1 /* Target-dependent code for the HP PA architecture, for GDB.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 Contributed by the Center for Software Science at the
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
32 #include "completer.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
42 #include <sys/types.h>
46 #include <sys/param.h>
49 #include <sys/ptrace.h>
50 #include <machine/save_state.h>
52 #ifdef COFF_ENCAPSULATE
53 #include "a.out.encap.h"
57 /*#include <sys/user.h> After a.out.h */
68 /* Some local constants. */
69 static const int hppa_num_regs = 128;
71 /* To support detection of the pseudo-initial frame
73 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
74 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
76 static int extract_5_load (unsigned int);
78 static unsigned extract_5R_store (unsigned int);
80 static unsigned extract_5r_store (unsigned int);
82 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
84 static int find_proc_framesize (CORE_ADDR);
86 static int find_return_regnum (CORE_ADDR);
88 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
90 static int extract_17 (unsigned int);
92 static unsigned deposit_21 (unsigned int, unsigned int);
94 static int extract_21 (unsigned);
96 static unsigned deposit_14 (int, unsigned int);
98 static int extract_14 (unsigned);
100 static void unwind_command (char *, int);
102 static int low_sign_extend (unsigned int, unsigned int);
104 static int sign_extend (unsigned int, unsigned int);
106 static int restore_pc_queue (CORE_ADDR *);
108 static int hppa_alignof (struct type *);
110 /* To support multi-threading and stepping. */
111 int hppa_prepare_to_proceed ();
113 static int prologue_inst_adjust_sp (unsigned long);
115 static int is_branch (unsigned long);
117 static int inst_saves_gr (unsigned long);
119 static int inst_saves_fr (unsigned long);
121 static int pc_in_interrupt_handler (CORE_ADDR);
123 static int pc_in_linker_stub (CORE_ADDR);
125 static int compare_unwind_entries (const void *, const void *);
127 static void read_unwind_info (struct objfile *);
129 static void internalize_unwinds (struct objfile *,
130 struct unwind_table_entry *,
131 asection *, unsigned int,
132 unsigned int, CORE_ADDR);
133 static void pa_print_registers (char *, int, int);
134 static void pa_strcat_registers (char *, int, int, struct ui_file *);
135 static void pa_register_look_aside (char *, int, long *);
136 static void pa_print_fp_reg (int);
137 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
138 static void record_text_segment_lowaddr (bfd *, asection *, void *);
139 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
140 following functions static, once we hppa is partially multiarched. */
141 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
142 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
143 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
144 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
145 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
146 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
147 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
148 CORE_ADDR hppa_stack_align (CORE_ADDR sp);
149 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
150 int hppa_instruction_nullified (void);
151 int hppa_register_raw_size (int reg_nr);
152 int hppa_register_byte (int reg_nr);
153 struct type * hppa_register_virtual_type (int reg_nr);
154 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
155 void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
156 int hppa_use_struct_convention (int gcc_p, struct type *type);
157 void hppa_store_return_value (struct type *type, char *valbuf);
158 CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
159 int hppa_cannot_store_register (int regnum);
160 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
161 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
162 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
163 int hppa_frameless_function_invocation (struct frame_info *frame);
164 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
165 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
166 CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
167 int hppa_frame_num_args (struct frame_info *frame);
168 void hppa_push_dummy_frame (void);
169 void hppa_pop_frame (void);
170 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
171 int nargs, struct value **args,
172 struct type *type, int gcc_p);
173 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
174 int struct_return, CORE_ADDR struct_addr);
175 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
176 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
177 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
178 CORE_ADDR hppa_target_read_fp (void);
182 struct minimal_symbol *msym;
183 CORE_ADDR solib_handle;
184 CORE_ADDR return_val;
188 static int cover_find_stub_with_shl_get (void *);
190 static int is_pa_2 = 0; /* False */
192 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
193 extern int hp_som_som_object_present;
195 /* In breakpoint.c */
196 extern int exception_catchpoints_are_fragile;
198 /* Should call_function allocate stack space for a struct return? */
201 hppa_use_struct_convention (int gcc_p, struct type *type)
203 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
207 /* Routines to extract various sized constants out of hppa
210 /* This assumes that no garbage lies outside of the lower bits of
214 sign_extend (unsigned val, unsigned bits)
216 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
219 /* For many immediate values the sign bit is the low bit! */
222 low_sign_extend (unsigned val, unsigned bits)
224 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
227 /* extract the immediate field from a ld{bhw}s instruction */
230 extract_5_load (unsigned word)
232 return low_sign_extend (word >> 16 & MASK_5, 5);
235 /* extract the immediate field from a break instruction */
238 extract_5r_store (unsigned word)
240 return (word & MASK_5);
243 /* extract the immediate field from a {sr}sm instruction */
246 extract_5R_store (unsigned word)
248 return (word >> 16 & MASK_5);
251 /* extract a 14 bit immediate field */
254 extract_14 (unsigned word)
256 return low_sign_extend (word & MASK_14, 14);
259 /* deposit a 14 bit constant in a word */
262 deposit_14 (int opnd, unsigned word)
264 unsigned sign = (opnd < 0 ? 1 : 0);
266 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
269 /* extract a 21 bit constant */
272 extract_21 (unsigned word)
278 val = GET_FIELD (word, 20, 20);
280 val |= GET_FIELD (word, 9, 19);
282 val |= GET_FIELD (word, 5, 6);
284 val |= GET_FIELD (word, 0, 4);
286 val |= GET_FIELD (word, 7, 8);
287 return sign_extend (val, 21) << 11;
290 /* deposit a 21 bit constant in a word. Although 21 bit constants are
291 usually the top 21 bits of a 32 bit constant, we assume that only
292 the low 21 bits of opnd are relevant */
295 deposit_21 (unsigned opnd, unsigned word)
299 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
301 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
303 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
305 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
307 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
311 /* extract a 17 bit constant from branch instructions, returning the
312 19 bit signed value. */
315 extract_17 (unsigned word)
317 return sign_extend (GET_FIELD (word, 19, 28) |
318 GET_FIELD (word, 29, 29) << 10 |
319 GET_FIELD (word, 11, 15) << 11 |
320 (word & 0x1) << 16, 17) << 2;
324 /* Compare the start address for two unwind entries returning 1 if
325 the first address is larger than the second, -1 if the second is
326 larger than the first, and zero if they are equal. */
329 compare_unwind_entries (const void *arg1, const void *arg2)
331 const struct unwind_table_entry *a = arg1;
332 const struct unwind_table_entry *b = arg2;
334 if (a->region_start > b->region_start)
336 else if (a->region_start < b->region_start)
342 static CORE_ADDR low_text_segment_address;
345 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
347 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
348 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
349 && section->vma < low_text_segment_address)
350 low_text_segment_address = section->vma;
354 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
355 asection *section, unsigned int entries, unsigned int size,
356 CORE_ADDR text_offset)
358 /* We will read the unwind entries into temporary memory, then
359 fill in the actual unwind table. */
364 char *buf = alloca (size);
366 low_text_segment_address = -1;
368 /* If addresses are 64 bits wide, then unwinds are supposed to
369 be segment relative offsets instead of absolute addresses.
371 Note that when loading a shared library (text_offset != 0) the
372 unwinds are already relative to the text_offset that will be
374 if (TARGET_PTR_BIT == 64 && text_offset == 0)
376 bfd_map_over_sections (objfile->obfd,
377 record_text_segment_lowaddr, NULL);
379 /* ?!? Mask off some low bits. Should this instead subtract
380 out the lowest section's filepos or something like that?
381 This looks very hokey to me. */
382 low_text_segment_address &= ~0xfff;
383 text_offset += low_text_segment_address;
386 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
388 /* Now internalize the information being careful to handle host/target
390 for (i = 0; i < entries; i++)
392 table[i].region_start = bfd_get_32 (objfile->obfd,
394 table[i].region_start += text_offset;
396 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
397 table[i].region_end += text_offset;
399 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
401 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
402 table[i].Millicode = (tmp >> 30) & 0x1;
403 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
404 table[i].Region_description = (tmp >> 27) & 0x3;
405 table[i].reserved1 = (tmp >> 26) & 0x1;
406 table[i].Entry_SR = (tmp >> 25) & 0x1;
407 table[i].Entry_FR = (tmp >> 21) & 0xf;
408 table[i].Entry_GR = (tmp >> 16) & 0x1f;
409 table[i].Args_stored = (tmp >> 15) & 0x1;
410 table[i].Variable_Frame = (tmp >> 14) & 0x1;
411 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
412 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
413 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
414 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
415 table[i].Ada_Region = (tmp >> 9) & 0x1;
416 table[i].cxx_info = (tmp >> 8) & 0x1;
417 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
418 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
419 table[i].reserved2 = (tmp >> 5) & 0x1;
420 table[i].Save_SP = (tmp >> 4) & 0x1;
421 table[i].Save_RP = (tmp >> 3) & 0x1;
422 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
423 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
424 table[i].Cleanup_defined = tmp & 0x1;
425 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
427 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
428 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
429 table[i].Large_frame = (tmp >> 29) & 0x1;
430 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
431 table[i].reserved4 = (tmp >> 27) & 0x1;
432 table[i].Total_frame_size = tmp & 0x7ffffff;
434 /* Stub unwinds are handled elsewhere. */
435 table[i].stub_unwind.stub_type = 0;
436 table[i].stub_unwind.padding = 0;
441 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
442 the object file. This info is used mainly by find_unwind_entry() to find
443 out the stack frame size and frame pointer used by procedures. We put
444 everything on the psymbol obstack in the objfile so that it automatically
445 gets freed when the objfile is destroyed. */
448 read_unwind_info (struct objfile *objfile)
450 asection *unwind_sec, *stub_unwind_sec;
451 unsigned unwind_size, stub_unwind_size, total_size;
452 unsigned index, unwind_entries;
453 unsigned stub_entries, total_entries;
454 CORE_ADDR text_offset;
455 struct obj_unwind_info *ui;
456 obj_private_data_t *obj_private;
458 text_offset = ANOFFSET (objfile->section_offsets, 0);
459 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
460 sizeof (struct obj_unwind_info));
466 /* For reasons unknown the HP PA64 tools generate multiple unwinder
467 sections in a single executable. So we just iterate over every
468 section in the BFD looking for unwinder sections intead of trying
469 to do a lookup with bfd_get_section_by_name.
471 First determine the total size of the unwind tables so that we
472 can allocate memory in a nice big hunk. */
474 for (unwind_sec = objfile->obfd->sections;
476 unwind_sec = unwind_sec->next)
478 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
479 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
481 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
482 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
484 total_entries += unwind_entries;
488 /* Now compute the size of the stub unwinds. Note the ELF tools do not
489 use stub unwinds at the curren time. */
490 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
494 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
495 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
499 stub_unwind_size = 0;
503 /* Compute total number of unwind entries and their total size. */
504 total_entries += stub_entries;
505 total_size = total_entries * sizeof (struct unwind_table_entry);
507 /* Allocate memory for the unwind table. */
508 ui->table = (struct unwind_table_entry *)
509 obstack_alloc (&objfile->psymbol_obstack, total_size);
510 ui->last = total_entries - 1;
512 /* Now read in each unwind section and internalize the standard unwind
515 for (unwind_sec = objfile->obfd->sections;
517 unwind_sec = unwind_sec->next)
519 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
520 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
522 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
523 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
525 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
526 unwind_entries, unwind_size, text_offset);
527 index += unwind_entries;
531 /* Now read in and internalize the stub unwind entries. */
532 if (stub_unwind_size > 0)
535 char *buf = alloca (stub_unwind_size);
537 /* Read in the stub unwind entries. */
538 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
539 0, stub_unwind_size);
541 /* Now convert them into regular unwind entries. */
542 for (i = 0; i < stub_entries; i++, index++)
544 /* Clear out the next unwind entry. */
545 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
547 /* Convert offset & size into region_start and region_end.
548 Stuff away the stub type into "reserved" fields. */
549 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
551 ui->table[index].region_start += text_offset;
553 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
556 ui->table[index].region_end
557 = ui->table[index].region_start + 4 *
558 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
564 /* Unwind table needs to be kept sorted. */
565 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
566 compare_unwind_entries);
568 /* Keep a pointer to the unwind information. */
569 if (objfile->obj_private == NULL)
571 obj_private = (obj_private_data_t *)
572 obstack_alloc (&objfile->psymbol_obstack,
573 sizeof (obj_private_data_t));
574 obj_private->unwind_info = NULL;
575 obj_private->so_info = NULL;
578 objfile->obj_private = obj_private;
580 obj_private = (obj_private_data_t *) objfile->obj_private;
581 obj_private->unwind_info = ui;
584 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
585 of the objfiles seeking the unwind table entry for this PC. Each objfile
586 contains a sorted list of struct unwind_table_entry. Since we do a binary
587 search of the unwind tables, we depend upon them to be sorted. */
589 struct unwind_table_entry *
590 find_unwind_entry (CORE_ADDR pc)
592 int first, middle, last;
593 struct objfile *objfile;
595 /* A function at address 0? Not in HP-UX! */
596 if (pc == (CORE_ADDR) 0)
599 ALL_OBJFILES (objfile)
601 struct obj_unwind_info *ui;
603 if (objfile->obj_private)
604 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
608 read_unwind_info (objfile);
609 if (objfile->obj_private == NULL)
610 error ("Internal error reading unwind information.");
611 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
614 /* First, check the cache */
617 && pc >= ui->cache->region_start
618 && pc <= ui->cache->region_end)
621 /* Not in the cache, do a binary search */
626 while (first <= last)
628 middle = (first + last) / 2;
629 if (pc >= ui->table[middle].region_start
630 && pc <= ui->table[middle].region_end)
632 ui->cache = &ui->table[middle];
633 return &ui->table[middle];
636 if (pc < ui->table[middle].region_start)
641 } /* ALL_OBJFILES() */
645 /* Return the adjustment necessary to make for addresses on the stack
646 as presented by hpread.c.
648 This is necessary because of the stack direction on the PA and the
649 bizarre way in which someone (?) decided they wanted to handle
650 frame pointerless code in GDB. */
652 hpread_adjust_stack_address (CORE_ADDR func_addr)
654 struct unwind_table_entry *u;
656 u = find_unwind_entry (func_addr);
660 return u->Total_frame_size << 3;
663 /* Called to determine if PC is in an interrupt handler of some
667 pc_in_interrupt_handler (CORE_ADDR pc)
669 struct unwind_table_entry *u;
670 struct minimal_symbol *msym_us;
672 u = find_unwind_entry (pc);
676 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
677 its frame isn't a pure interrupt frame. Deal with this. */
678 msym_us = lookup_minimal_symbol_by_pc (pc);
680 return (u->HP_UX_interrupt_marker
681 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
684 /* Called when no unwind descriptor was found for PC. Returns 1 if it
685 appears that PC is in a linker stub.
687 ?!? Need to handle stubs which appear in PA64 code. */
690 pc_in_linker_stub (CORE_ADDR pc)
692 int found_magic_instruction = 0;
696 /* If unable to read memory, assume pc is not in a linker stub. */
697 if (target_read_memory (pc, buf, 4) != 0)
700 /* We are looking for something like
702 ; $$dyncall jams RP into this special spot in the frame (RP')
703 ; before calling the "call stub"
706 ldsid (rp),r1 ; Get space associated with RP into r1
707 mtsp r1,sp ; Move it into space register 0
708 be,n 0(sr0),rp) ; back to your regularly scheduled program */
710 /* Maximum known linker stub size is 4 instructions. Search forward
711 from the given PC, then backward. */
712 for (i = 0; i < 4; i++)
714 /* If we hit something with an unwind, stop searching this direction. */
716 if (find_unwind_entry (pc + i * 4) != 0)
719 /* Check for ldsid (rp),r1 which is the magic instruction for a
720 return from a cross-space function call. */
721 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
723 found_magic_instruction = 1;
726 /* Add code to handle long call/branch and argument relocation stubs
730 if (found_magic_instruction != 0)
733 /* Now look backward. */
734 for (i = 0; i < 4; i++)
736 /* If we hit something with an unwind, stop searching this direction. */
738 if (find_unwind_entry (pc - i * 4) != 0)
741 /* Check for ldsid (rp),r1 which is the magic instruction for a
742 return from a cross-space function call. */
743 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
745 found_magic_instruction = 1;
748 /* Add code to handle long call/branch and argument relocation stubs
751 return found_magic_instruction;
755 find_return_regnum (CORE_ADDR pc)
757 struct unwind_table_entry *u;
759 u = find_unwind_entry (pc);
770 /* Return size of frame, or -1 if we should use a frame pointer. */
772 find_proc_framesize (CORE_ADDR pc)
774 struct unwind_table_entry *u;
775 struct minimal_symbol *msym_us;
777 /* This may indicate a bug in our callers... */
778 if (pc == (CORE_ADDR) 0)
781 u = find_unwind_entry (pc);
785 if (pc_in_linker_stub (pc))
786 /* Linker stubs have a zero size frame. */
792 msym_us = lookup_minimal_symbol_by_pc (pc);
794 /* If Save_SP is set, and we're not in an interrupt or signal caller,
795 then we have a frame pointer. Use it. */
797 && !pc_in_interrupt_handler (pc)
799 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
802 return u->Total_frame_size << 3;
805 /* Return offset from sp at which rp is saved, or 0 if not saved. */
806 static int rp_saved (CORE_ADDR);
809 rp_saved (CORE_ADDR pc)
811 struct unwind_table_entry *u;
813 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
814 if (pc == (CORE_ADDR) 0)
817 u = find_unwind_entry (pc);
821 if (pc_in_linker_stub (pc))
822 /* This is the so-called RP'. */
829 return (TARGET_PTR_BIT == 64 ? -16 : -20);
830 else if (u->stub_unwind.stub_type != 0)
832 switch (u->stub_unwind.stub_type)
837 case PARAMETER_RELOCATION:
848 hppa_frameless_function_invocation (struct frame_info *frame)
850 struct unwind_table_entry *u;
852 u = find_unwind_entry (get_frame_pc (frame));
857 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
860 /* Immediately after a function call, return the saved pc.
861 Can't go through the frames for this because on some machines
862 the new frame is not set up until the new function executes
863 some instructions. */
866 hppa_saved_pc_after_call (struct frame_info *frame)
870 struct unwind_table_entry *u;
872 ret_regnum = find_return_regnum (get_frame_pc (frame));
873 pc = read_register (ret_regnum) & ~0x3;
875 /* If PC is in a linker stub, then we need to dig the address
876 the stub will return to out of the stack. */
877 u = find_unwind_entry (pc);
878 if (u && u->stub_unwind.stub_type != 0)
879 return DEPRECATED_FRAME_SAVED_PC (frame);
885 hppa_frame_saved_pc (struct frame_info *frame)
887 CORE_ADDR pc = get_frame_pc (frame);
888 struct unwind_table_entry *u;
889 CORE_ADDR old_pc = 0;
890 int spun_around_loop = 0;
893 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
894 at the base of the frame in an interrupt handler. Registers within
895 are saved in the exact same order as GDB numbers registers. How
897 if (pc_in_interrupt_handler (pc))
898 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
899 TARGET_PTR_BIT / 8) & ~0x3;
901 if ((get_frame_pc (frame) >= get_frame_base (frame)
902 && (get_frame_pc (frame)
903 <= (get_frame_base (frame)
904 /* A call dummy is sized in words, but it is actually a
905 series of instructions. Account for that scaling
907 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
908 * DEPRECATED_CALL_DUMMY_LENGTH)
909 /* Similarly we have to account for 64bit wide register
911 + (32 * DEPRECATED_REGISTER_SIZE)
912 /* We always consider FP regs 8 bytes long. */
913 + (NUM_REGS - FP0_REGNUM) * 8
914 /* Similarly we have to account for 64bit wide register
916 + (6 * DEPRECATED_REGISTER_SIZE)))))
918 return read_memory_integer ((get_frame_base (frame)
919 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
920 TARGET_PTR_BIT / 8) & ~0x3;
923 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
924 /* Deal with signal handler caller frames too. */
925 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
928 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
933 if (hppa_frameless_function_invocation (frame))
937 ret_regnum = find_return_regnum (pc);
939 /* If the next frame is an interrupt frame or a signal
940 handler caller, then we need to look in the saved
941 register area to get the return pointer (the values
942 in the registers may not correspond to anything useful). */
943 if (get_next_frame (frame)
944 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
945 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
947 CORE_ADDR *saved_regs;
948 hppa_frame_init_saved_regs (get_next_frame (frame));
949 saved_regs = get_frame_saved_regs (get_next_frame (frame));
950 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
951 TARGET_PTR_BIT / 8) & 0x2)
953 pc = read_memory_integer (saved_regs[31],
954 TARGET_PTR_BIT / 8) & ~0x3;
956 /* Syscalls are really two frames. The syscall stub itself
957 with a return pointer in %rp and the kernel call with
958 a return pointer in %r31. We return the %rp variant
959 if %r31 is the same as frame->pc. */
960 if (pc == get_frame_pc (frame))
961 pc = read_memory_integer (saved_regs[RP_REGNUM],
962 TARGET_PTR_BIT / 8) & ~0x3;
965 pc = read_memory_integer (saved_regs[RP_REGNUM],
966 TARGET_PTR_BIT / 8) & ~0x3;
969 pc = read_register (ret_regnum) & ~0x3;
973 spun_around_loop = 0;
977 rp_offset = rp_saved (pc);
979 /* Similar to code in frameless function case. If the next
980 frame is a signal or interrupt handler, then dig the right
981 information out of the saved register info. */
983 && get_next_frame (frame)
984 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
985 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
987 CORE_ADDR *saved_regs;
988 hppa_frame_init_saved_regs (get_next_frame (frame));
989 saved_regs = get_frame_saved_regs (get_next_frame (frame));
990 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
991 TARGET_PTR_BIT / 8) & 0x2)
993 pc = read_memory_integer (saved_regs[31],
994 TARGET_PTR_BIT / 8) & ~0x3;
996 /* Syscalls are really two frames. The syscall stub itself
997 with a return pointer in %rp and the kernel call with
998 a return pointer in %r31. We return the %rp variant
999 if %r31 is the same as frame->pc. */
1000 if (pc == get_frame_pc (frame))
1001 pc = read_memory_integer (saved_regs[RP_REGNUM],
1002 TARGET_PTR_BIT / 8) & ~0x3;
1005 pc = read_memory_integer (saved_regs[RP_REGNUM],
1006 TARGET_PTR_BIT / 8) & ~0x3;
1008 else if (rp_offset == 0)
1011 pc = read_register (RP_REGNUM) & ~0x3;
1016 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1017 TARGET_PTR_BIT / 8) & ~0x3;
1021 /* If PC is inside a linker stub, then dig out the address the stub
1024 Don't do this for long branch stubs. Why? For some unknown reason
1025 _start is marked as a long branch stub in hpux10. */
1026 u = find_unwind_entry (pc);
1027 if (u && u->stub_unwind.stub_type != 0
1028 && u->stub_unwind.stub_type != LONG_BRANCH)
1032 /* If this is a dynamic executable, and we're in a signal handler,
1033 then the call chain will eventually point us into the stub for
1034 _sigreturn. Unlike most cases, we'll be pointed to the branch
1035 to the real sigreturn rather than the code after the real branch!.
1037 Else, try to dig the address the stub will return to in the normal
1039 insn = read_memory_integer (pc, 4);
1040 if ((insn & 0xfc00e000) == 0xe8000000)
1041 return (pc + extract_17 (insn) + 8) & ~0x3;
1047 if (spun_around_loop > 1)
1049 /* We're just about to go around the loop again with
1050 no more hope of success. Die. */
1051 error ("Unable to find return pc for this frame");
1061 /* We need to correct the PC and the FP for the outermost frame when we are
1062 in a system call. */
1065 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1070 if (get_next_frame (frame) && !fromleaf)
1073 /* If the next frame represents a frameless function invocation then
1074 we have to do some adjustments that are normally done by
1075 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1079 /* Find the framesize of *this* frame without peeking at the PC
1080 in the current frame structure (it isn't set yet). */
1081 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1083 /* Now adjust our base frame accordingly. If we have a frame pointer
1084 use it, else subtract the size of this frame from the current
1085 frame. (we always want frame->frame to point at the lowest address
1087 if (framesize == -1)
1088 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1090 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1094 flags = read_register (FLAGS_REGNUM);
1095 if (flags & 2) /* In system call? */
1096 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1098 /* The outermost frame is always derived from PC-framesize
1100 One might think frameless innermost frames should have
1101 a frame->frame that is the same as the parent's frame->frame.
1102 That is wrong; frame->frame in that case should be the *high*
1103 address of the parent's frame. It's complicated as hell to
1104 explain, but the parent *always* creates some stack space for
1105 the child. So the child actually does have a frame of some
1106 sorts, and its base is the high address in its parent's frame. */
1107 framesize = find_proc_framesize (get_frame_pc (frame));
1108 if (framesize == -1)
1109 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1111 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1114 /* Given a GDB frame, determine the address of the calling function's
1115 frame. This will be used to create a new GDB frame struct, and
1116 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1117 will be called for the new frame.
1119 This may involve searching through prologues for several functions
1120 at boundaries where GCC calls HP C code, or where code which has
1121 a frame pointer calls code without a frame pointer. */
1124 hppa_frame_chain (struct frame_info *frame)
1126 int my_framesize, caller_framesize;
1127 struct unwind_table_entry *u;
1128 CORE_ADDR frame_base;
1129 struct frame_info *tmp_frame;
1131 /* A frame in the current frame list, or zero. */
1132 struct frame_info *saved_regs_frame = 0;
1133 /* Where the registers were saved in saved_regs_frame. If
1134 saved_regs_frame is zero, this is garbage. */
1135 CORE_ADDR *saved_regs = NULL;
1137 CORE_ADDR caller_pc;
1139 struct minimal_symbol *min_frame_symbol;
1140 struct symbol *frame_symbol;
1141 char *frame_symbol_name;
1143 /* If this is a threaded application, and we see the
1144 routine "__pthread_exit", treat it as the stack root
1146 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1147 frame_symbol = find_pc_function (get_frame_pc (frame));
1149 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1151 /* The test above for "no user function name" would defend
1152 against the slim likelihood that a user might define a
1153 routine named "__pthread_exit" and then try to debug it.
1155 If it weren't commented out, and you tried to debug the
1156 pthread library itself, you'd get errors.
1158 So for today, we don't make that check. */
1159 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1160 if (frame_symbol_name != 0)
1162 if (0 == strncmp (frame_symbol_name,
1163 THREAD_INITIAL_FRAME_SYMBOL,
1164 THREAD_INITIAL_FRAME_SYM_LEN))
1166 /* Pretend we've reached the bottom of the stack. */
1167 return (CORE_ADDR) 0;
1170 } /* End of hacky code for threads. */
1172 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1173 are easy; at *sp we have a full save state strucutre which we can
1174 pull the old stack pointer from. Also see frame_saved_pc for
1175 code to dig a saved PC out of the save state structure. */
1176 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1177 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1178 TARGET_PTR_BIT / 8);
1179 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1180 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1182 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1186 frame_base = get_frame_base (frame);
1188 /* Get frame sizes for the current frame and the frame of the
1190 my_framesize = find_proc_framesize (get_frame_pc (frame));
1191 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1193 /* If we can't determine the caller's PC, then it's not likely we can
1194 really determine anything meaningful about its frame. We'll consider
1195 this to be stack bottom. */
1196 if (caller_pc == (CORE_ADDR) 0)
1197 return (CORE_ADDR) 0;
1199 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1201 /* If caller does not have a frame pointer, then its frame
1202 can be found at current_frame - caller_framesize. */
1203 if (caller_framesize != -1)
1205 return frame_base - caller_framesize;
1207 /* Both caller and callee have frame pointers and are GCC compiled
1208 (SAVE_SP bit in unwind descriptor is on for both functions.
1209 The previous frame pointer is found at the top of the current frame. */
1210 if (caller_framesize == -1 && my_framesize == -1)
1212 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1214 /* Caller has a frame pointer, but callee does not. This is a little
1215 more difficult as GCC and HP C lay out locals and callee register save
1216 areas very differently.
1218 The previous frame pointer could be in a register, or in one of
1219 several areas on the stack.
1221 Walk from the current frame to the innermost frame examining
1222 unwind descriptors to determine if %r3 ever gets saved into the
1223 stack. If so return whatever value got saved into the stack.
1224 If it was never saved in the stack, then the value in %r3 is still
1227 We use information from unwind descriptors to determine if %r3
1228 is saved into the stack (Entry_GR field has this information). */
1230 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1232 u = find_unwind_entry (get_frame_pc (tmp_frame));
1236 /* We could find this information by examining prologues. I don't
1237 think anyone has actually written any tools (not even "strip")
1238 which leave them out of an executable, so maybe this is a moot
1240 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1241 code that doesn't have unwind entries. For example, stepping into
1242 the dynamic linker will give you a PC that has none. Thus, I've
1243 disabled this warning. */
1245 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1247 return (CORE_ADDR) 0;
1251 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1252 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1255 /* Entry_GR specifies the number of callee-saved general registers
1256 saved in the stack. It starts at %r3, so %r3 would be 1. */
1257 if (u->Entry_GR >= 1)
1259 /* The unwind entry claims that r3 is saved here. However,
1260 in optimized code, GCC often doesn't actually save r3.
1261 We'll discover this if we look at the prologue. */
1262 hppa_frame_init_saved_regs (tmp_frame);
1263 saved_regs = get_frame_saved_regs (tmp_frame);
1264 saved_regs_frame = tmp_frame;
1266 /* If we have an address for r3, that's good. */
1267 if (saved_regs[DEPRECATED_FP_REGNUM])
1274 /* We may have walked down the chain into a function with a frame
1277 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1278 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1280 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1282 /* %r3 was saved somewhere in the stack. Dig it out. */
1287 For optimization purposes many kernels don't have the
1288 callee saved registers into the save_state structure upon
1289 entry into the kernel for a syscall; the optimization
1290 is usually turned off if the process is being traced so
1291 that the debugger can get full register state for the
1294 This scheme works well except for two cases:
1296 * Attaching to a process when the process is in the
1297 kernel performing a system call (debugger can't get
1298 full register state for the inferior process since
1299 the process wasn't being traced when it entered the
1302 * Register state is not complete if the system call
1303 causes the process to core dump.
1306 The following heinous code is an attempt to deal with
1307 the lack of register state in a core dump. It will
1308 fail miserably if the function which performs the
1309 system call has a variable sized stack frame. */
1311 if (tmp_frame != saved_regs_frame)
1313 hppa_frame_init_saved_regs (tmp_frame);
1314 saved_regs = get_frame_saved_regs (tmp_frame);
1317 /* Abominable hack. */
1318 if (current_target.to_has_execution == 0
1319 && ((saved_regs[FLAGS_REGNUM]
1320 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1323 || (saved_regs[FLAGS_REGNUM] == 0
1324 && read_register (FLAGS_REGNUM) & 0x2)))
1326 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1329 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1330 TARGET_PTR_BIT / 8);
1334 return frame_base - (u->Total_frame_size << 3);
1338 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1339 TARGET_PTR_BIT / 8);
1344 /* Get the innermost frame. */
1346 while (get_next_frame (tmp_frame) != NULL)
1347 tmp_frame = get_next_frame (tmp_frame);
1349 if (tmp_frame != saved_regs_frame)
1351 hppa_frame_init_saved_regs (tmp_frame);
1352 saved_regs = get_frame_saved_regs (tmp_frame);
1355 /* Abominable hack. See above. */
1356 if (current_target.to_has_execution == 0
1357 && ((saved_regs[FLAGS_REGNUM]
1358 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1361 || (saved_regs[FLAGS_REGNUM] == 0
1362 && read_register (FLAGS_REGNUM) & 0x2)))
1364 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1367 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1368 TARGET_PTR_BIT / 8);
1372 return frame_base - (u->Total_frame_size << 3);
1376 /* The value in %r3 was never saved into the stack (thus %r3 still
1377 holds the value of the previous frame pointer). */
1378 return deprecated_read_fp ();
1383 /* To see if a frame chain is valid, see if the caller looks like it
1384 was compiled with gcc. */
1387 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1389 struct minimal_symbol *msym_us;
1390 struct minimal_symbol *msym_start;
1391 struct unwind_table_entry *u, *next_u = NULL;
1392 struct frame_info *next;
1394 u = find_unwind_entry (get_frame_pc (thisframe));
1399 /* We can't just check that the same of msym_us is "_start", because
1400 someone idiotically decided that they were going to make a Ltext_end
1401 symbol with the same address. This Ltext_end symbol is totally
1402 indistinguishable (as nearly as I can tell) from the symbol for a function
1403 which is (legitimately, since it is in the user's namespace)
1404 named Ltext_end, so we can't just ignore it. */
1405 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1406 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1409 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1412 /* Grrrr. Some new idiot decided that they don't want _start for the
1413 PRO configurations; $START$ calls main directly.... Deal with it. */
1414 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1417 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1420 next = get_next_frame (thisframe);
1422 next_u = find_unwind_entry (get_frame_pc (next));
1424 /* If this frame does not save SP, has no stack, isn't a stub,
1425 and doesn't "call" an interrupt routine or signal handler caller,
1426 then its not valid. */
1427 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1428 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1429 || (next_u && next_u->HP_UX_interrupt_marker))
1432 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1438 /* These functions deal with saving and restoring register state
1439 around a function call in the inferior. They keep the stack
1440 double-word aligned; eventually, on an hp700, the stack will have
1441 to be aligned to a 64-byte boundary. */
1444 hppa_push_dummy_frame (void)
1446 CORE_ADDR sp, pc, pcspace;
1447 register int regnum;
1448 CORE_ADDR int_buffer;
1451 pc = hppa_target_read_pc (inferior_ptid);
1452 int_buffer = read_register (FLAGS_REGNUM);
1453 if (int_buffer & 0x2)
1455 const unsigned int sid = (pc >> 30) & 0x3;
1457 pcspace = read_register (SR4_REGNUM);
1459 pcspace = read_register (SR4_REGNUM + 4 + sid);
1462 pcspace = read_register (PCSQ_HEAD_REGNUM);
1464 /* Space for "arguments"; the RP goes in here. */
1465 sp = read_register (SP_REGNUM) + 48;
1466 int_buffer = read_register (RP_REGNUM) | 0x3;
1468 /* The 32bit and 64bit ABIs save the return pointer into different
1470 if (DEPRECATED_REGISTER_SIZE == 8)
1471 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1473 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1475 int_buffer = deprecated_read_fp ();
1476 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1478 write_register (DEPRECATED_FP_REGNUM, sp);
1480 sp += 2 * DEPRECATED_REGISTER_SIZE;
1482 for (regnum = 1; regnum < 32; regnum++)
1483 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1484 sp = push_word (sp, read_register (regnum));
1486 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1487 if (DEPRECATED_REGISTER_SIZE != 8)
1490 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1492 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1493 (char *) &freg_buffer, 8);
1494 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1496 sp = push_word (sp, read_register (IPSW_REGNUM));
1497 sp = push_word (sp, read_register (SAR_REGNUM));
1498 sp = push_word (sp, pc);
1499 sp = push_word (sp, pcspace);
1500 sp = push_word (sp, pc + 4);
1501 sp = push_word (sp, pcspace);
1502 write_register (SP_REGNUM, sp);
1506 find_dummy_frame_regs (struct frame_info *frame,
1507 CORE_ADDR frame_saved_regs[])
1509 CORE_ADDR fp = get_frame_base (frame);
1512 /* The 32bit and 64bit ABIs save RP into different locations. */
1513 if (DEPRECATED_REGISTER_SIZE == 8)
1514 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1516 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1518 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1520 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1522 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1524 if (i != DEPRECATED_FP_REGNUM)
1526 frame_saved_regs[i] = fp;
1527 fp += DEPRECATED_REGISTER_SIZE;
1531 /* This is not necessary or desirable for the 64bit ABI. */
1532 if (DEPRECATED_REGISTER_SIZE != 8)
1535 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1536 frame_saved_regs[i] = fp;
1538 frame_saved_regs[IPSW_REGNUM] = fp;
1539 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1540 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1541 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1542 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1543 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1547 hppa_pop_frame (void)
1549 register struct frame_info *frame = get_current_frame ();
1550 register CORE_ADDR fp, npc, target_pc;
1551 register int regnum;
1555 fp = get_frame_base (frame);
1556 hppa_frame_init_saved_regs (frame);
1557 fsr = get_frame_saved_regs (frame);
1559 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1560 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1561 restore_pc_queue (fsr);
1564 for (regnum = 31; regnum > 0; regnum--)
1566 write_register (regnum, read_memory_integer (fsr[regnum],
1567 DEPRECATED_REGISTER_SIZE));
1569 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1572 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1573 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1574 (char *) &freg_buffer, 8);
1577 if (fsr[IPSW_REGNUM])
1578 write_register (IPSW_REGNUM,
1579 read_memory_integer (fsr[IPSW_REGNUM],
1580 DEPRECATED_REGISTER_SIZE));
1582 if (fsr[SAR_REGNUM])
1583 write_register (SAR_REGNUM,
1584 read_memory_integer (fsr[SAR_REGNUM],
1585 DEPRECATED_REGISTER_SIZE));
1587 /* If the PC was explicitly saved, then just restore it. */
1588 if (fsr[PCOQ_TAIL_REGNUM])
1590 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1591 DEPRECATED_REGISTER_SIZE);
1592 write_register (PCOQ_TAIL_REGNUM, npc);
1594 /* Else use the value in %rp to set the new PC. */
1597 npc = read_register (RP_REGNUM);
1601 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1603 if (fsr[IPSW_REGNUM]) /* call dummy */
1604 write_register (SP_REGNUM, fp - 48);
1606 write_register (SP_REGNUM, fp);
1608 /* The PC we just restored may be inside a return trampoline. If so
1609 we want to restart the inferior and run it through the trampoline.
1611 Do this by setting a momentary breakpoint at the location the
1612 trampoline returns to.
1614 Don't skip through the trampoline if we're popping a dummy frame. */
1615 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1616 if (target_pc && !fsr[IPSW_REGNUM])
1618 struct symtab_and_line sal;
1619 struct breakpoint *breakpoint;
1620 struct cleanup *old_chain;
1622 /* Set up our breakpoint. Set it to be silent as the MI code
1623 for "return_command" will print the frame we returned to. */
1624 sal = find_pc_line (target_pc, 0);
1626 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1627 breakpoint->silent = 1;
1629 /* So we can clean things up. */
1630 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1632 /* Start up the inferior. */
1633 clear_proceed_status ();
1634 proceed_to_finish = 1;
1635 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1637 /* Perform our cleanups. */
1638 do_cleanups (old_chain);
1640 flush_cached_frames ();
1643 /* After returning to a dummy on the stack, restore the instruction
1644 queue space registers. */
1647 restore_pc_queue (CORE_ADDR *fsr)
1649 CORE_ADDR pc = read_pc ();
1650 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1651 TARGET_PTR_BIT / 8);
1652 struct target_waitstatus w;
1655 /* Advance past break instruction in the call dummy. */
1656 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1657 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1659 /* HPUX doesn't let us set the space registers or the space
1660 registers of the PC queue through ptrace. Boo, hiss.
1661 Conveniently, the call dummy has this sequence of instructions
1666 So, load up the registers and single step until we are in the
1669 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1670 DEPRECATED_REGISTER_SIZE));
1671 write_register (22, new_pc);
1673 for (insn_count = 0; insn_count < 3; insn_count++)
1675 /* FIXME: What if the inferior gets a signal right now? Want to
1676 merge this into wait_for_inferior (as a special kind of
1677 watchpoint? By setting a breakpoint at the end? Is there
1678 any other choice? Is there *any* way to do this stuff with
1679 ptrace() or some equivalent?). */
1681 target_wait (inferior_ptid, &w);
1683 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1685 stop_signal = w.value.sig;
1686 terminal_ours_for_output ();
1687 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1688 target_signal_to_name (stop_signal),
1689 target_signal_to_string (stop_signal));
1690 gdb_flush (gdb_stdout);
1694 target_terminal_ours ();
1695 target_fetch_registers (-1);
1700 #ifdef PA20W_CALLING_CONVENTIONS
1702 /* This function pushes a stack frame with arguments as part of the
1703 inferior function calling mechanism.
1705 This is the version for the PA64, in which later arguments appear
1706 at higher addresses. (The stack always grows towards higher
1709 We simply allocate the appropriate amount of stack space and put
1710 arguments into their proper slots. The call dummy code will copy
1711 arguments into registers as needed by the ABI.
1713 This ABI also requires that the caller provide an argument pointer
1714 to the callee, so we do that too. */
1717 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1718 int struct_return, CORE_ADDR struct_addr)
1720 /* array of arguments' offsets */
1721 int *offset = (int *) alloca (nargs * sizeof (int));
1723 /* array of arguments' lengths: real lengths in bytes, not aligned to
1725 int *lengths = (int *) alloca (nargs * sizeof (int));
1727 /* The value of SP as it was passed into this function after
1729 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1731 /* The number of stack bytes occupied by the current argument. */
1734 /* The total number of bytes reserved for the arguments. */
1735 int cum_bytes_reserved = 0;
1737 /* Similarly, but aligned. */
1738 int cum_bytes_aligned = 0;
1741 /* Iterate over each argument provided by the user. */
1742 for (i = 0; i < nargs; i++)
1744 struct type *arg_type = VALUE_TYPE (args[i]);
1746 /* Integral scalar values smaller than a register are padded on
1747 the left. We do this by promoting them to full-width,
1748 although the ABI says to pad them with garbage. */
1749 if (is_integral_type (arg_type)
1750 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1752 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1753 ? builtin_type_unsigned_long
1754 : builtin_type_long),
1756 arg_type = VALUE_TYPE (args[i]);
1759 lengths[i] = TYPE_LENGTH (arg_type);
1761 /* Align the size of the argument to the word size for this
1763 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1765 offset[i] = cum_bytes_reserved;
1767 /* Aggregates larger than eight bytes (the only types larger
1768 than eight bytes we have) are aligned on a 16-byte boundary,
1769 possibly padded on the right with garbage. This may leave an
1770 empty word on the stack, and thus an unused register, as per
1772 if (bytes_reserved > 8)
1774 /* Round up the offset to a multiple of two slots. */
1775 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1776 & -(2*DEPRECATED_REGISTER_SIZE));
1778 /* Note the space we've wasted, if any. */
1779 bytes_reserved += new_offset - offset[i];
1780 offset[i] = new_offset;
1783 cum_bytes_reserved += bytes_reserved;
1786 /* CUM_BYTES_RESERVED already accounts for all the arguments
1787 passed by the user. However, the ABIs mandate minimum stack space
1788 allocations for outgoing arguments.
1790 The ABIs also mandate minimum stack alignments which we must
1792 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1793 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1795 /* Now write each of the args at the proper offset down the stack. */
1796 for (i = 0; i < nargs; i++)
1797 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1799 /* If a structure has to be returned, set up register 28 to hold its
1802 write_register (28, struct_addr);
1804 /* For the PA64 we must pass a pointer to the outgoing argument list.
1805 The ABI mandates that the pointer should point to the first byte of
1806 storage beyond the register flushback area.
1808 However, the call dummy expects the outgoing argument pointer to
1809 be passed in register %r4. */
1810 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1812 /* ?!? This needs further work. We need to set up the global data
1813 pointer for this procedure. This assumes the same global pointer
1814 for every procedure. The call dummy expects the dp value to
1815 be passed in register %r6. */
1816 write_register (6, read_register (27));
1818 /* The stack will have 64 bytes of additional space for a frame marker. */
1824 /* This function pushes a stack frame with arguments as part of the
1825 inferior function calling mechanism.
1827 This is the version of the function for the 32-bit PA machines, in
1828 which later arguments appear at lower addresses. (The stack always
1829 grows towards higher addresses.)
1831 We simply allocate the appropriate amount of stack space and put
1832 arguments into their proper slots. The call dummy code will copy
1833 arguments into registers as needed by the ABI. */
1836 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1837 int struct_return, CORE_ADDR struct_addr)
1839 /* array of arguments' offsets */
1840 int *offset = (int *) alloca (nargs * sizeof (int));
1842 /* array of arguments' lengths: real lengths in bytes, not aligned to
1844 int *lengths = (int *) alloca (nargs * sizeof (int));
1846 /* The number of stack bytes occupied by the current argument. */
1849 /* The total number of bytes reserved for the arguments. */
1850 int cum_bytes_reserved = 0;
1852 /* Similarly, but aligned. */
1853 int cum_bytes_aligned = 0;
1856 /* Iterate over each argument provided by the user. */
1857 for (i = 0; i < nargs; i++)
1859 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1861 /* Align the size of the argument to the word size for this
1863 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1865 offset[i] = (cum_bytes_reserved
1866 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
1868 /* If the argument is a double word argument, then it needs to be
1869 double word aligned. */
1870 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
1871 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
1874 /* BYTES_RESERVED is already aligned to the word, so we put
1875 the argument at one word more down the stack.
1877 This will leave one empty word on the stack, and one unused
1878 register as mandated by the ABI. */
1879 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
1880 & -(2 * DEPRECATED_REGISTER_SIZE));
1882 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
1884 bytes_reserved += DEPRECATED_REGISTER_SIZE;
1885 offset[i] += DEPRECATED_REGISTER_SIZE;
1889 cum_bytes_reserved += bytes_reserved;
1893 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1894 by the user. However, the ABI mandates minimum stack space
1895 allocations for outgoing arguments.
1897 The ABI also mandates minimum stack alignments which we must
1899 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1900 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1902 /* Now write each of the args at the proper offset down the stack.
1903 ?!? We need to promote values to a full register instead of skipping
1904 words in the stack. */
1905 for (i = 0; i < nargs; i++)
1906 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1908 /* If a structure has to be returned, set up register 28 to hold its
1911 write_register (28, struct_addr);
1913 /* The stack will have 32 bytes of additional space for a frame marker. */
1919 /* elz: this function returns a value which is built looking at the given address.
1920 It is called from call_function_by_hand, in case we need to return a
1921 value which is larger than 64 bits, and it is stored in the stack rather than
1922 in the registers r28 and r29 or fr4.
1923 This function does the same stuff as value_being_returned in values.c, but
1924 gets the value from the stack rather than from the buffer where all the
1925 registers were saved when the function called completed. */
1927 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1929 register struct value *val;
1931 val = allocate_value (valtype);
1932 CHECK_TYPEDEF (valtype);
1933 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1940 /* elz: Used to lookup a symbol in the shared libraries.
1941 This function calls shl_findsym, indirectly through a
1942 call to __d_shl_get. __d_shl_get is in end.c, which is always
1943 linked in by the hp compilers/linkers.
1944 The call to shl_findsym cannot be made directly because it needs
1945 to be active in target address space.
1946 inputs: - minimal symbol pointer for the function we want to look up
1947 - address in target space of the descriptor for the library
1948 where we want to look the symbol up.
1949 This address is retrieved using the
1950 som_solib_get_solib_by_pc function (somsolib.c).
1951 output: - real address in the library of the function.
1952 note: the handle can be null, in which case shl_findsym will look for
1953 the symbol in all the loaded shared libraries.
1954 files to look at if you need reference on this stuff:
1955 dld.c, dld_shl_findsym.c
1957 man entry for shl_findsym */
1960 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
1962 struct symbol *get_sym, *symbol2;
1963 struct minimal_symbol *buff_minsym, *msymbol;
1965 struct value **args;
1966 struct value *funcval;
1969 int x, namelen, err_value, tmp = -1;
1970 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1971 CORE_ADDR stub_addr;
1974 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
1975 funcval = find_function_in_inferior ("__d_shl_get");
1976 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1977 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1978 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1979 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1980 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1981 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
1982 value_return_addr = endo_buff_addr + namelen;
1983 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1986 if ((x = value_return_addr % 64) != 0)
1987 value_return_addr = value_return_addr + 64 - x;
1989 errno_return_addr = value_return_addr + 64;
1992 /* set up stuff needed by __d_shl_get in buffer in end.o */
1994 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
1996 target_write_memory (value_return_addr, (char *) &tmp, 4);
1998 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2000 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2001 (char *) &handle, 4);
2003 /* now prepare the arguments for the call */
2005 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2006 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2007 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2008 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2009 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2010 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2012 /* now call the function */
2014 val = call_function_by_hand (funcval, 6, args);
2016 /* now get the results */
2018 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2020 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2022 error ("call to __d_shl_get failed, error code is %d", err_value);
2027 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2029 cover_find_stub_with_shl_get (void *args_untyped)
2031 args_for_find_stub *args = args_untyped;
2032 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2036 /* Insert the specified number of args and function address
2037 into a call sequence of the above form stored at DUMMYNAME.
2039 On the hppa we need to call the stack dummy through $$dyncall.
2040 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2041 argument, real_pc, which is the location where gdb should start up
2042 the inferior to do the function call.
2044 This has to work across several versions of hpux, bsd, osf1. It has to
2045 work regardless of what compiler was used to build the inferior program.
2046 It should work regardless of whether or not end.o is available. It has
2047 to work even if gdb can not call into the dynamic loader in the inferior
2048 to query it for symbol names and addresses.
2050 Yes, all those cases should work. Luckily code exists to handle most
2051 of them. The complexity is in selecting exactly what scheme should
2052 be used to perform the inferior call.
2054 At the current time this routine is known not to handle cases where
2055 the program was linked with HP's compiler without including end.o.
2060 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2061 struct value **args, struct type *type, int gcc_p)
2063 CORE_ADDR dyncall_addr;
2064 struct minimal_symbol *msymbol;
2065 struct minimal_symbol *trampoline;
2066 int flags = read_register (FLAGS_REGNUM);
2067 struct unwind_table_entry *u = NULL;
2068 CORE_ADDR new_stub = 0;
2069 CORE_ADDR solib_handle = 0;
2071 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2072 passed an import stub, not a PLABEL. It is also necessary to set %r19
2073 (the PIC register) before performing the call.
2075 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2076 are calling the target directly. When using __d_plt_call we want to
2077 use a PLABEL instead of an import stub. */
2078 int using_gcc_plt_call = 1;
2080 #ifdef GDB_TARGET_IS_HPPA_20W
2081 /* We currently use completely different code for the PA2.0W inferior
2082 function call sequences. This needs to be cleaned up. */
2084 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2085 struct target_waitstatus w;
2089 struct objfile *objfile;
2091 /* We can not modify the PC space queues directly, so we start
2092 up the inferior and execute a couple instructions to set the
2093 space queues so that they point to the call dummy in the stack. */
2094 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2095 sr5 = read_register (SR5_REGNUM);
2098 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2099 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2100 if (target_read_memory (pcoqh, buf, 4) != 0)
2101 error ("Couldn't modify space queue\n");
2102 inst1 = extract_unsigned_integer (buf, 4);
2104 if (target_read_memory (pcoqt, buf, 4) != 0)
2105 error ("Couldn't modify space queue\n");
2106 inst2 = extract_unsigned_integer (buf, 4);
2109 *((int *) buf) = 0xe820d000;
2110 if (target_write_memory (pcoqh, buf, 4) != 0)
2111 error ("Couldn't modify space queue\n");
2114 *((int *) buf) = 0x08000240;
2115 if (target_write_memory (pcoqt, buf, 4) != 0)
2117 *((int *) buf) = inst1;
2118 target_write_memory (pcoqh, buf, 4);
2119 error ("Couldn't modify space queue\n");
2122 write_register (1, pc);
2124 /* Single step twice, the BVE instruction will set the space queue
2125 such that it points to the PC value written immediately above
2126 (ie the call dummy). */
2128 target_wait (inferior_ptid, &w);
2130 target_wait (inferior_ptid, &w);
2132 /* Restore the two instructions at the old PC locations. */
2133 *((int *) buf) = inst1;
2134 target_write_memory (pcoqh, buf, 4);
2135 *((int *) buf) = inst2;
2136 target_write_memory (pcoqt, buf, 4);
2139 /* The call dummy wants the ultimate destination address initially
2141 write_register (5, fun);
2143 /* We need to see if this objfile has a different DP value than our
2144 own (it could be a shared library for example). */
2145 ALL_OBJFILES (objfile)
2147 struct obj_section *s;
2148 obj_private_data_t *obj_private;
2150 /* See if FUN is in any section within this shared library. */
2151 for (s = objfile->sections; s < objfile->sections_end; s++)
2152 if (s->addr <= fun && fun < s->endaddr)
2155 if (s >= objfile->sections_end)
2158 obj_private = (obj_private_data_t *) objfile->obj_private;
2160 /* The DP value may be different for each objfile. But within an
2161 objfile each function uses the same dp value. Thus we do not need
2162 to grope around the opd section looking for dp values.
2164 ?!? This is not strictly correct since we may be in a shared library
2165 and want to call back into the main program. To make that case
2166 work correctly we need to set obj_private->dp for the main program's
2167 objfile, then remove this conditional. */
2168 if (obj_private->dp)
2169 write_register (27, obj_private->dp);
2176 #ifndef GDB_TARGET_IS_HPPA_20W
2177 /* Prefer __gcc_plt_call over the HP supplied routine because
2178 __gcc_plt_call works for any number of arguments. */
2180 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2181 using_gcc_plt_call = 0;
2183 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2184 if (msymbol == NULL)
2185 error ("Can't find an address for $$dyncall trampoline");
2187 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2189 /* FUN could be a procedure label, in which case we have to get
2190 its real address and the value of its GOT/DP if we plan to
2191 call the routine via gcc_plt_call. */
2192 if ((fun & 0x2) && using_gcc_plt_call)
2194 /* Get the GOT/DP value for the target function. It's
2195 at *(fun+4). Note the call dummy is *NOT* allowed to
2196 trash %r19 before calling the target function. */
2197 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2198 DEPRECATED_REGISTER_SIZE));
2200 /* Now get the real address for the function we are calling, it's
2202 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2203 TARGET_PTR_BIT / 8);
2208 #ifndef GDB_TARGET_IS_PA_ELF
2209 /* FUN could be an export stub, the real address of a function, or
2210 a PLABEL. When using gcc's PLT call routine we must call an import
2211 stub rather than the export stub or real function for lazy binding
2214 If we are using the gcc PLT call routine, then we need to
2215 get the import stub for the target function. */
2216 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2218 struct objfile *objfile;
2219 struct minimal_symbol *funsymbol, *stub_symbol;
2220 CORE_ADDR newfun = 0;
2222 funsymbol = lookup_minimal_symbol_by_pc (fun);
2224 error ("Unable to find minimal symbol for target function.\n");
2226 /* Search all the object files for an import symbol with the
2228 ALL_OBJFILES (objfile)
2231 = lookup_minimal_symbol_solib_trampoline
2232 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
2235 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2238 /* Found a symbol with the right name. */
2241 struct unwind_table_entry *u;
2242 /* It must be a shared library trampoline. */
2243 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2246 /* It must also be an import stub. */
2247 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2249 || (u->stub_unwind.stub_type != IMPORT
2250 #ifdef GDB_NATIVE_HPUX_11
2251 /* Sigh. The hpux 10.20 dynamic linker will blow
2252 chunks if we perform a call to an unbound function
2253 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2254 linker will blow chunks if we do not call the
2255 unbound function via the IMPORT_SHLIB stub.
2257 We currently have no way to select bevahior on just
2258 the target. However, we only support HPUX/SOM in
2259 native mode. So we conditinalize on a native
2260 #ifdef. Ugly. Ugly. Ugly */
2261 && u->stub_unwind.stub_type != IMPORT_SHLIB
2266 /* OK. Looks like the correct import stub. */
2267 newfun = SYMBOL_VALUE (stub_symbol);
2270 /* If we found an IMPORT stub, then we want to stop
2271 searching now. If we found an IMPORT_SHLIB, we want
2272 to continue the search in the hopes that we will find
2274 if (u->stub_unwind.stub_type == IMPORT)
2279 /* Ouch. We did not find an import stub. Make an attempt to
2280 do the right thing instead of just croaking. Most of the
2281 time this will actually work. */
2283 write_register (19, som_solib_get_got_by_pc (fun));
2285 u = find_unwind_entry (fun);
2287 && (u->stub_unwind.stub_type == IMPORT
2288 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2289 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2291 /* If we found the import stub in the shared library, then we have
2292 to set %r19 before we call the stub. */
2293 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2294 write_register (19, som_solib_get_got_by_pc (fun));
2299 /* If we are calling into another load module then have sr4export call the
2300 magic __d_plt_call routine which is linked in from end.o.
2302 You can't use _sr4export to make the call as the value in sp-24 will get
2303 fried and you end up returning to the wrong location. You can't call the
2304 target as the code to bind the PLT entry to a function can't return to a
2307 Also, query the dynamic linker in the inferior to provide a suitable
2308 PLABEL for the target function. */
2309 if (!using_gcc_plt_call)
2313 /* Get a handle for the shared library containing FUN. Given the
2314 handle we can query the shared library for a PLABEL. */
2315 solib_handle = som_solib_get_solib_by_pc (fun);
2319 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2321 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2323 if (trampoline == NULL)
2325 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2328 /* This is where sr4export will jump to. */
2329 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2331 /* If the function is in a shared library, then call __d_shl_get to
2332 get a PLABEL for the target function. */
2333 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2336 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2338 /* We have to store the address of the stub in __shlib_funcptr. */
2339 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2340 (struct objfile *) NULL);
2342 if (msymbol == NULL)
2343 error ("Can't find an address for __shlib_funcptr");
2344 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2345 (char *) &new_stub, 4);
2347 /* We want sr4export to call __d_plt_call, so we claim it is
2348 the final target. Clear trampoline. */
2354 /* Store upper 21 bits of function address into ldil. fun will either be
2355 the final target (most cases) or __d_plt_call when calling into a shared
2356 library and __gcc_plt_call is not available. */
2357 store_unsigned_integer
2358 (&dummy[FUNC_LDIL_OFFSET],
2360 deposit_21 (fun >> 11,
2361 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2362 INSTRUCTION_SIZE)));
2364 /* Store lower 11 bits of function address into ldo */
2365 store_unsigned_integer
2366 (&dummy[FUNC_LDO_OFFSET],
2368 deposit_14 (fun & MASK_11,
2369 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2370 INSTRUCTION_SIZE)));
2371 #ifdef SR4EXPORT_LDIL_OFFSET
2374 CORE_ADDR trampoline_addr;
2376 /* We may still need sr4export's address too. */
2378 if (trampoline == NULL)
2380 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2381 if (msymbol == NULL)
2382 error ("Can't find an address for _sr4export trampoline");
2384 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2387 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2390 /* Store upper 21 bits of trampoline's address into ldil */
2391 store_unsigned_integer
2392 (&dummy[SR4EXPORT_LDIL_OFFSET],
2394 deposit_21 (trampoline_addr >> 11,
2395 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2396 INSTRUCTION_SIZE)));
2398 /* Store lower 11 bits of trampoline's address into ldo */
2399 store_unsigned_integer
2400 (&dummy[SR4EXPORT_LDO_OFFSET],
2402 deposit_14 (trampoline_addr & MASK_11,
2403 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2404 INSTRUCTION_SIZE)));
2408 write_register (22, pc);
2410 /* If we are in a syscall, then we should call the stack dummy
2411 directly. $$dyncall is not needed as the kernel sets up the
2412 space id registers properly based on the value in %r31. In
2413 fact calling $$dyncall will not work because the value in %r22
2414 will be clobbered on the syscall exit path.
2416 Similarly if the current PC is in a shared library. Note however,
2417 this scheme won't work if the shared library isn't mapped into
2418 the same space as the stack. */
2421 #ifndef GDB_TARGET_IS_PA_ELF
2422 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2426 return dyncall_addr;
2430 /* If the pid is in a syscall, then the FP register is not readable.
2431 We'll return zero in that case, rather than attempting to read it
2432 and cause a warning. */
2435 hppa_read_fp (int pid)
2437 int flags = read_register (FLAGS_REGNUM);
2441 return (CORE_ADDR) 0;
2444 /* This is the only site that may directly read_register () the FP
2445 register. All others must use deprecated_read_fp (). */
2446 return read_register (DEPRECATED_FP_REGNUM);
2450 hppa_target_read_fp (void)
2452 return hppa_read_fp (PIDGET (inferior_ptid));
2455 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2459 hppa_target_read_pc (ptid_t ptid)
2461 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2463 /* The following test does not belong here. It is OS-specific, and belongs
2465 /* Test SS_INSYSCALL */
2467 return read_register_pid (31, ptid) & ~0x3;
2469 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2472 /* Write out the PC. If currently in a syscall, then also write the new
2473 PC value into %r31. */
2476 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2478 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2480 /* The following test does not belong here. It is OS-specific, and belongs
2482 /* If in a syscall, then set %r31. Also make sure to get the
2483 privilege bits set correctly. */
2484 /* Test SS_INSYSCALL */
2486 write_register_pid (31, v | 0x3, ptid);
2488 write_register_pid (PC_REGNUM, v, ptid);
2489 write_register_pid (NPC_REGNUM, v + 4, ptid);
2492 /* return the alignment of a type in bytes. Structures have the maximum
2493 alignment required by their fields. */
2496 hppa_alignof (struct type *type)
2498 int max_align, align, i;
2499 CHECK_TYPEDEF (type);
2500 switch (TYPE_CODE (type))
2505 return TYPE_LENGTH (type);
2506 case TYPE_CODE_ARRAY:
2507 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2508 case TYPE_CODE_STRUCT:
2509 case TYPE_CODE_UNION:
2511 for (i = 0; i < TYPE_NFIELDS (type); i++)
2513 /* Bit fields have no real alignment. */
2514 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2515 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2517 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2518 max_align = max (max_align, align);
2527 /* Print the register regnum, or all registers if regnum is -1 */
2530 pa_do_registers_info (int regnum, int fpregs)
2532 char raw_regs[REGISTER_BYTES];
2535 /* Make a copy of gdb's save area (may cause actual
2536 reads from the target). */
2537 for (i = 0; i < NUM_REGS; i++)
2538 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2541 pa_print_registers (raw_regs, regnum, fpregs);
2542 else if (regnum < FP4_REGNUM)
2546 /* Why is the value not passed through "extract_signed_integer"
2547 as in "pa_print_registers" below? */
2548 pa_register_look_aside (raw_regs, regnum, ®_val[0]);
2552 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2556 /* Fancy % formats to prevent leading zeros. */
2557 if (reg_val[0] == 0)
2558 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2560 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2561 reg_val[0], reg_val[1]);
2565 /* Note that real floating point values only start at
2566 FP4_REGNUM. FP0 and up are just status and error
2567 registers, which have integral (bit) values. */
2568 pa_print_fp_reg (regnum);
2571 /********** new function ********************/
2573 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2574 enum precision_type precision)
2576 char raw_regs[REGISTER_BYTES];
2579 /* Make a copy of gdb's save area (may cause actual
2580 reads from the target). */
2581 for (i = 0; i < NUM_REGS; i++)
2582 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2585 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2587 else if (regnum < FP4_REGNUM)
2591 /* Why is the value not passed through "extract_signed_integer"
2592 as in "pa_print_registers" below? */
2593 pa_register_look_aside (raw_regs, regnum, ®_val[0]);
2597 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2601 /* Fancy % formats to prevent leading zeros. */
2602 if (reg_val[0] == 0)
2603 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2606 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2607 reg_val[0], reg_val[1]);
2611 /* Note that real floating point values only start at
2612 FP4_REGNUM. FP0 and up are just status and error
2613 registers, which have integral (bit) values. */
2614 pa_strcat_fp_reg (regnum, stream, precision);
2617 /* If this is a PA2.0 machine, fetch the real 64-bit register
2618 value. Otherwise use the info from gdb's saved register area.
2620 Note that reg_val is really expected to be an array of longs,
2621 with two elements. */
2623 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2625 static int know_which = 0; /* False */
2628 unsigned int offset;
2633 char *buf = alloca (max_register_size (current_gdbarch));
2638 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2643 know_which = 1; /* True */
2651 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2655 /* Code below copied from hppah-nat.c, with fixes for wide
2656 registers, using different area of save_state, etc. */
2657 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2658 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2660 /* Use narrow regs area of save_state and default macro. */
2661 offset = U_REGS_OFFSET;
2662 regaddr = register_addr (regnum, offset);
2667 /* Use wide regs area, and calculate registers as 8 bytes wide.
2669 We'd like to do this, but current version of "C" doesn't
2672 offset = offsetof(save_state_t, ss_wide);
2674 Note that to avoid "C" doing typed pointer arithmetic, we
2675 have to cast away the type in our offset calculation:
2676 otherwise we get an offset of 1! */
2678 /* NB: save_state_t is not available before HPUX 9.
2679 The ss_wide field is not available previous to HPUX 10.20,
2680 so to avoid compile-time warnings, we only compile this for
2681 PA 2.0 processors. This control path should only be followed
2682 if we're debugging a PA 2.0 processor, so this should not cause
2685 /* #if the following code out so that this file can still be
2686 compiled on older HPUX boxes (< 10.20) which don't have
2687 this structure/structure member. */
2688 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2691 offset = ((int) &temp.ss_wide) - ((int) &temp);
2692 regaddr = offset + regnum * 8;
2697 for (i = start; i < 2; i++)
2700 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2701 (PTRACE_ARG3_TYPE) regaddr, 0);
2704 /* Warning, not error, in case we are attached; sometimes the
2705 kernel doesn't let us at the registers. */
2706 char *err = safe_strerror (errno);
2707 char *msg = alloca (strlen (err) + 128);
2708 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2713 regaddr += sizeof (long);
2716 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2717 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2723 /* "Info all-reg" command */
2726 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2729 /* Alas, we are compiled so that "long long" is 32 bits */
2732 int rows = 48, columns = 2;
2734 for (i = 0; i < rows; i++)
2736 for (j = 0; j < columns; j++)
2738 /* We display registers in column-major order. */
2739 int regnum = i + j * rows;
2741 /* Q: Why is the value passed through "extract_signed_integer",
2742 while above, in "pa_do_registers_info" it isn't?
2744 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2746 /* Even fancier % formats to prevent leading zeros
2747 and still maintain the output in columns. */
2750 /* Being big-endian, on this machine the low bits
2751 (the ones we want to look at) are in the second longword. */
2752 long_val = extract_signed_integer (&raw_val[1], 4);
2753 printf_filtered ("%10.10s: %8lx ",
2754 REGISTER_NAME (regnum), long_val);
2758 /* raw_val = extract_signed_integer(&raw_val, 8); */
2759 if (raw_val[0] == 0)
2760 printf_filtered ("%10.10s: %8lx ",
2761 REGISTER_NAME (regnum), raw_val[1]);
2763 printf_filtered ("%10.10s: %8lx%8.8lx ",
2764 REGISTER_NAME (regnum),
2765 raw_val[0], raw_val[1]);
2768 printf_unfiltered ("\n");
2772 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2773 pa_print_fp_reg (i);
2776 /************* new function ******************/
2778 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2779 struct ui_file *stream)
2782 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2784 enum precision_type precision;
2786 precision = unspecified_precision;
2788 for (i = 0; i < 18; i++)
2790 for (j = 0; j < 4; j++)
2792 /* Q: Why is the value passed through "extract_signed_integer",
2793 while above, in "pa_do_registers_info" it isn't?
2795 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2797 /* Even fancier % formats to prevent leading zeros
2798 and still maintain the output in columns. */
2801 /* Being big-endian, on this machine the low bits
2802 (the ones we want to look at) are in the second longword. */
2803 long_val = extract_signed_integer (&raw_val[1], 4);
2804 fprintf_filtered (stream, "%8.8s: %8lx ",
2805 REGISTER_NAME (i + (j * 18)), long_val);
2809 /* raw_val = extract_signed_integer(&raw_val, 8); */
2810 if (raw_val[0] == 0)
2811 fprintf_filtered (stream, "%8.8s: %8lx ",
2812 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2814 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2815 REGISTER_NAME (i + (j * 18)), raw_val[0],
2819 fprintf_unfiltered (stream, "\n");
2823 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2824 pa_strcat_fp_reg (i, stream, precision);
2828 pa_print_fp_reg (int i)
2830 char *raw_buffer = alloca (max_register_size (current_gdbarch));
2831 char *virtual_buffer = alloca (max_register_size (current_gdbarch));
2833 /* Get 32bits of data. */
2834 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2836 /* Put it in the buffer. No conversions are ever necessary. */
2837 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2839 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2840 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2841 fputs_filtered ("(single precision) ", gdb_stdout);
2843 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2844 1, 0, Val_pretty_default);
2845 printf_filtered ("\n");
2847 /* If "i" is even, then this register can also be a double-precision
2848 FP register. Dump it out as such. */
2851 /* Get the data in raw format for the 2nd half. */
2852 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
2854 /* Copy it into the appropriate part of the virtual buffer. */
2855 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2856 REGISTER_RAW_SIZE (i));
2858 /* Dump it as a double. */
2859 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2860 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2861 fputs_filtered ("(double precision) ", gdb_stdout);
2863 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2864 1, 0, Val_pretty_default);
2865 printf_filtered ("\n");
2869 /*************** new function ***********************/
2871 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2873 char *raw_buffer = alloca (max_register_size (current_gdbarch));
2874 char *virtual_buffer = alloca (max_register_size (current_gdbarch));
2876 fputs_filtered (REGISTER_NAME (i), stream);
2877 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2879 /* Get 32bits of data. */
2880 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2882 /* Put it in the buffer. No conversions are ever necessary. */
2883 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2885 if (precision == double_precision && (i % 2) == 0)
2888 char *raw_buf = alloca (max_register_size (current_gdbarch));
2890 /* Get the data in raw format for the 2nd half. */
2891 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
2893 /* Copy it into the appropriate part of the virtual buffer. */
2894 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2896 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2897 1, 0, Val_pretty_default);
2902 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2903 1, 0, Val_pretty_default);
2908 /* Return one if PC is in the call path of a trampoline, else return zero.
2910 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2911 just shared library trampolines (import, export). */
2914 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2916 struct minimal_symbol *minsym;
2917 struct unwind_table_entry *u;
2918 static CORE_ADDR dyncall = 0;
2919 static CORE_ADDR sr4export = 0;
2921 #ifdef GDB_TARGET_IS_HPPA_20W
2922 /* PA64 has a completely different stub/trampoline scheme. Is it
2923 better? Maybe. It's certainly harder to determine with any
2924 certainty that we are in a stub because we can not refer to the
2927 The heuristic is simple. Try to lookup the current PC value in th
2928 minimal symbol table. If that fails, then assume we are not in a
2931 Then see if the PC value falls within the section bounds for the
2932 section containing the minimal symbol we found in the first
2933 step. If it does, then assume we are not in a stub and return.
2935 Finally peek at the instructions to see if they look like a stub. */
2937 struct minimal_symbol *minsym;
2942 minsym = lookup_minimal_symbol_by_pc (pc);
2946 sec = SYMBOL_BFD_SECTION (minsym);
2949 && sec->vma + sec->_cooked_size < pc)
2952 /* We might be in a stub. Peek at the instructions. Stubs are 3
2953 instructions long. */
2954 insn = read_memory_integer (pc, 4);
2956 /* Find out where we think we are within the stub. */
2957 if ((insn & 0xffffc00e) == 0x53610000)
2959 else if ((insn & 0xffffffff) == 0xe820d000)
2961 else if ((insn & 0xffffc00e) == 0x537b0000)
2966 /* Now verify each insn in the range looks like a stub instruction. */
2967 insn = read_memory_integer (addr, 4);
2968 if ((insn & 0xffffc00e) != 0x53610000)
2971 /* Now verify each insn in the range looks like a stub instruction. */
2972 insn = read_memory_integer (addr + 4, 4);
2973 if ((insn & 0xffffffff) != 0xe820d000)
2976 /* Now verify each insn in the range looks like a stub instruction. */
2977 insn = read_memory_integer (addr + 8, 4);
2978 if ((insn & 0xffffc00e) != 0x537b0000)
2981 /* Looks like a stub. */
2986 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2989 /* First see if PC is in one of the two C-library trampolines. */
2992 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2994 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3001 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3003 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3008 if (pc == dyncall || pc == sr4export)
3011 minsym = lookup_minimal_symbol_by_pc (pc);
3012 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3015 /* Get the unwind descriptor corresponding to PC, return zero
3016 if no unwind was found. */
3017 u = find_unwind_entry (pc);
3021 /* If this isn't a linker stub, then return now. */
3022 if (u->stub_unwind.stub_type == 0)
3025 /* By definition a long-branch stub is a call stub. */
3026 if (u->stub_unwind.stub_type == LONG_BRANCH)
3029 /* The call and return path execute the same instructions within
3030 an IMPORT stub! So an IMPORT stub is both a call and return
3032 if (u->stub_unwind.stub_type == IMPORT)
3035 /* Parameter relocation stubs always have a call path and may have a
3037 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3038 || u->stub_unwind.stub_type == EXPORT)
3042 /* Search forward from the current PC until we hit a branch
3043 or the end of the stub. */
3044 for (addr = pc; addr <= u->region_end; addr += 4)
3048 insn = read_memory_integer (addr, 4);
3050 /* Does it look like a bl? If so then it's the call path, if
3051 we find a bv or be first, then we're on the return path. */
3052 if ((insn & 0xfc00e000) == 0xe8000000)
3054 else if ((insn & 0xfc00e001) == 0xe800c000
3055 || (insn & 0xfc000000) == 0xe0000000)
3059 /* Should never happen. */
3060 warning ("Unable to find branch in parameter relocation stub.\n");
3064 /* Unknown stub type. For now, just return zero. */
3068 /* Return one if PC is in the return path of a trampoline, else return zero.
3070 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3071 just shared library trampolines (import, export). */
3074 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3076 struct unwind_table_entry *u;
3078 /* Get the unwind descriptor corresponding to PC, return zero
3079 if no unwind was found. */
3080 u = find_unwind_entry (pc);
3084 /* If this isn't a linker stub or it's just a long branch stub, then
3086 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3089 /* The call and return path execute the same instructions within
3090 an IMPORT stub! So an IMPORT stub is both a call and return
3092 if (u->stub_unwind.stub_type == IMPORT)
3095 /* Parameter relocation stubs always have a call path and may have a
3097 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3098 || u->stub_unwind.stub_type == EXPORT)
3102 /* Search forward from the current PC until we hit a branch
3103 or the end of the stub. */
3104 for (addr = pc; addr <= u->region_end; addr += 4)
3108 insn = read_memory_integer (addr, 4);
3110 /* Does it look like a bl? If so then it's the call path, if
3111 we find a bv or be first, then we're on the return path. */
3112 if ((insn & 0xfc00e000) == 0xe8000000)
3114 else if ((insn & 0xfc00e001) == 0xe800c000
3115 || (insn & 0xfc000000) == 0xe0000000)
3119 /* Should never happen. */
3120 warning ("Unable to find branch in parameter relocation stub.\n");
3124 /* Unknown stub type. For now, just return zero. */
3129 /* Figure out if PC is in a trampoline, and if so find out where
3130 the trampoline will jump to. If not in a trampoline, return zero.
3132 Simple code examination probably is not a good idea since the code
3133 sequences in trampolines can also appear in user code.
3135 We use unwinds and information from the minimal symbol table to
3136 determine when we're in a trampoline. This won't work for ELF
3137 (yet) since it doesn't create stub unwind entries. Whether or
3138 not ELF will create stub unwinds or normal unwinds for linker
3139 stubs is still being debated.
3141 This should handle simple calls through dyncall or sr4export,
3142 long calls, argument relocation stubs, and dyncall/sr4export
3143 calling an argument relocation stub. It even handles some stubs
3144 used in dynamic executables. */
3147 hppa_skip_trampoline_code (CORE_ADDR pc)
3150 long prev_inst, curr_inst, loc;
3151 static CORE_ADDR dyncall = 0;
3152 static CORE_ADDR dyncall_external = 0;
3153 static CORE_ADDR sr4export = 0;
3154 struct minimal_symbol *msym;
3155 struct unwind_table_entry *u;
3157 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3162 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3164 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3169 if (!dyncall_external)
3171 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3173 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3175 dyncall_external = -1;
3180 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3182 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3187 /* Addresses passed to dyncall may *NOT* be the actual address
3188 of the function. So we may have to do something special. */
3191 pc = (CORE_ADDR) read_register (22);
3193 /* If bit 30 (counting from the left) is on, then pc is the address of
3194 the PLT entry for this function, not the address of the function
3195 itself. Bit 31 has meaning too, but only for MPE. */
3197 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3199 if (pc == dyncall_external)
3201 pc = (CORE_ADDR) read_register (22);
3202 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3204 else if (pc == sr4export)
3205 pc = (CORE_ADDR) (read_register (22));
3207 /* Get the unwind descriptor corresponding to PC, return zero
3208 if no unwind was found. */
3209 u = find_unwind_entry (pc);
3213 /* If this isn't a linker stub, then return now. */
3214 /* elz: attention here! (FIXME) because of a compiler/linker
3215 error, some stubs which should have a non zero stub_unwind.stub_type
3216 have unfortunately a value of zero. So this function would return here
3217 as if we were not in a trampoline. To fix this, we go look at the partial
3218 symbol information, which reports this guy as a stub.
3219 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3220 partial symbol information is also wrong sometimes. This is because
3221 when it is entered (somread.c::som_symtab_read()) it can happen that
3222 if the type of the symbol (from the som) is Entry, and the symbol is
3223 in a shared library, then it can also be a trampoline. This would
3224 be OK, except that I believe the way they decide if we are ina shared library
3225 does not work. SOOOO..., even if we have a regular function w/o trampolines
3226 its minimal symbol can be assigned type mst_solib_trampoline.
3227 Also, if we find that the symbol is a real stub, then we fix the unwind
3228 descriptor, and define the stub type to be EXPORT.
3229 Hopefully this is correct most of the times. */
3230 if (u->stub_unwind.stub_type == 0)
3233 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3234 we can delete all the code which appears between the lines */
3235 /*--------------------------------------------------------------------------*/
3236 msym = lookup_minimal_symbol_by_pc (pc);
3238 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3239 return orig_pc == pc ? 0 : pc & ~0x3;
3241 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3243 struct objfile *objfile;
3244 struct minimal_symbol *msymbol;
3245 int function_found = 0;
3247 /* go look if there is another minimal symbol with the same name as
3248 this one, but with type mst_text. This would happen if the msym
3249 is an actual trampoline, in which case there would be another
3250 symbol with the same name corresponding to the real function */
3252 ALL_MSYMBOLS (objfile, msymbol)
3254 if (MSYMBOL_TYPE (msymbol) == mst_text
3255 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3263 /* the type of msym is correct (mst_solib_trampoline), but
3264 the unwind info is wrong, so set it to the correct value */
3265 u->stub_unwind.stub_type = EXPORT;
3267 /* the stub type info in the unwind is correct (this is not a
3268 trampoline), but the msym type information is wrong, it
3269 should be mst_text. So we need to fix the msym, and also
3270 get out of this function */
3272 MSYMBOL_TYPE (msym) = mst_text;
3273 return orig_pc == pc ? 0 : pc & ~0x3;
3277 /*--------------------------------------------------------------------------*/
3280 /* It's a stub. Search for a branch and figure out where it goes.
3281 Note we have to handle multi insn branch sequences like ldil;ble.
3282 Most (all?) other branches can be determined by examining the contents
3283 of certain registers and the stack. */
3290 /* Make sure we haven't walked outside the range of this stub. */
3291 if (u != find_unwind_entry (loc))
3293 warning ("Unable to find branch in linker stub");
3294 return orig_pc == pc ? 0 : pc & ~0x3;
3297 prev_inst = curr_inst;
3298 curr_inst = read_memory_integer (loc, 4);
3300 /* Does it look like a branch external using %r1? Then it's the
3301 branch from the stub to the actual function. */
3302 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3304 /* Yup. See if the previous instruction loaded
3305 a value into %r1. If so compute and return the jump address. */
3306 if ((prev_inst & 0xffe00000) == 0x20200000)
3307 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3310 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3311 return orig_pc == pc ? 0 : pc & ~0x3;
3315 /* Does it look like a be 0(sr0,%r21)? OR
3316 Does it look like a be, n 0(sr0,%r21)? OR
3317 Does it look like a bve (r21)? (this is on PA2.0)
3318 Does it look like a bve, n(r21)? (this is also on PA2.0)
3319 That's the branch from an
3320 import stub to an export stub.
3322 It is impossible to determine the target of the branch via
3323 simple examination of instructions and/or data (consider
3324 that the address in the plabel may be the address of the
3325 bind-on-reference routine in the dynamic loader).
3327 So we have try an alternative approach.
3329 Get the name of the symbol at our current location; it should
3330 be a stub symbol with the same name as the symbol in the
3333 Then lookup a minimal symbol with the same name; we should
3334 get the minimal symbol for the target routine in the shared
3335 library as those take precedence of import/export stubs. */
3336 if ((curr_inst == 0xe2a00000) ||
3337 (curr_inst == 0xe2a00002) ||
3338 (curr_inst == 0xeaa0d000) ||
3339 (curr_inst == 0xeaa0d002))
3341 struct minimal_symbol *stubsym, *libsym;
3343 stubsym = lookup_minimal_symbol_by_pc (loc);
3344 if (stubsym == NULL)
3346 warning ("Unable to find symbol for 0x%lx", loc);
3347 return orig_pc == pc ? 0 : pc & ~0x3;
3350 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3353 warning ("Unable to find library symbol for %s\n",
3354 DEPRECATED_SYMBOL_NAME (stubsym));
3355 return orig_pc == pc ? 0 : pc & ~0x3;
3358 return SYMBOL_VALUE (libsym);
3361 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3362 branch from the stub to the actual function. */
3364 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3365 || (curr_inst & 0xffe0e000) == 0xe8000000
3366 || (curr_inst & 0xffe0e000) == 0xe800A000)
3367 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3369 /* Does it look like bv (rp)? Note this depends on the
3370 current stack pointer being the same as the stack
3371 pointer in the stub itself! This is a branch on from the
3372 stub back to the original caller. */
3373 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3374 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3376 /* Yup. See if the previous instruction loaded
3378 if (prev_inst == 0x4bc23ff1)
3379 return (read_memory_integer
3380 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3383 warning ("Unable to find restore of %%rp before bv (%%rp).");
3384 return orig_pc == pc ? 0 : pc & ~0x3;
3388 /* elz: added this case to capture the new instruction
3389 at the end of the return part of an export stub used by
3390 the PA2.0: BVE, n (rp) */
3391 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3393 return (read_memory_integer
3394 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3397 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3398 the original caller from the stub. Used in dynamic executables. */
3399 else if (curr_inst == 0xe0400002)
3401 /* The value we jump to is sitting in sp - 24. But that's
3402 loaded several instructions before the be instruction.
3403 I guess we could check for the previous instruction being
3404 mtsp %r1,%sr0 if we want to do sanity checking. */
3405 return (read_memory_integer
3406 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3409 /* Haven't found the branch yet, but we're still in the stub.
3416 /* For the given instruction (INST), return any adjustment it makes
3417 to the stack pointer or zero for no adjustment.
3419 This only handles instructions commonly found in prologues. */
3422 prologue_inst_adjust_sp (unsigned long inst)
3424 /* This must persist across calls. */
3425 static int save_high21;
3427 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3428 if ((inst & 0xffffc000) == 0x37de0000)
3429 return extract_14 (inst);
3432 if ((inst & 0xffe00000) == 0x6fc00000)
3433 return extract_14 (inst);
3435 /* std,ma X,D(sp) */
3436 if ((inst & 0xffe00008) == 0x73c00008)
3437 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3439 /* addil high21,%r1; ldo low11,(%r1),%r30)
3440 save high bits in save_high21 for later use. */
3441 if ((inst & 0xffe00000) == 0x28200000)
3443 save_high21 = extract_21 (inst);
3447 if ((inst & 0xffff0000) == 0x343e0000)
3448 return save_high21 + extract_14 (inst);
3450 /* fstws as used by the HP compilers. */
3451 if ((inst & 0xffffffe0) == 0x2fd01220)
3452 return extract_5_load (inst);
3454 /* No adjustment. */
3458 /* Return nonzero if INST is a branch of some kind, else return zero. */
3461 is_branch (unsigned long inst)
3490 /* Return the register number for a GR which is saved by INST or
3491 zero it INST does not save a GR. */
3494 inst_saves_gr (unsigned long inst)
3496 /* Does it look like a stw? */
3497 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3498 || (inst >> 26) == 0x1f
3499 || ((inst >> 26) == 0x1f
3500 && ((inst >> 6) == 0xa)))
3501 return extract_5R_store (inst);
3503 /* Does it look like a std? */
3504 if ((inst >> 26) == 0x1c
3505 || ((inst >> 26) == 0x03
3506 && ((inst >> 6) & 0xf) == 0xb))
3507 return extract_5R_store (inst);
3509 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3510 if ((inst >> 26) == 0x1b)
3511 return extract_5R_store (inst);
3513 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3515 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3516 || ((inst >> 26) == 0x3
3517 && (((inst >> 6) & 0xf) == 0x8
3518 || (inst >> 6) & 0xf) == 0x9))
3519 return extract_5R_store (inst);
3524 /* Return the register number for a FR which is saved by INST or
3525 zero it INST does not save a FR.
3527 Note we only care about full 64bit register stores (that's the only
3528 kind of stores the prologue will use).
3530 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3533 inst_saves_fr (unsigned long inst)
3535 /* is this an FSTD ? */
3536 if ((inst & 0xfc00dfc0) == 0x2c001200)
3537 return extract_5r_store (inst);
3538 if ((inst & 0xfc000002) == 0x70000002)
3539 return extract_5R_store (inst);
3540 /* is this an FSTW ? */
3541 if ((inst & 0xfc00df80) == 0x24001200)
3542 return extract_5r_store (inst);
3543 if ((inst & 0xfc000002) == 0x7c000000)
3544 return extract_5R_store (inst);
3548 /* Advance PC across any function entry prologue instructions
3549 to reach some "real" code.
3551 Use information in the unwind table to determine what exactly should
3552 be in the prologue. */
3556 skip_prologue_hard_way (CORE_ADDR pc)
3559 CORE_ADDR orig_pc = pc;
3560 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3561 unsigned long args_stored, status, i, restart_gr, restart_fr;
3562 struct unwind_table_entry *u;
3568 u = find_unwind_entry (pc);
3572 /* If we are not at the beginning of a function, then return now. */
3573 if ((pc & ~0x3) != u->region_start)
3576 /* This is how much of a frame adjustment we need to account for. */
3577 stack_remaining = u->Total_frame_size << 3;
3579 /* Magic register saves we want to know about. */
3580 save_rp = u->Save_RP;
3581 save_sp = u->Save_SP;
3583 /* An indication that args may be stored into the stack. Unfortunately
3584 the HPUX compilers tend to set this in cases where no args were
3588 /* Turn the Entry_GR field into a bitmask. */
3590 for (i = 3; i < u->Entry_GR + 3; i++)
3592 /* Frame pointer gets saved into a special location. */
3593 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3596 save_gr |= (1 << i);
3598 save_gr &= ~restart_gr;
3600 /* Turn the Entry_FR field into a bitmask too. */
3602 for (i = 12; i < u->Entry_FR + 12; i++)
3603 save_fr |= (1 << i);
3604 save_fr &= ~restart_fr;
3606 /* Loop until we find everything of interest or hit a branch.
3608 For unoptimized GCC code and for any HP CC code this will never ever
3609 examine any user instructions.
3611 For optimzied GCC code we're faced with problems. GCC will schedule
3612 its prologue and make prologue instructions available for delay slot
3613 filling. The end result is user code gets mixed in with the prologue
3614 and a prologue instruction may be in the delay slot of the first branch
3617 Some unexpected things are expected with debugging optimized code, so
3618 we allow this routine to walk past user instructions in optimized
3620 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3623 unsigned int reg_num;
3624 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3625 unsigned long old_save_rp, old_save_sp, next_inst;
3627 /* Save copies of all the triggers so we can compare them later
3629 old_save_gr = save_gr;
3630 old_save_fr = save_fr;
3631 old_save_rp = save_rp;
3632 old_save_sp = save_sp;
3633 old_stack_remaining = stack_remaining;
3635 status = target_read_memory (pc, buf, 4);
3636 inst = extract_unsigned_integer (buf, 4);
3642 /* Note the interesting effects of this instruction. */
3643 stack_remaining -= prologue_inst_adjust_sp (inst);
3645 /* There are limited ways to store the return pointer into the
3647 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3650 /* These are the only ways we save SP into the stack. At this time
3651 the HP compilers never bother to save SP into the stack. */
3652 if ((inst & 0xffffc000) == 0x6fc10000
3653 || (inst & 0xffffc00c) == 0x73c10008)
3656 /* Are we loading some register with an offset from the argument
3658 if ((inst & 0xffe00000) == 0x37a00000
3659 || (inst & 0xffffffe0) == 0x081d0240)
3665 /* Account for general and floating-point register saves. */
3666 reg_num = inst_saves_gr (inst);
3667 save_gr &= ~(1 << reg_num);
3669 /* Ugh. Also account for argument stores into the stack.
3670 Unfortunately args_stored only tells us that some arguments
3671 where stored into the stack. Not how many or what kind!
3673 This is a kludge as on the HP compiler sets this bit and it
3674 never does prologue scheduling. So once we see one, skip past
3675 all of them. We have similar code for the fp arg stores below.
3677 FIXME. Can still die if we have a mix of GR and FR argument
3679 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3681 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3684 status = target_read_memory (pc, buf, 4);
3685 inst = extract_unsigned_integer (buf, 4);
3688 reg_num = inst_saves_gr (inst);
3694 reg_num = inst_saves_fr (inst);
3695 save_fr &= ~(1 << reg_num);
3697 status = target_read_memory (pc + 4, buf, 4);
3698 next_inst = extract_unsigned_integer (buf, 4);
3704 /* We've got to be read to handle the ldo before the fp register
3706 if ((inst & 0xfc000000) == 0x34000000
3707 && inst_saves_fr (next_inst) >= 4
3708 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3710 /* So we drop into the code below in a reasonable state. */
3711 reg_num = inst_saves_fr (next_inst);
3715 /* Ugh. Also account for argument stores into the stack.
3716 This is a kludge as on the HP compiler sets this bit and it
3717 never does prologue scheduling. So once we see one, skip past
3719 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3721 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3724 status = target_read_memory (pc, buf, 4);
3725 inst = extract_unsigned_integer (buf, 4);
3728 if ((inst & 0xfc000000) != 0x34000000)
3730 status = target_read_memory (pc + 4, buf, 4);
3731 next_inst = extract_unsigned_integer (buf, 4);
3734 reg_num = inst_saves_fr (next_inst);
3740 /* Quit if we hit any kind of branch. This can happen if a prologue
3741 instruction is in the delay slot of the first call/branch. */
3742 if (is_branch (inst))
3745 /* What a crock. The HP compilers set args_stored even if no
3746 arguments were stored into the stack (boo hiss). This could
3747 cause this code to then skip a bunch of user insns (up to the
3750 To combat this we try to identify when args_stored was bogusly
3751 set and clear it. We only do this when args_stored is nonzero,
3752 all other resources are accounted for, and nothing changed on
3755 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3756 && old_save_gr == save_gr && old_save_fr == save_fr
3757 && old_save_rp == save_rp && old_save_sp == save_sp
3758 && old_stack_remaining == stack_remaining)
3765 /* We've got a tenative location for the end of the prologue. However
3766 because of limitations in the unwind descriptor mechanism we may
3767 have went too far into user code looking for the save of a register
3768 that does not exist. So, if there registers we expected to be saved
3769 but never were, mask them out and restart.
3771 This should only happen in optimized code, and should be very rare. */
3772 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3775 restart_gr = save_gr;
3776 restart_fr = save_fr;
3784 /* Return the address of the PC after the last prologue instruction if
3785 we can determine it from the debug symbols. Else return zero. */
3788 after_prologue (CORE_ADDR pc)
3790 struct symtab_and_line sal;
3791 CORE_ADDR func_addr, func_end;
3794 /* If we can not find the symbol in the partial symbol table, then
3795 there is no hope we can determine the function's start address
3797 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3800 /* Get the line associated with FUNC_ADDR. */
3801 sal = find_pc_line (func_addr, 0);
3803 /* There are only two cases to consider. First, the end of the source line
3804 is within the function bounds. In that case we return the end of the
3805 source line. Second is the end of the source line extends beyond the
3806 bounds of the current function. We need to use the slow code to
3807 examine instructions in that case.
3809 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3810 the wrong thing to do. In fact, it should be entirely possible for this
3811 function to always return zero since the slow instruction scanning code
3812 is supposed to *always* work. If it does not, then it is a bug. */
3813 if (sal.end < func_end)
3819 /* To skip prologues, I use this predicate. Returns either PC itself
3820 if the code at PC does not look like a function prologue; otherwise
3821 returns an address that (if we're lucky) follows the prologue. If
3822 LENIENT, then we must skip everything which is involved in setting
3823 up the frame (it's OK to skip more, just so long as we don't skip
3824 anything which might clobber the registers which are being saved.
3825 Currently we must not skip more on the alpha, but we might the lenient
3829 hppa_skip_prologue (CORE_ADDR pc)
3833 CORE_ADDR post_prologue_pc;
3836 /* See if we can determine the end of the prologue via the symbol table.
3837 If so, then return either PC, or the PC after the prologue, whichever
3840 post_prologue_pc = after_prologue (pc);
3842 /* If after_prologue returned a useful address, then use it. Else
3843 fall back on the instruction skipping code.
3845 Some folks have claimed this causes problems because the breakpoint
3846 may be the first instruction of the prologue. If that happens, then
3847 the instruction skipping code has a bug that needs to be fixed. */
3848 if (post_prologue_pc != 0)
3849 return max (pc, post_prologue_pc);
3851 return (skip_prologue_hard_way (pc));
3854 /* Put here the code to store, into the SAVED_REGS, the addresses of
3855 the saved registers of frame described by FRAME_INFO. This
3856 includes special registers such as pc and fp saved in special ways
3857 in the stack frame. sp is even more special: the address we return
3858 for it IS the sp for the next frame. */
3861 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3862 CORE_ADDR frame_saved_regs[])
3865 struct unwind_table_entry *u;
3866 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3870 int final_iteration;
3872 /* Zero out everything. */
3873 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
3875 /* Call dummy frames always look the same, so there's no need to
3876 examine the dummy code to determine locations of saved registers;
3877 instead, let find_dummy_frame_regs fill in the correct offsets
3878 for the saved registers. */
3879 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
3880 && (get_frame_pc (frame_info)
3881 <= (get_frame_base (frame_info)
3882 /* A call dummy is sized in words, but it is actually a
3883 series of instructions. Account for that scaling
3885 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
3886 * DEPRECATED_CALL_DUMMY_LENGTH)
3887 /* Similarly we have to account for 64bit wide register
3889 + (32 * DEPRECATED_REGISTER_SIZE)
3890 /* We always consider FP regs 8 bytes long. */
3891 + (NUM_REGS - FP0_REGNUM) * 8
3892 /* Similarly we have to account for 64bit wide register
3894 + (6 * DEPRECATED_REGISTER_SIZE)))))
3895 find_dummy_frame_regs (frame_info, frame_saved_regs);
3897 /* Interrupt handlers are special too. They lay out the register
3898 state in the exact same order as the register numbers in GDB. */
3899 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
3901 for (i = 0; i < NUM_REGS; i++)
3903 /* SP is a little special. */
3905 frame_saved_regs[SP_REGNUM]
3906 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
3907 TARGET_PTR_BIT / 8);
3909 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
3914 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3915 /* Handle signal handler callers. */
3916 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
3918 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3923 /* Get the starting address of the function referred to by the PC
3925 pc = get_frame_func (frame_info);
3928 u = find_unwind_entry (pc);
3932 /* This is how much of a frame adjustment we need to account for. */
3933 stack_remaining = u->Total_frame_size << 3;
3935 /* Magic register saves we want to know about. */
3936 save_rp = u->Save_RP;
3937 save_sp = u->Save_SP;
3939 /* Turn the Entry_GR field into a bitmask. */
3941 for (i = 3; i < u->Entry_GR + 3; i++)
3943 /* Frame pointer gets saved into a special location. */
3944 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3947 save_gr |= (1 << i);
3950 /* Turn the Entry_FR field into a bitmask too. */
3952 for (i = 12; i < u->Entry_FR + 12; i++)
3953 save_fr |= (1 << i);
3955 /* The frame always represents the value of %sp at entry to the
3956 current function (and is thus equivalent to the "saved" stack
3958 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
3960 /* Loop until we find everything of interest or hit a branch.
3962 For unoptimized GCC code and for any HP CC code this will never ever
3963 examine any user instructions.
3965 For optimized GCC code we're faced with problems. GCC will schedule
3966 its prologue and make prologue instructions available for delay slot
3967 filling. The end result is user code gets mixed in with the prologue
3968 and a prologue instruction may be in the delay slot of the first branch
3971 Some unexpected things are expected with debugging optimized code, so
3972 we allow this routine to walk past user instructions in optimized
3974 final_iteration = 0;
3975 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3976 && pc <= get_frame_pc (frame_info))
3978 status = target_read_memory (pc, buf, 4);
3979 inst = extract_unsigned_integer (buf, 4);
3985 /* Note the interesting effects of this instruction. */
3986 stack_remaining -= prologue_inst_adjust_sp (inst);
3988 /* There are limited ways to store the return pointer into the
3990 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
3993 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
3995 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3998 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4001 /* Note if we saved SP into the stack. This also happens to indicate
4002 the location of the saved frame pointer. */
4003 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4004 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4006 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4010 /* Account for general and floating-point register saves. */
4011 reg = inst_saves_gr (inst);
4012 if (reg >= 3 && reg <= 18
4013 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4015 save_gr &= ~(1 << reg);
4017 /* stwm with a positive displacement is a *post modify*. */
4018 if ((inst >> 26) == 0x1b
4019 && extract_14 (inst) >= 0)
4020 frame_saved_regs[reg] = get_frame_base (frame_info);
4021 /* A std has explicit post_modify forms. */
4022 else if ((inst & 0xfc00000c0) == 0x70000008)
4023 frame_saved_regs[reg] = get_frame_base (frame_info);
4028 if ((inst >> 26) == 0x1c)
4029 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4030 else if ((inst >> 26) == 0x03)
4031 offset = low_sign_extend (inst & 0x1f, 5);
4033 offset = extract_14 (inst);
4035 /* Handle code with and without frame pointers. */
4037 frame_saved_regs[reg]
4038 = get_frame_base (frame_info) + offset;
4040 frame_saved_regs[reg]
4041 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4047 /* GCC handles callee saved FP regs a little differently.
4049 It emits an instruction to put the value of the start of
4050 the FP store area into %r1. It then uses fstds,ma with
4051 a basereg of %r1 for the stores.
4053 HP CC emits them at the current stack pointer modifying
4054 the stack pointer as it stores each register. */
4056 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4057 if ((inst & 0xffffc000) == 0x34610000
4058 || (inst & 0xffffc000) == 0x37c10000)
4059 fp_loc = extract_14 (inst);
4061 reg = inst_saves_fr (inst);
4062 if (reg >= 12 && reg <= 21)
4064 /* Note +4 braindamage below is necessary because the FP status
4065 registers are internally 8 registers rather than the expected
4067 save_fr &= ~(1 << reg);
4070 /* 1st HP CC FP register store. After this instruction
4071 we've set enough state that the GCC and HPCC code are
4072 both handled in the same manner. */
4073 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4078 frame_saved_regs[reg + FP0_REGNUM + 4]
4079 = get_frame_base (frame_info) + fp_loc;
4084 /* Quit if we hit any kind of branch the previous iteration. */
4085 if (final_iteration)
4088 /* We want to look precisely one instruction beyond the branch
4089 if we have not found everything yet. */
4090 if (is_branch (inst))
4091 final_iteration = 1;
4098 /* XXX - deprecated. This is a compatibility function for targets
4099 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4100 /* Find the addresses in which registers are saved in FRAME. */
4103 hppa_frame_init_saved_regs (struct frame_info *frame)
4105 if (get_frame_saved_regs (frame) == NULL)
4106 frame_saved_regs_zalloc (frame);
4107 hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame));
4110 /* Exception handling support for the HP-UX ANSI C++ compiler.
4111 The compiler (aCC) provides a callback for exception events;
4112 GDB can set a breakpoint on this callback and find out what
4113 exception event has occurred. */
4115 /* The name of the hook to be set to point to the callback function */
4116 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4117 /* The name of the function to be used to set the hook value */
4118 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4119 /* The name of the callback function in end.o */
4120 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4121 /* Name of function in end.o on which a break is set (called by above) */
4122 static char HP_ACC_EH_break[] = "__d_eh_break";
4123 /* Name of flag (in end.o) that enables catching throws */
4124 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4125 /* Name of flag (in end.o) that enables catching catching */
4126 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4127 /* The enum used by aCC */
4135 /* Is exception-handling support available with this executable? */
4136 static int hp_cxx_exception_support = 0;
4137 /* Has the initialize function been run? */
4138 int hp_cxx_exception_support_initialized = 0;
4139 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4140 extern int exception_support_initialized;
4141 /* Address of __eh_notify_hook */
4142 static CORE_ADDR eh_notify_hook_addr = 0;
4143 /* Address of __d_eh_notify_callback */
4144 static CORE_ADDR eh_notify_callback_addr = 0;
4145 /* Address of __d_eh_break */
4146 static CORE_ADDR eh_break_addr = 0;
4147 /* Address of __d_eh_catch_catch */
4148 static CORE_ADDR eh_catch_catch_addr = 0;
4149 /* Address of __d_eh_catch_throw */
4150 static CORE_ADDR eh_catch_throw_addr = 0;
4151 /* Sal for __d_eh_break */
4152 static struct symtab_and_line *break_callback_sal = 0;
4154 /* Code in end.c expects __d_pid to be set in the inferior,
4155 otherwise __d_eh_notify_callback doesn't bother to call
4156 __d_eh_break! So we poke the pid into this symbol
4161 setup_d_pid_in_inferior (void)
4164 struct minimal_symbol *msymbol;
4165 char buf[4]; /* FIXME 32x64? */
4167 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4168 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4169 if (msymbol == NULL)
4171 warning ("Unable to find __d_pid symbol in object file.");
4172 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4176 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4177 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4178 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4180 warning ("Unable to write __d_pid");
4181 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4187 /* Initialize exception catchpoint support by looking for the
4188 necessary hooks/callbacks in end.o, etc., and set the hook value to
4189 point to the required debug function
4195 initialize_hp_cxx_exception_support (void)
4197 struct symtabs_and_lines sals;
4198 struct cleanup *old_chain;
4199 struct cleanup *canonical_strings_chain = NULL;
4202 char *addr_end = NULL;
4203 char **canonical = (char **) NULL;
4205 struct symbol *sym = NULL;
4206 struct minimal_symbol *msym = NULL;
4207 struct objfile *objfile;
4208 asection *shlib_info;
4210 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4211 recursion is a possibility because finding the hook for exception
4212 callbacks involves making a call in the inferior, which means
4213 re-inserting breakpoints which can re-invoke this code */
4215 static int recurse = 0;
4218 hp_cxx_exception_support_initialized = 0;
4219 exception_support_initialized = 0;
4223 hp_cxx_exception_support = 0;
4225 /* First check if we have seen any HP compiled objects; if not,
4226 it is very unlikely that HP's idiosyncratic callback mechanism
4227 for exception handling debug support will be available!
4228 This will percolate back up to breakpoint.c, where our callers
4229 will decide to try the g++ exception-handling support instead. */
4230 if (!hp_som_som_object_present)
4233 /* We have a SOM executable with SOM debug info; find the hooks */
4235 /* First look for the notify hook provided by aCC runtime libs */
4236 /* If we find this symbol, we conclude that the executable must
4237 have HP aCC exception support built in. If this symbol is not
4238 found, even though we're a HP SOM-SOM file, we may have been
4239 built with some other compiler (not aCC). This results percolates
4240 back up to our callers in breakpoint.c which can decide to
4241 try the g++ style of exception support instead.
4242 If this symbol is found but the other symbols we require are
4243 not found, there is something weird going on, and g++ support
4244 should *not* be tried as an alternative.
4246 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4247 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4249 /* libCsup has this hook; it'll usually be non-debuggable */
4250 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4253 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4254 hp_cxx_exception_support = 1;
4258 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4259 warning ("Executable may not have been compiled debuggable with HP aCC.");
4260 warning ("GDB will be unable to intercept exception events.");
4261 eh_notify_hook_addr = 0;
4262 hp_cxx_exception_support = 0;
4266 /* Next look for the notify callback routine in end.o */
4267 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4268 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4271 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4272 hp_cxx_exception_support = 1;
4276 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4277 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4278 warning ("GDB will be unable to intercept exception events.");
4279 eh_notify_callback_addr = 0;
4283 #ifndef GDB_TARGET_IS_HPPA_20W
4284 /* Check whether the executable is dynamically linked or archive bound */
4285 /* With an archive-bound executable we can use the raw addresses we find
4286 for the callback function, etc. without modification. For an executable
4287 with shared libraries, we have to do more work to find the plabel, which
4288 can be the target of a call through $$dyncall from the aCC runtime support
4289 library (libCsup) which is linked shared by default by aCC. */
4290 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4291 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4292 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4293 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4295 /* The minsym we have has the local code address, but that's not the
4296 plabel that can be used by an inter-load-module call. */
4297 /* Find solib handle for main image (which has end.o), and use that
4298 and the min sym as arguments to __d_shl_get() (which does the equivalent
4299 of shl_findsym()) to find the plabel. */
4301 args_for_find_stub args;
4302 static char message[] = "Error while finding exception callback hook:\n";
4304 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4306 args.return_val = 0;
4309 catch_errors (cover_find_stub_with_shl_get, &args, message,
4311 eh_notify_callback_addr = args.return_val;
4314 exception_catchpoints_are_fragile = 1;
4316 if (!eh_notify_callback_addr)
4318 /* We can get here either if there is no plabel in the export list
4319 for the main image, or if something strange happened (?) */
4320 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4321 warning ("GDB will not be able to intercept exception events.");
4326 exception_catchpoints_are_fragile = 0;
4329 /* Now, look for the breakpointable routine in end.o */
4330 /* This should also be available in the SOM symbol dict. if end.o linked in */
4331 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4334 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4335 hp_cxx_exception_support = 1;
4339 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4340 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4341 warning ("GDB will be unable to intercept exception events.");
4346 /* Next look for the catch enable flag provided in end.o */
4347 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4348 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4349 if (sym) /* sometimes present in debug info */
4351 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4352 hp_cxx_exception_support = 1;
4355 /* otherwise look in SOM symbol dict. */
4357 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4360 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4361 hp_cxx_exception_support = 1;
4365 warning ("Unable to enable interception of exception catches.");
4366 warning ("Executable may not have been compiled debuggable with HP aCC.");
4367 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4372 /* Next look for the catch enable flag provided end.o */
4373 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4374 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4375 if (sym) /* sometimes present in debug info */
4377 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4378 hp_cxx_exception_support = 1;
4381 /* otherwise look in SOM symbol dict. */
4383 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4386 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4387 hp_cxx_exception_support = 1;
4391 warning ("Unable to enable interception of exception throws.");
4392 warning ("Executable may not have been compiled debuggable with HP aCC.");
4393 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4399 hp_cxx_exception_support = 2; /* everything worked so far */
4400 hp_cxx_exception_support_initialized = 1;
4401 exception_support_initialized = 1;
4406 /* Target operation for enabling or disabling interception of
4408 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4409 ENABLE is either 0 (disable) or 1 (enable).
4410 Return value is NULL if no support found;
4411 -1 if something went wrong,
4412 or a pointer to a symtab/line struct if the breakpointable
4413 address was found. */
4415 struct symtab_and_line *
4416 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4420 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4421 if (!initialize_hp_cxx_exception_support ())
4424 switch (hp_cxx_exception_support)
4427 /* Assuming no HP support at all */
4430 /* HP support should be present, but something went wrong */
4431 return (struct symtab_and_line *) -1; /* yuck! */
4432 /* there may be other cases in the future */
4435 /* Set the EH hook to point to the callback routine */
4436 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4437 /* pai: (temp) FIXME should there be a pack operation first? */
4438 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4440 warning ("Could not write to target memory for exception event callback.");
4441 warning ("Interception of exception events may not work.");
4442 return (struct symtab_and_line *) -1;
4446 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4447 if (PIDGET (inferior_ptid) > 0)
4449 if (setup_d_pid_in_inferior ())
4450 return (struct symtab_and_line *) -1;
4454 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4455 return (struct symtab_and_line *) -1;
4461 case EX_EVENT_THROW:
4462 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4463 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4465 warning ("Couldn't enable exception throw interception.");
4466 return (struct symtab_and_line *) -1;
4469 case EX_EVENT_CATCH:
4470 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4471 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4473 warning ("Couldn't enable exception catch interception.");
4474 return (struct symtab_and_line *) -1;
4478 error ("Request to enable unknown or unsupported exception event.");
4481 /* Copy break address into new sal struct, malloc'ing if needed. */
4482 if (!break_callback_sal)
4484 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4486 init_sal (break_callback_sal);
4487 break_callback_sal->symtab = NULL;
4488 break_callback_sal->pc = eh_break_addr;
4489 break_callback_sal->line = 0;
4490 break_callback_sal->end = eh_break_addr;
4492 return break_callback_sal;
4495 /* Record some information about the current exception event */
4496 static struct exception_event_record current_ex_event;
4497 /* Convenience struct */
4498 static struct symtab_and_line null_symtab_and_line =
4501 /* Report current exception event. Returns a pointer to a record
4502 that describes the kind of the event, where it was thrown from,
4503 and where it will be caught. More information may be reported
4505 struct exception_event_record *
4506 child_get_current_exception_event (void)
4508 CORE_ADDR event_kind;
4509 CORE_ADDR throw_addr;
4510 CORE_ADDR catch_addr;
4511 struct frame_info *fi, *curr_frame;
4514 curr_frame = get_current_frame ();
4516 return (struct exception_event_record *) NULL;
4518 /* Go up one frame to __d_eh_notify_callback, because at the
4519 point when this code is executed, there's garbage in the
4520 arguments of __d_eh_break. */
4521 fi = find_relative_frame (curr_frame, &level);
4523 return (struct exception_event_record *) NULL;
4527 /* Read in the arguments */
4528 /* __d_eh_notify_callback() is called with 3 arguments:
4529 1. event kind catch or throw
4530 2. the target address if known
4531 3. a flag -- not sure what this is. pai/1997-07-17 */
4532 event_kind = read_register (ARG0_REGNUM);
4533 catch_addr = read_register (ARG1_REGNUM);
4535 /* Now go down to a user frame */
4536 /* For a throw, __d_eh_break is called by
4537 __d_eh_notify_callback which is called by
4538 __notify_throw which is called
4540 For a catch, __d_eh_break is called by
4541 __d_eh_notify_callback which is called by
4542 <stackwalking stuff> which is called by
4543 __throw__<stuff> or __rethrow_<stuff> which is called
4545 /* FIXME: Don't use such magic numbers; search for the frames */
4546 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4547 fi = find_relative_frame (curr_frame, &level);
4549 return (struct exception_event_record *) NULL;
4552 throw_addr = get_frame_pc (fi);
4554 /* Go back to original (top) frame */
4555 select_frame (curr_frame);
4557 current_ex_event.kind = (enum exception_event_kind) event_kind;
4558 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4559 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4561 return ¤t_ex_event;
4564 /* Instead of this nasty cast, add a method pvoid() that prints out a
4565 host VOID data type (remember %p isn't portable). */
4568 hppa_pointer_to_address_hack (void *ptr)
4570 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4571 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4575 unwind_command (char *exp, int from_tty)
4578 struct unwind_table_entry *u;
4580 /* If we have an expression, evaluate it and use it as the address. */
4582 if (exp != 0 && *exp != 0)
4583 address = parse_and_eval_address (exp);
4587 u = find_unwind_entry (address);
4591 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4595 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4596 paddr_nz (hppa_pointer_to_address_hack (u)));
4598 printf_unfiltered ("\tregion_start = ");
4599 print_address (u->region_start, gdb_stdout);
4601 printf_unfiltered ("\n\tregion_end = ");
4602 print_address (u->region_end, gdb_stdout);
4604 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4606 printf_unfiltered ("\n\tflags =");
4607 pif (Cannot_unwind);
4609 pif (Millicode_save_sr0);
4612 pif (Variable_Frame);
4613 pif (Separate_Package_Body);
4614 pif (Frame_Extension_Millicode);
4615 pif (Stack_Overflow_Check);
4616 pif (Two_Instruction_SP_Increment);
4620 pif (Save_MRP_in_frame);
4621 pif (extn_ptr_defined);
4622 pif (Cleanup_defined);
4623 pif (MPE_XL_interrupt_marker);
4624 pif (HP_UX_interrupt_marker);
4627 putchar_unfiltered ('\n');
4629 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4631 pin (Region_description);
4634 pin (Total_frame_size);
4637 #ifdef PREPARE_TO_PROCEED
4639 /* If the user has switched threads, and there is a breakpoint
4640 at the old thread's pc location, then switch to that thread
4641 and return TRUE, else return FALSE and don't do a thread
4642 switch (or rather, don't seem to have done a thread switch).
4644 Ptrace-based gdb will always return FALSE to the thread-switch
4645 query, and thus also to PREPARE_TO_PROCEED.
4647 The important thing is whether there is a BPT instruction,
4648 not how many user breakpoints there are. So we have to worry
4649 about things like these:
4653 o User hits bp, no switch -- NO
4655 o User hits bp, switches threads -- YES
4657 o User hits bp, deletes bp, switches threads -- NO
4659 o User hits bp, deletes one of two or more bps
4660 at that PC, user switches threads -- YES
4662 o Plus, since we're buffering events, the user may have hit a
4663 breakpoint, deleted the breakpoint and then gotten another
4664 hit on that same breakpoint on another thread which
4665 actually hit before the delete. (FIXME in breakpoint.c
4666 so that "dead" breakpoints are ignored?) -- NO
4668 For these reasons, we have to violate information hiding and
4669 call "breakpoint_here_p". If core gdb thinks there is a bpt
4670 here, that's what counts, as core gdb is the one which is
4671 putting the BPT instruction in and taking it out.
4673 Note that this implementation is potentially redundant now that
4674 default_prepare_to_proceed() has been added.
4676 FIXME This may not support switching threads after Ctrl-C
4677 correctly. The default implementation does support this. */
4679 hppa_prepare_to_proceed (void)
4682 pid_t current_thread;
4684 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
4685 if (old_thread != 0)
4687 /* Switched over from "old_thread". Try to do
4688 as little work as possible, 'cause mostly
4689 we're going to switch back. */
4691 CORE_ADDR old_pc = read_pc ();
4693 /* Yuk, shouldn't use global to specify current
4694 thread. But that's how gdb does it. */
4695 current_thread = PIDGET (inferior_ptid);
4696 inferior_ptid = pid_to_ptid (old_thread);
4698 new_pc = read_pc ();
4699 if (new_pc != old_pc /* If at same pc, no need */
4700 && breakpoint_here_p (new_pc))
4702 /* User hasn't deleted the BP.
4703 Return TRUE, finishing switch to "old_thread". */
4704 flush_cached_frames ();
4705 registers_changed ();
4707 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4708 current_thread, PIDGET (inferior_ptid));
4714 /* Otherwise switch back to the user-chosen thread. */
4715 inferior_ptid = pid_to_ptid (current_thread);
4716 new_pc = read_pc (); /* Re-prime register cache */
4721 #endif /* PREPARE_TO_PROCEED */
4724 hppa_skip_permanent_breakpoint (void)
4726 /* To step over a breakpoint instruction on the PA takes some
4727 fiddling with the instruction address queue.
4729 When we stop at a breakpoint, the IA queue front (the instruction
4730 we're executing now) points at the breakpoint instruction, and
4731 the IA queue back (the next instruction to execute) points to
4732 whatever instruction we would execute after the breakpoint, if it
4733 were an ordinary instruction. This is the case even if the
4734 breakpoint is in the delay slot of a branch instruction.
4736 Clearly, to step past the breakpoint, we need to set the queue
4737 front to the back. But what do we put in the back? What
4738 instruction comes after that one? Because of the branch delay
4739 slot, the next insn is always at the back + 4. */
4740 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4741 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4743 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4744 /* We can leave the tail's space the same, since there's no jump. */
4747 /* Copy the function value from VALBUF into the proper location
4748 for a function return.
4750 Called only in the context of the "return" command. */
4753 hppa_store_return_value (struct type *type, char *valbuf)
4755 /* For software floating point, the return value goes into the
4756 integer registers. But we do not have any flag to key this on,
4757 so we always store the value into the integer registers.
4759 If its a float value, then we also store it into the floating
4761 deprecated_write_register_bytes (REGISTER_BYTE (28)
4762 + (TYPE_LENGTH (type) > 4
4763 ? (8 - TYPE_LENGTH (type))
4764 : (4 - TYPE_LENGTH (type))),
4765 valbuf, TYPE_LENGTH (type));
4766 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4767 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4768 valbuf, TYPE_LENGTH (type));
4771 /* Copy the function's return value into VALBUF.
4773 This function is called only in the context of "target function calls",
4774 ie. when the debugger forces a function to be called in the child, and
4775 when the debugger forces a fucntion to return prematurely via the
4776 "return" command. */
4779 hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4781 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4783 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4784 TYPE_LENGTH (type));
4788 + REGISTER_BYTE (28)
4789 + (TYPE_LENGTH (type) > 4
4790 ? (8 - TYPE_LENGTH (type))
4791 : (4 - TYPE_LENGTH (type)))),
4792 TYPE_LENGTH (type));
4796 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4798 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4799 via a pointer regardless of its type or the compiler used. */
4800 return (TYPE_LENGTH (type) > 8);
4804 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4806 /* Stack grows upward */
4811 hppa_stack_align (CORE_ADDR sp)
4813 /* elz: adjust the quantity to the next highest value which is
4814 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4815 On hppa the sp must always be kept 64-bit aligned */
4816 return ((sp % 8) ? (sp + 7) & -8 : sp);
4820 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4822 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4824 An example of this occurs when an a.out is linked against a foo.sl.
4825 The foo.sl defines a global bar(), and the a.out declares a signature
4826 for bar(). However, the a.out doesn't directly call bar(), but passes
4827 its address in another call.
4829 If you have this scenario and attempt to "break bar" before running,
4830 gdb will find a minimal symbol for bar() in the a.out. But that
4831 symbol's address will be negative. What this appears to denote is
4832 an index backwards from the base of the procedure linkage table (PLT)
4833 into the data linkage table (DLT), the end of which is contiguous
4834 with the start of the PLT. This is clearly not a valid address for
4835 us to set a breakpoint on.
4837 Note that one must be careful in how one checks for a negative address.
4838 0xc0000000 is a legitimate address of something in a shared text
4839 segment, for example. Since I don't know what the possible range
4840 is of these "really, truly negative" addresses that come from the
4841 minimal symbols, I'm resorting to the gross hack of checking the
4842 top byte of the address for all 1's. Sigh. */
4844 return (!target_has_stack && (pc & 0xFF000000));
4848 hppa_instruction_nullified (void)
4850 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4851 avoid the type cast. I'm leaving it as is for now as I'm doing
4852 semi-mechanical multiarching-related changes. */
4853 const int ipsw = (int) read_register (IPSW_REGNUM);
4854 const int flags = (int) read_register (FLAGS_REGNUM);
4856 return ((ipsw & 0x00200000) && !(flags & 0x2));
4860 hppa_register_raw_size (int reg_nr)
4862 /* All registers have the same size. */
4863 return DEPRECATED_REGISTER_SIZE;
4866 /* Index within the register vector of the first byte of the space i
4867 used for register REG_NR. */
4870 hppa_register_byte (int reg_nr)
4875 /* Return the GDB type object for the "standard" data type of data
4879 hppa_register_virtual_type (int reg_nr)
4881 if (reg_nr < FP4_REGNUM)
4882 return builtin_type_int;
4884 return builtin_type_float;
4887 /* Store the address of the place in which to copy the structure the
4888 subroutine will return. This is called from call_function. */
4891 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4893 write_register (28, addr);
4897 hppa_extract_struct_value_address (char *regbuf)
4899 /* Extract from an array REGBUF containing the (raw) register state
4900 the address in which a function should return its structure value,
4901 as a CORE_ADDR (or an expression that can be used as one). */
4902 /* FIXME: brobecker 2002-12-26.
4903 The current implementation is historical, but we should eventually
4904 implement it in a more robust manner as it relies on the fact that
4905 the address size is equal to the size of an int* _on the host_...
4906 One possible implementation that crossed my mind is to use
4908 return (*(int *)(regbuf + REGISTER_BYTE (28)));
4911 /* Return True if REGNUM is not a register available to the user
4912 through ptrace(). */
4915 hppa_cannot_store_register (int regnum)
4918 || regnum == PCSQ_HEAD_REGNUM
4919 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4920 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4925 hppa_frame_args_address (struct frame_info *fi)
4927 return get_frame_base (fi);
4931 hppa_frame_locals_address (struct frame_info *fi)
4933 return get_frame_base (fi);
4937 hppa_frame_num_args (struct frame_info *frame)
4939 /* We can't tell how many args there are now that the C compiler delays
4945 hppa_smash_text_address (CORE_ADDR addr)
4947 /* The low two bits of the PC on the PA contain the privilege level.
4948 Some genius implementing a (non-GCC) compiler apparently decided
4949 this means that "addresses" in a text section therefore include a
4950 privilege level, and thus symbol tables should contain these bits.
4951 This seems like a bonehead thing to do--anyway, it seems to work
4952 for our purposes to just ignore those bits. */
4954 return (addr &= ~0x3);
4957 static struct gdbarch *
4958 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4960 struct gdbarch *gdbarch;
4962 /* Try to determine the ABI of the object we are loading. */
4963 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
4965 /* If it's a SOM file, assume it's HP/UX SOM. */
4966 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
4967 info.osabi = GDB_OSABI_HPUX_SOM;
4970 /* find a candidate among the list of pre-declared architectures. */
4971 arches = gdbarch_list_lookup_by_info (arches, &info);
4973 return (arches->gdbarch);
4975 /* If none found, then allocate and initialize one. */
4976 gdbarch = gdbarch_alloc (&info, NULL);
4978 /* Hook in ABI-specific overrides, if they have been registered. */
4979 gdbarch_init_osabi (info, gdbarch);
4981 set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
4982 set_gdbarch_function_start_offset (gdbarch, 0);
4983 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
4984 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
4985 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
4986 set_gdbarch_in_solib_return_trampoline (gdbarch,
4987 hppa_in_solib_return_trampoline);
4988 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
4989 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
4990 set_gdbarch_stack_align (gdbarch, hppa_stack_align);
4991 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4992 set_gdbarch_deprecated_register_size (gdbarch, 4);
4993 set_gdbarch_num_regs (gdbarch, hppa_num_regs);
4994 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
4995 set_gdbarch_sp_regnum (gdbarch, 30);
4996 set_gdbarch_fp0_regnum (gdbarch, 64);
4997 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
4998 set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
4999 set_gdbarch_register_raw_size (gdbarch, hppa_register_raw_size);
5000 set_gdbarch_register_bytes (gdbarch, hppa_num_regs * 4);
5001 set_gdbarch_register_byte (gdbarch, hppa_register_byte);
5002 set_gdbarch_register_virtual_size (gdbarch, hppa_register_raw_size);
5003 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
5004 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5005 set_gdbarch_register_virtual_type (gdbarch, hppa_register_virtual_type);
5006 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5007 set_gdbarch_deprecated_extract_return_value (gdbarch,
5008 hppa_extract_return_value);
5009 set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention);
5010 set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value);
5011 set_gdbarch_deprecated_extract_struct_value_address
5012 (gdbarch, hppa_extract_struct_value_address);
5013 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5014 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5015 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5016 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5017 set_gdbarch_frameless_function_invocation
5018 (gdbarch, hppa_frameless_function_invocation);
5019 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5020 set_gdbarch_frame_args_address (gdbarch, hppa_frame_args_address);
5021 set_gdbarch_frame_locals_address (gdbarch, hppa_frame_locals_address);
5022 set_gdbarch_frame_num_args (gdbarch, hppa_frame_num_args);
5023 set_gdbarch_frame_args_skip (gdbarch, 0);
5024 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5025 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5026 set_gdbarch_deprecated_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28);
5027 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5028 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5029 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5030 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5031 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5032 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5033 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5039 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5041 /* Nothing to print for the moment. */
5045 _initialize_hppa_tdep (void)
5047 struct cmd_list_element *c;
5048 void break_at_finish_command (char *arg, int from_tty);
5049 void tbreak_at_finish_command (char *arg, int from_tty);
5050 void break_at_finish_at_depth_command (char *arg, int from_tty);
5052 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5053 deprecated_tm_print_insn = print_insn_hppa;
5055 add_cmd ("unwind", class_maintenance, unwind_command,
5056 "Print unwind table entry at given address.",
5057 &maintenanceprintlist);
5059 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5060 break_at_finish_command,
5061 concat ("Set breakpoint at procedure exit. \n\
5062 Argument may be function name, or \"*\" and an address.\n\
5063 If function is specified, break at end of code for that function.\n\
5064 If an address is specified, break at the end of the function that contains \n\
5065 that exact address.\n",
5066 "With no arg, uses current execution address of selected stack frame.\n\
5067 This is useful for breaking on return to a stack frame.\n\
5069 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5071 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5072 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5073 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5074 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5075 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5077 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5078 tbreak_at_finish_command,
5079 "Set temporary breakpoint at procedure exit. Either there should\n\
5080 be no argument or the argument must be a depth.\n"), NULL);
5081 set_cmd_completer (c, location_completer);
5084 deprecate_cmd (add_com ("bx", class_breakpoint,
5085 break_at_finish_at_depth_command,
5086 "Set breakpoint at procedure exit. Either there should\n\
5087 be no argument or the argument must be a depth.\n"), NULL);