1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
39 #include "gdb-demangle.h"
40 #include "expression.h"
41 #include "filenames.h" /* for DOSish file names */
44 #include "complaints.h"
46 #include "dwarf2expr.h"
47 #include "dwarf2loc.h"
48 #include "cp-support.h"
54 #include "typeprint.h"
57 #include "exceptions.h"
59 #include "completer.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
70 #include "gdb_string.h"
71 #include "gdb_assert.h"
72 #include <sys/types.h>
74 typedef struct symbol *symbolp;
77 /* When non-zero, print basic high level tracing messages.
78 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
79 static int dwarf2_read_debug = 0;
81 /* When non-zero, dump DIEs after they are read in. */
82 static unsigned int dwarf2_die_debug = 0;
84 /* When non-zero, cross-check physname against demangler. */
85 static int check_physname = 0;
87 /* When non-zero, do not reject deprecated .gdb_index sections. */
88 static int use_deprecated_index_sections = 0;
90 /* When set, the file that we're processing is known to have debugging
91 info for C++ namespaces. GCC 3.3.x did not produce this information,
92 but later versions do. */
94 static int processing_has_namespace_info;
96 static const struct objfile_data *dwarf2_objfile_data_key;
98 struct dwarf2_section_info
103 /* True if we have tried to read this section. */
107 typedef struct dwarf2_section_info dwarf2_section_info_def;
108 DEF_VEC_O (dwarf2_section_info_def);
110 /* All offsets in the index are of this type. It must be
111 architecture-independent. */
112 typedef uint32_t offset_type;
114 DEF_VEC_I (offset_type);
116 /* Ensure only legit values are used. */
117 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
119 gdb_assert ((unsigned int) (value) <= 1); \
120 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
123 /* Ensure only legit values are used. */
124 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
126 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
127 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
128 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
131 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
132 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
134 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
135 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
138 /* A description of the mapped index. The file format is described in
139 a comment by the code that writes the index. */
142 /* Index data format version. */
145 /* The total length of the buffer. */
148 /* A pointer to the address table data. */
149 const gdb_byte *address_table;
151 /* Size of the address table data in bytes. */
152 offset_type address_table_size;
154 /* The symbol table, implemented as a hash table. */
155 const offset_type *symbol_table;
157 /* Size in slots, each slot is 2 offset_types. */
158 offset_type symbol_table_slots;
160 /* A pointer to the constant pool. */
161 const char *constant_pool;
164 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
165 DEF_VEC_P (dwarf2_per_cu_ptr);
167 /* Collection of data recorded per objfile.
168 This hangs off of dwarf2_objfile_data_key. */
170 struct dwarf2_per_objfile
172 struct dwarf2_section_info info;
173 struct dwarf2_section_info abbrev;
174 struct dwarf2_section_info line;
175 struct dwarf2_section_info loc;
176 struct dwarf2_section_info macinfo;
177 struct dwarf2_section_info macro;
178 struct dwarf2_section_info str;
179 struct dwarf2_section_info ranges;
180 struct dwarf2_section_info addr;
181 struct dwarf2_section_info frame;
182 struct dwarf2_section_info eh_frame;
183 struct dwarf2_section_info gdb_index;
185 VEC (dwarf2_section_info_def) *types;
188 struct objfile *objfile;
190 /* Table of all the compilation units. This is used to locate
191 the target compilation unit of a particular reference. */
192 struct dwarf2_per_cu_data **all_comp_units;
194 /* The number of compilation units in ALL_COMP_UNITS. */
197 /* The number of .debug_types-related CUs. */
200 /* The .debug_types-related CUs (TUs). */
201 struct signatured_type **all_type_units;
203 /* The number of entries in all_type_unit_groups. */
204 int n_type_unit_groups;
206 /* Table of type unit groups.
207 This exists to make it easy to iterate over all CUs and TU groups. */
208 struct type_unit_group **all_type_unit_groups;
210 /* Table of struct type_unit_group objects.
211 The hash key is the DW_AT_stmt_list value. */
212 htab_t type_unit_groups;
214 /* A table mapping .debug_types signatures to its signatured_type entry.
215 This is NULL if the .debug_types section hasn't been read in yet. */
216 htab_t signatured_types;
218 /* Type unit statistics, to see how well the scaling improvements
222 int nr_uniq_abbrev_tables;
224 int nr_symtab_sharers;
225 int nr_stmt_less_type_units;
228 /* A chain of compilation units that are currently read in, so that
229 they can be freed later. */
230 struct dwarf2_per_cu_data *read_in_chain;
232 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
233 This is NULL if the table hasn't been allocated yet. */
236 /* The shared '.dwz' file, if one exists. This is used when the
237 original data was compressed using 'dwz -m'. */
238 struct dwz_file *dwz_file;
240 /* A flag indicating wether this objfile has a section loaded at a
242 int has_section_at_zero;
244 /* True if we are using the mapped index,
245 or we are faking it for OBJF_READNOW's sake. */
246 unsigned char using_index;
248 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
249 struct mapped_index *index_table;
251 /* When using index_table, this keeps track of all quick_file_names entries.
252 TUs can share line table entries with CUs or other TUs, and there can be
253 a lot more TUs than unique line tables, so we maintain a separate table
254 of all line table entries to support the sharing. */
255 htab_t quick_file_names_table;
257 /* Set during partial symbol reading, to prevent queueing of full
259 int reading_partial_symbols;
261 /* Table mapping type DIEs to their struct type *.
262 This is NULL if not allocated yet.
263 The mapping is done via (CU/TU signature + DIE offset) -> type. */
264 htab_t die_type_hash;
266 /* The CUs we recently read. */
267 VEC (dwarf2_per_cu_ptr) *just_read_cus;
270 static struct dwarf2_per_objfile *dwarf2_per_objfile;
272 /* Default names of the debugging sections. */
274 /* Note that if the debugging section has been compressed, it might
275 have a name like .zdebug_info. */
277 static const struct dwarf2_debug_sections dwarf2_elf_names =
279 { ".debug_info", ".zdebug_info" },
280 { ".debug_abbrev", ".zdebug_abbrev" },
281 { ".debug_line", ".zdebug_line" },
282 { ".debug_loc", ".zdebug_loc" },
283 { ".debug_macinfo", ".zdebug_macinfo" },
284 { ".debug_macro", ".zdebug_macro" },
285 { ".debug_str", ".zdebug_str" },
286 { ".debug_ranges", ".zdebug_ranges" },
287 { ".debug_types", ".zdebug_types" },
288 { ".debug_addr", ".zdebug_addr" },
289 { ".debug_frame", ".zdebug_frame" },
290 { ".eh_frame", NULL },
291 { ".gdb_index", ".zgdb_index" },
295 /* List of DWO sections. */
297 static const struct dwo_section_names
299 struct dwarf2_section_names abbrev_dwo;
300 struct dwarf2_section_names info_dwo;
301 struct dwarf2_section_names line_dwo;
302 struct dwarf2_section_names loc_dwo;
303 struct dwarf2_section_names macinfo_dwo;
304 struct dwarf2_section_names macro_dwo;
305 struct dwarf2_section_names str_dwo;
306 struct dwarf2_section_names str_offsets_dwo;
307 struct dwarf2_section_names types_dwo;
311 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
312 { ".debug_info.dwo", ".zdebug_info.dwo" },
313 { ".debug_line.dwo", ".zdebug_line.dwo" },
314 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
315 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
316 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
317 { ".debug_str.dwo", ".zdebug_str.dwo" },
318 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
319 { ".debug_types.dwo", ".zdebug_types.dwo" },
322 /* local data types */
324 /* The data in a compilation unit header, after target2host
325 translation, looks like this. */
326 struct comp_unit_head
330 unsigned char addr_size;
331 unsigned char signed_addr_p;
332 sect_offset abbrev_offset;
334 /* Size of file offsets; either 4 or 8. */
335 unsigned int offset_size;
337 /* Size of the length field; either 4 or 12. */
338 unsigned int initial_length_size;
340 /* Offset to the first byte of this compilation unit header in the
341 .debug_info section, for resolving relative reference dies. */
344 /* Offset to first die in this cu from the start of the cu.
345 This will be the first byte following the compilation unit header. */
346 cu_offset first_die_offset;
349 /* Type used for delaying computation of method physnames.
350 See comments for compute_delayed_physnames. */
351 struct delayed_method_info
353 /* The type to which the method is attached, i.e., its parent class. */
356 /* The index of the method in the type's function fieldlists. */
359 /* The index of the method in the fieldlist. */
362 /* The name of the DIE. */
365 /* The DIE associated with this method. */
366 struct die_info *die;
369 typedef struct delayed_method_info delayed_method_info;
370 DEF_VEC_O (delayed_method_info);
372 /* Internal state when decoding a particular compilation unit. */
375 /* The objfile containing this compilation unit. */
376 struct objfile *objfile;
378 /* The header of the compilation unit. */
379 struct comp_unit_head header;
381 /* Base address of this compilation unit. */
382 CORE_ADDR base_address;
384 /* Non-zero if base_address has been set. */
387 /* The language we are debugging. */
388 enum language language;
389 const struct language_defn *language_defn;
391 const char *producer;
393 /* The generic symbol table building routines have separate lists for
394 file scope symbols and all all other scopes (local scopes). So
395 we need to select the right one to pass to add_symbol_to_list().
396 We do it by keeping a pointer to the correct list in list_in_scope.
398 FIXME: The original dwarf code just treated the file scope as the
399 first local scope, and all other local scopes as nested local
400 scopes, and worked fine. Check to see if we really need to
401 distinguish these in buildsym.c. */
402 struct pending **list_in_scope;
404 /* The abbrev table for this CU.
405 Normally this points to the abbrev table in the objfile.
406 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
407 struct abbrev_table *abbrev_table;
409 /* Hash table holding all the loaded partial DIEs
410 with partial_die->offset.SECT_OFF as hash. */
413 /* Storage for things with the same lifetime as this read-in compilation
414 unit, including partial DIEs. */
415 struct obstack comp_unit_obstack;
417 /* When multiple dwarf2_cu structures are living in memory, this field
418 chains them all together, so that they can be released efficiently.
419 We will probably also want a generation counter so that most-recently-used
420 compilation units are cached... */
421 struct dwarf2_per_cu_data *read_in_chain;
423 /* Backchain to our per_cu entry if the tree has been built. */
424 struct dwarf2_per_cu_data *per_cu;
426 /* How many compilation units ago was this CU last referenced? */
429 /* A hash table of DIE cu_offset for following references with
430 die_info->offset.sect_off as hash. */
433 /* Full DIEs if read in. */
434 struct die_info *dies;
436 /* A set of pointers to dwarf2_per_cu_data objects for compilation
437 units referenced by this one. Only set during full symbol processing;
438 partial symbol tables do not have dependencies. */
441 /* Header data from the line table, during full symbol processing. */
442 struct line_header *line_header;
444 /* A list of methods which need to have physnames computed
445 after all type information has been read. */
446 VEC (delayed_method_info) *method_list;
448 /* To be copied to symtab->call_site_htab. */
449 htab_t call_site_htab;
451 /* Non-NULL if this CU came from a DWO file.
452 There is an invariant here that is important to remember:
453 Except for attributes copied from the top level DIE in the "main"
454 (or "stub") file in preparation for reading the DWO file
455 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
456 Either there isn't a DWO file (in which case this is NULL and the point
457 is moot), or there is and either we're not going to read it (in which
458 case this is NULL) or there is and we are reading it (in which case this
460 struct dwo_unit *dwo_unit;
462 /* The DW_AT_addr_base attribute if present, zero otherwise
463 (zero is a valid value though).
464 Note this value comes from the stub CU/TU's DIE. */
467 /* The DW_AT_ranges_base attribute if present, zero otherwise
468 (zero is a valid value though).
469 Note this value comes from the stub CU/TU's DIE.
470 Also note that the value is zero in the non-DWO case so this value can
471 be used without needing to know whether DWO files are in use or not. */
472 ULONGEST ranges_base;
474 /* Mark used when releasing cached dies. */
475 unsigned int mark : 1;
477 /* This CU references .debug_loc. See the symtab->locations_valid field.
478 This test is imperfect as there may exist optimized debug code not using
479 any location list and still facing inlining issues if handled as
480 unoptimized code. For a future better test see GCC PR other/32998. */
481 unsigned int has_loclist : 1;
483 /* These cache the results for producer_is_gxx_lt_4_6 and producer_is_icc.
484 CHECKED_PRODUCER is set if both PRODUCER_IS_GXX_LT_4_6 and PRODUCER_IS_ICC
485 are valid. This information is cached because profiling CU expansion
486 showed excessive time spent in producer_is_gxx_lt_4_6. */
487 unsigned int checked_producer : 1;
488 unsigned int producer_is_gxx_lt_4_6 : 1;
489 unsigned int producer_is_icc : 1;
492 /* Persistent data held for a compilation unit, even when not
493 processing it. We put a pointer to this structure in the
494 read_symtab_private field of the psymtab. */
496 struct dwarf2_per_cu_data
498 /* The start offset and length of this compilation unit.
499 NOTE: Unlike comp_unit_head.length, this length includes
501 If the DIE refers to a DWO file, this is always of the original die,
506 /* Flag indicating this compilation unit will be read in before
507 any of the current compilation units are processed. */
508 unsigned int queued : 1;
510 /* This flag will be set when reading partial DIEs if we need to load
511 absolutely all DIEs for this compilation unit, instead of just the ones
512 we think are interesting. It gets set if we look for a DIE in the
513 hash table and don't find it. */
514 unsigned int load_all_dies : 1;
516 /* Non-zero if this CU is from .debug_types. */
517 unsigned int is_debug_types : 1;
519 /* Non-zero if this CU is from the .dwz file. */
520 unsigned int is_dwz : 1;
522 /* The section this CU/TU lives in.
523 If the DIE refers to a DWO file, this is always the original die,
525 struct dwarf2_section_info *info_or_types_section;
527 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
528 of the CU cache it gets reset to NULL again. */
529 struct dwarf2_cu *cu;
531 /* The corresponding objfile.
532 Normally we can get the objfile from dwarf2_per_objfile.
533 However we can enter this file with just a "per_cu" handle. */
534 struct objfile *objfile;
536 /* When using partial symbol tables, the 'psymtab' field is active.
537 Otherwise the 'quick' field is active. */
540 /* The partial symbol table associated with this compilation unit,
541 or NULL for unread partial units. */
542 struct partial_symtab *psymtab;
544 /* Data needed by the "quick" functions. */
545 struct dwarf2_per_cu_quick_data *quick;
550 /* The CUs we import using DW_TAG_imported_unit. This is filled in
551 while reading psymtabs, used to compute the psymtab dependencies,
552 and then cleared. Then it is filled in again while reading full
553 symbols, and only deleted when the objfile is destroyed. */
554 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
556 /* Type units are grouped by their DW_AT_stmt_list entry so that they
557 can share them. If this is a TU, this points to the containing
559 struct type_unit_group *type_unit_group;
563 /* Entry in the signatured_types hash table. */
565 struct signatured_type
567 /* The "per_cu" object of this type.
568 N.B.: This is the first member so that it's easy to convert pointers
570 struct dwarf2_per_cu_data per_cu;
572 /* The type's signature. */
575 /* Offset in the TU of the type's DIE, as read from the TU header.
576 If the definition lives in a DWO file, this value is unusable. */
577 cu_offset type_offset_in_tu;
579 /* Offset in the section of the type's DIE.
580 If the definition lives in a DWO file, this is the offset in the
581 .debug_types.dwo section.
582 The value is zero until the actual value is known.
583 Zero is otherwise not a valid section offset. */
584 sect_offset type_offset_in_section;
587 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
588 This includes type_unit_group and quick_file_names. */
590 struct stmt_list_hash
592 /* The DWO unit this table is from or NULL if there is none. */
593 struct dwo_unit *dwo_unit;
595 /* Offset in .debug_line or .debug_line.dwo. */
596 sect_offset line_offset;
599 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
600 an object of this type. */
602 struct type_unit_group
604 /* dwarf2read.c's main "handle" on the symtab.
605 To simplify things we create an artificial CU that "includes" all the
606 type units using this stmt_list so that the rest of the code still has
607 a "per_cu" handle on the symtab.
608 This PER_CU is recognized by having no section. */
609 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
610 struct dwarf2_per_cu_data per_cu;
614 /* The TUs that share this DW_AT_stmt_list entry.
615 This is added to while parsing type units to build partial symtabs,
616 and is deleted afterwards and not used again. */
617 VEC (dwarf2_per_cu_ptr) *tus;
619 /* When reading the line table in "quick" functions, we need a real TU.
620 Any will do, we know they all share the same DW_AT_stmt_list entry.
621 For simplicity's sake, we pick the first one. */
622 struct dwarf2_per_cu_data *first_tu;
625 /* The primary symtab.
626 Type units in a group needn't all be defined in the same source file,
627 so we create an essentially anonymous symtab as the primary symtab. */
628 struct symtab *primary_symtab;
630 /* The data used to construct the hash key. */
631 struct stmt_list_hash hash;
633 /* The number of symtabs from the line header.
634 The value here must match line_header.num_file_names. */
635 unsigned int num_symtabs;
637 /* The symbol tables for this TU (obtained from the files listed in
639 WARNING: The order of entries here must match the order of entries
640 in the line header. After the first TU using this type_unit_group, the
641 line header for the subsequent TUs is recreated from this. This is done
642 because we need to use the same symtabs for each TU using the same
643 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
644 there's no guarantee the line header doesn't have duplicate entries. */
645 struct symtab **symtabs;
648 /* These sections are what may appear in a "dwo" file. */
652 struct dwarf2_section_info abbrev;
653 struct dwarf2_section_info info;
654 struct dwarf2_section_info line;
655 struct dwarf2_section_info loc;
656 struct dwarf2_section_info macinfo;
657 struct dwarf2_section_info macro;
658 struct dwarf2_section_info str;
659 struct dwarf2_section_info str_offsets;
660 VEC (dwarf2_section_info_def) *types;
663 /* Common bits of DWO CUs/TUs. */
667 /* Backlink to the containing struct dwo_file. */
668 struct dwo_file *dwo_file;
670 /* The "id" that distinguishes this CU/TU.
671 .debug_info calls this "dwo_id", .debug_types calls this "signature".
672 Since signatures came first, we stick with it for consistency. */
675 /* The section this CU/TU lives in, in the DWO file. */
676 struct dwarf2_section_info *info_or_types_section;
678 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
682 /* For types, offset in the type's DIE of the type defined by this TU. */
683 cu_offset type_offset_in_tu;
686 /* Data for one DWO file. */
690 /* The DW_AT_GNU_dwo_name attribute.
691 We don't manage space for this, it's an attribute. */
692 const char *dwo_name;
694 /* The bfd, when the file is open. Otherwise this is NULL. */
697 /* Section info for this file. */
698 struct dwo_sections sections;
700 /* Table of CUs in the file.
701 Each element is a struct dwo_unit. */
704 /* Table of TUs in the file.
705 Each element is a struct dwo_unit. */
709 /* This represents a '.dwz' file. */
713 /* A dwz file can only contain a few sections. */
714 struct dwarf2_section_info abbrev;
715 struct dwarf2_section_info info;
716 struct dwarf2_section_info str;
717 struct dwarf2_section_info line;
718 struct dwarf2_section_info macro;
719 struct dwarf2_section_info gdb_index;
725 /* Struct used to pass misc. parameters to read_die_and_children, et
726 al. which are used for both .debug_info and .debug_types dies.
727 All parameters here are unchanging for the life of the call. This
728 struct exists to abstract away the constant parameters of die reading. */
730 struct die_reader_specs
732 /* die_section->asection->owner. */
735 /* The CU of the DIE we are parsing. */
736 struct dwarf2_cu *cu;
738 /* Non-NULL if reading a DWO file. */
739 struct dwo_file *dwo_file;
741 /* The section the die comes from.
742 This is either .debug_info or .debug_types, or the .dwo variants. */
743 struct dwarf2_section_info *die_section;
745 /* die_section->buffer. */
748 /* The end of the buffer. */
749 const gdb_byte *buffer_end;
752 /* Type of function passed to init_cutu_and_read_dies, et.al. */
753 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
755 struct die_info *comp_unit_die,
759 /* The line number information for a compilation unit (found in the
760 .debug_line section) begins with a "statement program header",
761 which contains the following information. */
764 unsigned int total_length;
765 unsigned short version;
766 unsigned int header_length;
767 unsigned char minimum_instruction_length;
768 unsigned char maximum_ops_per_instruction;
769 unsigned char default_is_stmt;
771 unsigned char line_range;
772 unsigned char opcode_base;
774 /* standard_opcode_lengths[i] is the number of operands for the
775 standard opcode whose value is i. This means that
776 standard_opcode_lengths[0] is unused, and the last meaningful
777 element is standard_opcode_lengths[opcode_base - 1]. */
778 unsigned char *standard_opcode_lengths;
780 /* The include_directories table. NOTE! These strings are not
781 allocated with xmalloc; instead, they are pointers into
782 debug_line_buffer. If you try to free them, `free' will get
784 unsigned int num_include_dirs, include_dirs_size;
787 /* The file_names table. NOTE! These strings are not allocated
788 with xmalloc; instead, they are pointers into debug_line_buffer.
789 Don't try to free them directly. */
790 unsigned int num_file_names, file_names_size;
794 unsigned int dir_index;
795 unsigned int mod_time;
797 int included_p; /* Non-zero if referenced by the Line Number Program. */
798 struct symtab *symtab; /* The associated symbol table, if any. */
801 /* The start and end of the statement program following this
802 header. These point into dwarf2_per_objfile->line_buffer. */
803 gdb_byte *statement_program_start, *statement_program_end;
806 /* When we construct a partial symbol table entry we only
807 need this much information. */
808 struct partial_die_info
810 /* Offset of this DIE. */
813 /* DWARF-2 tag for this DIE. */
814 ENUM_BITFIELD(dwarf_tag) tag : 16;
816 /* Assorted flags describing the data found in this DIE. */
817 unsigned int has_children : 1;
818 unsigned int is_external : 1;
819 unsigned int is_declaration : 1;
820 unsigned int has_type : 1;
821 unsigned int has_specification : 1;
822 unsigned int has_pc_info : 1;
823 unsigned int may_be_inlined : 1;
825 /* Flag set if the SCOPE field of this structure has been
827 unsigned int scope_set : 1;
829 /* Flag set if the DIE has a byte_size attribute. */
830 unsigned int has_byte_size : 1;
832 /* Flag set if any of the DIE's children are template arguments. */
833 unsigned int has_template_arguments : 1;
835 /* Flag set if fixup_partial_die has been called on this die. */
836 unsigned int fixup_called : 1;
838 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
839 unsigned int is_dwz : 1;
841 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
842 unsigned int spec_is_dwz : 1;
844 /* The name of this DIE. Normally the value of DW_AT_name, but
845 sometimes a default name for unnamed DIEs. */
848 /* The linkage name, if present. */
849 const char *linkage_name;
851 /* The scope to prepend to our children. This is generally
852 allocated on the comp_unit_obstack, so will disappear
853 when this compilation unit leaves the cache. */
856 /* Some data associated with the partial DIE. The tag determines
857 which field is live. */
860 /* The location description associated with this DIE, if any. */
861 struct dwarf_block *locdesc;
862 /* The offset of an import, for DW_TAG_imported_unit. */
866 /* If HAS_PC_INFO, the PC range associated with this DIE. */
870 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
871 DW_AT_sibling, if any. */
872 /* NOTE: This member isn't strictly necessary, read_partial_die could
873 return DW_AT_sibling values to its caller load_partial_dies. */
876 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
877 DW_AT_specification (or DW_AT_abstract_origin or
879 sect_offset spec_offset;
881 /* Pointers to this DIE's parent, first child, and next sibling,
883 struct partial_die_info *die_parent, *die_child, *die_sibling;
886 /* This data structure holds the information of an abbrev. */
889 unsigned int number; /* number identifying abbrev */
890 enum dwarf_tag tag; /* dwarf tag */
891 unsigned short has_children; /* boolean */
892 unsigned short num_attrs; /* number of attributes */
893 struct attr_abbrev *attrs; /* an array of attribute descriptions */
894 struct abbrev_info *next; /* next in chain */
899 ENUM_BITFIELD(dwarf_attribute) name : 16;
900 ENUM_BITFIELD(dwarf_form) form : 16;
903 /* Size of abbrev_table.abbrev_hash_table. */
904 #define ABBREV_HASH_SIZE 121
906 /* Top level data structure to contain an abbreviation table. */
910 /* Where the abbrev table came from.
911 This is used as a sanity check when the table is used. */
914 /* Storage for the abbrev table. */
915 struct obstack abbrev_obstack;
917 /* Hash table of abbrevs.
918 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
919 It could be statically allocated, but the previous code didn't so we
921 struct abbrev_info **abbrevs;
924 /* Attributes have a name and a value. */
927 ENUM_BITFIELD(dwarf_attribute) name : 16;
928 ENUM_BITFIELD(dwarf_form) form : 15;
930 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
931 field should be in u.str (existing only for DW_STRING) but it is kept
932 here for better struct attribute alignment. */
933 unsigned int string_is_canonical : 1;
938 struct dwarf_block *blk;
942 struct signatured_type *signatured_type;
947 /* This data structure holds a complete die structure. */
950 /* DWARF-2 tag for this DIE. */
951 ENUM_BITFIELD(dwarf_tag) tag : 16;
953 /* Number of attributes */
954 unsigned char num_attrs;
956 /* True if we're presently building the full type name for the
957 type derived from this DIE. */
958 unsigned char building_fullname : 1;
963 /* Offset in .debug_info or .debug_types section. */
966 /* The dies in a compilation unit form an n-ary tree. PARENT
967 points to this die's parent; CHILD points to the first child of
968 this node; and all the children of a given node are chained
969 together via their SIBLING fields. */
970 struct die_info *child; /* Its first child, if any. */
971 struct die_info *sibling; /* Its next sibling, if any. */
972 struct die_info *parent; /* Its parent, if any. */
974 /* An array of attributes, with NUM_ATTRS elements. There may be
975 zero, but it's not common and zero-sized arrays are not
976 sufficiently portable C. */
977 struct attribute attrs[1];
980 /* Get at parts of an attribute structure. */
982 #define DW_STRING(attr) ((attr)->u.str)
983 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
984 #define DW_UNSND(attr) ((attr)->u.unsnd)
985 #define DW_BLOCK(attr) ((attr)->u.blk)
986 #define DW_SND(attr) ((attr)->u.snd)
987 #define DW_ADDR(attr) ((attr)->u.addr)
988 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
990 /* Blocks are a bunch of untyped bytes. */
995 /* Valid only if SIZE is not zero. */
999 #ifndef ATTR_ALLOC_CHUNK
1000 #define ATTR_ALLOC_CHUNK 4
1003 /* Allocate fields for structs, unions and enums in this size. */
1004 #ifndef DW_FIELD_ALLOC_CHUNK
1005 #define DW_FIELD_ALLOC_CHUNK 4
1008 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1009 but this would require a corresponding change in unpack_field_as_long
1011 static int bits_per_byte = 8;
1013 /* The routines that read and process dies for a C struct or C++ class
1014 pass lists of data member fields and lists of member function fields
1015 in an instance of a field_info structure, as defined below. */
1018 /* List of data member and baseclasses fields. */
1021 struct nextfield *next;
1026 *fields, *baseclasses;
1028 /* Number of fields (including baseclasses). */
1031 /* Number of baseclasses. */
1034 /* Set if the accesibility of one of the fields is not public. */
1035 int non_public_fields;
1037 /* Member function fields array, entries are allocated in the order they
1038 are encountered in the object file. */
1041 struct nextfnfield *next;
1042 struct fn_field fnfield;
1046 /* Member function fieldlist array, contains name of possibly overloaded
1047 member function, number of overloaded member functions and a pointer
1048 to the head of the member function field chain. */
1053 struct nextfnfield *head;
1057 /* Number of entries in the fnfieldlists array. */
1060 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1061 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1062 struct typedef_field_list
1064 struct typedef_field field;
1065 struct typedef_field_list *next;
1067 *typedef_field_list;
1068 unsigned typedef_field_list_count;
1071 /* One item on the queue of compilation units to read in full symbols
1073 struct dwarf2_queue_item
1075 struct dwarf2_per_cu_data *per_cu;
1076 enum language pretend_language;
1077 struct dwarf2_queue_item *next;
1080 /* The current queue. */
1081 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1083 /* Loaded secondary compilation units are kept in memory until they
1084 have not been referenced for the processing of this many
1085 compilation units. Set this to zero to disable caching. Cache
1086 sizes of up to at least twenty will improve startup time for
1087 typical inter-CU-reference binaries, at an obvious memory cost. */
1088 static int dwarf2_max_cache_age = 5;
1090 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1091 struct cmd_list_element *c, const char *value)
1093 fprintf_filtered (file, _("The upper bound on the age of cached "
1094 "dwarf2 compilation units is %s.\n"),
1099 /* Various complaints about symbol reading that don't abort the process. */
1102 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1104 complaint (&symfile_complaints,
1105 _("statement list doesn't fit in .debug_line section"));
1109 dwarf2_debug_line_missing_file_complaint (void)
1111 complaint (&symfile_complaints,
1112 _(".debug_line section has line data without a file"));
1116 dwarf2_debug_line_missing_end_sequence_complaint (void)
1118 complaint (&symfile_complaints,
1119 _(".debug_line section has line "
1120 "program sequence without an end"));
1124 dwarf2_complex_location_expr_complaint (void)
1126 complaint (&symfile_complaints, _("location expression too complex"));
1130 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1133 complaint (&symfile_complaints,
1134 _("const value length mismatch for '%s', got %d, expected %d"),
1139 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1141 complaint (&symfile_complaints,
1142 _("debug info runs off end of %s section"
1144 section->asection->name,
1145 bfd_get_filename (section->asection->owner));
1149 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1151 complaint (&symfile_complaints,
1152 _("macro debug info contains a "
1153 "malformed macro definition:\n`%s'"),
1158 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1160 complaint (&symfile_complaints,
1161 _("invalid attribute class or form for '%s' in '%s'"),
1165 /* local function prototypes */
1167 static void dwarf2_locate_sections (bfd *, asection *, void *);
1169 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1172 static void dwarf2_find_base_address (struct die_info *die,
1173 struct dwarf2_cu *cu);
1175 static void dwarf2_build_psymtabs_hard (struct objfile *);
1177 static void scan_partial_symbols (struct partial_die_info *,
1178 CORE_ADDR *, CORE_ADDR *,
1179 int, struct dwarf2_cu *);
1181 static void add_partial_symbol (struct partial_die_info *,
1182 struct dwarf2_cu *);
1184 static void add_partial_namespace (struct partial_die_info *pdi,
1185 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1186 int need_pc, struct dwarf2_cu *cu);
1188 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1189 CORE_ADDR *highpc, int need_pc,
1190 struct dwarf2_cu *cu);
1192 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1193 struct dwarf2_cu *cu);
1195 static void add_partial_subprogram (struct partial_die_info *pdi,
1196 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1197 int need_pc, struct dwarf2_cu *cu);
1199 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
1201 static void psymtab_to_symtab_1 (struct partial_symtab *);
1203 static struct abbrev_info *abbrev_table_lookup_abbrev
1204 (const struct abbrev_table *, unsigned int);
1206 static struct abbrev_table *abbrev_table_read_table
1207 (struct dwarf2_section_info *, sect_offset);
1209 static void abbrev_table_free (struct abbrev_table *);
1211 static void abbrev_table_free_cleanup (void *);
1213 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1214 struct dwarf2_section_info *);
1216 static void dwarf2_free_abbrev_table (void *);
1218 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1220 static struct partial_die_info *load_partial_dies
1221 (const struct die_reader_specs *, gdb_byte *, int);
1223 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1224 struct partial_die_info *,
1225 struct abbrev_info *,
1229 static struct partial_die_info *find_partial_die (sect_offset, int,
1230 struct dwarf2_cu *);
1232 static void fixup_partial_die (struct partial_die_info *,
1233 struct dwarf2_cu *);
1235 static gdb_byte *read_attribute (const struct die_reader_specs *,
1236 struct attribute *, struct attr_abbrev *,
1239 static unsigned int read_1_byte (bfd *, gdb_byte *);
1241 static int read_1_signed_byte (bfd *, gdb_byte *);
1243 static unsigned int read_2_bytes (bfd *, gdb_byte *);
1245 static unsigned int read_4_bytes (bfd *, gdb_byte *);
1247 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
1249 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1252 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1254 static LONGEST read_checked_initial_length_and_offset
1255 (bfd *, gdb_byte *, const struct comp_unit_head *,
1256 unsigned int *, unsigned int *);
1258 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1261 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1263 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1266 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1268 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1270 static char *read_indirect_string (bfd *, gdb_byte *,
1271 const struct comp_unit_head *,
1274 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1276 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1278 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1280 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1283 static char *read_str_index (const struct die_reader_specs *reader,
1284 struct dwarf2_cu *cu, ULONGEST str_index);
1286 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1288 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1289 struct dwarf2_cu *);
1291 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1294 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1295 struct dwarf2_cu *cu);
1297 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1299 static struct die_info *die_specification (struct die_info *die,
1300 struct dwarf2_cu **);
1302 static void free_line_header (struct line_header *lh);
1304 static void add_file_name (struct line_header *, char *, unsigned int,
1305 unsigned int, unsigned int);
1307 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1308 struct dwarf2_cu *cu);
1310 static void dwarf_decode_lines (struct line_header *, const char *,
1311 struct dwarf2_cu *, struct partial_symtab *,
1314 static void dwarf2_start_subfile (char *, const char *, const char *);
1316 static void dwarf2_start_symtab (struct dwarf2_cu *,
1317 char *, char *, CORE_ADDR);
1319 static struct symbol *new_symbol (struct die_info *, struct type *,
1320 struct dwarf2_cu *);
1322 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1323 struct dwarf2_cu *, struct symbol *);
1325 static void dwarf2_const_value (struct attribute *, struct symbol *,
1326 struct dwarf2_cu *);
1328 static void dwarf2_const_value_attr (struct attribute *attr,
1331 struct obstack *obstack,
1332 struct dwarf2_cu *cu, LONGEST *value,
1334 struct dwarf2_locexpr_baton **baton);
1336 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1338 static int need_gnat_info (struct dwarf2_cu *);
1340 static struct type *die_descriptive_type (struct die_info *,
1341 struct dwarf2_cu *);
1343 static void set_descriptive_type (struct type *, struct die_info *,
1344 struct dwarf2_cu *);
1346 static struct type *die_containing_type (struct die_info *,
1347 struct dwarf2_cu *);
1349 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1350 struct dwarf2_cu *);
1352 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1354 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1356 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1358 static char *typename_concat (struct obstack *obs, const char *prefix,
1359 const char *suffix, int physname,
1360 struct dwarf2_cu *cu);
1362 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1364 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1366 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1368 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1370 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1372 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1373 struct dwarf2_cu *, struct partial_symtab *);
1375 static int dwarf2_get_pc_bounds (struct die_info *,
1376 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1377 struct partial_symtab *);
1379 static void get_scope_pc_bounds (struct die_info *,
1380 CORE_ADDR *, CORE_ADDR *,
1381 struct dwarf2_cu *);
1383 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1384 CORE_ADDR, struct dwarf2_cu *);
1386 static void dwarf2_add_field (struct field_info *, struct die_info *,
1387 struct dwarf2_cu *);
1389 static void dwarf2_attach_fields_to_type (struct field_info *,
1390 struct type *, struct dwarf2_cu *);
1392 static void dwarf2_add_member_fn (struct field_info *,
1393 struct die_info *, struct type *,
1394 struct dwarf2_cu *);
1396 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1398 struct dwarf2_cu *);
1400 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1402 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1404 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1406 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1408 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1410 static struct type *read_module_type (struct die_info *die,
1411 struct dwarf2_cu *cu);
1413 static const char *namespace_name (struct die_info *die,
1414 int *is_anonymous, struct dwarf2_cu *);
1416 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1418 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1420 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1421 struct dwarf2_cu *);
1423 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1425 gdb_byte **new_info_ptr,
1426 struct die_info *parent);
1428 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1430 gdb_byte **new_info_ptr,
1431 struct die_info *parent);
1433 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1434 struct die_info **, gdb_byte *, int *, int);
1436 static gdb_byte *read_full_die (const struct die_reader_specs *,
1437 struct die_info **, gdb_byte *, int *);
1439 static void process_die (struct die_info *, struct dwarf2_cu *);
1441 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1444 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1446 static const char *dwarf2_full_name (char *name,
1447 struct die_info *die,
1448 struct dwarf2_cu *cu);
1450 static struct die_info *dwarf2_extension (struct die_info *die,
1451 struct dwarf2_cu **);
1453 static const char *dwarf_tag_name (unsigned int);
1455 static const char *dwarf_attr_name (unsigned int);
1457 static const char *dwarf_form_name (unsigned int);
1459 static char *dwarf_bool_name (unsigned int);
1461 static const char *dwarf_type_encoding_name (unsigned int);
1463 static struct die_info *sibling_die (struct die_info *);
1465 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1467 static void dump_die_for_error (struct die_info *);
1469 static void dump_die_1 (struct ui_file *, int level, int max_level,
1472 /*static*/ void dump_die (struct die_info *, int max_level);
1474 static void store_in_ref_table (struct die_info *,
1475 struct dwarf2_cu *);
1477 static int is_ref_attr (struct attribute *);
1479 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1481 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1483 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1485 struct dwarf2_cu **);
1487 static struct die_info *follow_die_ref (struct die_info *,
1489 struct dwarf2_cu **);
1491 static struct die_info *follow_die_sig (struct die_info *,
1493 struct dwarf2_cu **);
1495 static struct signatured_type *lookup_signatured_type_at_offset
1496 (struct objfile *objfile,
1497 struct dwarf2_section_info *section, sect_offset offset);
1499 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1501 static void read_signatured_type (struct signatured_type *);
1503 static struct type_unit_group *get_type_unit_group
1504 (struct dwarf2_cu *, struct attribute *);
1506 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1508 /* memory allocation interface */
1510 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1512 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1514 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1517 static int attr_form_is_block (struct attribute *);
1519 static int attr_form_is_section_offset (struct attribute *);
1521 static int attr_form_is_constant (struct attribute *);
1523 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1524 struct dwarf2_loclist_baton *baton,
1525 struct attribute *attr);
1527 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1529 struct dwarf2_cu *cu);
1531 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1533 struct abbrev_info *abbrev);
1535 static void free_stack_comp_unit (void *);
1537 static hashval_t partial_die_hash (const void *item);
1539 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1541 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1544 static void init_one_comp_unit (struct dwarf2_cu *cu,
1545 struct dwarf2_per_cu_data *per_cu);
1547 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1548 struct die_info *comp_unit_die,
1549 enum language pretend_language);
1551 static void free_heap_comp_unit (void *);
1553 static void free_cached_comp_units (void *);
1555 static void age_cached_comp_units (void);
1557 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1559 static struct type *set_die_type (struct die_info *, struct type *,
1560 struct dwarf2_cu *);
1562 static void create_all_comp_units (struct objfile *);
1564 static int create_all_type_units (struct objfile *);
1566 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1569 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1572 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1575 static void dwarf2_add_dependence (struct dwarf2_cu *,
1576 struct dwarf2_per_cu_data *);
1578 static void dwarf2_mark (struct dwarf2_cu *);
1580 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1582 static struct type *get_die_type_at_offset (sect_offset,
1583 struct dwarf2_per_cu_data *per_cu);
1585 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1587 static void dwarf2_release_queue (void *dummy);
1589 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1590 enum language pretend_language);
1592 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1593 struct dwarf2_per_cu_data *per_cu,
1594 enum language pretend_language);
1596 static void process_queue (void);
1598 static void find_file_and_directory (struct die_info *die,
1599 struct dwarf2_cu *cu,
1600 char **name, char **comp_dir);
1602 static char *file_full_name (int file, struct line_header *lh,
1603 const char *comp_dir);
1605 static gdb_byte *read_and_check_comp_unit_head
1606 (struct comp_unit_head *header,
1607 struct dwarf2_section_info *section,
1608 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1609 int is_debug_types_section);
1611 static void init_cutu_and_read_dies
1612 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1613 int use_existing_cu, int keep,
1614 die_reader_func_ftype *die_reader_func, void *data);
1616 static void init_cutu_and_read_dies_simple
1617 (struct dwarf2_per_cu_data *this_cu,
1618 die_reader_func_ftype *die_reader_func, void *data);
1620 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1622 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1624 static struct dwo_unit *lookup_dwo_comp_unit
1625 (struct dwarf2_per_cu_data *, char *, const char *, ULONGEST);
1627 static struct dwo_unit *lookup_dwo_type_unit
1628 (struct signatured_type *, char *, const char *);
1630 static void free_dwo_file_cleanup (void *);
1632 static void process_cu_includes (void);
1636 /* Convert VALUE between big- and little-endian. */
1638 byte_swap (offset_type value)
1642 result = (value & 0xff) << 24;
1643 result |= (value & 0xff00) << 8;
1644 result |= (value & 0xff0000) >> 8;
1645 result |= (value & 0xff000000) >> 24;
1649 #define MAYBE_SWAP(V) byte_swap (V)
1652 #define MAYBE_SWAP(V) (V)
1653 #endif /* WORDS_BIGENDIAN */
1655 /* The suffix for an index file. */
1656 #define INDEX_SUFFIX ".gdb-index"
1658 static const char *dwarf2_physname (char *name, struct die_info *die,
1659 struct dwarf2_cu *cu);
1661 /* Try to locate the sections we need for DWARF 2 debugging
1662 information and return true if we have enough to do something.
1663 NAMES points to the dwarf2 section names, or is NULL if the standard
1664 ELF names are used. */
1667 dwarf2_has_info (struct objfile *objfile,
1668 const struct dwarf2_debug_sections *names)
1670 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1671 if (!dwarf2_per_objfile)
1673 /* Initialize per-objfile state. */
1674 struct dwarf2_per_objfile *data
1675 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1677 memset (data, 0, sizeof (*data));
1678 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1679 dwarf2_per_objfile = data;
1681 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1683 dwarf2_per_objfile->objfile = objfile;
1685 return (dwarf2_per_objfile->info.asection != NULL
1686 && dwarf2_per_objfile->abbrev.asection != NULL);
1689 /* When loading sections, we look either for uncompressed section or for
1690 compressed section names. */
1693 section_is_p (const char *section_name,
1694 const struct dwarf2_section_names *names)
1696 if (names->normal != NULL
1697 && strcmp (section_name, names->normal) == 0)
1699 if (names->compressed != NULL
1700 && strcmp (section_name, names->compressed) == 0)
1705 /* This function is mapped across the sections and remembers the
1706 offset and size of each of the debugging sections we are interested
1710 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1712 const struct dwarf2_debug_sections *names;
1713 flagword aflag = bfd_get_section_flags (abfd, sectp);
1716 names = &dwarf2_elf_names;
1718 names = (const struct dwarf2_debug_sections *) vnames;
1720 if ((aflag & SEC_HAS_CONTENTS) == 0)
1723 else if (section_is_p (sectp->name, &names->info))
1725 dwarf2_per_objfile->info.asection = sectp;
1726 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1728 else if (section_is_p (sectp->name, &names->abbrev))
1730 dwarf2_per_objfile->abbrev.asection = sectp;
1731 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1733 else if (section_is_p (sectp->name, &names->line))
1735 dwarf2_per_objfile->line.asection = sectp;
1736 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1738 else if (section_is_p (sectp->name, &names->loc))
1740 dwarf2_per_objfile->loc.asection = sectp;
1741 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1743 else if (section_is_p (sectp->name, &names->macinfo))
1745 dwarf2_per_objfile->macinfo.asection = sectp;
1746 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1748 else if (section_is_p (sectp->name, &names->macro))
1750 dwarf2_per_objfile->macro.asection = sectp;
1751 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1753 else if (section_is_p (sectp->name, &names->str))
1755 dwarf2_per_objfile->str.asection = sectp;
1756 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1758 else if (section_is_p (sectp->name, &names->addr))
1760 dwarf2_per_objfile->addr.asection = sectp;
1761 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1763 else if (section_is_p (sectp->name, &names->frame))
1765 dwarf2_per_objfile->frame.asection = sectp;
1766 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1768 else if (section_is_p (sectp->name, &names->eh_frame))
1770 dwarf2_per_objfile->eh_frame.asection = sectp;
1771 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1773 else if (section_is_p (sectp->name, &names->ranges))
1775 dwarf2_per_objfile->ranges.asection = sectp;
1776 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1778 else if (section_is_p (sectp->name, &names->types))
1780 struct dwarf2_section_info type_section;
1782 memset (&type_section, 0, sizeof (type_section));
1783 type_section.asection = sectp;
1784 type_section.size = bfd_get_section_size (sectp);
1786 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1789 else if (section_is_p (sectp->name, &names->gdb_index))
1791 dwarf2_per_objfile->gdb_index.asection = sectp;
1792 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1795 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1796 && bfd_section_vma (abfd, sectp) == 0)
1797 dwarf2_per_objfile->has_section_at_zero = 1;
1800 /* A helper function that decides whether a section is empty,
1804 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1806 return info->asection == NULL || info->size == 0;
1809 /* Read the contents of the section INFO.
1810 OBJFILE is the main object file, but not necessarily the file where
1811 the section comes from. E.g., for DWO files INFO->asection->owner
1812 is the bfd of the DWO file.
1813 If the section is compressed, uncompress it before returning. */
1816 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1818 asection *sectp = info->asection;
1820 gdb_byte *buf, *retbuf;
1821 unsigned char header[4];
1825 info->buffer = NULL;
1828 if (dwarf2_section_empty_p (info))
1831 abfd = sectp->owner;
1833 /* If the section has relocations, we must read it ourselves.
1834 Otherwise we attach it to the BFD. */
1835 if ((sectp->flags & SEC_RELOC) == 0)
1837 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1839 /* We have to cast away const here for historical reasons.
1840 Fixing dwarf2read to be const-correct would be quite nice. */
1841 info->buffer = (gdb_byte *) bytes;
1845 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1848 /* When debugging .o files, we may need to apply relocations; see
1849 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1850 We never compress sections in .o files, so we only need to
1851 try this when the section is not compressed. */
1852 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1855 info->buffer = retbuf;
1859 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1860 || bfd_bread (buf, info->size, abfd) != info->size)
1861 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1862 bfd_get_filename (abfd));
1865 /* A helper function that returns the size of a section in a safe way.
1866 If you are positive that the section has been read before using the
1867 size, then it is safe to refer to the dwarf2_section_info object's
1868 "size" field directly. In other cases, you must call this
1869 function, because for compressed sections the size field is not set
1870 correctly until the section has been read. */
1872 static bfd_size_type
1873 dwarf2_section_size (struct objfile *objfile,
1874 struct dwarf2_section_info *info)
1877 dwarf2_read_section (objfile, info);
1881 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1885 dwarf2_get_section_info (struct objfile *objfile,
1886 enum dwarf2_section_enum sect,
1887 asection **sectp, gdb_byte **bufp,
1888 bfd_size_type *sizep)
1890 struct dwarf2_per_objfile *data
1891 = objfile_data (objfile, dwarf2_objfile_data_key);
1892 struct dwarf2_section_info *info;
1894 /* We may see an objfile without any DWARF, in which case we just
1905 case DWARF2_DEBUG_FRAME:
1906 info = &data->frame;
1908 case DWARF2_EH_FRAME:
1909 info = &data->eh_frame;
1912 gdb_assert_not_reached ("unexpected section");
1915 dwarf2_read_section (objfile, info);
1917 *sectp = info->asection;
1918 *bufp = info->buffer;
1919 *sizep = info->size;
1922 /* A helper function to find the sections for a .dwz file. */
1925 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
1927 struct dwz_file *dwz_file = arg;
1929 /* Note that we only support the standard ELF names, because .dwz
1930 is ELF-only (at the time of writing). */
1931 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
1933 dwz_file->abbrev.asection = sectp;
1934 dwz_file->abbrev.size = bfd_get_section_size (sectp);
1936 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
1938 dwz_file->info.asection = sectp;
1939 dwz_file->info.size = bfd_get_section_size (sectp);
1941 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
1943 dwz_file->str.asection = sectp;
1944 dwz_file->str.size = bfd_get_section_size (sectp);
1946 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
1948 dwz_file->line.asection = sectp;
1949 dwz_file->line.size = bfd_get_section_size (sectp);
1951 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
1953 dwz_file->macro.asection = sectp;
1954 dwz_file->macro.size = bfd_get_section_size (sectp);
1956 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
1958 dwz_file->gdb_index.asection = sectp;
1959 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
1963 /* Open the separate '.dwz' debug file, if needed. Error if the file
1966 static struct dwz_file *
1967 dwarf2_get_dwz_file (void)
1969 bfd *abfd, *dwz_bfd;
1972 struct cleanup *cleanup;
1973 const char *filename;
1974 struct dwz_file *result;
1976 if (dwarf2_per_objfile->dwz_file != NULL)
1977 return dwarf2_per_objfile->dwz_file;
1979 abfd = dwarf2_per_objfile->objfile->obfd;
1980 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
1981 if (section == NULL)
1982 error (_("could not find '.gnu_debugaltlink' section"));
1983 if (!bfd_malloc_and_get_section (abfd, section, &data))
1984 error (_("could not read '.gnu_debugaltlink' section: %s"),
1985 bfd_errmsg (bfd_get_error ()));
1986 cleanup = make_cleanup (xfree, data);
1989 if (!IS_ABSOLUTE_PATH (filename))
1991 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
1994 make_cleanup (xfree, abs);
1995 abs = ldirname (abs);
1996 make_cleanup (xfree, abs);
1998 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
1999 make_cleanup (xfree, rel);
2003 /* The format is just a NUL-terminated file name, followed by the
2004 build-id. For now, though, we ignore the build-id. */
2005 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2006 if (dwz_bfd == NULL)
2007 error (_("could not read '%s': %s"), filename,
2008 bfd_errmsg (bfd_get_error ()));
2010 if (!bfd_check_format (dwz_bfd, bfd_object))
2012 gdb_bfd_unref (dwz_bfd);
2013 error (_("file '%s' was not usable: %s"), filename,
2014 bfd_errmsg (bfd_get_error ()));
2017 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2019 result->dwz_bfd = dwz_bfd;
2021 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2023 do_cleanups (cleanup);
2028 /* DWARF quick_symbols_functions support. */
2030 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2031 unique line tables, so we maintain a separate table of all .debug_line
2032 derived entries to support the sharing.
2033 All the quick functions need is the list of file names. We discard the
2034 line_header when we're done and don't need to record it here. */
2035 struct quick_file_names
2037 /* The data used to construct the hash key. */
2038 struct stmt_list_hash hash;
2040 /* The number of entries in file_names, real_names. */
2041 unsigned int num_file_names;
2043 /* The file names from the line table, after being run through
2045 const char **file_names;
2047 /* The file names from the line table after being run through
2048 gdb_realpath. These are computed lazily. */
2049 const char **real_names;
2052 /* When using the index (and thus not using psymtabs), each CU has an
2053 object of this type. This is used to hold information needed by
2054 the various "quick" methods. */
2055 struct dwarf2_per_cu_quick_data
2057 /* The file table. This can be NULL if there was no file table
2058 or it's currently not read in.
2059 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2060 struct quick_file_names *file_names;
2062 /* The corresponding symbol table. This is NULL if symbols for this
2063 CU have not yet been read. */
2064 struct symtab *symtab;
2066 /* A temporary mark bit used when iterating over all CUs in
2067 expand_symtabs_matching. */
2068 unsigned int mark : 1;
2070 /* True if we've tried to read the file table and found there isn't one.
2071 There will be no point in trying to read it again next time. */
2072 unsigned int no_file_data : 1;
2075 /* Utility hash function for a stmt_list_hash. */
2078 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2082 if (stmt_list_hash->dwo_unit != NULL)
2083 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2084 v += stmt_list_hash->line_offset.sect_off;
2088 /* Utility equality function for a stmt_list_hash. */
2091 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2092 const struct stmt_list_hash *rhs)
2094 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2096 if (lhs->dwo_unit != NULL
2097 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2100 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2103 /* Hash function for a quick_file_names. */
2106 hash_file_name_entry (const void *e)
2108 const struct quick_file_names *file_data = e;
2110 return hash_stmt_list_entry (&file_data->hash);
2113 /* Equality function for a quick_file_names. */
2116 eq_file_name_entry (const void *a, const void *b)
2118 const struct quick_file_names *ea = a;
2119 const struct quick_file_names *eb = b;
2121 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2124 /* Delete function for a quick_file_names. */
2127 delete_file_name_entry (void *e)
2129 struct quick_file_names *file_data = e;
2132 for (i = 0; i < file_data->num_file_names; ++i)
2134 xfree ((void*) file_data->file_names[i]);
2135 if (file_data->real_names)
2136 xfree ((void*) file_data->real_names[i]);
2139 /* The space for the struct itself lives on objfile_obstack,
2140 so we don't free it here. */
2143 /* Create a quick_file_names hash table. */
2146 create_quick_file_names_table (unsigned int nr_initial_entries)
2148 return htab_create_alloc (nr_initial_entries,
2149 hash_file_name_entry, eq_file_name_entry,
2150 delete_file_name_entry, xcalloc, xfree);
2153 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2154 have to be created afterwards. You should call age_cached_comp_units after
2155 processing PER_CU->CU. dw2_setup must have been already called. */
2158 load_cu (struct dwarf2_per_cu_data *per_cu)
2160 if (per_cu->is_debug_types)
2161 load_full_type_unit (per_cu);
2163 load_full_comp_unit (per_cu, language_minimal);
2165 gdb_assert (per_cu->cu != NULL);
2167 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2170 /* Read in the symbols for PER_CU. */
2173 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2175 struct cleanup *back_to;
2177 /* Skip type_unit_groups, reading the type units they contain
2178 is handled elsewhere. */
2179 if (IS_TYPE_UNIT_GROUP (per_cu))
2182 back_to = make_cleanup (dwarf2_release_queue, NULL);
2184 if (dwarf2_per_objfile->using_index
2185 ? per_cu->v.quick->symtab == NULL
2186 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2188 queue_comp_unit (per_cu, language_minimal);
2194 /* Age the cache, releasing compilation units that have not
2195 been used recently. */
2196 age_cached_comp_units ();
2198 do_cleanups (back_to);
2201 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2202 the objfile from which this CU came. Returns the resulting symbol
2205 static struct symtab *
2206 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2208 gdb_assert (dwarf2_per_objfile->using_index);
2209 if (!per_cu->v.quick->symtab)
2211 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2212 increment_reading_symtab ();
2213 dw2_do_instantiate_symtab (per_cu);
2214 process_cu_includes ();
2215 do_cleanups (back_to);
2217 return per_cu->v.quick->symtab;
2220 /* Return the CU given its index.
2222 This is intended for loops like:
2224 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2225 + dwarf2_per_objfile->n_type_units); ++i)
2227 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2233 static struct dwarf2_per_cu_data *
2234 dw2_get_cu (int index)
2236 if (index >= dwarf2_per_objfile->n_comp_units)
2238 index -= dwarf2_per_objfile->n_comp_units;
2239 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2240 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2243 return dwarf2_per_objfile->all_comp_units[index];
2246 /* Return the primary CU given its index.
2247 The difference between this function and dw2_get_cu is in the handling
2248 of type units (TUs). Here we return the type_unit_group object.
2250 This is intended for loops like:
2252 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2253 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2255 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2261 static struct dwarf2_per_cu_data *
2262 dw2_get_primary_cu (int index)
2264 if (index >= dwarf2_per_objfile->n_comp_units)
2266 index -= dwarf2_per_objfile->n_comp_units;
2267 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2268 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2271 return dwarf2_per_objfile->all_comp_units[index];
2274 /* A helper function that knows how to read a 64-bit value in a way
2275 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
2279 extract_cu_value (const char *bytes, ULONGEST *result)
2281 if (sizeof (ULONGEST) < 8)
2285 /* Ignore the upper 4 bytes if they are all zero. */
2286 for (i = 0; i < 4; ++i)
2287 if (bytes[i + 4] != 0)
2290 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
2293 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2297 /* A helper for create_cus_from_index that handles a given list of
2301 create_cus_from_index_list (struct objfile *objfile,
2302 const gdb_byte *cu_list, offset_type n_elements,
2303 struct dwarf2_section_info *section,
2309 for (i = 0; i < n_elements; i += 2)
2311 struct dwarf2_per_cu_data *the_cu;
2312 ULONGEST offset, length;
2314 if (!extract_cu_value (cu_list, &offset)
2315 || !extract_cu_value (cu_list + 8, &length))
2319 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2320 struct dwarf2_per_cu_data);
2321 the_cu->offset.sect_off = offset;
2322 the_cu->length = length;
2323 the_cu->objfile = objfile;
2324 the_cu->info_or_types_section = section;
2325 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2326 struct dwarf2_per_cu_quick_data);
2327 the_cu->is_dwz = is_dwz;
2328 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2334 /* Read the CU list from the mapped index, and use it to create all
2335 the CU objects for this objfile. Return 0 if something went wrong,
2336 1 if everything went ok. */
2339 create_cus_from_index (struct objfile *objfile,
2340 const gdb_byte *cu_list, offset_type cu_list_elements,
2341 const gdb_byte *dwz_list, offset_type dwz_elements)
2343 struct dwz_file *dwz;
2345 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2346 dwarf2_per_objfile->all_comp_units
2347 = obstack_alloc (&objfile->objfile_obstack,
2348 dwarf2_per_objfile->n_comp_units
2349 * sizeof (struct dwarf2_per_cu_data *));
2351 if (!create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2352 &dwarf2_per_objfile->info, 0, 0))
2355 if (dwz_elements == 0)
2358 dwz = dwarf2_get_dwz_file ();
2359 return create_cus_from_index_list (objfile, dwz_list, dwz_elements,
2360 &dwz->info, 1, cu_list_elements / 2);
2363 /* Create the signatured type hash table from the index. */
2366 create_signatured_type_table_from_index (struct objfile *objfile,
2367 struct dwarf2_section_info *section,
2368 const gdb_byte *bytes,
2369 offset_type elements)
2372 htab_t sig_types_hash;
2374 dwarf2_per_objfile->n_type_units = elements / 3;
2375 dwarf2_per_objfile->all_type_units
2376 = obstack_alloc (&objfile->objfile_obstack,
2377 dwarf2_per_objfile->n_type_units
2378 * sizeof (struct signatured_type *));
2380 sig_types_hash = allocate_signatured_type_table (objfile);
2382 for (i = 0; i < elements; i += 3)
2384 struct signatured_type *sig_type;
2385 ULONGEST offset, type_offset_in_tu, signature;
2388 if (!extract_cu_value (bytes, &offset)
2389 || !extract_cu_value (bytes + 8, &type_offset_in_tu))
2391 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2394 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2395 struct signatured_type);
2396 sig_type->signature = signature;
2397 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2398 sig_type->per_cu.is_debug_types = 1;
2399 sig_type->per_cu.info_or_types_section = section;
2400 sig_type->per_cu.offset.sect_off = offset;
2401 sig_type->per_cu.objfile = objfile;
2402 sig_type->per_cu.v.quick
2403 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2404 struct dwarf2_per_cu_quick_data);
2406 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2409 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2412 dwarf2_per_objfile->signatured_types = sig_types_hash;
2417 /* Read the address map data from the mapped index, and use it to
2418 populate the objfile's psymtabs_addrmap. */
2421 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2423 const gdb_byte *iter, *end;
2424 struct obstack temp_obstack;
2425 struct addrmap *mutable_map;
2426 struct cleanup *cleanup;
2429 obstack_init (&temp_obstack);
2430 cleanup = make_cleanup_obstack_free (&temp_obstack);
2431 mutable_map = addrmap_create_mutable (&temp_obstack);
2433 iter = index->address_table;
2434 end = iter + index->address_table_size;
2436 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2440 ULONGEST hi, lo, cu_index;
2441 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2443 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2445 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2448 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2449 dw2_get_cu (cu_index));
2452 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2453 &objfile->objfile_obstack);
2454 do_cleanups (cleanup);
2457 /* The hash function for strings in the mapped index. This is the same as
2458 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2459 implementation. This is necessary because the hash function is tied to the
2460 format of the mapped index file. The hash values do not have to match with
2463 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2466 mapped_index_string_hash (int index_version, const void *p)
2468 const unsigned char *str = (const unsigned char *) p;
2472 while ((c = *str++) != 0)
2474 if (index_version >= 5)
2476 r = r * 67 + c - 113;
2482 /* Find a slot in the mapped index INDEX for the object named NAME.
2483 If NAME is found, set *VEC_OUT to point to the CU vector in the
2484 constant pool and return 1. If NAME cannot be found, return 0. */
2487 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2488 offset_type **vec_out)
2490 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2492 offset_type slot, step;
2493 int (*cmp) (const char *, const char *);
2495 if (current_language->la_language == language_cplus
2496 || current_language->la_language == language_java
2497 || current_language->la_language == language_fortran)
2499 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2501 const char *paren = strchr (name, '(');
2507 dup = xmalloc (paren - name + 1);
2508 memcpy (dup, name, paren - name);
2509 dup[paren - name] = 0;
2511 make_cleanup (xfree, dup);
2516 /* Index version 4 did not support case insensitive searches. But the
2517 indices for case insensitive languages are built in lowercase, therefore
2518 simulate our NAME being searched is also lowercased. */
2519 hash = mapped_index_string_hash ((index->version == 4
2520 && case_sensitivity == case_sensitive_off
2521 ? 5 : index->version),
2524 slot = hash & (index->symbol_table_slots - 1);
2525 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2526 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2530 /* Convert a slot number to an offset into the table. */
2531 offset_type i = 2 * slot;
2533 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2535 do_cleanups (back_to);
2539 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2540 if (!cmp (name, str))
2542 *vec_out = (offset_type *) (index->constant_pool
2543 + MAYBE_SWAP (index->symbol_table[i + 1]));
2544 do_cleanups (back_to);
2548 slot = (slot + step) & (index->symbol_table_slots - 1);
2552 /* A helper function that reads the .gdb_index from SECTION and fills
2553 in MAP. FILENAME is the name of the file containing the section;
2554 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2555 ok to use deprecated sections.
2557 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2558 out parameters that are filled in with information about the CU and
2559 TU lists in the section.
2561 Returns 1 if all went well, 0 otherwise. */
2564 read_index_from_section (struct objfile *objfile,
2565 const char *filename,
2567 struct dwarf2_section_info *section,
2568 struct mapped_index *map,
2569 const gdb_byte **cu_list,
2570 offset_type *cu_list_elements,
2571 const gdb_byte **types_list,
2572 offset_type *types_list_elements)
2575 offset_type version;
2576 offset_type *metadata;
2579 if (dwarf2_section_empty_p (section))
2582 /* Older elfutils strip versions could keep the section in the main
2583 executable while splitting it for the separate debug info file. */
2584 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2587 dwarf2_read_section (objfile, section);
2589 addr = section->buffer;
2590 /* Version check. */
2591 version = MAYBE_SWAP (*(offset_type *) addr);
2592 /* Versions earlier than 3 emitted every copy of a psymbol. This
2593 causes the index to behave very poorly for certain requests. Version 3
2594 contained incomplete addrmap. So, it seems better to just ignore such
2598 static int warning_printed = 0;
2599 if (!warning_printed)
2601 warning (_("Skipping obsolete .gdb_index section in %s."),
2603 warning_printed = 1;
2607 /* Index version 4 uses a different hash function than index version
2610 Versions earlier than 6 did not emit psymbols for inlined
2611 functions. Using these files will cause GDB not to be able to
2612 set breakpoints on inlined functions by name, so we ignore these
2613 indices unless the user has done
2614 "set use-deprecated-index-sections on". */
2615 if (version < 6 && !deprecated_ok)
2617 static int warning_printed = 0;
2618 if (!warning_printed)
2621 Skipping deprecated .gdb_index section in %s.\n\
2622 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2623 to use the section anyway."),
2625 warning_printed = 1;
2629 /* Indexes with higher version than the one supported by GDB may be no
2630 longer backward compatible. */
2634 map->version = version;
2635 map->total_size = section->size;
2637 metadata = (offset_type *) (addr + sizeof (offset_type));
2640 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2641 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2645 *types_list = addr + MAYBE_SWAP (metadata[i]);
2646 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2647 - MAYBE_SWAP (metadata[i]))
2651 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2652 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2653 - MAYBE_SWAP (metadata[i]));
2656 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2657 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2658 - MAYBE_SWAP (metadata[i]))
2659 / (2 * sizeof (offset_type)));
2662 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2668 /* Read the index file. If everything went ok, initialize the "quick"
2669 elements of all the CUs and return 1. Otherwise, return 0. */
2672 dwarf2_read_index (struct objfile *objfile)
2674 struct mapped_index local_map, *map;
2675 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2676 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2678 if (!read_index_from_section (objfile, objfile->name,
2679 use_deprecated_index_sections,
2680 &dwarf2_per_objfile->gdb_index, &local_map,
2681 &cu_list, &cu_list_elements,
2682 &types_list, &types_list_elements))
2685 /* Don't use the index if it's empty. */
2686 if (local_map.symbol_table_slots == 0)
2689 /* If there is a .dwz file, read it so we can get its CU list as
2691 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2693 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2694 struct mapped_index dwz_map;
2695 const gdb_byte *dwz_types_ignore;
2696 offset_type dwz_types_elements_ignore;
2698 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2700 &dwz->gdb_index, &dwz_map,
2701 &dwz_list, &dwz_list_elements,
2703 &dwz_types_elements_ignore))
2705 warning (_("could not read '.gdb_index' section from %s; skipping"),
2706 bfd_get_filename (dwz->dwz_bfd));
2711 if (!create_cus_from_index (objfile, cu_list, cu_list_elements,
2712 dwz_list, dwz_list_elements))
2715 if (types_list_elements)
2717 struct dwarf2_section_info *section;
2719 /* We can only handle a single .debug_types when we have an
2721 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2724 section = VEC_index (dwarf2_section_info_def,
2725 dwarf2_per_objfile->types, 0);
2727 if (!create_signatured_type_table_from_index (objfile, section,
2729 types_list_elements))
2733 create_addrmap_from_index (objfile, &local_map);
2735 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2738 dwarf2_per_objfile->index_table = map;
2739 dwarf2_per_objfile->using_index = 1;
2740 dwarf2_per_objfile->quick_file_names_table =
2741 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2746 /* A helper for the "quick" functions which sets the global
2747 dwarf2_per_objfile according to OBJFILE. */
2750 dw2_setup (struct objfile *objfile)
2752 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2753 gdb_assert (dwarf2_per_objfile);
2756 /* Reader function for dw2_build_type_unit_groups. */
2759 dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2761 struct die_info *type_unit_die,
2765 struct dwarf2_cu *cu = reader->cu;
2766 struct attribute *attr;
2767 struct type_unit_group *tu_group;
2769 gdb_assert (data == NULL);
2774 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2775 /* Call this for its side-effect of creating the associated
2776 struct type_unit_group if it doesn't already exist. */
2777 tu_group = get_type_unit_group (cu, attr);
2780 /* Build dwarf2_per_objfile->type_unit_groups.
2781 This function may be called multiple times. */
2784 dw2_build_type_unit_groups (void)
2786 if (dwarf2_per_objfile->type_unit_groups == NULL)
2787 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2790 /* die_reader_func for dw2_get_file_names. */
2793 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2795 struct die_info *comp_unit_die,
2799 struct dwarf2_cu *cu = reader->cu;
2800 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2801 struct objfile *objfile = dwarf2_per_objfile->objfile;
2802 struct dwarf2_per_cu_data *lh_cu;
2803 struct line_header *lh;
2804 struct attribute *attr;
2806 char *name, *comp_dir;
2808 struct quick_file_names *qfn;
2809 unsigned int line_offset;
2811 /* Our callers never want to match partial units -- instead they
2812 will match the enclosing full CU. */
2813 if (comp_unit_die->tag == DW_TAG_partial_unit)
2815 this_cu->v.quick->no_file_data = 1;
2819 /* If we're reading the line header for TUs, store it in the "per_cu"
2821 if (this_cu->is_debug_types)
2823 struct type_unit_group *tu_group = data;
2825 gdb_assert (tu_group != NULL);
2826 lh_cu = &tu_group->per_cu;
2835 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2838 struct quick_file_names find_entry;
2840 line_offset = DW_UNSND (attr);
2842 /* We may have already read in this line header (TU line header sharing).
2843 If we have we're done. */
2844 find_entry.hash.dwo_unit = cu->dwo_unit;
2845 find_entry.hash.line_offset.sect_off = line_offset;
2846 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2847 &find_entry, INSERT);
2850 lh_cu->v.quick->file_names = *slot;
2854 lh = dwarf_decode_line_header (line_offset, cu);
2858 lh_cu->v.quick->no_file_data = 1;
2862 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2863 qfn->hash.dwo_unit = cu->dwo_unit;
2864 qfn->hash.line_offset.sect_off = line_offset;
2865 gdb_assert (slot != NULL);
2868 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2870 qfn->num_file_names = lh->num_file_names;
2871 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2872 lh->num_file_names * sizeof (char *));
2873 for (i = 0; i < lh->num_file_names; ++i)
2874 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2875 qfn->real_names = NULL;
2877 free_line_header (lh);
2879 lh_cu->v.quick->file_names = qfn;
2882 /* A helper for the "quick" functions which attempts to read the line
2883 table for THIS_CU. */
2885 static struct quick_file_names *
2886 dw2_get_file_names (struct objfile *objfile,
2887 struct dwarf2_per_cu_data *this_cu)
2889 /* For TUs this should only be called on the parent group. */
2890 if (this_cu->is_debug_types)
2891 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2893 if (this_cu->v.quick->file_names != NULL)
2894 return this_cu->v.quick->file_names;
2895 /* If we know there is no line data, no point in looking again. */
2896 if (this_cu->v.quick->no_file_data)
2899 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2900 in the stub for CUs, there's is no need to lookup the DWO file.
2901 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2903 if (this_cu->is_debug_types)
2905 struct type_unit_group *tu_group = this_cu->s.type_unit_group;
2907 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2908 dw2_get_file_names_reader, tu_group);
2911 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2913 if (this_cu->v.quick->no_file_data)
2915 return this_cu->v.quick->file_names;
2918 /* A helper for the "quick" functions which computes and caches the
2919 real path for a given file name from the line table. */
2922 dw2_get_real_path (struct objfile *objfile,
2923 struct quick_file_names *qfn, int index)
2925 if (qfn->real_names == NULL)
2926 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2927 qfn->num_file_names, sizeof (char *));
2929 if (qfn->real_names[index] == NULL)
2930 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2932 return qfn->real_names[index];
2935 static struct symtab *
2936 dw2_find_last_source_symtab (struct objfile *objfile)
2940 dw2_setup (objfile);
2941 index = dwarf2_per_objfile->n_comp_units - 1;
2942 return dw2_instantiate_symtab (dw2_get_cu (index));
2945 /* Traversal function for dw2_forget_cached_source_info. */
2948 dw2_free_cached_file_names (void **slot, void *info)
2950 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2952 if (file_data->real_names)
2956 for (i = 0; i < file_data->num_file_names; ++i)
2958 xfree ((void*) file_data->real_names[i]);
2959 file_data->real_names[i] = NULL;
2967 dw2_forget_cached_source_info (struct objfile *objfile)
2969 dw2_setup (objfile);
2971 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2972 dw2_free_cached_file_names, NULL);
2975 /* Helper function for dw2_map_symtabs_matching_filename that expands
2976 the symtabs and calls the iterator. */
2979 dw2_map_expand_apply (struct objfile *objfile,
2980 struct dwarf2_per_cu_data *per_cu,
2982 const char *full_path, const char *real_path,
2983 int (*callback) (struct symtab *, void *),
2986 struct symtab *last_made = objfile->symtabs;
2988 /* Don't visit already-expanded CUs. */
2989 if (per_cu->v.quick->symtab)
2992 /* This may expand more than one symtab, and we want to iterate over
2994 dw2_instantiate_symtab (per_cu);
2996 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2997 objfile->symtabs, last_made);
3000 /* Implementation of the map_symtabs_matching_filename method. */
3003 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3004 const char *full_path, const char *real_path,
3005 int (*callback) (struct symtab *, void *),
3009 const char *name_basename = lbasename (name);
3010 int name_len = strlen (name);
3011 int is_abs = IS_ABSOLUTE_PATH (name);
3013 dw2_setup (objfile);
3015 dw2_build_type_unit_groups ();
3017 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3018 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3021 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3022 struct quick_file_names *file_data;
3024 /* We only need to look at symtabs not already expanded. */
3025 if (per_cu->v.quick->symtab)
3028 file_data = dw2_get_file_names (objfile, per_cu);
3029 if (file_data == NULL)
3032 for (j = 0; j < file_data->num_file_names; ++j)
3034 const char *this_name = file_data->file_names[j];
3036 if (FILENAME_CMP (name, this_name) == 0
3037 || (!is_abs && compare_filenames_for_search (this_name,
3040 if (dw2_map_expand_apply (objfile, per_cu,
3041 name, full_path, real_path,
3046 /* Before we invoke realpath, which can get expensive when many
3047 files are involved, do a quick comparison of the basenames. */
3048 if (! basenames_may_differ
3049 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3052 if (full_path != NULL)
3054 const char *this_real_name = dw2_get_real_path (objfile,
3057 if (this_real_name != NULL
3058 && (FILENAME_CMP (full_path, this_real_name) == 0
3060 && compare_filenames_for_search (this_real_name,
3063 if (dw2_map_expand_apply (objfile, per_cu,
3064 name, full_path, real_path,
3070 if (real_path != NULL)
3072 const char *this_real_name = dw2_get_real_path (objfile,
3075 if (this_real_name != NULL
3076 && (FILENAME_CMP (real_path, this_real_name) == 0
3078 && compare_filenames_for_search (this_real_name,
3081 if (dw2_map_expand_apply (objfile, per_cu,
3082 name, full_path, real_path,
3093 static struct symtab *
3094 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3095 const char *name, domain_enum domain)
3097 /* We do all the work in the pre_expand_symtabs_matching hook
3102 /* A helper function that expands all symtabs that hold an object
3103 named NAME. If WANT_SPECIFIC_BLOCK is non-zero, only look for
3104 symbols in block BLOCK_KIND. */
3107 dw2_do_expand_symtabs_matching (struct objfile *objfile,
3108 int want_specific_block,
3109 enum block_enum block_kind,
3110 const char *name, domain_enum domain)
3112 struct mapped_index *index;
3114 dw2_setup (objfile);
3116 index = dwarf2_per_objfile->index_table;
3118 /* index_table is NULL if OBJF_READNOW. */
3123 if (find_slot_in_mapped_hash (index, name, &vec))
3125 offset_type i, len = MAYBE_SWAP (*vec);
3126 for (i = 0; i < len; ++i)
3128 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[i + 1]);
3129 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3130 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3131 int want_static = block_kind != GLOBAL_BLOCK;
3132 /* This value is only valid for index versions >= 7. */
3133 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3134 gdb_index_symbol_kind symbol_kind =
3135 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3137 if (want_specific_block
3138 && index->version >= 7
3139 && want_static != is_static)
3142 /* Only check the symbol's kind if it has one.
3143 Indices prior to version 7 don't record it. */
3144 if (index->version >= 7)
3149 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3150 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3151 /* Some types are also in VAR_DOMAIN. */
3152 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3156 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3160 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3168 dw2_instantiate_symtab (per_cu);
3175 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
3176 enum block_enum block_kind, const char *name,
3179 dw2_do_expand_symtabs_matching (objfile, 1, block_kind, name, domain);
3183 dw2_print_stats (struct objfile *objfile)
3187 dw2_setup (objfile);
3189 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3190 + dwarf2_per_objfile->n_type_units); ++i)
3192 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3194 if (!per_cu->v.quick->symtab)
3197 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3201 dw2_dump (struct objfile *objfile)
3203 /* Nothing worth printing. */
3207 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3208 struct section_offsets *delta)
3210 /* There's nothing to relocate here. */
3214 dw2_expand_symtabs_for_function (struct objfile *objfile,
3215 const char *func_name)
3217 /* Note: It doesn't matter what we pass for block_kind here. */
3218 dw2_do_expand_symtabs_matching (objfile, 0, GLOBAL_BLOCK, func_name,
3223 dw2_expand_all_symtabs (struct objfile *objfile)
3227 dw2_setup (objfile);
3229 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3230 + dwarf2_per_objfile->n_type_units); ++i)
3232 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3234 dw2_instantiate_symtab (per_cu);
3239 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3240 const char *filename)
3244 dw2_setup (objfile);
3246 /* We don't need to consider type units here.
3247 This is only called for examining code, e.g. expand_line_sal.
3248 There can be an order of magnitude (or more) more type units
3249 than comp units, and we avoid them if we can. */
3251 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3254 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3255 struct quick_file_names *file_data;
3257 /* We only need to look at symtabs not already expanded. */
3258 if (per_cu->v.quick->symtab)
3261 file_data = dw2_get_file_names (objfile, per_cu);
3262 if (file_data == NULL)
3265 for (j = 0; j < file_data->num_file_names; ++j)
3267 const char *this_name = file_data->file_names[j];
3268 if (FILENAME_CMP (this_name, filename) == 0)
3270 dw2_instantiate_symtab (per_cu);
3277 /* A helper function for dw2_find_symbol_file that finds the primary
3278 file name for a given CU. This is a die_reader_func. */
3281 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3283 struct die_info *comp_unit_die,
3287 const char **result_ptr = data;
3288 struct dwarf2_cu *cu = reader->cu;
3289 struct attribute *attr;
3291 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3295 *result_ptr = DW_STRING (attr);
3299 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3301 struct dwarf2_per_cu_data *per_cu;
3303 struct quick_file_names *file_data;
3304 const char *filename;
3306 dw2_setup (objfile);
3308 /* index_table is NULL if OBJF_READNOW. */
3309 if (!dwarf2_per_objfile->index_table)
3313 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3315 struct blockvector *bv = BLOCKVECTOR (s);
3316 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3317 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3320 return sym->symtab->filename;
3325 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3329 /* Note that this just looks at the very first one named NAME -- but
3330 actually we are looking for a function. find_main_filename
3331 should be rewritten so that it doesn't require a custom hook. It
3332 could just use the ordinary symbol tables. */
3333 /* vec[0] is the length, which must always be >0. */
3334 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3336 if (per_cu->v.quick->symtab != NULL)
3337 return per_cu->v.quick->symtab->filename;
3339 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3340 dw2_get_primary_filename_reader, &filename);
3346 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3347 struct objfile *objfile, int global,
3348 int (*callback) (struct block *,
3349 struct symbol *, void *),
3350 void *data, symbol_compare_ftype *match,
3351 symbol_compare_ftype *ordered_compare)
3353 /* Currently unimplemented; used for Ada. The function can be called if the
3354 current language is Ada for a non-Ada objfile using GNU index. As Ada
3355 does not look for non-Ada symbols this function should just return. */
3359 dw2_expand_symtabs_matching
3360 (struct objfile *objfile,
3361 int (*file_matcher) (const char *, void *),
3362 int (*name_matcher) (const char *, void *),
3363 enum search_domain kind,
3368 struct mapped_index *index;
3370 dw2_setup (objfile);
3372 /* index_table is NULL if OBJF_READNOW. */
3373 if (!dwarf2_per_objfile->index_table)
3375 index = dwarf2_per_objfile->index_table;
3377 if (file_matcher != NULL)
3379 struct cleanup *cleanup;
3380 htab_t visited_found, visited_not_found;
3382 dw2_build_type_unit_groups ();
3384 visited_found = htab_create_alloc (10,
3385 htab_hash_pointer, htab_eq_pointer,
3386 NULL, xcalloc, xfree);
3387 cleanup = make_cleanup_htab_delete (visited_found);
3388 visited_not_found = htab_create_alloc (10,
3389 htab_hash_pointer, htab_eq_pointer,
3390 NULL, xcalloc, xfree);
3391 make_cleanup_htab_delete (visited_not_found);
3393 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3394 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3397 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3398 struct quick_file_names *file_data;
3401 per_cu->v.quick->mark = 0;
3403 /* We only need to look at symtabs not already expanded. */
3404 if (per_cu->v.quick->symtab)
3407 file_data = dw2_get_file_names (objfile, per_cu);
3408 if (file_data == NULL)
3411 if (htab_find (visited_not_found, file_data) != NULL)
3413 else if (htab_find (visited_found, file_data) != NULL)
3415 per_cu->v.quick->mark = 1;
3419 for (j = 0; j < file_data->num_file_names; ++j)
3421 if (file_matcher (file_data->file_names[j], data))
3423 per_cu->v.quick->mark = 1;
3428 slot = htab_find_slot (per_cu->v.quick->mark
3430 : visited_not_found,
3435 do_cleanups (cleanup);
3438 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3440 offset_type idx = 2 * iter;
3442 offset_type *vec, vec_len, vec_idx;
3444 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3447 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3449 if (! (*name_matcher) (name, data))
3452 /* The name was matched, now expand corresponding CUs that were
3454 vec = (offset_type *) (index->constant_pool
3455 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3456 vec_len = MAYBE_SWAP (vec[0]);
3457 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3459 struct dwarf2_per_cu_data *per_cu;
3460 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3461 gdb_index_symbol_kind symbol_kind =
3462 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3463 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3465 /* Don't crash on bad data. */
3466 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3467 + dwarf2_per_objfile->n_type_units))
3470 /* Only check the symbol's kind if it has one.
3471 Indices prior to version 7 don't record it. */
3472 if (index->version >= 7)
3476 case VARIABLES_DOMAIN:
3477 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3480 case FUNCTIONS_DOMAIN:
3481 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3485 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3493 per_cu = dw2_get_cu (cu_index);
3494 if (file_matcher == NULL || per_cu->v.quick->mark)
3495 dw2_instantiate_symtab (per_cu);
3500 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3503 static struct symtab *
3504 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3508 if (BLOCKVECTOR (symtab) != NULL
3509 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3512 if (symtab->includes == NULL)
3515 for (i = 0; symtab->includes[i]; ++i)
3517 struct symtab *s = symtab->includes[i];
3519 s = recursively_find_pc_sect_symtab (s, pc);
3527 static struct symtab *
3528 dw2_find_pc_sect_symtab (struct objfile *objfile,
3529 struct minimal_symbol *msymbol,
3531 struct obj_section *section,
3534 struct dwarf2_per_cu_data *data;
3535 struct symtab *result;
3537 dw2_setup (objfile);
3539 if (!objfile->psymtabs_addrmap)
3542 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3546 if (warn_if_readin && data->v.quick->symtab)
3547 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3548 paddress (get_objfile_arch (objfile), pc));
3550 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3551 gdb_assert (result != NULL);
3556 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3557 void *data, int need_fullname)
3560 struct cleanup *cleanup;
3561 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3562 NULL, xcalloc, xfree);
3564 cleanup = make_cleanup_htab_delete (visited);
3565 dw2_setup (objfile);
3567 dw2_build_type_unit_groups ();
3569 /* We can ignore file names coming from already-expanded CUs. */
3570 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3571 + dwarf2_per_objfile->n_type_units); ++i)
3573 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3575 if (per_cu->v.quick->symtab)
3577 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3580 *slot = per_cu->v.quick->file_names;
3584 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3585 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3588 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3589 struct quick_file_names *file_data;
3592 /* We only need to look at symtabs not already expanded. */
3593 if (per_cu->v.quick->symtab)
3596 file_data = dw2_get_file_names (objfile, per_cu);
3597 if (file_data == NULL)
3600 slot = htab_find_slot (visited, file_data, INSERT);
3603 /* Already visited. */
3608 for (j = 0; j < file_data->num_file_names; ++j)
3610 const char *this_real_name;
3613 this_real_name = dw2_get_real_path (objfile, file_data, j);
3615 this_real_name = NULL;
3616 (*fun) (file_data->file_names[j], this_real_name, data);
3620 do_cleanups (cleanup);
3624 dw2_has_symbols (struct objfile *objfile)
3629 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3632 dw2_find_last_source_symtab,
3633 dw2_forget_cached_source_info,
3634 dw2_map_symtabs_matching_filename,
3636 dw2_pre_expand_symtabs_matching,
3640 dw2_expand_symtabs_for_function,
3641 dw2_expand_all_symtabs,
3642 dw2_expand_symtabs_with_filename,
3643 dw2_find_symbol_file,
3644 dw2_map_matching_symbols,
3645 dw2_expand_symtabs_matching,
3646 dw2_find_pc_sect_symtab,
3647 dw2_map_symbol_filenames
3650 /* Initialize for reading DWARF for this objfile. Return 0 if this
3651 file will use psymtabs, or 1 if using the GNU index. */
3654 dwarf2_initialize_objfile (struct objfile *objfile)
3656 /* If we're about to read full symbols, don't bother with the
3657 indices. In this case we also don't care if some other debug
3658 format is making psymtabs, because they are all about to be
3660 if ((objfile->flags & OBJF_READNOW))
3664 dwarf2_per_objfile->using_index = 1;
3665 create_all_comp_units (objfile);
3666 create_all_type_units (objfile);
3667 dwarf2_per_objfile->quick_file_names_table =
3668 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3670 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3671 + dwarf2_per_objfile->n_type_units); ++i)
3673 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3675 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3676 struct dwarf2_per_cu_quick_data);
3679 /* Return 1 so that gdb sees the "quick" functions. However,
3680 these functions will be no-ops because we will have expanded
3685 if (dwarf2_read_index (objfile))
3693 /* Build a partial symbol table. */
3696 dwarf2_build_psymtabs (struct objfile *objfile)
3698 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3700 init_psymbol_list (objfile, 1024);
3703 dwarf2_build_psymtabs_hard (objfile);
3706 /* Return the total length of the CU described by HEADER. */
3709 get_cu_length (const struct comp_unit_head *header)
3711 return header->initial_length_size + header->length;
3714 /* Return TRUE if OFFSET is within CU_HEADER. */
3717 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3719 sect_offset bottom = { cu_header->offset.sect_off };
3720 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3722 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3725 /* Find the base address of the compilation unit for range lists and
3726 location lists. It will normally be specified by DW_AT_low_pc.
3727 In DWARF-3 draft 4, the base address could be overridden by
3728 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3729 compilation units with discontinuous ranges. */
3732 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3734 struct attribute *attr;
3737 cu->base_address = 0;
3739 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3742 cu->base_address = DW_ADDR (attr);
3747 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3750 cu->base_address = DW_ADDR (attr);
3756 /* Read in the comp unit header information from the debug_info at info_ptr.
3757 NOTE: This leaves members offset, first_die_offset to be filled in
3761 read_comp_unit_head (struct comp_unit_head *cu_header,
3762 gdb_byte *info_ptr, bfd *abfd)
3765 unsigned int bytes_read;
3767 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3768 cu_header->initial_length_size = bytes_read;
3769 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3770 info_ptr += bytes_read;
3771 cu_header->version = read_2_bytes (abfd, info_ptr);
3773 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3775 info_ptr += bytes_read;
3776 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3778 signed_addr = bfd_get_sign_extend_vma (abfd);
3779 if (signed_addr < 0)
3780 internal_error (__FILE__, __LINE__,
3781 _("read_comp_unit_head: dwarf from non elf file"));
3782 cu_header->signed_addr_p = signed_addr;
3787 /* Helper function that returns the proper abbrev section for
3790 static struct dwarf2_section_info *
3791 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3793 struct dwarf2_section_info *abbrev;
3795 if (this_cu->is_dwz)
3796 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3798 abbrev = &dwarf2_per_objfile->abbrev;
3803 /* Subroutine of read_and_check_comp_unit_head and
3804 read_and_check_type_unit_head to simplify them.
3805 Perform various error checking on the header. */
3808 error_check_comp_unit_head (struct comp_unit_head *header,
3809 struct dwarf2_section_info *section,
3810 struct dwarf2_section_info *abbrev_section)
3812 bfd *abfd = section->asection->owner;
3813 const char *filename = bfd_get_filename (abfd);
3815 if (header->version != 2 && header->version != 3 && header->version != 4)
3816 error (_("Dwarf Error: wrong version in compilation unit header "
3817 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3820 if (header->abbrev_offset.sect_off
3821 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3822 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3823 "(offset 0x%lx + 6) [in module %s]"),
3824 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3827 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3828 avoid potential 32-bit overflow. */
3829 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3831 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3832 "(offset 0x%lx + 0) [in module %s]"),
3833 (long) header->length, (long) header->offset.sect_off,
3837 /* Read in a CU/TU header and perform some basic error checking.
3838 The contents of the header are stored in HEADER.
3839 The result is a pointer to the start of the first DIE. */
3842 read_and_check_comp_unit_head (struct comp_unit_head *header,
3843 struct dwarf2_section_info *section,
3844 struct dwarf2_section_info *abbrev_section,
3846 int is_debug_types_section)
3848 gdb_byte *beg_of_comp_unit = info_ptr;
3849 bfd *abfd = section->asection->owner;
3851 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3853 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3855 /* If we're reading a type unit, skip over the signature and
3856 type_offset fields. */
3857 if (is_debug_types_section)
3858 info_ptr += 8 /*signature*/ + header->offset_size;
3860 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3862 error_check_comp_unit_head (header, section, abbrev_section);
3867 /* Read in the types comp unit header information from .debug_types entry at
3868 types_ptr. The result is a pointer to one past the end of the header. */
3871 read_and_check_type_unit_head (struct comp_unit_head *header,
3872 struct dwarf2_section_info *section,
3873 struct dwarf2_section_info *abbrev_section,
3875 ULONGEST *signature,
3876 cu_offset *type_offset_in_tu)
3878 gdb_byte *beg_of_comp_unit = info_ptr;
3879 bfd *abfd = section->asection->owner;
3881 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3883 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3885 /* If we're reading a type unit, skip over the signature and
3886 type_offset fields. */
3887 if (signature != NULL)
3888 *signature = read_8_bytes (abfd, info_ptr);
3890 if (type_offset_in_tu != NULL)
3891 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3892 header->offset_size);
3893 info_ptr += header->offset_size;
3895 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3897 error_check_comp_unit_head (header, section, abbrev_section);
3902 /* Fetch the abbreviation table offset from a comp or type unit header. */
3905 read_abbrev_offset (struct dwarf2_section_info *section,
3908 bfd *abfd = section->asection->owner;
3910 unsigned int length, initial_length_size, offset_size;
3911 sect_offset abbrev_offset;
3913 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3914 info_ptr = section->buffer + offset.sect_off;
3915 length = read_initial_length (abfd, info_ptr, &initial_length_size);
3916 offset_size = initial_length_size == 4 ? 4 : 8;
3917 info_ptr += initial_length_size + 2 /*version*/;
3918 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
3919 return abbrev_offset;
3922 /* Allocate a new partial symtab for file named NAME and mark this new
3923 partial symtab as being an include of PST. */
3926 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3927 struct objfile *objfile)
3929 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3931 subpst->section_offsets = pst->section_offsets;
3932 subpst->textlow = 0;
3933 subpst->texthigh = 0;
3935 subpst->dependencies = (struct partial_symtab **)
3936 obstack_alloc (&objfile->objfile_obstack,
3937 sizeof (struct partial_symtab *));
3938 subpst->dependencies[0] = pst;
3939 subpst->number_of_dependencies = 1;
3941 subpst->globals_offset = 0;
3942 subpst->n_global_syms = 0;
3943 subpst->statics_offset = 0;
3944 subpst->n_static_syms = 0;
3945 subpst->symtab = NULL;
3946 subpst->read_symtab = pst->read_symtab;
3949 /* No private part is necessary for include psymtabs. This property
3950 can be used to differentiate between such include psymtabs and
3951 the regular ones. */
3952 subpst->read_symtab_private = NULL;
3955 /* Read the Line Number Program data and extract the list of files
3956 included by the source file represented by PST. Build an include
3957 partial symtab for each of these included files. */
3960 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3961 struct die_info *die,
3962 struct partial_symtab *pst)
3964 struct line_header *lh = NULL;
3965 struct attribute *attr;
3967 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3969 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
3971 return; /* No linetable, so no includes. */
3973 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3974 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3976 free_line_header (lh);
3980 hash_signatured_type (const void *item)
3982 const struct signatured_type *sig_type = item;
3984 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3985 return sig_type->signature;
3989 eq_signatured_type (const void *item_lhs, const void *item_rhs)
3991 const struct signatured_type *lhs = item_lhs;
3992 const struct signatured_type *rhs = item_rhs;
3994 return lhs->signature == rhs->signature;
3997 /* Allocate a hash table for signatured types. */
4000 allocate_signatured_type_table (struct objfile *objfile)
4002 return htab_create_alloc_ex (41,
4003 hash_signatured_type,
4006 &objfile->objfile_obstack,
4007 hashtab_obstack_allocate,
4008 dummy_obstack_deallocate);
4011 /* A helper function to add a signatured type CU to a table. */
4014 add_signatured_type_cu_to_table (void **slot, void *datum)
4016 struct signatured_type *sigt = *slot;
4017 struct signatured_type ***datap = datum;
4025 /* Create the hash table of all entries in the .debug_types section.
4026 DWO_FILE is a pointer to the DWO file for .debug_types.dwo, NULL otherwise.
4027 The result is a pointer to the hash table or NULL if there are
4031 create_debug_types_hash_table (struct dwo_file *dwo_file,
4032 VEC (dwarf2_section_info_def) *types)
4034 struct objfile *objfile = dwarf2_per_objfile->objfile;
4035 htab_t types_htab = NULL;
4037 struct dwarf2_section_info *section;
4038 struct dwarf2_section_info *abbrev_section;
4040 if (VEC_empty (dwarf2_section_info_def, types))
4043 abbrev_section = (dwo_file != NULL
4044 ? &dwo_file->sections.abbrev
4045 : &dwarf2_per_objfile->abbrev);
4047 if (dwarf2_read_debug)
4048 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4049 dwo_file ? ".dwo" : "",
4050 bfd_get_filename (abbrev_section->asection->owner));
4053 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4057 gdb_byte *info_ptr, *end_ptr;
4058 struct dwarf2_section_info *abbrev_section;
4060 dwarf2_read_section (objfile, section);
4061 info_ptr = section->buffer;
4063 if (info_ptr == NULL)
4066 /* We can't set abfd until now because the section may be empty or
4067 not present, in which case section->asection will be NULL. */
4068 abfd = section->asection->owner;
4071 abbrev_section = &dwo_file->sections.abbrev;
4073 abbrev_section = &dwarf2_per_objfile->abbrev;
4075 if (types_htab == NULL)
4078 types_htab = allocate_dwo_unit_table (objfile);
4080 types_htab = allocate_signatured_type_table (objfile);
4083 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4084 because we don't need to read any dies: the signature is in the
4087 end_ptr = info_ptr + section->size;
4088 while (info_ptr < end_ptr)
4091 cu_offset type_offset_in_tu;
4093 struct signatured_type *sig_type;
4094 struct dwo_unit *dwo_tu;
4096 gdb_byte *ptr = info_ptr;
4097 struct comp_unit_head header;
4098 unsigned int length;
4100 offset.sect_off = ptr - section->buffer;
4102 /* We need to read the type's signature in order to build the hash
4103 table, but we don't need anything else just yet. */
4105 ptr = read_and_check_type_unit_head (&header, section,
4106 abbrev_section, ptr,
4107 &signature, &type_offset_in_tu);
4109 length = get_cu_length (&header);
4111 /* Skip dummy type units. */
4112 if (ptr >= info_ptr + length
4113 || peek_abbrev_code (abfd, ptr) == 0)
4122 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4124 dwo_tu->dwo_file = dwo_file;
4125 dwo_tu->signature = signature;
4126 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4127 dwo_tu->info_or_types_section = section;
4128 dwo_tu->offset = offset;
4129 dwo_tu->length = length;
4133 /* N.B.: type_offset is not usable if this type uses a DWO file.
4134 The real type_offset is in the DWO file. */
4136 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4137 struct signatured_type);
4138 sig_type->signature = signature;
4139 sig_type->type_offset_in_tu = type_offset_in_tu;
4140 sig_type->per_cu.objfile = objfile;
4141 sig_type->per_cu.is_debug_types = 1;
4142 sig_type->per_cu.info_or_types_section = section;
4143 sig_type->per_cu.offset = offset;
4144 sig_type->per_cu.length = length;
4147 slot = htab_find_slot (types_htab,
4148 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4150 gdb_assert (slot != NULL);
4153 sect_offset dup_offset;
4157 const struct dwo_unit *dup_tu = *slot;
4159 dup_offset = dup_tu->offset;
4163 const struct signatured_type *dup_tu = *slot;
4165 dup_offset = dup_tu->per_cu.offset;
4168 complaint (&symfile_complaints,
4169 _("debug type entry at offset 0x%x is duplicate to the "
4170 "entry at offset 0x%x, signature 0x%s"),
4171 offset.sect_off, dup_offset.sect_off,
4172 phex (signature, sizeof (signature)));
4174 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4176 if (dwarf2_read_debug)
4177 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4179 phex (signature, sizeof (signature)));
4188 /* Create the hash table of all entries in the .debug_types section,
4189 and initialize all_type_units.
4190 The result is zero if there is an error (e.g. missing .debug_types section),
4191 otherwise non-zero. */
4194 create_all_type_units (struct objfile *objfile)
4197 struct signatured_type **iter;
4199 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4200 if (types_htab == NULL)
4202 dwarf2_per_objfile->signatured_types = NULL;
4206 dwarf2_per_objfile->signatured_types = types_htab;
4208 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4209 dwarf2_per_objfile->all_type_units
4210 = obstack_alloc (&objfile->objfile_obstack,
4211 dwarf2_per_objfile->n_type_units
4212 * sizeof (struct signatured_type *));
4213 iter = &dwarf2_per_objfile->all_type_units[0];
4214 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4215 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4216 == dwarf2_per_objfile->n_type_units);
4221 /* Lookup a signature based type for DW_FORM_ref_sig8.
4222 Returns NULL if signature SIG is not present in the table. */
4224 static struct signatured_type *
4225 lookup_signatured_type (ULONGEST sig)
4227 struct signatured_type find_entry, *entry;
4229 if (dwarf2_per_objfile->signatured_types == NULL)
4231 complaint (&symfile_complaints,
4232 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4236 find_entry.signature = sig;
4237 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4241 /* Low level DIE reading support. */
4243 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4246 init_cu_die_reader (struct die_reader_specs *reader,
4247 struct dwarf2_cu *cu,
4248 struct dwarf2_section_info *section,
4249 struct dwo_file *dwo_file)
4251 gdb_assert (section->readin && section->buffer != NULL);
4252 reader->abfd = section->asection->owner;
4254 reader->dwo_file = dwo_file;
4255 reader->die_section = section;
4256 reader->buffer = section->buffer;
4257 reader->buffer_end = section->buffer + section->size;
4260 /* Initialize a CU (or TU) and read its DIEs.
4261 If the CU defers to a DWO file, read the DWO file as well.
4263 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4264 Otherwise the table specified in the comp unit header is read in and used.
4265 This is an optimization for when we already have the abbrev table.
4267 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4268 Otherwise, a new CU is allocated with xmalloc.
4270 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4271 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4273 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4274 linker) then DIE_READER_FUNC will not get called. */
4277 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4278 struct abbrev_table *abbrev_table,
4279 int use_existing_cu, int keep,
4280 die_reader_func_ftype *die_reader_func,
4283 struct objfile *objfile = dwarf2_per_objfile->objfile;
4284 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4285 bfd *abfd = section->asection->owner;
4286 struct dwarf2_cu *cu;
4287 gdb_byte *begin_info_ptr, *info_ptr;
4288 struct die_reader_specs reader;
4289 struct die_info *comp_unit_die;
4291 struct attribute *attr;
4292 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4293 struct signatured_type *sig_type = NULL;
4294 struct dwarf2_section_info *abbrev_section;
4295 /* Non-zero if CU currently points to a DWO file and we need to
4296 reread it. When this happens we need to reread the skeleton die
4297 before we can reread the DWO file. */
4298 int rereading_dwo_cu = 0;
4300 if (dwarf2_die_debug)
4301 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4302 this_cu->is_debug_types ? "type" : "comp",
4303 this_cu->offset.sect_off);
4305 if (use_existing_cu)
4308 cleanups = make_cleanup (null_cleanup, NULL);
4310 /* This is cheap if the section is already read in. */
4311 dwarf2_read_section (objfile, section);
4313 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4315 abbrev_section = get_abbrev_section_for_cu (this_cu);
4317 if (use_existing_cu && this_cu->cu != NULL)
4321 /* If this CU is from a DWO file we need to start over, we need to
4322 refetch the attributes from the skeleton CU.
4323 This could be optimized by retrieving those attributes from when we
4324 were here the first time: the previous comp_unit_die was stored in
4325 comp_unit_obstack. But there's no data yet that we need this
4327 if (cu->dwo_unit != NULL)
4328 rereading_dwo_cu = 1;
4332 /* If !use_existing_cu, this_cu->cu must be NULL. */
4333 gdb_assert (this_cu->cu == NULL);
4335 cu = xmalloc (sizeof (*cu));
4336 init_one_comp_unit (cu, this_cu);
4338 /* If an error occurs while loading, release our storage. */
4339 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4342 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4344 /* We already have the header, there's no need to read it in again. */
4345 info_ptr += cu->header.first_die_offset.cu_off;
4349 if (this_cu->is_debug_types)
4352 cu_offset type_offset_in_tu;
4354 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4355 abbrev_section, info_ptr,
4357 &type_offset_in_tu);
4359 /* Since per_cu is the first member of struct signatured_type,
4360 we can go from a pointer to one to a pointer to the other. */
4361 sig_type = (struct signatured_type *) this_cu;
4362 gdb_assert (sig_type->signature == signature);
4363 gdb_assert (sig_type->type_offset_in_tu.cu_off
4364 == type_offset_in_tu.cu_off);
4365 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4367 /* LENGTH has not been set yet for type units if we're
4368 using .gdb_index. */
4369 this_cu->length = get_cu_length (&cu->header);
4371 /* Establish the type offset that can be used to lookup the type. */
4372 sig_type->type_offset_in_section.sect_off =
4373 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4377 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4381 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4382 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4386 /* Skip dummy compilation units. */
4387 if (info_ptr >= begin_info_ptr + this_cu->length
4388 || peek_abbrev_code (abfd, info_ptr) == 0)
4390 do_cleanups (cleanups);
4394 /* If we don't have them yet, read the abbrevs for this compilation unit.
4395 And if we need to read them now, make sure they're freed when we're
4396 done. Note that it's important that if the CU had an abbrev table
4397 on entry we don't free it when we're done: Somewhere up the call stack
4398 it may be in use. */
4399 if (abbrev_table != NULL)
4401 gdb_assert (cu->abbrev_table == NULL);
4402 gdb_assert (cu->header.abbrev_offset.sect_off
4403 == abbrev_table->offset.sect_off);
4404 cu->abbrev_table = abbrev_table;
4406 else if (cu->abbrev_table == NULL)
4408 dwarf2_read_abbrevs (cu, abbrev_section);
4409 make_cleanup (dwarf2_free_abbrev_table, cu);
4411 else if (rereading_dwo_cu)
4413 dwarf2_free_abbrev_table (cu);
4414 dwarf2_read_abbrevs (cu, abbrev_section);
4417 /* Read the top level CU/TU die. */
4418 init_cu_die_reader (&reader, cu, section, NULL);
4419 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4421 /* If we have a DWO stub, process it and then read in the DWO file.
4422 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4423 a DWO CU, that this test will fail. */
4424 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4427 char *dwo_name = DW_STRING (attr);
4428 const char *comp_dir_string;
4429 struct dwo_unit *dwo_unit;
4430 ULONGEST signature; /* Or dwo_id. */
4431 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4432 int i,num_extra_attrs;
4433 struct dwarf2_section_info *dwo_abbrev_section;
4436 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4437 " has children (offset 0x%x) [in module %s]"),
4438 this_cu->offset.sect_off, bfd_get_filename (abfd));
4440 /* These attributes aren't processed until later:
4441 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4442 However, the attribute is found in the stub which we won't have later.
4443 In order to not impose this complication on the rest of the code,
4444 we read them here and copy them to the DWO CU/TU die. */
4446 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4449 if (! this_cu->is_debug_types)
4450 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4451 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4452 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4453 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4454 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4456 /* There should be a DW_AT_addr_base attribute here (if needed).
4457 We need the value before we can process DW_FORM_GNU_addr_index. */
4459 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4461 cu->addr_base = DW_UNSND (attr);
4463 /* There should be a DW_AT_ranges_base attribute here (if needed).
4464 We need the value before we can process DW_AT_ranges. */
4465 cu->ranges_base = 0;
4466 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4468 cu->ranges_base = DW_UNSND (attr);
4470 if (this_cu->is_debug_types)
4472 gdb_assert (sig_type != NULL);
4473 signature = sig_type->signature;
4477 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4479 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4481 signature = DW_UNSND (attr);
4484 /* We may need the comp_dir in order to find the DWO file. */
4485 comp_dir_string = NULL;
4487 comp_dir_string = DW_STRING (comp_dir);
4489 if (this_cu->is_debug_types)
4490 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4492 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4495 if (dwo_unit == NULL)
4497 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4498 " with ID %s [in module %s]"),
4499 this_cu->offset.sect_off,
4500 phex (signature, sizeof (signature)),
4504 /* Set up for reading the DWO CU/TU. */
4505 cu->dwo_unit = dwo_unit;
4506 section = dwo_unit->info_or_types_section;
4507 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4508 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4509 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4511 if (this_cu->is_debug_types)
4515 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4519 gdb_assert (sig_type->signature == signature);
4520 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4521 gdb_assert (dwo_unit->length == get_cu_length (&cu->header));
4523 /* Establish the type offset that can be used to lookup the type.
4524 For DWO files, we don't know it until now. */
4525 sig_type->type_offset_in_section.sect_off =
4526 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4530 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4533 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4534 gdb_assert (dwo_unit->length == get_cu_length (&cu->header));
4537 /* Discard the original CU's abbrev table, and read the DWO's. */
4538 if (abbrev_table == NULL)
4540 dwarf2_free_abbrev_table (cu);
4541 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4545 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4546 make_cleanup (dwarf2_free_abbrev_table, cu);
4549 /* Read in the die, but leave space to copy over the attributes
4550 from the stub. This has the benefit of simplifying the rest of
4551 the code - all the real work is done here. */
4552 num_extra_attrs = ((stmt_list != NULL)
4556 + (comp_dir != NULL));
4557 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4558 &has_children, num_extra_attrs);
4560 /* Copy over the attributes from the stub to the DWO die. */
4561 i = comp_unit_die->num_attrs;
4562 if (stmt_list != NULL)
4563 comp_unit_die->attrs[i++] = *stmt_list;
4565 comp_unit_die->attrs[i++] = *low_pc;
4566 if (high_pc != NULL)
4567 comp_unit_die->attrs[i++] = *high_pc;
4569 comp_unit_die->attrs[i++] = *ranges;
4570 if (comp_dir != NULL)
4571 comp_unit_die->attrs[i++] = *comp_dir;
4572 comp_unit_die->num_attrs += num_extra_attrs;
4574 /* Skip dummy compilation units. */
4575 if (info_ptr >= begin_info_ptr + dwo_unit->length
4576 || peek_abbrev_code (abfd, info_ptr) == 0)
4578 do_cleanups (cleanups);
4583 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4585 if (free_cu_cleanup != NULL)
4589 /* We've successfully allocated this compilation unit. Let our
4590 caller clean it up when finished with it. */
4591 discard_cleanups (free_cu_cleanup);
4593 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4594 So we have to manually free the abbrev table. */
4595 dwarf2_free_abbrev_table (cu);
4597 /* Link this CU into read_in_chain. */
4598 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4599 dwarf2_per_objfile->read_in_chain = this_cu;
4602 do_cleanups (free_cu_cleanup);
4605 do_cleanups (cleanups);
4608 /* Read CU/TU THIS_CU in section SECTION,
4609 but do not follow DW_AT_GNU_dwo_name if present.
4610 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed to
4611 have already done the lookup to find the DWO file).
4613 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4614 THIS_CU->is_debug_types, but nothing else.
4616 We fill in THIS_CU->length.
4618 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4619 linker) then DIE_READER_FUNC will not get called.
4621 THIS_CU->cu is always freed when done.
4622 This is done in order to not leave THIS_CU->cu in a state where we have
4623 to care whether it refers to the "main" CU or the DWO CU. */
4626 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4627 struct dwarf2_section_info *abbrev_section,
4628 struct dwo_file *dwo_file,
4629 die_reader_func_ftype *die_reader_func,
4632 struct objfile *objfile = dwarf2_per_objfile->objfile;
4633 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4634 bfd *abfd = section->asection->owner;
4635 struct dwarf2_cu cu;
4636 gdb_byte *begin_info_ptr, *info_ptr;
4637 struct die_reader_specs reader;
4638 struct cleanup *cleanups;
4639 struct die_info *comp_unit_die;
4642 if (dwarf2_die_debug)
4643 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4644 this_cu->is_debug_types ? "type" : "comp",
4645 this_cu->offset.sect_off);
4647 gdb_assert (this_cu->cu == NULL);
4649 /* This is cheap if the section is already read in. */
4650 dwarf2_read_section (objfile, section);
4652 init_one_comp_unit (&cu, this_cu);
4654 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4656 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4657 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4658 abbrev_section, info_ptr,
4659 this_cu->is_debug_types);
4661 this_cu->length = get_cu_length (&cu.header);
4663 /* Skip dummy compilation units. */
4664 if (info_ptr >= begin_info_ptr + this_cu->length
4665 || peek_abbrev_code (abfd, info_ptr) == 0)
4667 do_cleanups (cleanups);
4671 dwarf2_read_abbrevs (&cu, abbrev_section);
4672 make_cleanup (dwarf2_free_abbrev_table, &cu);
4674 init_cu_die_reader (&reader, &cu, section, dwo_file);
4675 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4677 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4679 do_cleanups (cleanups);
4682 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4683 does not lookup the specified DWO file.
4684 This cannot be used to read DWO files.
4686 THIS_CU->cu is always freed when done.
4687 This is done in order to not leave THIS_CU->cu in a state where we have
4688 to care whether it refers to the "main" CU or the DWO CU.
4689 We can revisit this if the data shows there's a performance issue. */
4692 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4693 die_reader_func_ftype *die_reader_func,
4696 init_cutu_and_read_dies_no_follow (this_cu,
4697 get_abbrev_section_for_cu (this_cu),
4699 die_reader_func, data);
4702 /* Create a psymtab named NAME and assign it to PER_CU.
4704 The caller must fill in the following details:
4705 dirname, textlow, texthigh. */
4707 static struct partial_symtab *
4708 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4710 struct objfile *objfile = per_cu->objfile;
4711 struct partial_symtab *pst;
4713 pst = start_psymtab_common (objfile, objfile->section_offsets,
4715 objfile->global_psymbols.next,
4716 objfile->static_psymbols.next);
4718 pst->psymtabs_addrmap_supported = 1;
4720 /* This is the glue that links PST into GDB's symbol API. */
4721 pst->read_symtab_private = per_cu;
4722 pst->read_symtab = dwarf2_psymtab_to_symtab;
4723 per_cu->v.psymtab = pst;
4728 /* die_reader_func for process_psymtab_comp_unit. */
4731 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4733 struct die_info *comp_unit_die,
4737 struct dwarf2_cu *cu = reader->cu;
4738 struct objfile *objfile = cu->objfile;
4739 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4740 struct attribute *attr;
4742 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4743 struct partial_symtab *pst;
4745 const char *filename;
4746 int *want_partial_unit_ptr = data;
4748 if (comp_unit_die->tag == DW_TAG_partial_unit
4749 && (want_partial_unit_ptr == NULL
4750 || !*want_partial_unit_ptr))
4753 gdb_assert (! per_cu->is_debug_types);
4755 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4757 cu->list_in_scope = &file_symbols;
4759 /* Allocate a new partial symbol table structure. */
4760 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4761 if (attr == NULL || !DW_STRING (attr))
4764 filename = DW_STRING (attr);
4766 pst = create_partial_symtab (per_cu, filename);
4768 /* This must be done before calling dwarf2_build_include_psymtabs. */
4769 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4771 pst->dirname = DW_STRING (attr);
4773 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4775 dwarf2_find_base_address (comp_unit_die, cu);
4777 /* Possibly set the default values of LOWPC and HIGHPC from
4779 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4780 &best_highpc, cu, pst);
4781 if (has_pc_info == 1 && best_lowpc < best_highpc)
4782 /* Store the contiguous range if it is not empty; it can be empty for
4783 CUs with no code. */
4784 addrmap_set_empty (objfile->psymtabs_addrmap,
4785 best_lowpc + baseaddr,
4786 best_highpc + baseaddr - 1, pst);
4788 /* Check if comp unit has_children.
4789 If so, read the rest of the partial symbols from this comp unit.
4790 If not, there's no more debug_info for this comp unit. */
4793 struct partial_die_info *first_die;
4794 CORE_ADDR lowpc, highpc;
4796 lowpc = ((CORE_ADDR) -1);
4797 highpc = ((CORE_ADDR) 0);
4799 first_die = load_partial_dies (reader, info_ptr, 1);
4801 scan_partial_symbols (first_die, &lowpc, &highpc,
4804 /* If we didn't find a lowpc, set it to highpc to avoid
4805 complaints from `maint check'. */
4806 if (lowpc == ((CORE_ADDR) -1))
4809 /* If the compilation unit didn't have an explicit address range,
4810 then use the information extracted from its child dies. */
4814 best_highpc = highpc;
4817 pst->textlow = best_lowpc + baseaddr;
4818 pst->texthigh = best_highpc + baseaddr;
4820 pst->n_global_syms = objfile->global_psymbols.next -
4821 (objfile->global_psymbols.list + pst->globals_offset);
4822 pst->n_static_syms = objfile->static_psymbols.next -
4823 (objfile->static_psymbols.list + pst->statics_offset);
4824 sort_pst_symbols (pst);
4826 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
4829 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4830 struct dwarf2_per_cu_data *iter;
4832 /* Fill in 'dependencies' here; we fill in 'users' in a
4834 pst->number_of_dependencies = len;
4835 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4836 len * sizeof (struct symtab *));
4838 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
4841 pst->dependencies[i] = iter->v.psymtab;
4843 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4846 /* Get the list of files included in the current compilation unit,
4847 and build a psymtab for each of them. */
4848 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4850 if (dwarf2_read_debug)
4852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4854 fprintf_unfiltered (gdb_stdlog,
4855 "Psymtab for %s unit @0x%x: 0x%s - 0x%s"
4856 ", %d global, %d static syms\n",
4857 per_cu->is_debug_types ? "type" : "comp",
4858 per_cu->offset.sect_off,
4859 paddress (gdbarch, pst->textlow),
4860 paddress (gdbarch, pst->texthigh),
4861 pst->n_global_syms, pst->n_static_syms);
4865 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4866 Process compilation unit THIS_CU for a psymtab. */
4869 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4870 int want_partial_unit)
4872 /* If this compilation unit was already read in, free the
4873 cached copy in order to read it in again. This is
4874 necessary because we skipped some symbols when we first
4875 read in the compilation unit (see load_partial_dies).
4876 This problem could be avoided, but the benefit is unclear. */
4877 if (this_cu->cu != NULL)
4878 free_one_cached_comp_unit (this_cu);
4880 gdb_assert (! this_cu->is_debug_types);
4881 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
4882 process_psymtab_comp_unit_reader,
4883 &want_partial_unit);
4885 /* Age out any secondary CUs. */
4886 age_cached_comp_units ();
4890 hash_type_unit_group (const void *item)
4892 const struct type_unit_group *tu_group = item;
4894 return hash_stmt_list_entry (&tu_group->hash);
4898 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4900 const struct type_unit_group *lhs = item_lhs;
4901 const struct type_unit_group *rhs = item_rhs;
4903 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4906 /* Allocate a hash table for type unit groups. */
4909 allocate_type_unit_groups_table (void)
4911 return htab_create_alloc_ex (3,
4912 hash_type_unit_group,
4915 &dwarf2_per_objfile->objfile->objfile_obstack,
4916 hashtab_obstack_allocate,
4917 dummy_obstack_deallocate);
4920 /* Type units that don't have DW_AT_stmt_list are grouped into their own
4921 partial symtabs. We combine several TUs per psymtab to not let the size
4922 of any one psymtab grow too big. */
4923 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
4924 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
4926 /* Helper routine for get_type_unit_group.
4927 Create the type_unit_group object used to hold one or more TUs. */
4929 static struct type_unit_group *
4930 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
4932 struct objfile *objfile = dwarf2_per_objfile->objfile;
4933 struct dwarf2_per_cu_data *per_cu;
4934 struct type_unit_group *tu_group;
4936 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4937 struct type_unit_group);
4938 per_cu = &tu_group->per_cu;
4939 per_cu->objfile = objfile;
4940 per_cu->is_debug_types = 1;
4941 per_cu->s.type_unit_group = tu_group;
4943 if (dwarf2_per_objfile->using_index)
4945 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4946 struct dwarf2_per_cu_quick_data);
4947 tu_group->t.first_tu = cu->per_cu;
4951 unsigned int line_offset = line_offset_struct.sect_off;
4952 struct partial_symtab *pst;
4955 /* Give the symtab a useful name for debug purposes. */
4956 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
4957 name = xstrprintf ("<type_units_%d>",
4958 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
4960 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
4962 pst = create_partial_symtab (per_cu, name);
4968 tu_group->hash.dwo_unit = cu->dwo_unit;
4969 tu_group->hash.line_offset = line_offset_struct;
4974 /* Look up the type_unit_group for type unit CU, and create it if necessary.
4975 STMT_LIST is a DW_AT_stmt_list attribute. */
4977 static struct type_unit_group *
4978 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
4980 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
4981 struct type_unit_group *tu_group;
4983 unsigned int line_offset;
4984 struct type_unit_group type_unit_group_for_lookup;
4986 if (dwarf2_per_objfile->type_unit_groups == NULL)
4988 dwarf2_per_objfile->type_unit_groups =
4989 allocate_type_unit_groups_table ();
4992 /* Do we need to create a new group, or can we use an existing one? */
4996 line_offset = DW_UNSND (stmt_list);
4997 ++tu_stats->nr_symtab_sharers;
5001 /* Ugh, no stmt_list. Rare, but we have to handle it.
5002 We can do various things here like create one group per TU or
5003 spread them over multiple groups to split up the expansion work.
5004 To avoid worst case scenarios (too many groups or too large groups)
5005 we, umm, group them in bunches. */
5006 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5007 | (tu_stats->nr_stmt_less_type_units
5008 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5009 ++tu_stats->nr_stmt_less_type_units;
5012 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5013 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5014 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5015 &type_unit_group_for_lookup, INSERT);
5019 gdb_assert (tu_group != NULL);
5023 sect_offset line_offset_struct;
5025 line_offset_struct.sect_off = line_offset;
5026 tu_group = create_type_unit_group (cu, line_offset_struct);
5028 ++tu_stats->nr_symtabs;
5034 /* Struct used to sort TUs by their abbreviation table offset. */
5036 struct tu_abbrev_offset
5038 struct signatured_type *sig_type;
5039 sect_offset abbrev_offset;
5042 /* Helper routine for build_type_unit_groups, passed to qsort. */
5045 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5047 const struct tu_abbrev_offset * const *a = ap;
5048 const struct tu_abbrev_offset * const *b = bp;
5049 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5050 unsigned int boff = (*b)->abbrev_offset.sect_off;
5052 return (aoff > boff) - (aoff < boff);
5055 /* A helper function to add a type_unit_group to a table. */
5058 add_type_unit_group_to_table (void **slot, void *datum)
5060 struct type_unit_group *tu_group = *slot;
5061 struct type_unit_group ***datap = datum;
5069 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5070 each one passing FUNC,DATA.
5072 The efficiency is because we sort TUs by the abbrev table they use and
5073 only read each abbrev table once. In one program there are 200K TUs
5074 sharing 8K abbrev tables.
5076 The main purpose of this function is to support building the
5077 dwarf2_per_objfile->type_unit_groups table.
5078 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5079 can collapse the search space by grouping them by stmt_list.
5080 The savings can be significant, in the same program from above the 200K TUs
5081 share 8K stmt_list tables.
5083 FUNC is expected to call get_type_unit_group, which will create the
5084 struct type_unit_group if necessary and add it to
5085 dwarf2_per_objfile->type_unit_groups. */
5088 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5090 struct objfile *objfile = dwarf2_per_objfile->objfile;
5091 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5092 struct cleanup *cleanups;
5093 struct abbrev_table *abbrev_table;
5094 sect_offset abbrev_offset;
5095 struct tu_abbrev_offset *sorted_by_abbrev;
5096 struct type_unit_group **iter;
5099 /* It's up to the caller to not call us multiple times. */
5100 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5102 if (dwarf2_per_objfile->n_type_units == 0)
5105 /* TUs typically share abbrev tables, and there can be way more TUs than
5106 abbrev tables. Sort by abbrev table to reduce the number of times we
5107 read each abbrev table in.
5108 Alternatives are to punt or to maintain a cache of abbrev tables.
5109 This is simpler and efficient enough for now.
5111 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5112 symtab to use). Typically TUs with the same abbrev offset have the same
5113 stmt_list value too so in practice this should work well.
5115 The basic algorithm here is:
5117 sort TUs by abbrev table
5118 for each TU with same abbrev table:
5119 read abbrev table if first user
5120 read TU top level DIE
5121 [IWBN if DWO skeletons had DW_AT_stmt_list]
5124 if (dwarf2_read_debug)
5125 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5127 /* Sort in a separate table to maintain the order of all_type_units
5128 for .gdb_index: TU indices directly index all_type_units. */
5129 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5130 dwarf2_per_objfile->n_type_units);
5131 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5133 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5135 sorted_by_abbrev[i].sig_type = sig_type;
5136 sorted_by_abbrev[i].abbrev_offset =
5137 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5138 sig_type->per_cu.offset);
5140 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5141 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5142 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5144 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5145 called any number of times, so we don't reset tu_stats here. */
5147 abbrev_offset.sect_off = ~(unsigned) 0;
5148 abbrev_table = NULL;
5149 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5151 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5153 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5155 /* Switch to the next abbrev table if necessary. */
5156 if (abbrev_table == NULL
5157 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5159 if (abbrev_table != NULL)
5161 abbrev_table_free (abbrev_table);
5162 /* Reset to NULL in case abbrev_table_read_table throws
5163 an error: abbrev_table_free_cleanup will get called. */
5164 abbrev_table = NULL;
5166 abbrev_offset = tu->abbrev_offset;
5168 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5170 ++tu_stats->nr_uniq_abbrev_tables;
5173 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5177 /* Create a vector of pointers to primary type units to make it easy to
5178 iterate over them and CUs. See dw2_get_primary_cu. */
5179 dwarf2_per_objfile->n_type_unit_groups =
5180 htab_elements (dwarf2_per_objfile->type_unit_groups);
5181 dwarf2_per_objfile->all_type_unit_groups =
5182 obstack_alloc (&objfile->objfile_obstack,
5183 dwarf2_per_objfile->n_type_unit_groups
5184 * sizeof (struct type_unit_group *));
5185 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5186 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5187 add_type_unit_group_to_table, &iter);
5188 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5189 == dwarf2_per_objfile->n_type_unit_groups);
5191 do_cleanups (cleanups);
5193 if (dwarf2_read_debug)
5195 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5196 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5197 dwarf2_per_objfile->n_type_units);
5198 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5199 tu_stats->nr_uniq_abbrev_tables);
5200 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5201 tu_stats->nr_symtabs);
5202 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5203 tu_stats->nr_symtab_sharers);
5204 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5205 tu_stats->nr_stmt_less_type_units);
5209 /* Reader function for build_type_psymtabs. */
5212 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5214 struct die_info *type_unit_die,
5218 struct objfile *objfile = dwarf2_per_objfile->objfile;
5219 struct dwarf2_cu *cu = reader->cu;
5220 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5221 struct type_unit_group *tu_group;
5222 struct attribute *attr;
5223 struct partial_die_info *first_die;
5224 CORE_ADDR lowpc, highpc;
5225 struct partial_symtab *pst;
5227 gdb_assert (data == NULL);
5232 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5233 tu_group = get_type_unit_group (cu, attr);
5235 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5237 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5238 cu->list_in_scope = &file_symbols;
5239 pst = create_partial_symtab (per_cu, "");
5242 first_die = load_partial_dies (reader, info_ptr, 1);
5244 lowpc = (CORE_ADDR) -1;
5245 highpc = (CORE_ADDR) 0;
5246 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5248 pst->n_global_syms = objfile->global_psymbols.next -
5249 (objfile->global_psymbols.list + pst->globals_offset);
5250 pst->n_static_syms = objfile->static_psymbols.next -
5251 (objfile->static_psymbols.list + pst->statics_offset);
5252 sort_pst_symbols (pst);
5255 /* Traversal function for build_type_psymtabs. */
5258 build_type_psymtab_dependencies (void **slot, void *info)
5260 struct objfile *objfile = dwarf2_per_objfile->objfile;
5261 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5262 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5263 struct partial_symtab *pst = per_cu->v.psymtab;
5264 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5265 struct dwarf2_per_cu_data *iter;
5268 gdb_assert (len > 0);
5270 pst->number_of_dependencies = len;
5271 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5272 len * sizeof (struct psymtab *));
5274 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5277 pst->dependencies[i] = iter->v.psymtab;
5278 iter->s.type_unit_group = tu_group;
5281 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5286 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5287 Build partial symbol tables for the .debug_types comp-units. */
5290 build_type_psymtabs (struct objfile *objfile)
5292 if (! create_all_type_units (objfile))
5295 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5297 /* Now that all TUs have been processed we can fill in the dependencies. */
5298 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5299 build_type_psymtab_dependencies, NULL);
5302 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5305 psymtabs_addrmap_cleanup (void *o)
5307 struct objfile *objfile = o;
5309 objfile->psymtabs_addrmap = NULL;
5312 /* Compute the 'user' field for each psymtab in OBJFILE. */
5315 set_partial_user (struct objfile *objfile)
5319 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5321 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5322 struct partial_symtab *pst = per_cu->v.psymtab;
5328 for (j = 0; j < pst->number_of_dependencies; ++j)
5330 /* Set the 'user' field only if it is not already set. */
5331 if (pst->dependencies[j]->user == NULL)
5332 pst->dependencies[j]->user = pst;
5337 /* Build the partial symbol table by doing a quick pass through the
5338 .debug_info and .debug_abbrev sections. */
5341 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5343 struct cleanup *back_to, *addrmap_cleanup;
5344 struct obstack temp_obstack;
5347 if (dwarf2_read_debug)
5349 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5353 dwarf2_per_objfile->reading_partial_symbols = 1;
5355 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5357 /* Any cached compilation units will be linked by the per-objfile
5358 read_in_chain. Make sure to free them when we're done. */
5359 back_to = make_cleanup (free_cached_comp_units, NULL);
5361 build_type_psymtabs (objfile);
5363 create_all_comp_units (objfile);
5365 /* Create a temporary address map on a temporary obstack. We later
5366 copy this to the final obstack. */
5367 obstack_init (&temp_obstack);
5368 make_cleanup_obstack_free (&temp_obstack);
5369 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5370 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5372 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5374 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5376 process_psymtab_comp_unit (per_cu, 0);
5379 set_partial_user (objfile);
5381 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5382 &objfile->objfile_obstack);
5383 discard_cleanups (addrmap_cleanup);
5385 do_cleanups (back_to);
5387 if (dwarf2_read_debug)
5388 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5392 /* die_reader_func for load_partial_comp_unit. */
5395 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5397 struct die_info *comp_unit_die,
5401 struct dwarf2_cu *cu = reader->cu;
5403 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5405 /* Check if comp unit has_children.
5406 If so, read the rest of the partial symbols from this comp unit.
5407 If not, there's no more debug_info for this comp unit. */
5409 load_partial_dies (reader, info_ptr, 0);
5412 /* Load the partial DIEs for a secondary CU into memory.
5413 This is also used when rereading a primary CU with load_all_dies. */
5416 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5418 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5419 load_partial_comp_unit_reader, NULL);
5423 read_comp_units_from_section (struct objfile *objfile,
5424 struct dwarf2_section_info *section,
5425 unsigned int is_dwz,
5428 struct dwarf2_per_cu_data ***all_comp_units)
5431 bfd *abfd = section->asection->owner;
5433 dwarf2_read_section (objfile, section);
5435 info_ptr = section->buffer;
5437 while (info_ptr < section->buffer + section->size)
5439 unsigned int length, initial_length_size;
5440 struct dwarf2_per_cu_data *this_cu;
5443 offset.sect_off = info_ptr - section->buffer;
5445 /* Read just enough information to find out where the next
5446 compilation unit is. */
5447 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5449 /* Save the compilation unit for later lookup. */
5450 this_cu = obstack_alloc (&objfile->objfile_obstack,
5451 sizeof (struct dwarf2_per_cu_data));
5452 memset (this_cu, 0, sizeof (*this_cu));
5453 this_cu->offset = offset;
5454 this_cu->length = length + initial_length_size;
5455 this_cu->is_dwz = is_dwz;
5456 this_cu->objfile = objfile;
5457 this_cu->info_or_types_section = section;
5459 if (*n_comp_units == *n_allocated)
5462 *all_comp_units = xrealloc (*all_comp_units,
5464 * sizeof (struct dwarf2_per_cu_data *));
5466 (*all_comp_units)[*n_comp_units] = this_cu;
5469 info_ptr = info_ptr + this_cu->length;
5473 /* Create a list of all compilation units in OBJFILE.
5474 This is only done for -readnow and building partial symtabs. */
5477 create_all_comp_units (struct objfile *objfile)
5481 struct dwarf2_per_cu_data **all_comp_units;
5485 all_comp_units = xmalloc (n_allocated
5486 * sizeof (struct dwarf2_per_cu_data *));
5488 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5489 &n_allocated, &n_comp_units, &all_comp_units);
5491 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5493 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5495 read_comp_units_from_section (objfile, &dwz->info, 1,
5496 &n_allocated, &n_comp_units,
5500 dwarf2_per_objfile->all_comp_units
5501 = obstack_alloc (&objfile->objfile_obstack,
5502 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5503 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5504 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5505 xfree (all_comp_units);
5506 dwarf2_per_objfile->n_comp_units = n_comp_units;
5509 /* Process all loaded DIEs for compilation unit CU, starting at
5510 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5511 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5512 DW_AT_ranges). If NEED_PC is set, then this function will set
5513 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5514 and record the covered ranges in the addrmap. */
5517 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5518 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5520 struct partial_die_info *pdi;
5522 /* Now, march along the PDI's, descending into ones which have
5523 interesting children but skipping the children of the other ones,
5524 until we reach the end of the compilation unit. */
5530 fixup_partial_die (pdi, cu);
5532 /* Anonymous namespaces or modules have no name but have interesting
5533 children, so we need to look at them. Ditto for anonymous
5536 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5537 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5538 || pdi->tag == DW_TAG_imported_unit)
5542 case DW_TAG_subprogram:
5543 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5545 case DW_TAG_constant:
5546 case DW_TAG_variable:
5547 case DW_TAG_typedef:
5548 case DW_TAG_union_type:
5549 if (!pdi->is_declaration)
5551 add_partial_symbol (pdi, cu);
5554 case DW_TAG_class_type:
5555 case DW_TAG_interface_type:
5556 case DW_TAG_structure_type:
5557 if (!pdi->is_declaration)
5559 add_partial_symbol (pdi, cu);
5562 case DW_TAG_enumeration_type:
5563 if (!pdi->is_declaration)
5564 add_partial_enumeration (pdi, cu);
5566 case DW_TAG_base_type:
5567 case DW_TAG_subrange_type:
5568 /* File scope base type definitions are added to the partial
5570 add_partial_symbol (pdi, cu);
5572 case DW_TAG_namespace:
5573 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5576 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5578 case DW_TAG_imported_unit:
5580 struct dwarf2_per_cu_data *per_cu;
5582 /* For now we don't handle imported units in type units. */
5583 if (cu->per_cu->is_debug_types)
5585 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5586 " supported in type units [in module %s]"),
5590 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5594 /* Go read the partial unit, if needed. */
5595 if (per_cu->v.psymtab == NULL)
5596 process_psymtab_comp_unit (per_cu, 1);
5598 VEC_safe_push (dwarf2_per_cu_ptr,
5599 cu->per_cu->s.imported_symtabs, per_cu);
5607 /* If the die has a sibling, skip to the sibling. */
5609 pdi = pdi->die_sibling;
5613 /* Functions used to compute the fully scoped name of a partial DIE.
5615 Normally, this is simple. For C++, the parent DIE's fully scoped
5616 name is concatenated with "::" and the partial DIE's name. For
5617 Java, the same thing occurs except that "." is used instead of "::".
5618 Enumerators are an exception; they use the scope of their parent
5619 enumeration type, i.e. the name of the enumeration type is not
5620 prepended to the enumerator.
5622 There are two complexities. One is DW_AT_specification; in this
5623 case "parent" means the parent of the target of the specification,
5624 instead of the direct parent of the DIE. The other is compilers
5625 which do not emit DW_TAG_namespace; in this case we try to guess
5626 the fully qualified name of structure types from their members'
5627 linkage names. This must be done using the DIE's children rather
5628 than the children of any DW_AT_specification target. We only need
5629 to do this for structures at the top level, i.e. if the target of
5630 any DW_AT_specification (if any; otherwise the DIE itself) does not
5633 /* Compute the scope prefix associated with PDI's parent, in
5634 compilation unit CU. The result will be allocated on CU's
5635 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5636 field. NULL is returned if no prefix is necessary. */
5638 partial_die_parent_scope (struct partial_die_info *pdi,
5639 struct dwarf2_cu *cu)
5641 char *grandparent_scope;
5642 struct partial_die_info *parent, *real_pdi;
5644 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5645 then this means the parent of the specification DIE. */
5648 while (real_pdi->has_specification)
5649 real_pdi = find_partial_die (real_pdi->spec_offset,
5650 real_pdi->spec_is_dwz, cu);
5652 parent = real_pdi->die_parent;
5656 if (parent->scope_set)
5657 return parent->scope;
5659 fixup_partial_die (parent, cu);
5661 grandparent_scope = partial_die_parent_scope (parent, cu);
5663 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5664 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5665 Work around this problem here. */
5666 if (cu->language == language_cplus
5667 && parent->tag == DW_TAG_namespace
5668 && strcmp (parent->name, "::") == 0
5669 && grandparent_scope == NULL)
5671 parent->scope = NULL;
5672 parent->scope_set = 1;
5676 if (pdi->tag == DW_TAG_enumerator)
5677 /* Enumerators should not get the name of the enumeration as a prefix. */
5678 parent->scope = grandparent_scope;
5679 else if (parent->tag == DW_TAG_namespace
5680 || parent->tag == DW_TAG_module
5681 || parent->tag == DW_TAG_structure_type
5682 || parent->tag == DW_TAG_class_type
5683 || parent->tag == DW_TAG_interface_type
5684 || parent->tag == DW_TAG_union_type
5685 || parent->tag == DW_TAG_enumeration_type)
5687 if (grandparent_scope == NULL)
5688 parent->scope = parent->name;
5690 parent->scope = typename_concat (&cu->comp_unit_obstack,
5692 parent->name, 0, cu);
5696 /* FIXME drow/2004-04-01: What should we be doing with
5697 function-local names? For partial symbols, we should probably be
5699 complaint (&symfile_complaints,
5700 _("unhandled containing DIE tag %d for DIE at %d"),
5701 parent->tag, pdi->offset.sect_off);
5702 parent->scope = grandparent_scope;
5705 parent->scope_set = 1;
5706 return parent->scope;
5709 /* Return the fully scoped name associated with PDI, from compilation unit
5710 CU. The result will be allocated with malloc. */
5713 partial_die_full_name (struct partial_die_info *pdi,
5714 struct dwarf2_cu *cu)
5718 /* If this is a template instantiation, we can not work out the
5719 template arguments from partial DIEs. So, unfortunately, we have
5720 to go through the full DIEs. At least any work we do building
5721 types here will be reused if full symbols are loaded later. */
5722 if (pdi->has_template_arguments)
5724 fixup_partial_die (pdi, cu);
5726 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5728 struct die_info *die;
5729 struct attribute attr;
5730 struct dwarf2_cu *ref_cu = cu;
5732 /* DW_FORM_ref_addr is using section offset. */
5734 attr.form = DW_FORM_ref_addr;
5735 attr.u.unsnd = pdi->offset.sect_off;
5736 die = follow_die_ref (NULL, &attr, &ref_cu);
5738 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5742 parent_scope = partial_die_parent_scope (pdi, cu);
5743 if (parent_scope == NULL)
5746 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5750 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5752 struct objfile *objfile = cu->objfile;
5754 char *actual_name = NULL;
5756 int built_actual_name = 0;
5758 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5760 actual_name = partial_die_full_name (pdi, cu);
5762 built_actual_name = 1;
5764 if (actual_name == NULL)
5765 actual_name = pdi->name;
5769 case DW_TAG_subprogram:
5770 if (pdi->is_external || cu->language == language_ada)
5772 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5773 of the global scope. But in Ada, we want to be able to access
5774 nested procedures globally. So all Ada subprograms are stored
5775 in the global scope. */
5776 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5777 mst_text, objfile); */
5778 add_psymbol_to_list (actual_name, strlen (actual_name),
5780 VAR_DOMAIN, LOC_BLOCK,
5781 &objfile->global_psymbols,
5782 0, pdi->lowpc + baseaddr,
5783 cu->language, objfile);
5787 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5788 mst_file_text, objfile); */
5789 add_psymbol_to_list (actual_name, strlen (actual_name),
5791 VAR_DOMAIN, LOC_BLOCK,
5792 &objfile->static_psymbols,
5793 0, pdi->lowpc + baseaddr,
5794 cu->language, objfile);
5797 case DW_TAG_constant:
5799 struct psymbol_allocation_list *list;
5801 if (pdi->is_external)
5802 list = &objfile->global_psymbols;
5804 list = &objfile->static_psymbols;
5805 add_psymbol_to_list (actual_name, strlen (actual_name),
5806 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5807 list, 0, 0, cu->language, objfile);
5810 case DW_TAG_variable:
5812 addr = decode_locdesc (pdi->d.locdesc, cu);
5816 && !dwarf2_per_objfile->has_section_at_zero)
5818 /* A global or static variable may also have been stripped
5819 out by the linker if unused, in which case its address
5820 will be nullified; do not add such variables into partial
5821 symbol table then. */
5823 else if (pdi->is_external)
5826 Don't enter into the minimal symbol tables as there is
5827 a minimal symbol table entry from the ELF symbols already.
5828 Enter into partial symbol table if it has a location
5829 descriptor or a type.
5830 If the location descriptor is missing, new_symbol will create
5831 a LOC_UNRESOLVED symbol, the address of the variable will then
5832 be determined from the minimal symbol table whenever the variable
5834 The address for the partial symbol table entry is not
5835 used by GDB, but it comes in handy for debugging partial symbol
5838 if (pdi->d.locdesc || pdi->has_type)
5839 add_psymbol_to_list (actual_name, strlen (actual_name),
5841 VAR_DOMAIN, LOC_STATIC,
5842 &objfile->global_psymbols,
5844 cu->language, objfile);
5848 /* Static Variable. Skip symbols without location descriptors. */
5849 if (pdi->d.locdesc == NULL)
5851 if (built_actual_name)
5852 xfree (actual_name);
5855 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
5856 mst_file_data, objfile); */
5857 add_psymbol_to_list (actual_name, strlen (actual_name),
5859 VAR_DOMAIN, LOC_STATIC,
5860 &objfile->static_psymbols,
5862 cu->language, objfile);
5865 case DW_TAG_typedef:
5866 case DW_TAG_base_type:
5867 case DW_TAG_subrange_type:
5868 add_psymbol_to_list (actual_name, strlen (actual_name),
5870 VAR_DOMAIN, LOC_TYPEDEF,
5871 &objfile->static_psymbols,
5872 0, (CORE_ADDR) 0, cu->language, objfile);
5874 case DW_TAG_namespace:
5875 add_psymbol_to_list (actual_name, strlen (actual_name),
5877 VAR_DOMAIN, LOC_TYPEDEF,
5878 &objfile->global_psymbols,
5879 0, (CORE_ADDR) 0, cu->language, objfile);
5881 case DW_TAG_class_type:
5882 case DW_TAG_interface_type:
5883 case DW_TAG_structure_type:
5884 case DW_TAG_union_type:
5885 case DW_TAG_enumeration_type:
5886 /* Skip external references. The DWARF standard says in the section
5887 about "Structure, Union, and Class Type Entries": "An incomplete
5888 structure, union or class type is represented by a structure,
5889 union or class entry that does not have a byte size attribute
5890 and that has a DW_AT_declaration attribute." */
5891 if (!pdi->has_byte_size && pdi->is_declaration)
5893 if (built_actual_name)
5894 xfree (actual_name);
5898 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
5899 static vs. global. */
5900 add_psymbol_to_list (actual_name, strlen (actual_name),
5902 STRUCT_DOMAIN, LOC_TYPEDEF,
5903 (cu->language == language_cplus
5904 || cu->language == language_java)
5905 ? &objfile->global_psymbols
5906 : &objfile->static_psymbols,
5907 0, (CORE_ADDR) 0, cu->language, objfile);
5910 case DW_TAG_enumerator:
5911 add_psymbol_to_list (actual_name, strlen (actual_name),
5913 VAR_DOMAIN, LOC_CONST,
5914 (cu->language == language_cplus
5915 || cu->language == language_java)
5916 ? &objfile->global_psymbols
5917 : &objfile->static_psymbols,
5918 0, (CORE_ADDR) 0, cu->language, objfile);
5924 if (built_actual_name)
5925 xfree (actual_name);
5928 /* Read a partial die corresponding to a namespace; also, add a symbol
5929 corresponding to that namespace to the symbol table. NAMESPACE is
5930 the name of the enclosing namespace. */
5933 add_partial_namespace (struct partial_die_info *pdi,
5934 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5935 int need_pc, struct dwarf2_cu *cu)
5937 /* Add a symbol for the namespace. */
5939 add_partial_symbol (pdi, cu);
5941 /* Now scan partial symbols in that namespace. */
5943 if (pdi->has_children)
5944 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
5947 /* Read a partial die corresponding to a Fortran module. */
5950 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
5951 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5953 /* Now scan partial symbols in that module. */
5955 if (pdi->has_children)
5956 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
5959 /* Read a partial die corresponding to a subprogram and create a partial
5960 symbol for that subprogram. When the CU language allows it, this
5961 routine also defines a partial symbol for each nested subprogram
5962 that this subprogram contains.
5964 DIE my also be a lexical block, in which case we simply search
5965 recursively for suprograms defined inside that lexical block.
5966 Again, this is only performed when the CU language allows this
5967 type of definitions. */
5970 add_partial_subprogram (struct partial_die_info *pdi,
5971 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5972 int need_pc, struct dwarf2_cu *cu)
5974 if (pdi->tag == DW_TAG_subprogram)
5976 if (pdi->has_pc_info)
5978 if (pdi->lowpc < *lowpc)
5979 *lowpc = pdi->lowpc;
5980 if (pdi->highpc > *highpc)
5981 *highpc = pdi->highpc;
5985 struct objfile *objfile = cu->objfile;
5987 baseaddr = ANOFFSET (objfile->section_offsets,
5988 SECT_OFF_TEXT (objfile));
5989 addrmap_set_empty (objfile->psymtabs_addrmap,
5990 pdi->lowpc + baseaddr,
5991 pdi->highpc - 1 + baseaddr,
5992 cu->per_cu->v.psymtab);
5996 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
5998 if (!pdi->is_declaration)
5999 /* Ignore subprogram DIEs that do not have a name, they are
6000 illegal. Do not emit a complaint at this point, we will
6001 do so when we convert this psymtab into a symtab. */
6003 add_partial_symbol (pdi, cu);
6007 if (! pdi->has_children)
6010 if (cu->language == language_ada)
6012 pdi = pdi->die_child;
6015 fixup_partial_die (pdi, cu);
6016 if (pdi->tag == DW_TAG_subprogram
6017 || pdi->tag == DW_TAG_lexical_block)
6018 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6019 pdi = pdi->die_sibling;
6024 /* Read a partial die corresponding to an enumeration type. */
6027 add_partial_enumeration (struct partial_die_info *enum_pdi,
6028 struct dwarf2_cu *cu)
6030 struct partial_die_info *pdi;
6032 if (enum_pdi->name != NULL)
6033 add_partial_symbol (enum_pdi, cu);
6035 pdi = enum_pdi->die_child;
6038 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6039 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6041 add_partial_symbol (pdi, cu);
6042 pdi = pdi->die_sibling;
6046 /* Return the initial uleb128 in the die at INFO_PTR. */
6049 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6051 unsigned int bytes_read;
6053 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6056 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6057 Return the corresponding abbrev, or NULL if the number is zero (indicating
6058 an empty DIE). In either case *BYTES_READ will be set to the length of
6059 the initial number. */
6061 static struct abbrev_info *
6062 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6063 struct dwarf2_cu *cu)
6065 bfd *abfd = cu->objfile->obfd;
6066 unsigned int abbrev_number;
6067 struct abbrev_info *abbrev;
6069 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6071 if (abbrev_number == 0)
6074 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6077 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6078 abbrev_number, bfd_get_filename (abfd));
6084 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6085 Returns a pointer to the end of a series of DIEs, terminated by an empty
6086 DIE. Any children of the skipped DIEs will also be skipped. */
6089 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6091 struct dwarf2_cu *cu = reader->cu;
6092 struct abbrev_info *abbrev;
6093 unsigned int bytes_read;
6097 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6099 return info_ptr + bytes_read;
6101 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6105 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6106 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6107 abbrev corresponding to that skipped uleb128 should be passed in
6108 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6112 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6113 struct abbrev_info *abbrev)
6115 unsigned int bytes_read;
6116 struct attribute attr;
6117 bfd *abfd = reader->abfd;
6118 struct dwarf2_cu *cu = reader->cu;
6119 gdb_byte *buffer = reader->buffer;
6120 const gdb_byte *buffer_end = reader->buffer_end;
6121 gdb_byte *start_info_ptr = info_ptr;
6122 unsigned int form, i;
6124 for (i = 0; i < abbrev->num_attrs; i++)
6126 /* The only abbrev we care about is DW_AT_sibling. */
6127 if (abbrev->attrs[i].name == DW_AT_sibling)
6129 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6130 if (attr.form == DW_FORM_ref_addr)
6131 complaint (&symfile_complaints,
6132 _("ignoring absolute DW_AT_sibling"));
6134 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6137 /* If it isn't DW_AT_sibling, skip this attribute. */
6138 form = abbrev->attrs[i].form;
6142 case DW_FORM_ref_addr:
6143 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6144 and later it is offset sized. */
6145 if (cu->header.version == 2)
6146 info_ptr += cu->header.addr_size;
6148 info_ptr += cu->header.offset_size;
6150 case DW_FORM_GNU_ref_alt:
6151 info_ptr += cu->header.offset_size;
6154 info_ptr += cu->header.addr_size;
6161 case DW_FORM_flag_present:
6173 case DW_FORM_ref_sig8:
6176 case DW_FORM_string:
6177 read_direct_string (abfd, info_ptr, &bytes_read);
6178 info_ptr += bytes_read;
6180 case DW_FORM_sec_offset:
6182 case DW_FORM_GNU_strp_alt:
6183 info_ptr += cu->header.offset_size;
6185 case DW_FORM_exprloc:
6187 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6188 info_ptr += bytes_read;
6190 case DW_FORM_block1:
6191 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6193 case DW_FORM_block2:
6194 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6196 case DW_FORM_block4:
6197 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6201 case DW_FORM_ref_udata:
6202 case DW_FORM_GNU_addr_index:
6203 case DW_FORM_GNU_str_index:
6204 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6206 case DW_FORM_indirect:
6207 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6208 info_ptr += bytes_read;
6209 /* We need to continue parsing from here, so just go back to
6211 goto skip_attribute;
6214 error (_("Dwarf Error: Cannot handle %s "
6215 "in DWARF reader [in module %s]"),
6216 dwarf_form_name (form),
6217 bfd_get_filename (abfd));
6221 if (abbrev->has_children)
6222 return skip_children (reader, info_ptr);
6227 /* Locate ORIG_PDI's sibling.
6228 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6231 locate_pdi_sibling (const struct die_reader_specs *reader,
6232 struct partial_die_info *orig_pdi,
6235 /* Do we know the sibling already? */
6237 if (orig_pdi->sibling)
6238 return orig_pdi->sibling;
6240 /* Are there any children to deal with? */
6242 if (!orig_pdi->has_children)
6245 /* Skip the children the long way. */
6247 return skip_children (reader, info_ptr);
6250 /* Expand this partial symbol table into a full symbol table. */
6253 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
6259 warning (_("bug: psymtab for %s is already read in."),
6266 printf_filtered (_("Reading in symbols for %s..."),
6268 gdb_flush (gdb_stdout);
6271 /* Restore our global data. */
6272 dwarf2_per_objfile = objfile_data (pst->objfile,
6273 dwarf2_objfile_data_key);
6275 /* If this psymtab is constructed from a debug-only objfile, the
6276 has_section_at_zero flag will not necessarily be correct. We
6277 can get the correct value for this flag by looking at the data
6278 associated with the (presumably stripped) associated objfile. */
6279 if (pst->objfile->separate_debug_objfile_backlink)
6281 struct dwarf2_per_objfile *dpo_backlink
6282 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
6283 dwarf2_objfile_data_key);
6285 dwarf2_per_objfile->has_section_at_zero
6286 = dpo_backlink->has_section_at_zero;
6289 dwarf2_per_objfile->reading_partial_symbols = 0;
6291 psymtab_to_symtab_1 (pst);
6293 /* Finish up the debug error message. */
6295 printf_filtered (_("done.\n"));
6299 process_cu_includes ();
6302 /* Reading in full CUs. */
6304 /* Add PER_CU to the queue. */
6307 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6308 enum language pretend_language)
6310 struct dwarf2_queue_item *item;
6313 item = xmalloc (sizeof (*item));
6314 item->per_cu = per_cu;
6315 item->pretend_language = pretend_language;
6318 if (dwarf2_queue == NULL)
6319 dwarf2_queue = item;
6321 dwarf2_queue_tail->next = item;
6323 dwarf2_queue_tail = item;
6326 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6327 unit and add it to our queue.
6328 The result is non-zero if PER_CU was queued, otherwise the result is zero
6329 meaning either PER_CU is already queued or it is already loaded. */
6332 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6333 struct dwarf2_per_cu_data *per_cu,
6334 enum language pretend_language)
6336 /* We may arrive here during partial symbol reading, if we need full
6337 DIEs to process an unusual case (e.g. template arguments). Do
6338 not queue PER_CU, just tell our caller to load its DIEs. */
6339 if (dwarf2_per_objfile->reading_partial_symbols)
6341 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6346 /* Mark the dependence relation so that we don't flush PER_CU
6348 dwarf2_add_dependence (this_cu, per_cu);
6350 /* If it's already on the queue, we have nothing to do. */
6354 /* If the compilation unit is already loaded, just mark it as
6356 if (per_cu->cu != NULL)
6358 per_cu->cu->last_used = 0;
6362 /* Add it to the queue. */
6363 queue_comp_unit (per_cu, pretend_language);
6368 /* Process the queue. */
6371 process_queue (void)
6373 struct dwarf2_queue_item *item, *next_item;
6375 if (dwarf2_read_debug)
6377 fprintf_unfiltered (gdb_stdlog,
6378 "Expanding one or more symtabs of objfile %s ...\n",
6379 dwarf2_per_objfile->objfile->name);
6382 /* The queue starts out with one item, but following a DIE reference
6383 may load a new CU, adding it to the end of the queue. */
6384 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6386 if (dwarf2_per_objfile->using_index
6387 ? !item->per_cu->v.quick->symtab
6388 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6390 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6392 if (dwarf2_read_debug)
6394 fprintf_unfiltered (gdb_stdlog,
6395 "Expanding symtab of %s at offset 0x%x\n",
6396 per_cu->is_debug_types ? "TU" : "CU",
6397 per_cu->offset.sect_off);
6400 if (per_cu->is_debug_types)
6401 process_full_type_unit (per_cu, item->pretend_language);
6403 process_full_comp_unit (per_cu, item->pretend_language);
6405 if (dwarf2_read_debug)
6407 fprintf_unfiltered (gdb_stdlog,
6408 "Done expanding %s at offset 0x%x\n",
6409 per_cu->is_debug_types ? "TU" : "CU",
6410 per_cu->offset.sect_off);
6414 item->per_cu->queued = 0;
6415 next_item = item->next;
6419 dwarf2_queue_tail = NULL;
6421 if (dwarf2_read_debug)
6423 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6424 dwarf2_per_objfile->objfile->name);
6428 /* Free all allocated queue entries. This function only releases anything if
6429 an error was thrown; if the queue was processed then it would have been
6430 freed as we went along. */
6433 dwarf2_release_queue (void *dummy)
6435 struct dwarf2_queue_item *item, *last;
6437 item = dwarf2_queue;
6440 /* Anything still marked queued is likely to be in an
6441 inconsistent state, so discard it. */
6442 if (item->per_cu->queued)
6444 if (item->per_cu->cu != NULL)
6445 free_one_cached_comp_unit (item->per_cu);
6446 item->per_cu->queued = 0;
6454 dwarf2_queue = dwarf2_queue_tail = NULL;
6457 /* Read in full symbols for PST, and anything it depends on. */
6460 psymtab_to_symtab_1 (struct partial_symtab *pst)
6462 struct dwarf2_per_cu_data *per_cu;
6468 for (i = 0; i < pst->number_of_dependencies; i++)
6469 if (!pst->dependencies[i]->readin
6470 && pst->dependencies[i]->user == NULL)
6472 /* Inform about additional files that need to be read in. */
6475 /* FIXME: i18n: Need to make this a single string. */
6476 fputs_filtered (" ", gdb_stdout);
6478 fputs_filtered ("and ", gdb_stdout);
6480 printf_filtered ("%s...", pst->dependencies[i]->filename);
6481 wrap_here (""); /* Flush output. */
6482 gdb_flush (gdb_stdout);
6484 psymtab_to_symtab_1 (pst->dependencies[i]);
6487 per_cu = pst->read_symtab_private;
6491 /* It's an include file, no symbols to read for it.
6492 Everything is in the parent symtab. */
6497 dw2_do_instantiate_symtab (per_cu);
6500 /* Trivial hash function for die_info: the hash value of a DIE
6501 is its offset in .debug_info for this objfile. */
6504 die_hash (const void *item)
6506 const struct die_info *die = item;
6508 return die->offset.sect_off;
6511 /* Trivial comparison function for die_info structures: two DIEs
6512 are equal if they have the same offset. */
6515 die_eq (const void *item_lhs, const void *item_rhs)
6517 const struct die_info *die_lhs = item_lhs;
6518 const struct die_info *die_rhs = item_rhs;
6520 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6523 /* die_reader_func for load_full_comp_unit.
6524 This is identical to read_signatured_type_reader,
6525 but is kept separate for now. */
6528 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6530 struct die_info *comp_unit_die,
6534 struct dwarf2_cu *cu = reader->cu;
6535 enum language *language_ptr = data;
6537 gdb_assert (cu->die_hash == NULL);
6539 htab_create_alloc_ex (cu->header.length / 12,
6543 &cu->comp_unit_obstack,
6544 hashtab_obstack_allocate,
6545 dummy_obstack_deallocate);
6548 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6549 &info_ptr, comp_unit_die);
6550 cu->dies = comp_unit_die;
6551 /* comp_unit_die is not stored in die_hash, no need. */
6553 /* We try not to read any attributes in this function, because not
6554 all CUs needed for references have been loaded yet, and symbol
6555 table processing isn't initialized. But we have to set the CU language,
6556 or we won't be able to build types correctly.
6557 Similarly, if we do not read the producer, we can not apply
6558 producer-specific interpretation. */
6559 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6562 /* Load the DIEs associated with PER_CU into memory. */
6565 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6566 enum language pretend_language)
6568 gdb_assert (! this_cu->is_debug_types);
6570 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6571 load_full_comp_unit_reader, &pretend_language);
6574 /* Add a DIE to the delayed physname list. */
6577 add_to_method_list (struct type *type, int fnfield_index, int index,
6578 const char *name, struct die_info *die,
6579 struct dwarf2_cu *cu)
6581 struct delayed_method_info mi;
6583 mi.fnfield_index = fnfield_index;
6587 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6590 /* A cleanup for freeing the delayed method list. */
6593 free_delayed_list (void *ptr)
6595 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6596 if (cu->method_list != NULL)
6598 VEC_free (delayed_method_info, cu->method_list);
6599 cu->method_list = NULL;
6603 /* Compute the physnames of any methods on the CU's method list.
6605 The computation of method physnames is delayed in order to avoid the
6606 (bad) condition that one of the method's formal parameters is of an as yet
6610 compute_delayed_physnames (struct dwarf2_cu *cu)
6613 struct delayed_method_info *mi;
6614 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6616 const char *physname;
6617 struct fn_fieldlist *fn_flp
6618 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6619 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
6620 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6624 /* Go objects should be embedded in a DW_TAG_module DIE,
6625 and it's not clear if/how imported objects will appear.
6626 To keep Go support simple until that's worked out,
6627 go back through what we've read and create something usable.
6628 We could do this while processing each DIE, and feels kinda cleaner,
6629 but that way is more invasive.
6630 This is to, for example, allow the user to type "p var" or "b main"
6631 without having to specify the package name, and allow lookups
6632 of module.object to work in contexts that use the expression
6636 fixup_go_packaging (struct dwarf2_cu *cu)
6638 char *package_name = NULL;
6639 struct pending *list;
6642 for (list = global_symbols; list != NULL; list = list->next)
6644 for (i = 0; i < list->nsyms; ++i)
6646 struct symbol *sym = list->symbol[i];
6648 if (SYMBOL_LANGUAGE (sym) == language_go
6649 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6651 char *this_package_name = go_symbol_package_name (sym);
6653 if (this_package_name == NULL)
6655 if (package_name == NULL)
6656 package_name = this_package_name;
6659 if (strcmp (package_name, this_package_name) != 0)
6660 complaint (&symfile_complaints,
6661 _("Symtab %s has objects from two different Go packages: %s and %s"),
6662 (sym->symtab && sym->symtab->filename
6663 ? sym->symtab->filename
6664 : cu->objfile->name),
6665 this_package_name, package_name);
6666 xfree (this_package_name);
6672 if (package_name != NULL)
6674 struct objfile *objfile = cu->objfile;
6675 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6676 package_name, objfile);
6679 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6681 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6682 SYMBOL_SET_LANGUAGE (sym, language_go);
6683 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6684 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6685 e.g., "main" finds the "main" module and not C's main(). */
6686 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6687 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6688 SYMBOL_TYPE (sym) = type;
6690 add_symbol_to_list (sym, &global_symbols);
6692 xfree (package_name);
6696 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6698 /* Return the symtab for PER_CU. This works properly regardless of
6699 whether we're using the index or psymtabs. */
6701 static struct symtab *
6702 get_symtab (struct dwarf2_per_cu_data *per_cu)
6704 return (dwarf2_per_objfile->using_index
6705 ? per_cu->v.quick->symtab
6706 : per_cu->v.psymtab->symtab);
6709 /* A helper function for computing the list of all symbol tables
6710 included by PER_CU. */
6713 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6714 htab_t all_children,
6715 struct dwarf2_per_cu_data *per_cu)
6719 struct dwarf2_per_cu_data *iter;
6721 slot = htab_find_slot (all_children, per_cu, INSERT);
6724 /* This inclusion and its children have been processed. */
6729 /* Only add a CU if it has a symbol table. */
6730 if (get_symtab (per_cu) != NULL)
6731 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6734 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
6736 recursively_compute_inclusions (result, all_children, iter);
6739 /* Compute the symtab 'includes' fields for the symtab related to
6743 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6745 gdb_assert (! per_cu->is_debug_types);
6747 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
6750 struct dwarf2_per_cu_data *iter;
6751 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6752 htab_t all_children;
6753 struct symtab *symtab = get_symtab (per_cu);
6755 /* If we don't have a symtab, we can just skip this case. */
6759 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6760 NULL, xcalloc, xfree);
6763 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
6766 recursively_compute_inclusions (&result_children, all_children, iter);
6768 /* Now we have a transitive closure of all the included CUs, so
6769 we can convert it to a list of symtabs. */
6770 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6772 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6773 (len + 1) * sizeof (struct symtab *));
6775 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6777 symtab->includes[ix] = get_symtab (iter);
6778 symtab->includes[len] = NULL;
6780 VEC_free (dwarf2_per_cu_ptr, result_children);
6781 htab_delete (all_children);
6785 /* Compute the 'includes' field for the symtabs of all the CUs we just
6789 process_cu_includes (void)
6792 struct dwarf2_per_cu_data *iter;
6795 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6799 if (! iter->is_debug_types)
6800 compute_symtab_includes (iter);
6803 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6806 /* Generate full symbol information for PER_CU, whose DIEs have
6807 already been loaded into memory. */
6810 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6811 enum language pretend_language)
6813 struct dwarf2_cu *cu = per_cu->cu;
6814 struct objfile *objfile = per_cu->objfile;
6815 CORE_ADDR lowpc, highpc;
6816 struct symtab *symtab;
6817 struct cleanup *back_to, *delayed_list_cleanup;
6819 struct block *static_block;
6821 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6824 back_to = make_cleanup (really_free_pendings, NULL);
6825 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6827 cu->list_in_scope = &file_symbols;
6829 cu->language = pretend_language;
6830 cu->language_defn = language_def (cu->language);
6832 /* Do line number decoding in read_file_scope () */
6833 process_die (cu->dies, cu);
6835 /* For now fudge the Go package. */
6836 if (cu->language == language_go)
6837 fixup_go_packaging (cu);
6839 /* Now that we have processed all the DIEs in the CU, all the types
6840 should be complete, and it should now be safe to compute all of the
6842 compute_delayed_physnames (cu);
6843 do_cleanups (delayed_list_cleanup);
6845 /* Some compilers don't define a DW_AT_high_pc attribute for the
6846 compilation unit. If the DW_AT_high_pc is missing, synthesize
6847 it, by scanning the DIE's below the compilation unit. */
6848 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
6851 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6852 per_cu->s.imported_symtabs != NULL);
6854 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6855 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6856 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6857 addrmap to help ensure it has an accurate map of pc values belonging to
6859 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6861 symtab = end_symtab_from_static_block (static_block, objfile,
6862 SECT_OFF_TEXT (objfile), 0);
6866 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
6868 /* Set symtab language to language from DW_AT_language. If the
6869 compilation is from a C file generated by language preprocessors, do
6870 not set the language if it was already deduced by start_subfile. */
6871 if (!(cu->language == language_c && symtab->language != language_c))
6872 symtab->language = cu->language;
6874 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
6875 produce DW_AT_location with location lists but it can be possibly
6876 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
6877 there were bugs in prologue debug info, fixed later in GCC-4.5
6878 by "unwind info for epilogues" patch (which is not directly related).
6880 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
6881 needed, it would be wrong due to missing DW_AT_producer there.
6883 Still one can confuse GDB by using non-standard GCC compilation
6884 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
6886 if (cu->has_loclist && gcc_4_minor >= 5)
6887 symtab->locations_valid = 1;
6889 if (gcc_4_minor >= 5)
6890 symtab->epilogue_unwind_valid = 1;
6892 symtab->call_site_htab = cu->call_site_htab;
6895 if (dwarf2_per_objfile->using_index)
6896 per_cu->v.quick->symtab = symtab;
6899 struct partial_symtab *pst = per_cu->v.psymtab;
6900 pst->symtab = symtab;
6904 /* Push it for inclusion processing later. */
6905 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
6907 do_cleanups (back_to);
6910 /* Generate full symbol information for type unit PER_CU, whose DIEs have
6911 already been loaded into memory. */
6914 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
6915 enum language pretend_language)
6917 struct dwarf2_cu *cu = per_cu->cu;
6918 struct objfile *objfile = per_cu->objfile;
6919 struct symtab *symtab;
6920 struct cleanup *back_to, *delayed_list_cleanup;
6923 back_to = make_cleanup (really_free_pendings, NULL);
6924 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6926 cu->list_in_scope = &file_symbols;
6928 cu->language = pretend_language;
6929 cu->language_defn = language_def (cu->language);
6931 /* The symbol tables are set up in read_type_unit_scope. */
6932 process_die (cu->dies, cu);
6934 /* For now fudge the Go package. */
6935 if (cu->language == language_go)
6936 fixup_go_packaging (cu);
6938 /* Now that we have processed all the DIEs in the CU, all the types
6939 should be complete, and it should now be safe to compute all of the
6941 compute_delayed_physnames (cu);
6942 do_cleanups (delayed_list_cleanup);
6944 /* TUs share symbol tables.
6945 If this is the first TU to use this symtab, complete the construction
6946 of it with end_expandable_symtab. Otherwise, complete the addition of
6947 this TU's symbols to the existing symtab. */
6948 if (per_cu->s.type_unit_group->primary_symtab == NULL)
6950 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
6951 per_cu->s.type_unit_group->primary_symtab = symtab;
6955 /* Set symtab language to language from DW_AT_language. If the
6956 compilation is from a C file generated by language preprocessors,
6957 do not set the language if it was already deduced by
6959 if (!(cu->language == language_c && symtab->language != language_c))
6960 symtab->language = cu->language;
6965 augment_type_symtab (objfile,
6966 per_cu->s.type_unit_group->primary_symtab);
6967 symtab = per_cu->s.type_unit_group->primary_symtab;
6970 if (dwarf2_per_objfile->using_index)
6971 per_cu->v.quick->symtab = symtab;
6974 struct partial_symtab *pst = per_cu->v.psymtab;
6975 pst->symtab = symtab;
6979 do_cleanups (back_to);
6982 /* Process an imported unit DIE. */
6985 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
6987 struct attribute *attr;
6989 /* For now we don't handle imported units in type units. */
6990 if (cu->per_cu->is_debug_types)
6992 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6993 " supported in type units [in module %s]"),
6997 attr = dwarf2_attr (die, DW_AT_import, cu);
7000 struct dwarf2_per_cu_data *per_cu;
7001 struct symtab *imported_symtab;
7005 offset = dwarf2_get_ref_die_offset (attr);
7006 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7007 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7009 /* Queue the unit, if needed. */
7010 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7011 load_full_comp_unit (per_cu, cu->language);
7013 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
7018 /* Process a die and its children. */
7021 process_die (struct die_info *die, struct dwarf2_cu *cu)
7025 case DW_TAG_padding:
7027 case DW_TAG_compile_unit:
7028 case DW_TAG_partial_unit:
7029 read_file_scope (die, cu);
7031 case DW_TAG_type_unit:
7032 read_type_unit_scope (die, cu);
7034 case DW_TAG_subprogram:
7035 case DW_TAG_inlined_subroutine:
7036 read_func_scope (die, cu);
7038 case DW_TAG_lexical_block:
7039 case DW_TAG_try_block:
7040 case DW_TAG_catch_block:
7041 read_lexical_block_scope (die, cu);
7043 case DW_TAG_GNU_call_site:
7044 read_call_site_scope (die, cu);
7046 case DW_TAG_class_type:
7047 case DW_TAG_interface_type:
7048 case DW_TAG_structure_type:
7049 case DW_TAG_union_type:
7050 process_structure_scope (die, cu);
7052 case DW_TAG_enumeration_type:
7053 process_enumeration_scope (die, cu);
7056 /* These dies have a type, but processing them does not create
7057 a symbol or recurse to process the children. Therefore we can
7058 read them on-demand through read_type_die. */
7059 case DW_TAG_subroutine_type:
7060 case DW_TAG_set_type:
7061 case DW_TAG_array_type:
7062 case DW_TAG_pointer_type:
7063 case DW_TAG_ptr_to_member_type:
7064 case DW_TAG_reference_type:
7065 case DW_TAG_string_type:
7068 case DW_TAG_base_type:
7069 case DW_TAG_subrange_type:
7070 case DW_TAG_typedef:
7071 /* Add a typedef symbol for the type definition, if it has a
7073 new_symbol (die, read_type_die (die, cu), cu);
7075 case DW_TAG_common_block:
7076 read_common_block (die, cu);
7078 case DW_TAG_common_inclusion:
7080 case DW_TAG_namespace:
7081 processing_has_namespace_info = 1;
7082 read_namespace (die, cu);
7085 processing_has_namespace_info = 1;
7086 read_module (die, cu);
7088 case DW_TAG_imported_declaration:
7089 case DW_TAG_imported_module:
7090 processing_has_namespace_info = 1;
7091 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7092 || cu->language != language_fortran))
7093 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7094 dwarf_tag_name (die->tag));
7095 read_import_statement (die, cu);
7098 case DW_TAG_imported_unit:
7099 process_imported_unit_die (die, cu);
7103 new_symbol (die, NULL, cu);
7108 /* A helper function for dwarf2_compute_name which determines whether DIE
7109 needs to have the name of the scope prepended to the name listed in the
7113 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7115 struct attribute *attr;
7119 case DW_TAG_namespace:
7120 case DW_TAG_typedef:
7121 case DW_TAG_class_type:
7122 case DW_TAG_interface_type:
7123 case DW_TAG_structure_type:
7124 case DW_TAG_union_type:
7125 case DW_TAG_enumeration_type:
7126 case DW_TAG_enumerator:
7127 case DW_TAG_subprogram:
7131 case DW_TAG_variable:
7132 case DW_TAG_constant:
7133 /* We only need to prefix "globally" visible variables. These include
7134 any variable marked with DW_AT_external or any variable that
7135 lives in a namespace. [Variables in anonymous namespaces
7136 require prefixing, but they are not DW_AT_external.] */
7138 if (dwarf2_attr (die, DW_AT_specification, cu))
7140 struct dwarf2_cu *spec_cu = cu;
7142 return die_needs_namespace (die_specification (die, &spec_cu),
7146 attr = dwarf2_attr (die, DW_AT_external, cu);
7147 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7148 && die->parent->tag != DW_TAG_module)
7150 /* A variable in a lexical block of some kind does not need a
7151 namespace, even though in C++ such variables may be external
7152 and have a mangled name. */
7153 if (die->parent->tag == DW_TAG_lexical_block
7154 || die->parent->tag == DW_TAG_try_block
7155 || die->parent->tag == DW_TAG_catch_block
7156 || die->parent->tag == DW_TAG_subprogram)
7165 /* Retrieve the last character from a mem_file. */
7168 do_ui_file_peek_last (void *object, const char *buffer, long length)
7170 char *last_char_p = (char *) object;
7173 *last_char_p = buffer[length - 1];
7176 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7177 compute the physname for the object, which include a method's:
7178 - formal parameters (C++/Java),
7179 - receiver type (Go),
7180 - return type (Java).
7182 The term "physname" is a bit confusing.
7183 For C++, for example, it is the demangled name.
7184 For Go, for example, it's the mangled name.
7186 For Ada, return the DIE's linkage name rather than the fully qualified
7187 name. PHYSNAME is ignored..
7189 The result is allocated on the objfile_obstack and canonicalized. */
7192 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
7195 struct objfile *objfile = cu->objfile;
7198 name = dwarf2_name (die, cu);
7200 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7201 compute it by typename_concat inside GDB. */
7202 if (cu->language == language_ada
7203 || (cu->language == language_fortran && physname))
7205 /* For Ada unit, we prefer the linkage name over the name, as
7206 the former contains the exported name, which the user expects
7207 to be able to reference. Ideally, we want the user to be able
7208 to reference this entity using either natural or linkage name,
7209 but we haven't started looking at this enhancement yet. */
7210 struct attribute *attr;
7212 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7214 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7215 if (attr && DW_STRING (attr))
7216 return DW_STRING (attr);
7219 /* These are the only languages we know how to qualify names in. */
7221 && (cu->language == language_cplus || cu->language == language_java
7222 || cu->language == language_fortran))
7224 if (die_needs_namespace (die, cu))
7228 struct ui_file *buf;
7230 prefix = determine_prefix (die, cu);
7231 buf = mem_fileopen ();
7232 if (*prefix != '\0')
7234 char *prefixed_name = typename_concat (NULL, prefix, name,
7237 fputs_unfiltered (prefixed_name, buf);
7238 xfree (prefixed_name);
7241 fputs_unfiltered (name, buf);
7243 /* Template parameters may be specified in the DIE's DW_AT_name, or
7244 as children with DW_TAG_template_type_param or
7245 DW_TAG_value_type_param. If the latter, add them to the name
7246 here. If the name already has template parameters, then
7247 skip this step; some versions of GCC emit both, and
7248 it is more efficient to use the pre-computed name.
7250 Something to keep in mind about this process: it is very
7251 unlikely, or in some cases downright impossible, to produce
7252 something that will match the mangled name of a function.
7253 If the definition of the function has the same debug info,
7254 we should be able to match up with it anyway. But fallbacks
7255 using the minimal symbol, for instance to find a method
7256 implemented in a stripped copy of libstdc++, will not work.
7257 If we do not have debug info for the definition, we will have to
7258 match them up some other way.
7260 When we do name matching there is a related problem with function
7261 templates; two instantiated function templates are allowed to
7262 differ only by their return types, which we do not add here. */
7264 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7266 struct attribute *attr;
7267 struct die_info *child;
7270 die->building_fullname = 1;
7272 for (child = die->child; child != NULL; child = child->sibling)
7277 struct dwarf2_locexpr_baton *baton;
7280 if (child->tag != DW_TAG_template_type_param
7281 && child->tag != DW_TAG_template_value_param)
7286 fputs_unfiltered ("<", buf);
7290 fputs_unfiltered (", ", buf);
7292 attr = dwarf2_attr (child, DW_AT_type, cu);
7295 complaint (&symfile_complaints,
7296 _("template parameter missing DW_AT_type"));
7297 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7300 type = die_type (child, cu);
7302 if (child->tag == DW_TAG_template_type_param)
7304 c_print_type (type, "", buf, -1, 0);
7308 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7311 complaint (&symfile_complaints,
7312 _("template parameter missing "
7313 "DW_AT_const_value"));
7314 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7318 dwarf2_const_value_attr (attr, type, name,
7319 &cu->comp_unit_obstack, cu,
7320 &value, &bytes, &baton);
7322 if (TYPE_NOSIGN (type))
7323 /* GDB prints characters as NUMBER 'CHAR'. If that's
7324 changed, this can use value_print instead. */
7325 c_printchar (value, type, buf);
7328 struct value_print_options opts;
7331 v = dwarf2_evaluate_loc_desc (type, NULL,
7335 else if (bytes != NULL)
7337 v = allocate_value (type);
7338 memcpy (value_contents_writeable (v), bytes,
7339 TYPE_LENGTH (type));
7342 v = value_from_longest (type, value);
7344 /* Specify decimal so that we do not depend on
7346 get_formatted_print_options (&opts, 'd');
7348 value_print (v, buf, &opts);
7354 die->building_fullname = 0;
7358 /* Close the argument list, with a space if necessary
7359 (nested templates). */
7360 char last_char = '\0';
7361 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7362 if (last_char == '>')
7363 fputs_unfiltered (" >", buf);
7365 fputs_unfiltered (">", buf);
7369 /* For Java and C++ methods, append formal parameter type
7370 information, if PHYSNAME. */
7372 if (physname && die->tag == DW_TAG_subprogram
7373 && (cu->language == language_cplus
7374 || cu->language == language_java))
7376 struct type *type = read_type_die (die, cu);
7378 c_type_print_args (type, buf, 1, cu->language);
7380 if (cu->language == language_java)
7382 /* For java, we must append the return type to method
7384 if (die->tag == DW_TAG_subprogram)
7385 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7388 else if (cu->language == language_cplus)
7390 /* Assume that an artificial first parameter is
7391 "this", but do not crash if it is not. RealView
7392 marks unnamed (and thus unused) parameters as
7393 artificial; there is no way to differentiate
7395 if (TYPE_NFIELDS (type) > 0
7396 && TYPE_FIELD_ARTIFICIAL (type, 0)
7397 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7398 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7400 fputs_unfiltered (" const", buf);
7404 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7406 ui_file_delete (buf);
7408 if (cu->language == language_cplus)
7411 = dwarf2_canonicalize_name (name, cu,
7412 &objfile->objfile_obstack);
7423 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7424 If scope qualifiers are appropriate they will be added. The result
7425 will be allocated on the objfile_obstack, or NULL if the DIE does
7426 not have a name. NAME may either be from a previous call to
7427 dwarf2_name or NULL.
7429 The output string will be canonicalized (if C++/Java). */
7432 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
7434 return dwarf2_compute_name (name, die, cu, 0);
7437 /* Construct a physname for the given DIE in CU. NAME may either be
7438 from a previous call to dwarf2_name or NULL. The result will be
7439 allocated on the objfile_objstack or NULL if the DIE does not have a
7442 The output string will be canonicalized (if C++/Java). */
7445 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7447 struct objfile *objfile = cu->objfile;
7448 struct attribute *attr;
7449 const char *retval, *mangled = NULL, *canon = NULL;
7450 struct cleanup *back_to;
7453 /* In this case dwarf2_compute_name is just a shortcut not building anything
7455 if (!die_needs_namespace (die, cu))
7456 return dwarf2_compute_name (name, die, cu, 1);
7458 back_to = make_cleanup (null_cleanup, NULL);
7460 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7462 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7464 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7466 if (attr && DW_STRING (attr))
7470 mangled = DW_STRING (attr);
7472 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7473 type. It is easier for GDB users to search for such functions as
7474 `name(params)' than `long name(params)'. In such case the minimal
7475 symbol names do not match the full symbol names but for template
7476 functions there is never a need to look up their definition from their
7477 declaration so the only disadvantage remains the minimal symbol
7478 variant `long name(params)' does not have the proper inferior type.
7481 if (cu->language == language_go)
7483 /* This is a lie, but we already lie to the caller new_symbol_full.
7484 new_symbol_full assumes we return the mangled name.
7485 This just undoes that lie until things are cleaned up. */
7490 demangled = cplus_demangle (mangled,
7491 (DMGL_PARAMS | DMGL_ANSI
7492 | (cu->language == language_java
7493 ? DMGL_JAVA | DMGL_RET_POSTFIX
7498 make_cleanup (xfree, demangled);
7508 if (canon == NULL || check_physname)
7510 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7512 if (canon != NULL && strcmp (physname, canon) != 0)
7514 /* It may not mean a bug in GDB. The compiler could also
7515 compute DW_AT_linkage_name incorrectly. But in such case
7516 GDB would need to be bug-to-bug compatible. */
7518 complaint (&symfile_complaints,
7519 _("Computed physname <%s> does not match demangled <%s> "
7520 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7521 physname, canon, mangled, die->offset.sect_off, objfile->name);
7523 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7524 is available here - over computed PHYSNAME. It is safer
7525 against both buggy GDB and buggy compilers. */
7539 retval = obsavestring (retval, strlen (retval),
7540 &objfile->objfile_obstack);
7542 do_cleanups (back_to);
7546 /* Read the import statement specified by the given die and record it. */
7549 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7551 struct objfile *objfile = cu->objfile;
7552 struct attribute *import_attr;
7553 struct die_info *imported_die, *child_die;
7554 struct dwarf2_cu *imported_cu;
7555 const char *imported_name;
7556 const char *imported_name_prefix;
7557 const char *canonical_name;
7558 const char *import_alias;
7559 const char *imported_declaration = NULL;
7560 const char *import_prefix;
7561 VEC (const_char_ptr) *excludes = NULL;
7562 struct cleanup *cleanups;
7566 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7567 if (import_attr == NULL)
7569 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7570 dwarf_tag_name (die->tag));
7575 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7576 imported_name = dwarf2_name (imported_die, imported_cu);
7577 if (imported_name == NULL)
7579 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7581 The import in the following code:
7595 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7596 <52> DW_AT_decl_file : 1
7597 <53> DW_AT_decl_line : 6
7598 <54> DW_AT_import : <0x75>
7599 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7601 <5b> DW_AT_decl_file : 1
7602 <5c> DW_AT_decl_line : 2
7603 <5d> DW_AT_type : <0x6e>
7605 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7606 <76> DW_AT_byte_size : 4
7607 <77> DW_AT_encoding : 5 (signed)
7609 imports the wrong die ( 0x75 instead of 0x58 ).
7610 This case will be ignored until the gcc bug is fixed. */
7614 /* Figure out the local name after import. */
7615 import_alias = dwarf2_name (die, cu);
7617 /* Figure out where the statement is being imported to. */
7618 import_prefix = determine_prefix (die, cu);
7620 /* Figure out what the scope of the imported die is and prepend it
7621 to the name of the imported die. */
7622 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7624 if (imported_die->tag != DW_TAG_namespace
7625 && imported_die->tag != DW_TAG_module)
7627 imported_declaration = imported_name;
7628 canonical_name = imported_name_prefix;
7630 else if (strlen (imported_name_prefix) > 0)
7632 temp = alloca (strlen (imported_name_prefix)
7633 + 2 + strlen (imported_name) + 1);
7634 strcpy (temp, imported_name_prefix);
7635 strcat (temp, "::");
7636 strcat (temp, imported_name);
7637 canonical_name = temp;
7640 canonical_name = imported_name;
7642 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7644 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7645 for (child_die = die->child; child_die && child_die->tag;
7646 child_die = sibling_die (child_die))
7648 /* DWARF-4: A Fortran use statement with a “rename list” may be
7649 represented by an imported module entry with an import attribute
7650 referring to the module and owned entries corresponding to those
7651 entities that are renamed as part of being imported. */
7653 if (child_die->tag != DW_TAG_imported_declaration)
7655 complaint (&symfile_complaints,
7656 _("child DW_TAG_imported_declaration expected "
7657 "- DIE at 0x%x [in module %s]"),
7658 child_die->offset.sect_off, objfile->name);
7662 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7663 if (import_attr == NULL)
7665 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7666 dwarf_tag_name (child_die->tag));
7671 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7673 imported_name = dwarf2_name (imported_die, imported_cu);
7674 if (imported_name == NULL)
7676 complaint (&symfile_complaints,
7677 _("child DW_TAG_imported_declaration has unknown "
7678 "imported name - DIE at 0x%x [in module %s]"),
7679 child_die->offset.sect_off, objfile->name);
7683 VEC_safe_push (const_char_ptr, excludes, imported_name);
7685 process_die (child_die, cu);
7688 cp_add_using_directive (import_prefix,
7691 imported_declaration,
7693 &objfile->objfile_obstack);
7695 do_cleanups (cleanups);
7698 /* Cleanup function for handle_DW_AT_stmt_list. */
7701 free_cu_line_header (void *arg)
7703 struct dwarf2_cu *cu = arg;
7705 free_line_header (cu->line_header);
7706 cu->line_header = NULL;
7710 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7711 char **name, char **comp_dir)
7713 struct attribute *attr;
7718 /* Find the filename. Do not use dwarf2_name here, since the filename
7719 is not a source language identifier. */
7720 attr = dwarf2_attr (die, DW_AT_name, cu);
7723 *name = DW_STRING (attr);
7726 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7728 *comp_dir = DW_STRING (attr);
7729 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
7731 *comp_dir = ldirname (*name);
7732 if (*comp_dir != NULL)
7733 make_cleanup (xfree, *comp_dir);
7735 if (*comp_dir != NULL)
7737 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7738 directory, get rid of it. */
7739 char *cp = strchr (*comp_dir, ':');
7741 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7746 *name = "<unknown>";
7749 /* Handle DW_AT_stmt_list for a compilation unit.
7750 DIE is the DW_TAG_compile_unit die for CU.
7751 COMP_DIR is the compilation directory.
7752 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7755 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7756 const char *comp_dir)
7758 struct attribute *attr;
7760 gdb_assert (! cu->per_cu->is_debug_types);
7762 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7765 unsigned int line_offset = DW_UNSND (attr);
7766 struct line_header *line_header
7767 = dwarf_decode_line_header (line_offset, cu);
7771 cu->line_header = line_header;
7772 make_cleanup (free_cu_line_header, cu);
7773 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7778 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7781 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7783 struct objfile *objfile = dwarf2_per_objfile->objfile;
7784 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7785 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7786 CORE_ADDR highpc = ((CORE_ADDR) 0);
7787 struct attribute *attr;
7789 char *comp_dir = NULL;
7790 struct die_info *child_die;
7791 bfd *abfd = objfile->obfd;
7794 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7796 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7798 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7799 from finish_block. */
7800 if (lowpc == ((CORE_ADDR) -1))
7805 find_file_and_directory (die, cu, &name, &comp_dir);
7807 prepare_one_comp_unit (cu, die, cu->language);
7809 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7810 standardised yet. As a workaround for the language detection we fall
7811 back to the DW_AT_producer string. */
7812 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7813 cu->language = language_opencl;
7815 /* Similar hack for Go. */
7816 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7817 set_cu_language (DW_LANG_Go, cu);
7819 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7821 /* Decode line number information if present. We do this before
7822 processing child DIEs, so that the line header table is available
7823 for DW_AT_decl_file. */
7824 handle_DW_AT_stmt_list (die, cu, comp_dir);
7826 /* Process all dies in compilation unit. */
7827 if (die->child != NULL)
7829 child_die = die->child;
7830 while (child_die && child_die->tag)
7832 process_die (child_die, cu);
7833 child_die = sibling_die (child_die);
7837 /* Decode macro information, if present. Dwarf 2 macro information
7838 refers to information in the line number info statement program
7839 header, so we can only read it if we've read the header
7841 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7842 if (attr && cu->line_header)
7844 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7845 complaint (&symfile_complaints,
7846 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7848 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
7852 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7853 if (attr && cu->line_header)
7855 unsigned int macro_offset = DW_UNSND (attr);
7857 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
7861 do_cleanups (back_to);
7864 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
7865 Create the set of symtabs used by this TU, or if this TU is sharing
7866 symtabs with another TU and the symtabs have already been created
7867 then restore those symtabs in the line header.
7868 We don't need the pc/line-number mapping for type units. */
7871 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
7873 struct objfile *objfile = dwarf2_per_objfile->objfile;
7874 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7875 struct type_unit_group *tu_group;
7877 struct line_header *lh;
7878 struct attribute *attr;
7879 unsigned int i, line_offset;
7881 gdb_assert (per_cu->is_debug_types);
7883 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7885 /* If we're using .gdb_index (includes -readnow) then
7886 per_cu->s.type_unit_group may not have been set up yet. */
7887 if (per_cu->s.type_unit_group == NULL)
7888 per_cu->s.type_unit_group = get_type_unit_group (cu, attr);
7889 tu_group = per_cu->s.type_unit_group;
7891 /* If we've already processed this stmt_list there's no real need to
7892 do it again, we could fake it and just recreate the part we need
7893 (file name,index -> symtab mapping). If data shows this optimization
7894 is useful we can do it then. */
7895 first_time = tu_group->primary_symtab == NULL;
7897 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
7902 line_offset = DW_UNSND (attr);
7903 lh = dwarf_decode_line_header (line_offset, cu);
7908 dwarf2_start_symtab (cu, "", NULL, 0);
7911 gdb_assert (tu_group->symtabs == NULL);
7914 /* Note: The primary symtab will get allocated at the end. */
7918 cu->line_header = lh;
7919 make_cleanup (free_cu_line_header, cu);
7923 dwarf2_start_symtab (cu, "", NULL, 0);
7925 tu_group->num_symtabs = lh->num_file_names;
7926 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
7928 for (i = 0; i < lh->num_file_names; ++i)
7931 struct file_entry *fe = &lh->file_names[i];
7934 dir = lh->include_dirs[fe->dir_index - 1];
7935 dwarf2_start_subfile (fe->name, dir, NULL);
7937 /* Note: We don't have to watch for the main subfile here, type units
7938 don't have DW_AT_name. */
7940 if (current_subfile->symtab == NULL)
7942 /* NOTE: start_subfile will recognize when it's been passed
7943 a file it has already seen. So we can't assume there's a
7944 simple mapping from lh->file_names to subfiles,
7945 lh->file_names may contain dups. */
7946 current_subfile->symtab = allocate_symtab (current_subfile->name,
7950 fe->symtab = current_subfile->symtab;
7951 tu_group->symtabs[i] = fe->symtab;
7958 for (i = 0; i < lh->num_file_names; ++i)
7960 struct file_entry *fe = &lh->file_names[i];
7962 fe->symtab = tu_group->symtabs[i];
7966 /* The main symtab is allocated last. Type units don't have DW_AT_name
7967 so they don't have a "real" (so to speak) symtab anyway.
7968 There is later code that will assign the main symtab to all symbols
7969 that don't have one. We need to handle the case of a symbol with a
7970 missing symtab (DW_AT_decl_file) anyway. */
7973 /* Process DW_TAG_type_unit.
7974 For TUs we want to skip the first top level sibling if it's not the
7975 actual type being defined by this TU. In this case the first top
7976 level sibling is there to provide context only. */
7979 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
7981 struct die_info *child_die;
7983 prepare_one_comp_unit (cu, die, language_minimal);
7985 /* Initialize (or reinitialize) the machinery for building symtabs.
7986 We do this before processing child DIEs, so that the line header table
7987 is available for DW_AT_decl_file. */
7988 setup_type_unit_groups (die, cu);
7990 if (die->child != NULL)
7992 child_die = die->child;
7993 while (child_die && child_die->tag)
7995 process_die (child_die, cu);
7996 child_die = sibling_die (child_die);
8004 hash_dwo_file (const void *item)
8006 const struct dwo_file *dwo_file = item;
8008 return htab_hash_string (dwo_file->dwo_name);
8012 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8014 const struct dwo_file *lhs = item_lhs;
8015 const struct dwo_file *rhs = item_rhs;
8017 return strcmp (lhs->dwo_name, rhs->dwo_name) == 0;
8020 /* Allocate a hash table for DWO files. */
8023 allocate_dwo_file_hash_table (void)
8025 struct objfile *objfile = dwarf2_per_objfile->objfile;
8027 return htab_create_alloc_ex (41,
8031 &objfile->objfile_obstack,
8032 hashtab_obstack_allocate,
8033 dummy_obstack_deallocate);
8037 hash_dwo_unit (const void *item)
8039 const struct dwo_unit *dwo_unit = item;
8041 /* This drops the top 32 bits of the id, but is ok for a hash. */
8042 return dwo_unit->signature;
8046 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8048 const struct dwo_unit *lhs = item_lhs;
8049 const struct dwo_unit *rhs = item_rhs;
8051 /* The signature is assumed to be unique within the DWO file.
8052 So while object file CU dwo_id's always have the value zero,
8053 that's OK, assuming each object file DWO file has only one CU,
8054 and that's the rule for now. */
8055 return lhs->signature == rhs->signature;
8058 /* Allocate a hash table for DWO CUs,TUs.
8059 There is one of these tables for each of CUs,TUs for each DWO file. */
8062 allocate_dwo_unit_table (struct objfile *objfile)
8064 /* Start out with a pretty small number.
8065 Generally DWO files contain only one CU and maybe some TUs. */
8066 return htab_create_alloc_ex (3,
8070 &objfile->objfile_obstack,
8071 hashtab_obstack_allocate,
8072 dummy_obstack_deallocate);
8075 /* This function is mapped across the sections and remembers the offset and
8076 size of each of the DWO debugging sections we are interested in. */
8079 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_file_ptr)
8081 struct dwo_file *dwo_file = dwo_file_ptr;
8082 const struct dwo_section_names *names = &dwo_section_names;
8084 if (section_is_p (sectp->name, &names->abbrev_dwo))
8086 dwo_file->sections.abbrev.asection = sectp;
8087 dwo_file->sections.abbrev.size = bfd_get_section_size (sectp);
8089 else if (section_is_p (sectp->name, &names->info_dwo))
8091 dwo_file->sections.info.asection = sectp;
8092 dwo_file->sections.info.size = bfd_get_section_size (sectp);
8094 else if (section_is_p (sectp->name, &names->line_dwo))
8096 dwo_file->sections.line.asection = sectp;
8097 dwo_file->sections.line.size = bfd_get_section_size (sectp);
8099 else if (section_is_p (sectp->name, &names->loc_dwo))
8101 dwo_file->sections.loc.asection = sectp;
8102 dwo_file->sections.loc.size = bfd_get_section_size (sectp);
8104 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8106 dwo_file->sections.macinfo.asection = sectp;
8107 dwo_file->sections.macinfo.size = bfd_get_section_size (sectp);
8109 else if (section_is_p (sectp->name, &names->macro_dwo))
8111 dwo_file->sections.macro.asection = sectp;
8112 dwo_file->sections.macro.size = bfd_get_section_size (sectp);
8114 else if (section_is_p (sectp->name, &names->str_dwo))
8116 dwo_file->sections.str.asection = sectp;
8117 dwo_file->sections.str.size = bfd_get_section_size (sectp);
8119 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8121 dwo_file->sections.str_offsets.asection = sectp;
8122 dwo_file->sections.str_offsets.size = bfd_get_section_size (sectp);
8124 else if (section_is_p (sectp->name, &names->types_dwo))
8126 struct dwarf2_section_info type_section;
8128 memset (&type_section, 0, sizeof (type_section));
8129 type_section.asection = sectp;
8130 type_section.size = bfd_get_section_size (sectp);
8131 VEC_safe_push (dwarf2_section_info_def, dwo_file->sections.types,
8136 /* Structure used to pass data to create_debug_info_hash_table_reader. */
8138 struct create_dwo_info_table_data
8140 struct dwo_file *dwo_file;
8144 /* die_reader_func for create_debug_info_hash_table. */
8147 create_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8149 struct die_info *comp_unit_die,
8153 struct dwarf2_cu *cu = reader->cu;
8154 struct objfile *objfile = dwarf2_per_objfile->objfile;
8155 sect_offset offset = cu->per_cu->offset;
8156 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8157 struct create_dwo_info_table_data *data = datap;
8158 struct dwo_file *dwo_file = data->dwo_file;
8159 htab_t cu_htab = data->cu_htab;
8161 struct attribute *attr;
8162 struct dwo_unit *dwo_unit;
8164 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8167 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8168 " its dwo_id [in module %s]"),
8169 offset.sect_off, dwo_file->dwo_name);
8173 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8174 dwo_unit->dwo_file = dwo_file;
8175 dwo_unit->signature = DW_UNSND (attr);
8176 dwo_unit->info_or_types_section = section;
8177 dwo_unit->offset = offset;
8178 dwo_unit->length = cu->per_cu->length;
8180 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8181 gdb_assert (slot != NULL);
8184 const struct dwo_unit *dup_dwo_unit = *slot;
8186 complaint (&symfile_complaints,
8187 _("debug entry at offset 0x%x is duplicate to the entry at"
8188 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8189 offset.sect_off, dup_dwo_unit->offset.sect_off,
8190 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8191 dwo_file->dwo_name);
8196 if (dwarf2_read_debug)
8197 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8199 phex (dwo_unit->signature,
8200 sizeof (dwo_unit->signature)));
8203 /* Create a hash table to map DWO IDs to their CU entry in .debug_info.dwo. */
8206 create_debug_info_hash_table (struct dwo_file *dwo_file)
8208 struct objfile *objfile = dwarf2_per_objfile->objfile;
8209 struct dwarf2_section_info *section = &dwo_file->sections.info;
8212 gdb_byte *info_ptr, *end_ptr;
8213 struct create_dwo_info_table_data create_dwo_info_table_data;
8215 dwarf2_read_section (objfile, section);
8216 info_ptr = section->buffer;
8218 if (info_ptr == NULL)
8221 /* We can't set abfd until now because the section may be empty or
8222 not present, in which case section->asection will be NULL. */
8223 abfd = section->asection->owner;
8225 if (dwarf2_read_debug)
8226 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8227 bfd_get_filename (abfd));
8229 cu_htab = allocate_dwo_unit_table (objfile);
8231 create_dwo_info_table_data.dwo_file = dwo_file;
8232 create_dwo_info_table_data.cu_htab = cu_htab;
8234 end_ptr = info_ptr + section->size;
8235 while (info_ptr < end_ptr)
8237 struct dwarf2_per_cu_data per_cu;
8239 memset (&per_cu, 0, sizeof (per_cu));
8240 per_cu.objfile = objfile;
8241 per_cu.is_debug_types = 0;
8242 per_cu.offset.sect_off = info_ptr - section->buffer;
8243 per_cu.info_or_types_section = section;
8245 init_cutu_and_read_dies_no_follow (&per_cu,
8246 &dwo_file->sections.abbrev,
8248 create_debug_info_hash_table_reader,
8249 &create_dwo_info_table_data);
8251 info_ptr += per_cu.length;
8257 /* Subroutine of open_dwo_file to simplify it.
8258 Open the file specified by FILE_NAME and hand it off to BFD for
8259 preliminary analysis. Return a newly initialized bfd *, which
8260 includes a canonicalized copy of FILE_NAME.
8261 In case of trouble, return NULL.
8262 NOTE: This function is derived from symfile_bfd_open. */
8265 try_open_dwo_file (const char *file_name)
8269 char *absolute_name;
8271 desc = openp (debug_file_directory, OPF_TRY_CWD_FIRST, file_name,
8272 O_RDONLY | O_BINARY, &absolute_name);
8276 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8279 xfree (absolute_name);
8282 xfree (absolute_name);
8283 bfd_set_cacheable (sym_bfd, 1);
8285 if (!bfd_check_format (sym_bfd, bfd_object))
8287 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8294 /* Try to open DWO file DWO_NAME.
8295 COMP_DIR is the DW_AT_comp_dir attribute.
8296 The result is the bfd handle of the file.
8297 If there is a problem finding or opening the file, return NULL.
8298 Upon success, the canonicalized path of the file is stored in the bfd,
8299 same as symfile_bfd_open. */
8302 open_dwo_file (const char *dwo_name, const char *comp_dir)
8306 if (IS_ABSOLUTE_PATH (dwo_name))
8307 return try_open_dwo_file (dwo_name);
8309 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8311 if (comp_dir != NULL)
8313 char *path_to_try = concat (comp_dir, SLASH_STRING, dwo_name, NULL);
8315 /* NOTE: If comp_dir is a relative path, this will also try the
8316 search path, which seems useful. */
8317 abfd = try_open_dwo_file (path_to_try);
8318 xfree (path_to_try);
8323 /* That didn't work, try debug-file-directory, which, despite its name,
8324 is a list of paths. */
8326 if (*debug_file_directory == '\0')
8329 return try_open_dwo_file (dwo_name);
8332 /* Initialize the use of the DWO file specified by DWO_NAME. */
8334 static struct dwo_file *
8335 init_dwo_file (const char *dwo_name, const char *comp_dir)
8337 struct objfile *objfile = dwarf2_per_objfile->objfile;
8338 struct dwo_file *dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8341 struct cleanup *cleanups;
8343 if (dwarf2_read_debug)
8344 fprintf_unfiltered (gdb_stdlog, "Reading DWO file %s:\n", dwo_name);
8346 abfd = open_dwo_file (dwo_name, comp_dir);
8349 dwo_file->dwo_name = dwo_name;
8350 dwo_file->dwo_bfd = abfd;
8352 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8354 bfd_map_over_sections (abfd, dwarf2_locate_dwo_sections, dwo_file);
8356 dwo_file->cus = create_debug_info_hash_table (dwo_file);
8358 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8359 dwo_file->sections.types);
8361 discard_cleanups (cleanups);
8366 /* Lookup DWO file DWO_NAME. */
8368 static struct dwo_file *
8369 lookup_dwo_file (char *dwo_name, const char *comp_dir)
8371 struct dwo_file *dwo_file;
8372 struct dwo_file find_entry;
8375 if (dwarf2_per_objfile->dwo_files == NULL)
8376 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8378 /* Have we already seen this DWO file? */
8379 find_entry.dwo_name = dwo_name;
8380 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8382 /* If not, read it in and build a table of the DWOs it contains. */
8384 *slot = init_dwo_file (dwo_name, comp_dir);
8386 /* NOTE: This will be NULL if unable to open the file. */
8392 /* Lookup the DWO CU referenced from THIS_CU in DWO file DWO_NAME.
8393 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
8394 SIGNATURE is the "dwo_id" of the CU (for consistency we use the same
8395 nomenclature as TUs).
8396 The result is a pointer to the dwo_unit object or NULL if we didn't find it
8397 (dwo_id mismatch or couldn't find the DWO file). */
8399 static struct dwo_unit *
8400 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
8401 char *dwo_name, const char *comp_dir,
8404 struct objfile *objfile = dwarf2_per_objfile->objfile;
8405 struct dwo_file *dwo_file;
8407 dwo_file = lookup_dwo_file (dwo_name, comp_dir);
8408 if (dwo_file == NULL)
8411 /* Look up the DWO using its signature(dwo_id). */
8413 if (dwo_file->cus != NULL)
8415 struct dwo_unit find_dwo_cu, *dwo_cu;
8417 find_dwo_cu.signature = signature;
8418 dwo_cu = htab_find (dwo_file->cus, &find_dwo_cu);
8424 /* We didn't find it. This must mean a dwo_id mismatch. */
8426 complaint (&symfile_complaints,
8427 _("Could not find DWO CU referenced by CU at offset 0x%x"
8429 this_cu->offset.sect_off, objfile->name);
8433 /* Lookup the DWO TU referenced from THIS_TU in DWO file DWO_NAME.
8434 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
8435 The result is a pointer to the dwo_unit object or NULL if we didn't find it
8436 (dwo_id mismatch or couldn't find the DWO file). */
8438 static struct dwo_unit *
8439 lookup_dwo_type_unit (struct signatured_type *this_tu,
8440 char *dwo_name, const char *comp_dir)
8442 struct objfile *objfile = dwarf2_per_objfile->objfile;
8443 struct dwo_file *dwo_file;
8445 dwo_file = lookup_dwo_file (dwo_name, comp_dir);
8446 if (dwo_file == NULL)
8449 /* Look up the DWO using its signature(dwo_id). */
8451 if (dwo_file->tus != NULL)
8453 struct dwo_unit find_dwo_tu, *dwo_tu;
8455 find_dwo_tu.signature = this_tu->signature;
8456 dwo_tu = htab_find (dwo_file->tus, &find_dwo_tu);
8462 /* We didn't find it. This must mean a dwo_id mismatch. */
8464 complaint (&symfile_complaints,
8465 _("Could not find DWO TU referenced by TU at offset 0x%x"
8467 this_tu->per_cu.offset.sect_off, objfile->name);
8471 /* Free all resources associated with DWO_FILE.
8472 Close the DWO file and munmap the sections.
8473 All memory should be on the objfile obstack. */
8476 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
8479 struct dwarf2_section_info *section;
8481 gdb_assert (dwo_file->dwo_bfd != objfile->obfd);
8482 gdb_bfd_unref (dwo_file->dwo_bfd);
8484 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
8487 /* Wrapper for free_dwo_file for use in cleanups. */
8490 free_dwo_file_cleanup (void *arg)
8492 struct dwo_file *dwo_file = (struct dwo_file *) arg;
8493 struct objfile *objfile = dwarf2_per_objfile->objfile;
8495 free_dwo_file (dwo_file, objfile);
8498 /* Traversal function for free_dwo_files. */
8501 free_dwo_file_from_slot (void **slot, void *info)
8503 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8504 struct objfile *objfile = (struct objfile *) info;
8506 free_dwo_file (dwo_file, objfile);
8511 /* Free all resources associated with DWO_FILES. */
8514 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
8516 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
8519 /* Read in various DIEs. */
8521 /* qsort helper for inherit_abstract_dies. */
8524 unsigned_int_compar (const void *ap, const void *bp)
8526 unsigned int a = *(unsigned int *) ap;
8527 unsigned int b = *(unsigned int *) bp;
8529 return (a > b) - (b > a);
8532 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
8533 Inherit only the children of the DW_AT_abstract_origin DIE not being
8534 already referenced by DW_AT_abstract_origin from the children of the
8538 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
8540 struct die_info *child_die;
8541 unsigned die_children_count;
8542 /* CU offsets which were referenced by children of the current DIE. */
8543 sect_offset *offsets;
8544 sect_offset *offsets_end, *offsetp;
8545 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
8546 struct die_info *origin_die;
8547 /* Iterator of the ORIGIN_DIE children. */
8548 struct die_info *origin_child_die;
8549 struct cleanup *cleanups;
8550 struct attribute *attr;
8551 struct dwarf2_cu *origin_cu;
8552 struct pending **origin_previous_list_in_scope;
8554 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
8558 /* Note that following die references may follow to a die in a
8562 origin_die = follow_die_ref (die, attr, &origin_cu);
8564 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
8566 origin_previous_list_in_scope = origin_cu->list_in_scope;
8567 origin_cu->list_in_scope = cu->list_in_scope;
8569 if (die->tag != origin_die->tag
8570 && !(die->tag == DW_TAG_inlined_subroutine
8571 && origin_die->tag == DW_TAG_subprogram))
8572 complaint (&symfile_complaints,
8573 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
8574 die->offset.sect_off, origin_die->offset.sect_off);
8576 child_die = die->child;
8577 die_children_count = 0;
8578 while (child_die && child_die->tag)
8580 child_die = sibling_die (child_die);
8581 die_children_count++;
8583 offsets = xmalloc (sizeof (*offsets) * die_children_count);
8584 cleanups = make_cleanup (xfree, offsets);
8586 offsets_end = offsets;
8587 child_die = die->child;
8588 while (child_die && child_die->tag)
8590 /* For each CHILD_DIE, find the corresponding child of
8591 ORIGIN_DIE. If there is more than one layer of
8592 DW_AT_abstract_origin, follow them all; there shouldn't be,
8593 but GCC versions at least through 4.4 generate this (GCC PR
8595 struct die_info *child_origin_die = child_die;
8596 struct dwarf2_cu *child_origin_cu = cu;
8600 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
8604 child_origin_die = follow_die_ref (child_origin_die, attr,
8608 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
8609 counterpart may exist. */
8610 if (child_origin_die != child_die)
8612 if (child_die->tag != child_origin_die->tag
8613 && !(child_die->tag == DW_TAG_inlined_subroutine
8614 && child_origin_die->tag == DW_TAG_subprogram))
8615 complaint (&symfile_complaints,
8616 _("Child DIE 0x%x and its abstract origin 0x%x have "
8617 "different tags"), child_die->offset.sect_off,
8618 child_origin_die->offset.sect_off);
8619 if (child_origin_die->parent != origin_die)
8620 complaint (&symfile_complaints,
8621 _("Child DIE 0x%x and its abstract origin 0x%x have "
8622 "different parents"), child_die->offset.sect_off,
8623 child_origin_die->offset.sect_off);
8625 *offsets_end++ = child_origin_die->offset;
8627 child_die = sibling_die (child_die);
8629 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
8630 unsigned_int_compar);
8631 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
8632 if (offsetp[-1].sect_off == offsetp->sect_off)
8633 complaint (&symfile_complaints,
8634 _("Multiple children of DIE 0x%x refer "
8635 "to DIE 0x%x as their abstract origin"),
8636 die->offset.sect_off, offsetp->sect_off);
8639 origin_child_die = origin_die->child;
8640 while (origin_child_die && origin_child_die->tag)
8642 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
8643 while (offsetp < offsets_end
8644 && offsetp->sect_off < origin_child_die->offset.sect_off)
8646 if (offsetp >= offsets_end
8647 || offsetp->sect_off > origin_child_die->offset.sect_off)
8649 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
8650 process_die (origin_child_die, origin_cu);
8652 origin_child_die = sibling_die (origin_child_die);
8654 origin_cu->list_in_scope = origin_previous_list_in_scope;
8656 do_cleanups (cleanups);
8660 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
8662 struct objfile *objfile = cu->objfile;
8663 struct context_stack *new;
8666 struct die_info *child_die;
8667 struct attribute *attr, *call_line, *call_file;
8670 struct block *block;
8671 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
8672 VEC (symbolp) *template_args = NULL;
8673 struct template_symbol *templ_func = NULL;
8677 /* If we do not have call site information, we can't show the
8678 caller of this inlined function. That's too confusing, so
8679 only use the scope for local variables. */
8680 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
8681 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
8682 if (call_line == NULL || call_file == NULL)
8684 read_lexical_block_scope (die, cu);
8689 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8691 name = dwarf2_name (die, cu);
8693 /* Ignore functions with missing or empty names. These are actually
8694 illegal according to the DWARF standard. */
8697 complaint (&symfile_complaints,
8698 _("missing name for subprogram DIE at %d"),
8699 die->offset.sect_off);
8703 /* Ignore functions with missing or invalid low and high pc attributes. */
8704 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
8706 attr = dwarf2_attr (die, DW_AT_external, cu);
8707 if (!attr || !DW_UNSND (attr))
8708 complaint (&symfile_complaints,
8709 _("cannot get low and high bounds "
8710 "for subprogram DIE at %d"),
8711 die->offset.sect_off);
8718 /* If we have any template arguments, then we must allocate a
8719 different sort of symbol. */
8720 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
8722 if (child_die->tag == DW_TAG_template_type_param
8723 || child_die->tag == DW_TAG_template_value_param)
8725 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8726 struct template_symbol);
8727 templ_func->base.is_cplus_template_function = 1;
8732 new = push_context (0, lowpc);
8733 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
8734 (struct symbol *) templ_func);
8736 /* If there is a location expression for DW_AT_frame_base, record
8738 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
8740 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
8741 expression is being recorded directly in the function's symbol
8742 and not in a separate frame-base object. I guess this hack is
8743 to avoid adding some sort of frame-base adjunct/annex to the
8744 function's symbol :-(. The problem with doing this is that it
8745 results in a function symbol with a location expression that
8746 has nothing to do with the location of the function, ouch! The
8747 relationship should be: a function's symbol has-a frame base; a
8748 frame-base has-a location expression. */
8749 dwarf2_symbol_mark_computed (attr, new->name, cu);
8751 cu->list_in_scope = &local_symbols;
8753 if (die->child != NULL)
8755 child_die = die->child;
8756 while (child_die && child_die->tag)
8758 if (child_die->tag == DW_TAG_template_type_param
8759 || child_die->tag == DW_TAG_template_value_param)
8761 struct symbol *arg = new_symbol (child_die, NULL, cu);
8764 VEC_safe_push (symbolp, template_args, arg);
8767 process_die (child_die, cu);
8768 child_die = sibling_die (child_die);
8772 inherit_abstract_dies (die, cu);
8774 /* If we have a DW_AT_specification, we might need to import using
8775 directives from the context of the specification DIE. See the
8776 comment in determine_prefix. */
8777 if (cu->language == language_cplus
8778 && dwarf2_attr (die, DW_AT_specification, cu))
8780 struct dwarf2_cu *spec_cu = cu;
8781 struct die_info *spec_die = die_specification (die, &spec_cu);
8785 child_die = spec_die->child;
8786 while (child_die && child_die->tag)
8788 if (child_die->tag == DW_TAG_imported_module)
8789 process_die (child_die, spec_cu);
8790 child_die = sibling_die (child_die);
8793 /* In some cases, GCC generates specification DIEs that
8794 themselves contain DW_AT_specification attributes. */
8795 spec_die = die_specification (spec_die, &spec_cu);
8799 new = pop_context ();
8800 /* Make a block for the local symbols within. */
8801 block = finish_block (new->name, &local_symbols, new->old_blocks,
8802 lowpc, highpc, objfile);
8804 /* For C++, set the block's scope. */
8805 if (cu->language == language_cplus || cu->language == language_fortran)
8806 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
8807 determine_prefix (die, cu),
8808 processing_has_namespace_info);
8810 /* If we have address ranges, record them. */
8811 dwarf2_record_block_ranges (die, block, baseaddr, cu);
8813 /* Attach template arguments to function. */
8814 if (! VEC_empty (symbolp, template_args))
8816 gdb_assert (templ_func != NULL);
8818 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
8819 templ_func->template_arguments
8820 = obstack_alloc (&objfile->objfile_obstack,
8821 (templ_func->n_template_arguments
8822 * sizeof (struct symbol *)));
8823 memcpy (templ_func->template_arguments,
8824 VEC_address (symbolp, template_args),
8825 (templ_func->n_template_arguments * sizeof (struct symbol *)));
8826 VEC_free (symbolp, template_args);
8829 /* In C++, we can have functions nested inside functions (e.g., when
8830 a function declares a class that has methods). This means that
8831 when we finish processing a function scope, we may need to go
8832 back to building a containing block's symbol lists. */
8833 local_symbols = new->locals;
8834 param_symbols = new->params;
8835 using_directives = new->using_directives;
8837 /* If we've finished processing a top-level function, subsequent
8838 symbols go in the file symbol list. */
8839 if (outermost_context_p ())
8840 cu->list_in_scope = &file_symbols;
8843 /* Process all the DIES contained within a lexical block scope. Start
8844 a new scope, process the dies, and then close the scope. */
8847 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
8849 struct objfile *objfile = cu->objfile;
8850 struct context_stack *new;
8851 CORE_ADDR lowpc, highpc;
8852 struct die_info *child_die;
8855 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8857 /* Ignore blocks with missing or invalid low and high pc attributes. */
8858 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
8859 as multiple lexical blocks? Handling children in a sane way would
8860 be nasty. Might be easier to properly extend generic blocks to
8862 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
8867 push_context (0, lowpc);
8868 if (die->child != NULL)
8870 child_die = die->child;
8871 while (child_die && child_die->tag)
8873 process_die (child_die, cu);
8874 child_die = sibling_die (child_die);
8877 new = pop_context ();
8879 if (local_symbols != NULL || using_directives != NULL)
8882 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
8885 /* Note that recording ranges after traversing children, as we
8886 do here, means that recording a parent's ranges entails
8887 walking across all its children's ranges as they appear in
8888 the address map, which is quadratic behavior.
8890 It would be nicer to record the parent's ranges before
8891 traversing its children, simply overriding whatever you find
8892 there. But since we don't even decide whether to create a
8893 block until after we've traversed its children, that's hard
8895 dwarf2_record_block_ranges (die, block, baseaddr, cu);
8897 local_symbols = new->locals;
8898 using_directives = new->using_directives;
8901 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
8904 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
8906 struct objfile *objfile = cu->objfile;
8907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8908 CORE_ADDR pc, baseaddr;
8909 struct attribute *attr;
8910 struct call_site *call_site, call_site_local;
8913 struct die_info *child_die;
8915 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8917 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
8920 complaint (&symfile_complaints,
8921 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
8922 "DIE 0x%x [in module %s]"),
8923 die->offset.sect_off, objfile->name);
8926 pc = DW_ADDR (attr) + baseaddr;
8928 if (cu->call_site_htab == NULL)
8929 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
8930 NULL, &objfile->objfile_obstack,
8931 hashtab_obstack_allocate, NULL);
8932 call_site_local.pc = pc;
8933 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
8936 complaint (&symfile_complaints,
8937 _("Duplicate PC %s for DW_TAG_GNU_call_site "
8938 "DIE 0x%x [in module %s]"),
8939 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
8943 /* Count parameters at the caller. */
8946 for (child_die = die->child; child_die && child_die->tag;
8947 child_die = sibling_die (child_die))
8949 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
8951 complaint (&symfile_complaints,
8952 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
8953 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
8954 child_die->tag, child_die->offset.sect_off, objfile->name);
8961 call_site = obstack_alloc (&objfile->objfile_obstack,
8962 (sizeof (*call_site)
8963 + (sizeof (*call_site->parameter)
8966 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
8969 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
8971 struct die_info *func_die;
8973 /* Skip also over DW_TAG_inlined_subroutine. */
8974 for (func_die = die->parent;
8975 func_die && func_die->tag != DW_TAG_subprogram
8976 && func_die->tag != DW_TAG_subroutine_type;
8977 func_die = func_die->parent);
8979 /* DW_AT_GNU_all_call_sites is a superset
8980 of DW_AT_GNU_all_tail_call_sites. */
8982 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
8983 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
8985 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
8986 not complete. But keep CALL_SITE for look ups via call_site_htab,
8987 both the initial caller containing the real return address PC and
8988 the final callee containing the current PC of a chain of tail
8989 calls do not need to have the tail call list complete. But any
8990 function candidate for a virtual tail call frame searched via
8991 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
8992 determined unambiguously. */
8996 struct type *func_type = NULL;
8999 func_type = get_die_type (func_die, cu);
9000 if (func_type != NULL)
9002 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9004 /* Enlist this call site to the function. */
9005 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9006 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9009 complaint (&symfile_complaints,
9010 _("Cannot find function owning DW_TAG_GNU_call_site "
9011 "DIE 0x%x [in module %s]"),
9012 die->offset.sect_off, objfile->name);
9016 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9018 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9019 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9020 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9021 /* Keep NULL DWARF_BLOCK. */;
9022 else if (attr_form_is_block (attr))
9024 struct dwarf2_locexpr_baton *dlbaton;
9026 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9027 dlbaton->data = DW_BLOCK (attr)->data;
9028 dlbaton->size = DW_BLOCK (attr)->size;
9029 dlbaton->per_cu = cu->per_cu;
9031 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9033 else if (is_ref_attr (attr))
9035 struct dwarf2_cu *target_cu = cu;
9036 struct die_info *target_die;
9038 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9039 gdb_assert (target_cu->objfile == objfile);
9040 if (die_is_declaration (target_die, target_cu))
9042 const char *target_physname;
9044 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9045 if (target_physname == NULL)
9046 complaint (&symfile_complaints,
9047 _("DW_AT_GNU_call_site_target target DIE has invalid "
9048 "physname, for referencing DIE 0x%x [in module %s]"),
9049 die->offset.sect_off, objfile->name);
9051 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9057 /* DW_AT_entry_pc should be preferred. */
9058 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9059 complaint (&symfile_complaints,
9060 _("DW_AT_GNU_call_site_target target DIE has invalid "
9061 "low pc, for referencing DIE 0x%x [in module %s]"),
9062 die->offset.sect_off, objfile->name);
9064 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9068 complaint (&symfile_complaints,
9069 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9070 "block nor reference, for DIE 0x%x [in module %s]"),
9071 die->offset.sect_off, objfile->name);
9073 call_site->per_cu = cu->per_cu;
9075 for (child_die = die->child;
9076 child_die && child_die->tag;
9077 child_die = sibling_die (child_die))
9079 struct call_site_parameter *parameter;
9080 struct attribute *loc, *origin;
9082 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9084 /* Already printed the complaint above. */
9088 gdb_assert (call_site->parameter_count < nparams);
9089 parameter = &call_site->parameter[call_site->parameter_count];
9091 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9092 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9093 register is contained in DW_AT_GNU_call_site_value. */
9095 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9096 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9097 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9101 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9102 offset = dwarf2_get_ref_die_offset (origin);
9103 if (!offset_in_cu_p (&cu->header, offset))
9105 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9106 binding can be done only inside one CU. Such referenced DIE
9107 therefore cannot be even moved to DW_TAG_partial_unit. */
9108 complaint (&symfile_complaints,
9109 _("DW_AT_abstract_origin offset is not in CU for "
9110 "DW_TAG_GNU_call_site child DIE 0x%x "
9112 child_die->offset.sect_off, objfile->name);
9115 parameter->u.param_offset.cu_off = (offset.sect_off
9116 - cu->header.offset.sect_off);
9118 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9120 complaint (&symfile_complaints,
9121 _("No DW_FORM_block* DW_AT_location for "
9122 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9123 child_die->offset.sect_off, objfile->name);
9128 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9129 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9130 if (parameter->u.dwarf_reg != -1)
9131 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9132 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9133 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9134 ¶meter->u.fb_offset))
9135 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9138 complaint (&symfile_complaints,
9139 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9140 "for DW_FORM_block* DW_AT_location is supported for "
9141 "DW_TAG_GNU_call_site child DIE 0x%x "
9143 child_die->offset.sect_off, objfile->name);
9148 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9149 if (!attr_form_is_block (attr))
9151 complaint (&symfile_complaints,
9152 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9153 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9154 child_die->offset.sect_off, objfile->name);
9157 parameter->value = DW_BLOCK (attr)->data;
9158 parameter->value_size = DW_BLOCK (attr)->size;
9160 /* Parameters are not pre-cleared by memset above. */
9161 parameter->data_value = NULL;
9162 parameter->data_value_size = 0;
9163 call_site->parameter_count++;
9165 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9168 if (!attr_form_is_block (attr))
9169 complaint (&symfile_complaints,
9170 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9171 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9172 child_die->offset.sect_off, objfile->name);
9175 parameter->data_value = DW_BLOCK (attr)->data;
9176 parameter->data_value_size = DW_BLOCK (attr)->size;
9182 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9183 Return 1 if the attributes are present and valid, otherwise, return 0.
9184 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9187 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9188 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9189 struct partial_symtab *ranges_pst)
9191 struct objfile *objfile = cu->objfile;
9192 struct comp_unit_head *cu_header = &cu->header;
9193 bfd *obfd = objfile->obfd;
9194 unsigned int addr_size = cu_header->addr_size;
9195 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9196 /* Base address selection entry. */
9207 found_base = cu->base_known;
9208 base = cu->base_address;
9210 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9211 if (offset >= dwarf2_per_objfile->ranges.size)
9213 complaint (&symfile_complaints,
9214 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9218 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9220 /* Read in the largest possible address. */
9221 marker = read_address (obfd, buffer, cu, &dummy);
9222 if ((marker & mask) == mask)
9224 /* If we found the largest possible address, then
9225 read the base address. */
9226 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9227 buffer += 2 * addr_size;
9228 offset += 2 * addr_size;
9234 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9238 CORE_ADDR range_beginning, range_end;
9240 range_beginning = read_address (obfd, buffer, cu, &dummy);
9241 buffer += addr_size;
9242 range_end = read_address (obfd, buffer, cu, &dummy);
9243 buffer += addr_size;
9244 offset += 2 * addr_size;
9246 /* An end of list marker is a pair of zero addresses. */
9247 if (range_beginning == 0 && range_end == 0)
9248 /* Found the end of list entry. */
9251 /* Each base address selection entry is a pair of 2 values.
9252 The first is the largest possible address, the second is
9253 the base address. Check for a base address here. */
9254 if ((range_beginning & mask) == mask)
9256 /* If we found the largest possible address, then
9257 read the base address. */
9258 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9265 /* We have no valid base address for the ranges
9267 complaint (&symfile_complaints,
9268 _("Invalid .debug_ranges data (no base address)"));
9272 if (range_beginning > range_end)
9274 /* Inverted range entries are invalid. */
9275 complaint (&symfile_complaints,
9276 _("Invalid .debug_ranges data (inverted range)"));
9280 /* Empty range entries have no effect. */
9281 if (range_beginning == range_end)
9284 range_beginning += base;
9287 /* A not-uncommon case of bad debug info.
9288 Don't pollute the addrmap with bad data. */
9289 if (range_beginning + baseaddr == 0
9290 && !dwarf2_per_objfile->has_section_at_zero)
9292 complaint (&symfile_complaints,
9293 _(".debug_ranges entry has start address of zero"
9294 " [in module %s]"), objfile->name);
9298 if (ranges_pst != NULL)
9299 addrmap_set_empty (objfile->psymtabs_addrmap,
9300 range_beginning + baseaddr,
9301 range_end - 1 + baseaddr,
9304 /* FIXME: This is recording everything as a low-high
9305 segment of consecutive addresses. We should have a
9306 data structure for discontiguous block ranges
9310 low = range_beginning;
9316 if (range_beginning < low)
9317 low = range_beginning;
9318 if (range_end > high)
9324 /* If the first entry is an end-of-list marker, the range
9325 describes an empty scope, i.e. no instructions. */
9331 *high_return = high;
9335 /* Get low and high pc attributes from a die. Return 1 if the attributes
9336 are present and valid, otherwise, return 0. Return -1 if the range is
9337 discontinuous, i.e. derived from DW_AT_ranges information. */
9340 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
9341 CORE_ADDR *highpc, struct dwarf2_cu *cu,
9342 struct partial_symtab *pst)
9344 struct attribute *attr;
9345 struct attribute *attr_high;
9350 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
9353 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9356 low = DW_ADDR (attr);
9357 if (attr_high->form == DW_FORM_addr
9358 || attr_high->form == DW_FORM_GNU_addr_index)
9359 high = DW_ADDR (attr_high);
9361 high = low + DW_UNSND (attr_high);
9364 /* Found high w/o low attribute. */
9367 /* Found consecutive range of addresses. */
9372 attr = dwarf2_attr (die, DW_AT_ranges, cu);
9375 unsigned int ranges_offset = DW_UNSND (attr) + cu->ranges_base;
9377 /* Value of the DW_AT_ranges attribute is the offset in the
9378 .debug_ranges section. */
9379 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
9381 /* Found discontinuous range of addresses. */
9386 /* read_partial_die has also the strict LOW < HIGH requirement. */
9390 /* When using the GNU linker, .gnu.linkonce. sections are used to
9391 eliminate duplicate copies of functions and vtables and such.
9392 The linker will arbitrarily choose one and discard the others.
9393 The AT_*_pc values for such functions refer to local labels in
9394 these sections. If the section from that file was discarded, the
9395 labels are not in the output, so the relocs get a value of 0.
9396 If this is a discarded function, mark the pc bounds as invalid,
9397 so that GDB will ignore it. */
9398 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
9407 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
9408 its low and high PC addresses. Do nothing if these addresses could not
9409 be determined. Otherwise, set LOWPC to the low address if it is smaller,
9410 and HIGHPC to the high address if greater than HIGHPC. */
9413 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
9414 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9415 struct dwarf2_cu *cu)
9417 CORE_ADDR low, high;
9418 struct die_info *child = die->child;
9420 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
9422 *lowpc = min (*lowpc, low);
9423 *highpc = max (*highpc, high);
9426 /* If the language does not allow nested subprograms (either inside
9427 subprograms or lexical blocks), we're done. */
9428 if (cu->language != language_ada)
9431 /* Check all the children of the given DIE. If it contains nested
9432 subprograms, then check their pc bounds. Likewise, we need to
9433 check lexical blocks as well, as they may also contain subprogram
9435 while (child && child->tag)
9437 if (child->tag == DW_TAG_subprogram
9438 || child->tag == DW_TAG_lexical_block)
9439 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
9440 child = sibling_die (child);
9444 /* Get the low and high pc's represented by the scope DIE, and store
9445 them in *LOWPC and *HIGHPC. If the correct values can't be
9446 determined, set *LOWPC to -1 and *HIGHPC to 0. */
9449 get_scope_pc_bounds (struct die_info *die,
9450 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9451 struct dwarf2_cu *cu)
9453 CORE_ADDR best_low = (CORE_ADDR) -1;
9454 CORE_ADDR best_high = (CORE_ADDR) 0;
9455 CORE_ADDR current_low, current_high;
9457 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL))
9459 best_low = current_low;
9460 best_high = current_high;
9464 struct die_info *child = die->child;
9466 while (child && child->tag)
9468 switch (child->tag) {
9469 case DW_TAG_subprogram:
9470 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
9472 case DW_TAG_namespace:
9474 /* FIXME: carlton/2004-01-16: Should we do this for
9475 DW_TAG_class_type/DW_TAG_structure_type, too? I think
9476 that current GCC's always emit the DIEs corresponding
9477 to definitions of methods of classes as children of a
9478 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
9479 the DIEs giving the declarations, which could be
9480 anywhere). But I don't see any reason why the
9481 standards says that they have to be there. */
9482 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
9484 if (current_low != ((CORE_ADDR) -1))
9486 best_low = min (best_low, current_low);
9487 best_high = max (best_high, current_high);
9495 child = sibling_die (child);
9500 *highpc = best_high;
9503 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
9507 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
9508 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
9510 struct objfile *objfile = cu->objfile;
9511 struct attribute *attr;
9512 struct attribute *attr_high;
9514 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
9517 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9520 CORE_ADDR low = DW_ADDR (attr);
9522 if (attr_high->form == DW_FORM_addr
9523 || attr_high->form == DW_FORM_GNU_addr_index)
9524 high = DW_ADDR (attr_high);
9526 high = low + DW_UNSND (attr_high);
9528 record_block_range (block, baseaddr + low, baseaddr + high - 1);
9532 attr = dwarf2_attr (die, DW_AT_ranges, cu);
9535 bfd *obfd = objfile->obfd;
9537 /* The value of the DW_AT_ranges attribute is the offset of the
9538 address range list in the .debug_ranges section. */
9539 unsigned long offset = DW_UNSND (attr) + cu->ranges_base;
9540 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
9542 /* For some target architectures, but not others, the
9543 read_address function sign-extends the addresses it returns.
9544 To recognize base address selection entries, we need a
9546 unsigned int addr_size = cu->header.addr_size;
9547 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9549 /* The base address, to which the next pair is relative. Note
9550 that this 'base' is a DWARF concept: most entries in a range
9551 list are relative, to reduce the number of relocs against the
9552 debugging information. This is separate from this function's
9553 'baseaddr' argument, which GDB uses to relocate debugging
9554 information from a shared library based on the address at
9555 which the library was loaded. */
9556 CORE_ADDR base = cu->base_address;
9557 int base_known = cu->base_known;
9559 gdb_assert (dwarf2_per_objfile->ranges.readin);
9560 if (offset >= dwarf2_per_objfile->ranges.size)
9562 complaint (&symfile_complaints,
9563 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
9570 unsigned int bytes_read;
9571 CORE_ADDR start, end;
9573 start = read_address (obfd, buffer, cu, &bytes_read);
9574 buffer += bytes_read;
9575 end = read_address (obfd, buffer, cu, &bytes_read);
9576 buffer += bytes_read;
9578 /* Did we find the end of the range list? */
9579 if (start == 0 && end == 0)
9582 /* Did we find a base address selection entry? */
9583 else if ((start & base_select_mask) == base_select_mask)
9589 /* We found an ordinary address range. */
9594 complaint (&symfile_complaints,
9595 _("Invalid .debug_ranges data "
9596 "(no base address)"));
9602 /* Inverted range entries are invalid. */
9603 complaint (&symfile_complaints,
9604 _("Invalid .debug_ranges data "
9605 "(inverted range)"));
9609 /* Empty range entries have no effect. */
9613 start += base + baseaddr;
9614 end += base + baseaddr;
9616 /* A not-uncommon case of bad debug info.
9617 Don't pollute the addrmap with bad data. */
9618 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
9620 complaint (&symfile_complaints,
9621 _(".debug_ranges entry has start address of zero"
9622 " [in module %s]"), objfile->name);
9626 record_block_range (block, start, end - 1);
9632 /* Check whether the producer field indicates either of GCC < 4.6, or the
9633 Intel C/C++ compiler, and cache the result in CU. */
9636 check_producer (struct dwarf2_cu *cu)
9639 int major, minor, release;
9641 if (cu->producer == NULL)
9643 /* For unknown compilers expect their behavior is DWARF version
9646 GCC started to support .debug_types sections by -gdwarf-4 since
9647 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
9648 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
9649 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
9650 interpreted incorrectly by GDB now - GCC PR debug/48229. */
9652 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
9654 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
9656 cs = &cu->producer[strlen ("GNU ")];
9657 while (*cs && !isdigit (*cs))
9659 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
9661 /* Not recognized as GCC. */
9664 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
9666 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
9667 cu->producer_is_icc = 1;
9670 /* For other non-GCC compilers, expect their behavior is DWARF version
9674 cu->checked_producer = 1;
9677 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
9678 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
9679 during 4.6.0 experimental. */
9682 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
9684 if (!cu->checked_producer)
9685 check_producer (cu);
9687 return cu->producer_is_gxx_lt_4_6;
9690 /* Return the default accessibility type if it is not overriden by
9691 DW_AT_accessibility. */
9693 static enum dwarf_access_attribute
9694 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
9696 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
9698 /* The default DWARF 2 accessibility for members is public, the default
9699 accessibility for inheritance is private. */
9701 if (die->tag != DW_TAG_inheritance)
9702 return DW_ACCESS_public;
9704 return DW_ACCESS_private;
9708 /* DWARF 3+ defines the default accessibility a different way. The same
9709 rules apply now for DW_TAG_inheritance as for the members and it only
9710 depends on the container kind. */
9712 if (die->parent->tag == DW_TAG_class_type)
9713 return DW_ACCESS_private;
9715 return DW_ACCESS_public;
9719 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
9720 offset. If the attribute was not found return 0, otherwise return
9721 1. If it was found but could not properly be handled, set *OFFSET
9725 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
9728 struct attribute *attr;
9730 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
9735 /* Note that we do not check for a section offset first here.
9736 This is because DW_AT_data_member_location is new in DWARF 4,
9737 so if we see it, we can assume that a constant form is really
9738 a constant and not a section offset. */
9739 if (attr_form_is_constant (attr))
9740 *offset = dwarf2_get_attr_constant_value (attr, 0);
9741 else if (attr_form_is_section_offset (attr))
9742 dwarf2_complex_location_expr_complaint ();
9743 else if (attr_form_is_block (attr))
9744 *offset = decode_locdesc (DW_BLOCK (attr), cu);
9746 dwarf2_complex_location_expr_complaint ();
9754 /* Add an aggregate field to the field list. */
9757 dwarf2_add_field (struct field_info *fip, struct die_info *die,
9758 struct dwarf2_cu *cu)
9760 struct objfile *objfile = cu->objfile;
9761 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9762 struct nextfield *new_field;
9763 struct attribute *attr;
9765 char *fieldname = "";
9767 /* Allocate a new field list entry and link it in. */
9768 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
9769 make_cleanup (xfree, new_field);
9770 memset (new_field, 0, sizeof (struct nextfield));
9772 if (die->tag == DW_TAG_inheritance)
9774 new_field->next = fip->baseclasses;
9775 fip->baseclasses = new_field;
9779 new_field->next = fip->fields;
9780 fip->fields = new_field;
9784 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
9786 new_field->accessibility = DW_UNSND (attr);
9788 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
9789 if (new_field->accessibility != DW_ACCESS_public)
9790 fip->non_public_fields = 1;
9792 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
9794 new_field->virtuality = DW_UNSND (attr);
9796 new_field->virtuality = DW_VIRTUALITY_none;
9798 fp = &new_field->field;
9800 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
9804 /* Data member other than a C++ static data member. */
9806 /* Get type of field. */
9807 fp->type = die_type (die, cu);
9809 SET_FIELD_BITPOS (*fp, 0);
9811 /* Get bit size of field (zero if none). */
9812 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
9815 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
9819 FIELD_BITSIZE (*fp) = 0;
9822 /* Get bit offset of field. */
9823 if (handle_data_member_location (die, cu, &offset))
9824 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
9825 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
9828 if (gdbarch_bits_big_endian (gdbarch))
9830 /* For big endian bits, the DW_AT_bit_offset gives the
9831 additional bit offset from the MSB of the containing
9832 anonymous object to the MSB of the field. We don't
9833 have to do anything special since we don't need to
9834 know the size of the anonymous object. */
9835 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
9839 /* For little endian bits, compute the bit offset to the
9840 MSB of the anonymous object, subtract off the number of
9841 bits from the MSB of the field to the MSB of the
9842 object, and then subtract off the number of bits of
9843 the field itself. The result is the bit offset of
9844 the LSB of the field. */
9846 int bit_offset = DW_UNSND (attr);
9848 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9851 /* The size of the anonymous object containing
9852 the bit field is explicit, so use the
9853 indicated size (in bytes). */
9854 anonymous_size = DW_UNSND (attr);
9858 /* The size of the anonymous object containing
9859 the bit field must be inferred from the type
9860 attribute of the data member containing the
9862 anonymous_size = TYPE_LENGTH (fp->type);
9864 SET_FIELD_BITPOS (*fp,
9866 + anonymous_size * bits_per_byte
9867 - bit_offset - FIELD_BITSIZE (*fp)));
9871 /* Get name of field. */
9872 fieldname = dwarf2_name (die, cu);
9873 if (fieldname == NULL)
9876 /* The name is already allocated along with this objfile, so we don't
9877 need to duplicate it for the type. */
9878 fp->name = fieldname;
9880 /* Change accessibility for artificial fields (e.g. virtual table
9881 pointer or virtual base class pointer) to private. */
9882 if (dwarf2_attr (die, DW_AT_artificial, cu))
9884 FIELD_ARTIFICIAL (*fp) = 1;
9885 new_field->accessibility = DW_ACCESS_private;
9886 fip->non_public_fields = 1;
9889 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
9891 /* C++ static member. */
9893 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
9894 is a declaration, but all versions of G++ as of this writing
9895 (so through at least 3.2.1) incorrectly generate
9896 DW_TAG_variable tags. */
9898 const char *physname;
9900 /* Get name of field. */
9901 fieldname = dwarf2_name (die, cu);
9902 if (fieldname == NULL)
9905 attr = dwarf2_attr (die, DW_AT_const_value, cu);
9907 /* Only create a symbol if this is an external value.
9908 new_symbol checks this and puts the value in the global symbol
9909 table, which we want. If it is not external, new_symbol
9910 will try to put the value in cu->list_in_scope which is wrong. */
9911 && dwarf2_flag_true_p (die, DW_AT_external, cu))
9913 /* A static const member, not much different than an enum as far as
9914 we're concerned, except that we can support more types. */
9915 new_symbol (die, NULL, cu);
9918 /* Get physical name. */
9919 physname = dwarf2_physname (fieldname, die, cu);
9921 /* The name is already allocated along with this objfile, so we don't
9922 need to duplicate it for the type. */
9923 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
9924 FIELD_TYPE (*fp) = die_type (die, cu);
9925 FIELD_NAME (*fp) = fieldname;
9927 else if (die->tag == DW_TAG_inheritance)
9931 /* C++ base class field. */
9932 if (handle_data_member_location (die, cu, &offset))
9933 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
9934 FIELD_BITSIZE (*fp) = 0;
9935 FIELD_TYPE (*fp) = die_type (die, cu);
9936 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
9937 fip->nbaseclasses++;
9941 /* Add a typedef defined in the scope of the FIP's class. */
9944 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
9945 struct dwarf2_cu *cu)
9947 struct objfile *objfile = cu->objfile;
9948 struct typedef_field_list *new_field;
9949 struct attribute *attr;
9950 struct typedef_field *fp;
9951 char *fieldname = "";
9953 /* Allocate a new field list entry and link it in. */
9954 new_field = xzalloc (sizeof (*new_field));
9955 make_cleanup (xfree, new_field);
9957 gdb_assert (die->tag == DW_TAG_typedef);
9959 fp = &new_field->field;
9961 /* Get name of field. */
9962 fp->name = dwarf2_name (die, cu);
9963 if (fp->name == NULL)
9966 fp->type = read_type_die (die, cu);
9968 new_field->next = fip->typedef_field_list;
9969 fip->typedef_field_list = new_field;
9970 fip->typedef_field_list_count++;
9973 /* Create the vector of fields, and attach it to the type. */
9976 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
9977 struct dwarf2_cu *cu)
9979 int nfields = fip->nfields;
9981 /* Record the field count, allocate space for the array of fields,
9982 and create blank accessibility bitfields if necessary. */
9983 TYPE_NFIELDS (type) = nfields;
9984 TYPE_FIELDS (type) = (struct field *)
9985 TYPE_ALLOC (type, sizeof (struct field) * nfields);
9986 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
9988 if (fip->non_public_fields && cu->language != language_ada)
9990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
9992 TYPE_FIELD_PRIVATE_BITS (type) =
9993 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
9994 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
9996 TYPE_FIELD_PROTECTED_BITS (type) =
9997 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
9998 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10000 TYPE_FIELD_IGNORE_BITS (type) =
10001 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10002 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10005 /* If the type has baseclasses, allocate and clear a bit vector for
10006 TYPE_FIELD_VIRTUAL_BITS. */
10007 if (fip->nbaseclasses && cu->language != language_ada)
10009 int num_bytes = B_BYTES (fip->nbaseclasses);
10010 unsigned char *pointer;
10012 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10013 pointer = TYPE_ALLOC (type, num_bytes);
10014 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10015 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10016 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10019 /* Copy the saved-up fields into the field vector. Start from the head of
10020 the list, adding to the tail of the field array, so that they end up in
10021 the same order in the array in which they were added to the list. */
10022 while (nfields-- > 0)
10024 struct nextfield *fieldp;
10028 fieldp = fip->fields;
10029 fip->fields = fieldp->next;
10033 fieldp = fip->baseclasses;
10034 fip->baseclasses = fieldp->next;
10037 TYPE_FIELD (type, nfields) = fieldp->field;
10038 switch (fieldp->accessibility)
10040 case DW_ACCESS_private:
10041 if (cu->language != language_ada)
10042 SET_TYPE_FIELD_PRIVATE (type, nfields);
10045 case DW_ACCESS_protected:
10046 if (cu->language != language_ada)
10047 SET_TYPE_FIELD_PROTECTED (type, nfields);
10050 case DW_ACCESS_public:
10054 /* Unknown accessibility. Complain and treat it as public. */
10056 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10057 fieldp->accessibility);
10061 if (nfields < fip->nbaseclasses)
10063 switch (fieldp->virtuality)
10065 case DW_VIRTUALITY_virtual:
10066 case DW_VIRTUALITY_pure_virtual:
10067 if (cu->language == language_ada)
10068 error (_("unexpected virtuality in component of Ada type"));
10069 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10076 /* Add a member function to the proper fieldlist. */
10079 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10080 struct type *type, struct dwarf2_cu *cu)
10082 struct objfile *objfile = cu->objfile;
10083 struct attribute *attr;
10084 struct fnfieldlist *flp;
10086 struct fn_field *fnp;
10088 struct nextfnfield *new_fnfield;
10089 struct type *this_type;
10090 enum dwarf_access_attribute accessibility;
10092 if (cu->language == language_ada)
10093 error (_("unexpected member function in Ada type"));
10095 /* Get name of member function. */
10096 fieldname = dwarf2_name (die, cu);
10097 if (fieldname == NULL)
10100 /* Look up member function name in fieldlist. */
10101 for (i = 0; i < fip->nfnfields; i++)
10103 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10107 /* Create new list element if necessary. */
10108 if (i < fip->nfnfields)
10109 flp = &fip->fnfieldlists[i];
10112 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10114 fip->fnfieldlists = (struct fnfieldlist *)
10115 xrealloc (fip->fnfieldlists,
10116 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10117 * sizeof (struct fnfieldlist));
10118 if (fip->nfnfields == 0)
10119 make_cleanup (free_current_contents, &fip->fnfieldlists);
10121 flp = &fip->fnfieldlists[fip->nfnfields];
10122 flp->name = fieldname;
10125 i = fip->nfnfields++;
10128 /* Create a new member function field and chain it to the field list
10130 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10131 make_cleanup (xfree, new_fnfield);
10132 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10133 new_fnfield->next = flp->head;
10134 flp->head = new_fnfield;
10137 /* Fill in the member function field info. */
10138 fnp = &new_fnfield->fnfield;
10140 /* Delay processing of the physname until later. */
10141 if (cu->language == language_cplus || cu->language == language_java)
10143 add_to_method_list (type, i, flp->length - 1, fieldname,
10148 const char *physname = dwarf2_physname (fieldname, die, cu);
10149 fnp->physname = physname ? physname : "";
10152 fnp->type = alloc_type (objfile);
10153 this_type = read_type_die (die, cu);
10154 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10156 int nparams = TYPE_NFIELDS (this_type);
10158 /* TYPE is the domain of this method, and THIS_TYPE is the type
10159 of the method itself (TYPE_CODE_METHOD). */
10160 smash_to_method_type (fnp->type, type,
10161 TYPE_TARGET_TYPE (this_type),
10162 TYPE_FIELDS (this_type),
10163 TYPE_NFIELDS (this_type),
10164 TYPE_VARARGS (this_type));
10166 /* Handle static member functions.
10167 Dwarf2 has no clean way to discern C++ static and non-static
10168 member functions. G++ helps GDB by marking the first
10169 parameter for non-static member functions (which is the this
10170 pointer) as artificial. We obtain this information from
10171 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10172 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10173 fnp->voffset = VOFFSET_STATIC;
10176 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10177 dwarf2_full_name (fieldname, die, cu));
10179 /* Get fcontext from DW_AT_containing_type if present. */
10180 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10181 fnp->fcontext = die_containing_type (die, cu);
10183 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10184 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
10186 /* Get accessibility. */
10187 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10189 accessibility = DW_UNSND (attr);
10191 accessibility = dwarf2_default_access_attribute (die, cu);
10192 switch (accessibility)
10194 case DW_ACCESS_private:
10195 fnp->is_private = 1;
10197 case DW_ACCESS_protected:
10198 fnp->is_protected = 1;
10202 /* Check for artificial methods. */
10203 attr = dwarf2_attr (die, DW_AT_artificial, cu);
10204 if (attr && DW_UNSND (attr) != 0)
10205 fnp->is_artificial = 1;
10207 /* Get index in virtual function table if it is a virtual member
10208 function. For older versions of GCC, this is an offset in the
10209 appropriate virtual table, as specified by DW_AT_containing_type.
10210 For everyone else, it is an expression to be evaluated relative
10211 to the object address. */
10213 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
10216 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
10218 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
10220 /* Old-style GCC. */
10221 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
10223 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
10224 || (DW_BLOCK (attr)->size > 1
10225 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
10226 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
10228 struct dwarf_block blk;
10231 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
10233 blk.size = DW_BLOCK (attr)->size - offset;
10234 blk.data = DW_BLOCK (attr)->data + offset;
10235 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
10236 if ((fnp->voffset % cu->header.addr_size) != 0)
10237 dwarf2_complex_location_expr_complaint ();
10239 fnp->voffset /= cu->header.addr_size;
10243 dwarf2_complex_location_expr_complaint ();
10245 if (!fnp->fcontext)
10246 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
10248 else if (attr_form_is_section_offset (attr))
10250 dwarf2_complex_location_expr_complaint ();
10254 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
10260 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10261 if (attr && DW_UNSND (attr))
10263 /* GCC does this, as of 2008-08-25; PR debug/37237. */
10264 complaint (&symfile_complaints,
10265 _("Member function \"%s\" (offset %d) is virtual "
10266 "but the vtable offset is not specified"),
10267 fieldname, die->offset.sect_off);
10268 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10269 TYPE_CPLUS_DYNAMIC (type) = 1;
10274 /* Create the vector of member function fields, and attach it to the type. */
10277 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
10278 struct dwarf2_cu *cu)
10280 struct fnfieldlist *flp;
10283 if (cu->language == language_ada)
10284 error (_("unexpected member functions in Ada type"));
10286 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10287 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
10288 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
10290 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
10292 struct nextfnfield *nfp = flp->head;
10293 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
10296 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
10297 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
10298 fn_flp->fn_fields = (struct fn_field *)
10299 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
10300 for (k = flp->length; (k--, nfp); nfp = nfp->next)
10301 fn_flp->fn_fields[k] = nfp->fnfield;
10304 TYPE_NFN_FIELDS (type) = fip->nfnfields;
10307 /* Returns non-zero if NAME is the name of a vtable member in CU's
10308 language, zero otherwise. */
10310 is_vtable_name (const char *name, struct dwarf2_cu *cu)
10312 static const char vptr[] = "_vptr";
10313 static const char vtable[] = "vtable";
10315 /* Look for the C++ and Java forms of the vtable. */
10316 if ((cu->language == language_java
10317 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
10318 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
10319 && is_cplus_marker (name[sizeof (vptr) - 1])))
10325 /* GCC outputs unnamed structures that are really pointers to member
10326 functions, with the ABI-specified layout. If TYPE describes
10327 such a structure, smash it into a member function type.
10329 GCC shouldn't do this; it should just output pointer to member DIEs.
10330 This is GCC PR debug/28767. */
10333 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
10335 struct type *pfn_type, *domain_type, *new_type;
10337 /* Check for a structure with no name and two children. */
10338 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
10341 /* Check for __pfn and __delta members. */
10342 if (TYPE_FIELD_NAME (type, 0) == NULL
10343 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
10344 || TYPE_FIELD_NAME (type, 1) == NULL
10345 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
10348 /* Find the type of the method. */
10349 pfn_type = TYPE_FIELD_TYPE (type, 0);
10350 if (pfn_type == NULL
10351 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
10352 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
10355 /* Look for the "this" argument. */
10356 pfn_type = TYPE_TARGET_TYPE (pfn_type);
10357 if (TYPE_NFIELDS (pfn_type) == 0
10358 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
10359 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
10362 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
10363 new_type = alloc_type (objfile);
10364 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
10365 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
10366 TYPE_VARARGS (pfn_type));
10367 smash_to_methodptr_type (type, new_type);
10370 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
10374 producer_is_icc (struct dwarf2_cu *cu)
10376 if (!cu->checked_producer)
10377 check_producer (cu);
10379 return cu->producer_is_icc;
10382 /* Called when we find the DIE that starts a structure or union scope
10383 (definition) to create a type for the structure or union. Fill in
10384 the type's name and general properties; the members will not be
10385 processed until process_structure_type.
10387 NOTE: we need to call these functions regardless of whether or not the
10388 DIE has a DW_AT_name attribute, since it might be an anonymous
10389 structure or union. This gets the type entered into our set of
10390 user defined types.
10392 However, if the structure is incomplete (an opaque struct/union)
10393 then suppress creating a symbol table entry for it since gdb only
10394 wants to find the one with the complete definition. Note that if
10395 it is complete, we just call new_symbol, which does it's own
10396 checking about whether the struct/union is anonymous or not (and
10397 suppresses creating a symbol table entry itself). */
10399 static struct type *
10400 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
10402 struct objfile *objfile = cu->objfile;
10404 struct attribute *attr;
10407 /* If the definition of this type lives in .debug_types, read that type.
10408 Don't follow DW_AT_specification though, that will take us back up
10409 the chain and we want to go down. */
10410 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
10413 struct dwarf2_cu *type_cu = cu;
10414 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
10416 /* We could just recurse on read_structure_type, but we need to call
10417 get_die_type to ensure only one type for this DIE is created.
10418 This is important, for example, because for c++ classes we need
10419 TYPE_NAME set which is only done by new_symbol. Blech. */
10420 type = read_type_die (type_die, type_cu);
10422 /* TYPE_CU may not be the same as CU.
10423 Ensure TYPE is recorded in CU's type_hash table. */
10424 return set_die_type (die, type, cu);
10427 type = alloc_type (objfile);
10428 INIT_CPLUS_SPECIFIC (type);
10430 name = dwarf2_name (die, cu);
10433 if (cu->language == language_cplus
10434 || cu->language == language_java)
10436 char *full_name = (char *) dwarf2_full_name (name, die, cu);
10438 /* dwarf2_full_name might have already finished building the DIE's
10439 type. If so, there is no need to continue. */
10440 if (get_die_type (die, cu) != NULL)
10441 return get_die_type (die, cu);
10443 TYPE_TAG_NAME (type) = full_name;
10444 if (die->tag == DW_TAG_structure_type
10445 || die->tag == DW_TAG_class_type)
10446 TYPE_NAME (type) = TYPE_TAG_NAME (type);
10450 /* The name is already allocated along with this objfile, so
10451 we don't need to duplicate it for the type. */
10452 TYPE_TAG_NAME (type) = (char *) name;
10453 if (die->tag == DW_TAG_class_type)
10454 TYPE_NAME (type) = TYPE_TAG_NAME (type);
10458 if (die->tag == DW_TAG_structure_type)
10460 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10462 else if (die->tag == DW_TAG_union_type)
10464 TYPE_CODE (type) = TYPE_CODE_UNION;
10468 TYPE_CODE (type) = TYPE_CODE_CLASS;
10471 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
10472 TYPE_DECLARED_CLASS (type) = 1;
10474 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10477 TYPE_LENGTH (type) = DW_UNSND (attr);
10481 TYPE_LENGTH (type) = 0;
10484 if (producer_is_icc (cu))
10486 /* ICC does not output the required DW_AT_declaration
10487 on incomplete types, but gives them a size of zero. */
10490 TYPE_STUB_SUPPORTED (type) = 1;
10492 if (die_is_declaration (die, cu))
10493 TYPE_STUB (type) = 1;
10494 else if (attr == NULL && die->child == NULL
10495 && producer_is_realview (cu->producer))
10496 /* RealView does not output the required DW_AT_declaration
10497 on incomplete types. */
10498 TYPE_STUB (type) = 1;
10500 /* We need to add the type field to the die immediately so we don't
10501 infinitely recurse when dealing with pointers to the structure
10502 type within the structure itself. */
10503 set_die_type (die, type, cu);
10505 /* set_die_type should be already done. */
10506 set_descriptive_type (type, die, cu);
10511 /* Finish creating a structure or union type, including filling in
10512 its members and creating a symbol for it. */
10515 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
10517 struct objfile *objfile = cu->objfile;
10518 struct die_info *child_die = die->child;
10521 type = get_die_type (die, cu);
10523 type = read_structure_type (die, cu);
10525 if (die->child != NULL && ! die_is_declaration (die, cu))
10527 struct field_info fi;
10528 struct die_info *child_die;
10529 VEC (symbolp) *template_args = NULL;
10530 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
10532 memset (&fi, 0, sizeof (struct field_info));
10534 child_die = die->child;
10536 while (child_die && child_die->tag)
10538 if (child_die->tag == DW_TAG_member
10539 || child_die->tag == DW_TAG_variable)
10541 /* NOTE: carlton/2002-11-05: A C++ static data member
10542 should be a DW_TAG_member that is a declaration, but
10543 all versions of G++ as of this writing (so through at
10544 least 3.2.1) incorrectly generate DW_TAG_variable
10545 tags for them instead. */
10546 dwarf2_add_field (&fi, child_die, cu);
10548 else if (child_die->tag == DW_TAG_subprogram)
10550 /* C++ member function. */
10551 dwarf2_add_member_fn (&fi, child_die, type, cu);
10553 else if (child_die->tag == DW_TAG_inheritance)
10555 /* C++ base class field. */
10556 dwarf2_add_field (&fi, child_die, cu);
10558 else if (child_die->tag == DW_TAG_typedef)
10559 dwarf2_add_typedef (&fi, child_die, cu);
10560 else if (child_die->tag == DW_TAG_template_type_param
10561 || child_die->tag == DW_TAG_template_value_param)
10563 struct symbol *arg = new_symbol (child_die, NULL, cu);
10566 VEC_safe_push (symbolp, template_args, arg);
10569 child_die = sibling_die (child_die);
10572 /* Attach template arguments to type. */
10573 if (! VEC_empty (symbolp, template_args))
10575 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10576 TYPE_N_TEMPLATE_ARGUMENTS (type)
10577 = VEC_length (symbolp, template_args);
10578 TYPE_TEMPLATE_ARGUMENTS (type)
10579 = obstack_alloc (&objfile->objfile_obstack,
10580 (TYPE_N_TEMPLATE_ARGUMENTS (type)
10581 * sizeof (struct symbol *)));
10582 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
10583 VEC_address (symbolp, template_args),
10584 (TYPE_N_TEMPLATE_ARGUMENTS (type)
10585 * sizeof (struct symbol *)));
10586 VEC_free (symbolp, template_args);
10589 /* Attach fields and member functions to the type. */
10591 dwarf2_attach_fields_to_type (&fi, type, cu);
10594 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
10596 /* Get the type which refers to the base class (possibly this
10597 class itself) which contains the vtable pointer for the current
10598 class from the DW_AT_containing_type attribute. This use of
10599 DW_AT_containing_type is a GNU extension. */
10601 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10603 struct type *t = die_containing_type (die, cu);
10605 TYPE_VPTR_BASETYPE (type) = t;
10610 /* Our own class provides vtbl ptr. */
10611 for (i = TYPE_NFIELDS (t) - 1;
10612 i >= TYPE_N_BASECLASSES (t);
10615 const char *fieldname = TYPE_FIELD_NAME (t, i);
10617 if (is_vtable_name (fieldname, cu))
10619 TYPE_VPTR_FIELDNO (type) = i;
10624 /* Complain if virtual function table field not found. */
10625 if (i < TYPE_N_BASECLASSES (t))
10626 complaint (&symfile_complaints,
10627 _("virtual function table pointer "
10628 "not found when defining class '%s'"),
10629 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
10634 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
10637 else if (cu->producer
10638 && strncmp (cu->producer,
10639 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
10641 /* The IBM XLC compiler does not provide direct indication
10642 of the containing type, but the vtable pointer is
10643 always named __vfp. */
10647 for (i = TYPE_NFIELDS (type) - 1;
10648 i >= TYPE_N_BASECLASSES (type);
10651 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
10653 TYPE_VPTR_FIELDNO (type) = i;
10654 TYPE_VPTR_BASETYPE (type) = type;
10661 /* Copy fi.typedef_field_list linked list elements content into the
10662 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
10663 if (fi.typedef_field_list)
10665 int i = fi.typedef_field_list_count;
10667 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10668 TYPE_TYPEDEF_FIELD_ARRAY (type)
10669 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
10670 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
10672 /* Reverse the list order to keep the debug info elements order. */
10675 struct typedef_field *dest, *src;
10677 dest = &TYPE_TYPEDEF_FIELD (type, i);
10678 src = &fi.typedef_field_list->field;
10679 fi.typedef_field_list = fi.typedef_field_list->next;
10684 do_cleanups (back_to);
10686 if (HAVE_CPLUS_STRUCT (type))
10687 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
10690 quirk_gcc_member_function_pointer (type, objfile);
10692 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
10693 snapshots) has been known to create a die giving a declaration
10694 for a class that has, as a child, a die giving a definition for a
10695 nested class. So we have to process our children even if the
10696 current die is a declaration. Normally, of course, a declaration
10697 won't have any children at all. */
10699 while (child_die != NULL && child_die->tag)
10701 if (child_die->tag == DW_TAG_member
10702 || child_die->tag == DW_TAG_variable
10703 || child_die->tag == DW_TAG_inheritance
10704 || child_die->tag == DW_TAG_template_value_param
10705 || child_die->tag == DW_TAG_template_type_param)
10710 process_die (child_die, cu);
10712 child_die = sibling_die (child_die);
10715 /* Do not consider external references. According to the DWARF standard,
10716 these DIEs are identified by the fact that they have no byte_size
10717 attribute, and a declaration attribute. */
10718 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
10719 || !die_is_declaration (die, cu))
10720 new_symbol (die, type, cu);
10723 /* Given a DW_AT_enumeration_type die, set its type. We do not
10724 complete the type's fields yet, or create any symbols. */
10726 static struct type *
10727 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
10729 struct objfile *objfile = cu->objfile;
10731 struct attribute *attr;
10734 /* If the definition of this type lives in .debug_types, read that type.
10735 Don't follow DW_AT_specification though, that will take us back up
10736 the chain and we want to go down. */
10737 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
10740 struct dwarf2_cu *type_cu = cu;
10741 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
10743 type = read_type_die (type_die, type_cu);
10745 /* TYPE_CU may not be the same as CU.
10746 Ensure TYPE is recorded in CU's type_hash table. */
10747 return set_die_type (die, type, cu);
10750 type = alloc_type (objfile);
10752 TYPE_CODE (type) = TYPE_CODE_ENUM;
10753 name = dwarf2_full_name (NULL, die, cu);
10755 TYPE_TAG_NAME (type) = (char *) name;
10757 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10760 TYPE_LENGTH (type) = DW_UNSND (attr);
10764 TYPE_LENGTH (type) = 0;
10767 /* The enumeration DIE can be incomplete. In Ada, any type can be
10768 declared as private in the package spec, and then defined only
10769 inside the package body. Such types are known as Taft Amendment
10770 Types. When another package uses such a type, an incomplete DIE
10771 may be generated by the compiler. */
10772 if (die_is_declaration (die, cu))
10773 TYPE_STUB (type) = 1;
10775 return set_die_type (die, type, cu);
10778 /* Given a pointer to a die which begins an enumeration, process all
10779 the dies that define the members of the enumeration, and create the
10780 symbol for the enumeration type.
10782 NOTE: We reverse the order of the element list. */
10785 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
10787 struct type *this_type;
10789 this_type = get_die_type (die, cu);
10790 if (this_type == NULL)
10791 this_type = read_enumeration_type (die, cu);
10793 if (die->child != NULL)
10795 struct die_info *child_die;
10796 struct symbol *sym;
10797 struct field *fields = NULL;
10798 int num_fields = 0;
10799 int unsigned_enum = 1;
10804 child_die = die->child;
10805 while (child_die && child_die->tag)
10807 if (child_die->tag != DW_TAG_enumerator)
10809 process_die (child_die, cu);
10813 name = dwarf2_name (child_die, cu);
10816 sym = new_symbol (child_die, this_type, cu);
10817 if (SYMBOL_VALUE (sym) < 0)
10822 else if ((mask & SYMBOL_VALUE (sym)) != 0)
10825 mask |= SYMBOL_VALUE (sym);
10827 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
10829 fields = (struct field *)
10831 (num_fields + DW_FIELD_ALLOC_CHUNK)
10832 * sizeof (struct field));
10835 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
10836 FIELD_TYPE (fields[num_fields]) = NULL;
10837 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
10838 FIELD_BITSIZE (fields[num_fields]) = 0;
10844 child_die = sibling_die (child_die);
10849 TYPE_NFIELDS (this_type) = num_fields;
10850 TYPE_FIELDS (this_type) = (struct field *)
10851 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
10852 memcpy (TYPE_FIELDS (this_type), fields,
10853 sizeof (struct field) * num_fields);
10857 TYPE_UNSIGNED (this_type) = 1;
10859 TYPE_FLAG_ENUM (this_type) = 1;
10862 /* If we are reading an enum from a .debug_types unit, and the enum
10863 is a declaration, and the enum is not the signatured type in the
10864 unit, then we do not want to add a symbol for it. Adding a
10865 symbol would in some cases obscure the true definition of the
10866 enum, giving users an incomplete type when the definition is
10867 actually available. Note that we do not want to do this for all
10868 enums which are just declarations, because C++0x allows forward
10869 enum declarations. */
10870 if (cu->per_cu->is_debug_types
10871 && die_is_declaration (die, cu))
10873 struct signatured_type *sig_type;
10876 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
10877 cu->per_cu->info_or_types_section,
10878 cu->per_cu->offset);
10879 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
10880 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
10884 new_symbol (die, this_type, cu);
10887 /* Extract all information from a DW_TAG_array_type DIE and put it in
10888 the DIE's type field. For now, this only handles one dimensional
10891 static struct type *
10892 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
10894 struct objfile *objfile = cu->objfile;
10895 struct die_info *child_die;
10897 struct type *element_type, *range_type, *index_type;
10898 struct type **range_types = NULL;
10899 struct attribute *attr;
10901 struct cleanup *back_to;
10904 element_type = die_type (die, cu);
10906 /* The die_type call above may have already set the type for this DIE. */
10907 type = get_die_type (die, cu);
10911 /* Irix 6.2 native cc creates array types without children for
10912 arrays with unspecified length. */
10913 if (die->child == NULL)
10915 index_type = objfile_type (objfile)->builtin_int;
10916 range_type = create_range_type (NULL, index_type, 0, -1);
10917 type = create_array_type (NULL, element_type, range_type);
10918 return set_die_type (die, type, cu);
10921 back_to = make_cleanup (null_cleanup, NULL);
10922 child_die = die->child;
10923 while (child_die && child_die->tag)
10925 if (child_die->tag == DW_TAG_subrange_type)
10927 struct type *child_type = read_type_die (child_die, cu);
10929 if (child_type != NULL)
10931 /* The range type was succesfully read. Save it for the
10932 array type creation. */
10933 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
10935 range_types = (struct type **)
10936 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
10937 * sizeof (struct type *));
10939 make_cleanup (free_current_contents, &range_types);
10941 range_types[ndim++] = child_type;
10944 child_die = sibling_die (child_die);
10947 /* Dwarf2 dimensions are output from left to right, create the
10948 necessary array types in backwards order. */
10950 type = element_type;
10952 if (read_array_order (die, cu) == DW_ORD_col_major)
10957 type = create_array_type (NULL, type, range_types[i++]);
10962 type = create_array_type (NULL, type, range_types[ndim]);
10965 /* Understand Dwarf2 support for vector types (like they occur on
10966 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
10967 array type. This is not part of the Dwarf2/3 standard yet, but a
10968 custom vendor extension. The main difference between a regular
10969 array and the vector variant is that vectors are passed by value
10971 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
10973 make_vector_type (type);
10975 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
10976 implementation may choose to implement triple vectors using this
10978 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10981 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
10982 TYPE_LENGTH (type) = DW_UNSND (attr);
10984 complaint (&symfile_complaints,
10985 _("DW_AT_byte_size for array type smaller "
10986 "than the total size of elements"));
10989 name = dwarf2_name (die, cu);
10991 TYPE_NAME (type) = name;
10993 /* Install the type in the die. */
10994 set_die_type (die, type, cu);
10996 /* set_die_type should be already done. */
10997 set_descriptive_type (type, die, cu);
10999 do_cleanups (back_to);
11004 static enum dwarf_array_dim_ordering
11005 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11007 struct attribute *attr;
11009 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11011 if (attr) return DW_SND (attr);
11013 /* GNU F77 is a special case, as at 08/2004 array type info is the
11014 opposite order to the dwarf2 specification, but data is still
11015 laid out as per normal fortran.
11017 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11018 version checking. */
11020 if (cu->language == language_fortran
11021 && cu->producer && strstr (cu->producer, "GNU F77"))
11023 return DW_ORD_row_major;
11026 switch (cu->language_defn->la_array_ordering)
11028 case array_column_major:
11029 return DW_ORD_col_major;
11030 case array_row_major:
11032 return DW_ORD_row_major;
11036 /* Extract all information from a DW_TAG_set_type DIE and put it in
11037 the DIE's type field. */
11039 static struct type *
11040 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11042 struct type *domain_type, *set_type;
11043 struct attribute *attr;
11045 domain_type = die_type (die, cu);
11047 /* The die_type call above may have already set the type for this DIE. */
11048 set_type = get_die_type (die, cu);
11052 set_type = create_set_type (NULL, domain_type);
11054 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11056 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11058 return set_die_type (die, set_type, cu);
11061 /* First cut: install each common block member as a global variable. */
11064 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11066 struct die_info *child_die;
11067 struct attribute *attr;
11068 struct symbol *sym;
11069 CORE_ADDR base = (CORE_ADDR) 0;
11071 attr = dwarf2_attr (die, DW_AT_location, cu);
11074 /* Support the .debug_loc offsets. */
11075 if (attr_form_is_block (attr))
11077 base = decode_locdesc (DW_BLOCK (attr), cu);
11079 else if (attr_form_is_section_offset (attr))
11081 dwarf2_complex_location_expr_complaint ();
11085 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11086 "common block member");
11089 if (die->child != NULL)
11091 child_die = die->child;
11092 while (child_die && child_die->tag)
11096 sym = new_symbol (child_die, NULL, cu);
11098 && handle_data_member_location (child_die, cu, &offset))
11100 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
11101 add_symbol_to_list (sym, &global_symbols);
11103 child_die = sibling_die (child_die);
11108 /* Create a type for a C++ namespace. */
11110 static struct type *
11111 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
11113 struct objfile *objfile = cu->objfile;
11114 const char *previous_prefix, *name;
11118 /* For extensions, reuse the type of the original namespace. */
11119 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
11121 struct die_info *ext_die;
11122 struct dwarf2_cu *ext_cu = cu;
11124 ext_die = dwarf2_extension (die, &ext_cu);
11125 type = read_type_die (ext_die, ext_cu);
11127 /* EXT_CU may not be the same as CU.
11128 Ensure TYPE is recorded in CU's type_hash table. */
11129 return set_die_type (die, type, cu);
11132 name = namespace_name (die, &is_anonymous, cu);
11134 /* Now build the name of the current namespace. */
11136 previous_prefix = determine_prefix (die, cu);
11137 if (previous_prefix[0] != '\0')
11138 name = typename_concat (&objfile->objfile_obstack,
11139 previous_prefix, name, 0, cu);
11141 /* Create the type. */
11142 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
11144 TYPE_NAME (type) = (char *) name;
11145 TYPE_TAG_NAME (type) = TYPE_NAME (type);
11147 return set_die_type (die, type, cu);
11150 /* Read a C++ namespace. */
11153 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
11155 struct objfile *objfile = cu->objfile;
11158 /* Add a symbol associated to this if we haven't seen the namespace
11159 before. Also, add a using directive if it's an anonymous
11162 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
11166 type = read_type_die (die, cu);
11167 new_symbol (die, type, cu);
11169 namespace_name (die, &is_anonymous, cu);
11172 const char *previous_prefix = determine_prefix (die, cu);
11174 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
11175 NULL, NULL, &objfile->objfile_obstack);
11179 if (die->child != NULL)
11181 struct die_info *child_die = die->child;
11183 while (child_die && child_die->tag)
11185 process_die (child_die, cu);
11186 child_die = sibling_die (child_die);
11191 /* Read a Fortran module as type. This DIE can be only a declaration used for
11192 imported module. Still we need that type as local Fortran "use ... only"
11193 declaration imports depend on the created type in determine_prefix. */
11195 static struct type *
11196 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
11198 struct objfile *objfile = cu->objfile;
11202 module_name = dwarf2_name (die, cu);
11204 complaint (&symfile_complaints,
11205 _("DW_TAG_module has no name, offset 0x%x"),
11206 die->offset.sect_off);
11207 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
11209 /* determine_prefix uses TYPE_TAG_NAME. */
11210 TYPE_TAG_NAME (type) = TYPE_NAME (type);
11212 return set_die_type (die, type, cu);
11215 /* Read a Fortran module. */
11218 read_module (struct die_info *die, struct dwarf2_cu *cu)
11220 struct die_info *child_die = die->child;
11222 while (child_die && child_die->tag)
11224 process_die (child_die, cu);
11225 child_die = sibling_die (child_die);
11229 /* Return the name of the namespace represented by DIE. Set
11230 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
11233 static const char *
11234 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
11236 struct die_info *current_die;
11237 const char *name = NULL;
11239 /* Loop through the extensions until we find a name. */
11241 for (current_die = die;
11242 current_die != NULL;
11243 current_die = dwarf2_extension (die, &cu))
11245 name = dwarf2_name (current_die, cu);
11250 /* Is it an anonymous namespace? */
11252 *is_anonymous = (name == NULL);
11254 name = CP_ANONYMOUS_NAMESPACE_STR;
11259 /* Extract all information from a DW_TAG_pointer_type DIE and add to
11260 the user defined type vector. */
11262 static struct type *
11263 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
11265 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
11266 struct comp_unit_head *cu_header = &cu->header;
11268 struct attribute *attr_byte_size;
11269 struct attribute *attr_address_class;
11270 int byte_size, addr_class;
11271 struct type *target_type;
11273 target_type = die_type (die, cu);
11275 /* The die_type call above may have already set the type for this DIE. */
11276 type = get_die_type (die, cu);
11280 type = lookup_pointer_type (target_type);
11282 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
11283 if (attr_byte_size)
11284 byte_size = DW_UNSND (attr_byte_size);
11286 byte_size = cu_header->addr_size;
11288 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
11289 if (attr_address_class)
11290 addr_class = DW_UNSND (attr_address_class);
11292 addr_class = DW_ADDR_none;
11294 /* If the pointer size or address class is different than the
11295 default, create a type variant marked as such and set the
11296 length accordingly. */
11297 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
11299 if (gdbarch_address_class_type_flags_p (gdbarch))
11303 type_flags = gdbarch_address_class_type_flags
11304 (gdbarch, byte_size, addr_class);
11305 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
11307 type = make_type_with_address_space (type, type_flags);
11309 else if (TYPE_LENGTH (type) != byte_size)
11311 complaint (&symfile_complaints,
11312 _("invalid pointer size %d"), byte_size);
11316 /* Should we also complain about unhandled address classes? */
11320 TYPE_LENGTH (type) = byte_size;
11321 return set_die_type (die, type, cu);
11324 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
11325 the user defined type vector. */
11327 static struct type *
11328 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
11331 struct type *to_type;
11332 struct type *domain;
11334 to_type = die_type (die, cu);
11335 domain = die_containing_type (die, cu);
11337 /* The calls above may have already set the type for this DIE. */
11338 type = get_die_type (die, cu);
11342 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
11343 type = lookup_methodptr_type (to_type);
11345 type = lookup_memberptr_type (to_type, domain);
11347 return set_die_type (die, type, cu);
11350 /* Extract all information from a DW_TAG_reference_type DIE and add to
11351 the user defined type vector. */
11353 static struct type *
11354 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
11356 struct comp_unit_head *cu_header = &cu->header;
11357 struct type *type, *target_type;
11358 struct attribute *attr;
11360 target_type = die_type (die, cu);
11362 /* The die_type call above may have already set the type for this DIE. */
11363 type = get_die_type (die, cu);
11367 type = lookup_reference_type (target_type);
11368 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11371 TYPE_LENGTH (type) = DW_UNSND (attr);
11375 TYPE_LENGTH (type) = cu_header->addr_size;
11377 return set_die_type (die, type, cu);
11380 static struct type *
11381 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
11383 struct type *base_type, *cv_type;
11385 base_type = die_type (die, cu);
11387 /* The die_type call above may have already set the type for this DIE. */
11388 cv_type = get_die_type (die, cu);
11392 /* In case the const qualifier is applied to an array type, the element type
11393 is so qualified, not the array type (section 6.7.3 of C99). */
11394 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
11396 struct type *el_type, *inner_array;
11398 base_type = copy_type (base_type);
11399 inner_array = base_type;
11401 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
11403 TYPE_TARGET_TYPE (inner_array) =
11404 copy_type (TYPE_TARGET_TYPE (inner_array));
11405 inner_array = TYPE_TARGET_TYPE (inner_array);
11408 el_type = TYPE_TARGET_TYPE (inner_array);
11409 TYPE_TARGET_TYPE (inner_array) =
11410 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
11412 return set_die_type (die, base_type, cu);
11415 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
11416 return set_die_type (die, cv_type, cu);
11419 static struct type *
11420 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
11422 struct type *base_type, *cv_type;
11424 base_type = die_type (die, cu);
11426 /* The die_type call above may have already set the type for this DIE. */
11427 cv_type = get_die_type (die, cu);
11431 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
11432 return set_die_type (die, cv_type, cu);
11435 /* Extract all information from a DW_TAG_string_type DIE and add to
11436 the user defined type vector. It isn't really a user defined type,
11437 but it behaves like one, with other DIE's using an AT_user_def_type
11438 attribute to reference it. */
11440 static struct type *
11441 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
11443 struct objfile *objfile = cu->objfile;
11444 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11445 struct type *type, *range_type, *index_type, *char_type;
11446 struct attribute *attr;
11447 unsigned int length;
11449 attr = dwarf2_attr (die, DW_AT_string_length, cu);
11452 length = DW_UNSND (attr);
11456 /* Check for the DW_AT_byte_size attribute. */
11457 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11460 length = DW_UNSND (attr);
11468 index_type = objfile_type (objfile)->builtin_int;
11469 range_type = create_range_type (NULL, index_type, 1, length);
11470 char_type = language_string_char_type (cu->language_defn, gdbarch);
11471 type = create_string_type (NULL, char_type, range_type);
11473 return set_die_type (die, type, cu);
11476 /* Handle DIES due to C code like:
11480 int (*funcp)(int a, long l);
11484 ('funcp' generates a DW_TAG_subroutine_type DIE). */
11486 static struct type *
11487 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
11489 struct objfile *objfile = cu->objfile;
11490 struct type *type; /* Type that this function returns. */
11491 struct type *ftype; /* Function that returns above type. */
11492 struct attribute *attr;
11494 type = die_type (die, cu);
11496 /* The die_type call above may have already set the type for this DIE. */
11497 ftype = get_die_type (die, cu);
11501 ftype = lookup_function_type (type);
11503 /* All functions in C++, Pascal and Java have prototypes. */
11504 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
11505 if ((attr && (DW_UNSND (attr) != 0))
11506 || cu->language == language_cplus
11507 || cu->language == language_java
11508 || cu->language == language_pascal)
11509 TYPE_PROTOTYPED (ftype) = 1;
11510 else if (producer_is_realview (cu->producer))
11511 /* RealView does not emit DW_AT_prototyped. We can not
11512 distinguish prototyped and unprototyped functions; default to
11513 prototyped, since that is more common in modern code (and
11514 RealView warns about unprototyped functions). */
11515 TYPE_PROTOTYPED (ftype) = 1;
11517 /* Store the calling convention in the type if it's available in
11518 the subroutine die. Otherwise set the calling convention to
11519 the default value DW_CC_normal. */
11520 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
11522 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
11523 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
11524 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
11526 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
11528 /* We need to add the subroutine type to the die immediately so
11529 we don't infinitely recurse when dealing with parameters
11530 declared as the same subroutine type. */
11531 set_die_type (die, ftype, cu);
11533 if (die->child != NULL)
11535 struct type *void_type = objfile_type (objfile)->builtin_void;
11536 struct die_info *child_die;
11537 int nparams, iparams;
11539 /* Count the number of parameters.
11540 FIXME: GDB currently ignores vararg functions, but knows about
11541 vararg member functions. */
11543 child_die = die->child;
11544 while (child_die && child_die->tag)
11546 if (child_die->tag == DW_TAG_formal_parameter)
11548 else if (child_die->tag == DW_TAG_unspecified_parameters)
11549 TYPE_VARARGS (ftype) = 1;
11550 child_die = sibling_die (child_die);
11553 /* Allocate storage for parameters and fill them in. */
11554 TYPE_NFIELDS (ftype) = nparams;
11555 TYPE_FIELDS (ftype) = (struct field *)
11556 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
11558 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
11559 even if we error out during the parameters reading below. */
11560 for (iparams = 0; iparams < nparams; iparams++)
11561 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
11564 child_die = die->child;
11565 while (child_die && child_die->tag)
11567 if (child_die->tag == DW_TAG_formal_parameter)
11569 struct type *arg_type;
11571 /* DWARF version 2 has no clean way to discern C++
11572 static and non-static member functions. G++ helps
11573 GDB by marking the first parameter for non-static
11574 member functions (which is the this pointer) as
11575 artificial. We pass this information to
11576 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
11578 DWARF version 3 added DW_AT_object_pointer, which GCC
11579 4.5 does not yet generate. */
11580 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
11582 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
11585 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
11587 /* GCC/43521: In java, the formal parameter
11588 "this" is sometimes not marked with DW_AT_artificial. */
11589 if (cu->language == language_java)
11591 const char *name = dwarf2_name (child_die, cu);
11593 if (name && !strcmp (name, "this"))
11594 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
11597 arg_type = die_type (child_die, cu);
11599 /* RealView does not mark THIS as const, which the testsuite
11600 expects. GCC marks THIS as const in method definitions,
11601 but not in the class specifications (GCC PR 43053). */
11602 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
11603 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
11606 struct dwarf2_cu *arg_cu = cu;
11607 const char *name = dwarf2_name (child_die, cu);
11609 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
11612 /* If the compiler emits this, use it. */
11613 if (follow_die_ref (die, attr, &arg_cu) == child_die)
11616 else if (name && strcmp (name, "this") == 0)
11617 /* Function definitions will have the argument names. */
11619 else if (name == NULL && iparams == 0)
11620 /* Declarations may not have the names, so like
11621 elsewhere in GDB, assume an artificial first
11622 argument is "this". */
11626 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
11630 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
11633 child_die = sibling_die (child_die);
11640 static struct type *
11641 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
11643 struct objfile *objfile = cu->objfile;
11644 const char *name = NULL;
11645 struct type *this_type, *target_type;
11647 name = dwarf2_full_name (NULL, die, cu);
11648 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
11649 TYPE_FLAG_TARGET_STUB, NULL, objfile);
11650 TYPE_NAME (this_type) = (char *) name;
11651 set_die_type (die, this_type, cu);
11652 target_type = die_type (die, cu);
11653 if (target_type != this_type)
11654 TYPE_TARGET_TYPE (this_type) = target_type;
11657 /* Self-referential typedefs are, it seems, not allowed by the DWARF
11658 spec and cause infinite loops in GDB. */
11659 complaint (&symfile_complaints,
11660 _("Self-referential DW_TAG_typedef "
11661 "- DIE at 0x%x [in module %s]"),
11662 die->offset.sect_off, objfile->name);
11663 TYPE_TARGET_TYPE (this_type) = NULL;
11668 /* Find a representation of a given base type and install
11669 it in the TYPE field of the die. */
11671 static struct type *
11672 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
11674 struct objfile *objfile = cu->objfile;
11676 struct attribute *attr;
11677 int encoding = 0, size = 0;
11679 enum type_code code = TYPE_CODE_INT;
11680 int type_flags = 0;
11681 struct type *target_type = NULL;
11683 attr = dwarf2_attr (die, DW_AT_encoding, cu);
11686 encoding = DW_UNSND (attr);
11688 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11691 size = DW_UNSND (attr);
11693 name = dwarf2_name (die, cu);
11696 complaint (&symfile_complaints,
11697 _("DW_AT_name missing from DW_TAG_base_type"));
11702 case DW_ATE_address:
11703 /* Turn DW_ATE_address into a void * pointer. */
11704 code = TYPE_CODE_PTR;
11705 type_flags |= TYPE_FLAG_UNSIGNED;
11706 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
11708 case DW_ATE_boolean:
11709 code = TYPE_CODE_BOOL;
11710 type_flags |= TYPE_FLAG_UNSIGNED;
11712 case DW_ATE_complex_float:
11713 code = TYPE_CODE_COMPLEX;
11714 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
11716 case DW_ATE_decimal_float:
11717 code = TYPE_CODE_DECFLOAT;
11720 code = TYPE_CODE_FLT;
11722 case DW_ATE_signed:
11724 case DW_ATE_unsigned:
11725 type_flags |= TYPE_FLAG_UNSIGNED;
11726 if (cu->language == language_fortran
11728 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
11729 code = TYPE_CODE_CHAR;
11731 case DW_ATE_signed_char:
11732 if (cu->language == language_ada || cu->language == language_m2
11733 || cu->language == language_pascal
11734 || cu->language == language_fortran)
11735 code = TYPE_CODE_CHAR;
11737 case DW_ATE_unsigned_char:
11738 if (cu->language == language_ada || cu->language == language_m2
11739 || cu->language == language_pascal
11740 || cu->language == language_fortran)
11741 code = TYPE_CODE_CHAR;
11742 type_flags |= TYPE_FLAG_UNSIGNED;
11745 /* We just treat this as an integer and then recognize the
11746 type by name elsewhere. */
11750 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
11751 dwarf_type_encoding_name (encoding));
11755 type = init_type (code, size, type_flags, NULL, objfile);
11756 TYPE_NAME (type) = name;
11757 TYPE_TARGET_TYPE (type) = target_type;
11759 if (name && strcmp (name, "char") == 0)
11760 TYPE_NOSIGN (type) = 1;
11762 return set_die_type (die, type, cu);
11765 /* Read the given DW_AT_subrange DIE. */
11767 static struct type *
11768 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
11770 struct type *base_type;
11771 struct type *range_type;
11772 struct attribute *attr;
11774 int low_default_is_valid;
11776 LONGEST negative_mask;
11778 base_type = die_type (die, cu);
11779 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
11780 check_typedef (base_type);
11782 /* The die_type call above may have already set the type for this DIE. */
11783 range_type = get_die_type (die, cu);
11787 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
11788 omitting DW_AT_lower_bound. */
11789 switch (cu->language)
11792 case language_cplus:
11794 low_default_is_valid = 1;
11796 case language_fortran:
11798 low_default_is_valid = 1;
11801 case language_java:
11802 case language_objc:
11804 low_default_is_valid = (cu->header.version >= 4);
11808 case language_pascal:
11810 low_default_is_valid = (cu->header.version >= 4);
11814 low_default_is_valid = 0;
11818 /* FIXME: For variable sized arrays either of these could be
11819 a variable rather than a constant value. We'll allow it,
11820 but we don't know how to handle it. */
11821 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
11823 low = dwarf2_get_attr_constant_value (attr, low);
11824 else if (!low_default_is_valid)
11825 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
11826 "- DIE at 0x%x [in module %s]"),
11827 die->offset.sect_off, cu->objfile->name);
11829 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
11832 if (attr_form_is_block (attr) || is_ref_attr (attr))
11834 /* GCC encodes arrays with unspecified or dynamic length
11835 with a DW_FORM_block1 attribute or a reference attribute.
11836 FIXME: GDB does not yet know how to handle dynamic
11837 arrays properly, treat them as arrays with unspecified
11840 FIXME: jimb/2003-09-22: GDB does not really know
11841 how to handle arrays of unspecified length
11842 either; we just represent them as zero-length
11843 arrays. Choose an appropriate upper bound given
11844 the lower bound we've computed above. */
11848 high = dwarf2_get_attr_constant_value (attr, 1);
11852 attr = dwarf2_attr (die, DW_AT_count, cu);
11855 int count = dwarf2_get_attr_constant_value (attr, 1);
11856 high = low + count - 1;
11860 /* Unspecified array length. */
11865 /* Dwarf-2 specifications explicitly allows to create subrange types
11866 without specifying a base type.
11867 In that case, the base type must be set to the type of
11868 the lower bound, upper bound or count, in that order, if any of these
11869 three attributes references an object that has a type.
11870 If no base type is found, the Dwarf-2 specifications say that
11871 a signed integer type of size equal to the size of an address should
11873 For the following C code: `extern char gdb_int [];'
11874 GCC produces an empty range DIE.
11875 FIXME: muller/2010-05-28: Possible references to object for low bound,
11876 high bound or count are not yet handled by this code. */
11877 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
11879 struct objfile *objfile = cu->objfile;
11880 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11881 int addr_size = gdbarch_addr_bit (gdbarch) /8;
11882 struct type *int_type = objfile_type (objfile)->builtin_int;
11884 /* Test "int", "long int", and "long long int" objfile types,
11885 and select the first one having a size above or equal to the
11886 architecture address size. */
11887 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
11888 base_type = int_type;
11891 int_type = objfile_type (objfile)->builtin_long;
11892 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
11893 base_type = int_type;
11896 int_type = objfile_type (objfile)->builtin_long_long;
11897 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
11898 base_type = int_type;
11904 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
11905 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
11906 low |= negative_mask;
11907 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
11908 high |= negative_mask;
11910 range_type = create_range_type (NULL, base_type, low, high);
11912 /* Mark arrays with dynamic length at least as an array of unspecified
11913 length. GDB could check the boundary but before it gets implemented at
11914 least allow accessing the array elements. */
11915 if (attr && attr_form_is_block (attr))
11916 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
11918 /* Ada expects an empty array on no boundary attributes. */
11919 if (attr == NULL && cu->language != language_ada)
11920 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
11922 name = dwarf2_name (die, cu);
11924 TYPE_NAME (range_type) = name;
11926 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11928 TYPE_LENGTH (range_type) = DW_UNSND (attr);
11930 set_die_type (die, range_type, cu);
11932 /* set_die_type should be already done. */
11933 set_descriptive_type (range_type, die, cu);
11938 static struct type *
11939 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
11943 /* For now, we only support the C meaning of an unspecified type: void. */
11945 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
11946 TYPE_NAME (type) = dwarf2_name (die, cu);
11948 return set_die_type (die, type, cu);
11951 /* Read a single die and all its descendents. Set the die's sibling
11952 field to NULL; set other fields in the die correctly, and set all
11953 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
11954 location of the info_ptr after reading all of those dies. PARENT
11955 is the parent of the die in question. */
11957 static struct die_info *
11958 read_die_and_children (const struct die_reader_specs *reader,
11959 gdb_byte *info_ptr,
11960 gdb_byte **new_info_ptr,
11961 struct die_info *parent)
11963 struct die_info *die;
11967 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
11970 *new_info_ptr = cur_ptr;
11973 store_in_ref_table (die, reader->cu);
11976 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
11980 *new_info_ptr = cur_ptr;
11983 die->sibling = NULL;
11984 die->parent = parent;
11988 /* Read a die, all of its descendents, and all of its siblings; set
11989 all of the fields of all of the dies correctly. Arguments are as
11990 in read_die_and_children. */
11992 static struct die_info *
11993 read_die_and_siblings (const struct die_reader_specs *reader,
11994 gdb_byte *info_ptr,
11995 gdb_byte **new_info_ptr,
11996 struct die_info *parent)
11998 struct die_info *first_die, *last_sibling;
12001 cur_ptr = info_ptr;
12002 first_die = last_sibling = NULL;
12006 struct die_info *die
12007 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12011 *new_info_ptr = cur_ptr;
12018 last_sibling->sibling = die;
12020 last_sibling = die;
12024 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12026 The caller is responsible for filling in the extra attributes
12027 and updating (*DIEP)->num_attrs.
12028 Set DIEP to point to a newly allocated die with its information,
12029 except for its child, sibling, and parent fields.
12030 Set HAS_CHILDREN to tell whether the die has children or not. */
12033 read_full_die_1 (const struct die_reader_specs *reader,
12034 struct die_info **diep, gdb_byte *info_ptr,
12035 int *has_children, int num_extra_attrs)
12037 unsigned int abbrev_number, bytes_read, i;
12038 sect_offset offset;
12039 struct abbrev_info *abbrev;
12040 struct die_info *die;
12041 struct dwarf2_cu *cu = reader->cu;
12042 bfd *abfd = reader->abfd;
12044 offset.sect_off = info_ptr - reader->buffer;
12045 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12046 info_ptr += bytes_read;
12047 if (!abbrev_number)
12054 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
12056 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12058 bfd_get_filename (abfd));
12060 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
12061 die->offset = offset;
12062 die->tag = abbrev->tag;
12063 die->abbrev = abbrev_number;
12065 /* Make the result usable.
12066 The caller needs to update num_attrs after adding the extra
12068 die->num_attrs = abbrev->num_attrs;
12070 for (i = 0; i < abbrev->num_attrs; ++i)
12071 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
12075 *has_children = abbrev->has_children;
12079 /* Read a die and all its attributes.
12080 Set DIEP to point to a newly allocated die with its information,
12081 except for its child, sibling, and parent fields.
12082 Set HAS_CHILDREN to tell whether the die has children or not. */
12085 read_full_die (const struct die_reader_specs *reader,
12086 struct die_info **diep, gdb_byte *info_ptr,
12089 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
12092 /* Abbreviation tables.
12094 In DWARF version 2, the description of the debugging information is
12095 stored in a separate .debug_abbrev section. Before we read any
12096 dies from a section we read in all abbreviations and install them
12097 in a hash table. */
12099 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
12101 static struct abbrev_info *
12102 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
12104 struct abbrev_info *abbrev;
12106 abbrev = (struct abbrev_info *)
12107 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
12108 memset (abbrev, 0, sizeof (struct abbrev_info));
12112 /* Add an abbreviation to the table. */
12115 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
12116 unsigned int abbrev_number,
12117 struct abbrev_info *abbrev)
12119 unsigned int hash_number;
12121 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12122 abbrev->next = abbrev_table->abbrevs[hash_number];
12123 abbrev_table->abbrevs[hash_number] = abbrev;
12126 /* Look up an abbrev in the table.
12127 Returns NULL if the abbrev is not found. */
12129 static struct abbrev_info *
12130 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
12131 unsigned int abbrev_number)
12133 unsigned int hash_number;
12134 struct abbrev_info *abbrev;
12136 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12137 abbrev = abbrev_table->abbrevs[hash_number];
12141 if (abbrev->number == abbrev_number)
12143 abbrev = abbrev->next;
12148 /* Read in an abbrev table. */
12150 static struct abbrev_table *
12151 abbrev_table_read_table (struct dwarf2_section_info *section,
12152 sect_offset offset)
12154 struct objfile *objfile = dwarf2_per_objfile->objfile;
12155 bfd *abfd = section->asection->owner;
12156 struct abbrev_table *abbrev_table;
12157 gdb_byte *abbrev_ptr;
12158 struct abbrev_info *cur_abbrev;
12159 unsigned int abbrev_number, bytes_read, abbrev_name;
12160 unsigned int abbrev_form;
12161 struct attr_abbrev *cur_attrs;
12162 unsigned int allocated_attrs;
12164 abbrev_table = XMALLOC (struct abbrev_table);
12165 abbrev_table->offset = offset;
12166 obstack_init (&abbrev_table->abbrev_obstack);
12167 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
12169 * sizeof (struct abbrev_info *)));
12170 memset (abbrev_table->abbrevs, 0,
12171 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
12173 dwarf2_read_section (objfile, section);
12174 abbrev_ptr = section->buffer + offset.sect_off;
12175 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12176 abbrev_ptr += bytes_read;
12178 allocated_attrs = ATTR_ALLOC_CHUNK;
12179 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
12181 /* Loop until we reach an abbrev number of 0. */
12182 while (abbrev_number)
12184 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
12186 /* read in abbrev header */
12187 cur_abbrev->number = abbrev_number;
12188 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12189 abbrev_ptr += bytes_read;
12190 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
12193 /* now read in declarations */
12194 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12195 abbrev_ptr += bytes_read;
12196 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12197 abbrev_ptr += bytes_read;
12198 while (abbrev_name)
12200 if (cur_abbrev->num_attrs == allocated_attrs)
12202 allocated_attrs += ATTR_ALLOC_CHUNK;
12204 = xrealloc (cur_attrs, (allocated_attrs
12205 * sizeof (struct attr_abbrev)));
12208 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
12209 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
12210 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12211 abbrev_ptr += bytes_read;
12212 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12213 abbrev_ptr += bytes_read;
12216 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
12217 (cur_abbrev->num_attrs
12218 * sizeof (struct attr_abbrev)));
12219 memcpy (cur_abbrev->attrs, cur_attrs,
12220 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
12222 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
12224 /* Get next abbreviation.
12225 Under Irix6 the abbreviations for a compilation unit are not
12226 always properly terminated with an abbrev number of 0.
12227 Exit loop if we encounter an abbreviation which we have
12228 already read (which means we are about to read the abbreviations
12229 for the next compile unit) or if the end of the abbreviation
12230 table is reached. */
12231 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
12233 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12234 abbrev_ptr += bytes_read;
12235 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
12240 return abbrev_table;
12243 /* Free the resources held by ABBREV_TABLE. */
12246 abbrev_table_free (struct abbrev_table *abbrev_table)
12248 obstack_free (&abbrev_table->abbrev_obstack, NULL);
12249 xfree (abbrev_table);
12252 /* Same as abbrev_table_free but as a cleanup.
12253 We pass in a pointer to the pointer to the table so that we can
12254 set the pointer to NULL when we're done. It also simplifies
12255 build_type_unit_groups. */
12258 abbrev_table_free_cleanup (void *table_ptr)
12260 struct abbrev_table **abbrev_table_ptr = table_ptr;
12262 if (*abbrev_table_ptr != NULL)
12263 abbrev_table_free (*abbrev_table_ptr);
12264 *abbrev_table_ptr = NULL;
12267 /* Read the abbrev table for CU from ABBREV_SECTION. */
12270 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
12271 struct dwarf2_section_info *abbrev_section)
12274 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
12277 /* Release the memory used by the abbrev table for a compilation unit. */
12280 dwarf2_free_abbrev_table (void *ptr_to_cu)
12282 struct dwarf2_cu *cu = ptr_to_cu;
12284 abbrev_table_free (cu->abbrev_table);
12285 /* Set this to NULL so that we SEGV if we try to read it later,
12286 and also because free_comp_unit verifies this is NULL. */
12287 cu->abbrev_table = NULL;
12290 /* Returns nonzero if TAG represents a type that we might generate a partial
12294 is_type_tag_for_partial (int tag)
12299 /* Some types that would be reasonable to generate partial symbols for,
12300 that we don't at present. */
12301 case DW_TAG_array_type:
12302 case DW_TAG_file_type:
12303 case DW_TAG_ptr_to_member_type:
12304 case DW_TAG_set_type:
12305 case DW_TAG_string_type:
12306 case DW_TAG_subroutine_type:
12308 case DW_TAG_base_type:
12309 case DW_TAG_class_type:
12310 case DW_TAG_interface_type:
12311 case DW_TAG_enumeration_type:
12312 case DW_TAG_structure_type:
12313 case DW_TAG_subrange_type:
12314 case DW_TAG_typedef:
12315 case DW_TAG_union_type:
12322 /* Load all DIEs that are interesting for partial symbols into memory. */
12324 static struct partial_die_info *
12325 load_partial_dies (const struct die_reader_specs *reader,
12326 gdb_byte *info_ptr, int building_psymtab)
12328 struct dwarf2_cu *cu = reader->cu;
12329 struct objfile *objfile = cu->objfile;
12330 struct partial_die_info *part_die;
12331 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
12332 struct abbrev_info *abbrev;
12333 unsigned int bytes_read;
12334 unsigned int load_all = 0;
12335 int nesting_level = 1;
12340 gdb_assert (cu->per_cu != NULL);
12341 if (cu->per_cu->load_all_dies)
12345 = htab_create_alloc_ex (cu->header.length / 12,
12349 &cu->comp_unit_obstack,
12350 hashtab_obstack_allocate,
12351 dummy_obstack_deallocate);
12353 part_die = obstack_alloc (&cu->comp_unit_obstack,
12354 sizeof (struct partial_die_info));
12358 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
12360 /* A NULL abbrev means the end of a series of children. */
12361 if (abbrev == NULL)
12363 if (--nesting_level == 0)
12365 /* PART_DIE was probably the last thing allocated on the
12366 comp_unit_obstack, so we could call obstack_free
12367 here. We don't do that because the waste is small,
12368 and will be cleaned up when we're done with this
12369 compilation unit. This way, we're also more robust
12370 against other users of the comp_unit_obstack. */
12373 info_ptr += bytes_read;
12374 last_die = parent_die;
12375 parent_die = parent_die->die_parent;
12379 /* Check for template arguments. We never save these; if
12380 they're seen, we just mark the parent, and go on our way. */
12381 if (parent_die != NULL
12382 && cu->language == language_cplus
12383 && (abbrev->tag == DW_TAG_template_type_param
12384 || abbrev->tag == DW_TAG_template_value_param))
12386 parent_die->has_template_arguments = 1;
12390 /* We don't need a partial DIE for the template argument. */
12391 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
12396 /* We only recurse into c++ subprograms looking for template arguments.
12397 Skip their other children. */
12399 && cu->language == language_cplus
12400 && parent_die != NULL
12401 && parent_die->tag == DW_TAG_subprogram)
12403 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
12407 /* Check whether this DIE is interesting enough to save. Normally
12408 we would not be interested in members here, but there may be
12409 later variables referencing them via DW_AT_specification (for
12410 static members). */
12412 && !is_type_tag_for_partial (abbrev->tag)
12413 && abbrev->tag != DW_TAG_constant
12414 && abbrev->tag != DW_TAG_enumerator
12415 && abbrev->tag != DW_TAG_subprogram
12416 && abbrev->tag != DW_TAG_lexical_block
12417 && abbrev->tag != DW_TAG_variable
12418 && abbrev->tag != DW_TAG_namespace
12419 && abbrev->tag != DW_TAG_module
12420 && abbrev->tag != DW_TAG_member
12421 && abbrev->tag != DW_TAG_imported_unit)
12423 /* Otherwise we skip to the next sibling, if any. */
12424 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
12428 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
12431 /* This two-pass algorithm for processing partial symbols has a
12432 high cost in cache pressure. Thus, handle some simple cases
12433 here which cover the majority of C partial symbols. DIEs
12434 which neither have specification tags in them, nor could have
12435 specification tags elsewhere pointing at them, can simply be
12436 processed and discarded.
12438 This segment is also optional; scan_partial_symbols and
12439 add_partial_symbol will handle these DIEs if we chain
12440 them in normally. When compilers which do not emit large
12441 quantities of duplicate debug information are more common,
12442 this code can probably be removed. */
12444 /* Any complete simple types at the top level (pretty much all
12445 of them, for a language without namespaces), can be processed
12447 if (parent_die == NULL
12448 && part_die->has_specification == 0
12449 && part_die->is_declaration == 0
12450 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
12451 || part_die->tag == DW_TAG_base_type
12452 || part_die->tag == DW_TAG_subrange_type))
12454 if (building_psymtab && part_die->name != NULL)
12455 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
12456 VAR_DOMAIN, LOC_TYPEDEF,
12457 &objfile->static_psymbols,
12458 0, (CORE_ADDR) 0, cu->language, objfile);
12459 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
12463 /* The exception for DW_TAG_typedef with has_children above is
12464 a workaround of GCC PR debug/47510. In the case of this complaint
12465 type_name_no_tag_or_error will error on such types later.
12467 GDB skipped children of DW_TAG_typedef by the shortcut above and then
12468 it could not find the child DIEs referenced later, this is checked
12469 above. In correct DWARF DW_TAG_typedef should have no children. */
12471 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
12472 complaint (&symfile_complaints,
12473 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
12474 "- DIE at 0x%x [in module %s]"),
12475 part_die->offset.sect_off, objfile->name);
12477 /* If we're at the second level, and we're an enumerator, and
12478 our parent has no specification (meaning possibly lives in a
12479 namespace elsewhere), then we can add the partial symbol now
12480 instead of queueing it. */
12481 if (part_die->tag == DW_TAG_enumerator
12482 && parent_die != NULL
12483 && parent_die->die_parent == NULL
12484 && parent_die->tag == DW_TAG_enumeration_type
12485 && parent_die->has_specification == 0)
12487 if (part_die->name == NULL)
12488 complaint (&symfile_complaints,
12489 _("malformed enumerator DIE ignored"));
12490 else if (building_psymtab)
12491 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
12492 VAR_DOMAIN, LOC_CONST,
12493 (cu->language == language_cplus
12494 || cu->language == language_java)
12495 ? &objfile->global_psymbols
12496 : &objfile->static_psymbols,
12497 0, (CORE_ADDR) 0, cu->language, objfile);
12499 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
12503 /* We'll save this DIE so link it in. */
12504 part_die->die_parent = parent_die;
12505 part_die->die_sibling = NULL;
12506 part_die->die_child = NULL;
12508 if (last_die && last_die == parent_die)
12509 last_die->die_child = part_die;
12511 last_die->die_sibling = part_die;
12513 last_die = part_die;
12515 if (first_die == NULL)
12516 first_die = part_die;
12518 /* Maybe add the DIE to the hash table. Not all DIEs that we
12519 find interesting need to be in the hash table, because we
12520 also have the parent/sibling/child chains; only those that we
12521 might refer to by offset later during partial symbol reading.
12523 For now this means things that might have be the target of a
12524 DW_AT_specification, DW_AT_abstract_origin, or
12525 DW_AT_extension. DW_AT_extension will refer only to
12526 namespaces; DW_AT_abstract_origin refers to functions (and
12527 many things under the function DIE, but we do not recurse
12528 into function DIEs during partial symbol reading) and
12529 possibly variables as well; DW_AT_specification refers to
12530 declarations. Declarations ought to have the DW_AT_declaration
12531 flag. It happens that GCC forgets to put it in sometimes, but
12532 only for functions, not for types.
12534 Adding more things than necessary to the hash table is harmless
12535 except for the performance cost. Adding too few will result in
12536 wasted time in find_partial_die, when we reread the compilation
12537 unit with load_all_dies set. */
12540 || abbrev->tag == DW_TAG_constant
12541 || abbrev->tag == DW_TAG_subprogram
12542 || abbrev->tag == DW_TAG_variable
12543 || abbrev->tag == DW_TAG_namespace
12544 || part_die->is_declaration)
12548 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
12549 part_die->offset.sect_off, INSERT);
12553 part_die = obstack_alloc (&cu->comp_unit_obstack,
12554 sizeof (struct partial_die_info));
12556 /* For some DIEs we want to follow their children (if any). For C
12557 we have no reason to follow the children of structures; for other
12558 languages we have to, so that we can get at method physnames
12559 to infer fully qualified class names, for DW_AT_specification,
12560 and for C++ template arguments. For C++, we also look one level
12561 inside functions to find template arguments (if the name of the
12562 function does not already contain the template arguments).
12564 For Ada, we need to scan the children of subprograms and lexical
12565 blocks as well because Ada allows the definition of nested
12566 entities that could be interesting for the debugger, such as
12567 nested subprograms for instance. */
12568 if (last_die->has_children
12570 || last_die->tag == DW_TAG_namespace
12571 || last_die->tag == DW_TAG_module
12572 || last_die->tag == DW_TAG_enumeration_type
12573 || (cu->language == language_cplus
12574 && last_die->tag == DW_TAG_subprogram
12575 && (last_die->name == NULL
12576 || strchr (last_die->name, '<') == NULL))
12577 || (cu->language != language_c
12578 && (last_die->tag == DW_TAG_class_type
12579 || last_die->tag == DW_TAG_interface_type
12580 || last_die->tag == DW_TAG_structure_type
12581 || last_die->tag == DW_TAG_union_type))
12582 || (cu->language == language_ada
12583 && (last_die->tag == DW_TAG_subprogram
12584 || last_die->tag == DW_TAG_lexical_block))))
12587 parent_die = last_die;
12591 /* Otherwise we skip to the next sibling, if any. */
12592 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
12594 /* Back to the top, do it again. */
12598 /* Read a minimal amount of information into the minimal die structure. */
12601 read_partial_die (const struct die_reader_specs *reader,
12602 struct partial_die_info *part_die,
12603 struct abbrev_info *abbrev, unsigned int abbrev_len,
12604 gdb_byte *info_ptr)
12606 struct dwarf2_cu *cu = reader->cu;
12607 struct objfile *objfile = cu->objfile;
12608 gdb_byte *buffer = reader->buffer;
12610 struct attribute attr;
12611 int has_low_pc_attr = 0;
12612 int has_high_pc_attr = 0;
12613 int high_pc_relative = 0;
12615 memset (part_die, 0, sizeof (struct partial_die_info));
12617 part_die->offset.sect_off = info_ptr - buffer;
12619 info_ptr += abbrev_len;
12621 if (abbrev == NULL)
12624 part_die->tag = abbrev->tag;
12625 part_die->has_children = abbrev->has_children;
12627 for (i = 0; i < abbrev->num_attrs; ++i)
12629 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
12631 /* Store the data if it is of an attribute we want to keep in a
12632 partial symbol table. */
12636 switch (part_die->tag)
12638 case DW_TAG_compile_unit:
12639 case DW_TAG_partial_unit:
12640 case DW_TAG_type_unit:
12641 /* Compilation units have a DW_AT_name that is a filename, not
12642 a source language identifier. */
12643 case DW_TAG_enumeration_type:
12644 case DW_TAG_enumerator:
12645 /* These tags always have simple identifiers already; no need
12646 to canonicalize them. */
12647 part_die->name = DW_STRING (&attr);
12651 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
12652 &objfile->objfile_obstack);
12656 case DW_AT_linkage_name:
12657 case DW_AT_MIPS_linkage_name:
12658 /* Note that both forms of linkage name might appear. We
12659 assume they will be the same, and we only store the last
12661 if (cu->language == language_ada)
12662 part_die->name = DW_STRING (&attr);
12663 part_die->linkage_name = DW_STRING (&attr);
12666 has_low_pc_attr = 1;
12667 part_die->lowpc = DW_ADDR (&attr);
12669 case DW_AT_high_pc:
12670 has_high_pc_attr = 1;
12671 if (attr.form == DW_FORM_addr
12672 || attr.form == DW_FORM_GNU_addr_index)
12673 part_die->highpc = DW_ADDR (&attr);
12676 high_pc_relative = 1;
12677 part_die->highpc = DW_UNSND (&attr);
12680 case DW_AT_location:
12681 /* Support the .debug_loc offsets. */
12682 if (attr_form_is_block (&attr))
12684 part_die->d.locdesc = DW_BLOCK (&attr);
12686 else if (attr_form_is_section_offset (&attr))
12688 dwarf2_complex_location_expr_complaint ();
12692 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12693 "partial symbol information");
12696 case DW_AT_external:
12697 part_die->is_external = DW_UNSND (&attr);
12699 case DW_AT_declaration:
12700 part_die->is_declaration = DW_UNSND (&attr);
12703 part_die->has_type = 1;
12705 case DW_AT_abstract_origin:
12706 case DW_AT_specification:
12707 case DW_AT_extension:
12708 part_die->has_specification = 1;
12709 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
12710 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
12711 || cu->per_cu->is_dwz);
12713 case DW_AT_sibling:
12714 /* Ignore absolute siblings, they might point outside of
12715 the current compile unit. */
12716 if (attr.form == DW_FORM_ref_addr)
12717 complaint (&symfile_complaints,
12718 _("ignoring absolute DW_AT_sibling"));
12720 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
12722 case DW_AT_byte_size:
12723 part_die->has_byte_size = 1;
12725 case DW_AT_calling_convention:
12726 /* DWARF doesn't provide a way to identify a program's source-level
12727 entry point. DW_AT_calling_convention attributes are only meant
12728 to describe functions' calling conventions.
12730 However, because it's a necessary piece of information in
12731 Fortran, and because DW_CC_program is the only piece of debugging
12732 information whose definition refers to a 'main program' at all,
12733 several compilers have begun marking Fortran main programs with
12734 DW_CC_program --- even when those functions use the standard
12735 calling conventions.
12737 So until DWARF specifies a way to provide this information and
12738 compilers pick up the new representation, we'll support this
12740 if (DW_UNSND (&attr) == DW_CC_program
12741 && cu->language == language_fortran)
12743 set_main_name (part_die->name);
12745 /* As this DIE has a static linkage the name would be difficult
12746 to look up later. */
12747 language_of_main = language_fortran;
12751 if (DW_UNSND (&attr) == DW_INL_inlined
12752 || DW_UNSND (&attr) == DW_INL_declared_inlined)
12753 part_die->may_be_inlined = 1;
12757 if (part_die->tag == DW_TAG_imported_unit)
12759 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
12760 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
12761 || cu->per_cu->is_dwz);
12770 if (high_pc_relative)
12771 part_die->highpc += part_die->lowpc;
12773 if (has_low_pc_attr && has_high_pc_attr)
12775 /* When using the GNU linker, .gnu.linkonce. sections are used to
12776 eliminate duplicate copies of functions and vtables and such.
12777 The linker will arbitrarily choose one and discard the others.
12778 The AT_*_pc values for such functions refer to local labels in
12779 these sections. If the section from that file was discarded, the
12780 labels are not in the output, so the relocs get a value of 0.
12781 If this is a discarded function, mark the pc bounds as invalid,
12782 so that GDB will ignore it. */
12783 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
12785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12787 complaint (&symfile_complaints,
12788 _("DW_AT_low_pc %s is zero "
12789 "for DIE at 0x%x [in module %s]"),
12790 paddress (gdbarch, part_die->lowpc),
12791 part_die->offset.sect_off, objfile->name);
12793 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
12794 else if (part_die->lowpc >= part_die->highpc)
12796 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12798 complaint (&symfile_complaints,
12799 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
12800 "for DIE at 0x%x [in module %s]"),
12801 paddress (gdbarch, part_die->lowpc),
12802 paddress (gdbarch, part_die->highpc),
12803 part_die->offset.sect_off, objfile->name);
12806 part_die->has_pc_info = 1;
12812 /* Find a cached partial DIE at OFFSET in CU. */
12814 static struct partial_die_info *
12815 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
12817 struct partial_die_info *lookup_die = NULL;
12818 struct partial_die_info part_die;
12820 part_die.offset = offset;
12821 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
12827 /* Find a partial DIE at OFFSET, which may or may not be in CU,
12828 except in the case of .debug_types DIEs which do not reference
12829 outside their CU (they do however referencing other types via
12830 DW_FORM_ref_sig8). */
12832 static struct partial_die_info *
12833 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
12835 struct objfile *objfile = cu->objfile;
12836 struct dwarf2_per_cu_data *per_cu = NULL;
12837 struct partial_die_info *pd = NULL;
12839 if (offset_in_dwz == cu->per_cu->is_dwz
12840 && offset_in_cu_p (&cu->header, offset))
12842 pd = find_partial_die_in_comp_unit (offset, cu);
12845 /* We missed recording what we needed.
12846 Load all dies and try again. */
12847 per_cu = cu->per_cu;
12851 /* TUs don't reference other CUs/TUs (except via type signatures). */
12852 if (cu->per_cu->is_debug_types)
12854 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
12855 " external reference to offset 0x%lx [in module %s].\n"),
12856 (long) cu->header.offset.sect_off, (long) offset.sect_off,
12857 bfd_get_filename (objfile->obfd));
12859 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
12862 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
12863 load_partial_comp_unit (per_cu);
12865 per_cu->cu->last_used = 0;
12866 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
12869 /* If we didn't find it, and not all dies have been loaded,
12870 load them all and try again. */
12872 if (pd == NULL && per_cu->load_all_dies == 0)
12874 per_cu->load_all_dies = 1;
12876 /* This is nasty. When we reread the DIEs, somewhere up the call chain
12877 THIS_CU->cu may already be in use. So we can't just free it and
12878 replace its DIEs with the ones we read in. Instead, we leave those
12879 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
12880 and clobber THIS_CU->cu->partial_dies with the hash table for the new
12882 load_partial_comp_unit (per_cu);
12884 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
12888 internal_error (__FILE__, __LINE__,
12889 _("could not find partial DIE 0x%x "
12890 "in cache [from module %s]\n"),
12891 offset.sect_off, bfd_get_filename (objfile->obfd));
12895 /* See if we can figure out if the class lives in a namespace. We do
12896 this by looking for a member function; its demangled name will
12897 contain namespace info, if there is any. */
12900 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
12901 struct dwarf2_cu *cu)
12903 /* NOTE: carlton/2003-10-07: Getting the info this way changes
12904 what template types look like, because the demangler
12905 frequently doesn't give the same name as the debug info. We
12906 could fix this by only using the demangled name to get the
12907 prefix (but see comment in read_structure_type). */
12909 struct partial_die_info *real_pdi;
12910 struct partial_die_info *child_pdi;
12912 /* If this DIE (this DIE's specification, if any) has a parent, then
12913 we should not do this. We'll prepend the parent's fully qualified
12914 name when we create the partial symbol. */
12916 real_pdi = struct_pdi;
12917 while (real_pdi->has_specification)
12918 real_pdi = find_partial_die (real_pdi->spec_offset,
12919 real_pdi->spec_is_dwz, cu);
12921 if (real_pdi->die_parent != NULL)
12924 for (child_pdi = struct_pdi->die_child;
12926 child_pdi = child_pdi->die_sibling)
12928 if (child_pdi->tag == DW_TAG_subprogram
12929 && child_pdi->linkage_name != NULL)
12931 char *actual_class_name
12932 = language_class_name_from_physname (cu->language_defn,
12933 child_pdi->linkage_name);
12934 if (actual_class_name != NULL)
12937 = obsavestring (actual_class_name,
12938 strlen (actual_class_name),
12939 &cu->objfile->objfile_obstack);
12940 xfree (actual_class_name);
12947 /* Adjust PART_DIE before generating a symbol for it. This function
12948 may set the is_external flag or change the DIE's name. */
12951 fixup_partial_die (struct partial_die_info *part_die,
12952 struct dwarf2_cu *cu)
12954 /* Once we've fixed up a die, there's no point in doing so again.
12955 This also avoids a memory leak if we were to call
12956 guess_partial_die_structure_name multiple times. */
12957 if (part_die->fixup_called)
12960 /* If we found a reference attribute and the DIE has no name, try
12961 to find a name in the referred to DIE. */
12963 if (part_die->name == NULL && part_die->has_specification)
12965 struct partial_die_info *spec_die;
12967 spec_die = find_partial_die (part_die->spec_offset,
12968 part_die->spec_is_dwz, cu);
12970 fixup_partial_die (spec_die, cu);
12972 if (spec_die->name)
12974 part_die->name = spec_die->name;
12976 /* Copy DW_AT_external attribute if it is set. */
12977 if (spec_die->is_external)
12978 part_die->is_external = spec_die->is_external;
12982 /* Set default names for some unnamed DIEs. */
12984 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
12985 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
12987 /* If there is no parent die to provide a namespace, and there are
12988 children, see if we can determine the namespace from their linkage
12990 if (cu->language == language_cplus
12991 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12992 && part_die->die_parent == NULL
12993 && part_die->has_children
12994 && (part_die->tag == DW_TAG_class_type
12995 || part_die->tag == DW_TAG_structure_type
12996 || part_die->tag == DW_TAG_union_type))
12997 guess_partial_die_structure_name (part_die, cu);
12999 /* GCC might emit a nameless struct or union that has a linkage
13000 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13001 if (part_die->name == NULL
13002 && (part_die->tag == DW_TAG_class_type
13003 || part_die->tag == DW_TAG_interface_type
13004 || part_die->tag == DW_TAG_structure_type
13005 || part_die->tag == DW_TAG_union_type)
13006 && part_die->linkage_name != NULL)
13010 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13015 /* Strip any leading namespaces/classes, keep only the base name.
13016 DW_AT_name for named DIEs does not contain the prefixes. */
13017 base = strrchr (demangled, ':');
13018 if (base && base > demangled && base[-1] == ':')
13023 part_die->name = obsavestring (base, strlen (base),
13024 &cu->objfile->objfile_obstack);
13029 part_die->fixup_called = 1;
13032 /* Read an attribute value described by an attribute form. */
13035 read_attribute_value (const struct die_reader_specs *reader,
13036 struct attribute *attr, unsigned form,
13037 gdb_byte *info_ptr)
13039 struct dwarf2_cu *cu = reader->cu;
13040 bfd *abfd = reader->abfd;
13041 struct comp_unit_head *cu_header = &cu->header;
13042 unsigned int bytes_read;
13043 struct dwarf_block *blk;
13048 case DW_FORM_ref_addr:
13049 if (cu->header.version == 2)
13050 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13052 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13053 &cu->header, &bytes_read);
13054 info_ptr += bytes_read;
13056 case DW_FORM_GNU_ref_alt:
13057 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13058 info_ptr += bytes_read;
13061 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13062 info_ptr += bytes_read;
13064 case DW_FORM_block2:
13065 blk = dwarf_alloc_block (cu);
13066 blk->size = read_2_bytes (abfd, info_ptr);
13068 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13069 info_ptr += blk->size;
13070 DW_BLOCK (attr) = blk;
13072 case DW_FORM_block4:
13073 blk = dwarf_alloc_block (cu);
13074 blk->size = read_4_bytes (abfd, info_ptr);
13076 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13077 info_ptr += blk->size;
13078 DW_BLOCK (attr) = blk;
13080 case DW_FORM_data2:
13081 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
13084 case DW_FORM_data4:
13085 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
13088 case DW_FORM_data8:
13089 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
13092 case DW_FORM_sec_offset:
13093 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13094 info_ptr += bytes_read;
13096 case DW_FORM_string:
13097 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
13098 DW_STRING_IS_CANONICAL (attr) = 0;
13099 info_ptr += bytes_read;
13102 if (!cu->per_cu->is_dwz)
13104 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
13106 DW_STRING_IS_CANONICAL (attr) = 0;
13107 info_ptr += bytes_read;
13111 case DW_FORM_GNU_strp_alt:
13113 struct dwz_file *dwz = dwarf2_get_dwz_file ();
13114 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
13117 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
13118 DW_STRING_IS_CANONICAL (attr) = 0;
13119 info_ptr += bytes_read;
13122 case DW_FORM_exprloc:
13123 case DW_FORM_block:
13124 blk = dwarf_alloc_block (cu);
13125 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13126 info_ptr += bytes_read;
13127 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13128 info_ptr += blk->size;
13129 DW_BLOCK (attr) = blk;
13131 case DW_FORM_block1:
13132 blk = dwarf_alloc_block (cu);
13133 blk->size = read_1_byte (abfd, info_ptr);
13135 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13136 info_ptr += blk->size;
13137 DW_BLOCK (attr) = blk;
13139 case DW_FORM_data1:
13140 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13144 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13147 case DW_FORM_flag_present:
13148 DW_UNSND (attr) = 1;
13150 case DW_FORM_sdata:
13151 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
13152 info_ptr += bytes_read;
13154 case DW_FORM_udata:
13155 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13156 info_ptr += bytes_read;
13159 DW_UNSND (attr) = (cu->header.offset.sect_off
13160 + read_1_byte (abfd, info_ptr));
13164 DW_UNSND (attr) = (cu->header.offset.sect_off
13165 + read_2_bytes (abfd, info_ptr));
13169 DW_UNSND (attr) = (cu->header.offset.sect_off
13170 + read_4_bytes (abfd, info_ptr));
13174 DW_UNSND (attr) = (cu->header.offset.sect_off
13175 + read_8_bytes (abfd, info_ptr));
13178 case DW_FORM_ref_sig8:
13179 /* Convert the signature to something we can record in DW_UNSND
13181 NOTE: This is NULL if the type wasn't found. */
13182 DW_SIGNATURED_TYPE (attr) =
13183 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
13186 case DW_FORM_ref_udata:
13187 DW_UNSND (attr) = (cu->header.offset.sect_off
13188 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
13189 info_ptr += bytes_read;
13191 case DW_FORM_indirect:
13192 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13193 info_ptr += bytes_read;
13194 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
13196 case DW_FORM_GNU_addr_index:
13197 if (reader->dwo_file == NULL)
13199 /* For now flag a hard error.
13200 Later we can turn this into a complaint. */
13201 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
13202 dwarf_form_name (form),
13203 bfd_get_filename (abfd));
13205 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
13206 info_ptr += bytes_read;
13208 case DW_FORM_GNU_str_index:
13209 if (reader->dwo_file == NULL)
13211 /* For now flag a hard error.
13212 Later we can turn this into a complaint if warranted. */
13213 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
13214 dwarf_form_name (form),
13215 bfd_get_filename (abfd));
13218 ULONGEST str_index =
13219 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13221 DW_STRING (attr) = read_str_index (reader, cu, str_index);
13222 DW_STRING_IS_CANONICAL (attr) = 0;
13223 info_ptr += bytes_read;
13227 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
13228 dwarf_form_name (form),
13229 bfd_get_filename (abfd));
13233 if (cu->per_cu->is_dwz && is_ref_attr (attr))
13234 attr->form = DW_FORM_GNU_ref_alt;
13236 /* We have seen instances where the compiler tried to emit a byte
13237 size attribute of -1 which ended up being encoded as an unsigned
13238 0xffffffff. Although 0xffffffff is technically a valid size value,
13239 an object of this size seems pretty unlikely so we can relatively
13240 safely treat these cases as if the size attribute was invalid and
13241 treat them as zero by default. */
13242 if (attr->name == DW_AT_byte_size
13243 && form == DW_FORM_data4
13244 && DW_UNSND (attr) >= 0xffffffff)
13247 (&symfile_complaints,
13248 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
13249 hex_string (DW_UNSND (attr)));
13250 DW_UNSND (attr) = 0;
13256 /* Read an attribute described by an abbreviated attribute. */
13259 read_attribute (const struct die_reader_specs *reader,
13260 struct attribute *attr, struct attr_abbrev *abbrev,
13261 gdb_byte *info_ptr)
13263 attr->name = abbrev->name;
13264 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
13267 /* Read dwarf information from a buffer. */
13269 static unsigned int
13270 read_1_byte (bfd *abfd, gdb_byte *buf)
13272 return bfd_get_8 (abfd, buf);
13276 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
13278 return bfd_get_signed_8 (abfd, buf);
13281 static unsigned int
13282 read_2_bytes (bfd *abfd, gdb_byte *buf)
13284 return bfd_get_16 (abfd, buf);
13288 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
13290 return bfd_get_signed_16 (abfd, buf);
13293 static unsigned int
13294 read_4_bytes (bfd *abfd, gdb_byte *buf)
13296 return bfd_get_32 (abfd, buf);
13300 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
13302 return bfd_get_signed_32 (abfd, buf);
13306 read_8_bytes (bfd *abfd, gdb_byte *buf)
13308 return bfd_get_64 (abfd, buf);
13312 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
13313 unsigned int *bytes_read)
13315 struct comp_unit_head *cu_header = &cu->header;
13316 CORE_ADDR retval = 0;
13318 if (cu_header->signed_addr_p)
13320 switch (cu_header->addr_size)
13323 retval = bfd_get_signed_16 (abfd, buf);
13326 retval = bfd_get_signed_32 (abfd, buf);
13329 retval = bfd_get_signed_64 (abfd, buf);
13332 internal_error (__FILE__, __LINE__,
13333 _("read_address: bad switch, signed [in module %s]"),
13334 bfd_get_filename (abfd));
13339 switch (cu_header->addr_size)
13342 retval = bfd_get_16 (abfd, buf);
13345 retval = bfd_get_32 (abfd, buf);
13348 retval = bfd_get_64 (abfd, buf);
13351 internal_error (__FILE__, __LINE__,
13352 _("read_address: bad switch, "
13353 "unsigned [in module %s]"),
13354 bfd_get_filename (abfd));
13358 *bytes_read = cu_header->addr_size;
13362 /* Read the initial length from a section. The (draft) DWARF 3
13363 specification allows the initial length to take up either 4 bytes
13364 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
13365 bytes describe the length and all offsets will be 8 bytes in length
13368 An older, non-standard 64-bit format is also handled by this
13369 function. The older format in question stores the initial length
13370 as an 8-byte quantity without an escape value. Lengths greater
13371 than 2^32 aren't very common which means that the initial 4 bytes
13372 is almost always zero. Since a length value of zero doesn't make
13373 sense for the 32-bit format, this initial zero can be considered to
13374 be an escape value which indicates the presence of the older 64-bit
13375 format. As written, the code can't detect (old format) lengths
13376 greater than 4GB. If it becomes necessary to handle lengths
13377 somewhat larger than 4GB, we could allow other small values (such
13378 as the non-sensical values of 1, 2, and 3) to also be used as
13379 escape values indicating the presence of the old format.
13381 The value returned via bytes_read should be used to increment the
13382 relevant pointer after calling read_initial_length().
13384 [ Note: read_initial_length() and read_offset() are based on the
13385 document entitled "DWARF Debugging Information Format", revision
13386 3, draft 8, dated November 19, 2001. This document was obtained
13389 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
13391 This document is only a draft and is subject to change. (So beware.)
13393 Details regarding the older, non-standard 64-bit format were
13394 determined empirically by examining 64-bit ELF files produced by
13395 the SGI toolchain on an IRIX 6.5 machine.
13397 - Kevin, July 16, 2002
13401 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
13403 LONGEST length = bfd_get_32 (abfd, buf);
13405 if (length == 0xffffffff)
13407 length = bfd_get_64 (abfd, buf + 4);
13410 else if (length == 0)
13412 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
13413 length = bfd_get_64 (abfd, buf);
13424 /* Cover function for read_initial_length.
13425 Returns the length of the object at BUF, and stores the size of the
13426 initial length in *BYTES_READ and stores the size that offsets will be in
13428 If the initial length size is not equivalent to that specified in
13429 CU_HEADER then issue a complaint.
13430 This is useful when reading non-comp-unit headers. */
13433 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
13434 const struct comp_unit_head *cu_header,
13435 unsigned int *bytes_read,
13436 unsigned int *offset_size)
13438 LONGEST length = read_initial_length (abfd, buf, bytes_read);
13440 gdb_assert (cu_header->initial_length_size == 4
13441 || cu_header->initial_length_size == 8
13442 || cu_header->initial_length_size == 12);
13444 if (cu_header->initial_length_size != *bytes_read)
13445 complaint (&symfile_complaints,
13446 _("intermixed 32-bit and 64-bit DWARF sections"));
13448 *offset_size = (*bytes_read == 4) ? 4 : 8;
13452 /* Read an offset from the data stream. The size of the offset is
13453 given by cu_header->offset_size. */
13456 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
13457 unsigned int *bytes_read)
13459 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
13461 *bytes_read = cu_header->offset_size;
13465 /* Read an offset from the data stream. */
13468 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
13470 LONGEST retval = 0;
13472 switch (offset_size)
13475 retval = bfd_get_32 (abfd, buf);
13478 retval = bfd_get_64 (abfd, buf);
13481 internal_error (__FILE__, __LINE__,
13482 _("read_offset_1: bad switch [in module %s]"),
13483 bfd_get_filename (abfd));
13490 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
13492 /* If the size of a host char is 8 bits, we can return a pointer
13493 to the buffer, otherwise we have to copy the data to a buffer
13494 allocated on the temporary obstack. */
13495 gdb_assert (HOST_CHAR_BIT == 8);
13500 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
13502 /* If the size of a host char is 8 bits, we can return a pointer
13503 to the string, otherwise we have to copy the string to a buffer
13504 allocated on the temporary obstack. */
13505 gdb_assert (HOST_CHAR_BIT == 8);
13508 *bytes_read_ptr = 1;
13511 *bytes_read_ptr = strlen ((char *) buf) + 1;
13512 return (char *) buf;
13516 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
13518 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
13519 if (dwarf2_per_objfile->str.buffer == NULL)
13520 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
13521 bfd_get_filename (abfd));
13522 if (str_offset >= dwarf2_per_objfile->str.size)
13523 error (_("DW_FORM_strp pointing outside of "
13524 ".debug_str section [in module %s]"),
13525 bfd_get_filename (abfd));
13526 gdb_assert (HOST_CHAR_BIT == 8);
13527 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
13529 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
13532 /* Read a string at offset STR_OFFSET in the .debug_str section from
13533 the .dwz file DWZ. Throw an error if the offset is too large. If
13534 the string consists of a single NUL byte, return NULL; otherwise
13535 return a pointer to the string. */
13538 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
13540 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
13542 if (dwz->str.buffer == NULL)
13543 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
13544 "section [in module %s]"),
13545 bfd_get_filename (dwz->dwz_bfd));
13546 if (str_offset >= dwz->str.size)
13547 error (_("DW_FORM_GNU_strp_alt pointing outside of "
13548 ".debug_str section [in module %s]"),
13549 bfd_get_filename (dwz->dwz_bfd));
13550 gdb_assert (HOST_CHAR_BIT == 8);
13551 if (dwz->str.buffer[str_offset] == '\0')
13553 return (char *) (dwz->str.buffer + str_offset);
13557 read_indirect_string (bfd *abfd, gdb_byte *buf,
13558 const struct comp_unit_head *cu_header,
13559 unsigned int *bytes_read_ptr)
13561 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
13563 return read_indirect_string_at_offset (abfd, str_offset);
13567 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
13570 unsigned int num_read;
13572 unsigned char byte;
13580 byte = bfd_get_8 (abfd, buf);
13583 result |= ((ULONGEST) (byte & 127) << shift);
13584 if ((byte & 128) == 0)
13590 *bytes_read_ptr = num_read;
13595 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
13598 int i, shift, num_read;
13599 unsigned char byte;
13607 byte = bfd_get_8 (abfd, buf);
13610 result |= ((LONGEST) (byte & 127) << shift);
13612 if ((byte & 128) == 0)
13617 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
13618 result |= -(((LONGEST) 1) << shift);
13619 *bytes_read_ptr = num_read;
13623 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
13624 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
13625 ADDR_SIZE is the size of addresses from the CU header. */
13628 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
13630 struct objfile *objfile = dwarf2_per_objfile->objfile;
13631 bfd *abfd = objfile->obfd;
13632 const gdb_byte *info_ptr;
13634 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
13635 if (dwarf2_per_objfile->addr.buffer == NULL)
13636 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
13638 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
13639 error (_("DW_FORM_addr_index pointing outside of "
13640 ".debug_addr section [in module %s]"),
13642 info_ptr = (dwarf2_per_objfile->addr.buffer
13643 + addr_base + addr_index * addr_size);
13644 if (addr_size == 4)
13645 return bfd_get_32 (abfd, info_ptr);
13647 return bfd_get_64 (abfd, info_ptr);
13650 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
13653 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
13655 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
13658 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
13661 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
13662 unsigned int *bytes_read)
13664 bfd *abfd = cu->objfile->obfd;
13665 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
13667 return read_addr_index (cu, addr_index);
13670 /* Data structure to pass results from dwarf2_read_addr_index_reader
13671 back to dwarf2_read_addr_index. */
13673 struct dwarf2_read_addr_index_data
13675 ULONGEST addr_base;
13679 /* die_reader_func for dwarf2_read_addr_index. */
13682 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
13683 gdb_byte *info_ptr,
13684 struct die_info *comp_unit_die,
13688 struct dwarf2_cu *cu = reader->cu;
13689 struct dwarf2_read_addr_index_data *aidata =
13690 (struct dwarf2_read_addr_index_data *) data;
13692 aidata->addr_base = cu->addr_base;
13693 aidata->addr_size = cu->header.addr_size;
13696 /* Given an index in .debug_addr, fetch the value.
13697 NOTE: This can be called during dwarf expression evaluation,
13698 long after the debug information has been read, and thus per_cu->cu
13699 may no longer exist. */
13702 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
13703 unsigned int addr_index)
13705 struct objfile *objfile = per_cu->objfile;
13706 struct dwarf2_cu *cu = per_cu->cu;
13707 ULONGEST addr_base;
13710 /* This is intended to be called from outside this file. */
13711 dw2_setup (objfile);
13713 /* We need addr_base and addr_size.
13714 If we don't have PER_CU->cu, we have to get it.
13715 Nasty, but the alternative is storing the needed info in PER_CU,
13716 which at this point doesn't seem justified: it's not clear how frequently
13717 it would get used and it would increase the size of every PER_CU.
13718 Entry points like dwarf2_per_cu_addr_size do a similar thing
13719 so we're not in uncharted territory here.
13720 Alas we need to be a bit more complicated as addr_base is contained
13723 We don't need to read the entire CU(/TU).
13724 We just need the header and top level die.
13725 IWBN to use the aging mechanism to let us lazily later discard the CU.
13726 See however init_cutu_and_read_dies_simple. */
13730 addr_base = cu->addr_base;
13731 addr_size = cu->header.addr_size;
13735 struct dwarf2_read_addr_index_data aidata;
13737 init_cutu_and_read_dies_simple (per_cu, dwarf2_read_addr_index_reader,
13739 addr_base = aidata.addr_base;
13740 addr_size = aidata.addr_size;
13743 return read_addr_index_1 (addr_index, addr_base, addr_size);
13746 /* Given a DW_AT_str_index, fetch the string. */
13749 read_str_index (const struct die_reader_specs *reader,
13750 struct dwarf2_cu *cu, ULONGEST str_index)
13752 struct objfile *objfile = dwarf2_per_objfile->objfile;
13753 const char *dwo_name = objfile->name;
13754 bfd *abfd = objfile->obfd;
13755 struct dwo_sections *sections = &reader->dwo_file->sections;
13756 gdb_byte *info_ptr;
13757 ULONGEST str_offset;
13759 dwarf2_read_section (objfile, §ions->str);
13760 dwarf2_read_section (objfile, §ions->str_offsets);
13761 if (sections->str.buffer == NULL)
13762 error (_("DW_FORM_str_index used without .debug_str.dwo section"
13763 " in CU at offset 0x%lx [in module %s]"),
13764 (long) cu->header.offset.sect_off, dwo_name);
13765 if (sections->str_offsets.buffer == NULL)
13766 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
13767 " in CU at offset 0x%lx [in module %s]"),
13768 (long) cu->header.offset.sect_off, dwo_name);
13769 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
13770 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
13771 " section in CU at offset 0x%lx [in module %s]"),
13772 (long) cu->header.offset.sect_off, dwo_name);
13773 info_ptr = (sections->str_offsets.buffer
13774 + str_index * cu->header.offset_size);
13775 if (cu->header.offset_size == 4)
13776 str_offset = bfd_get_32 (abfd, info_ptr);
13778 str_offset = bfd_get_64 (abfd, info_ptr);
13779 if (str_offset >= sections->str.size)
13780 error (_("Offset from DW_FORM_str_index pointing outside of"
13781 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
13782 (long) cu->header.offset.sect_off, dwo_name);
13783 return (char *) (sections->str.buffer + str_offset);
13786 /* Return the length of an LEB128 number in BUF. */
13789 leb128_size (const gdb_byte *buf)
13791 const gdb_byte *begin = buf;
13797 if ((byte & 128) == 0)
13798 return buf - begin;
13803 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
13810 cu->language = language_c;
13812 case DW_LANG_C_plus_plus:
13813 cu->language = language_cplus;
13816 cu->language = language_d;
13818 case DW_LANG_Fortran77:
13819 case DW_LANG_Fortran90:
13820 case DW_LANG_Fortran95:
13821 cu->language = language_fortran;
13824 cu->language = language_go;
13826 case DW_LANG_Mips_Assembler:
13827 cu->language = language_asm;
13830 cu->language = language_java;
13832 case DW_LANG_Ada83:
13833 case DW_LANG_Ada95:
13834 cu->language = language_ada;
13836 case DW_LANG_Modula2:
13837 cu->language = language_m2;
13839 case DW_LANG_Pascal83:
13840 cu->language = language_pascal;
13843 cu->language = language_objc;
13845 case DW_LANG_Cobol74:
13846 case DW_LANG_Cobol85:
13848 cu->language = language_minimal;
13851 cu->language_defn = language_def (cu->language);
13854 /* Return the named attribute or NULL if not there. */
13856 static struct attribute *
13857 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
13862 struct attribute *spec = NULL;
13864 for (i = 0; i < die->num_attrs; ++i)
13866 if (die->attrs[i].name == name)
13867 return &die->attrs[i];
13868 if (die->attrs[i].name == DW_AT_specification
13869 || die->attrs[i].name == DW_AT_abstract_origin)
13870 spec = &die->attrs[i];
13876 die = follow_die_ref (die, spec, &cu);
13882 /* Return the named attribute or NULL if not there,
13883 but do not follow DW_AT_specification, etc.
13884 This is for use in contexts where we're reading .debug_types dies.
13885 Following DW_AT_specification, DW_AT_abstract_origin will take us
13886 back up the chain, and we want to go down. */
13888 static struct attribute *
13889 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
13893 for (i = 0; i < die->num_attrs; ++i)
13894 if (die->attrs[i].name == name)
13895 return &die->attrs[i];
13900 /* Return non-zero iff the attribute NAME is defined for the given DIE,
13901 and holds a non-zero value. This function should only be used for
13902 DW_FORM_flag or DW_FORM_flag_present attributes. */
13905 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
13907 struct attribute *attr = dwarf2_attr (die, name, cu);
13909 return (attr && DW_UNSND (attr));
13913 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
13915 /* A DIE is a declaration if it has a DW_AT_declaration attribute
13916 which value is non-zero. However, we have to be careful with
13917 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
13918 (via dwarf2_flag_true_p) follows this attribute. So we may
13919 end up accidently finding a declaration attribute that belongs
13920 to a different DIE referenced by the specification attribute,
13921 even though the given DIE does not have a declaration attribute. */
13922 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
13923 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
13926 /* Return the die giving the specification for DIE, if there is
13927 one. *SPEC_CU is the CU containing DIE on input, and the CU
13928 containing the return value on output. If there is no
13929 specification, but there is an abstract origin, that is
13932 static struct die_info *
13933 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
13935 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
13938 if (spec_attr == NULL)
13939 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
13941 if (spec_attr == NULL)
13944 return follow_die_ref (die, spec_attr, spec_cu);
13947 /* Free the line_header structure *LH, and any arrays and strings it
13949 NOTE: This is also used as a "cleanup" function. */
13952 free_line_header (struct line_header *lh)
13954 if (lh->standard_opcode_lengths)
13955 xfree (lh->standard_opcode_lengths);
13957 /* Remember that all the lh->file_names[i].name pointers are
13958 pointers into debug_line_buffer, and don't need to be freed. */
13959 if (lh->file_names)
13960 xfree (lh->file_names);
13962 /* Similarly for the include directory names. */
13963 if (lh->include_dirs)
13964 xfree (lh->include_dirs);
13969 /* Add an entry to LH's include directory table. */
13972 add_include_dir (struct line_header *lh, char *include_dir)
13974 /* Grow the array if necessary. */
13975 if (lh->include_dirs_size == 0)
13977 lh->include_dirs_size = 1; /* for testing */
13978 lh->include_dirs = xmalloc (lh->include_dirs_size
13979 * sizeof (*lh->include_dirs));
13981 else if (lh->num_include_dirs >= lh->include_dirs_size)
13983 lh->include_dirs_size *= 2;
13984 lh->include_dirs = xrealloc (lh->include_dirs,
13985 (lh->include_dirs_size
13986 * sizeof (*lh->include_dirs)));
13989 lh->include_dirs[lh->num_include_dirs++] = include_dir;
13992 /* Add an entry to LH's file name table. */
13995 add_file_name (struct line_header *lh,
13997 unsigned int dir_index,
13998 unsigned int mod_time,
13999 unsigned int length)
14001 struct file_entry *fe;
14003 /* Grow the array if necessary. */
14004 if (lh->file_names_size == 0)
14006 lh->file_names_size = 1; /* for testing */
14007 lh->file_names = xmalloc (lh->file_names_size
14008 * sizeof (*lh->file_names));
14010 else if (lh->num_file_names >= lh->file_names_size)
14012 lh->file_names_size *= 2;
14013 lh->file_names = xrealloc (lh->file_names,
14014 (lh->file_names_size
14015 * sizeof (*lh->file_names)));
14018 fe = &lh->file_names[lh->num_file_names++];
14020 fe->dir_index = dir_index;
14021 fe->mod_time = mod_time;
14022 fe->length = length;
14023 fe->included_p = 0;
14027 /* A convenience function to find the proper .debug_line section for a
14030 static struct dwarf2_section_info *
14031 get_debug_line_section (struct dwarf2_cu *cu)
14033 struct dwarf2_section_info *section;
14035 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14037 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14038 section = &cu->dwo_unit->dwo_file->sections.line;
14039 else if (cu->per_cu->is_dwz)
14041 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14043 section = &dwz->line;
14046 section = &dwarf2_per_objfile->line;
14051 /* Read the statement program header starting at OFFSET in
14052 .debug_line, or .debug_line.dwo. Return a pointer
14053 to a struct line_header, allocated using xmalloc.
14055 NOTE: the strings in the include directory and file name tables of
14056 the returned object point into the dwarf line section buffer,
14057 and must not be freed. */
14059 static struct line_header *
14060 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
14062 struct cleanup *back_to;
14063 struct line_header *lh;
14064 gdb_byte *line_ptr;
14065 unsigned int bytes_read, offset_size;
14067 char *cur_dir, *cur_file;
14068 struct dwarf2_section_info *section;
14071 section = get_debug_line_section (cu);
14072 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
14073 if (section->buffer == NULL)
14075 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14076 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
14078 complaint (&symfile_complaints, _("missing .debug_line section"));
14082 /* We can't do this until we know the section is non-empty.
14083 Only then do we know we have such a section. */
14084 abfd = section->asection->owner;
14086 /* Make sure that at least there's room for the total_length field.
14087 That could be 12 bytes long, but we're just going to fudge that. */
14088 if (offset + 4 >= section->size)
14090 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14094 lh = xmalloc (sizeof (*lh));
14095 memset (lh, 0, sizeof (*lh));
14096 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
14099 line_ptr = section->buffer + offset;
14101 /* Read in the header. */
14103 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
14104 &bytes_read, &offset_size);
14105 line_ptr += bytes_read;
14106 if (line_ptr + lh->total_length > (section->buffer + section->size))
14108 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14111 lh->statement_program_end = line_ptr + lh->total_length;
14112 lh->version = read_2_bytes (abfd, line_ptr);
14114 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
14115 line_ptr += offset_size;
14116 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
14118 if (lh->version >= 4)
14120 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
14124 lh->maximum_ops_per_instruction = 1;
14126 if (lh->maximum_ops_per_instruction == 0)
14128 lh->maximum_ops_per_instruction = 1;
14129 complaint (&symfile_complaints,
14130 _("invalid maximum_ops_per_instruction "
14131 "in `.debug_line' section"));
14134 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
14136 lh->line_base = read_1_signed_byte (abfd, line_ptr);
14138 lh->line_range = read_1_byte (abfd, line_ptr);
14140 lh->opcode_base = read_1_byte (abfd, line_ptr);
14142 lh->standard_opcode_lengths
14143 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
14145 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
14146 for (i = 1; i < lh->opcode_base; ++i)
14148 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
14152 /* Read directory table. */
14153 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
14155 line_ptr += bytes_read;
14156 add_include_dir (lh, cur_dir);
14158 line_ptr += bytes_read;
14160 /* Read file name table. */
14161 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
14163 unsigned int dir_index, mod_time, length;
14165 line_ptr += bytes_read;
14166 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14167 line_ptr += bytes_read;
14168 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14169 line_ptr += bytes_read;
14170 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14171 line_ptr += bytes_read;
14173 add_file_name (lh, cur_file, dir_index, mod_time, length);
14175 line_ptr += bytes_read;
14176 lh->statement_program_start = line_ptr;
14178 if (line_ptr > (section->buffer + section->size))
14179 complaint (&symfile_complaints,
14180 _("line number info header doesn't "
14181 "fit in `.debug_line' section"));
14183 discard_cleanups (back_to);
14187 /* Subroutine of dwarf_decode_lines to simplify it.
14188 Return the file name of the psymtab for included file FILE_INDEX
14189 in line header LH of PST.
14190 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
14191 If space for the result is malloc'd, it will be freed by a cleanup.
14192 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
14195 psymtab_include_file_name (const struct line_header *lh, int file_index,
14196 const struct partial_symtab *pst,
14197 const char *comp_dir)
14199 const struct file_entry fe = lh->file_names [file_index];
14200 char *include_name = fe.name;
14201 char *include_name_to_compare = include_name;
14202 char *dir_name = NULL;
14203 const char *pst_filename;
14204 char *copied_name = NULL;
14208 dir_name = lh->include_dirs[fe.dir_index - 1];
14210 if (!IS_ABSOLUTE_PATH (include_name)
14211 && (dir_name != NULL || comp_dir != NULL))
14213 /* Avoid creating a duplicate psymtab for PST.
14214 We do this by comparing INCLUDE_NAME and PST_FILENAME.
14215 Before we do the comparison, however, we need to account
14216 for DIR_NAME and COMP_DIR.
14217 First prepend dir_name (if non-NULL). If we still don't
14218 have an absolute path prepend comp_dir (if non-NULL).
14219 However, the directory we record in the include-file's
14220 psymtab does not contain COMP_DIR (to match the
14221 corresponding symtab(s)).
14226 bash$ gcc -g ./hello.c
14227 include_name = "hello.c"
14229 DW_AT_comp_dir = comp_dir = "/tmp"
14230 DW_AT_name = "./hello.c" */
14232 if (dir_name != NULL)
14234 include_name = concat (dir_name, SLASH_STRING,
14235 include_name, (char *)NULL);
14236 include_name_to_compare = include_name;
14237 make_cleanup (xfree, include_name);
14239 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
14241 include_name_to_compare = concat (comp_dir, SLASH_STRING,
14242 include_name, (char *)NULL);
14246 pst_filename = pst->filename;
14247 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
14249 copied_name = concat (pst->dirname, SLASH_STRING,
14250 pst_filename, (char *)NULL);
14251 pst_filename = copied_name;
14254 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
14256 if (include_name_to_compare != include_name)
14257 xfree (include_name_to_compare);
14258 if (copied_name != NULL)
14259 xfree (copied_name);
14263 return include_name;
14266 /* Ignore this record_line request. */
14269 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
14274 /* Subroutine of dwarf_decode_lines to simplify it.
14275 Process the line number information in LH. */
14278 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
14279 struct dwarf2_cu *cu, struct partial_symtab *pst)
14281 gdb_byte *line_ptr, *extended_end;
14282 gdb_byte *line_end;
14283 unsigned int bytes_read, extended_len;
14284 unsigned char op_code, extended_op, adj_opcode;
14285 CORE_ADDR baseaddr;
14286 struct objfile *objfile = cu->objfile;
14287 bfd *abfd = objfile->obfd;
14288 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14289 const int decode_for_pst_p = (pst != NULL);
14290 struct subfile *last_subfile = NULL;
14291 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
14294 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14296 line_ptr = lh->statement_program_start;
14297 line_end = lh->statement_program_end;
14299 /* Read the statement sequences until there's nothing left. */
14300 while (line_ptr < line_end)
14302 /* state machine registers */
14303 CORE_ADDR address = 0;
14304 unsigned int file = 1;
14305 unsigned int line = 1;
14306 unsigned int column = 0;
14307 int is_stmt = lh->default_is_stmt;
14308 int basic_block = 0;
14309 int end_sequence = 0;
14311 unsigned char op_index = 0;
14313 if (!decode_for_pst_p && lh->num_file_names >= file)
14315 /* Start a subfile for the current file of the state machine. */
14316 /* lh->include_dirs and lh->file_names are 0-based, but the
14317 directory and file name numbers in the statement program
14319 struct file_entry *fe = &lh->file_names[file - 1];
14323 dir = lh->include_dirs[fe->dir_index - 1];
14325 dwarf2_start_subfile (fe->name, dir, comp_dir);
14328 /* Decode the table. */
14329 while (!end_sequence)
14331 op_code = read_1_byte (abfd, line_ptr);
14333 if (line_ptr > line_end)
14335 dwarf2_debug_line_missing_end_sequence_complaint ();
14339 if (op_code >= lh->opcode_base)
14341 /* Special operand. */
14342 adj_opcode = op_code - lh->opcode_base;
14343 address += (((op_index + (adj_opcode / lh->line_range))
14344 / lh->maximum_ops_per_instruction)
14345 * lh->minimum_instruction_length);
14346 op_index = ((op_index + (adj_opcode / lh->line_range))
14347 % lh->maximum_ops_per_instruction);
14348 line += lh->line_base + (adj_opcode % lh->line_range);
14349 if (lh->num_file_names < file || file == 0)
14350 dwarf2_debug_line_missing_file_complaint ();
14351 /* For now we ignore lines not starting on an
14352 instruction boundary. */
14353 else if (op_index == 0)
14355 lh->file_names[file - 1].included_p = 1;
14356 if (!decode_for_pst_p && is_stmt)
14358 if (last_subfile != current_subfile)
14360 addr = gdbarch_addr_bits_remove (gdbarch, address);
14362 (*p_record_line) (last_subfile, 0, addr);
14363 last_subfile = current_subfile;
14365 /* Append row to matrix using current values. */
14366 addr = gdbarch_addr_bits_remove (gdbarch, address);
14367 (*p_record_line) (current_subfile, line, addr);
14372 else switch (op_code)
14374 case DW_LNS_extended_op:
14375 extended_len = read_unsigned_leb128 (abfd, line_ptr,
14377 line_ptr += bytes_read;
14378 extended_end = line_ptr + extended_len;
14379 extended_op = read_1_byte (abfd, line_ptr);
14381 switch (extended_op)
14383 case DW_LNE_end_sequence:
14384 p_record_line = record_line;
14387 case DW_LNE_set_address:
14388 address = read_address (abfd, line_ptr, cu, &bytes_read);
14390 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
14392 /* This line table is for a function which has been
14393 GCd by the linker. Ignore it. PR gdb/12528 */
14396 = line_ptr - get_debug_line_section (cu)->buffer;
14398 complaint (&symfile_complaints,
14399 _(".debug_line address at offset 0x%lx is 0 "
14401 line_offset, objfile->name);
14402 p_record_line = noop_record_line;
14406 line_ptr += bytes_read;
14407 address += baseaddr;
14409 case DW_LNE_define_file:
14412 unsigned int dir_index, mod_time, length;
14414 cur_file = read_direct_string (abfd, line_ptr,
14416 line_ptr += bytes_read;
14418 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14419 line_ptr += bytes_read;
14421 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14422 line_ptr += bytes_read;
14424 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14425 line_ptr += bytes_read;
14426 add_file_name (lh, cur_file, dir_index, mod_time, length);
14429 case DW_LNE_set_discriminator:
14430 /* The discriminator is not interesting to the debugger;
14432 line_ptr = extended_end;
14435 complaint (&symfile_complaints,
14436 _("mangled .debug_line section"));
14439 /* Make sure that we parsed the extended op correctly. If e.g.
14440 we expected a different address size than the producer used,
14441 we may have read the wrong number of bytes. */
14442 if (line_ptr != extended_end)
14444 complaint (&symfile_complaints,
14445 _("mangled .debug_line section"));
14450 if (lh->num_file_names < file || file == 0)
14451 dwarf2_debug_line_missing_file_complaint ();
14454 lh->file_names[file - 1].included_p = 1;
14455 if (!decode_for_pst_p && is_stmt)
14457 if (last_subfile != current_subfile)
14459 addr = gdbarch_addr_bits_remove (gdbarch, address);
14461 (*p_record_line) (last_subfile, 0, addr);
14462 last_subfile = current_subfile;
14464 addr = gdbarch_addr_bits_remove (gdbarch, address);
14465 (*p_record_line) (current_subfile, line, addr);
14470 case DW_LNS_advance_pc:
14473 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14475 address += (((op_index + adjust)
14476 / lh->maximum_ops_per_instruction)
14477 * lh->minimum_instruction_length);
14478 op_index = ((op_index + adjust)
14479 % lh->maximum_ops_per_instruction);
14480 line_ptr += bytes_read;
14483 case DW_LNS_advance_line:
14484 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
14485 line_ptr += bytes_read;
14487 case DW_LNS_set_file:
14489 /* The arrays lh->include_dirs and lh->file_names are
14490 0-based, but the directory and file name numbers in
14491 the statement program are 1-based. */
14492 struct file_entry *fe;
14495 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14496 line_ptr += bytes_read;
14497 if (lh->num_file_names < file || file == 0)
14498 dwarf2_debug_line_missing_file_complaint ();
14501 fe = &lh->file_names[file - 1];
14503 dir = lh->include_dirs[fe->dir_index - 1];
14504 if (!decode_for_pst_p)
14506 last_subfile = current_subfile;
14507 dwarf2_start_subfile (fe->name, dir, comp_dir);
14512 case DW_LNS_set_column:
14513 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14514 line_ptr += bytes_read;
14516 case DW_LNS_negate_stmt:
14517 is_stmt = (!is_stmt);
14519 case DW_LNS_set_basic_block:
14522 /* Add to the address register of the state machine the
14523 address increment value corresponding to special opcode
14524 255. I.e., this value is scaled by the minimum
14525 instruction length since special opcode 255 would have
14526 scaled the increment. */
14527 case DW_LNS_const_add_pc:
14529 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
14531 address += (((op_index + adjust)
14532 / lh->maximum_ops_per_instruction)
14533 * lh->minimum_instruction_length);
14534 op_index = ((op_index + adjust)
14535 % lh->maximum_ops_per_instruction);
14538 case DW_LNS_fixed_advance_pc:
14539 address += read_2_bytes (abfd, line_ptr);
14545 /* Unknown standard opcode, ignore it. */
14548 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
14550 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14551 line_ptr += bytes_read;
14556 if (lh->num_file_names < file || file == 0)
14557 dwarf2_debug_line_missing_file_complaint ();
14560 lh->file_names[file - 1].included_p = 1;
14561 if (!decode_for_pst_p)
14563 addr = gdbarch_addr_bits_remove (gdbarch, address);
14564 (*p_record_line) (current_subfile, 0, addr);
14570 /* Decode the Line Number Program (LNP) for the given line_header
14571 structure and CU. The actual information extracted and the type
14572 of structures created from the LNP depends on the value of PST.
14574 1. If PST is NULL, then this procedure uses the data from the program
14575 to create all necessary symbol tables, and their linetables.
14577 2. If PST is not NULL, this procedure reads the program to determine
14578 the list of files included by the unit represented by PST, and
14579 builds all the associated partial symbol tables.
14581 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
14582 It is used for relative paths in the line table.
14583 NOTE: When processing partial symtabs (pst != NULL),
14584 comp_dir == pst->dirname.
14586 NOTE: It is important that psymtabs have the same file name (via strcmp)
14587 as the corresponding symtab. Since COMP_DIR is not used in the name of the
14588 symtab we don't use it in the name of the psymtabs we create.
14589 E.g. expand_line_sal requires this when finding psymtabs to expand.
14590 A good testcase for this is mb-inline.exp. */
14593 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
14594 struct dwarf2_cu *cu, struct partial_symtab *pst,
14595 int want_line_info)
14597 struct objfile *objfile = cu->objfile;
14598 const int decode_for_pst_p = (pst != NULL);
14599 struct subfile *first_subfile = current_subfile;
14601 if (want_line_info)
14602 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
14604 if (decode_for_pst_p)
14608 /* Now that we're done scanning the Line Header Program, we can
14609 create the psymtab of each included file. */
14610 for (file_index = 0; file_index < lh->num_file_names; file_index++)
14611 if (lh->file_names[file_index].included_p == 1)
14613 char *include_name =
14614 psymtab_include_file_name (lh, file_index, pst, comp_dir);
14615 if (include_name != NULL)
14616 dwarf2_create_include_psymtab (include_name, pst, objfile);
14621 /* Make sure a symtab is created for every file, even files
14622 which contain only variables (i.e. no code with associated
14626 for (i = 0; i < lh->num_file_names; i++)
14629 struct file_entry *fe;
14631 fe = &lh->file_names[i];
14633 dir = lh->include_dirs[fe->dir_index - 1];
14634 dwarf2_start_subfile (fe->name, dir, comp_dir);
14636 /* Skip the main file; we don't need it, and it must be
14637 allocated last, so that it will show up before the
14638 non-primary symtabs in the objfile's symtab list. */
14639 if (current_subfile == first_subfile)
14642 if (current_subfile->symtab == NULL)
14643 current_subfile->symtab = allocate_symtab (current_subfile->name,
14645 fe->symtab = current_subfile->symtab;
14650 /* Start a subfile for DWARF. FILENAME is the name of the file and
14651 DIRNAME the name of the source directory which contains FILENAME
14652 or NULL if not known. COMP_DIR is the compilation directory for the
14653 linetable's compilation unit or NULL if not known.
14654 This routine tries to keep line numbers from identical absolute and
14655 relative file names in a common subfile.
14657 Using the `list' example from the GDB testsuite, which resides in
14658 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
14659 of /srcdir/list0.c yields the following debugging information for list0.c:
14661 DW_AT_name: /srcdir/list0.c
14662 DW_AT_comp_dir: /compdir
14663 files.files[0].name: list0.h
14664 files.files[0].dir: /srcdir
14665 files.files[1].name: list0.c
14666 files.files[1].dir: /srcdir
14668 The line number information for list0.c has to end up in a single
14669 subfile, so that `break /srcdir/list0.c:1' works as expected.
14670 start_subfile will ensure that this happens provided that we pass the
14671 concatenation of files.files[1].dir and files.files[1].name as the
14675 dwarf2_start_subfile (char *filename, const char *dirname,
14676 const char *comp_dir)
14680 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
14681 `start_symtab' will always pass the contents of DW_AT_comp_dir as
14682 second argument to start_subfile. To be consistent, we do the
14683 same here. In order not to lose the line information directory,
14684 we concatenate it to the filename when it makes sense.
14685 Note that the Dwarf3 standard says (speaking of filenames in line
14686 information): ``The directory index is ignored for file names
14687 that represent full path names''. Thus ignoring dirname in the
14688 `else' branch below isn't an issue. */
14690 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
14691 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
14693 fullname = filename;
14695 start_subfile (fullname, comp_dir);
14697 if (fullname != filename)
14701 /* Start a symtab for DWARF.
14702 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
14705 dwarf2_start_symtab (struct dwarf2_cu *cu,
14706 char *name, char *comp_dir, CORE_ADDR low_pc)
14708 start_symtab (name, comp_dir, low_pc);
14709 record_debugformat ("DWARF 2");
14710 record_producer (cu->producer);
14712 /* We assume that we're processing GCC output. */
14713 processing_gcc_compilation = 2;
14715 processing_has_namespace_info = 0;
14719 var_decode_location (struct attribute *attr, struct symbol *sym,
14720 struct dwarf2_cu *cu)
14722 struct objfile *objfile = cu->objfile;
14723 struct comp_unit_head *cu_header = &cu->header;
14725 /* NOTE drow/2003-01-30: There used to be a comment and some special
14726 code here to turn a symbol with DW_AT_external and a
14727 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
14728 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
14729 with some versions of binutils) where shared libraries could have
14730 relocations against symbols in their debug information - the
14731 minimal symbol would have the right address, but the debug info
14732 would not. It's no longer necessary, because we will explicitly
14733 apply relocations when we read in the debug information now. */
14735 /* A DW_AT_location attribute with no contents indicates that a
14736 variable has been optimized away. */
14737 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
14739 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
14743 /* Handle one degenerate form of location expression specially, to
14744 preserve GDB's previous behavior when section offsets are
14745 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
14746 then mark this symbol as LOC_STATIC. */
14748 if (attr_form_is_block (attr)
14749 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
14750 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
14751 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
14752 && (DW_BLOCK (attr)->size
14753 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
14755 unsigned int dummy;
14757 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
14758 SYMBOL_VALUE_ADDRESS (sym) =
14759 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
14761 SYMBOL_VALUE_ADDRESS (sym) =
14762 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
14763 SYMBOL_CLASS (sym) = LOC_STATIC;
14764 fixup_symbol_section (sym, objfile);
14765 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
14766 SYMBOL_SECTION (sym));
14770 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
14771 expression evaluator, and use LOC_COMPUTED only when necessary
14772 (i.e. when the value of a register or memory location is
14773 referenced, or a thread-local block, etc.). Then again, it might
14774 not be worthwhile. I'm assuming that it isn't unless performance
14775 or memory numbers show me otherwise. */
14777 dwarf2_symbol_mark_computed (attr, sym, cu);
14778 SYMBOL_CLASS (sym) = LOC_COMPUTED;
14780 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
14781 cu->has_loclist = 1;
14784 /* Given a pointer to a DWARF information entry, figure out if we need
14785 to make a symbol table entry for it, and if so, create a new entry
14786 and return a pointer to it.
14787 If TYPE is NULL, determine symbol type from the die, otherwise
14788 used the passed type.
14789 If SPACE is not NULL, use it to hold the new symbol. If it is
14790 NULL, allocate a new symbol on the objfile's obstack. */
14792 static struct symbol *
14793 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
14794 struct symbol *space)
14796 struct objfile *objfile = cu->objfile;
14797 struct symbol *sym = NULL;
14799 struct attribute *attr = NULL;
14800 struct attribute *attr2 = NULL;
14801 CORE_ADDR baseaddr;
14802 struct pending **list_to_add = NULL;
14804 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
14806 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14808 name = dwarf2_name (die, cu);
14811 const char *linkagename;
14812 int suppress_add = 0;
14817 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
14818 OBJSTAT (objfile, n_syms++);
14820 /* Cache this symbol's name and the name's demangled form (if any). */
14821 SYMBOL_SET_LANGUAGE (sym, cu->language);
14822 linkagename = dwarf2_physname (name, die, cu);
14823 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
14825 /* Fortran does not have mangling standard and the mangling does differ
14826 between gfortran, iFort etc. */
14827 if (cu->language == language_fortran
14828 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
14829 symbol_set_demangled_name (&(sym->ginfo),
14830 (char *) dwarf2_full_name (name, die, cu),
14833 /* Default assumptions.
14834 Use the passed type or decode it from the die. */
14835 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
14836 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
14838 SYMBOL_TYPE (sym) = type;
14840 SYMBOL_TYPE (sym) = die_type (die, cu);
14841 attr = dwarf2_attr (die,
14842 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
14846 SYMBOL_LINE (sym) = DW_UNSND (attr);
14849 attr = dwarf2_attr (die,
14850 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
14854 int file_index = DW_UNSND (attr);
14856 if (cu->line_header == NULL
14857 || file_index > cu->line_header->num_file_names)
14858 complaint (&symfile_complaints,
14859 _("file index out of range"));
14860 else if (file_index > 0)
14862 struct file_entry *fe;
14864 fe = &cu->line_header->file_names[file_index - 1];
14865 SYMBOL_SYMTAB (sym) = fe->symtab;
14872 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14875 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
14877 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
14878 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
14879 SYMBOL_CLASS (sym) = LOC_LABEL;
14880 add_symbol_to_list (sym, cu->list_in_scope);
14882 case DW_TAG_subprogram:
14883 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
14885 SYMBOL_CLASS (sym) = LOC_BLOCK;
14886 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14887 if ((attr2 && (DW_UNSND (attr2) != 0))
14888 || cu->language == language_ada)
14890 /* Subprograms marked external are stored as a global symbol.
14891 Ada subprograms, whether marked external or not, are always
14892 stored as a global symbol, because we want to be able to
14893 access them globally. For instance, we want to be able
14894 to break on a nested subprogram without having to
14895 specify the context. */
14896 list_to_add = &global_symbols;
14900 list_to_add = cu->list_in_scope;
14903 case DW_TAG_inlined_subroutine:
14904 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
14906 SYMBOL_CLASS (sym) = LOC_BLOCK;
14907 SYMBOL_INLINED (sym) = 1;
14908 list_to_add = cu->list_in_scope;
14910 case DW_TAG_template_value_param:
14912 /* Fall through. */
14913 case DW_TAG_constant:
14914 case DW_TAG_variable:
14915 case DW_TAG_member:
14916 /* Compilation with minimal debug info may result in
14917 variables with missing type entries. Change the
14918 misleading `void' type to something sensible. */
14919 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
14921 = objfile_type (objfile)->nodebug_data_symbol;
14923 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14924 /* In the case of DW_TAG_member, we should only be called for
14925 static const members. */
14926 if (die->tag == DW_TAG_member)
14928 /* dwarf2_add_field uses die_is_declaration,
14929 so we do the same. */
14930 gdb_assert (die_is_declaration (die, cu));
14935 dwarf2_const_value (attr, sym, cu);
14936 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14939 if (attr2 && (DW_UNSND (attr2) != 0))
14940 list_to_add = &global_symbols;
14942 list_to_add = cu->list_in_scope;
14946 attr = dwarf2_attr (die, DW_AT_location, cu);
14949 var_decode_location (attr, sym, cu);
14950 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14951 if (SYMBOL_CLASS (sym) == LOC_STATIC
14952 && SYMBOL_VALUE_ADDRESS (sym) == 0
14953 && !dwarf2_per_objfile->has_section_at_zero)
14955 /* When a static variable is eliminated by the linker,
14956 the corresponding debug information is not stripped
14957 out, but the variable address is set to null;
14958 do not add such variables into symbol table. */
14960 else if (attr2 && (DW_UNSND (attr2) != 0))
14962 /* Workaround gfortran PR debug/40040 - it uses
14963 DW_AT_location for variables in -fPIC libraries which may
14964 get overriden by other libraries/executable and get
14965 a different address. Resolve it by the minimal symbol
14966 which may come from inferior's executable using copy
14967 relocation. Make this workaround only for gfortran as for
14968 other compilers GDB cannot guess the minimal symbol
14969 Fortran mangling kind. */
14970 if (cu->language == language_fortran && die->parent
14971 && die->parent->tag == DW_TAG_module
14973 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
14974 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
14976 /* A variable with DW_AT_external is never static,
14977 but it may be block-scoped. */
14978 list_to_add = (cu->list_in_scope == &file_symbols
14979 ? &global_symbols : cu->list_in_scope);
14982 list_to_add = cu->list_in_scope;
14986 /* We do not know the address of this symbol.
14987 If it is an external symbol and we have type information
14988 for it, enter the symbol as a LOC_UNRESOLVED symbol.
14989 The address of the variable will then be determined from
14990 the minimal symbol table whenever the variable is
14992 attr2 = dwarf2_attr (die, DW_AT_external, cu);
14993 if (attr2 && (DW_UNSND (attr2) != 0)
14994 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
14996 /* A variable with DW_AT_external is never static, but it
14997 may be block-scoped. */
14998 list_to_add = (cu->list_in_scope == &file_symbols
14999 ? &global_symbols : cu->list_in_scope);
15001 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15003 else if (!die_is_declaration (die, cu))
15005 /* Use the default LOC_OPTIMIZED_OUT class. */
15006 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15008 list_to_add = cu->list_in_scope;
15012 case DW_TAG_formal_parameter:
15013 /* If we are inside a function, mark this as an argument. If
15014 not, we might be looking at an argument to an inlined function
15015 when we do not have enough information to show inlined frames;
15016 pretend it's a local variable in that case so that the user can
15018 if (context_stack_depth > 0
15019 && context_stack[context_stack_depth - 1].name != NULL)
15020 SYMBOL_IS_ARGUMENT (sym) = 1;
15021 attr = dwarf2_attr (die, DW_AT_location, cu);
15024 var_decode_location (attr, sym, cu);
15026 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15029 dwarf2_const_value (attr, sym, cu);
15032 list_to_add = cu->list_in_scope;
15034 case DW_TAG_unspecified_parameters:
15035 /* From varargs functions; gdb doesn't seem to have any
15036 interest in this information, so just ignore it for now.
15039 case DW_TAG_template_type_param:
15041 /* Fall through. */
15042 case DW_TAG_class_type:
15043 case DW_TAG_interface_type:
15044 case DW_TAG_structure_type:
15045 case DW_TAG_union_type:
15046 case DW_TAG_set_type:
15047 case DW_TAG_enumeration_type:
15048 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15049 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
15052 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
15053 really ever be static objects: otherwise, if you try
15054 to, say, break of a class's method and you're in a file
15055 which doesn't mention that class, it won't work unless
15056 the check for all static symbols in lookup_symbol_aux
15057 saves you. See the OtherFileClass tests in
15058 gdb.c++/namespace.exp. */
15062 list_to_add = (cu->list_in_scope == &file_symbols
15063 && (cu->language == language_cplus
15064 || cu->language == language_java)
15065 ? &global_symbols : cu->list_in_scope);
15067 /* The semantics of C++ state that "struct foo {
15068 ... }" also defines a typedef for "foo". A Java
15069 class declaration also defines a typedef for the
15071 if (cu->language == language_cplus
15072 || cu->language == language_java
15073 || cu->language == language_ada)
15075 /* The symbol's name is already allocated along
15076 with this objfile, so we don't need to
15077 duplicate it for the type. */
15078 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
15079 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
15084 case DW_TAG_typedef:
15085 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15086 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15087 list_to_add = cu->list_in_scope;
15089 case DW_TAG_base_type:
15090 case DW_TAG_subrange_type:
15091 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15092 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15093 list_to_add = cu->list_in_scope;
15095 case DW_TAG_enumerator:
15096 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15099 dwarf2_const_value (attr, sym, cu);
15102 /* NOTE: carlton/2003-11-10: See comment above in the
15103 DW_TAG_class_type, etc. block. */
15105 list_to_add = (cu->list_in_scope == &file_symbols
15106 && (cu->language == language_cplus
15107 || cu->language == language_java)
15108 ? &global_symbols : cu->list_in_scope);
15111 case DW_TAG_namespace:
15112 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15113 list_to_add = &global_symbols;
15116 /* Not a tag we recognize. Hopefully we aren't processing
15117 trash data, but since we must specifically ignore things
15118 we don't recognize, there is nothing else we should do at
15120 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
15121 dwarf_tag_name (die->tag));
15127 sym->hash_next = objfile->template_symbols;
15128 objfile->template_symbols = sym;
15129 list_to_add = NULL;
15132 if (list_to_add != NULL)
15133 add_symbol_to_list (sym, list_to_add);
15135 /* For the benefit of old versions of GCC, check for anonymous
15136 namespaces based on the demangled name. */
15137 if (!processing_has_namespace_info
15138 && cu->language == language_cplus)
15139 cp_scan_for_anonymous_namespaces (sym, objfile);
15144 /* A wrapper for new_symbol_full that always allocates a new symbol. */
15146 static struct symbol *
15147 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
15149 return new_symbol_full (die, type, cu, NULL);
15152 /* Given an attr with a DW_FORM_dataN value in host byte order,
15153 zero-extend it as appropriate for the symbol's type. The DWARF
15154 standard (v4) is not entirely clear about the meaning of using
15155 DW_FORM_dataN for a constant with a signed type, where the type is
15156 wider than the data. The conclusion of a discussion on the DWARF
15157 list was that this is unspecified. We choose to always zero-extend
15158 because that is the interpretation long in use by GCC. */
15161 dwarf2_const_value_data (struct attribute *attr, struct type *type,
15162 const char *name, struct obstack *obstack,
15163 struct dwarf2_cu *cu, LONGEST *value, int bits)
15165 struct objfile *objfile = cu->objfile;
15166 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
15167 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
15168 LONGEST l = DW_UNSND (attr);
15170 if (bits < sizeof (*value) * 8)
15172 l &= ((LONGEST) 1 << bits) - 1;
15175 else if (bits == sizeof (*value) * 8)
15179 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
15180 store_unsigned_integer (bytes, bits / 8, byte_order, l);
15187 /* Read a constant value from an attribute. Either set *VALUE, or if
15188 the value does not fit in *VALUE, set *BYTES - either already
15189 allocated on the objfile obstack, or newly allocated on OBSTACK,
15190 or, set *BATON, if we translated the constant to a location
15194 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
15195 const char *name, struct obstack *obstack,
15196 struct dwarf2_cu *cu,
15197 LONGEST *value, gdb_byte **bytes,
15198 struct dwarf2_locexpr_baton **baton)
15200 struct objfile *objfile = cu->objfile;
15201 struct comp_unit_head *cu_header = &cu->header;
15202 struct dwarf_block *blk;
15203 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
15204 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
15210 switch (attr->form)
15213 case DW_FORM_GNU_addr_index:
15217 if (TYPE_LENGTH (type) != cu_header->addr_size)
15218 dwarf2_const_value_length_mismatch_complaint (name,
15219 cu_header->addr_size,
15220 TYPE_LENGTH (type));
15221 /* Symbols of this form are reasonably rare, so we just
15222 piggyback on the existing location code rather than writing
15223 a new implementation of symbol_computed_ops. */
15224 *baton = obstack_alloc (&objfile->objfile_obstack,
15225 sizeof (struct dwarf2_locexpr_baton));
15226 (*baton)->per_cu = cu->per_cu;
15227 gdb_assert ((*baton)->per_cu);
15229 (*baton)->size = 2 + cu_header->addr_size;
15230 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
15231 (*baton)->data = data;
15233 data[0] = DW_OP_addr;
15234 store_unsigned_integer (&data[1], cu_header->addr_size,
15235 byte_order, DW_ADDR (attr));
15236 data[cu_header->addr_size + 1] = DW_OP_stack_value;
15239 case DW_FORM_string:
15241 case DW_FORM_GNU_str_index:
15242 case DW_FORM_GNU_strp_alt:
15243 /* DW_STRING is already allocated on the objfile obstack, point
15245 *bytes = (gdb_byte *) DW_STRING (attr);
15247 case DW_FORM_block1:
15248 case DW_FORM_block2:
15249 case DW_FORM_block4:
15250 case DW_FORM_block:
15251 case DW_FORM_exprloc:
15252 blk = DW_BLOCK (attr);
15253 if (TYPE_LENGTH (type) != blk->size)
15254 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
15255 TYPE_LENGTH (type));
15256 *bytes = blk->data;
15259 /* The DW_AT_const_value attributes are supposed to carry the
15260 symbol's value "represented as it would be on the target
15261 architecture." By the time we get here, it's already been
15262 converted to host endianness, so we just need to sign- or
15263 zero-extend it as appropriate. */
15264 case DW_FORM_data1:
15265 *bytes = dwarf2_const_value_data (attr, type, name,
15266 obstack, cu, value, 8);
15268 case DW_FORM_data2:
15269 *bytes = dwarf2_const_value_data (attr, type, name,
15270 obstack, cu, value, 16);
15272 case DW_FORM_data4:
15273 *bytes = dwarf2_const_value_data (attr, type, name,
15274 obstack, cu, value, 32);
15276 case DW_FORM_data8:
15277 *bytes = dwarf2_const_value_data (attr, type, name,
15278 obstack, cu, value, 64);
15281 case DW_FORM_sdata:
15282 *value = DW_SND (attr);
15285 case DW_FORM_udata:
15286 *value = DW_UNSND (attr);
15290 complaint (&symfile_complaints,
15291 _("unsupported const value attribute form: '%s'"),
15292 dwarf_form_name (attr->form));
15299 /* Copy constant value from an attribute to a symbol. */
15302 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
15303 struct dwarf2_cu *cu)
15305 struct objfile *objfile = cu->objfile;
15306 struct comp_unit_head *cu_header = &cu->header;
15309 struct dwarf2_locexpr_baton *baton;
15311 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
15312 SYMBOL_PRINT_NAME (sym),
15313 &objfile->objfile_obstack, cu,
15314 &value, &bytes, &baton);
15318 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15319 SYMBOL_LOCATION_BATON (sym) = baton;
15320 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15322 else if (bytes != NULL)
15324 SYMBOL_VALUE_BYTES (sym) = bytes;
15325 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
15329 SYMBOL_VALUE (sym) = value;
15330 SYMBOL_CLASS (sym) = LOC_CONST;
15334 /* Return the type of the die in question using its DW_AT_type attribute. */
15336 static struct type *
15337 die_type (struct die_info *die, struct dwarf2_cu *cu)
15339 struct attribute *type_attr;
15341 type_attr = dwarf2_attr (die, DW_AT_type, cu);
15344 /* A missing DW_AT_type represents a void type. */
15345 return objfile_type (cu->objfile)->builtin_void;
15348 return lookup_die_type (die, type_attr, cu);
15351 /* True iff CU's producer generates GNAT Ada auxiliary information
15352 that allows to find parallel types through that information instead
15353 of having to do expensive parallel lookups by type name. */
15356 need_gnat_info (struct dwarf2_cu *cu)
15358 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
15359 of GNAT produces this auxiliary information, without any indication
15360 that it is produced. Part of enhancing the FSF version of GNAT
15361 to produce that information will be to put in place an indicator
15362 that we can use in order to determine whether the descriptive type
15363 info is available or not. One suggestion that has been made is
15364 to use a new attribute, attached to the CU die. For now, assume
15365 that the descriptive type info is not available. */
15369 /* Return the auxiliary type of the die in question using its
15370 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
15371 attribute is not present. */
15373 static struct type *
15374 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
15376 struct attribute *type_attr;
15378 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
15382 return lookup_die_type (die, type_attr, cu);
15385 /* If DIE has a descriptive_type attribute, then set the TYPE's
15386 descriptive type accordingly. */
15389 set_descriptive_type (struct type *type, struct die_info *die,
15390 struct dwarf2_cu *cu)
15392 struct type *descriptive_type = die_descriptive_type (die, cu);
15394 if (descriptive_type)
15396 ALLOCATE_GNAT_AUX_TYPE (type);
15397 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
15401 /* Return the containing type of the die in question using its
15402 DW_AT_containing_type attribute. */
15404 static struct type *
15405 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
15407 struct attribute *type_attr;
15409 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
15411 error (_("Dwarf Error: Problem turning containing type into gdb type "
15412 "[in module %s]"), cu->objfile->name);
15414 return lookup_die_type (die, type_attr, cu);
15417 /* Look up the type of DIE in CU using its type attribute ATTR.
15418 If there is no type substitute an error marker. */
15420 static struct type *
15421 lookup_die_type (struct die_info *die, struct attribute *attr,
15422 struct dwarf2_cu *cu)
15424 struct objfile *objfile = cu->objfile;
15425 struct type *this_type;
15427 /* First see if we have it cached. */
15429 if (attr->form == DW_FORM_GNU_ref_alt)
15431 struct dwarf2_per_cu_data *per_cu;
15432 sect_offset offset = dwarf2_get_ref_die_offset (attr);
15434 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
15435 this_type = get_die_type_at_offset (offset, per_cu);
15437 else if (is_ref_attr (attr))
15439 sect_offset offset = dwarf2_get_ref_die_offset (attr);
15441 this_type = get_die_type_at_offset (offset, cu->per_cu);
15443 else if (attr->form == DW_FORM_ref_sig8)
15445 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
15447 /* sig_type will be NULL if the signatured type is missing from
15449 if (sig_type == NULL)
15450 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
15451 "at 0x%x [in module %s]"),
15452 die->offset.sect_off, objfile->name);
15454 gdb_assert (sig_type->per_cu.is_debug_types);
15455 /* If we haven't filled in type_offset_in_section yet, then we
15456 haven't read the type in yet. */
15458 if (sig_type->type_offset_in_section.sect_off != 0)
15461 get_die_type_at_offset (sig_type->type_offset_in_section,
15462 &sig_type->per_cu);
15467 dump_die_for_error (die);
15468 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
15469 dwarf_attr_name (attr->name), objfile->name);
15472 /* If not cached we need to read it in. */
15474 if (this_type == NULL)
15476 struct die_info *type_die;
15477 struct dwarf2_cu *type_cu = cu;
15479 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
15480 /* If we found the type now, it's probably because the type came
15481 from an inter-CU reference and the type's CU got expanded before
15483 this_type = get_die_type (type_die, type_cu);
15484 if (this_type == NULL)
15485 this_type = read_type_die_1 (type_die, type_cu);
15488 /* If we still don't have a type use an error marker. */
15490 if (this_type == NULL)
15492 char *message, *saved;
15494 /* read_type_die already issued a complaint. */
15495 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
15497 cu->header.offset.sect_off,
15498 die->offset.sect_off);
15499 saved = obstack_copy0 (&objfile->objfile_obstack,
15500 message, strlen (message));
15503 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
15509 /* Return the type in DIE, CU.
15510 Returns NULL for invalid types.
15512 This first does a lookup in the appropriate type_hash table,
15513 and only reads the die in if necessary.
15515 NOTE: This can be called when reading in partial or full symbols. */
15517 static struct type *
15518 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
15520 struct type *this_type;
15522 this_type = get_die_type (die, cu);
15526 return read_type_die_1 (die, cu);
15529 /* Read the type in DIE, CU.
15530 Returns NULL for invalid types. */
15532 static struct type *
15533 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
15535 struct type *this_type = NULL;
15539 case DW_TAG_class_type:
15540 case DW_TAG_interface_type:
15541 case DW_TAG_structure_type:
15542 case DW_TAG_union_type:
15543 this_type = read_structure_type (die, cu);
15545 case DW_TAG_enumeration_type:
15546 this_type = read_enumeration_type (die, cu);
15548 case DW_TAG_subprogram:
15549 case DW_TAG_subroutine_type:
15550 case DW_TAG_inlined_subroutine:
15551 this_type = read_subroutine_type (die, cu);
15553 case DW_TAG_array_type:
15554 this_type = read_array_type (die, cu);
15556 case DW_TAG_set_type:
15557 this_type = read_set_type (die, cu);
15559 case DW_TAG_pointer_type:
15560 this_type = read_tag_pointer_type (die, cu);
15562 case DW_TAG_ptr_to_member_type:
15563 this_type = read_tag_ptr_to_member_type (die, cu);
15565 case DW_TAG_reference_type:
15566 this_type = read_tag_reference_type (die, cu);
15568 case DW_TAG_const_type:
15569 this_type = read_tag_const_type (die, cu);
15571 case DW_TAG_volatile_type:
15572 this_type = read_tag_volatile_type (die, cu);
15574 case DW_TAG_string_type:
15575 this_type = read_tag_string_type (die, cu);
15577 case DW_TAG_typedef:
15578 this_type = read_typedef (die, cu);
15580 case DW_TAG_subrange_type:
15581 this_type = read_subrange_type (die, cu);
15583 case DW_TAG_base_type:
15584 this_type = read_base_type (die, cu);
15586 case DW_TAG_unspecified_type:
15587 this_type = read_unspecified_type (die, cu);
15589 case DW_TAG_namespace:
15590 this_type = read_namespace_type (die, cu);
15592 case DW_TAG_module:
15593 this_type = read_module_type (die, cu);
15596 complaint (&symfile_complaints,
15597 _("unexpected tag in read_type_die: '%s'"),
15598 dwarf_tag_name (die->tag));
15605 /* See if we can figure out if the class lives in a namespace. We do
15606 this by looking for a member function; its demangled name will
15607 contain namespace info, if there is any.
15608 Return the computed name or NULL.
15609 Space for the result is allocated on the objfile's obstack.
15610 This is the full-die version of guess_partial_die_structure_name.
15611 In this case we know DIE has no useful parent. */
15614 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
15616 struct die_info *spec_die;
15617 struct dwarf2_cu *spec_cu;
15618 struct die_info *child;
15621 spec_die = die_specification (die, &spec_cu);
15622 if (spec_die != NULL)
15628 for (child = die->child;
15630 child = child->sibling)
15632 if (child->tag == DW_TAG_subprogram)
15634 struct attribute *attr;
15636 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
15638 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
15642 = language_class_name_from_physname (cu->language_defn,
15646 if (actual_name != NULL)
15648 char *die_name = dwarf2_name (die, cu);
15650 if (die_name != NULL
15651 && strcmp (die_name, actual_name) != 0)
15653 /* Strip off the class name from the full name.
15654 We want the prefix. */
15655 int die_name_len = strlen (die_name);
15656 int actual_name_len = strlen (actual_name);
15658 /* Test for '::' as a sanity check. */
15659 if (actual_name_len > die_name_len + 2
15660 && actual_name[actual_name_len
15661 - die_name_len - 1] == ':')
15663 obsavestring (actual_name,
15664 actual_name_len - die_name_len - 2,
15665 &cu->objfile->objfile_obstack);
15668 xfree (actual_name);
15677 /* GCC might emit a nameless typedef that has a linkage name. Determine the
15678 prefix part in such case. See
15679 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15682 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
15684 struct attribute *attr;
15687 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
15688 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
15691 attr = dwarf2_attr (die, DW_AT_name, cu);
15692 if (attr != NULL && DW_STRING (attr) != NULL)
15695 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
15697 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
15698 if (attr == NULL || DW_STRING (attr) == NULL)
15701 /* dwarf2_name had to be already called. */
15702 gdb_assert (DW_STRING_IS_CANONICAL (attr));
15704 /* Strip the base name, keep any leading namespaces/classes. */
15705 base = strrchr (DW_STRING (attr), ':');
15706 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
15709 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
15710 &cu->objfile->objfile_obstack);
15713 /* Return the name of the namespace/class that DIE is defined within,
15714 or "" if we can't tell. The caller should not xfree the result.
15716 For example, if we're within the method foo() in the following
15726 then determine_prefix on foo's die will return "N::C". */
15728 static const char *
15729 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
15731 struct die_info *parent, *spec_die;
15732 struct dwarf2_cu *spec_cu;
15733 struct type *parent_type;
15736 if (cu->language != language_cplus && cu->language != language_java
15737 && cu->language != language_fortran)
15740 retval = anonymous_struct_prefix (die, cu);
15744 /* We have to be careful in the presence of DW_AT_specification.
15745 For example, with GCC 3.4, given the code
15749 // Definition of N::foo.
15753 then we'll have a tree of DIEs like this:
15755 1: DW_TAG_compile_unit
15756 2: DW_TAG_namespace // N
15757 3: DW_TAG_subprogram // declaration of N::foo
15758 4: DW_TAG_subprogram // definition of N::foo
15759 DW_AT_specification // refers to die #3
15761 Thus, when processing die #4, we have to pretend that we're in
15762 the context of its DW_AT_specification, namely the contex of die
15765 spec_die = die_specification (die, &spec_cu);
15766 if (spec_die == NULL)
15767 parent = die->parent;
15770 parent = spec_die->parent;
15774 if (parent == NULL)
15776 else if (parent->building_fullname)
15779 const char *parent_name;
15781 /* It has been seen on RealView 2.2 built binaries,
15782 DW_TAG_template_type_param types actually _defined_ as
15783 children of the parent class:
15786 template class <class Enum> Class{};
15787 Class<enum E> class_e;
15789 1: DW_TAG_class_type (Class)
15790 2: DW_TAG_enumeration_type (E)
15791 3: DW_TAG_enumerator (enum1:0)
15792 3: DW_TAG_enumerator (enum2:1)
15794 2: DW_TAG_template_type_param
15795 DW_AT_type DW_FORM_ref_udata (E)
15797 Besides being broken debug info, it can put GDB into an
15798 infinite loop. Consider:
15800 When we're building the full name for Class<E>, we'll start
15801 at Class, and go look over its template type parameters,
15802 finding E. We'll then try to build the full name of E, and
15803 reach here. We're now trying to build the full name of E,
15804 and look over the parent DIE for containing scope. In the
15805 broken case, if we followed the parent DIE of E, we'd again
15806 find Class, and once again go look at its template type
15807 arguments, etc., etc. Simply don't consider such parent die
15808 as source-level parent of this die (it can't be, the language
15809 doesn't allow it), and break the loop here. */
15810 name = dwarf2_name (die, cu);
15811 parent_name = dwarf2_name (parent, cu);
15812 complaint (&symfile_complaints,
15813 _("template param type '%s' defined within parent '%s'"),
15814 name ? name : "<unknown>",
15815 parent_name ? parent_name : "<unknown>");
15819 switch (parent->tag)
15821 case DW_TAG_namespace:
15822 parent_type = read_type_die (parent, cu);
15823 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
15824 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
15825 Work around this problem here. */
15826 if (cu->language == language_cplus
15827 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
15829 /* We give a name to even anonymous namespaces. */
15830 return TYPE_TAG_NAME (parent_type);
15831 case DW_TAG_class_type:
15832 case DW_TAG_interface_type:
15833 case DW_TAG_structure_type:
15834 case DW_TAG_union_type:
15835 case DW_TAG_module:
15836 parent_type = read_type_die (parent, cu);
15837 if (TYPE_TAG_NAME (parent_type) != NULL)
15838 return TYPE_TAG_NAME (parent_type);
15840 /* An anonymous structure is only allowed non-static data
15841 members; no typedefs, no member functions, et cetera.
15842 So it does not need a prefix. */
15844 case DW_TAG_compile_unit:
15845 case DW_TAG_partial_unit:
15846 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
15847 if (cu->language == language_cplus
15848 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15849 && die->child != NULL
15850 && (die->tag == DW_TAG_class_type
15851 || die->tag == DW_TAG_structure_type
15852 || die->tag == DW_TAG_union_type))
15854 char *name = guess_full_die_structure_name (die, cu);
15860 return determine_prefix (parent, cu);
15864 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
15865 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
15866 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
15867 an obconcat, otherwise allocate storage for the result. The CU argument is
15868 used to determine the language and hence, the appropriate separator. */
15870 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
15873 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
15874 int physname, struct dwarf2_cu *cu)
15876 const char *lead = "";
15879 if (suffix == NULL || suffix[0] == '\0'
15880 || prefix == NULL || prefix[0] == '\0')
15882 else if (cu->language == language_java)
15884 else if (cu->language == language_fortran && physname)
15886 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
15887 DW_AT_MIPS_linkage_name is preferred and used instead. */
15895 if (prefix == NULL)
15897 if (suffix == NULL)
15903 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
15905 strcpy (retval, lead);
15906 strcat (retval, prefix);
15907 strcat (retval, sep);
15908 strcat (retval, suffix);
15913 /* We have an obstack. */
15914 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
15918 /* Return sibling of die, NULL if no sibling. */
15920 static struct die_info *
15921 sibling_die (struct die_info *die)
15923 return die->sibling;
15926 /* Get name of a die, return NULL if not found. */
15929 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
15930 struct obstack *obstack)
15932 if (name && cu->language == language_cplus)
15934 char *canon_name = cp_canonicalize_string (name);
15936 if (canon_name != NULL)
15938 if (strcmp (canon_name, name) != 0)
15939 name = obsavestring (canon_name, strlen (canon_name),
15941 xfree (canon_name);
15948 /* Get name of a die, return NULL if not found. */
15951 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
15953 struct attribute *attr;
15955 attr = dwarf2_attr (die, DW_AT_name, cu);
15956 if ((!attr || !DW_STRING (attr))
15957 && die->tag != DW_TAG_class_type
15958 && die->tag != DW_TAG_interface_type
15959 && die->tag != DW_TAG_structure_type
15960 && die->tag != DW_TAG_union_type)
15965 case DW_TAG_compile_unit:
15966 case DW_TAG_partial_unit:
15967 /* Compilation units have a DW_AT_name that is a filename, not
15968 a source language identifier. */
15969 case DW_TAG_enumeration_type:
15970 case DW_TAG_enumerator:
15971 /* These tags always have simple identifiers already; no need
15972 to canonicalize them. */
15973 return DW_STRING (attr);
15975 case DW_TAG_subprogram:
15976 /* Java constructors will all be named "<init>", so return
15977 the class name when we see this special case. */
15978 if (cu->language == language_java
15979 && DW_STRING (attr) != NULL
15980 && strcmp (DW_STRING (attr), "<init>") == 0)
15982 struct dwarf2_cu *spec_cu = cu;
15983 struct die_info *spec_die;
15985 /* GCJ will output '<init>' for Java constructor names.
15986 For this special case, return the name of the parent class. */
15988 /* GCJ may output suprogram DIEs with AT_specification set.
15989 If so, use the name of the specified DIE. */
15990 spec_die = die_specification (die, &spec_cu);
15991 if (spec_die != NULL)
15992 return dwarf2_name (spec_die, spec_cu);
15997 if (die->tag == DW_TAG_class_type)
15998 return dwarf2_name (die, cu);
16000 while (die->tag != DW_TAG_compile_unit
16001 && die->tag != DW_TAG_partial_unit);
16005 case DW_TAG_class_type:
16006 case DW_TAG_interface_type:
16007 case DW_TAG_structure_type:
16008 case DW_TAG_union_type:
16009 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16010 structures or unions. These were of the form "._%d" in GCC 4.1,
16011 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16012 and GCC 4.4. We work around this problem by ignoring these. */
16013 if (attr && DW_STRING (attr)
16014 && (strncmp (DW_STRING (attr), "._", 2) == 0
16015 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
16018 /* GCC might emit a nameless typedef that has a linkage name. See
16019 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16020 if (!attr || DW_STRING (attr) == NULL)
16022 char *demangled = NULL;
16024 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16026 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16028 if (attr == NULL || DW_STRING (attr) == NULL)
16031 /* Avoid demangling DW_STRING (attr) the second time on a second
16032 call for the same DIE. */
16033 if (!DW_STRING_IS_CANONICAL (attr))
16034 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
16040 /* FIXME: we already did this for the partial symbol... */
16041 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
16042 &cu->objfile->objfile_obstack);
16043 DW_STRING_IS_CANONICAL (attr) = 1;
16046 /* Strip any leading namespaces/classes, keep only the base name.
16047 DW_AT_name for named DIEs does not contain the prefixes. */
16048 base = strrchr (DW_STRING (attr), ':');
16049 if (base && base > DW_STRING (attr) && base[-1] == ':')
16052 return DW_STRING (attr);
16061 if (!DW_STRING_IS_CANONICAL (attr))
16064 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
16065 &cu->objfile->objfile_obstack);
16066 DW_STRING_IS_CANONICAL (attr) = 1;
16068 return DW_STRING (attr);
16071 /* Return the die that this die in an extension of, or NULL if there
16072 is none. *EXT_CU is the CU containing DIE on input, and the CU
16073 containing the return value on output. */
16075 static struct die_info *
16076 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
16078 struct attribute *attr;
16080 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
16084 return follow_die_ref (die, attr, ext_cu);
16087 /* Convert a DIE tag into its string name. */
16089 static const char *
16090 dwarf_tag_name (unsigned tag)
16092 const char *name = get_DW_TAG_name (tag);
16095 return "DW_TAG_<unknown>";
16100 /* Convert a DWARF attribute code into its string name. */
16102 static const char *
16103 dwarf_attr_name (unsigned attr)
16107 #ifdef MIPS /* collides with DW_AT_HP_block_index */
16108 if (attr == DW_AT_MIPS_fde)
16109 return "DW_AT_MIPS_fde";
16111 if (attr == DW_AT_HP_block_index)
16112 return "DW_AT_HP_block_index";
16115 name = get_DW_AT_name (attr);
16118 return "DW_AT_<unknown>";
16123 /* Convert a DWARF value form code into its string name. */
16125 static const char *
16126 dwarf_form_name (unsigned form)
16128 const char *name = get_DW_FORM_name (form);
16131 return "DW_FORM_<unknown>";
16137 dwarf_bool_name (unsigned mybool)
16145 /* Convert a DWARF type code into its string name. */
16147 static const char *
16148 dwarf_type_encoding_name (unsigned enc)
16150 const char *name = get_DW_ATE_name (enc);
16153 return "DW_ATE_<unknown>";
16159 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
16163 print_spaces (indent, f);
16164 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
16165 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
16167 if (die->parent != NULL)
16169 print_spaces (indent, f);
16170 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
16171 die->parent->offset.sect_off);
16174 print_spaces (indent, f);
16175 fprintf_unfiltered (f, " has children: %s\n",
16176 dwarf_bool_name (die->child != NULL));
16178 print_spaces (indent, f);
16179 fprintf_unfiltered (f, " attributes:\n");
16181 for (i = 0; i < die->num_attrs; ++i)
16183 print_spaces (indent, f);
16184 fprintf_unfiltered (f, " %s (%s) ",
16185 dwarf_attr_name (die->attrs[i].name),
16186 dwarf_form_name (die->attrs[i].form));
16188 switch (die->attrs[i].form)
16191 case DW_FORM_GNU_addr_index:
16192 fprintf_unfiltered (f, "address: ");
16193 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
16195 case DW_FORM_block2:
16196 case DW_FORM_block4:
16197 case DW_FORM_block:
16198 case DW_FORM_block1:
16199 fprintf_unfiltered (f, "block: size %s",
16200 pulongest (DW_BLOCK (&die->attrs[i])->size));
16202 case DW_FORM_exprloc:
16203 fprintf_unfiltered (f, "expression: size %s",
16204 pulongest (DW_BLOCK (&die->attrs[i])->size));
16206 case DW_FORM_ref_addr:
16207 fprintf_unfiltered (f, "ref address: ");
16208 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
16210 case DW_FORM_GNU_ref_alt:
16211 fprintf_unfiltered (f, "alt ref address: ");
16212 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
16218 case DW_FORM_ref_udata:
16219 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
16220 (long) (DW_UNSND (&die->attrs[i])));
16222 case DW_FORM_data1:
16223 case DW_FORM_data2:
16224 case DW_FORM_data4:
16225 case DW_FORM_data8:
16226 case DW_FORM_udata:
16227 case DW_FORM_sdata:
16228 fprintf_unfiltered (f, "constant: %s",
16229 pulongest (DW_UNSND (&die->attrs[i])));
16231 case DW_FORM_sec_offset:
16232 fprintf_unfiltered (f, "section offset: %s",
16233 pulongest (DW_UNSND (&die->attrs[i])));
16235 case DW_FORM_ref_sig8:
16236 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
16237 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
16238 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
16240 fprintf_unfiltered (f, "signatured type, offset: unknown");
16242 case DW_FORM_string:
16244 case DW_FORM_GNU_str_index:
16245 case DW_FORM_GNU_strp_alt:
16246 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
16247 DW_STRING (&die->attrs[i])
16248 ? DW_STRING (&die->attrs[i]) : "",
16249 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
16252 if (DW_UNSND (&die->attrs[i]))
16253 fprintf_unfiltered (f, "flag: TRUE");
16255 fprintf_unfiltered (f, "flag: FALSE");
16257 case DW_FORM_flag_present:
16258 fprintf_unfiltered (f, "flag: TRUE");
16260 case DW_FORM_indirect:
16261 /* The reader will have reduced the indirect form to
16262 the "base form" so this form should not occur. */
16263 fprintf_unfiltered (f,
16264 "unexpected attribute form: DW_FORM_indirect");
16267 fprintf_unfiltered (f, "unsupported attribute form: %d.",
16268 die->attrs[i].form);
16271 fprintf_unfiltered (f, "\n");
16276 dump_die_for_error (struct die_info *die)
16278 dump_die_shallow (gdb_stderr, 0, die);
16282 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
16284 int indent = level * 4;
16286 gdb_assert (die != NULL);
16288 if (level >= max_level)
16291 dump_die_shallow (f, indent, die);
16293 if (die->child != NULL)
16295 print_spaces (indent, f);
16296 fprintf_unfiltered (f, " Children:");
16297 if (level + 1 < max_level)
16299 fprintf_unfiltered (f, "\n");
16300 dump_die_1 (f, level + 1, max_level, die->child);
16304 fprintf_unfiltered (f,
16305 " [not printed, max nesting level reached]\n");
16309 if (die->sibling != NULL && level > 0)
16311 dump_die_1 (f, level, max_level, die->sibling);
16315 /* This is called from the pdie macro in gdbinit.in.
16316 It's not static so gcc will keep a copy callable from gdb. */
16319 dump_die (struct die_info *die, int max_level)
16321 dump_die_1 (gdb_stdlog, 0, max_level, die);
16325 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
16329 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
16335 /* DW_ADDR is always stored already as sect_offset; despite for the forms
16336 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
16339 is_ref_attr (struct attribute *attr)
16341 switch (attr->form)
16343 case DW_FORM_ref_addr:
16348 case DW_FORM_ref_udata:
16349 case DW_FORM_GNU_ref_alt:
16356 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
16360 dwarf2_get_ref_die_offset (struct attribute *attr)
16362 sect_offset retval = { DW_UNSND (attr) };
16364 if (is_ref_attr (attr))
16367 retval.sect_off = 0;
16368 complaint (&symfile_complaints,
16369 _("unsupported die ref attribute form: '%s'"),
16370 dwarf_form_name (attr->form));
16374 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
16375 * the value held by the attribute is not constant. */
16378 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
16380 if (attr->form == DW_FORM_sdata)
16381 return DW_SND (attr);
16382 else if (attr->form == DW_FORM_udata
16383 || attr->form == DW_FORM_data1
16384 || attr->form == DW_FORM_data2
16385 || attr->form == DW_FORM_data4
16386 || attr->form == DW_FORM_data8)
16387 return DW_UNSND (attr);
16390 complaint (&symfile_complaints,
16391 _("Attribute value is not a constant (%s)"),
16392 dwarf_form_name (attr->form));
16393 return default_value;
16397 /* Follow reference or signature attribute ATTR of SRC_DIE.
16398 On entry *REF_CU is the CU of SRC_DIE.
16399 On exit *REF_CU is the CU of the result. */
16401 static struct die_info *
16402 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
16403 struct dwarf2_cu **ref_cu)
16405 struct die_info *die;
16407 if (is_ref_attr (attr))
16408 die = follow_die_ref (src_die, attr, ref_cu);
16409 else if (attr->form == DW_FORM_ref_sig8)
16410 die = follow_die_sig (src_die, attr, ref_cu);
16413 dump_die_for_error (src_die);
16414 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
16415 (*ref_cu)->objfile->name);
16421 /* Follow reference OFFSET.
16422 On entry *REF_CU is the CU of the source die referencing OFFSET.
16423 On exit *REF_CU is the CU of the result.
16424 Returns NULL if OFFSET is invalid. */
16426 static struct die_info *
16427 follow_die_offset (sect_offset offset, int offset_in_dwz,
16428 struct dwarf2_cu **ref_cu)
16430 struct die_info temp_die;
16431 struct dwarf2_cu *target_cu, *cu = *ref_cu;
16433 gdb_assert (cu->per_cu != NULL);
16437 if (cu->per_cu->is_debug_types)
16439 /* .debug_types CUs cannot reference anything outside their CU.
16440 If they need to, they have to reference a signatured type via
16441 DW_FORM_ref_sig8. */
16442 if (! offset_in_cu_p (&cu->header, offset))
16445 else if (offset_in_dwz != cu->per_cu->is_dwz
16446 || ! offset_in_cu_p (&cu->header, offset))
16448 struct dwarf2_per_cu_data *per_cu;
16450 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16453 /* If necessary, add it to the queue and load its DIEs. */
16454 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
16455 load_full_comp_unit (per_cu, cu->language);
16457 target_cu = per_cu->cu;
16459 else if (cu->dies == NULL)
16461 /* We're loading full DIEs during partial symbol reading. */
16462 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
16463 load_full_comp_unit (cu->per_cu, language_minimal);
16466 *ref_cu = target_cu;
16467 temp_die.offset = offset;
16468 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
16471 /* Follow reference attribute ATTR of SRC_DIE.
16472 On entry *REF_CU is the CU of SRC_DIE.
16473 On exit *REF_CU is the CU of the result. */
16475 static struct die_info *
16476 follow_die_ref (struct die_info *src_die, struct attribute *attr,
16477 struct dwarf2_cu **ref_cu)
16479 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16480 struct dwarf2_cu *cu = *ref_cu;
16481 struct die_info *die;
16483 die = follow_die_offset (offset,
16484 (attr->form == DW_FORM_GNU_ref_alt
16485 || cu->per_cu->is_dwz),
16488 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
16489 "at 0x%x [in module %s]"),
16490 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
16495 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
16496 Returned value is intended for DW_OP_call*. Returned
16497 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
16499 struct dwarf2_locexpr_baton
16500 dwarf2_fetch_die_location_block (cu_offset offset_in_cu,
16501 struct dwarf2_per_cu_data *per_cu,
16502 CORE_ADDR (*get_frame_pc) (void *baton),
16505 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
16506 struct dwarf2_cu *cu;
16507 struct die_info *die;
16508 struct attribute *attr;
16509 struct dwarf2_locexpr_baton retval;
16511 dw2_setup (per_cu->objfile);
16513 if (per_cu->cu == NULL)
16517 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
16519 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
16520 offset.sect_off, per_cu->objfile->name);
16522 attr = dwarf2_attr (die, DW_AT_location, cu);
16525 /* DWARF: "If there is no such attribute, then there is no effect.".
16526 DATA is ignored if SIZE is 0. */
16528 retval.data = NULL;
16531 else if (attr_form_is_section_offset (attr))
16533 struct dwarf2_loclist_baton loclist_baton;
16534 CORE_ADDR pc = (*get_frame_pc) (baton);
16537 fill_in_loclist_baton (cu, &loclist_baton, attr);
16539 retval.data = dwarf2_find_location_expression (&loclist_baton,
16541 retval.size = size;
16545 if (!attr_form_is_block (attr))
16546 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
16547 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
16548 offset.sect_off, per_cu->objfile->name);
16550 retval.data = DW_BLOCK (attr)->data;
16551 retval.size = DW_BLOCK (attr)->size;
16553 retval.per_cu = cu->per_cu;
16555 age_cached_comp_units ();
16560 /* Return the type of the DIE at DIE_OFFSET in the CU named by
16564 dwarf2_get_die_type (cu_offset die_offset,
16565 struct dwarf2_per_cu_data *per_cu)
16567 sect_offset die_offset_sect;
16569 dw2_setup (per_cu->objfile);
16571 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
16572 return get_die_type_at_offset (die_offset_sect, per_cu);
16575 /* Follow the signature attribute ATTR in SRC_DIE.
16576 On entry *REF_CU is the CU of SRC_DIE.
16577 On exit *REF_CU is the CU of the result. */
16579 static struct die_info *
16580 follow_die_sig (struct die_info *src_die, struct attribute *attr,
16581 struct dwarf2_cu **ref_cu)
16583 struct objfile *objfile = (*ref_cu)->objfile;
16584 struct die_info temp_die;
16585 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16586 struct dwarf2_cu *sig_cu;
16587 struct die_info *die;
16589 /* sig_type will be NULL if the signatured type is missing from
16591 if (sig_type == NULL)
16592 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16593 "at 0x%x [in module %s]"),
16594 src_die->offset.sect_off, objfile->name);
16596 /* If necessary, add it to the queue and load its DIEs. */
16598 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
16599 read_signatured_type (sig_type);
16601 gdb_assert (sig_type->per_cu.cu != NULL);
16603 sig_cu = sig_type->per_cu.cu;
16604 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
16605 temp_die.offset = sig_type->type_offset_in_section;
16606 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
16607 temp_die.offset.sect_off);
16614 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
16615 "from DIE at 0x%x [in module %s]"),
16616 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
16619 /* Given an offset of a signatured type, return its signatured_type. */
16621 static struct signatured_type *
16622 lookup_signatured_type_at_offset (struct objfile *objfile,
16623 struct dwarf2_section_info *section,
16624 sect_offset offset)
16626 gdb_byte *info_ptr = section->buffer + offset.sect_off;
16627 unsigned int length, initial_length_size;
16628 unsigned int sig_offset;
16629 struct signatured_type find_entry, *sig_type;
16631 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
16632 sig_offset = (initial_length_size
16634 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
16635 + 1 /*address_size*/);
16636 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
16637 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
16639 /* This is only used to lookup previously recorded types.
16640 If we didn't find it, it's our bug. */
16641 gdb_assert (sig_type != NULL);
16642 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
16647 /* Load the DIEs associated with type unit PER_CU into memory. */
16650 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
16652 struct signatured_type *sig_type;
16654 /* Caller is responsible for ensuring type_unit_groups don't get here. */
16655 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
16657 /* We have the per_cu, but we need the signatured_type.
16658 Fortunately this is an easy translation. */
16659 gdb_assert (per_cu->is_debug_types);
16660 sig_type = (struct signatured_type *) per_cu;
16662 gdb_assert (per_cu->cu == NULL);
16664 read_signatured_type (sig_type);
16666 gdb_assert (per_cu->cu != NULL);
16669 /* die_reader_func for read_signatured_type.
16670 This is identical to load_full_comp_unit_reader,
16671 but is kept separate for now. */
16674 read_signatured_type_reader (const struct die_reader_specs *reader,
16675 gdb_byte *info_ptr,
16676 struct die_info *comp_unit_die,
16680 struct dwarf2_cu *cu = reader->cu;
16682 gdb_assert (cu->die_hash == NULL);
16684 htab_create_alloc_ex (cu->header.length / 12,
16688 &cu->comp_unit_obstack,
16689 hashtab_obstack_allocate,
16690 dummy_obstack_deallocate);
16693 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
16694 &info_ptr, comp_unit_die);
16695 cu->dies = comp_unit_die;
16696 /* comp_unit_die is not stored in die_hash, no need. */
16698 /* We try not to read any attributes in this function, because not
16699 all CUs needed for references have been loaded yet, and symbol
16700 table processing isn't initialized. But we have to set the CU language,
16701 or we won't be able to build types correctly.
16702 Similarly, if we do not read the producer, we can not apply
16703 producer-specific interpretation. */
16704 prepare_one_comp_unit (cu, cu->dies, language_minimal);
16707 /* Read in a signatured type and build its CU and DIEs.
16708 If the type is a stub for the real type in a DWO file,
16709 read in the real type from the DWO file as well. */
16712 read_signatured_type (struct signatured_type *sig_type)
16714 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
16716 gdb_assert (per_cu->is_debug_types);
16717 gdb_assert (per_cu->cu == NULL);
16719 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
16720 read_signatured_type_reader, NULL);
16723 /* Decode simple location descriptions.
16724 Given a pointer to a dwarf block that defines a location, compute
16725 the location and return the value.
16727 NOTE drow/2003-11-18: This function is called in two situations
16728 now: for the address of static or global variables (partial symbols
16729 only) and for offsets into structures which are expected to be
16730 (more or less) constant. The partial symbol case should go away,
16731 and only the constant case should remain. That will let this
16732 function complain more accurately. A few special modes are allowed
16733 without complaint for global variables (for instance, global
16734 register values and thread-local values).
16736 A location description containing no operations indicates that the
16737 object is optimized out. The return value is 0 for that case.
16738 FIXME drow/2003-11-16: No callers check for this case any more; soon all
16739 callers will only want a very basic result and this can become a
16742 Note that stack[0] is unused except as a default error return. */
16745 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
16747 struct objfile *objfile = cu->objfile;
16749 size_t size = blk->size;
16750 gdb_byte *data = blk->data;
16751 CORE_ADDR stack[64];
16753 unsigned int bytes_read, unsnd;
16759 stack[++stacki] = 0;
16798 stack[++stacki] = op - DW_OP_lit0;
16833 stack[++stacki] = op - DW_OP_reg0;
16835 dwarf2_complex_location_expr_complaint ();
16839 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
16841 stack[++stacki] = unsnd;
16843 dwarf2_complex_location_expr_complaint ();
16847 stack[++stacki] = read_address (objfile->obfd, &data[i],
16852 case DW_OP_const1u:
16853 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
16857 case DW_OP_const1s:
16858 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
16862 case DW_OP_const2u:
16863 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
16867 case DW_OP_const2s:
16868 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
16872 case DW_OP_const4u:
16873 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
16877 case DW_OP_const4s:
16878 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
16882 case DW_OP_const8u:
16883 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
16888 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
16894 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
16899 stack[stacki + 1] = stack[stacki];
16904 stack[stacki - 1] += stack[stacki];
16908 case DW_OP_plus_uconst:
16909 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
16915 stack[stacki - 1] -= stack[stacki];
16920 /* If we're not the last op, then we definitely can't encode
16921 this using GDB's address_class enum. This is valid for partial
16922 global symbols, although the variable's address will be bogus
16925 dwarf2_complex_location_expr_complaint ();
16928 case DW_OP_GNU_push_tls_address:
16929 /* The top of the stack has the offset from the beginning
16930 of the thread control block at which the variable is located. */
16931 /* Nothing should follow this operator, so the top of stack would
16933 /* This is valid for partial global symbols, but the variable's
16934 address will be bogus in the psymtab. Make it always at least
16935 non-zero to not look as a variable garbage collected by linker
16936 which have DW_OP_addr 0. */
16938 dwarf2_complex_location_expr_complaint ();
16942 case DW_OP_GNU_uninit:
16945 case DW_OP_GNU_addr_index:
16946 case DW_OP_GNU_const_index:
16947 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
16954 const char *name = get_DW_OP_name (op);
16957 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
16960 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
16964 return (stack[stacki]);
16967 /* Enforce maximum stack depth of SIZE-1 to avoid writing
16968 outside of the allocated space. Also enforce minimum>0. */
16969 if (stacki >= ARRAY_SIZE (stack) - 1)
16971 complaint (&symfile_complaints,
16972 _("location description stack overflow"));
16978 complaint (&symfile_complaints,
16979 _("location description stack underflow"));
16983 return (stack[stacki]);
16986 /* memory allocation interface */
16988 static struct dwarf_block *
16989 dwarf_alloc_block (struct dwarf2_cu *cu)
16991 struct dwarf_block *blk;
16993 blk = (struct dwarf_block *)
16994 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
16998 static struct die_info *
16999 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
17001 struct die_info *die;
17002 size_t size = sizeof (struct die_info);
17005 size += (num_attrs - 1) * sizeof (struct attribute);
17007 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
17008 memset (die, 0, sizeof (struct die_info));
17013 /* Macro support. */
17015 /* Return the full name of file number I in *LH's file name table.
17016 Use COMP_DIR as the name of the current directory of the
17017 compilation. The result is allocated using xmalloc; the caller is
17018 responsible for freeing it. */
17020 file_full_name (int file, struct line_header *lh, const char *comp_dir)
17022 /* Is the file number a valid index into the line header's file name
17023 table? Remember that file numbers start with one, not zero. */
17024 if (1 <= file && file <= lh->num_file_names)
17026 struct file_entry *fe = &lh->file_names[file - 1];
17028 if (IS_ABSOLUTE_PATH (fe->name))
17029 return xstrdup (fe->name);
17037 dir = lh->include_dirs[fe->dir_index - 1];
17043 dir_len = strlen (dir);
17044 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
17045 strcpy (full_name, dir);
17046 full_name[dir_len] = '/';
17047 strcpy (full_name + dir_len + 1, fe->name);
17051 return xstrdup (fe->name);
17056 /* The compiler produced a bogus file number. We can at least
17057 record the macro definitions made in the file, even if we
17058 won't be able to find the file by name. */
17059 char fake_name[80];
17061 sprintf (fake_name, "<bad macro file number %d>", file);
17063 complaint (&symfile_complaints,
17064 _("bad file number in macro information (%d)"),
17067 return xstrdup (fake_name);
17072 static struct macro_source_file *
17073 macro_start_file (int file, int line,
17074 struct macro_source_file *current_file,
17075 const char *comp_dir,
17076 struct line_header *lh, struct objfile *objfile)
17078 /* The full name of this source file. */
17079 char *full_name = file_full_name (file, lh, comp_dir);
17081 /* We don't create a macro table for this compilation unit
17082 at all until we actually get a filename. */
17083 if (! pending_macros)
17084 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
17085 objfile->per_bfd->macro_cache);
17087 if (! current_file)
17089 /* If we have no current file, then this must be the start_file
17090 directive for the compilation unit's main source file. */
17091 current_file = macro_set_main (pending_macros, full_name);
17092 macro_define_special (pending_macros);
17095 current_file = macro_include (current_file, line, full_name);
17099 return current_file;
17103 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
17104 followed by a null byte. */
17106 copy_string (const char *buf, int len)
17108 char *s = xmalloc (len + 1);
17110 memcpy (s, buf, len);
17116 static const char *
17117 consume_improper_spaces (const char *p, const char *body)
17121 complaint (&symfile_complaints,
17122 _("macro definition contains spaces "
17123 "in formal argument list:\n`%s'"),
17135 parse_macro_definition (struct macro_source_file *file, int line,
17140 /* The body string takes one of two forms. For object-like macro
17141 definitions, it should be:
17143 <macro name> " " <definition>
17145 For function-like macro definitions, it should be:
17147 <macro name> "() " <definition>
17149 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
17151 Spaces may appear only where explicitly indicated, and in the
17154 The Dwarf 2 spec says that an object-like macro's name is always
17155 followed by a space, but versions of GCC around March 2002 omit
17156 the space when the macro's definition is the empty string.
17158 The Dwarf 2 spec says that there should be no spaces between the
17159 formal arguments in a function-like macro's formal argument list,
17160 but versions of GCC around March 2002 include spaces after the
17164 /* Find the extent of the macro name. The macro name is terminated
17165 by either a space or null character (for an object-like macro) or
17166 an opening paren (for a function-like macro). */
17167 for (p = body; *p; p++)
17168 if (*p == ' ' || *p == '(')
17171 if (*p == ' ' || *p == '\0')
17173 /* It's an object-like macro. */
17174 int name_len = p - body;
17175 char *name = copy_string (body, name_len);
17176 const char *replacement;
17179 replacement = body + name_len + 1;
17182 dwarf2_macro_malformed_definition_complaint (body);
17183 replacement = body + name_len;
17186 macro_define_object (file, line, name, replacement);
17190 else if (*p == '(')
17192 /* It's a function-like macro. */
17193 char *name = copy_string (body, p - body);
17196 char **argv = xmalloc (argv_size * sizeof (*argv));
17200 p = consume_improper_spaces (p, body);
17202 /* Parse the formal argument list. */
17203 while (*p && *p != ')')
17205 /* Find the extent of the current argument name. */
17206 const char *arg_start = p;
17208 while (*p && *p != ',' && *p != ')' && *p != ' ')
17211 if (! *p || p == arg_start)
17212 dwarf2_macro_malformed_definition_complaint (body);
17215 /* Make sure argv has room for the new argument. */
17216 if (argc >= argv_size)
17219 argv = xrealloc (argv, argv_size * sizeof (*argv));
17222 argv[argc++] = copy_string (arg_start, p - arg_start);
17225 p = consume_improper_spaces (p, body);
17227 /* Consume the comma, if present. */
17232 p = consume_improper_spaces (p, body);
17241 /* Perfectly formed definition, no complaints. */
17242 macro_define_function (file, line, name,
17243 argc, (const char **) argv,
17245 else if (*p == '\0')
17247 /* Complain, but do define it. */
17248 dwarf2_macro_malformed_definition_complaint (body);
17249 macro_define_function (file, line, name,
17250 argc, (const char **) argv,
17254 /* Just complain. */
17255 dwarf2_macro_malformed_definition_complaint (body);
17258 /* Just complain. */
17259 dwarf2_macro_malformed_definition_complaint (body);
17265 for (i = 0; i < argc; i++)
17271 dwarf2_macro_malformed_definition_complaint (body);
17274 /* Skip some bytes from BYTES according to the form given in FORM.
17275 Returns the new pointer. */
17278 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
17279 enum dwarf_form form,
17280 unsigned int offset_size,
17281 struct dwarf2_section_info *section)
17283 unsigned int bytes_read;
17287 case DW_FORM_data1:
17292 case DW_FORM_data2:
17296 case DW_FORM_data4:
17300 case DW_FORM_data8:
17304 case DW_FORM_string:
17305 read_direct_string (abfd, bytes, &bytes_read);
17306 bytes += bytes_read;
17309 case DW_FORM_sec_offset:
17311 case DW_FORM_GNU_strp_alt:
17312 bytes += offset_size;
17315 case DW_FORM_block:
17316 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
17317 bytes += bytes_read;
17320 case DW_FORM_block1:
17321 bytes += 1 + read_1_byte (abfd, bytes);
17323 case DW_FORM_block2:
17324 bytes += 2 + read_2_bytes (abfd, bytes);
17326 case DW_FORM_block4:
17327 bytes += 4 + read_4_bytes (abfd, bytes);
17330 case DW_FORM_sdata:
17331 case DW_FORM_udata:
17332 case DW_FORM_GNU_addr_index:
17333 case DW_FORM_GNU_str_index:
17334 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
17337 dwarf2_section_buffer_overflow_complaint (section);
17345 complaint (&symfile_complaints,
17346 _("invalid form 0x%x in `%s'"),
17348 section->asection->name);
17356 /* A helper for dwarf_decode_macros that handles skipping an unknown
17357 opcode. Returns an updated pointer to the macro data buffer; or,
17358 on error, issues a complaint and returns NULL. */
17361 skip_unknown_opcode (unsigned int opcode,
17362 gdb_byte **opcode_definitions,
17363 gdb_byte *mac_ptr, gdb_byte *mac_end,
17365 unsigned int offset_size,
17366 struct dwarf2_section_info *section)
17368 unsigned int bytes_read, i;
17372 if (opcode_definitions[opcode] == NULL)
17374 complaint (&symfile_complaints,
17375 _("unrecognized DW_MACFINO opcode 0x%x"),
17380 defn = opcode_definitions[opcode];
17381 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
17382 defn += bytes_read;
17384 for (i = 0; i < arg; ++i)
17386 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
17388 if (mac_ptr == NULL)
17390 /* skip_form_bytes already issued the complaint. */
17398 /* A helper function which parses the header of a macro section.
17399 If the macro section is the extended (for now called "GNU") type,
17400 then this updates *OFFSET_SIZE. Returns a pointer to just after
17401 the header, or issues a complaint and returns NULL on error. */
17404 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
17407 unsigned int *offset_size,
17408 int section_is_gnu)
17410 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
17412 if (section_is_gnu)
17414 unsigned int version, flags;
17416 version = read_2_bytes (abfd, mac_ptr);
17419 complaint (&symfile_complaints,
17420 _("unrecognized version `%d' in .debug_macro section"),
17426 flags = read_1_byte (abfd, mac_ptr);
17428 *offset_size = (flags & 1) ? 8 : 4;
17430 if ((flags & 2) != 0)
17431 /* We don't need the line table offset. */
17432 mac_ptr += *offset_size;
17434 /* Vendor opcode descriptions. */
17435 if ((flags & 4) != 0)
17437 unsigned int i, count;
17439 count = read_1_byte (abfd, mac_ptr);
17441 for (i = 0; i < count; ++i)
17443 unsigned int opcode, bytes_read;
17446 opcode = read_1_byte (abfd, mac_ptr);
17448 opcode_definitions[opcode] = mac_ptr;
17449 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17450 mac_ptr += bytes_read;
17459 /* A helper for dwarf_decode_macros that handles the GNU extensions,
17460 including DW_MACRO_GNU_transparent_include. */
17463 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
17464 struct macro_source_file *current_file,
17465 struct line_header *lh, char *comp_dir,
17466 struct dwarf2_section_info *section,
17467 int section_is_gnu, int section_is_dwz,
17468 unsigned int offset_size,
17469 struct objfile *objfile,
17470 htab_t include_hash)
17472 enum dwarf_macro_record_type macinfo_type;
17473 int at_commandline;
17474 gdb_byte *opcode_definitions[256];
17476 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
17477 &offset_size, section_is_gnu);
17478 if (mac_ptr == NULL)
17480 /* We already issued a complaint. */
17484 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
17485 GDB is still reading the definitions from command line. First
17486 DW_MACINFO_start_file will need to be ignored as it was already executed
17487 to create CURRENT_FILE for the main source holding also the command line
17488 definitions. On first met DW_MACINFO_start_file this flag is reset to
17489 normally execute all the remaining DW_MACINFO_start_file macinfos. */
17491 at_commandline = 1;
17495 /* Do we at least have room for a macinfo type byte? */
17496 if (mac_ptr >= mac_end)
17498 dwarf2_section_buffer_overflow_complaint (section);
17502 macinfo_type = read_1_byte (abfd, mac_ptr);
17505 /* Note that we rely on the fact that the corresponding GNU and
17506 DWARF constants are the same. */
17507 switch (macinfo_type)
17509 /* A zero macinfo type indicates the end of the macro
17514 case DW_MACRO_GNU_define:
17515 case DW_MACRO_GNU_undef:
17516 case DW_MACRO_GNU_define_indirect:
17517 case DW_MACRO_GNU_undef_indirect:
17518 case DW_MACRO_GNU_define_indirect_alt:
17519 case DW_MACRO_GNU_undef_indirect_alt:
17521 unsigned int bytes_read;
17526 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17527 mac_ptr += bytes_read;
17529 if (macinfo_type == DW_MACRO_GNU_define
17530 || macinfo_type == DW_MACRO_GNU_undef)
17532 body = read_direct_string (abfd, mac_ptr, &bytes_read);
17533 mac_ptr += bytes_read;
17537 LONGEST str_offset;
17539 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
17540 mac_ptr += offset_size;
17542 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
17543 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
17546 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17548 body = read_indirect_string_from_dwz (dwz, str_offset);
17551 body = read_indirect_string_at_offset (abfd, str_offset);
17554 is_define = (macinfo_type == DW_MACRO_GNU_define
17555 || macinfo_type == DW_MACRO_GNU_define_indirect
17556 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
17557 if (! current_file)
17559 /* DWARF violation as no main source is present. */
17560 complaint (&symfile_complaints,
17561 _("debug info with no main source gives macro %s "
17563 is_define ? _("definition") : _("undefinition"),
17567 if ((line == 0 && !at_commandline)
17568 || (line != 0 && at_commandline))
17569 complaint (&symfile_complaints,
17570 _("debug info gives %s macro %s with %s line %d: %s"),
17571 at_commandline ? _("command-line") : _("in-file"),
17572 is_define ? _("definition") : _("undefinition"),
17573 line == 0 ? _("zero") : _("non-zero"), line, body);
17576 parse_macro_definition (current_file, line, body);
17579 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
17580 || macinfo_type == DW_MACRO_GNU_undef_indirect
17581 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
17582 macro_undef (current_file, line, body);
17587 case DW_MACRO_GNU_start_file:
17589 unsigned int bytes_read;
17592 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17593 mac_ptr += bytes_read;
17594 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17595 mac_ptr += bytes_read;
17597 if ((line == 0 && !at_commandline)
17598 || (line != 0 && at_commandline))
17599 complaint (&symfile_complaints,
17600 _("debug info gives source %d included "
17601 "from %s at %s line %d"),
17602 file, at_commandline ? _("command-line") : _("file"),
17603 line == 0 ? _("zero") : _("non-zero"), line);
17605 if (at_commandline)
17607 /* This DW_MACRO_GNU_start_file was executed in the
17609 at_commandline = 0;
17612 current_file = macro_start_file (file, line,
17613 current_file, comp_dir,
17618 case DW_MACRO_GNU_end_file:
17619 if (! current_file)
17620 complaint (&symfile_complaints,
17621 _("macro debug info has an unmatched "
17622 "`close_file' directive"));
17625 current_file = current_file->included_by;
17626 if (! current_file)
17628 enum dwarf_macro_record_type next_type;
17630 /* GCC circa March 2002 doesn't produce the zero
17631 type byte marking the end of the compilation
17632 unit. Complain if it's not there, but exit no
17635 /* Do we at least have room for a macinfo type byte? */
17636 if (mac_ptr >= mac_end)
17638 dwarf2_section_buffer_overflow_complaint (section);
17642 /* We don't increment mac_ptr here, so this is just
17644 next_type = read_1_byte (abfd, mac_ptr);
17645 if (next_type != 0)
17646 complaint (&symfile_complaints,
17647 _("no terminating 0-type entry for "
17648 "macros in `.debug_macinfo' section"));
17655 case DW_MACRO_GNU_transparent_include:
17656 case DW_MACRO_GNU_transparent_include_alt:
17660 bfd *include_bfd = abfd;
17661 struct dwarf2_section_info *include_section = section;
17662 struct dwarf2_section_info alt_section;
17663 gdb_byte *include_mac_end = mac_end;
17664 int is_dwz = section_is_dwz;
17665 gdb_byte *new_mac_ptr;
17667 offset = read_offset_1 (abfd, mac_ptr, offset_size);
17668 mac_ptr += offset_size;
17670 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
17672 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17674 dwarf2_read_section (dwarf2_per_objfile->objfile,
17677 include_bfd = dwz->macro.asection->owner;
17678 include_section = &dwz->macro;
17679 include_mac_end = dwz->macro.buffer + dwz->macro.size;
17683 new_mac_ptr = include_section->buffer + offset;
17684 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
17688 /* This has actually happened; see
17689 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
17690 complaint (&symfile_complaints,
17691 _("recursive DW_MACRO_GNU_transparent_include in "
17692 ".debug_macro section"));
17696 *slot = new_mac_ptr;
17698 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
17699 include_mac_end, current_file,
17701 section, section_is_gnu, is_dwz,
17702 offset_size, objfile, include_hash);
17704 htab_remove_elt (include_hash, new_mac_ptr);
17709 case DW_MACINFO_vendor_ext:
17710 if (!section_is_gnu)
17712 unsigned int bytes_read;
17715 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17716 mac_ptr += bytes_read;
17717 read_direct_string (abfd, mac_ptr, &bytes_read);
17718 mac_ptr += bytes_read;
17720 /* We don't recognize any vendor extensions. */
17726 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
17727 mac_ptr, mac_end, abfd, offset_size,
17729 if (mac_ptr == NULL)
17733 } while (macinfo_type != 0);
17737 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
17738 char *comp_dir, int section_is_gnu)
17740 struct objfile *objfile = dwarf2_per_objfile->objfile;
17741 struct line_header *lh = cu->line_header;
17743 gdb_byte *mac_ptr, *mac_end;
17744 struct macro_source_file *current_file = 0;
17745 enum dwarf_macro_record_type macinfo_type;
17746 unsigned int offset_size = cu->header.offset_size;
17747 gdb_byte *opcode_definitions[256];
17748 struct cleanup *cleanup;
17749 htab_t include_hash;
17751 struct dwarf2_section_info *section;
17752 const char *section_name;
17754 if (cu->dwo_unit != NULL)
17756 if (section_is_gnu)
17758 section = &cu->dwo_unit->dwo_file->sections.macro;
17759 section_name = ".debug_macro.dwo";
17763 section = &cu->dwo_unit->dwo_file->sections.macinfo;
17764 section_name = ".debug_macinfo.dwo";
17769 if (section_is_gnu)
17771 section = &dwarf2_per_objfile->macro;
17772 section_name = ".debug_macro";
17776 section = &dwarf2_per_objfile->macinfo;
17777 section_name = ".debug_macinfo";
17781 dwarf2_read_section (objfile, section);
17782 if (section->buffer == NULL)
17784 complaint (&symfile_complaints, _("missing %s section"), section_name);
17787 abfd = section->asection->owner;
17789 /* First pass: Find the name of the base filename.
17790 This filename is needed in order to process all macros whose definition
17791 (or undefinition) comes from the command line. These macros are defined
17792 before the first DW_MACINFO_start_file entry, and yet still need to be
17793 associated to the base file.
17795 To determine the base file name, we scan the macro definitions until we
17796 reach the first DW_MACINFO_start_file entry. We then initialize
17797 CURRENT_FILE accordingly so that any macro definition found before the
17798 first DW_MACINFO_start_file can still be associated to the base file. */
17800 mac_ptr = section->buffer + offset;
17801 mac_end = section->buffer + section->size;
17803 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
17804 &offset_size, section_is_gnu);
17805 if (mac_ptr == NULL)
17807 /* We already issued a complaint. */
17813 /* Do we at least have room for a macinfo type byte? */
17814 if (mac_ptr >= mac_end)
17816 /* Complaint is printed during the second pass as GDB will probably
17817 stop the first pass earlier upon finding
17818 DW_MACINFO_start_file. */
17822 macinfo_type = read_1_byte (abfd, mac_ptr);
17825 /* Note that we rely on the fact that the corresponding GNU and
17826 DWARF constants are the same. */
17827 switch (macinfo_type)
17829 /* A zero macinfo type indicates the end of the macro
17834 case DW_MACRO_GNU_define:
17835 case DW_MACRO_GNU_undef:
17836 /* Only skip the data by MAC_PTR. */
17838 unsigned int bytes_read;
17840 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17841 mac_ptr += bytes_read;
17842 read_direct_string (abfd, mac_ptr, &bytes_read);
17843 mac_ptr += bytes_read;
17847 case DW_MACRO_GNU_start_file:
17849 unsigned int bytes_read;
17852 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17853 mac_ptr += bytes_read;
17854 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17855 mac_ptr += bytes_read;
17857 current_file = macro_start_file (file, line, current_file,
17858 comp_dir, lh, objfile);
17862 case DW_MACRO_GNU_end_file:
17863 /* No data to skip by MAC_PTR. */
17866 case DW_MACRO_GNU_define_indirect:
17867 case DW_MACRO_GNU_undef_indirect:
17868 case DW_MACRO_GNU_define_indirect_alt:
17869 case DW_MACRO_GNU_undef_indirect_alt:
17871 unsigned int bytes_read;
17873 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17874 mac_ptr += bytes_read;
17875 mac_ptr += offset_size;
17879 case DW_MACRO_GNU_transparent_include:
17880 case DW_MACRO_GNU_transparent_include_alt:
17881 /* Note that, according to the spec, a transparent include
17882 chain cannot call DW_MACRO_GNU_start_file. So, we can just
17883 skip this opcode. */
17884 mac_ptr += offset_size;
17887 case DW_MACINFO_vendor_ext:
17888 /* Only skip the data by MAC_PTR. */
17889 if (!section_is_gnu)
17891 unsigned int bytes_read;
17893 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
17894 mac_ptr += bytes_read;
17895 read_direct_string (abfd, mac_ptr, &bytes_read);
17896 mac_ptr += bytes_read;
17901 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
17902 mac_ptr, mac_end, abfd, offset_size,
17904 if (mac_ptr == NULL)
17908 } while (macinfo_type != 0 && current_file == NULL);
17910 /* Second pass: Process all entries.
17912 Use the AT_COMMAND_LINE flag to determine whether we are still processing
17913 command-line macro definitions/undefinitions. This flag is unset when we
17914 reach the first DW_MACINFO_start_file entry. */
17916 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
17917 NULL, xcalloc, xfree);
17918 cleanup = make_cleanup_htab_delete (include_hash);
17919 mac_ptr = section->buffer + offset;
17920 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
17922 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
17923 current_file, lh, comp_dir, section,
17925 offset_size, objfile, include_hash);
17926 do_cleanups (cleanup);
17929 /* Check if the attribute's form is a DW_FORM_block*
17930 if so return true else false. */
17933 attr_form_is_block (struct attribute *attr)
17935 return (attr == NULL ? 0 :
17936 attr->form == DW_FORM_block1
17937 || attr->form == DW_FORM_block2
17938 || attr->form == DW_FORM_block4
17939 || attr->form == DW_FORM_block
17940 || attr->form == DW_FORM_exprloc);
17943 /* Return non-zero if ATTR's value is a section offset --- classes
17944 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
17945 You may use DW_UNSND (attr) to retrieve such offsets.
17947 Section 7.5.4, "Attribute Encodings", explains that no attribute
17948 may have a value that belongs to more than one of these classes; it
17949 would be ambiguous if we did, because we use the same forms for all
17953 attr_form_is_section_offset (struct attribute *attr)
17955 return (attr->form == DW_FORM_data4
17956 || attr->form == DW_FORM_data8
17957 || attr->form == DW_FORM_sec_offset);
17960 /* Return non-zero if ATTR's value falls in the 'constant' class, or
17961 zero otherwise. When this function returns true, you can apply
17962 dwarf2_get_attr_constant_value to it.
17964 However, note that for some attributes you must check
17965 attr_form_is_section_offset before using this test. DW_FORM_data4
17966 and DW_FORM_data8 are members of both the constant class, and of
17967 the classes that contain offsets into other debug sections
17968 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
17969 that, if an attribute's can be either a constant or one of the
17970 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
17971 taken as section offsets, not constants. */
17974 attr_form_is_constant (struct attribute *attr)
17976 switch (attr->form)
17978 case DW_FORM_sdata:
17979 case DW_FORM_udata:
17980 case DW_FORM_data1:
17981 case DW_FORM_data2:
17982 case DW_FORM_data4:
17983 case DW_FORM_data8:
17990 /* Return the .debug_loc section to use for CU.
17991 For DWO files use .debug_loc.dwo. */
17993 static struct dwarf2_section_info *
17994 cu_debug_loc_section (struct dwarf2_cu *cu)
17997 return &cu->dwo_unit->dwo_file->sections.loc;
17998 return &dwarf2_per_objfile->loc;
18001 /* A helper function that fills in a dwarf2_loclist_baton. */
18004 fill_in_loclist_baton (struct dwarf2_cu *cu,
18005 struct dwarf2_loclist_baton *baton,
18006 struct attribute *attr)
18008 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18010 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18012 baton->per_cu = cu->per_cu;
18013 gdb_assert (baton->per_cu);
18014 /* We don't know how long the location list is, but make sure we
18015 don't run off the edge of the section. */
18016 baton->size = section->size - DW_UNSND (attr);
18017 baton->data = section->buffer + DW_UNSND (attr);
18018 baton->base_address = cu->base_address;
18019 baton->from_dwo = cu->dwo_unit != NULL;
18023 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
18024 struct dwarf2_cu *cu)
18026 struct objfile *objfile = dwarf2_per_objfile->objfile;
18027 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18029 if (attr_form_is_section_offset (attr)
18030 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
18031 the section. If so, fall through to the complaint in the
18033 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
18035 struct dwarf2_loclist_baton *baton;
18037 baton = obstack_alloc (&objfile->objfile_obstack,
18038 sizeof (struct dwarf2_loclist_baton));
18040 fill_in_loclist_baton (cu, baton, attr);
18042 if (cu->base_known == 0)
18043 complaint (&symfile_complaints,
18044 _("Location list used without "
18045 "specifying the CU base address."));
18047 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
18048 SYMBOL_LOCATION_BATON (sym) = baton;
18052 struct dwarf2_locexpr_baton *baton;
18054 baton = obstack_alloc (&objfile->objfile_obstack,
18055 sizeof (struct dwarf2_locexpr_baton));
18056 baton->per_cu = cu->per_cu;
18057 gdb_assert (baton->per_cu);
18059 if (attr_form_is_block (attr))
18061 /* Note that we're just copying the block's data pointer
18062 here, not the actual data. We're still pointing into the
18063 info_buffer for SYM's objfile; right now we never release
18064 that buffer, but when we do clean up properly this may
18066 baton->size = DW_BLOCK (attr)->size;
18067 baton->data = DW_BLOCK (attr)->data;
18071 dwarf2_invalid_attrib_class_complaint ("location description",
18072 SYMBOL_NATURAL_NAME (sym));
18076 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
18077 SYMBOL_LOCATION_BATON (sym) = baton;
18081 /* Return the OBJFILE associated with the compilation unit CU. If CU
18082 came from a separate debuginfo file, then the master objfile is
18086 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
18088 struct objfile *objfile = per_cu->objfile;
18090 /* Return the master objfile, so that we can report and look up the
18091 correct file containing this variable. */
18092 if (objfile->separate_debug_objfile_backlink)
18093 objfile = objfile->separate_debug_objfile_backlink;
18098 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
18099 (CU_HEADERP is unused in such case) or prepare a temporary copy at
18100 CU_HEADERP first. */
18102 static const struct comp_unit_head *
18103 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
18104 struct dwarf2_per_cu_data *per_cu)
18106 gdb_byte *info_ptr;
18109 return &per_cu->cu->header;
18111 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
18113 memset (cu_headerp, 0, sizeof (*cu_headerp));
18114 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
18119 /* Return the address size given in the compilation unit header for CU. */
18122 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
18124 struct comp_unit_head cu_header_local;
18125 const struct comp_unit_head *cu_headerp;
18127 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18129 return cu_headerp->addr_size;
18132 /* Return the offset size given in the compilation unit header for CU. */
18135 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
18137 struct comp_unit_head cu_header_local;
18138 const struct comp_unit_head *cu_headerp;
18140 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18142 return cu_headerp->offset_size;
18145 /* See its dwarf2loc.h declaration. */
18148 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
18150 struct comp_unit_head cu_header_local;
18151 const struct comp_unit_head *cu_headerp;
18153 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18155 if (cu_headerp->version == 2)
18156 return cu_headerp->addr_size;
18158 return cu_headerp->offset_size;
18161 /* Return the text offset of the CU. The returned offset comes from
18162 this CU's objfile. If this objfile came from a separate debuginfo
18163 file, then the offset may be different from the corresponding
18164 offset in the parent objfile. */
18167 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
18169 struct objfile *objfile = per_cu->objfile;
18171 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18174 /* Locate the .debug_info compilation unit from CU's objfile which contains
18175 the DIE at OFFSET. Raises an error on failure. */
18177 static struct dwarf2_per_cu_data *
18178 dwarf2_find_containing_comp_unit (sect_offset offset,
18179 unsigned int offset_in_dwz,
18180 struct objfile *objfile)
18182 struct dwarf2_per_cu_data *this_cu;
18184 const sect_offset *cu_off;
18187 high = dwarf2_per_objfile->n_comp_units - 1;
18190 struct dwarf2_per_cu_data *mid_cu;
18191 int mid = low + (high - low) / 2;
18193 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
18194 cu_off = &mid_cu->offset;
18195 if (mid_cu->is_dwz > offset_in_dwz
18196 || (mid_cu->is_dwz == offset_in_dwz
18197 && cu_off->sect_off >= offset.sect_off))
18202 gdb_assert (low == high);
18203 this_cu = dwarf2_per_objfile->all_comp_units[low];
18204 cu_off = &this_cu->offset;
18205 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
18207 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
18208 error (_("Dwarf Error: could not find partial DIE containing "
18209 "offset 0x%lx [in module %s]"),
18210 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
18212 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
18213 <= offset.sect_off);
18214 return dwarf2_per_objfile->all_comp_units[low-1];
18218 this_cu = dwarf2_per_objfile->all_comp_units[low];
18219 if (low == dwarf2_per_objfile->n_comp_units - 1
18220 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
18221 error (_("invalid dwarf2 offset %u"), offset.sect_off);
18222 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
18227 /* Initialize dwarf2_cu CU, owned by PER_CU. */
18230 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
18232 memset (cu, 0, sizeof (*cu));
18234 cu->per_cu = per_cu;
18235 cu->objfile = per_cu->objfile;
18236 obstack_init (&cu->comp_unit_obstack);
18239 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
18242 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
18243 enum language pretend_language)
18245 struct attribute *attr;
18247 /* Set the language we're debugging. */
18248 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
18250 set_cu_language (DW_UNSND (attr), cu);
18253 cu->language = pretend_language;
18254 cu->language_defn = language_def (cu->language);
18257 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
18259 cu->producer = DW_STRING (attr);
18262 /* Release one cached compilation unit, CU. We unlink it from the tree
18263 of compilation units, but we don't remove it from the read_in_chain;
18264 the caller is responsible for that.
18265 NOTE: DATA is a void * because this function is also used as a
18266 cleanup routine. */
18269 free_heap_comp_unit (void *data)
18271 struct dwarf2_cu *cu = data;
18273 gdb_assert (cu->per_cu != NULL);
18274 cu->per_cu->cu = NULL;
18277 obstack_free (&cu->comp_unit_obstack, NULL);
18282 /* This cleanup function is passed the address of a dwarf2_cu on the stack
18283 when we're finished with it. We can't free the pointer itself, but be
18284 sure to unlink it from the cache. Also release any associated storage. */
18287 free_stack_comp_unit (void *data)
18289 struct dwarf2_cu *cu = data;
18291 gdb_assert (cu->per_cu != NULL);
18292 cu->per_cu->cu = NULL;
18295 obstack_free (&cu->comp_unit_obstack, NULL);
18296 cu->partial_dies = NULL;
18299 /* Free all cached compilation units. */
18302 free_cached_comp_units (void *data)
18304 struct dwarf2_per_cu_data *per_cu, **last_chain;
18306 per_cu = dwarf2_per_objfile->read_in_chain;
18307 last_chain = &dwarf2_per_objfile->read_in_chain;
18308 while (per_cu != NULL)
18310 struct dwarf2_per_cu_data *next_cu;
18312 next_cu = per_cu->cu->read_in_chain;
18314 free_heap_comp_unit (per_cu->cu);
18315 *last_chain = next_cu;
18321 /* Increase the age counter on each cached compilation unit, and free
18322 any that are too old. */
18325 age_cached_comp_units (void)
18327 struct dwarf2_per_cu_data *per_cu, **last_chain;
18329 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
18330 per_cu = dwarf2_per_objfile->read_in_chain;
18331 while (per_cu != NULL)
18333 per_cu->cu->last_used ++;
18334 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
18335 dwarf2_mark (per_cu->cu);
18336 per_cu = per_cu->cu->read_in_chain;
18339 per_cu = dwarf2_per_objfile->read_in_chain;
18340 last_chain = &dwarf2_per_objfile->read_in_chain;
18341 while (per_cu != NULL)
18343 struct dwarf2_per_cu_data *next_cu;
18345 next_cu = per_cu->cu->read_in_chain;
18347 if (!per_cu->cu->mark)
18349 free_heap_comp_unit (per_cu->cu);
18350 *last_chain = next_cu;
18353 last_chain = &per_cu->cu->read_in_chain;
18359 /* Remove a single compilation unit from the cache. */
18362 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
18364 struct dwarf2_per_cu_data *per_cu, **last_chain;
18366 per_cu = dwarf2_per_objfile->read_in_chain;
18367 last_chain = &dwarf2_per_objfile->read_in_chain;
18368 while (per_cu != NULL)
18370 struct dwarf2_per_cu_data *next_cu;
18372 next_cu = per_cu->cu->read_in_chain;
18374 if (per_cu == target_per_cu)
18376 free_heap_comp_unit (per_cu->cu);
18378 *last_chain = next_cu;
18382 last_chain = &per_cu->cu->read_in_chain;
18388 /* Release all extra memory associated with OBJFILE. */
18391 dwarf2_free_objfile (struct objfile *objfile)
18393 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
18395 if (dwarf2_per_objfile == NULL)
18398 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
18399 free_cached_comp_units (NULL);
18401 if (dwarf2_per_objfile->quick_file_names_table)
18402 htab_delete (dwarf2_per_objfile->quick_file_names_table);
18404 /* Everything else should be on the objfile obstack. */
18407 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
18408 We store these in a hash table separate from the DIEs, and preserve them
18409 when the DIEs are flushed out of cache.
18411 The CU "per_cu" pointer is needed because offset alone is not enough to
18412 uniquely identify the type. A file may have multiple .debug_types sections,
18413 or the type may come from a DWO file. We have to use something in
18414 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
18415 routine, get_die_type_at_offset, from outside this file, and thus won't
18416 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
18419 struct dwarf2_per_cu_offset_and_type
18421 const struct dwarf2_per_cu_data *per_cu;
18422 sect_offset offset;
18426 /* Hash function for a dwarf2_per_cu_offset_and_type. */
18429 per_cu_offset_and_type_hash (const void *item)
18431 const struct dwarf2_per_cu_offset_and_type *ofs = item;
18433 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
18436 /* Equality function for a dwarf2_per_cu_offset_and_type. */
18439 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
18441 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
18442 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
18444 return (ofs_lhs->per_cu == ofs_rhs->per_cu
18445 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
18448 /* Set the type associated with DIE to TYPE. Save it in CU's hash
18449 table if necessary. For convenience, return TYPE.
18451 The DIEs reading must have careful ordering to:
18452 * Not cause infite loops trying to read in DIEs as a prerequisite for
18453 reading current DIE.
18454 * Not trying to dereference contents of still incompletely read in types
18455 while reading in other DIEs.
18456 * Enable referencing still incompletely read in types just by a pointer to
18457 the type without accessing its fields.
18459 Therefore caller should follow these rules:
18460 * Try to fetch any prerequisite types we may need to build this DIE type
18461 before building the type and calling set_die_type.
18462 * After building type call set_die_type for current DIE as soon as
18463 possible before fetching more types to complete the current type.
18464 * Make the type as complete as possible before fetching more types. */
18466 static struct type *
18467 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18469 struct dwarf2_per_cu_offset_and_type **slot, ofs;
18470 struct objfile *objfile = cu->objfile;
18472 /* For Ada types, make sure that the gnat-specific data is always
18473 initialized (if not already set). There are a few types where
18474 we should not be doing so, because the type-specific area is
18475 already used to hold some other piece of info (eg: TYPE_CODE_FLT
18476 where the type-specific area is used to store the floatformat).
18477 But this is not a problem, because the gnat-specific information
18478 is actually not needed for these types. */
18479 if (need_gnat_info (cu)
18480 && TYPE_CODE (type) != TYPE_CODE_FUNC
18481 && TYPE_CODE (type) != TYPE_CODE_FLT
18482 && !HAVE_GNAT_AUX_INFO (type))
18483 INIT_GNAT_SPECIFIC (type);
18485 if (dwarf2_per_objfile->die_type_hash == NULL)
18487 dwarf2_per_objfile->die_type_hash =
18488 htab_create_alloc_ex (127,
18489 per_cu_offset_and_type_hash,
18490 per_cu_offset_and_type_eq,
18492 &objfile->objfile_obstack,
18493 hashtab_obstack_allocate,
18494 dummy_obstack_deallocate);
18497 ofs.per_cu = cu->per_cu;
18498 ofs.offset = die->offset;
18500 slot = (struct dwarf2_per_cu_offset_and_type **)
18501 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
18503 complaint (&symfile_complaints,
18504 _("A problem internal to GDB: DIE 0x%x has type already set"),
18505 die->offset.sect_off);
18506 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
18511 /* Look up the type for the die at OFFSET in the appropriate type_hash
18512 table, or return NULL if the die does not have a saved type. */
18514 static struct type *
18515 get_die_type_at_offset (sect_offset offset,
18516 struct dwarf2_per_cu_data *per_cu)
18518 struct dwarf2_per_cu_offset_and_type *slot, ofs;
18520 if (dwarf2_per_objfile->die_type_hash == NULL)
18523 ofs.per_cu = per_cu;
18524 ofs.offset = offset;
18525 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
18532 /* Look up the type for DIE in the appropriate type_hash table,
18533 or return NULL if DIE does not have a saved type. */
18535 static struct type *
18536 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
18538 return get_die_type_at_offset (die->offset, cu->per_cu);
18541 /* Add a dependence relationship from CU to REF_PER_CU. */
18544 dwarf2_add_dependence (struct dwarf2_cu *cu,
18545 struct dwarf2_per_cu_data *ref_per_cu)
18549 if (cu->dependencies == NULL)
18551 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
18552 NULL, &cu->comp_unit_obstack,
18553 hashtab_obstack_allocate,
18554 dummy_obstack_deallocate);
18556 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
18558 *slot = ref_per_cu;
18561 /* Subroutine of dwarf2_mark to pass to htab_traverse.
18562 Set the mark field in every compilation unit in the
18563 cache that we must keep because we are keeping CU. */
18566 dwarf2_mark_helper (void **slot, void *data)
18568 struct dwarf2_per_cu_data *per_cu;
18570 per_cu = (struct dwarf2_per_cu_data *) *slot;
18572 /* cu->dependencies references may not yet have been ever read if QUIT aborts
18573 reading of the chain. As such dependencies remain valid it is not much
18574 useful to track and undo them during QUIT cleanups. */
18575 if (per_cu->cu == NULL)
18578 if (per_cu->cu->mark)
18580 per_cu->cu->mark = 1;
18582 if (per_cu->cu->dependencies != NULL)
18583 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
18588 /* Set the mark field in CU and in every other compilation unit in the
18589 cache that we must keep because we are keeping CU. */
18592 dwarf2_mark (struct dwarf2_cu *cu)
18597 if (cu->dependencies != NULL)
18598 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
18602 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
18606 per_cu->cu->mark = 0;
18607 per_cu = per_cu->cu->read_in_chain;
18611 /* Trivial hash function for partial_die_info: the hash value of a DIE
18612 is its offset in .debug_info for this objfile. */
18615 partial_die_hash (const void *item)
18617 const struct partial_die_info *part_die = item;
18619 return part_die->offset.sect_off;
18622 /* Trivial comparison function for partial_die_info structures: two DIEs
18623 are equal if they have the same offset. */
18626 partial_die_eq (const void *item_lhs, const void *item_rhs)
18628 const struct partial_die_info *part_die_lhs = item_lhs;
18629 const struct partial_die_info *part_die_rhs = item_rhs;
18631 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
18634 static struct cmd_list_element *set_dwarf2_cmdlist;
18635 static struct cmd_list_element *show_dwarf2_cmdlist;
18638 set_dwarf2_cmd (char *args, int from_tty)
18640 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
18644 show_dwarf2_cmd (char *args, int from_tty)
18646 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
18649 /* Free data associated with OBJFILE, if necessary. */
18652 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
18654 struct dwarf2_per_objfile *data = d;
18657 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
18658 VEC_free (dwarf2_per_cu_ptr,
18659 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
18661 VEC_free (dwarf2_section_info_def, data->types);
18663 if (data->dwo_files)
18664 free_dwo_files (data->dwo_files, objfile);
18666 if (data->dwz_file && data->dwz_file->dwz_bfd)
18667 gdb_bfd_unref (data->dwz_file->dwz_bfd);
18671 /* The "save gdb-index" command. */
18673 /* The contents of the hash table we create when building the string
18675 struct strtab_entry
18677 offset_type offset;
18681 /* Hash function for a strtab_entry.
18683 Function is used only during write_hash_table so no index format backward
18684 compatibility is needed. */
18687 hash_strtab_entry (const void *e)
18689 const struct strtab_entry *entry = e;
18690 return mapped_index_string_hash (INT_MAX, entry->str);
18693 /* Equality function for a strtab_entry. */
18696 eq_strtab_entry (const void *a, const void *b)
18698 const struct strtab_entry *ea = a;
18699 const struct strtab_entry *eb = b;
18700 return !strcmp (ea->str, eb->str);
18703 /* Create a strtab_entry hash table. */
18706 create_strtab (void)
18708 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
18709 xfree, xcalloc, xfree);
18712 /* Add a string to the constant pool. Return the string's offset in
18716 add_string (htab_t table, struct obstack *cpool, const char *str)
18719 struct strtab_entry entry;
18720 struct strtab_entry *result;
18723 slot = htab_find_slot (table, &entry, INSERT);
18728 result = XNEW (struct strtab_entry);
18729 result->offset = obstack_object_size (cpool);
18731 obstack_grow_str0 (cpool, str);
18734 return result->offset;
18737 /* An entry in the symbol table. */
18738 struct symtab_index_entry
18740 /* The name of the symbol. */
18742 /* The offset of the name in the constant pool. */
18743 offset_type index_offset;
18744 /* A sorted vector of the indices of all the CUs that hold an object
18746 VEC (offset_type) *cu_indices;
18749 /* The symbol table. This is a power-of-2-sized hash table. */
18750 struct mapped_symtab
18752 offset_type n_elements;
18754 struct symtab_index_entry **data;
18757 /* Hash function for a symtab_index_entry. */
18760 hash_symtab_entry (const void *e)
18762 const struct symtab_index_entry *entry = e;
18763 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
18764 sizeof (offset_type) * VEC_length (offset_type,
18765 entry->cu_indices),
18769 /* Equality function for a symtab_index_entry. */
18772 eq_symtab_entry (const void *a, const void *b)
18774 const struct symtab_index_entry *ea = a;
18775 const struct symtab_index_entry *eb = b;
18776 int len = VEC_length (offset_type, ea->cu_indices);
18777 if (len != VEC_length (offset_type, eb->cu_indices))
18779 return !memcmp (VEC_address (offset_type, ea->cu_indices),
18780 VEC_address (offset_type, eb->cu_indices),
18781 sizeof (offset_type) * len);
18784 /* Destroy a symtab_index_entry. */
18787 delete_symtab_entry (void *p)
18789 struct symtab_index_entry *entry = p;
18790 VEC_free (offset_type, entry->cu_indices);
18794 /* Create a hash table holding symtab_index_entry objects. */
18797 create_symbol_hash_table (void)
18799 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
18800 delete_symtab_entry, xcalloc, xfree);
18803 /* Create a new mapped symtab object. */
18805 static struct mapped_symtab *
18806 create_mapped_symtab (void)
18808 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
18809 symtab->n_elements = 0;
18810 symtab->size = 1024;
18811 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
18815 /* Destroy a mapped_symtab. */
18818 cleanup_mapped_symtab (void *p)
18820 struct mapped_symtab *symtab = p;
18821 /* The contents of the array are freed when the other hash table is
18823 xfree (symtab->data);
18827 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
18830 Function is used only during write_hash_table so no index format backward
18831 compatibility is needed. */
18833 static struct symtab_index_entry **
18834 find_slot (struct mapped_symtab *symtab, const char *name)
18836 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
18838 index = hash & (symtab->size - 1);
18839 step = ((hash * 17) & (symtab->size - 1)) | 1;
18843 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
18844 return &symtab->data[index];
18845 index = (index + step) & (symtab->size - 1);
18849 /* Expand SYMTAB's hash table. */
18852 hash_expand (struct mapped_symtab *symtab)
18854 offset_type old_size = symtab->size;
18856 struct symtab_index_entry **old_entries = symtab->data;
18859 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
18861 for (i = 0; i < old_size; ++i)
18863 if (old_entries[i])
18865 struct symtab_index_entry **slot = find_slot (symtab,
18866 old_entries[i]->name);
18867 *slot = old_entries[i];
18871 xfree (old_entries);
18874 /* Add an entry to SYMTAB. NAME is the name of the symbol.
18875 CU_INDEX is the index of the CU in which the symbol appears.
18876 IS_STATIC is one if the symbol is static, otherwise zero (global). */
18879 add_index_entry (struct mapped_symtab *symtab, const char *name,
18880 int is_static, gdb_index_symbol_kind kind,
18881 offset_type cu_index)
18883 struct symtab_index_entry **slot;
18884 offset_type cu_index_and_attrs;
18886 ++symtab->n_elements;
18887 if (4 * symtab->n_elements / 3 >= symtab->size)
18888 hash_expand (symtab);
18890 slot = find_slot (symtab, name);
18893 *slot = XNEW (struct symtab_index_entry);
18894 (*slot)->name = name;
18895 /* index_offset is set later. */
18896 (*slot)->cu_indices = NULL;
18899 cu_index_and_attrs = 0;
18900 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
18901 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
18902 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
18904 /* We don't want to record an index value twice as we want to avoid the
18906 We process all global symbols and then all static symbols
18907 (which would allow us to avoid the duplication by only having to check
18908 the last entry pushed), but a symbol could have multiple kinds in one CU.
18909 To keep things simple we don't worry about the duplication here and
18910 sort and uniqufy the list after we've processed all symbols. */
18911 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
18914 /* qsort helper routine for uniquify_cu_indices. */
18917 offset_type_compare (const void *ap, const void *bp)
18919 offset_type a = *(offset_type *) ap;
18920 offset_type b = *(offset_type *) bp;
18922 return (a > b) - (b > a);
18925 /* Sort and remove duplicates of all symbols' cu_indices lists. */
18928 uniquify_cu_indices (struct mapped_symtab *symtab)
18932 for (i = 0; i < symtab->size; ++i)
18934 struct symtab_index_entry *entry = symtab->data[i];
18937 && entry->cu_indices != NULL)
18939 unsigned int next_to_insert, next_to_check;
18940 offset_type last_value;
18942 qsort (VEC_address (offset_type, entry->cu_indices),
18943 VEC_length (offset_type, entry->cu_indices),
18944 sizeof (offset_type), offset_type_compare);
18946 last_value = VEC_index (offset_type, entry->cu_indices, 0);
18947 next_to_insert = 1;
18948 for (next_to_check = 1;
18949 next_to_check < VEC_length (offset_type, entry->cu_indices);
18952 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
18955 last_value = VEC_index (offset_type, entry->cu_indices,
18957 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
18962 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
18967 /* Add a vector of indices to the constant pool. */
18970 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
18971 struct symtab_index_entry *entry)
18975 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
18978 offset_type len = VEC_length (offset_type, entry->cu_indices);
18979 offset_type val = MAYBE_SWAP (len);
18984 entry->index_offset = obstack_object_size (cpool);
18986 obstack_grow (cpool, &val, sizeof (val));
18988 VEC_iterate (offset_type, entry->cu_indices, i, iter);
18991 val = MAYBE_SWAP (iter);
18992 obstack_grow (cpool, &val, sizeof (val));
18997 struct symtab_index_entry *old_entry = *slot;
18998 entry->index_offset = old_entry->index_offset;
19001 return entry->index_offset;
19004 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
19005 constant pool entries going into the obstack CPOOL. */
19008 write_hash_table (struct mapped_symtab *symtab,
19009 struct obstack *output, struct obstack *cpool)
19012 htab_t symbol_hash_table;
19015 symbol_hash_table = create_symbol_hash_table ();
19016 str_table = create_strtab ();
19018 /* We add all the index vectors to the constant pool first, to
19019 ensure alignment is ok. */
19020 for (i = 0; i < symtab->size; ++i)
19022 if (symtab->data[i])
19023 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
19026 /* Now write out the hash table. */
19027 for (i = 0; i < symtab->size; ++i)
19029 offset_type str_off, vec_off;
19031 if (symtab->data[i])
19033 str_off = add_string (str_table, cpool, symtab->data[i]->name);
19034 vec_off = symtab->data[i]->index_offset;
19038 /* While 0 is a valid constant pool index, it is not valid
19039 to have 0 for both offsets. */
19044 str_off = MAYBE_SWAP (str_off);
19045 vec_off = MAYBE_SWAP (vec_off);
19047 obstack_grow (output, &str_off, sizeof (str_off));
19048 obstack_grow (output, &vec_off, sizeof (vec_off));
19051 htab_delete (str_table);
19052 htab_delete (symbol_hash_table);
19055 /* Struct to map psymtab to CU index in the index file. */
19056 struct psymtab_cu_index_map
19058 struct partial_symtab *psymtab;
19059 unsigned int cu_index;
19063 hash_psymtab_cu_index (const void *item)
19065 const struct psymtab_cu_index_map *map = item;
19067 return htab_hash_pointer (map->psymtab);
19071 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
19073 const struct psymtab_cu_index_map *lhs = item_lhs;
19074 const struct psymtab_cu_index_map *rhs = item_rhs;
19076 return lhs->psymtab == rhs->psymtab;
19079 /* Helper struct for building the address table. */
19080 struct addrmap_index_data
19082 struct objfile *objfile;
19083 struct obstack *addr_obstack;
19084 htab_t cu_index_htab;
19086 /* Non-zero if the previous_* fields are valid.
19087 We can't write an entry until we see the next entry (since it is only then
19088 that we know the end of the entry). */
19089 int previous_valid;
19090 /* Index of the CU in the table of all CUs in the index file. */
19091 unsigned int previous_cu_index;
19092 /* Start address of the CU. */
19093 CORE_ADDR previous_cu_start;
19096 /* Write an address entry to OBSTACK. */
19099 add_address_entry (struct objfile *objfile, struct obstack *obstack,
19100 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
19102 offset_type cu_index_to_write;
19104 CORE_ADDR baseaddr;
19106 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19108 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
19109 obstack_grow (obstack, addr, 8);
19110 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
19111 obstack_grow (obstack, addr, 8);
19112 cu_index_to_write = MAYBE_SWAP (cu_index);
19113 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
19116 /* Worker function for traversing an addrmap to build the address table. */
19119 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
19121 struct addrmap_index_data *data = datap;
19122 struct partial_symtab *pst = obj;
19124 if (data->previous_valid)
19125 add_address_entry (data->objfile, data->addr_obstack,
19126 data->previous_cu_start, start_addr,
19127 data->previous_cu_index);
19129 data->previous_cu_start = start_addr;
19132 struct psymtab_cu_index_map find_map, *map;
19133 find_map.psymtab = pst;
19134 map = htab_find (data->cu_index_htab, &find_map);
19135 gdb_assert (map != NULL);
19136 data->previous_cu_index = map->cu_index;
19137 data->previous_valid = 1;
19140 data->previous_valid = 0;
19145 /* Write OBJFILE's address map to OBSTACK.
19146 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
19147 in the index file. */
19150 write_address_map (struct objfile *objfile, struct obstack *obstack,
19151 htab_t cu_index_htab)
19153 struct addrmap_index_data addrmap_index_data;
19155 /* When writing the address table, we have to cope with the fact that
19156 the addrmap iterator only provides the start of a region; we have to
19157 wait until the next invocation to get the start of the next region. */
19159 addrmap_index_data.objfile = objfile;
19160 addrmap_index_data.addr_obstack = obstack;
19161 addrmap_index_data.cu_index_htab = cu_index_htab;
19162 addrmap_index_data.previous_valid = 0;
19164 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
19165 &addrmap_index_data);
19167 /* It's highly unlikely the last entry (end address = 0xff...ff)
19168 is valid, but we should still handle it.
19169 The end address is recorded as the start of the next region, but that
19170 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
19172 if (addrmap_index_data.previous_valid)
19173 add_address_entry (objfile, obstack,
19174 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
19175 addrmap_index_data.previous_cu_index);
19178 /* Return the symbol kind of PSYM. */
19180 static gdb_index_symbol_kind
19181 symbol_kind (struct partial_symbol *psym)
19183 domain_enum domain = PSYMBOL_DOMAIN (psym);
19184 enum address_class aclass = PSYMBOL_CLASS (psym);
19192 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
19194 return GDB_INDEX_SYMBOL_KIND_TYPE;
19196 case LOC_CONST_BYTES:
19197 case LOC_OPTIMIZED_OUT:
19199 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
19201 /* Note: It's currently impossible to recognize psyms as enum values
19202 short of reading the type info. For now punt. */
19203 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
19205 /* There are other LOC_FOO values that one might want to classify
19206 as variables, but dwarf2read.c doesn't currently use them. */
19207 return GDB_INDEX_SYMBOL_KIND_OTHER;
19209 case STRUCT_DOMAIN:
19210 return GDB_INDEX_SYMBOL_KIND_TYPE;
19212 return GDB_INDEX_SYMBOL_KIND_OTHER;
19216 /* Add a list of partial symbols to SYMTAB. */
19219 write_psymbols (struct mapped_symtab *symtab,
19221 struct partial_symbol **psymp,
19223 offset_type cu_index,
19226 for (; count-- > 0; ++psymp)
19228 struct partial_symbol *psym = *psymp;
19231 if (SYMBOL_LANGUAGE (psym) == language_ada)
19232 error (_("Ada is not currently supported by the index"));
19234 /* Only add a given psymbol once. */
19235 slot = htab_find_slot (psyms_seen, psym, INSERT);
19238 gdb_index_symbol_kind kind = symbol_kind (psym);
19241 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
19242 is_static, kind, cu_index);
19247 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
19248 exception if there is an error. */
19251 write_obstack (FILE *file, struct obstack *obstack)
19253 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
19255 != obstack_object_size (obstack))
19256 error (_("couldn't data write to file"));
19259 /* Unlink a file if the argument is not NULL. */
19262 unlink_if_set (void *p)
19264 char **filename = p;
19266 unlink (*filename);
19269 /* A helper struct used when iterating over debug_types. */
19270 struct signatured_type_index_data
19272 struct objfile *objfile;
19273 struct mapped_symtab *symtab;
19274 struct obstack *types_list;
19279 /* A helper function that writes a single signatured_type to an
19283 write_one_signatured_type (void **slot, void *d)
19285 struct signatured_type_index_data *info = d;
19286 struct signatured_type *entry = (struct signatured_type *) *slot;
19287 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
19288 struct partial_symtab *psymtab = per_cu->v.psymtab;
19291 write_psymbols (info->symtab,
19293 info->objfile->global_psymbols.list
19294 + psymtab->globals_offset,
19295 psymtab->n_global_syms, info->cu_index,
19297 write_psymbols (info->symtab,
19299 info->objfile->static_psymbols.list
19300 + psymtab->statics_offset,
19301 psymtab->n_static_syms, info->cu_index,
19304 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
19305 entry->per_cu.offset.sect_off);
19306 obstack_grow (info->types_list, val, 8);
19307 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
19308 entry->type_offset_in_tu.cu_off);
19309 obstack_grow (info->types_list, val, 8);
19310 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
19311 obstack_grow (info->types_list, val, 8);
19318 /* Recurse into all "included" dependencies and write their symbols as
19319 if they appeared in this psymtab. */
19322 recursively_write_psymbols (struct objfile *objfile,
19323 struct partial_symtab *psymtab,
19324 struct mapped_symtab *symtab,
19326 offset_type cu_index)
19330 for (i = 0; i < psymtab->number_of_dependencies; ++i)
19331 if (psymtab->dependencies[i]->user != NULL)
19332 recursively_write_psymbols (objfile, psymtab->dependencies[i],
19333 symtab, psyms_seen, cu_index);
19335 write_psymbols (symtab,
19337 objfile->global_psymbols.list + psymtab->globals_offset,
19338 psymtab->n_global_syms, cu_index,
19340 write_psymbols (symtab,
19342 objfile->static_psymbols.list + psymtab->statics_offset,
19343 psymtab->n_static_syms, cu_index,
19347 /* Create an index file for OBJFILE in the directory DIR. */
19350 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
19352 struct cleanup *cleanup;
19353 char *filename, *cleanup_filename;
19354 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
19355 struct obstack cu_list, types_cu_list;
19358 struct mapped_symtab *symtab;
19359 offset_type val, size_of_contents, total_len;
19362 htab_t cu_index_htab;
19363 struct psymtab_cu_index_map *psymtab_cu_index_map;
19365 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
19368 if (dwarf2_per_objfile->using_index)
19369 error (_("Cannot use an index to create the index"));
19371 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
19372 error (_("Cannot make an index when the file has multiple .debug_types sections"));
19374 if (stat (objfile->name, &st) < 0)
19375 perror_with_name (objfile->name);
19377 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
19378 INDEX_SUFFIX, (char *) NULL);
19379 cleanup = make_cleanup (xfree, filename);
19381 out_file = fopen (filename, "wb");
19383 error (_("Can't open `%s' for writing"), filename);
19385 cleanup_filename = filename;
19386 make_cleanup (unlink_if_set, &cleanup_filename);
19388 symtab = create_mapped_symtab ();
19389 make_cleanup (cleanup_mapped_symtab, symtab);
19391 obstack_init (&addr_obstack);
19392 make_cleanup_obstack_free (&addr_obstack);
19394 obstack_init (&cu_list);
19395 make_cleanup_obstack_free (&cu_list);
19397 obstack_init (&types_cu_list);
19398 make_cleanup_obstack_free (&types_cu_list);
19400 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
19401 NULL, xcalloc, xfree);
19402 make_cleanup_htab_delete (psyms_seen);
19404 /* While we're scanning CU's create a table that maps a psymtab pointer
19405 (which is what addrmap records) to its index (which is what is recorded
19406 in the index file). This will later be needed to write the address
19408 cu_index_htab = htab_create_alloc (100,
19409 hash_psymtab_cu_index,
19410 eq_psymtab_cu_index,
19411 NULL, xcalloc, xfree);
19412 make_cleanup_htab_delete (cu_index_htab);
19413 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
19414 xmalloc (sizeof (struct psymtab_cu_index_map)
19415 * dwarf2_per_objfile->n_comp_units);
19416 make_cleanup (xfree, psymtab_cu_index_map);
19418 /* The CU list is already sorted, so we don't need to do additional
19419 work here. Also, the debug_types entries do not appear in
19420 all_comp_units, but only in their own hash table. */
19421 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
19423 struct dwarf2_per_cu_data *per_cu
19424 = dwarf2_per_objfile->all_comp_units[i];
19425 struct partial_symtab *psymtab = per_cu->v.psymtab;
19427 struct psymtab_cu_index_map *map;
19430 if (psymtab->user == NULL)
19431 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
19433 map = &psymtab_cu_index_map[i];
19434 map->psymtab = psymtab;
19436 slot = htab_find_slot (cu_index_htab, map, INSERT);
19437 gdb_assert (slot != NULL);
19438 gdb_assert (*slot == NULL);
19441 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
19442 per_cu->offset.sect_off);
19443 obstack_grow (&cu_list, val, 8);
19444 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
19445 obstack_grow (&cu_list, val, 8);
19448 /* Dump the address map. */
19449 write_address_map (objfile, &addr_obstack, cu_index_htab);
19451 /* Write out the .debug_type entries, if any. */
19452 if (dwarf2_per_objfile->signatured_types)
19454 struct signatured_type_index_data sig_data;
19456 sig_data.objfile = objfile;
19457 sig_data.symtab = symtab;
19458 sig_data.types_list = &types_cu_list;
19459 sig_data.psyms_seen = psyms_seen;
19460 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
19461 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
19462 write_one_signatured_type, &sig_data);
19465 /* Now that we've processed all symbols we can shrink their cu_indices
19467 uniquify_cu_indices (symtab);
19469 obstack_init (&constant_pool);
19470 make_cleanup_obstack_free (&constant_pool);
19471 obstack_init (&symtab_obstack);
19472 make_cleanup_obstack_free (&symtab_obstack);
19473 write_hash_table (symtab, &symtab_obstack, &constant_pool);
19475 obstack_init (&contents);
19476 make_cleanup_obstack_free (&contents);
19477 size_of_contents = 6 * sizeof (offset_type);
19478 total_len = size_of_contents;
19480 /* The version number. */
19481 val = MAYBE_SWAP (7);
19482 obstack_grow (&contents, &val, sizeof (val));
19484 /* The offset of the CU list from the start of the file. */
19485 val = MAYBE_SWAP (total_len);
19486 obstack_grow (&contents, &val, sizeof (val));
19487 total_len += obstack_object_size (&cu_list);
19489 /* The offset of the types CU list from the start of the file. */
19490 val = MAYBE_SWAP (total_len);
19491 obstack_grow (&contents, &val, sizeof (val));
19492 total_len += obstack_object_size (&types_cu_list);
19494 /* The offset of the address table from the start of the file. */
19495 val = MAYBE_SWAP (total_len);
19496 obstack_grow (&contents, &val, sizeof (val));
19497 total_len += obstack_object_size (&addr_obstack);
19499 /* The offset of the symbol table from the start of the file. */
19500 val = MAYBE_SWAP (total_len);
19501 obstack_grow (&contents, &val, sizeof (val));
19502 total_len += obstack_object_size (&symtab_obstack);
19504 /* The offset of the constant pool from the start of the file. */
19505 val = MAYBE_SWAP (total_len);
19506 obstack_grow (&contents, &val, sizeof (val));
19507 total_len += obstack_object_size (&constant_pool);
19509 gdb_assert (obstack_object_size (&contents) == size_of_contents);
19511 write_obstack (out_file, &contents);
19512 write_obstack (out_file, &cu_list);
19513 write_obstack (out_file, &types_cu_list);
19514 write_obstack (out_file, &addr_obstack);
19515 write_obstack (out_file, &symtab_obstack);
19516 write_obstack (out_file, &constant_pool);
19520 /* We want to keep the file, so we set cleanup_filename to NULL
19521 here. See unlink_if_set. */
19522 cleanup_filename = NULL;
19524 do_cleanups (cleanup);
19527 /* Implementation of the `save gdb-index' command.
19529 Note that the file format used by this command is documented in the
19530 GDB manual. Any changes here must be documented there. */
19533 save_gdb_index_command (char *arg, int from_tty)
19535 struct objfile *objfile;
19538 error (_("usage: save gdb-index DIRECTORY"));
19540 ALL_OBJFILES (objfile)
19544 /* If the objfile does not correspond to an actual file, skip it. */
19545 if (stat (objfile->name, &st) < 0)
19548 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19549 if (dwarf2_per_objfile)
19551 volatile struct gdb_exception except;
19553 TRY_CATCH (except, RETURN_MASK_ERROR)
19555 write_psymtabs_to_index (objfile, arg);
19557 if (except.reason < 0)
19558 exception_fprintf (gdb_stderr, except,
19559 _("Error while writing index for `%s': "),
19567 int dwarf2_always_disassemble;
19570 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
19571 struct cmd_list_element *c, const char *value)
19573 fprintf_filtered (file,
19574 _("Whether to always disassemble "
19575 "DWARF expressions is %s.\n"),
19580 show_check_physname (struct ui_file *file, int from_tty,
19581 struct cmd_list_element *c, const char *value)
19583 fprintf_filtered (file,
19584 _("Whether to check \"physname\" is %s.\n"),
19588 void _initialize_dwarf2_read (void);
19591 _initialize_dwarf2_read (void)
19593 struct cmd_list_element *c;
19595 dwarf2_objfile_data_key
19596 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
19598 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
19599 Set DWARF 2 specific variables.\n\
19600 Configure DWARF 2 variables such as the cache size"),
19601 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
19602 0/*allow-unknown*/, &maintenance_set_cmdlist);
19604 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
19605 Show DWARF 2 specific variables\n\
19606 Show DWARF 2 variables such as the cache size"),
19607 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
19608 0/*allow-unknown*/, &maintenance_show_cmdlist);
19610 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
19611 &dwarf2_max_cache_age, _("\
19612 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
19613 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
19614 A higher limit means that cached compilation units will be stored\n\
19615 in memory longer, and more total memory will be used. Zero disables\n\
19616 caching, which can slow down startup."),
19618 show_dwarf2_max_cache_age,
19619 &set_dwarf2_cmdlist,
19620 &show_dwarf2_cmdlist);
19622 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
19623 &dwarf2_always_disassemble, _("\
19624 Set whether `info address' always disassembles DWARF expressions."), _("\
19625 Show whether `info address' always disassembles DWARF expressions."), _("\
19626 When enabled, DWARF expressions are always printed in an assembly-like\n\
19627 syntax. When disabled, expressions will be printed in a more\n\
19628 conversational style, when possible."),
19630 show_dwarf2_always_disassemble,
19631 &set_dwarf2_cmdlist,
19632 &show_dwarf2_cmdlist);
19634 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
19635 Set debugging of the dwarf2 reader."), _("\
19636 Show debugging of the dwarf2 reader."), _("\
19637 When enabled, debugging messages are printed during dwarf2 reading\n\
19638 and symtab expansion."),
19641 &setdebuglist, &showdebuglist);
19643 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
19644 Set debugging of the dwarf2 DIE reader."), _("\
19645 Show debugging of the dwarf2 DIE reader."), _("\
19646 When enabled (non-zero), DIEs are dumped after they are read in.\n\
19647 The value is the maximum depth to print."),
19650 &setdebuglist, &showdebuglist);
19652 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
19653 Set cross-checking of \"physname\" code against demangler."), _("\
19654 Show cross-checking of \"physname\" code against demangler."), _("\
19655 When enabled, GDB's internal \"physname\" code is checked against\n\
19657 NULL, show_check_physname,
19658 &setdebuglist, &showdebuglist);
19660 add_setshow_boolean_cmd ("use-deprecated-index-sections",
19661 no_class, &use_deprecated_index_sections, _("\
19662 Set whether to use deprecated gdb_index sections."), _("\
19663 Show whether to use deprecated gdb_index sections."), _("\
19664 When enabled, deprecated .gdb_index sections are used anyway.\n\
19665 Normally they are ignored either because of a missing feature or\n\
19666 performance issue.\n\
19667 Warning: This option must be enabled before gdb reads the file."),
19670 &setlist, &showlist);
19672 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
19674 Save a gdb-index file.\n\
19675 Usage: save gdb-index DIRECTORY"),
19677 set_cmd_completer (c, filename_completer);