array whose bounds can only be known at run time.
9427 The following description is a general guide as to what should be
9428 done (and what should NOT be done) in order to evaluate an expression
9429 involving such types, and when. This does not cover how the semantic
9430 information is encoded by GNAT as this is covered separatly. For the
9431 document used as the reference for the GNAT encoding, see exp_dbug.ads
9432 in the GNAT sources.
9434 Ideally, we should embed each part of this description next to its
9435 associated code. Unfortunately, the amount of code is so vast right
9436 now that it's hard to see whether the code handling a particular
9437 situation might be duplicated or not. One day, when the code is
9438 cleaned up, this guide might become redundant with the comments
9439 inserted in the code, and we might want to remove it.
9441 2. ``Fixing'' an Entity, the Simple Case:
9442 -----------------------------------------
9444 When evaluating Ada expressions, the tricky issue is that they may
9445 reference entities whose type contents and size are not statically
9446 known. Consider for instance a variant record:
9448 type Rec (Empty : Boolean := True) is record
9451 when False => Value : Integer;
9454 Yes : Rec := (Empty => False, Value => 1);
9455 No : Rec := (empty => True);
9457 The size and contents of that record depends on the value of the
9458 descriminant (Rec.Empty). At this point, neither the debugging
9459 information nor the associated type structure in GDB are able to
9460 express such dynamic types. So what the debugger does is to create
9461 "fixed" versions of the type that applies to the specific object.
9462 We also informally refer to this operation as "fixing" an object,
9463 which means creating its associated fixed type.
9465 Example: when printing the value of variable "Yes" above, its fixed
9466 type would look like this:
9473 On the other hand, if we printed the value of "No", its fixed type
9480 Things become a little more complicated when trying to fix an entity
9481 with a dynamic type that directly contains another dynamic type,
9482 such as an array of variant records, for instance. There are
9483 two possible cases: Arrays, and records.
9485 3. ``Fixing'' Arrays:
9486 ---------------------
9488 The type structure in GDB describes an array in terms of its bounds,
9489 and the type of its elements. By design, all elements in the array
9490 have the same type and we cannot represent an array of variant elements
9491 using the current type structure in GDB. When fixing an array,
9492 we cannot fix the array element, as we would potentially need one
9493 fixed type per element of the array. As a result, the best we can do
9494 when fixing an array is to produce an array whose bounds and size
9495 are correct (allowing us to read it from memory), but without having
9496 touched its element type. Fixing each element will be done later,
9497 when (if) necessary.
9499 Arrays are a little simpler to handle than records, because the same
9500 amount of memory is allocated for each element of the array, even if
9501 the amount of space actually used by each element differs from element
9502 to element. Consider for instance the following array of type Rec:
9504 type Rec_Array is array (1 .. 2) of Rec;
9506 The actual amount of memory occupied by each element might be different
9507 from element to element, depending on the value of their discriminant.
9508 But the amount of space reserved for each element in the array remains
9509 fixed regardless. So we simply need to compute that size using
9510 the debugging information available, from which we can then determine
9511 the array size (we multiply the number of elements of the array by
9512 the size of each element).
9514 The simplest case is when we have an array of a constrained element
9515 type. For instance, consider the following type declarations:
9517 type Bounded_String (Max_Size : Integer) is
9519 Buffer : String (1 .. Max_Size);
9521 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9523 In this case, the compiler describes the array as an array of
9524 variable-size elements (identified by its XVS suffix) for which
9525 the size can be read in the parallel XVZ variable.
9527 In the case of an array of an unconstrained element type, the compiler
9528 wraps the array element inside a private PAD type. This type should not
9529 be shown to the user, and must be "unwrap"'ed before printing. Note
9530 that we also use the adjective "aligner" in our code to designate
9531 these wrapper types.
9533 In some cases, the size allocated for each element is statically
9534 known. In that case, the PAD type already has the correct size,
9535 and the array element should remain unfixed.
9537 But there are cases when this size is not statically known.
9538 For instance, assuming that "Five" is an integer variable:
9540 type Dynamic is array (1 .. Five) of Integer;
9541 type Wrapper (Has_Length : Boolean := False) is record
9544 when True => Length : Integer;
9548 type Wrapper_Array is array (1 .. 2) of Wrapper;
9550 Hello : Wrapper_Array := (others => (Has_Length => True,
9551 Data => (others => 17),
9555 The debugging info would describe variable Hello as being an
9556 array of a PAD type. The size of that PAD type is not statically
9557 known, but can be determined using a parallel XVZ variable.
9558 In that case, a copy of the PAD type with the correct size should
9559 be used for the fixed array.
9561 3. ``Fixing'' record type objects:
9562 ----------------------------------
9564 Things are slightly different from arrays in the case of dynamic
9565 record types. In this case, in order to compute the associated
9566 fixed type, we need to determine the size and offset of each of
9567 its components. This, in turn, requires us to compute the fixed
9568 type of each of these components.
9570 Consider for instance the example:
9572 type Bounded_String (Max_Size : Natural) is record
9573 Str : String (1 .. Max_Size);
9576 My_String : Bounded_String (Max_Size => 10);
9578 In that case, the position of field "Length" depends on the size
9579 of field Str, which itself depends on the value of the Max_Size
9580 discriminant. In order to fix the type of variable My_String,
9581 we need to fix the type of field Str. Therefore, fixing a variant
9582 record requires us to fix each of its components.
9584 However, if a component does not have a dynamic size, the component
9585 should not be fixed. In particular, fields that use a PAD type
9586 should not fixed. Here is an example where this might happen
9587 (assuming type Rec above):
9589 type Container (Big : Boolean) is record
9593 when True => Another : Integer;
9597 My_Container : Container := (Big => False,
9598 First => (Empty => True),
9601 In that example, the compiler creates a PAD type for component First,
9602 whose size is constant, and then positions the component After just
9603 right after it. The offset of component After is therefore constant
9606 The debugger computes the position of each field based on an algorithm
9607 that uses, among other things, the actual position and size of the field
9608 preceding it. Let's now imagine that the user is trying to print
9609 the value of My_Container. If the type fixing was recursive, we would
9610 end up computing the offset of field After based on the size of the
9611 fixed version of field First. And since in our example First has
9612 only one actual field, the size of the fixed type is actually smaller
9613 than the amount of space allocated to that field, and thus we would
9614 compute the wrong offset of field After.
9616 To make things more complicated, we need to watch out for dynamic
9617 components of variant records (identified by the ___XVL suffix in
9618 the component name). Even if the target type is a PAD type, the size
9619 of that type might not be statically known. So the PAD type needs
9620 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9621 we might end up with the wrong size for our component. This can be
9622 observed with the following type declarations:
9624 type Octal is new Integer range 0 .. 7;
9625 type Octal_Array is array (Positive range <>) of Octal;
9626 pragma Pack (Octal_Array);
9628 type Octal_Buffer (Size : Positive) is record
9629 Buffer : Octal_Array (1 .. Size);
9633 In that case, Buffer is a PAD type whose size is unset and needs
9634 to be computed by fixing the unwrapped type.
9636 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9637 ----------------------------------------------------------
9639 Lastly, when should the sub-elements of an entity that remained unfixed
9640 thus far, be actually fixed?
9642 The answer is: Only when referencing that element. For instance
9643 when selecting one component of a record, this specific component
9644 should be fixed at that point in time. Or when printing the value
9645 of a record, each component should be fixed before its value gets
9646 printed. Similarly for arrays, the element of the array should be
9647 fixed when printing each element of the array, or when extracting
9648 one element out of that array. On the other hand, fixing should
9649 not be performed on the elements when taking a slice of an array!
9651 Note that one of the side effects of miscomputing the offset and
9652 size of each field is that we end up also miscomputing the size
9653 of the containing type. This can have adverse results when computing
9654 the value of an entity. GDB fetches the value of an entity based
9655 on the size of its type, and thus a wrong size causes GDB to fetch
9656 the wrong amount of memory. In the case where the computed size is
9657 too small, GDB fetches too little data to print the value of our
9658 entity. Results in this case are unpredictable, as we usually read
9659 past the buffer containing the data =:-o. */
9661 /* A helper function for TERNOP_IN_RANGE. */
9664 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9666 value *arg1, value *arg2, value *arg3)
9668 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9669 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9670 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9672 value_from_longest (type,
9673 (value_less (arg1, arg3)
9674 || value_equal (arg1, arg3))
9675 && (value_less (arg2, arg1)
9676 || value_equal (arg2, arg1)));
9679 /* A helper function for UNOP_NEG. */
9682 ada_unop_neg (struct type *expect_type,
9683 struct expression *exp,
9684 enum noside noside, enum exp_opcode op,
9687 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9688 return value_neg (arg1);
9691 /* A helper function for UNOP_IN_RANGE. */
9694 ada_unop_in_range (struct type *expect_type,
9695 struct expression *exp,
9696 enum noside noside, enum exp_opcode op,
9697 struct value *arg1, struct type *type)
9699 struct value *arg2, *arg3;
9700 switch (type->code ())
9703 lim_warning (_("Membership test incompletely implemented; "
9704 "always returns true"));
9705 type = language_bool_type (exp->language_defn, exp->gdbarch);
9706 return value_from_longest (type, (LONGEST) 1);
9708 case TYPE_CODE_RANGE:
9709 arg2 = value_from_longest (type,
9710 type->bounds ()->low.const_val ());
9711 arg3 = value_from_longest (type,
9712 type->bounds ()->high.const_val ());
9713 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9715 type = language_bool_type (exp->language_defn, exp->gdbarch);
9717 value_from_longest (type,
9718 (value_less (arg1, arg3)
9719 || value_equal (arg1, arg3))
9720 && (value_less (arg2, arg1)
9721 || value_equal (arg2, arg1)));
9725 /* A helper function for OP_ATR_TAG. */
9728 ada_atr_tag (struct type *expect_type,
9729 struct expression *exp,
9730 enum noside noside, enum exp_opcode op,
9733 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9734 return value_zero (ada_tag_type (arg1), not_lval);
9736 return ada_value_tag (arg1);
9739 /* A helper function for OP_ATR_SIZE. */
9742 ada_atr_size (struct type *expect_type,
9743 struct expression *exp,
9744 enum noside noside, enum exp_opcode op,
9747 struct type *type = value_type (arg1);
9749 /* If the argument is a reference, then dereference its type, since
9750 the user is really asking for the size of the actual object,
9751 not the size of the pointer. */
9752 if (type->code () == TYPE_CODE_REF)
9753 type = TYPE_TARGET_TYPE (type);
9755 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9756 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9758 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9759 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9762 /* A helper function for UNOP_ABS. */
9765 ada_abs (struct type *expect_type,
9766 struct expression *exp,
9767 enum noside noside, enum exp_opcode op,
9770 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9771 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9772 return value_neg (arg1);
9777 /* A helper function for BINOP_MUL. */
9780 ada_mult_binop (struct type *expect_type,
9781 struct expression *exp,
9782 enum noside noside, enum exp_opcode op,
9783 struct value *arg1, struct value *arg2)
9785 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9787 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9788 return value_zero (value_type (arg1), not_lval);
9792 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9793 return ada_value_binop (arg1, arg2, op);
9797 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9800 ada_equal_binop (struct type *expect_type,
9801 struct expression *exp,
9802 enum noside noside, enum exp_opcode op,
9803 struct value *arg1, struct value *arg2)
9806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9810 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9811 tem = ada_value_equal (arg1, arg2);
9813 if (op == BINOP_NOTEQUAL)
9815 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9816 return value_from_longest (type, (LONGEST) tem);
9819 /* A helper function for TERNOP_SLICE. */
9822 ada_ternop_slice (struct expression *exp,
9824 struct value *array, struct value *low_bound_val,
9825 struct value *high_bound_val)
9830 low_bound_val = coerce_ref (low_bound_val);
9831 high_bound_val = coerce_ref (high_bound_val);
9832 low_bound = value_as_long (low_bound_val);
9833 high_bound = value_as_long (high_bound_val);
9835 /* If this is a reference to an aligner type, then remove all
9837 if (value_type (array)->code () == TYPE_CODE_REF
9838 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9839 TYPE_TARGET_TYPE (value_type (array)) =
9840 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9842 if (ada_is_any_packed_array_type (value_type (array)))
9843 error (_("cannot slice a packed array"));
9845 /* If this is a reference to an array or an array lvalue,
9846 convert to a pointer. */
9847 if (value_type (array)->code () == TYPE_CODE_REF
9848 || (value_type (array)->code () == TYPE_CODE_ARRAY
9849 && VALUE_LVAL (array) == lval_memory))
9850 array = value_addr (array);
9852 if (noside == EVAL_AVOID_SIDE_EFFECTS
9853 && ada_is_array_descriptor_type (ada_check_typedef
9854 (value_type (array))))
9855 return empty_array (ada_type_of_array (array, 0), low_bound,
9858 array = ada_coerce_to_simple_array_ptr (array);
9860 /* If we have more than one level of pointer indirection,
9861 dereference the value until we get only one level. */
9862 while (value_type (array)->code () == TYPE_CODE_PTR
9863 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9865 array = value_ind (array);
9867 /* Make sure we really do have an array type before going further,
9868 to avoid a SEGV when trying to get the index type or the target
9869 type later down the road if the debug info generated by
9870 the compiler is incorrect or incomplete. */
9871 if (!ada_is_simple_array_type (value_type (array)))
9872 error (_("cannot take slice of non-array"));
9874 if (ada_check_typedef (value_type (array))->code ()
9877 struct type *type0 = ada_check_typedef (value_type (array));
9879 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9880 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9883 struct type *arr_type0 =
9884 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9886 return ada_value_slice_from_ptr (array, arr_type0,
9887 longest_to_int (low_bound),
9888 longest_to_int (high_bound));
9891 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9893 else if (high_bound < low_bound)
9894 return empty_array (value_type (array), low_bound, high_bound);
9896 return ada_value_slice (array, longest_to_int (low_bound),
9897 longest_to_int (high_bound));
9900 /* A helper function for BINOP_IN_BOUNDS. */
9903 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9904 struct value *arg1, struct value *arg2, int n)
9906 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9908 struct type *type = language_bool_type (exp->language_defn,
9910 return value_zero (type, not_lval);
9913 struct type *type = ada_index_type (value_type (arg2), n, "range");
9915 type = value_type (arg1);
9917 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9918 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9920 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9921 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9922 type = language_bool_type (exp->language_defn, exp->gdbarch);
9923 return value_from_longest (type,
9924 (value_less (arg1, arg3)
9925 || value_equal (arg1, arg3))
9926 && (value_less (arg2, arg1)
9927 || value_equal (arg2, arg1)));
9930 /* A helper function for some attribute operations. */
9933 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9934 struct value *arg1, struct type *type_arg, int tem)
9936 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9938 if (type_arg == NULL)
9939 type_arg = value_type (arg1);
9941 if (ada_is_constrained_packed_array_type (type_arg))
9942 type_arg = decode_constrained_packed_array_type (type_arg);
9944 if (!discrete_type_p (type_arg))
9948 default: /* Should never happen. */
9949 error (_("unexpected attribute encountered"));
9952 type_arg = ada_index_type (type_arg, tem,
9953 ada_attribute_name (op));
9956 type_arg = builtin_type (exp->gdbarch)->builtin_int;
9961 return value_zero (type_arg, not_lval);
9963 else if (type_arg == NULL)
9965 arg1 = ada_coerce_ref (arg1);
9967 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9968 arg1 = ada_coerce_to_simple_array (arg1);
9971 if (op == OP_ATR_LENGTH)
9972 type = builtin_type (exp->gdbarch)->builtin_int;
9975 type = ada_index_type (value_type (arg1), tem,
9976 ada_attribute_name (op));
9978 type = builtin_type (exp->gdbarch)->builtin_int;
9983 default: /* Should never happen. */
9984 error (_("unexpected attribute encountered"));
9986 return value_from_longest
9987 (type, ada_array_bound (arg1, tem, 0));
9989 return value_from_longest
9990 (type, ada_array_bound (arg1, tem, 1));
9992 return value_from_longest
9993 (type, ada_array_length (arg1, tem));
9996 else if (discrete_type_p (type_arg))
9998 struct type *range_type;
9999 const char *name = ada_type_name (type_arg);
10002 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10003 range_type = to_fixed_range_type (type_arg, NULL);
10004 if (range_type == NULL)
10005 range_type = type_arg;
10009 error (_("unexpected attribute encountered"));
10011 return value_from_longest
10012 (range_type, ada_discrete_type_low_bound (range_type));
10014 return value_from_longest
10015 (range_type, ada_discrete_type_high_bound (range_type));
10016 case OP_ATR_LENGTH:
10017 error (_("the 'length attribute applies only to array types"));
10020 else if (type_arg->code () == TYPE_CODE_FLT)
10021 error (_("unimplemented type attribute"));
10026 if (ada_is_constrained_packed_array_type (type_arg))
10027 type_arg = decode_constrained_packed_array_type (type_arg);
10030 if (op == OP_ATR_LENGTH)
10031 type = builtin_type (exp->gdbarch)->builtin_int;
10034 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10036 type = builtin_type (exp->gdbarch)->builtin_int;
10042 error (_("unexpected attribute encountered"));
10044 low = ada_array_bound_from_type (type_arg, tem, 0);
10045 return value_from_longest (type, low);
10047 high = ada_array_bound_from_type (type_arg, tem, 1);
10048 return value_from_longest (type, high);
10049 case OP_ATR_LENGTH:
10050 low = ada_array_bound_from_type (type_arg, tem, 0);
10051 high = ada_array_bound_from_type (type_arg, tem, 1);
10052 return value_from_longest (type, high - low + 1);
10057 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10060 ada_binop_minmax (struct type *expect_type,
10061 struct expression *exp,
10062 enum noside noside, enum exp_opcode op,
10063 struct value *arg1, struct value *arg2)
10065 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10066 return value_zero (value_type (arg1), not_lval);
10069 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10070 return value_binop (arg1, arg2, op);
10074 /* A helper function for BINOP_EXP. */
10077 ada_binop_exp (struct type *expect_type,
10078 struct expression *exp,
10079 enum noside noside, enum exp_opcode op,
10080 struct value *arg1, struct value *arg2)
10082 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10083 return value_zero (value_type (arg1), not_lval);
10086 /* For integer exponentiation operations,
10087 only promote the first argument. */
10088 if (is_integral_type (value_type (arg2)))
10089 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10091 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10093 return value_binop (arg1, arg2, op);
10101 ada_wrapped_operation::evaluate (struct type *expect_type,
10102 struct expression *exp,
10103 enum noside noside)
10105 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10106 if (noside == EVAL_NORMAL)
10107 result = unwrap_value (result);
10109 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10110 then we need to perform the conversion manually, because
10111 evaluate_subexp_standard doesn't do it. This conversion is
10112 necessary in Ada because the different kinds of float/fixed
10113 types in Ada have different representations.
10115 Similarly, we need to perform the conversion from OP_LONG
10117 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10118 result = ada_value_cast (expect_type, result);
10124 ada_string_operation::evaluate (struct type *expect_type,
10125 struct expression *exp,
10126 enum noside noside)
10128 value *result = string_operation::evaluate (expect_type, exp, noside);
10129 /* The result type will have code OP_STRING, bashed there from
10130 OP_ARRAY. Bash it back. */
10131 if (value_type (result)->code () == TYPE_CODE_STRING)
10132 value_type (result)->set_code (TYPE_CODE_ARRAY);
10137 ada_qual_operation::evaluate (struct type *expect_type,
10138 struct expression *exp,
10139 enum noside noside)
10141 struct type *type = std::get<1> (m_storage);
10142 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10146 ada_ternop_range_operation::evaluate (struct type *expect_type,
10147 struct expression *exp,
10148 enum noside noside)
10150 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10151 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10152 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10153 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10157 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10158 struct expression *exp,
10159 enum noside noside)
10161 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10162 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10164 auto do_op = [=] (LONGEST x, LONGEST y)
10166 if (std::get<0> (m_storage) == BINOP_ADD)
10171 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10172 return (value_from_longest
10173 (value_type (arg1),
10174 do_op (value_as_long (arg1), value_as_long (arg2))));
10175 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10176 return (value_from_longest
10177 (value_type (arg2),
10178 do_op (value_as_long (arg1), value_as_long (arg2))));
10179 /* Preserve the original type for use by the range case below.
10180 We cannot cast the result to a reference type, so if ARG1 is
10181 a reference type, find its underlying type. */
10182 struct type *type = value_type (arg1);
10183 while (type->code () == TYPE_CODE_REF)
10184 type = TYPE_TARGET_TYPE (type);
10185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10186 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10187 /* We need to special-case the result with a range.
10188 This is done for the benefit of "ptype". gdb's Ada support
10189 historically used the LHS to set the result type here, so
10190 preserve this behavior. */
10191 if (type->code () == TYPE_CODE_RANGE)
10192 arg1 = value_cast (type, arg1);
10197 ada_unop_atr_operation::evaluate (struct type *expect_type,
10198 struct expression *exp,
10199 enum noside noside)
10201 struct type *type_arg = nullptr;
10202 value *val = nullptr;
10204 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10206 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10207 EVAL_AVOID_SIDE_EFFECTS);
10208 type_arg = value_type (tem);
10211 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10213 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10214 val, type_arg, std::get<2> (m_storage));
10218 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10219 struct expression *exp,
10220 enum noside noside)
10222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10223 return value_zero (expect_type, not_lval);
10225 const bound_minimal_symbol &b = std::get<0> (m_storage);
10226 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10228 val = ada_value_cast (expect_type, val);
10230 /* Follow the Ada language semantics that do not allow taking
10231 an address of the result of a cast (view conversion in Ada). */
10232 if (VALUE_LVAL (val) == lval_memory)
10234 if (value_lazy (val))
10235 value_fetch_lazy (val);
10236 VALUE_LVAL (val) = not_lval;
10242 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10243 struct expression *exp,
10244 enum noside noside)
10246 value *val = evaluate_var_value (noside,
10247 std::get<0> (m_storage).block,
10248 std::get<0> (m_storage).symbol);
10250 val = ada_value_cast (expect_type, val);
10252 /* Follow the Ada language semantics that do not allow taking
10253 an address of the result of a cast (view conversion in Ada). */
10254 if (VALUE_LVAL (val) == lval_memory)
10256 if (value_lazy (val))
10257 value_fetch_lazy (val);
10258 VALUE_LVAL (val) = not_lval;
10264 ada_var_value_operation::evaluate (struct type *expect_type,
10265 struct expression *exp,
10266 enum noside noside)
10268 symbol *sym = std::get<0> (m_storage).symbol;
10270 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10271 /* Only encountered when an unresolved symbol occurs in a
10272 context other than a function call, in which case, it is
10274 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10275 sym->print_name ());
10277 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10279 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10280 /* Check to see if this is a tagged type. We also need to handle
10281 the case where the type is a reference to a tagged type, but
10282 we have to be careful to exclude pointers to tagged types.
10283 The latter should be shown as usual (as a pointer), whereas
10284 a reference should mostly be transparent to the user. */
10285 if (ada_is_tagged_type (type, 0)
10286 || (type->code () == TYPE_CODE_REF
10287 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10289 /* Tagged types are a little special in the fact that the real
10290 type is dynamic and can only be determined by inspecting the
10291 object's tag. This means that we need to get the object's
10292 value first (EVAL_NORMAL) and then extract the actual object
10295 Note that we cannot skip the final step where we extract
10296 the object type from its tag, because the EVAL_NORMAL phase
10297 results in dynamic components being resolved into fixed ones.
10298 This can cause problems when trying to print the type
10299 description of tagged types whose parent has a dynamic size:
10300 We use the type name of the "_parent" component in order
10301 to print the name of the ancestor type in the type description.
10302 If that component had a dynamic size, the resolution into
10303 a fixed type would result in the loss of that type name,
10304 thus preventing us from printing the name of the ancestor
10305 type in the type description. */
10306 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10308 if (type->code () != TYPE_CODE_REF)
10310 struct type *actual_type;
10312 actual_type = type_from_tag (ada_value_tag (arg1));
10313 if (actual_type == NULL)
10314 /* If, for some reason, we were unable to determine
10315 the actual type from the tag, then use the static
10316 approximation that we just computed as a fallback.
10317 This can happen if the debugging information is
10318 incomplete, for instance. */
10319 actual_type = type;
10320 return value_zero (actual_type, not_lval);
10324 /* In the case of a ref, ada_coerce_ref takes care
10325 of determining the actual type. But the evaluation
10326 should return a ref as it should be valid to ask
10327 for its address; so rebuild a ref after coerce. */
10328 arg1 = ada_coerce_ref (arg1);
10329 return value_ref (arg1, TYPE_CODE_REF);
10333 /* Records and unions for which GNAT encodings have been
10334 generated need to be statically fixed as well.
10335 Otherwise, non-static fixing produces a type where
10336 all dynamic properties are removed, which prevents "ptype"
10337 from being able to completely describe the type.
10338 For instance, a case statement in a variant record would be
10339 replaced by the relevant components based on the actual
10340 value of the discriminants. */
10341 if ((type->code () == TYPE_CODE_STRUCT
10342 && dynamic_template_type (type) != NULL)
10343 || (type->code () == TYPE_CODE_UNION
10344 && ada_find_parallel_type (type, "___XVU") != NULL))
10345 return value_zero (to_static_fixed_type (type), not_lval);
10348 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10349 return ada_to_fixed_value (arg1);
10353 ada_var_value_operation::resolve (struct expression *exp,
10354 bool deprocedure_p,
10355 bool parse_completion,
10356 innermost_block_tracker *tracker,
10357 struct type *context_type)
10359 symbol *sym = std::get<0> (m_storage).symbol;
10360 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10362 block_symbol resolved
10363 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10364 context_type, parse_completion,
10365 deprocedure_p, tracker);
10366 std::get<0> (m_storage) = resolved;
10370 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10371 == TYPE_CODE_FUNC))
10378 ada_atr_val_operation::evaluate (struct type *expect_type,
10379 struct expression *exp,
10380 enum noside noside)
10382 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10383 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10387 ada_unop_ind_operation::evaluate (struct type *expect_type,
10388 struct expression *exp,
10389 enum noside noside)
10391 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10393 struct type *type = ada_check_typedef (value_type (arg1));
10394 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10396 if (ada_is_array_descriptor_type (type))
10397 /* GDB allows dereferencing GNAT array descriptors. */
10399 struct type *arrType = ada_type_of_array (arg1, 0);
10401 if (arrType == NULL)
10402 error (_("Attempt to dereference null array pointer."));
10403 return value_at_lazy (arrType, 0);
10405 else if (type->code () == TYPE_CODE_PTR
10406 || type->code () == TYPE_CODE_REF
10407 /* In C you can dereference an array to get the 1st elt. */
10408 || type->code () == TYPE_CODE_ARRAY)
10410 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10411 only be determined by inspecting the object's tag.
10412 This means that we need to evaluate completely the
10413 expression in order to get its type. */
10415 if ((type->code () == TYPE_CODE_REF
10416 || type->code () == TYPE_CODE_PTR)
10417 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10419 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10421 type = value_type (ada_value_ind (arg1));
10425 type = to_static_fixed_type
10427 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10429 ada_ensure_varsize_limit (type);
10430 return value_zero (type, lval_memory);
10432 else if (type->code () == TYPE_CODE_INT)
10434 /* GDB allows dereferencing an int. */
10435 if (expect_type == NULL)
10436 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10441 to_static_fixed_type (ada_aligned_type (expect_type));
10442 return value_zero (expect_type, lval_memory);
10446 error (_("Attempt to take contents of a non-pointer value."));
10448 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10449 type = ada_check_typedef (value_type (arg1));
10451 if (type->code () == TYPE_CODE_INT)
10452 /* GDB allows dereferencing an int. If we were given
10453 the expect_type, then use that as the target type.
10454 Otherwise, assume that the target type is an int. */
10456 if (expect_type != NULL)
10457 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10460 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10461 (CORE_ADDR) value_as_address (arg1));
10464 struct type *target_type = (to_static_fixed_type
10466 (ada_check_typedef (TYPE_TARGET_TYPE (type)))));
10467 ada_ensure_varsize_limit (target_type);
10469 if (ada_is_array_descriptor_type (type))
10470 /* GDB allows dereferencing GNAT array descriptors. */
10471 return ada_coerce_to_simple_array (arg1);
10473 return ada_value_ind (arg1);
10477 ada_structop_operation::evaluate (struct type *expect_type,
10478 struct expression *exp,
10479 enum noside noside)
10481 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10482 const char *str = std::get<1> (m_storage).c_str ();
10483 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10486 struct type *type1 = value_type (arg1);
10488 if (ada_is_tagged_type (type1, 1))
10490 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10492 /* If the field is not found, check if it exists in the
10493 extension of this object's type. This means that we
10494 need to evaluate completely the expression. */
10498 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10500 arg1 = ada_value_struct_elt (arg1, str, 0);
10501 arg1 = unwrap_value (arg1);
10502 type = value_type (ada_to_fixed_value (arg1));
10506 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10508 return value_zero (ada_aligned_type (type), lval_memory);
10512 arg1 = ada_value_struct_elt (arg1, str, 0);
10513 arg1 = unwrap_value (arg1);
10514 return ada_to_fixed_value (arg1);
10519 ada_funcall_operation::evaluate (struct type *expect_type,
10520 struct expression *exp,
10521 enum noside noside)
10523 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10524 int nargs = args_up.size ();
10525 std::vector<value *> argvec (nargs);
10526 operation_up &callee_op = std::get<0> (m_storage);
10528 ada_var_value_operation *avv
10529 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10531 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10532 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10533 avv->get_symbol ()->print_name ());
10535 value *callee = callee_op->evaluate (nullptr, exp, noside);
10536 for (int i = 0; i < args_up.size (); ++i)
10537 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10539 if (ada_is_constrained_packed_array_type
10540 (desc_base_type (value_type (callee))))
10541 callee = ada_coerce_to_simple_array (callee);
10542 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10543 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10544 /* This is a packed array that has already been fixed, and
10545 therefore already coerced to a simple array. Nothing further
10548 else if (value_type (callee)->code () == TYPE_CODE_REF)
10550 /* Make sure we dereference references so that all the code below
10551 feels like it's really handling the referenced value. Wrapping
10552 types (for alignment) may be there, so make sure we strip them as
10554 callee = ada_to_fixed_value (coerce_ref (callee));
10556 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10557 && VALUE_LVAL (callee) == lval_memory)
10558 callee = value_addr (callee);
10560 struct type *type = ada_check_typedef (value_type (callee));
10562 /* Ada allows us to implicitly dereference arrays when subscripting
10563 them. So, if this is an array typedef (encoding use for array
10564 access types encoded as fat pointers), strip it now. */
10565 if (type->code () == TYPE_CODE_TYPEDEF)
10566 type = ada_typedef_target_type (type);
10568 if (type->code () == TYPE_CODE_PTR)
10570 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10572 case TYPE_CODE_FUNC:
10573 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10575 case TYPE_CODE_ARRAY:
10577 case TYPE_CODE_STRUCT:
10578 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10579 callee = ada_value_ind (callee);
10580 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10583 error (_("cannot subscript or call something of type `%s'"),
10584 ada_type_name (value_type (callee)));
10589 switch (type->code ())
10591 case TYPE_CODE_FUNC:
10592 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10594 if (TYPE_TARGET_TYPE (type) == NULL)
10595 error_call_unknown_return_type (NULL);
10596 return allocate_value (TYPE_TARGET_TYPE (type));
10598 return call_function_by_hand (callee, NULL, argvec);
10599 case TYPE_CODE_INTERNAL_FUNCTION:
10600 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10601 /* We don't know anything about what the internal
10602 function might return, but we have to return
10604 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10607 return call_internal_function (exp->gdbarch, exp->language_defn,
10611 case TYPE_CODE_STRUCT:
10615 arity = ada_array_arity (type);
10616 type = ada_array_element_type (type, nargs);
10618 error (_("cannot subscript or call a record"));
10619 if (arity != nargs)
10620 error (_("wrong number of subscripts; expecting %d"), arity);
10621 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10622 return value_zero (ada_aligned_type (type), lval_memory);
10624 unwrap_value (ada_value_subscript
10625 (callee, nargs, argvec.data ()));
10627 case TYPE_CODE_ARRAY:
10628 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10630 type = ada_array_element_type (type, nargs);
10632 error (_("element type of array unknown"));
10634 return value_zero (ada_aligned_type (type), lval_memory);
10637 unwrap_value (ada_value_subscript
10638 (ada_coerce_to_simple_array (callee),
10639 nargs, argvec.data ()));
10640 case TYPE_CODE_PTR: /* Pointer to array */
10641 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10643 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10644 type = ada_array_element_type (type, nargs);
10646 error (_("element type of array unknown"));
10648 return value_zero (ada_aligned_type (type), lval_memory);
10651 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10655 error (_("Attempt to index or call something other than an "
10656 "array or function"));
10661 ada_funcall_operation::resolve (struct expression *exp,
10662 bool deprocedure_p,
10663 bool parse_completion,
10664 innermost_block_tracker *tracker,
10665 struct type *context_type)
10667 operation_up &callee_op = std::get<0> (m_storage);
10669 ada_var_value_operation *avv
10670 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10671 if (avv == nullptr)
10674 symbol *sym = avv->get_symbol ();
10675 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10678 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10679 int nargs = args_up.size ();
10680 std::vector<value *> argvec (nargs);
10682 for (int i = 0; i < args_up.size (); ++i)
10683 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10685 const block *block = avv->get_block ();
10686 block_symbol resolved
10687 = ada_resolve_funcall (sym, block,
10688 context_type, parse_completion,
10689 nargs, argvec.data (),
10692 std::get<0> (m_storage)
10693 = make_operation<ada_var_value_operation> (resolved);
10698 ada_ternop_slice_operation::resolve (struct expression *exp,
10699 bool deprocedure_p,
10700 bool parse_completion,
10701 innermost_block_tracker *tracker,
10702 struct type *context_type)
10704 /* Historically this check was done during resolution, so we
10705 continue that here. */
10706 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10707 EVAL_AVOID_SIDE_EFFECTS);
10708 if (ada_is_any_packed_array_type (value_type (v)))
10709 error (_("cannot slice a packed array"));
10717 /* Return non-zero iff TYPE represents a System.Address type. */
10720 ada_is_system_address_type (struct type *type)
10722 return (type->name () && strcmp (type->name (), "system__address") == 0);
10729 /* Scan STR beginning at position K for a discriminant name, and
10730 return the value of that discriminant field of DVAL in *PX. If
10731 PNEW_K is not null, put the position of the character beyond the
10732 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10733 not alter *PX and *PNEW_K if unsuccessful. */
10736 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10739 static std::string storage;
10740 const char *pstart, *pend, *bound;
10741 struct value *bound_val;
10743 if (dval == NULL || str == NULL || str[k] == '\0')
10747 pend = strstr (pstart, "__");
10751 k += strlen (bound);
10755 int len = pend - pstart;
10757 /* Strip __ and beyond. */
10758 storage = std::string (pstart, len);
10759 bound = storage.c_str ();
10763 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10764 if (bound_val == NULL)
10767 *px = value_as_long (bound_val);
10768 if (pnew_k != NULL)
10773 /* Value of variable named NAME. Only exact matches are considered.
10774 If no such variable found, then if ERR_MSG is null, returns 0, and
10775 otherwise causes an error with message ERR_MSG. */
10777 static struct value *
10778 get_var_value (const char *name, const char *err_msg)
10780 std::string quoted_name = add_angle_brackets (name);
10782 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10784 std::vector<struct block_symbol> syms
10785 = ada_lookup_symbol_list_worker (lookup_name,
10786 get_selected_block (0),
10789 if (syms.size () != 1)
10791 if (err_msg == NULL)
10794 error (("%s"), err_msg);
10797 return value_of_variable (syms[0].symbol, syms[0].block);
10800 /* Value of integer variable named NAME in the current environment.
10801 If no such variable is found, returns false. Otherwise, sets VALUE
10802 to the variable's value and returns true. */
10805 get_int_var_value (const char *name, LONGEST &value)
10807 struct value *var_val = get_var_value (name, 0);
10812 value = value_as_long (var_val);
10817 /* Return a range type whose base type is that of the range type named
10818 NAME in the current environment, and whose bounds are calculated
10819 from NAME according to the GNAT range encoding conventions.
10820 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10821 corresponding range type from debug information; fall back to using it
10822 if symbol lookup fails. If a new type must be created, allocate it
10823 like ORIG_TYPE was. The bounds information, in general, is encoded
10824 in NAME, the base type given in the named range type. */
10826 static struct type *
10827 to_fixed_range_type (struct type *raw_type, struct value *dval)
10830 struct type *base_type;
10831 const char *subtype_info;
10833 gdb_assert (raw_type != NULL);
10834 gdb_assert (raw_type->name () != NULL);
10836 if (raw_type->code () == TYPE_CODE_RANGE)
10837 base_type = TYPE_TARGET_TYPE (raw_type);
10839 base_type = raw_type;
10841 name = raw_type->name ();
10842 subtype_info = strstr (name, "___XD");
10843 if (subtype_info == NULL)
10845 LONGEST L = ada_discrete_type_low_bound (raw_type);
10846 LONGEST U = ada_discrete_type_high_bound (raw_type);
10848 if (L < INT_MIN || U > INT_MAX)
10851 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10856 int prefix_len = subtype_info - name;
10859 const char *bounds_str;
10863 bounds_str = strchr (subtype_info, '_');
10866 if (*subtype_info == 'L')
10868 if (!ada_scan_number (bounds_str, n, &L, &n)
10869 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10871 if (bounds_str[n] == '_')
10873 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10879 std::string name_buf = std::string (name, prefix_len) + "___L";
10880 if (!get_int_var_value (name_buf.c_str (), L))
10882 lim_warning (_("Unknown lower bound, using 1."));
10887 if (*subtype_info == 'U')
10889 if (!ada_scan_number (bounds_str, n, &U, &n)
10890 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10895 std::string name_buf = std::string (name, prefix_len) + "___U";
10896 if (!get_int_var_value (name_buf.c_str (), U))
10898 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10903 type = create_static_range_type (alloc_type_copy (raw_type),
10905 /* create_static_range_type alters the resulting type's length
10906 to match the size of the base_type, which is not what we want.
10907 Set it back to the original range type's length. */
10908 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
10909 type->set_name (name);
10914 /* True iff NAME is the name of a range type. */
10917 ada_is_range_type_name (const char *name)
10919 return (name != NULL && strstr (name, "___XD"));
10923 /* Modular types */
10925 /* True iff TYPE is an Ada modular type. */
10928 ada_is_modular_type (struct type *type)
10930 struct type *subranged_type = get_base_type (type);
10932 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
10933 && subranged_type->code () == TYPE_CODE_INT
10934 && subranged_type->is_unsigned ());
10937 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10940 ada_modulus (struct type *type)
10942 const dynamic_prop &high = type->bounds ()->high;
10944 if (high.kind () == PROP_CONST)
10945 return (ULONGEST) high.const_val () + 1;
10947 /* If TYPE is unresolved, the high bound might be a location list. Return
10948 0, for lack of a better value to return. */
10953 /* Ada exception catchpoint support:
10954 ---------------------------------
10956 We support 3 kinds of exception catchpoints:
10957 . catchpoints on Ada exceptions
10958 . catchpoints on unhandled Ada exceptions
10959 . catchpoints on failed assertions
10961 Exceptions raised during failed assertions, or unhandled exceptions
10962 could perfectly be caught with the general catchpoint on Ada exceptions.
10963 However, we can easily differentiate these two special cases, and having
10964 the option to distinguish these two cases from the rest can be useful
10965 to zero-in on certain situations.
10967 Exception catchpoints are a specialized form of breakpoint,
10968 since they rely on inserting breakpoints inside known routines
10969 of the GNAT runtime. The implementation therefore uses a standard
10970 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10973 Support in the runtime for exception catchpoints have been changed
10974 a few times already, and these changes affect the implementation
10975 of these catchpoints. In order to be able to support several
10976 variants of the runtime, we use a sniffer that will determine
10977 the runtime variant used by the program being debugged. */
10979 /* Ada's standard exceptions.
10981 The Ada 83 standard also defined Numeric_Error. But there so many
10982 situations where it was unclear from the Ada 83 Reference Manual
10983 (RM) whether Constraint_Error or Numeric_Error should be raised,
10984 that the ARG (Ada Rapporteur Group) eventually issued a Binding
10985 Interpretation saying that anytime the RM says that Numeric_Error
10986 should be raised, the implementation may raise Constraint_Error.
10987 Ada 95 went one step further and pretty much removed Numeric_Error
10988 from the list of standard exceptions (it made it a renaming of
10989 Constraint_Error, to help preserve compatibility when compiling
10990 an Ada83 compiler). As such, we do not include Numeric_Error from
10991 this list of standard exceptions. */
10993 static const char * const standard_exc[] = {
10994 "constraint_error",
11000 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11002 /* A structure that describes how to support exception catchpoints
11003 for a given executable. */
11005 struct exception_support_info
11007 /* The name of the symbol to break on in order to insert
11008 a catchpoint on exceptions. */
11009 const char *catch_exception_sym;
11011 /* The name of the symbol to break on in order to insert
11012 a catchpoint on unhandled exceptions. */
11013 const char *catch_exception_unhandled_sym;
11015 /* The name of the symbol to break on in order to insert
11016 a catchpoint on failed assertions. */
11017 const char *catch_assert_sym;
11019 /* The name of the symbol to break on in order to insert
11020 a catchpoint on exception handling. */
11021 const char *catch_handlers_sym;
11023 /* Assuming that the inferior just triggered an unhandled exception
11024 catchpoint, this function is responsible for returning the address
11025 in inferior memory where the name of that exception is stored.
11026 Return zero if the address could not be computed. */
11027 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11030 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11031 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11033 /* The following exception support info structure describes how to
11034 implement exception catchpoints with the latest version of the
11035 Ada runtime (as of 2019-08-??). */
11037 static const struct exception_support_info default_exception_support_info =
11039 "__gnat_debug_raise_exception", /* catch_exception_sym */
11040 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11041 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11042 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11043 ada_unhandled_exception_name_addr
11046 /* The following exception support info structure describes how to
11047 implement exception catchpoints with an earlier version of the
11048 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11050 static const struct exception_support_info exception_support_info_v0 =
11052 "__gnat_debug_raise_exception", /* catch_exception_sym */
11053 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11054 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11055 "__gnat_begin_handler", /* catch_handlers_sym */
11056 ada_unhandled_exception_name_addr
11059 /* The following exception support info structure describes how to
11060 implement exception catchpoints with a slightly older version
11061 of the Ada runtime. */
11063 static const struct exception_support_info exception_support_info_fallback =
11065 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11066 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11067 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11068 "__gnat_begin_handler", /* catch_handlers_sym */
11069 ada_unhandled_exception_name_addr_from_raise
11072 /* Return nonzero if we can detect the exception support routines
11073 described in EINFO.
11075 This function errors out if an abnormal situation is detected
11076 (for instance, if we find the exception support routines, but
11077 that support is found to be incomplete). */
11080 ada_has_this_exception_support (const struct exception_support_info *einfo)
11082 struct symbol *sym;
11084 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11085 that should be compiled with debugging information. As a result, we
11086 expect to find that symbol in the symtabs. */
11088 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11091 /* Perhaps we did not find our symbol because the Ada runtime was
11092 compiled without debugging info, or simply stripped of it.
11093 It happens on some GNU/Linux distributions for instance, where
11094 users have to install a separate debug package in order to get
11095 the runtime's debugging info. In that situation, let the user
11096 know why we cannot insert an Ada exception catchpoint.
11098 Note: Just for the purpose of inserting our Ada exception
11099 catchpoint, we could rely purely on the associated minimal symbol.
11100 But we would be operating in degraded mode anyway, since we are
11101 still lacking the debugging info needed later on to extract
11102 the name of the exception being raised (this name is printed in
11103 the catchpoint message, and is also used when trying to catch
11104 a specific exception). We do not handle this case for now. */
11105 struct bound_minimal_symbol msym
11106 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11108 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11109 error (_("Your Ada runtime appears to be missing some debugging "
11110 "information.\nCannot insert Ada exception catchpoint "
11111 "in this configuration."));
11116 /* Make sure that the symbol we found corresponds to a function. */
11118 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11120 error (_("Symbol \"%s\" is not a function (class = %d)"),
11121 sym->linkage_name (), SYMBOL_CLASS (sym));
11125 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11128 struct bound_minimal_symbol msym
11129 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11131 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11132 error (_("Your Ada runtime appears to be missing some debugging "
11133 "information.\nCannot insert Ada exception catchpoint "
11134 "in this configuration."));
11139 /* Make sure that the symbol we found corresponds to a function. */
11141 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11143 error (_("Symbol \"%s\" is not a function (class = %d)"),
11144 sym->linkage_name (), SYMBOL_CLASS (sym));
11151 /* Inspect the Ada runtime and determine which exception info structure
11152 should be used to provide support for exception catchpoints.
11154 This function will always set the per-inferior exception_info,
11155 or raise an error. */
11158 ada_exception_support_info_sniffer (void)
11160 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11162 /* If the exception info is already known, then no need to recompute it. */
11163 if (data->exception_info != NULL)
11166 /* Check the latest (default) exception support info. */
11167 if (ada_has_this_exception_support (&default_exception_support_info))
11169 data->exception_info = &default_exception_support_info;
11173 /* Try the v0 exception suport info. */
11174 if (ada_has_this_exception_support (&exception_support_info_v0))
11176 data->exception_info = &exception_support_info_v0;
11180 /* Try our fallback exception suport info. */
11181 if (ada_has_this_exception_support (&exception_support_info_fallback))
11183 data->exception_info = &exception_support_info_fallback;
11187 /* Sometimes, it is normal for us to not be able to find the routine
11188 we are looking for. This happens when the program is linked with
11189 the shared version of the GNAT runtime, and the program has not been
11190 started yet. Inform the user of these two possible causes if
11193 if (ada_update_initial_language (language_unknown) != language_ada)
11194 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11196 /* If the symbol does not exist, then check that the program is
11197 already started, to make sure that shared libraries have been
11198 loaded. If it is not started, this may mean that the symbol is
11199 in a shared library. */
11201 if (inferior_ptid.pid () == 0)
11202 error (_("Unable to insert catchpoint. Try to start the program first."));
11204 /* At this point, we know that we are debugging an Ada program and
11205 that the inferior has been started, but we still are not able to
11206 find the run-time symbols. That can mean that we are in
11207 configurable run time mode, or that a-except as been optimized
11208 out by the linker... In any case, at this point it is not worth
11209 supporting this feature. */
11211 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11214 /* True iff FRAME is very likely to be that of a function that is
11215 part of the runtime system. This is all very heuristic, but is
11216 intended to be used as advice as to what frames are uninteresting
11220 is_known_support_routine (struct frame_info *frame)
11222 enum language func_lang;
11224 const char *fullname;
11226 /* If this code does not have any debugging information (no symtab),
11227 This cannot be any user code. */
11229 symtab_and_line sal = find_frame_sal (frame);
11230 if (sal.symtab == NULL)
11233 /* If there is a symtab, but the associated source file cannot be
11234 located, then assume this is not user code: Selecting a frame
11235 for which we cannot display the code would not be very helpful
11236 for the user. This should also take care of case such as VxWorks
11237 where the kernel has some debugging info provided for a few units. */
11239 fullname = symtab_to_fullname (sal.symtab);
11240 if (access (fullname, R_OK) != 0)
11243 /* Check the unit filename against the Ada runtime file naming.
11244 We also check the name of the objfile against the name of some
11245 known system libraries that sometimes come with debugging info
11248 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11250 re_comp (known_runtime_file_name_patterns[i]);
11251 if (re_exec (lbasename (sal.symtab->filename)))
11253 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11254 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11258 /* Check whether the function is a GNAT-generated entity. */
11260 gdb::unique_xmalloc_ptr<char> func_name
11261 = find_frame_funname (frame, &func_lang, NULL);
11262 if (func_name == NULL)
11265 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11267 re_comp (known_auxiliary_function_name_patterns[i]);
11268 if (re_exec (func_name.get ()))
11275 /* Find the first frame that contains debugging information and that is not
11276 part of the Ada run-time, starting from FI and moving upward. */
11279 ada_find_printable_frame (struct frame_info *fi)
11281 for (; fi != NULL; fi = get_prev_frame (fi))
11283 if (!is_known_support_routine (fi))
11292 /* Assuming that the inferior just triggered an unhandled exception
11293 catchpoint, return the address in inferior memory where the name
11294 of the exception is stored.
11296 Return zero if the address could not be computed. */
11299 ada_unhandled_exception_name_addr (void)
11301 return parse_and_eval_address ("e.full_name");
11304 /* Same as ada_unhandled_exception_name_addr, except that this function
11305 should be used when the inferior uses an older version of the runtime,
11306 where the exception name needs to be extracted from a specific frame
11307 several frames up in the callstack. */
11310 ada_unhandled_exception_name_addr_from_raise (void)
11313 struct frame_info *fi;
11314 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11316 /* To determine the name of this exception, we need to select
11317 the frame corresponding to RAISE_SYM_NAME. This frame is
11318 at least 3 levels up, so we simply skip the first 3 frames
11319 without checking the name of their associated function. */
11320 fi = get_current_frame ();
11321 for (frame_level = 0; frame_level < 3; frame_level += 1)
11323 fi = get_prev_frame (fi);
11327 enum language func_lang;
11329 gdb::unique_xmalloc_ptr<char> func_name
11330 = find_frame_funname (fi, &func_lang, NULL);
11331 if (func_name != NULL)
11333 if (strcmp (func_name.get (),
11334 data->exception_info->catch_exception_sym) == 0)
11335 break; /* We found the frame we were looking for... */
11337 fi = get_prev_frame (fi);
11344 return parse_and_eval_address ("id.full_name");
11347 /* Assuming the inferior just triggered an Ada exception catchpoint
11348 (of any type), return the address in inferior memory where the name
11349 of the exception is stored, if applicable.
11351 Assumes the selected frame is the current frame.
11353 Return zero if the address could not be computed, or if not relevant. */
11356 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11357 struct breakpoint *b)
11359 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11363 case ada_catch_exception:
11364 return (parse_and_eval_address ("e.full_name"));
11367 case ada_catch_exception_unhandled:
11368 return data->exception_info->unhandled_exception_name_addr ();
11371 case ada_catch_handlers:
11372 return 0; /* The runtimes does not provide access to the exception
11376 case ada_catch_assert:
11377 return 0; /* Exception name is not relevant in this case. */
11381 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11385 return 0; /* Should never be reached. */
11388 /* Assuming the inferior is stopped at an exception catchpoint,
11389 return the message which was associated to the exception, if
11390 available. Return NULL if the message could not be retrieved.
11392 Note: The exception message can be associated to an exception
11393 either through the use of the Raise_Exception function, or
11394 more simply (Ada 2005 and later), via:
11396 raise Exception_Name with "exception message";
11400 static gdb::unique_xmalloc_ptr<char>
11401 ada_exception_message_1 (void)
11403 struct value *e_msg_val;
11406 /* For runtimes that support this feature, the exception message
11407 is passed as an unbounded string argument called "message". */
11408 e_msg_val = parse_and_eval ("message");
11409 if (e_msg_val == NULL)
11410 return NULL; /* Exception message not supported. */
11412 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11413 gdb_assert (e_msg_val != NULL);
11414 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11416 /* If the message string is empty, then treat it as if there was
11417 no exception message. */
11418 if (e_msg_len <= 0)
11421 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11422 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11424 e_msg.get ()[e_msg_len] = '\0';
11429 /* Same as ada_exception_message_1, except that all exceptions are
11430 contained here (returning NULL instead). */
11432 static gdb::unique_xmalloc_ptr<char>
11433 ada_exception_message (void)
11435 gdb::unique_xmalloc_ptr<char> e_msg;
11439 e_msg = ada_exception_message_1 ();
11441 catch (const gdb_exception_error &e)
11443 e_msg.reset (nullptr);
11449 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11450 any error that ada_exception_name_addr_1 might cause to be thrown.
11451 When an error is intercepted, a warning with the error message is printed,
11452 and zero is returned. */
11455 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11456 struct breakpoint *b)
11458 CORE_ADDR result = 0;
11462 result = ada_exception_name_addr_1 (ex, b);
11465 catch (const gdb_exception_error &e)
11467 warning (_("failed to get exception name: %s"), e.what ());
11474 static std::string ada_exception_catchpoint_cond_string
11475 (const char *excep_string,
11476 enum ada_exception_catchpoint_kind ex);
11478 /* Ada catchpoints.
11480 In the case of catchpoints on Ada exceptions, the catchpoint will
11481 stop the target on every exception the program throws. When a user
11482 specifies the name of a specific exception, we translate this
11483 request into a condition expression (in text form), and then parse
11484 it into an expression stored in each of the catchpoint's locations.
11485 We then use this condition to check whether the exception that was
11486 raised is the one the user is interested in. If not, then the
11487 target is resumed again. We store the name of the requested
11488 exception, in order to be able to re-set the condition expression
11489 when symbols change. */
11491 /* An instance of this type is used to represent an Ada catchpoint
11492 breakpoint location. */
11494 class ada_catchpoint_location : public bp_location
11497 ada_catchpoint_location (breakpoint *owner)
11498 : bp_location (owner, bp_loc_software_breakpoint)
11501 /* The condition that checks whether the exception that was raised
11502 is the specific exception the user specified on catchpoint
11504 expression_up excep_cond_expr;
11507 /* An instance of this type is used to represent an Ada catchpoint. */
11509 struct ada_catchpoint : public breakpoint
11511 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11516 /* The name of the specific exception the user specified. */
11517 std::string excep_string;
11519 /* What kind of catchpoint this is. */
11520 enum ada_exception_catchpoint_kind m_kind;
11523 /* Parse the exception condition string in the context of each of the
11524 catchpoint's locations, and store them for later evaluation. */
11527 create_excep_cond_exprs (struct ada_catchpoint *c,
11528 enum ada_exception_catchpoint_kind ex)
11530 /* Nothing to do if there's no specific exception to catch. */
11531 if (c->excep_string.empty ())
11534 /* Same if there are no locations... */
11535 if (c->loc == NULL)
11538 /* Compute the condition expression in text form, from the specific
11539 expection we want to catch. */
11540 std::string cond_string
11541 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11543 /* Iterate over all the catchpoint's locations, and parse an
11544 expression for each. */
11545 for (bp_location *bl : c->locations ())
11547 struct ada_catchpoint_location *ada_loc
11548 = (struct ada_catchpoint_location *) bl;
11551 if (!bl->shlib_disabled)
11555 s = cond_string.c_str ();
11558 exp = parse_exp_1 (&s, bl->address,
11559 block_for_pc (bl->address),
11562 catch (const gdb_exception_error &e)
11564 warning (_("failed to reevaluate internal exception condition "
11565 "for catchpoint %d: %s"),
11566 c->number, e.what ());
11570 ada_loc->excep_cond_expr = std::move (exp);
11574 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11575 structure for all exception catchpoint kinds. */
11577 static struct bp_location *
11578 allocate_location_exception (struct breakpoint *self)
11580 return new ada_catchpoint_location (self);
11583 /* Implement the RE_SET method in the breakpoint_ops structure for all
11584 exception catchpoint kinds. */
11587 re_set_exception (struct breakpoint *b)
11589 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11591 /* Call the base class's method. This updates the catchpoint's
11593 bkpt_breakpoint_ops.re_set (b);
11595 /* Reparse the exception conditional expressions. One for each
11597 create_excep_cond_exprs (c, c->m_kind);
11600 /* Returns true if we should stop for this breakpoint hit. If the
11601 user specified a specific exception, we only want to cause a stop
11602 if the program thrown that exception. */
11605 should_stop_exception (const struct bp_location *bl)
11607 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11608 const struct ada_catchpoint_location *ada_loc
11609 = (const struct ada_catchpoint_location *) bl;
11612 struct internalvar *var = lookup_internalvar ("_ada_exception");
11613 if (c->m_kind == ada_catch_assert)
11614 clear_internalvar (var);
11621 if (c->m_kind == ada_catch_handlers)
11622 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11623 ".all.occurrence.id");
11627 struct value *exc = parse_and_eval (expr);
11628 set_internalvar (var, exc);
11630 catch (const gdb_exception_error &ex)
11632 clear_internalvar (var);
11636 /* With no specific exception, should always stop. */
11637 if (c->excep_string.empty ())
11640 if (ada_loc->excep_cond_expr == NULL)
11642 /* We will have a NULL expression if back when we were creating
11643 the expressions, this location's had failed to parse. */
11650 struct value *mark;
11652 mark = value_mark ();
11653 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11654 value_free_to_mark (mark);
11656 catch (const gdb_exception &ex)
11658 exception_fprintf (gdb_stderr, ex,
11659 _("Error in testing exception condition:\n"));
11665 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11666 for all exception catchpoint kinds. */
11669 check_status_exception (bpstat bs)
11671 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11674 /* Implement the PRINT_IT method in the breakpoint_ops structure
11675 for all exception catchpoint kinds. */
11677 static enum print_stop_action
11678 print_it_exception (bpstat bs)
11680 struct ui_out *uiout = current_uiout;
11681 struct breakpoint *b = bs->breakpoint_at;
11683 annotate_catchpoint (b->number);
11685 if (uiout->is_mi_like_p ())
11687 uiout->field_string ("reason",
11688 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11689 uiout->field_string ("disp", bpdisp_text (b->disposition));
11692 uiout->text (b->disposition == disp_del
11693 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11694 uiout->field_signed ("bkptno", b->number);
11695 uiout->text (", ");
11697 /* ada_exception_name_addr relies on the selected frame being the
11698 current frame. Need to do this here because this function may be
11699 called more than once when printing a stop, and below, we'll
11700 select the first frame past the Ada run-time (see
11701 ada_find_printable_frame). */
11702 select_frame (get_current_frame ());
11704 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11707 case ada_catch_exception:
11708 case ada_catch_exception_unhandled:
11709 case ada_catch_handlers:
11711 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11712 char exception_name[256];
11716 read_memory (addr, (gdb_byte *) exception_name,
11717 sizeof (exception_name) - 1);
11718 exception_name [sizeof (exception_name) - 1] = '\0';
11722 /* For some reason, we were unable to read the exception
11723 name. This could happen if the Runtime was compiled
11724 without debugging info, for instance. In that case,
11725 just replace the exception name by the generic string
11726 "exception" - it will read as "an exception" in the
11727 notification we are about to print. */
11728 memcpy (exception_name, "exception", sizeof ("exception"));
11730 /* In the case of unhandled exception breakpoints, we print
11731 the exception name as "unhandled EXCEPTION_NAME", to make
11732 it clearer to the user which kind of catchpoint just got
11733 hit. We used ui_out_text to make sure that this extra
11734 info does not pollute the exception name in the MI case. */
11735 if (c->m_kind == ada_catch_exception_unhandled)
11736 uiout->text ("unhandled ");
11737 uiout->field_string ("exception-name", exception_name);
11740 case ada_catch_assert:
11741 /* In this case, the name of the exception is not really
11742 important. Just print "failed assertion" to make it clearer
11743 that his program just hit an assertion-failure catchpoint.
11744 We used ui_out_text because this info does not belong in
11746 uiout->text ("failed assertion");
11750 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11751 if (exception_message != NULL)
11753 uiout->text (" (");
11754 uiout->field_string ("exception-message", exception_message.get ());
11758 uiout->text (" at ");
11759 ada_find_printable_frame (get_current_frame ());
11761 return PRINT_SRC_AND_LOC;
11764 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11765 for all exception catchpoint kinds. */
11768 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11770 struct ui_out *uiout = current_uiout;
11771 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11772 struct value_print_options opts;
11774 get_user_print_options (&opts);
11776 if (opts.addressprint)
11777 uiout->field_skip ("addr");
11779 annotate_field (5);
11782 case ada_catch_exception:
11783 if (!c->excep_string.empty ())
11785 std::string msg = string_printf (_("`%s' Ada exception"),
11786 c->excep_string.c_str ());
11788 uiout->field_string ("what", msg);
11791 uiout->field_string ("what", "all Ada exceptions");
11795 case ada_catch_exception_unhandled:
11796 uiout->field_string ("what", "unhandled Ada exceptions");
11799 case ada_catch_handlers:
11800 if (!c->excep_string.empty ())
11802 uiout->field_fmt ("what",
11803 _("`%s' Ada exception handlers"),
11804 c->excep_string.c_str ());
11807 uiout->field_string ("what", "all Ada exceptions handlers");
11810 case ada_catch_assert:
11811 uiout->field_string ("what", "failed Ada assertions");
11815 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11820 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11821 for all exception catchpoint kinds. */
11824 print_mention_exception (struct breakpoint *b)
11826 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11827 struct ui_out *uiout = current_uiout;
11829 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11830 : _("Catchpoint "));
11831 uiout->field_signed ("bkptno", b->number);
11832 uiout->text (": ");
11836 case ada_catch_exception:
11837 if (!c->excep_string.empty ())
11839 std::string info = string_printf (_("`%s' Ada exception"),
11840 c->excep_string.c_str ());
11841 uiout->text (info);
11844 uiout->text (_("all Ada exceptions"));
11847 case ada_catch_exception_unhandled:
11848 uiout->text (_("unhandled Ada exceptions"));
11851 case ada_catch_handlers:
11852 if (!c->excep_string.empty ())
11855 = string_printf (_("`%s' Ada exception handlers"),
11856 c->excep_string.c_str ());
11857 uiout->text (info);
11860 uiout->text (_("all Ada exceptions handlers"));
11863 case ada_catch_assert:
11864 uiout->text (_("failed Ada assertions"));
11868 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11873 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11874 for all exception catchpoint kinds. */
11877 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
11879 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11883 case ada_catch_exception:
11884 fprintf_filtered (fp, "catch exception");
11885 if (!c->excep_string.empty ())
11886 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
11889 case ada_catch_exception_unhandled:
11890 fprintf_filtered (fp, "catch exception unhandled");
11893 case ada_catch_handlers:
11894 fprintf_filtered (fp, "catch handlers");
11897 case ada_catch_assert:
11898 fprintf_filtered (fp, "catch assert");
11902 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11904 print_recreate_thread (b, fp);
11907 /* Virtual tables for various breakpoint types. */
11908 static struct breakpoint_ops catch_exception_breakpoint_ops;
11909 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11910 static struct breakpoint_ops catch_assert_breakpoint_ops;
11911 static struct breakpoint_ops catch_handlers_breakpoint_ops;
11913 /* See ada-lang.h. */
11916 is_ada_exception_catchpoint (breakpoint *bp)
11918 return (bp->ops == &catch_exception_breakpoint_ops
11919 || bp->ops == &catch_exception_unhandled_breakpoint_ops
11920 || bp->ops == &catch_assert_breakpoint_ops
11921 || bp->ops == &catch_handlers_breakpoint_ops);
11924 /* Split the arguments specified in a "catch exception" command.
11925 Set EX to the appropriate catchpoint type.
11926 Set EXCEP_STRING to the name of the specific exception if
11927 specified by the user.
11928 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
11929 "catch handlers" command. False otherwise.
11930 If a condition is found at the end of the arguments, the condition
11931 expression is stored in COND_STRING (memory must be deallocated
11932 after use). Otherwise COND_STRING is set to NULL. */
11935 catch_ada_exception_command_split (const char *args,
11936 bool is_catch_handlers_cmd,
11937 enum ada_exception_catchpoint_kind *ex,
11938 std::string *excep_string,
11939 std::string *cond_string)
11941 std::string exception_name;
11943 exception_name = extract_arg (&args);
11944 if (exception_name == "if")
11946 /* This is not an exception name; this is the start of a condition
11947 expression for a catchpoint on all exceptions. So, "un-get"
11948 this token, and set exception_name to NULL. */
11949 exception_name.clear ();
11953 /* Check to see if we have a condition. */
11955 args = skip_spaces (args);
11956 if (startswith (args, "if")
11957 && (isspace (args[2]) || args[2] == '\0'))
11960 args = skip_spaces (args);
11962 if (args[0] == '\0')
11963 error (_("Condition missing after `if' keyword"));
11964 *cond_string = args;
11966 args += strlen (args);
11969 /* Check that we do not have any more arguments. Anything else
11972 if (args[0] != '\0')
11973 error (_("Junk at end of expression"));
11975 if (is_catch_handlers_cmd)
11977 /* Catch handling of exceptions. */
11978 *ex = ada_catch_handlers;
11979 *excep_string = exception_name;
11981 else if (exception_name.empty ())
11983 /* Catch all exceptions. */
11984 *ex = ada_catch_exception;
11985 excep_string->clear ();
11987 else if (exception_name == "unhandled")
11989 /* Catch unhandled exceptions. */
11990 *ex = ada_catch_exception_unhandled;
11991 excep_string->clear ();
11995 /* Catch a specific exception. */
11996 *ex = ada_catch_exception;
11997 *excep_string = exception_name;
12001 /* Return the name of the symbol on which we should break in order to
12002 implement a catchpoint of the EX kind. */
12004 static const char *
12005 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12007 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12009 gdb_assert (data->exception_info != NULL);
12013 case ada_catch_exception:
12014 return (data->exception_info->catch_exception_sym);
12016 case ada_catch_exception_unhandled:
12017 return (data->exception_info->catch_exception_unhandled_sym);
12019 case ada_catch_assert:
12020 return (data->exception_info->catch_assert_sym);
12022 case ada_catch_handlers:
12023 return (data->exception_info->catch_handlers_sym);
12026 internal_error (__FILE__, __LINE__,
12027 _("unexpected catchpoint kind (%d)"), ex);
12031 /* Return the breakpoint ops "virtual table" used for catchpoints
12034 static const struct breakpoint_ops *
12035 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12039 case ada_catch_exception:
12040 return (&catch_exception_breakpoint_ops);
12042 case ada_catch_exception_unhandled:
12043 return (&catch_exception_unhandled_breakpoint_ops);
12045 case ada_catch_assert:
12046 return (&catch_assert_breakpoint_ops);
12048 case ada_catch_handlers:
12049 return (&catch_handlers_breakpoint_ops);
12052 internal_error (__FILE__, __LINE__,
12053 _("unexpected catchpoint kind (%d)"), ex);
12057 /* Return the condition that will be used to match the current exception
12058 being raised with the exception that the user wants to catch. This
12059 assumes that this condition is used when the inferior just triggered
12060 an exception catchpoint.
12061 EX: the type of catchpoints used for catching Ada exceptions. */
12064 ada_exception_catchpoint_cond_string (const char *excep_string,
12065 enum ada_exception_catchpoint_kind ex)
12068 bool is_standard_exc = false;
12069 std::string result;
12071 if (ex == ada_catch_handlers)
12073 /* For exception handlers catchpoints, the condition string does
12074 not use the same parameter as for the other exceptions. */
12075 result = ("long_integer (GNAT_GCC_exception_Access"
12076 "(gcc_exception).all.occurrence.id)");
12079 result = "long_integer (e)";
12081 /* The standard exceptions are a special case. They are defined in
12082 runtime units that have been compiled without debugging info; if
12083 EXCEP_STRING is the not-fully-qualified name of a standard
12084 exception (e.g. "constraint_error") then, during the evaluation
12085 of the condition expression, the symbol lookup on this name would
12086 *not* return this standard exception. The catchpoint condition
12087 may then be set only on user-defined exceptions which have the
12088 same not-fully-qualified name (e.g. my_package.constraint_error).
12090 To avoid this unexcepted behavior, these standard exceptions are
12091 systematically prefixed by "standard". This means that "catch
12092 exception constraint_error" is rewritten into "catch exception
12093 standard.constraint_error".
12095 If an exception named constraint_error is defined in another package of
12096 the inferior program, then the only way to specify this exception as a
12097 breakpoint condition is to use its fully-qualified named:
12098 e.g. my_package.constraint_error. */
12100 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12102 if (strcmp (standard_exc [i], excep_string) == 0)
12104 is_standard_exc = true;
12111 if (is_standard_exc)
12112 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12114 string_appendf (result, "long_integer (&%s)", excep_string);
12119 /* Return the symtab_and_line that should be used to insert an exception
12120 catchpoint of the TYPE kind.
12122 ADDR_STRING returns the name of the function where the real
12123 breakpoint that implements the catchpoints is set, depending on the
12124 type of catchpoint we need to create. */
12126 static struct symtab_and_line
12127 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12128 std::string *addr_string, const struct breakpoint_ops **ops)
12130 const char *sym_name;
12131 struct symbol *sym;
12133 /* First, find out which exception support info to use. */
12134 ada_exception_support_info_sniffer ();
12136 /* Then lookup the function on which we will break in order to catch
12137 the Ada exceptions requested by the user. */
12138 sym_name = ada_exception_sym_name (ex);
12139 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12142 error (_("Catchpoint symbol not found: %s"), sym_name);
12144 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12145 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12147 /* Set ADDR_STRING. */
12148 *addr_string = sym_name;
12151 *ops = ada_exception_breakpoint_ops (ex);
12153 return find_function_start_sal (sym, 1);
12156 /* Create an Ada exception catchpoint.
12158 EX_KIND is the kind of exception catchpoint to be created.
12160 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12161 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12162 of the exception to which this catchpoint applies.
12164 COND_STRING, if not empty, is the catchpoint condition.
12166 TEMPFLAG, if nonzero, means that the underlying breakpoint
12167 should be temporary.
12169 FROM_TTY is the usual argument passed to all commands implementations. */
12172 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12173 enum ada_exception_catchpoint_kind ex_kind,
12174 const std::string &excep_string,
12175 const std::string &cond_string,
12180 std::string addr_string;
12181 const struct breakpoint_ops *ops = NULL;
12182 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12184 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12185 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12186 ops, tempflag, disabled, from_tty);
12187 c->excep_string = excep_string;
12188 create_excep_cond_exprs (c.get (), ex_kind);
12189 if (!cond_string.empty ())
12190 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12191 install_breakpoint (0, std::move (c), 1);
12194 /* Implement the "catch exception" command. */
12197 catch_ada_exception_command (const char *arg_entry, int from_tty,
12198 struct cmd_list_element *command)
12200 const char *arg = arg_entry;
12201 struct gdbarch *gdbarch = get_current_arch ();
12203 enum ada_exception_catchpoint_kind ex_kind;
12204 std::string excep_string;
12205 std::string cond_string;
12207 tempflag = command->context () == CATCH_TEMPORARY;
12211 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12213 create_ada_exception_catchpoint (gdbarch, ex_kind,
12214 excep_string, cond_string,
12215 tempflag, 1 /* enabled */,
12219 /* Implement the "catch handlers" command. */
12222 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12223 struct cmd_list_element *command)
12225 const char *arg = arg_entry;
12226 struct gdbarch *gdbarch = get_current_arch ();
12228 enum ada_exception_catchpoint_kind ex_kind;
12229 std::string excep_string;
12230 std::string cond_string;
12232 tempflag = command->context () == CATCH_TEMPORARY;
12236 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12238 create_ada_exception_catchpoint (gdbarch, ex_kind,
12239 excep_string, cond_string,
12240 tempflag, 1 /* enabled */,
12244 /* Completion function for the Ada "catch" commands. */
12247 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12248 const char *text, const char *word)
12250 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12252 for (const ada_exc_info &info : exceptions)
12254 if (startswith (info.name, word))
12255 tracker.add_completion (make_unique_xstrdup (info.name));
12259 /* Split the arguments specified in a "catch assert" command.
12261 ARGS contains the command's arguments (or the empty string if
12262 no arguments were passed).
12264 If ARGS contains a condition, set COND_STRING to that condition
12265 (the memory needs to be deallocated after use). */
12268 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12270 args = skip_spaces (args);
12272 /* Check whether a condition was provided. */
12273 if (startswith (args, "if")
12274 && (isspace (args[2]) || args[2] == '\0'))
12277 args = skip_spaces (args);
12278 if (args[0] == '\0')
12279 error (_("condition missing after `if' keyword"));
12280 cond_string.assign (args);
12283 /* Otherwise, there should be no other argument at the end of
12285 else if (args[0] != '\0')
12286 error (_("Junk at end of arguments."));
12289 /* Implement the "catch assert" command. */
12292 catch_assert_command (const char *arg_entry, int from_tty,
12293 struct cmd_list_element *command)
12295 const char *arg = arg_entry;
12296 struct gdbarch *gdbarch = get_current_arch ();
12298 std::string cond_string;
12300 tempflag = command->context () == CATCH_TEMPORARY;
12304 catch_ada_assert_command_split (arg, cond_string);
12305 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12307 tempflag, 1 /* enabled */,
12311 /* Return non-zero if the symbol SYM is an Ada exception object. */
12314 ada_is_exception_sym (struct symbol *sym)
12316 const char *type_name = SYMBOL_TYPE (sym)->name ();
12318 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12319 && SYMBOL_CLASS (sym) != LOC_BLOCK
12320 && SYMBOL_CLASS (sym) != LOC_CONST
12321 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12322 && type_name != NULL && strcmp (type_name, "exception") == 0);
12325 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12326 Ada exception object. This matches all exceptions except the ones
12327 defined by the Ada language. */
12330 ada_is_non_standard_exception_sym (struct symbol *sym)
12334 if (!ada_is_exception_sym (sym))
12337 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12338 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12339 return 0; /* A standard exception. */
12341 /* Numeric_Error is also a standard exception, so exclude it.
12342 See the STANDARD_EXC description for more details as to why
12343 this exception is not listed in that array. */
12344 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12350 /* A helper function for std::sort, comparing two struct ada_exc_info
12353 The comparison is determined first by exception name, and then
12354 by exception address. */
12357 ada_exc_info::operator< (const ada_exc_info &other) const
12361 result = strcmp (name, other.name);
12364 if (result == 0 && addr < other.addr)
12370 ada_exc_info::operator== (const ada_exc_info &other) const
12372 return addr == other.addr && strcmp (name, other.name) == 0;
12375 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12376 routine, but keeping the first SKIP elements untouched.
12378 All duplicates are also removed. */
12381 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12384 std::sort (exceptions->begin () + skip, exceptions->end ());
12385 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12386 exceptions->end ());
12389 /* Add all exceptions defined by the Ada standard whose name match
12390 a regular expression.
12392 If PREG is not NULL, then this regexp_t object is used to
12393 perform the symbol name matching. Otherwise, no name-based
12394 filtering is performed.
12396 EXCEPTIONS is a vector of exceptions to which matching exceptions
12400 ada_add_standard_exceptions (compiled_regex *preg,
12401 std::vector<ada_exc_info> *exceptions)
12405 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12408 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12410 struct bound_minimal_symbol msymbol
12411 = ada_lookup_simple_minsym (standard_exc[i]);
12413 if (msymbol.minsym != NULL)
12415 struct ada_exc_info info
12416 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12418 exceptions->push_back (info);
12424 /* Add all Ada exceptions defined locally and accessible from the given
12427 If PREG is not NULL, then this regexp_t object is used to
12428 perform the symbol name matching. Otherwise, no name-based
12429 filtering is performed.
12431 EXCEPTIONS is a vector of exceptions to which matching exceptions
12435 ada_add_exceptions_from_frame (compiled_regex *preg,
12436 struct frame_info *frame,
12437 std::vector<ada_exc_info> *exceptions)
12439 const struct block *block = get_frame_block (frame, 0);
12443 struct block_iterator iter;
12444 struct symbol *sym;
12446 ALL_BLOCK_SYMBOLS (block, iter, sym)
12448 switch (SYMBOL_CLASS (sym))
12455 if (ada_is_exception_sym (sym))
12457 struct ada_exc_info info = {sym->print_name (),
12458 SYMBOL_VALUE_ADDRESS (sym)};
12460 exceptions->push_back (info);
12464 if (BLOCK_FUNCTION (block) != NULL)
12466 block = BLOCK_SUPERBLOCK (block);
12470 /* Return true if NAME matches PREG or if PREG is NULL. */
12473 name_matches_regex (const char *name, compiled_regex *preg)
12475 return (preg == NULL
12476 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12479 /* Add all exceptions defined globally whose name name match
12480 a regular expression, excluding standard exceptions.
12482 The reason we exclude standard exceptions is that they need
12483 to be handled separately: Standard exceptions are defined inside
12484 a runtime unit which is normally not compiled with debugging info,
12485 and thus usually do not show up in our symbol search. However,
12486 if the unit was in fact built with debugging info, we need to
12487 exclude them because they would duplicate the entry we found
12488 during the special loop that specifically searches for those
12489 standard exceptions.
12491 If PREG is not NULL, then this regexp_t object is used to
12492 perform the symbol name matching. Otherwise, no name-based
12493 filtering is performed.
12495 EXCEPTIONS is a vector of exceptions to which matching exceptions
12499 ada_add_global_exceptions (compiled_regex *preg,
12500 std::vector<ada_exc_info> *exceptions)
12502 /* In Ada, the symbol "search name" is a linkage name, whereas the
12503 regular expression used to do the matching refers to the natural
12504 name. So match against the decoded name. */
12505 expand_symtabs_matching (NULL,
12506 lookup_name_info::match_any (),
12507 [&] (const char *search_name)
12509 std::string decoded = ada_decode (search_name);
12510 return name_matches_regex (decoded.c_str (), preg);
12513 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12516 for (objfile *objfile : current_program_space->objfiles ())
12518 for (compunit_symtab *s : objfile->compunits ())
12520 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12523 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12525 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12526 struct block_iterator iter;
12527 struct symbol *sym;
12529 ALL_BLOCK_SYMBOLS (b, iter, sym)
12530 if (ada_is_non_standard_exception_sym (sym)
12531 && name_matches_regex (sym->natural_name (), preg))
12533 struct ada_exc_info info
12534 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12536 exceptions->push_back (info);
12543 /* Implements ada_exceptions_list with the regular expression passed
12544 as a regex_t, rather than a string.
12546 If not NULL, PREG is used to filter out exceptions whose names
12547 do not match. Otherwise, all exceptions are listed. */
12549 static std::vector<ada_exc_info>
12550 ada_exceptions_list_1 (compiled_regex *preg)
12552 std::vector<ada_exc_info> result;
12555 /* First, list the known standard exceptions. These exceptions
12556 need to be handled separately, as they are usually defined in
12557 runtime units that have been compiled without debugging info. */
12559 ada_add_standard_exceptions (preg, &result);
12561 /* Next, find all exceptions whose scope is local and accessible
12562 from the currently selected frame. */
12564 if (has_stack_frames ())
12566 prev_len = result.size ();
12567 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12569 if (result.size () > prev_len)
12570 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12573 /* Add all exceptions whose scope is global. */
12575 prev_len = result.size ();
12576 ada_add_global_exceptions (preg, &result);
12577 if (result.size () > prev_len)
12578 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12583 /* Return a vector of ada_exc_info.
12585 If REGEXP is NULL, all exceptions are included in the result.
12586 Otherwise, it should contain a valid regular expression,
12587 and only the exceptions whose names match that regular expression
12588 are included in the result.
12590 The exceptions are sorted in the following order:
12591 - Standard exceptions (defined by the Ada language), in
12592 alphabetical order;
12593 - Exceptions only visible from the current frame, in
12594 alphabetical order;
12595 - Exceptions whose scope is global, in alphabetical order. */
12597 std::vector<ada_exc_info>
12598 ada_exceptions_list (const char *regexp)
12600 if (regexp == NULL)
12601 return ada_exceptions_list_1 (NULL);
12603 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12604 return ada_exceptions_list_1 (®);
12607 /* Implement the "info exceptions" command. */
12610 info_exceptions_command (const char *regexp, int from_tty)
12612 struct gdbarch *gdbarch = get_current_arch ();
12614 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12616 if (regexp != NULL)
12618 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12620 printf_filtered (_("All defined Ada exceptions:\n"));
12622 for (const ada_exc_info &info : exceptions)
12623 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12627 /* Language vector */
12629 /* symbol_name_matcher_ftype adapter for wild_match. */
12632 do_wild_match (const char *symbol_search_name,
12633 const lookup_name_info &lookup_name,
12634 completion_match_result *comp_match_res)
12636 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12639 /* symbol_name_matcher_ftype adapter for full_match. */
12642 do_full_match (const char *symbol_search_name,
12643 const lookup_name_info &lookup_name,
12644 completion_match_result *comp_match_res)
12646 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12648 /* If both symbols start with "_ada_", just let the loop below
12649 handle the comparison. However, if only the symbol name starts
12650 with "_ada_", skip the prefix and let the match proceed as
12652 if (startswith (symbol_search_name, "_ada_")
12653 && !startswith (lname, "_ada"))
12654 symbol_search_name += 5;
12656 int uscore_count = 0;
12657 while (*lname != '\0')
12659 if (*symbol_search_name != *lname)
12661 if (*symbol_search_name == 'B' && uscore_count == 2
12662 && symbol_search_name[1] == '_')
12664 symbol_search_name += 2;
12665 while (isdigit (*symbol_search_name))
12666 ++symbol_search_name;
12667 if (symbol_search_name[0] == '_'
12668 && symbol_search_name[1] == '_')
12670 symbol_search_name += 2;
12677 if (*symbol_search_name == '_')
12682 ++symbol_search_name;
12686 return is_name_suffix (symbol_search_name);
12689 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12692 do_exact_match (const char *symbol_search_name,
12693 const lookup_name_info &lookup_name,
12694 completion_match_result *comp_match_res)
12696 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12699 /* Build the Ada lookup name for LOOKUP_NAME. */
12701 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12703 gdb::string_view user_name = lookup_name.name ();
12705 if (!user_name.empty () && user_name[0] == '<')
12707 if (user_name.back () == '>')
12709 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12712 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12713 m_encoded_p = true;
12714 m_verbatim_p = true;
12715 m_wild_match_p = false;
12716 m_standard_p = false;
12720 m_verbatim_p = false;
12722 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12726 const char *folded = ada_fold_name (user_name);
12727 m_encoded_name = ada_encode_1 (folded, false);
12728 if (m_encoded_name.empty ())
12729 m_encoded_name = gdb::to_string (user_name);
12732 m_encoded_name = gdb::to_string (user_name);
12734 /* Handle the 'package Standard' special case. See description
12735 of m_standard_p. */
12736 if (startswith (m_encoded_name.c_str (), "standard__"))
12738 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12739 m_standard_p = true;
12742 m_standard_p = false;
12744 /* If the name contains a ".", then the user is entering a fully
12745 qualified entity name, and the match must not be done in wild
12746 mode. Similarly, if the user wants to complete what looks
12747 like an encoded name, the match must not be done in wild
12748 mode. Also, in the standard__ special case always do
12749 non-wild matching. */
12751 = (lookup_name.match_type () != symbol_name_match_type::FULL
12754 && user_name.find ('.') == std::string::npos);
12758 /* symbol_name_matcher_ftype method for Ada. This only handles
12759 completion mode. */
12762 ada_symbol_name_matches (const char *symbol_search_name,
12763 const lookup_name_info &lookup_name,
12764 completion_match_result *comp_match_res)
12766 return lookup_name.ada ().matches (symbol_search_name,
12767 lookup_name.match_type (),
12771 /* A name matcher that matches the symbol name exactly, with
12775 literal_symbol_name_matcher (const char *symbol_search_name,
12776 const lookup_name_info &lookup_name,
12777 completion_match_result *comp_match_res)
12779 gdb::string_view name_view = lookup_name.name ();
12781 if (lookup_name.completion_mode ()
12782 ? (strncmp (symbol_search_name, name_view.data (),
12783 name_view.size ()) == 0)
12784 : symbol_search_name == name_view)
12786 if (comp_match_res != NULL)
12787 comp_match_res->set_match (symbol_search_name);
12794 /* Implement the "get_symbol_name_matcher" language_defn method for
12797 static symbol_name_matcher_ftype *
12798 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12800 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12801 return literal_symbol_name_matcher;
12803 if (lookup_name.completion_mode ())
12804 return ada_symbol_name_matches;
12807 if (lookup_name.ada ().wild_match_p ())
12808 return do_wild_match;
12809 else if (lookup_name.ada ().verbatim_p ())
12810 return do_exact_match;
12812 return do_full_match;
12816 /* Class representing the Ada language. */
12818 class ada_language : public language_defn
12822 : language_defn (language_ada)
12825 /* See language.h. */
12827 const char *name () const override
12830 /* See language.h. */
12832 const char *natural_name () const override
12835 /* See language.h. */
12837 const std::vector<const char *> &filename_extensions () const override
12839 static const std::vector<const char *> extensions
12840 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12844 /* Print an array element index using the Ada syntax. */
12846 void print_array_index (struct type *index_type,
12848 struct ui_file *stream,
12849 const value_print_options *options) const override
12851 struct value *index_value = val_atr (index_type, index);
12853 value_print (index_value, stream, options);
12854 fprintf_filtered (stream, " => ");
12857 /* Implement the "read_var_value" language_defn method for Ada. */
12859 struct value *read_var_value (struct symbol *var,
12860 const struct block *var_block,
12861 struct frame_info *frame) const override
12863 /* The only case where default_read_var_value is not sufficient
12864 is when VAR is a renaming... */
12865 if (frame != nullptr)
12867 const struct block *frame_block = get_frame_block (frame, NULL);
12868 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12869 return ada_read_renaming_var_value (var, frame_block);
12872 /* This is a typical case where we expect the default_read_var_value
12873 function to work. */
12874 return language_defn::read_var_value (var, var_block, frame);
12877 /* See language.h. */
12878 void language_arch_info (struct gdbarch *gdbarch,
12879 struct language_arch_info *lai) const override
12881 const struct builtin_type *builtin = builtin_type (gdbarch);
12883 /* Helper function to allow shorter lines below. */
12884 auto add = [&] (struct type *t)
12886 lai->add_primitive_type (t);
12889 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12891 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12892 0, "long_integer"));
12893 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12894 0, "short_integer"));
12895 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
12897 lai->set_string_char_type (char_type);
12899 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12900 "float", gdbarch_float_format (gdbarch)));
12901 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12902 "long_float", gdbarch_double_format (gdbarch)));
12903 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12904 0, "long_long_integer"));
12905 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
12907 gdbarch_long_double_format (gdbarch)));
12908 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12910 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12912 add (builtin->builtin_void);
12914 struct type *system_addr_ptr
12915 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
12917 system_addr_ptr->set_name ("system__address");
12918 add (system_addr_ptr);
12920 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
12921 type. This is a signed integral type whose size is the same as
12922 the size of addresses. */
12923 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
12924 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
12925 "storage_offset"));
12927 lai->set_bool_type (builtin->builtin_bool);
12930 /* See language.h. */
12932 bool iterate_over_symbols
12933 (const struct block *block, const lookup_name_info &name,
12934 domain_enum domain,
12935 gdb::function_view<symbol_found_callback_ftype> callback) const override
12937 std::vector<struct block_symbol> results
12938 = ada_lookup_symbol_list_worker (name, block, domain, 0);
12939 for (block_symbol &sym : results)
12941 if (!callback (&sym))
12948 /* See language.h. */
12949 bool sniff_from_mangled_name (const char *mangled,
12950 char **out) const override
12952 std::string demangled = ada_decode (mangled);
12956 if (demangled != mangled && demangled[0] != '<')
12958 /* Set the gsymbol language to Ada, but still return 0.
12959 Two reasons for that:
12961 1. For Ada, we prefer computing the symbol's decoded name
12962 on the fly rather than pre-compute it, in order to save
12963 memory (Ada projects are typically very large).
12965 2. There are some areas in the definition of the GNAT
12966 encoding where, with a bit of bad luck, we might be able
12967 to decode a non-Ada symbol, generating an incorrect
12968 demangled name (Eg: names ending with "TB" for instance
12969 are identified as task bodies and so stripped from
12970 the decoded name returned).
12972 Returning true, here, but not setting *DEMANGLED, helps us get
12973 a little bit of the best of both worlds. Because we're last,
12974 we should not affect any of the other languages that were
12975 able to demangle the symbol before us; we get to correctly
12976 tag Ada symbols as such; and even if we incorrectly tagged a
12977 non-Ada symbol, which should be rare, any routing through the
12978 Ada language should be transparent (Ada tries to behave much
12979 like C/C++ with non-Ada symbols). */
12986 /* See language.h. */
12988 char *demangle_symbol (const char *mangled, int options) const override
12990 return ada_la_decode (mangled, options);
12993 /* See language.h. */
12995 void print_type (struct type *type, const char *varstring,
12996 struct ui_file *stream, int show, int level,
12997 const struct type_print_options *flags) const override
12999 ada_print_type (type, varstring, stream, show, level, flags);
13002 /* See language.h. */
13004 const char *word_break_characters (void) const override
13006 return ada_completer_word_break_characters;
13009 /* See language.h. */
13011 void collect_symbol_completion_matches (completion_tracker &tracker,
13012 complete_symbol_mode mode,
13013 symbol_name_match_type name_match_type,
13014 const char *text, const char *word,
13015 enum type_code code) const override
13017 struct symbol *sym;
13018 const struct block *b, *surrounding_static_block = 0;
13019 struct block_iterator iter;
13021 gdb_assert (code == TYPE_CODE_UNDEF);
13023 lookup_name_info lookup_name (text, name_match_type, true);
13025 /* First, look at the partial symtab symbols. */
13026 expand_symtabs_matching (NULL,
13030 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13033 /* At this point scan through the misc symbol vectors and add each
13034 symbol you find to the list. Eventually we want to ignore
13035 anything that isn't a text symbol (everything else will be
13036 handled by the psymtab code above). */
13038 for (objfile *objfile : current_program_space->objfiles ())
13040 for (minimal_symbol *msymbol : objfile->msymbols ())
13044 if (completion_skip_symbol (mode, msymbol))
13047 language symbol_language = msymbol->language ();
13049 /* Ada minimal symbols won't have their language set to Ada. If
13050 we let completion_list_add_name compare using the
13051 default/C-like matcher, then when completing e.g., symbols in a
13052 package named "pck", we'd match internal Ada symbols like
13053 "pckS", which are invalid in an Ada expression, unless you wrap
13054 them in '<' '>' to request a verbatim match.
13056 Unfortunately, some Ada encoded names successfully demangle as
13057 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13058 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13059 with the wrong language set. Paper over that issue here. */
13060 if (symbol_language == language_auto
13061 || symbol_language == language_cplus)
13062 symbol_language = language_ada;
13064 completion_list_add_name (tracker,
13066 msymbol->linkage_name (),
13067 lookup_name, text, word);
13071 /* Search upwards from currently selected frame (so that we can
13072 complete on local vars. */
13074 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13076 if (!BLOCK_SUPERBLOCK (b))
13077 surrounding_static_block = b; /* For elmin of dups */
13079 ALL_BLOCK_SYMBOLS (b, iter, sym)
13081 if (completion_skip_symbol (mode, sym))
13084 completion_list_add_name (tracker,
13086 sym->linkage_name (),
13087 lookup_name, text, word);
13091 /* Go through the symtabs and check the externs and statics for
13092 symbols which match. */
13094 for (objfile *objfile : current_program_space->objfiles ())
13096 for (compunit_symtab *s : objfile->compunits ())
13099 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13100 ALL_BLOCK_SYMBOLS (b, iter, sym)
13102 if (completion_skip_symbol (mode, sym))
13105 completion_list_add_name (tracker,
13107 sym->linkage_name (),
13108 lookup_name, text, word);
13113 for (objfile *objfile : current_program_space->objfiles ())
13115 for (compunit_symtab *s : objfile->compunits ())
13118 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13119 /* Don't do this block twice. */
13120 if (b == surrounding_static_block)
13122 ALL_BLOCK_SYMBOLS (b, iter, sym)
13124 if (completion_skip_symbol (mode, sym))
13127 completion_list_add_name (tracker,
13129 sym->linkage_name (),
13130 lookup_name, text, word);
13136 /* See language.h. */
13138 gdb::unique_xmalloc_ptr<char> watch_location_expression
13139 (struct type *type, CORE_ADDR addr) const override
13141 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13142 std::string name = type_to_string (type);
13143 return gdb::unique_xmalloc_ptr<char>
13144 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13147 /* See language.h. */
13149 void value_print (struct value *val, struct ui_file *stream,
13150 const struct value_print_options *options) const override
13152 return ada_value_print (val, stream, options);
13155 /* See language.h. */
13157 void value_print_inner
13158 (struct value *val, struct ui_file *stream, int recurse,
13159 const struct value_print_options *options) const override
13161 return ada_value_print_inner (val, stream, recurse, options);
13164 /* See language.h. */
13166 struct block_symbol lookup_symbol_nonlocal
13167 (const char *name, const struct block *block,
13168 const domain_enum domain) const override
13170 struct block_symbol sym;
13172 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13173 if (sym.symbol != NULL)
13176 /* If we haven't found a match at this point, try the primitive
13177 types. In other languages, this search is performed before
13178 searching for global symbols in order to short-circuit that
13179 global-symbol search if it happens that the name corresponds
13180 to a primitive type. But we cannot do the same in Ada, because
13181 it is perfectly legitimate for a program to declare a type which
13182 has the same name as a standard type. If looking up a type in
13183 that situation, we have traditionally ignored the primitive type
13184 in favor of user-defined types. This is why, unlike most other
13185 languages, we search the primitive types this late and only after
13186 having searched the global symbols without success. */
13188 if (domain == VAR_DOMAIN)
13190 struct gdbarch *gdbarch;
13193 gdbarch = target_gdbarch ();
13195 gdbarch = block_gdbarch (block);
13197 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13198 if (sym.symbol != NULL)
13205 /* See language.h. */
13207 int parser (struct parser_state *ps) const override
13209 warnings_issued = 0;
13210 return ada_parse (ps);
13213 /* See language.h. */
13215 void emitchar (int ch, struct type *chtype,
13216 struct ui_file *stream, int quoter) const override
13218 ada_emit_char (ch, chtype, stream, quoter, 1);
13221 /* See language.h. */
13223 void printchar (int ch, struct type *chtype,
13224 struct ui_file *stream) const override
13226 ada_printchar (ch, chtype, stream);
13229 /* See language.h. */
13231 void printstr (struct ui_file *stream, struct type *elttype,
13232 const gdb_byte *string, unsigned int length,
13233 const char *encoding, int force_ellipses,
13234 const struct value_print_options *options) const override
13236 ada_printstr (stream, elttype, string, length, encoding,
13237 force_ellipses, options);
13240 /* See language.h. */
13242 void print_typedef (struct type *type, struct symbol *new_symbol,
13243 struct ui_file *stream) const override
13245 ada_print_typedef (type, new_symbol, stream);
13248 /* See language.h. */
13250 bool is_string_type_p (struct type *type) const override
13252 return ada_is_string_type (type);
13255 /* See language.h. */
13257 const char *struct_too_deep_ellipsis () const override
13258 { return "(...)"; }
13260 /* See language.h. */
13262 bool c_style_arrays_p () const override
13265 /* See language.h. */
13267 bool store_sym_names_in_linkage_form_p () const override
13270 /* See language.h. */
13272 const struct lang_varobj_ops *varobj_ops () const override
13273 { return &ada_varobj_ops; }
13276 /* See language.h. */
13278 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13279 (const lookup_name_info &lookup_name) const override
13281 return ada_get_symbol_name_matcher (lookup_name);
13285 /* Single instance of the Ada language class. */
13287 static ada_language ada_language_defn;
13289 /* Command-list for the "set/show ada" prefix command. */
13290 static struct cmd_list_element *set_ada_list;
13291 static struct cmd_list_element *show_ada_list;
13294 initialize_ada_catchpoint_ops (void)
13296 struct breakpoint_ops *ops;
13298 initialize_breakpoint_ops ();
13300 ops = &catch_exception_breakpoint_ops;
13301 *ops = bkpt_breakpoint_ops;
13302 ops->allocate_location = allocate_location_exception;
13303 ops->re_set = re_set_exception;
13304 ops->check_status = check_status_exception;
13305 ops->print_it = print_it_exception;
13306 ops->print_one = print_one_exception;
13307 ops->print_mention = print_mention_exception;
13308 ops->print_recreate = print_recreate_exception;
13310 ops = &catch_exception_unhandled_breakpoint_ops;
13311 *ops = bkpt_breakpoint_ops;
13312 ops->allocate_location = allocate_location_exception;
13313 ops->re_set = re_set_exception;
13314 ops->check_status = check_status_exception;
13315 ops->print_it = print_it_exception;
13316 ops->print_one = print_one_exception;
13317 ops->print_mention = print_mention_exception;
13318 ops->print_recreate = print_recreate_exception;
13320 ops = &catch_assert_breakpoint_ops;
13321 *ops = bkpt_breakpoint_ops;
13322 ops->allocate_location = allocate_location_exception;
13323 ops->re_set = re_set_exception;
13324 ops->check_status = check_status_exception;
13325 ops->print_it = print_it_exception;
13326 ops->print_one = print_one_exception;
13327 ops->print_mention = print_mention_exception;
13328 ops->print_recreate = print_recreate_exception;
13330 ops = &catch_handlers_breakpoint_ops;
13331 *ops = bkpt_breakpoint_ops;
13332 ops->allocate_location = allocate_location_exception;
13333 ops->re_set = re_set_exception;
13334 ops->check_status = check_status_exception;
13335 ops->print_it = print_it_exception;
13336 ops->print_one = print_one_exception;
13337 ops->print_mention = print_mention_exception;
13338 ops->print_recreate = print_recreate_exception;
13341 /* This module's 'new_objfile' observer. */
13344 ada_new_objfile_observer (struct objfile *objfile)
13346 ada_clear_symbol_cache ();
13349 /* This module's 'free_objfile' observer. */
13352 ada_free_objfile_observer (struct objfile *objfile)
13354 ada_clear_symbol_cache ();
13357 void _initialize_ada_language ();
13359 _initialize_ada_language ()
13361 initialize_ada_catchpoint_ops ();
13363 add_basic_prefix_cmd ("ada", no_class,
13364 _("Prefix command for changing Ada-specific settings."),
13365 &set_ada_list, 0, &setlist);
13367 add_show_prefix_cmd ("ada", no_class,
13368 _("Generic command for showing Ada-specific settings."),
13369 &show_ada_list, 0, &showlist);
13371 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13372 &trust_pad_over_xvs, _("\
13373 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13374 Show whether an optimization trusting PAD types over XVS types is activated."),
13376 This is related to the encoding used by the GNAT compiler. The debugger\n\
13377 should normally trust the contents of PAD types, but certain older versions\n\
13378 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13379 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13380 work around this bug. It is always safe to turn this option \"off\", but\n\
13381 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13382 this option to \"off\" unless necessary."),
13383 NULL, NULL, &set_ada_list, &show_ada_list);
13385 add_setshow_boolean_cmd ("print-signatures", class_vars,
13386 &print_signatures, _("\
13387 Enable or disable the output of formal and return types for functions in the \
13388 overloads selection menu."), _("\
13389 Show whether the output of formal and return types for functions in the \
13390 overloads selection menu is activated."),
13391 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13393 add_catch_command ("exception", _("\
13394 Catch Ada exceptions, when raised.\n\
13395 Usage: catch exception [ARG] [if CONDITION]\n\
13396 Without any argument, stop when any Ada exception is raised.\n\
13397 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13398 being raised does not have a handler (and will therefore lead to the task's\n\
13400 Otherwise, the catchpoint only stops when the name of the exception being\n\
13401 raised is the same as ARG.\n\
13402 CONDITION is a boolean expression that is evaluated to see whether the\n\
13403 exception should cause a stop."),
13404 catch_ada_exception_command,
13405 catch_ada_completer,
13409 add_catch_command ("handlers", _("\
13410 Catch Ada exceptions, when handled.\n\
13411 Usage: catch handlers [ARG] [if CONDITION]\n\
13412 Without any argument, stop when any Ada exception is handled.\n\
13413 With an argument, catch only exceptions with the given name.\n\
13414 CONDITION is a boolean expression that is evaluated to see whether the\n\
13415 exception should cause a stop."),
13416 catch_ada_handlers_command,
13417 catch_ada_completer,
13420 add_catch_command ("assert", _("\
13421 Catch failed Ada assertions, when raised.\n\
13422 Usage: catch assert [if CONDITION]\n\
13423 CONDITION is a boolean expression that is evaluated to see whether the\n\
13424 exception should cause a stop."),
13425 catch_assert_command,
13430 varsize_limit = 65536;
13431 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13432 &varsize_limit, _("\
13433 Set the maximum number of bytes allowed in a variable-size object."), _("\
13434 Show the maximum number of bytes allowed in a variable-size object."), _("\
13435 Attempts to access an object whose size is not a compile-time constant\n\
13436 and exceeds this limit will cause an error."),
13437 NULL, NULL, &setlist, &showlist);
13439 add_info ("exceptions", info_exceptions_command,
13441 List all Ada exception names.\n\
13442 Usage: info exceptions [REGEXP]\n\
13443 If a regular expression is passed as an argument, only those matching\n\
13444 the regular expression are listed."));
13446 add_basic_prefix_cmd ("ada", class_maintenance,
13447 _("Set Ada maintenance-related variables."),
13448 &maint_set_ada_cmdlist,
13449 0/*allow-unknown*/, &maintenance_set_cmdlist);
13451 add_show_prefix_cmd ("ada", class_maintenance,
13452 _("Show Ada maintenance-related variables."),
13453 &maint_show_ada_cmdlist,
13454 0/*allow-unknown*/, &maintenance_show_cmdlist);
13456 add_setshow_boolean_cmd
13457 ("ignore-descriptive-types", class_maintenance,
13458 &ada_ignore_descriptive_types_p,
13459 _("Set whether descriptive types generated by GNAT should be ignored."),
13460 _("Show whether descriptive types generated by GNAT should be ignored."),
13462 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13463 DWARF attribute."),
13464 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13466 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13468 NULL, xcalloc, xfree);
13470 /* The ada-lang observers. */
13471 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13472 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13473 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");