2 @setfilename internals.info
4 @top Assembler Internals
8 This chapter describes the internals of the assembler. It is incomplete, but
11 This chapter was last modified on $Date$. It is not updated regularly, and it
15 * GAS versions:: GAS versions
16 * Data types:: Data types
17 * GAS processing:: What GAS does when it runs
18 * Porting GAS:: Porting GAS
19 * Relaxation:: Relaxation
20 * Broken words:: Broken words
21 * Internal functions:: Internal functions
22 * Test suite:: Test suite
28 GAS has acquired layers of code over time. The original GAS only supported the
29 a.out object file format, with three sections. Support for multiple sections
30 has been added in two different ways.
32 The preferred approach is to use the version of GAS created when the symbol
33 @code{BFD_ASSEMBLER} is defined. The other versions of GAS are documented for
34 historical purposes, and to help anybody who has to debug code written for
37 The type @code{segT} is used to represent a section in code which must work
38 with all versions of GAS.
41 * Original GAS:: Original GAS version
42 * MANY_SEGMENTS:: MANY_SEGMENTS gas version
43 * BFD_ASSEMBLER:: BFD_ASSEMBLER gas version
47 @subsection Original GAS
49 The original GAS only supported the a.out object file format with three
50 sections: @samp{.text}, @samp{.data}, and @samp{.bss}. This is the version of
51 GAS that is compiled if neither @code{BFD_ASSEMBLER} nor @code{MANY_SEGMENTS}
52 is defined. This version of GAS is still used for the m68k-aout target, and
55 This version of GAS should not be used for any new development.
57 There is still code that is specific to this version of GAS, notably in
58 @file{write.c}. There is no way for this code to loop through all the
59 sections; it simply looks at global variables like @code{text_frag_root} and
60 @code{data_frag_root}.
62 The type @code{segT} is an enum.
65 @subsection MANY_SEGMENTS gas version
68 The @code{MANY_SEGMENTS} version of gas is only used for COFF. It uses the BFD
69 library, but it writes out all the data itself using @code{bfd_write}. This
70 version of gas supports up to 40 normal sections. The section names are stored
71 in the @code{seg_name} array. Other information is stored in the
72 @code{segment_info} array.
74 The type @code{segT} is an enum. Code that wants to examine all the sections
75 can use a @code{segT} variable as loop index from @code{SEG_E0} up to but not
76 including @code{SEG_UNKNOWN}.
78 Most of the code specific to this version of GAS is in the file
79 @file{config/obj-coff.c}, in the portion of that file that is compiled when
80 @code{BFD_ASSEMBLER} is not defined.
82 This version of GAS is still used for several COFF targets.
85 @subsection BFD_ASSEMBLER gas version
88 The preferred version of GAS is the @code{BFD_ASSEMBLER} version. In this
89 version of GAS, the output file is a normal BFD, and the BFD routines are used
90 to generate the output.
92 @code{BFD_ASSEMBLER} will automatically be used for certain targets, including
93 those that use the ELF, ECOFF, and SOM object file formats, and also all Alpha,
94 MIPS, PowerPC, and SPARC targets. You can force the use of
95 @code{BFD_ASSEMBLER} for other targets with the configure option
96 @samp{--enable-bfd-assembler}; however, it has not been tested for many
97 targets, and can not be assumed to work.
101 @cindex internals, data types
103 This section describes some fundamental GAS data types.
106 * Symbols:: The symbolS structure
107 * Expressions:: The expressionS structure
108 * Fixups:: The fixS structure
109 * Frags:: The fragS structure
114 @cindex internals, symbols
115 @cindex symbols, internal
116 @cindex symbolS structure
118 The definition for @code{struct symbol}, also known as @code{symbolS}, is
119 located in @file{struc-symbol.h}. Symbol structures contain the following
124 This is an @code{expressionS} that describes the value of the symbol. It might
125 refer to one or more other symbols; if so, its true value may not be known
126 until @code{resolve_symbol_value} is called in @code{write_object_file}.
128 The expression is often simply a constant. Before @code{resolve_symbol_value}
129 is called, the value is the offset from the frag (@pxref{Frags}). Afterward,
130 the frag address has been added in.
133 This field is non-zero if the symbol's value has been completely resolved. It
134 is used during the final pass over the symbol table.
137 This field is used to detect loops while resolving the symbol's value.
139 @item sy_used_in_reloc
140 This field is non-zero if the symbol is used by a relocation entry. If a local
141 symbol is used in a relocation entry, it must be possible to redirect those
142 relocations to other symbols, or this symbol cannot be removed from the final
147 These pointers to other @code{symbolS} structures describe a singly or doubly
148 linked list. (If @code{SYMBOLS_NEED_BACKPOINTERS} is not defined, the
149 @code{sy_previous} field will be omitted; @code{SYMBOLS_NEED_BACKPOINTERS} is
150 always defined if @code{BFD_ASSEMBLER}.) These fields should be accessed with
151 the @code{symbol_next} and @code{symbol_previous} macros.
154 This points to the frag (@pxref{Frags}) that this symbol is attached to.
157 Whether the symbol is used as an operand or in an expression. Note: Not all of
158 the backends keep this information accurate; backends which use this bit are
159 responsible for setting it when a symbol is used in backend routines.
162 Whether the symbol is an MRI common symbol created by the @code{COMMON}
163 pseudo-op when assembling in MRI mode.
166 If @code{BFD_ASSEMBLER} is defined, this points to the BFD @code{asymbol} that
167 will be used in writing the object file.
170 (Only used if @code{BFD_ASSEMBLER} is not defined.) This is the position of
171 the symbol's name in the string table of the object file. On some formats,
172 this will start at position 4, with position 0 reserved for unnamed symbols.
173 This field is not used until @code{write_object_file} is called.
176 (Only used if @code{BFD_ASSEMBLER} is not defined.) This is the
177 format-specific symbol structure, as it would be written into the object file.
180 (Only used if @code{BFD_ASSEMBLER} is not defined.) This is a 24-bit symbol
181 number, for use in constructing relocation table entries.
184 This format-specific data is of type @code{OBJ_SYMFIELD_TYPE}. If no macro by
185 that name is defined in @file{obj-format.h}, this field is not defined.
188 This processor-specific data is of type @code{TC_SYMFIELD_TYPE}. If no macro
189 by that name is defined in @file{targ-cpu.h}, this field is not defined.
191 @item TARGET_SYMBOL_FIELDS
192 If this macro is defined, it defines additional fields in the symbol structure.
193 This macro is obsolete, and should be replaced when possible by uses of
194 @code{OBJ_SYMFIELD_TYPE} and @code{TC_SYMFIELD_TYPE}.
197 There are a number of access routines used to extract the fields of a
198 @code{symbolS} structure. When possible, these routines should be used rather
199 than referring to the fields directly. These routines will work for any GAS
205 Set the symbol's value.
209 Get the symbol's value. This will cause @code{resolve_symbol_value} to be
210 called if necessary, so @code{S_GET_VALUE} should only be called when it is
211 safe to resolve symbols (i.e., after the entire input file has been read and
212 all symbols have been defined).
215 @cindex S_SET_SEGMENT
216 Set the section of the symbol.
219 @cindex S_GET_SEGMENT
220 Get the symbol's section.
224 Get the name of the symbol.
228 Set the name of the symbol.
231 @cindex S_IS_EXTERNAL
232 Return non-zero if the symbol is externally visible.
236 A synonym for @code{S_IS_EXTERNAL}. Don't use it.
240 Return non-zero if the symbol is weak.
244 Return non-zero if this is a common symbol. Common symbols are sometimes
245 represented as undefined symbols with a value, in which case this function will
250 Return non-zero if this symbol is defined. This function is not reliable when
251 called on a common symbol.
255 Return non-zero if this is a debugging symbol.
259 Return non-zero if this is a local assembler symbol which should not be
260 included in the final symbol table. Note that this is not the opposite of
261 @code{S_IS_EXTERNAL}. The @samp{-L} assembler option affects the return value
265 @cindex S_SET_EXTERNAL
266 Mark the symbol as externally visible.
268 @item S_CLEAR_EXTERNAL
269 @cindex S_CLEAR_EXTERNAL
270 Mark the symbol as not externally visible.
274 Mark the symbol as weak.
282 Get the @code{type}, @code{desc}, and @code{other} fields of the symbol. These
283 are only defined for object file formats for which they make sense (primarily
292 Set the @code{type}, @code{desc}, and @code{other} fields of the symbol. These
293 are only defined for object file formats for which they make sense (primarily
298 Get the size of a symbol. This is only defined for object file formats for
299 which it makes sense (primarily ELF).
303 Set the size of a symbol. This is only defined for object file formats for
304 which it makes sense (primarily ELF).
308 @subsection Expressions
309 @cindex internals, expressions
310 @cindex expressions, internal
311 @cindex expressionS structure
313 Expressions are stored in an @code{expressionS} structure. The structure is
314 defined in @file{expr.h}.
317 The macro @code{expression} will create an @code{expressionS} structure based
318 on the text found at the global variable @code{input_line_pointer}.
320 @cindex make_expr_symbol
321 @cindex expr_symbol_where
322 A single @code{expressionS} structure can represent a single operation.
323 Complex expressions are formed by creating @dfn{expression symbols} and
324 combining them in @code{expressionS} structures. An expression symbol is
325 created by calling @code{make_expr_symbol}. An expression symbol should
326 naturally never appear in a symbol table, and the implementation of
327 @code{S_IS_LOCAL} (@pxref{Symbols}) reflects that. The function
328 @code{expr_symbol_where} returns non-zero if a symbol is an expression symbol,
329 and also returns the file and line for the expression which caused it to be
332 The @code{expressionS} structure has two symbol fields, a number field, an
333 operator field, and a field indicating whether the number is unsigned.
335 The operator field is of type @code{operatorT}, and describes how to interpret
336 the other fields; see the definition in @file{expr.h} for the possibilities.
338 An @code{operatorT} value of @code{O_big} indicates either a floating point
339 number, stored in the global variable @code{generic_floating_point_number}, or
340 an integer to large to store in an @code{offsetT} type, stored in the global
341 array @code{generic_bignum}. This rather inflexible approach makes it
342 impossible to use floating point numbers or large expressions in complex
347 @cindex internals, fixups
349 @cindex fixS structure
351 A @dfn{fixup} is basically anything which can not be resolved in the first
352 pass. Sometimes a fixup can be resolved by the end of the assembly; if not,
353 the fixup becomes a relocation entry in the object file.
357 A fixup is created by a call to @code{fix_new} or @code{fix_new_exp}. Both
358 take a frag (@pxref{Frags}), a position within the frag, a size, an indication
359 of whether the fixup is PC relative, and a type. In a @code{BFD_ASSEMBLER}
360 GAS, the type is nominally a @code{bfd_reloc_code_real_type}, but several
361 targets use other type codes to represent fixups that can not be described as
364 The @code{fixS} structure has a number of fields, several of which are obsolete
365 or are only used by a particular target. The important fields are:
369 The frag (@pxref{Frags}) this fixup is in.
372 The location within the frag where the fixup occurs.
375 The symbol this fixup is against. Typically, the value of this symbol is added
376 into the object contents. This may be NULL.
379 The value of this symbol is subtracted from the object contents. This is
383 A number which is added into the fixup.
386 Some CPU backends use this field to convey information between
387 @code{md_apply_fix} and @code{tc_gen_reloc}. The machine independent code does
391 The next fixup in the section.
394 The type of the fixup. This field is only defined if @code{BFD_ASSEMBLER}, or
395 if the target defines @code{NEED_FX_R_TYPE}.
398 The size of the fixup. This is mostly used for error checking.
401 Whether the fixup is PC relative.
404 Non-zero if the fixup has been applied, and no relocation entry needs to be
409 The file and line where the fixup was created.
412 This has the type @code{TC_FIX_TYPE}, and is only defined if the target defines
418 @cindex internals, frags
420 @cindex fragS structure.
422 The @code{fragS} structure is defined in @file{as.h}. Each frag represents a
423 portion of the final object file. As GAS reads the source file, it creates
424 frags to hold the data that it reads. At the end of the assembly the frags and
425 fixups are processed to produce the final contents.
429 The address of the frag. This is not set until the assembler rescans the list
430 of all frags after the entire input file is parsed. The function
431 @code{relax_segment} fills in this field.
434 Pointer to the next frag in this (sub)section.
437 Fixed number of characters we know we're going to emit to the output file. May
441 Variable number of characters we may output, after the initial @code{fr_fix}
442 characters. May be zero.
445 The interpretation of this field is controlled by @code{fr_type}. Generally,
446 if @code{fr_var} is non-zero, this is a repeat count: the @code{fr_var}
447 characters are output @code{fr_offset} times.
450 Holds line number info when an assembler listing was requested.
453 Relaxation state. This field indicates the interpretation of @code{fr_offset},
454 @code{fr_symbol} and the variable-length tail of the frag, as well as the
455 treatment it gets in various phases of processing. It does not affect the
456 initial @code{fr_fix} characters; they are always supposed to be output
457 verbatim (fixups aside). See below for specific values this field can have.
460 Relaxation substate. If the macro @code{md_relax_frag} isn't defined, this is
461 assumed to be an index into @code{TC_GENERIC_RELAX_TABLE} for the generic
462 relaxation code to process (@pxref{Relaxation}). If @code{md_relax_frag} is
463 defined, this field is available for any use by the CPU-specific code.
466 This normally indicates the symbol to use when relaxing the frag according to
470 Points to the lowest-addressed byte of the opcode, for use in relaxation.
472 @item fr_pcrel_adjust
474 These fields are only used in the NS32k configuration. But since @code{struct
475 frag} is defined before the CPU-specific header files are included, they must
476 unconditionally be defined.
480 The file and line where this frag was last modified.
483 Declared as a one-character array, this last field grows arbitrarily large to
484 hold the actual contents of the frag.
487 These are the possible relaxation states, provided in the enumeration type
488 @code{relax_stateT}, and the interpretations they represent for the other
494 The start of the following frag should be aligned on some boundary. In this
495 frag, @code{fr_offset} is the logarithm (base 2) of the alignment in bytes.
496 (For example, if alignment on an 8-byte boundary were desired, @code{fr_offset}
497 would have a value of 3.) The variable characters indicate the fill pattern to
498 be used. The @code{fr_subtype} field holds the maximum number of bytes to skip
499 when doing this alignment. If more bytes are needed, the alignment is not
500 done. An @code{fr_subtype} value of 0 means no maximum, which is the normal
501 case. Target backends can use @code{rs_align_code} to handle certain types of
502 alignment differently.
505 This indicates that ``broken word'' processing should be done (@pxref{Broken
506 words}). If broken word processing is not necessary on the target machine,
507 this enumerator value will not be defined.
510 The variable characters are to be repeated @code{fr_offset} times. If
511 @code{fr_offset} is 0, this frag has a length of @code{fr_fix}. Most frags
514 @item rs_machine_dependent
515 Displacement relaxation is to be done on this frag. The target is indicated by
516 @code{fr_symbol} and @code{fr_offset}, and @code{fr_subtype} indicates the
517 particular machine-specific addressing mode desired. @xref{Relaxation}.
520 The start of the following frag should be pushed back to some specific offset
521 within the section. (Some assemblers use the value as an absolute address; GAS
522 does not handle final absolute addresses, but rather requires that the linker
523 set them.) The offset is given by @code{fr_symbol} and @code{fr_offset}; one
524 character from the variable-length tail is used as the fill character.
527 @cindex frchainS structure
528 A chain of frags is built up for each subsection. The data structure
529 describing a chain is called a @code{frchainS}, and contains the following
534 Points to the first frag in the chain. May be NULL if there are no frags in
537 Points to the last frag in the chain, or NULL if there are none.
539 Next in the list of @code{frchainS} structures.
541 Indicates the section this frag chain belongs to.
543 Subsection (subsegment) number of this frag chain.
544 @item fix_root, fix_tail
545 (Defined only if @code{BFD_ASSEMBLER} is defined). Point to first and last
546 @code{fixS} structures associated with this subsection.
548 Not currently used. Intended to be used for frag allocation for this
549 subsection. This should reduce frag generation caused by switching sections.
551 The current frag for this subsegment.
554 A @code{frchainS} corresponds to a subsection; each section has a list of
555 @code{frchainS} records associated with it. In most cases, only one subsection
556 of each section is used, so the list will only be one element long, but any
557 processing of frag chains should be prepared to deal with multiple chains per
560 After the input files have been completely processed, and no more frags are to
561 be generated, the frag chains are joined into one per section for further
562 processing. After this point, it is safe to operate on one chain per section.
564 The assembler always has a current frag, named @code{frag_now}. More space is
565 allocated for the current frag using the @code{frag_more} function; this
566 returns a pointer to the amount of requested space. Relaxing is done using
567 variant frags allocated by @code{frag_var} or @code{frag_variant}
568 (@pxref{Relaxation}).
571 @section What GAS does when it runs
572 @cindex internals, overview
574 This is a quick look at what an assembler run looks like.
578 The assembler initializes itself by calling various init routines.
581 For each source file, the @code{read_a_source_file} function reads in the file
582 and parses it. The global variable @code{input_line_pointer} points to the
583 current text; it is guaranteed to be correct up to the end of the line, but not
587 For each line, the assembler passes labels to the @code{colon} function, and
588 isolates the first word. If it looks like a pseudo-op, the word is looked up
589 in the pseudo-op hash table @code{po_hash} and dispatched to a pseudo-op
590 routine. Otherwise, the target dependent @code{md_assemble} routine is called
591 to parse the instruction.
594 When pseudo-ops or instructions output data, they add it to a frag, calling
595 @code{frag_more} to get space to store it in.
598 Pseudo-ops and instructions can also output fixups created by @code{fix_new} or
602 For certain targets, instructions can create variant frags which are used to
603 store relaxation information (@pxref{Relaxation}).
606 When the input file is finished, the @code{write_object_file} routine is
607 called. It assigns addresses to all the frags (@code{relax_segment}), resolves
608 all the fixups (@code{fixup_segment}), resolves all the symbol values (using
609 @code{resolve_symbol_value}), and finally writes out the file (in the
610 @code{BFD_ASSEMBLER} case, this is done by simply calling @code{bfd_close}).
617 Each GAS target specifies two main things: the CPU file and the object format
618 file. Two main switches in the @file{configure.in} file handle this. The
619 first switches on CPU type to set the shell variable @code{cpu_type}. The
620 second switches on the entire target to set the shell variable @code{fmt}.
622 The configure script uses the value of @code{cpu_type} to select two files in
623 the @file{config} directory: @file{tc-@var{CPU}.c} and @file{tc-@var{CPU}.h}.
624 The configuration process will create symlinks to these files from
625 @file{targ-cpu.c} and @file{targ-cpu.h} in the build directory.
627 The configure script also uses the value of @code{fmt} to select two files:
628 @file{obj-@var{fmt}.c} and @file{obj-@var{fmt}.h}. The configuration process
629 will create symlinks to these files from @file{obj-format.h} and
632 You can also set the emulation in the configure script by setting the @code{em}
633 variable. Normally the default value of @samp{generic} is fine. The
634 configuration process will create a symlink from @file{targ-env.h} to
635 @file{te-@var{em}.h}.
637 Porting GAS to a new CPU requires writing the @file{tc-@var{CPU}} files.
638 Porting GAS to a new object file format requires writing the
639 @file{obj-@var{fmt}} files. There is sometimes some interaction between these
640 two files, but it is normally minimal.
642 The best approach is, of course, to copy existing files. The documentation
643 below assumes that you are looking at existing files to see usage details.
645 These interfaces have grown over time, and have never been carefully thought
646 out or designed. Nothing about the interfaces described here is cast in stone.
647 It is possible that they will change from one version of the assembler to the
648 next. Also, new macros are added all the time as they are needed.
651 * CPU backend:: Writing a CPU backend
652 * Object format backend:: Writing an object format backend
653 * Emulations:: Writing emulation files
657 @subsection Writing a CPU backend
659 @cindex @file{tc-@var{CPU}}
661 The CPU backend files are the heart of the assembler. They are the only parts
662 of the assembler which actually know anything about the instruction set of the
665 You must define a reasonably small list of macros and functions in the CPU
666 backend files. You may define a large number of additional macros in the CPU
667 backend files, not all of which are documented here. You must, of course,
668 define macros in the @file{.h} file, which is included by every assembler
669 source file. You may define the functions as macros in the @file{.h} file, or
670 as functions in the @file{.c} file.
675 By convention, you should define this macro in the @file{.h} file. For
676 example, @file{tc-m68k.h} defines @code{TC_M68K}. You might have to use this
677 if it is necessary to add CPU specific code to the object format file.
680 This macro is the BFD target name to use when creating the output file. This
681 will normally depend upon the @code{OBJ_@var{FMT}} macro.
684 This macro is the BFD architecture to pass to @code{bfd_set_arch_mach}.
687 This macro is the BFD machine number to pass to @code{bfd_set_arch_mach}. If
688 it is not defined, GAS will use 0.
690 @item TARGET_BYTES_BIG_ENDIAN
691 You should define this macro to be non-zero if the target is big endian, and
692 zero if the target is little endian.
696 @itemx md_longopts_size
697 @itemx md_parse_option
701 @cindex md_longopts_size
702 @cindex md_parse_option
703 @cindex md_show_usage
704 GAS uses these variables and functions during option processing.
705 @code{md_shortopts} is a @code{const char *} which GAS adds to the machine
706 independent string passed to @code{getopt}. @code{md_longopts} is a
707 @code{struct option []} which GAS adds to the machine independent long options
708 passed to @code{getopt}; you may use @code{OPTION_MD_BASE}, defined in
709 @file{as.h}, as the start of a set of long option indices, if necessary.
710 @code{md_longopts_size} is a @code{size_t} holding the size @code{md_longopts}.
711 GAS will call @code{md_parse_option} whenever @code{getopt} returns an
712 unrecognized code, presumably indicating a special code value which appears in
713 @code{md_longopts}. GAS will call @code{md_show_usage} when a usage message is
714 printed; it should print a description of the machine specific options.
718 GAS will call this function at the start of the assembly, after the command
719 line arguments have been parsed and all the machine independent initializations
724 If you define this macro, GAS will call it at the end of each input file.
728 GAS will call this function for each input line which does not contain a
729 pseudo-op. The argument is a null terminated string. The function should
730 assemble the string as an instruction with operands. Normally
731 @code{md_assemble} will do this by calling @code{frag_more} and writing out
732 some bytes (@pxref{Frags}). @code{md_assemble} will call @code{fix_new} to
733 create fixups as needed (@pxref{Fixups}). Targets which need to do special
734 purpose relaxation will call @code{frag_var}.
736 @item md_pseudo_table
737 @cindex md_pseudo_table
738 This is a const array of type @code{pseudo_typeS}. It is a mapping from
739 pseudo-op names to functions. You should use this table to implement
740 pseudo-ops which are specific to the CPU.
742 @item tc_conditional_pseudoop
743 @cindex tc_conditional_pseudoop
744 If this macro is defined, GAS will call it with a @code{pseudo_typeS} argument.
745 It should return non-zero if the pseudo-op is a conditional which controls
746 whether code is assembled, such as @samp{.if}. GAS knows about the normal
747 conditional pseudo-ops,and you should normally not have to define this macro.
750 @cindex comment_chars
751 This is a null terminated @code{const char} array of characters which start a
754 @item tc_comment_chars
755 @cindex tc_comment_chars
756 If this macro is defined, GAS will use it instead of @code{comment_chars}.
758 @item line_comment_chars
759 @cindex line_comment_chars
760 This is a null terminated @code{const char} array of characters which start a
761 comment when they appear at the start of a line.
763 @item line_separator_chars
764 @cindex line_separator_chars
765 This is a null terminated @code{const char} array of characters which separate
766 lines (the semicolon is such a character by default, and need not be listed in
771 This is a null terminated @code{const char} array of characters which may be
772 used as the exponent character in a floating point number. This is normally
777 This is a null terminated @code{const char} array of characters which may be
778 used to indicate a floating point constant. A zero followed by one of these
779 characters is assumed to be followed by a floating point number; thus they
780 operate the way that @code{0x} is used to indicate a hexadecimal constant.
781 Usually this includes @samp{r} and @samp{f}.
785 You may define this macro to the lexical type of the @kbd{@}} character. The
788 Lexical types are a combination of @code{LEX_NAME} and @code{LEX_BEGIN_NAME},
789 both defined in @file{read.h}. @code{LEX_NAME} indicates that the character
790 may appear in a name. @code{LEX_BEGIN_NAME} indicates that the character may
791 appear at the beginning of a nem.
795 You may define this macro to the lexical type of the brace characters @kbd{@{},
796 @kbd{@}}, @kbd{[}, and @kbd{]}. The default value is zero.
800 You may define this macro to the lexical type of the @kbd{%} character. The
801 default value is zero.
805 You may define this macro to the lexical type of the @kbd{?} character. The
806 default value it zero.
810 You may define this macro to the lexical type of the @kbd{$} character. The
811 default value is @code{LEX_NAME | LEX_BEGIN_NAME}.
813 @item SINGLE_QUOTE_STRINGS
814 @cindex SINGLE_QUOTE_STRINGS
815 If you define this macro, GAS will treat single quotes as string delimiters.
816 Normally only double quotes are accepted as string delimiters.
818 @item NO_STRING_ESCAPES
819 @cindex NO_STRING_ESCAPES
820 If you define this macro, GAS will not permit escape sequences in a string.
822 @item ONLY_STANDARD_ESCAPES
823 @cindex ONLY_STANDARD_ESCAPES
824 If you define this macro, GAS will warn about the use of nonstandard escape
825 sequences in a string.
827 @item md_start_line_hook
828 @cindex md_start_line_hook
829 If you define this macro, GAS will call it at the start of each line.
831 @item LABELS_WITHOUT_COLONS
832 @cindex LABELS_WITHOUT_COLONS
833 If you define this macro, GAS will assume that any text at the start of a line
834 is a label, even if it does not have a colon.
837 @cindex TC_START_LABEL
838 You may define this macro to control what GAS considers to be a label. The
839 default definition is to accept any name followed by a colon character.
842 @cindex NO_PSEUDO_DOT
843 If you define this macro, GAS will not require pseudo-ops to start with a
846 @item TC_EQUAL_IN_INSN
847 @cindex TC_EQUAL_IN_INSN
848 If you define this macro, it should return nonzero if the instruction is
849 permitted to contain an @kbd{=} character. GAS will use this to decide if a
850 @kbd{=} is an assignment or an instruction.
853 @cindex TC_EOL_IN_INSN
854 If you define this macro, it should return nonzero if the current input line
855 pointer should be treated as the end of a line.
858 @cindex md_parse_name
859 If this macro is defined, GAS will call it for any symbol found in an
860 expression. You can define this to handle special symbols in a special way.
861 If a symbol always has a certain value, you should normally enter it in the
862 symbol table, perhaps using @code{reg_section}.
864 @item md_undefined_symbol
865 @cindex md_undefined_symbol
866 GAS will call this function when a symbol table lookup fails, before it
867 creates a new symbol. Typically this would be used to supply symbols whose
868 name or value changes dynamically, possibly in a context sensitive way.
869 Predefined symbols with fixed values, such as register names or condition
870 codes, are typically entered directly into the symbol table when @code{md_begin}
875 GAS will call this function for any expression that can not be recognized.
876 When the function is called, @code{input_line_pointer} will point to the start
879 @item tc_unrecognized_line
880 @cindex tc_unrecognized_line
881 If you define this macro, GAS will call it when it finds a line that it can not
886 You may define this macro to handle an alignment directive. GAS will call it
887 when the directive is seen in the input file. For example, the i386 backend
888 uses this to generate efficient nop instructions of varying lengths, depending
889 upon the number of bytes that the alignment will skip.
893 You may define this macro to do special handling for an alignment directive.
894 GAS will call it at the end of the assembly.
896 @item md_flush_pending_output
897 @cindex md_flush_pending_output
898 If you define this macro, GAS will it each time it skips any space because of a
899 space filling or alignment or data allocation pseudo-op.
901 @item TC_PARSE_CONS_EXPRESSION
902 @cindex TC_PARSE_CONS_EXPRESSION
903 You may define this macro to parse an expression used in a data allocation
904 pseudo-op such as @code{.word}. You can use this to recognize relocation
905 directives that may appear in such directives.
907 @item BITFIELD_CONS_EXPRESSION
908 @cindex BITFIELD_CONS_EXPRESSION
909 If you define this macro, GAS will recognize bitfield instructions in data
910 allocation pseudo-ops, as used on the i960.
912 @item REPEAT_CONS_EXPRESSION
913 @cindex REPEAT_CONS_EXPRESSION
914 If you define this macro, GAS will recognize repeat counts in data allocation
915 pseudo-ops, as used on the MIPS.
918 @cindex md_cons_align
919 You may define this macro to do any special alignment before a data allocation
922 @item TC_CONS_FIX_NEW
923 @cindex TC_CONS_FIX_NEW
924 You may define this macro to generate a fixup for a data allocation pseudo-op.
926 @item md_number_to_chars
927 @cindex md_number_to_chars
928 This should just call either @code{number_to_chars_bigendian} or
929 @code{number_to_chars_littleendian}, whichever is appropriate. On targets like
930 the MIPS which support options to change the endianness, which function to call
931 is a runtime decision. On other targets, @code{md_number_to_chars} can be a
935 @cindex md_reloc_size
936 This variable is only used in the original version of gas (not
937 @code{BFD_ASSEMBLER} and not @code{MANY_SEGMENTS}). It holds the size of a
940 @item WORKING_DOT_WORD
941 @itemx md_short_jump_size
942 @itemx md_long_jump_size
943 @itemx md_create_short_jump
944 @itemx md_create_long_jump
945 @cindex WORKING_DOT_WORD
946 @cindex md_short_jump_size
947 @cindex md_long_jump_size
948 @cindex md_create_short_jump
949 @cindex md_create_long_jump
950 If @code{WORKING_DOT_WORD} is defined, GAS will not do broken word processing
951 (@pxref{Broken words}). Otherwise, you should set @code{md_short_jump_size} to
952 the size of a short jump (a jump that is just long enough to jump around a long
953 jmp) and @code{md_long_jump_size} to the size of a long jump (a jump that can
954 go anywhere in the function), You should define @code{md_create_short_jump} to
955 create a short jump around a long jump, and define @code{md_create_long_jump}
956 to create a long jump.
958 @item md_estimate_size_before_relax
959 @cindex md_estimate_size_before_relax
960 This function returns an estimate of the size of a @code{rs_machine_dependent}
961 frag before any relaxing is done. It may also create any necessary
965 @cindex md_relax_frag
966 This macro may be defined to relax a frag. GAS will call this with the frag
967 and the change in size of all previous frags; @code{md_relax_frag} should
968 return the change in size of the frag. @xref{Relaxation}.
970 @item TC_GENERIC_RELAX_TABLE
971 @cindex TC_GENERIC_RELAX_TABLE
972 If you do not define @code{md_relax_frag}, you may define
973 @code{TC_GENERIC_RELAX_TABLE} as a table of @code{relax_typeS} structures. The
974 machine independent code knows how to use such a table to relax PC relative
975 references. See @file{tc-m68k.c} for an example. @xref{Relaxation}.
977 @item md_prepare_relax_scan
978 @cindex md_prepare_relax_scan
979 If defined, it is a C statement that is invoked prior to scanning
982 @item LINKER_RELAXING_SHRINKS_ONLY
983 @cindex LINKER_RELAXING_SHRINKS_ONLY
984 If you define this macro, and the global variable @samp{linkrelax} is set
985 (because of a command line option, or unconditionally in @code{md_begin}), a
986 @samp{.align} directive will cause extra space to be allocated. The linker can
987 then discard this space when relaxing the section.
989 @item md_convert_frag
990 @cindex md_convert_frag
991 GAS will call this for each rs_machine_dependent fragment.
992 The instruction is completed using the data from the relaxation pass.
993 It may also create an necessary relocations.
998 GAS will call this for each fixup. It should store the correct value in the
1001 @item TC_HANDLES_FX_DONE
1002 @cindex TC_HANDLES_FX_DONE
1003 If this macro is defined, it means that @code{md_apply_fix} correctly sets the
1004 @code{fx_done} field in the fixup.
1007 @cindex tc_gen_reloc
1008 A @code{BFD_ASSEMBLER} GAS will call this to generate a reloc. GAS will pass
1009 the resulting reloc to @code{bfd_install_relocation}. This currently works
1010 poorly, as @code{bfd_install_relocation} often does the wrong thing, and
1011 instances of @code{tc_gen_reloc} have been written to work around the problems,
1012 which in turns makes it difficult to fix @code{bfd_install_relocation}.
1014 @item RELOC_EXPANSION_POSSIBLE
1015 @cindex RELOC_EXPANSION_POSSIBLE
1016 If you define this macro, it means that @code{tc_gen_reloc} may return multiple
1017 relocation entries for a single fixup. In this case, the return value of
1018 @code{tc_gen_reloc} is a pointer to a null terminated array.
1020 @item MAX_RELOC_EXPANSION
1021 @cindex MAX_RELOC_EXPANSION
1022 You must define this if @code{RELOC_EXPANSION_POSSIBLE} is defined; it
1023 indicates the largest number of relocs which @code{tc_gen_reloc} may return for
1026 @item tc_fix_adjustable
1027 @cindex tc_fix_adjustable
1028 You may define this macro to indicate whether a fixup against a locally defined
1029 symbol should be adjusted to be against the section symbol. It should return a
1030 non-zero value if the adjustment is acceptable.
1032 @item MD_PCREL_FROM_SECTION
1033 @cindex MD_PCREL_FROM_SECTION
1034 If you define this macro, it should return the offset between the address of a
1035 PC relative fixup and the position from which the PC relative adjustment should
1036 be made. On many processors, the base of a PC relative instruction is the next
1037 instruction, so this macro would return the length of an instruction.
1040 @cindex md_pcrel_from
1041 This is the default value of @code{MD_PCREL_FROM_SECTION}. The difference is
1042 that @code{md_pcrel_from} does not take a section argument.
1045 @cindex tc_frob_label
1046 If you define this macro, GAS will call it each time a label is defined.
1048 @item md_section_align
1049 @cindex md_section_align
1050 GAS will call this function for each section at the end of the assemebly, to
1051 permit the CPU backend to adjust the alignment of a section.
1053 @item tc_frob_section
1054 @cindex tc_frob_section
1055 If you define this macro, a @code{BFD_ASSEMBLER} GAS will call it for each
1056 section at the end of the assembly.
1058 @item tc_frob_file_before_adjust
1059 @cindex tc_frob_file_before_adjust
1060 If you define this macro, GAS will call it after the symbol values are
1061 resolved, but before the fixups have been changed from local symbols to section
1064 @item tc_frob_symbol
1065 @cindex tc_frob_symbol
1066 If you define this macro, GAS will call it for each symbol. You can indicate
1067 that the symbol should not be included in the object file by definining this
1068 macro to set its second argument to a non-zero value.
1071 @cindex tc_frob_file
1072 If you define this macro, GAS will call it after the symbol table has been
1073 completed, but before the relocations have been generated.
1075 @item tc_frob_file_after_relocs
1076 If you define this macro, GAS will call it after the relocs have been
1080 @node Object format backend
1081 @subsection Writing an object format backend
1082 @cindex object format backend
1083 @cindex @file{obj-@var{fmt}}
1085 As with the CPU backend, the object format backend must define a few things,
1086 and may define some other things. The interface to the object format backend
1087 is generally simpler; most of the support for an object file format consists of
1088 defining a number of pseudo-ops.
1090 The object format @file{.h} file must include @file{targ-cpu.h}.
1092 This section will only define the @code{BFD_ASSEMBLER} version of GAS. It is
1093 impossible to support a new object file format using any other version anyhow,
1094 as the original GAS version only supports a.out, and the @code{MANY_SEGMENTS}
1095 GAS version only supports COFF.
1098 @item OBJ_@var{format}
1099 @cindex OBJ_@var{format}
1100 By convention, you should define this macro in the @file{.h} file. For
1101 example, @file{obj-elf.h} defines @code{OBJ_ELF}. You might have to use this
1102 if it is necessary to add object file format specific code to the CPU file.
1105 If you define this macro, GAS will call it at the start of the assembly, after
1106 the command line arguments have been parsed and all the machine independent
1107 initializations have been completed.
1110 @cindex obj_app_file
1111 If you define this macro, GAS will invoke it when it sees a @code{.file}
1112 pseudo-op or a @samp{#} line as used by the C preprocessor.
1114 @item OBJ_COPY_SYMBOL_ATTRIBUTES
1115 @cindex OBJ_COPY_SYMBOL_ATTRIBUTES
1116 You should define this macro to copy object format specific information from
1117 one symbol to another. GAS will call it when one symbol is equated to
1120 @item obj_fix_adjustable
1121 @cindex obj_fix_adjustable
1122 You may define this macro to indicate whether a fixup against a locally defined
1123 symbol should be adjusted to be against the section symbol. It should return a
1124 non-zero value if the adjustment is acceptable.
1126 @item obj_sec_sym_ok_for_reloc
1127 @cindex obj_sec_sym_ok_for_reloc
1128 You may define this macro to indicate that it is OK to use a section symbol in
1129 a relocateion entry. If it is not, GAS will define a new symbol at the start
1132 @item EMIT_SECTION_SYMBOLS
1133 @cindex EMIT_SECTION_SYMBOLS
1134 You should define this macro with a zero value if you do not want to include
1135 section symbols in the output symbol table. The default value for this macro
1138 @item obj_adjust_symtab
1139 @cindex obj_adjust_symtab
1140 If you define this macro, GAS will invoke it just before setting the symbol
1141 table of the output BFD. For example, the COFF support uses this macro to
1142 generate a @code{.file} symbol if none was generated previously.
1144 @item SEPARATE_STAB_SECTIONS
1145 @cindex SEPARATE_STAB_SECTIONS
1146 You may define this macro to indicate that stabs should be placed in separate
1147 sections, as in ELF.
1149 @item INIT_STAB_SECTION
1150 @cindex INIT_STAB_SECTION
1151 You may define this macro to initialize the stabs section in the output file.
1153 @item OBJ_PROCESS_STAB
1154 @cindex OBJ_PROCESS_STAB
1155 You may define this macro to do specific processing on a stabs entry.
1157 @item obj_frob_section
1158 @cindex obj_frob_section
1159 If you define this macro, GAS will call it for each section at the end of the
1162 @item obj_frob_file_before_adjust
1163 @cindex obj_frob_file_before_adjust
1164 If you define this macro, GAS will call it after the symbol values are
1165 resolved, but before the fixups have been changed from local symbols to section
1168 @item obj_frob_symbol
1169 @cindex obj_frob_symbol
1170 If you define this macro, GAS will call it for each symbol. You can indicate
1171 that the symbol should not be included in the object file by definining this
1172 macro to set its second argument to a non-zero value.
1175 @cindex obj_frob_file
1176 If you define this macro, GAS will call it after the symbol table has been
1177 completed, but before the relocations have been generated.
1179 @item obj_frob_file_after_relocs
1180 If you define this macro, GAS will call it after the relocs have been
1185 @subsection Writing emulation files
1187 Normally you do not have to write an emulation file. You can just use
1188 @file{te-generic.h}.
1190 If you do write your own emulation file, it must include @file{obj-format.h}.
1192 An emulation file will often define @code{TE_@var{EM}}; this may then be used
1193 in other files to change the output.
1199 @dfn{Relaxation} is a generic term used when the size of some instruction or
1200 data depends upon the value of some symbol or other data.
1202 GAS knows to relax a particular type of PC relative relocation using a table.
1203 You can also define arbitrarily complex forms of relaxation yourself.
1206 * Relaxing with a table:: Relaxing with a table
1207 * General relaxing:: General relaxing
1210 @node Relaxing with a table
1211 @subsection Relaxing with a table
1213 If you do not define @code{md_relax_frag}, and you do define
1214 @code{TC_GENERIC_RELAX_TABLE}, GAS will relax @code{rs_machine_dependent} frags
1215 based on the frag subtype and the displacement to some specified target
1216 address. The basic idea is that several machines have different addressing
1217 modes for instructions that can specify different ranges of values, with
1218 successive modes able to access wider ranges, including the entirety of the
1219 previous range. Smaller ranges are assumed to be more desirable (perhaps the
1220 instruction requires one word instead of two or three); if this is not the
1221 case, don't describe the smaller-range, inferior mode.
1223 The @code{fr_subtype} field of a frag is an index into a CPU-specific
1224 relaxation table. That table entry indicates the range of values that can be
1225 stored, the number of bytes that will have to be added to the frag to
1226 accomodate the addressing mode, and the index of the next entry to examine if
1227 the value to be stored is outside the range accessible by the current
1228 addressing mode. The @code{fr_symbol} field of the frag indicates what symbol
1229 is to be accessed; the @code{fr_offset} field is added in.
1231 If the @code{fr_pcrel_adjust} field is set, which currently should only happen
1232 for the NS32k family, the @code{TC_PCREL_ADJUST} macro is called on the frag to
1233 compute an adjustment to be made to the displacement.
1235 The value fitted by the relaxation code is always assumed to be a displacement
1236 from the current frag. (More specifically, from @code{fr_fix} bytes into the
1239 This seems kinda silly. What about fitting small absolute values? I suppose
1240 @code{md_assemble} is supposed to take care of that, but if the operand is a
1241 difference between symbols, it might not be able to, if the difference was not
1245 The end of the relaxation sequence is indicated by a ``next'' value of 0. This
1246 means that the first entry in the table can't be used.
1248 For some configurations, the linker can do relaxing within a section of an
1249 object file. If call instructions of various sizes exist, the linker can
1250 determine which should be used in each instance, when a symbol's value is
1251 resolved. In order for the linker to avoid wasting space and having to insert
1252 no-op instructions, it must be able to expand or shrink the section contents
1253 while still preserving intra-section references and meeting alignment
1256 For the i960 using b.out format, no expansion is done; instead, each
1257 @samp{.align} directive causes extra space to be allocated, enough that when
1258 the linker is relaxing a section and removing unneeded space, it can discard
1259 some or all of this extra padding and cause the following data to be correctly
1262 For the H8/300, I think the linker expands calls that can't reach, and doesn't
1263 worry about alignment issues; the cpu probably never needs any significant
1264 alignment beyond the instruction size.
1266 The relaxation table type contains these fields:
1269 @item long rlx_forward
1270 Forward reach, must be non-negative.
1271 @item long rlx_backward
1272 Backward reach, must be zero or negative.
1274 Length in bytes of this addressing mode.
1276 Index of the next-longer relax state, or zero if there is no next relax state.
1279 The relaxation is done in @code{relax_segment} in @file{write.c}. The
1280 difference in the length fields between the original mode and the one finally
1281 chosen by the relaxing code is taken as the size by which the current frag will
1282 be increased in size. For example, if the initial relaxing mode has a length
1283 of 2 bytes, and because of the size of the displacement, it gets upgraded to a
1284 mode with a size of 6 bytes, it is assumed that the frag will grow by 4 bytes.
1285 (The initial two bytes should have been part of the fixed portion of the frag,
1286 since it is already known that they will be output.) This growth must be
1287 effected by @code{md_convert_frag}; it should increase the @code{fr_fix} field
1288 by the appropriate size, and fill in the appropriate bytes of the frag.
1289 (Enough space for the maximum growth should have been allocated in the call to
1290 frag_var as the second argument.)
1292 If relocation records are needed, they should be emitted by
1293 @code{md_estimate_size_before_relax}. This function should examine the target
1294 symbol of the supplied frag and correct the @code{fr_subtype} of the frag if
1295 needed. When this function is called, if the symbol has not yet been defined,
1296 it will not become defined later; however, its value may still change if the
1297 section it is in gets relaxed.
1299 Usually, if the symbol is in the same section as the frag (given by the
1300 @var{sec} argument), the narrowest likely relaxation mode is stored in
1301 @code{fr_subtype}, and that's that.
1303 If the symbol is undefined, or in a different section (and therefore moveable
1304 to an arbitrarily large distance), the largest available relaxation mode is
1305 specified, @code{fix_new} is called to produce the relocation record,
1306 @code{fr_fix} is increased to include the relocated field (remember, this
1307 storage was allocated when @code{frag_var} was called), and @code{frag_wane} is
1308 called to convert the frag to an @code{rs_fill} frag with no variant part.
1309 Sometimes changing addressing modes may also require rewriting the instruction.
1310 It can be accessed via @code{fr_opcode} or @code{fr_fix}.
1312 Sometimes @code{fr_var} is increased instead, and @code{frag_wane} is not
1313 called. I'm not sure, but I think this is to keep @code{fr_fix} referring to
1314 an earlier byte, and @code{fr_subtype} set to @code{rs_machine_dependent} so
1315 that @code{md_convert_frag} will get called.
1317 @node General relaxing
1318 @subsection General relaxing
1320 If using a simple table is not suitable, you may implement arbitrarily complex
1321 relaxation semantics yourself. For example, the MIPS backend uses this to emit
1322 different instruction sequences depending upon the size of the symbol being
1325 When you assemble an instruction that may need relaxation, you should allocate
1326 a frag using @code{frag_var} or @code{frag_variant} with a type of
1327 @code{rs_machine_dependent}. You should store some sort of information in the
1328 @code{fr_subtype} field so that you can figure out what to do with the frag
1331 When GAS reaches the end of the input file, it will look through the frags and
1332 work out their final sizes.
1334 GAS will first call @code{md_estimate_size_before_relax} on each
1335 @code{rs_machine_dependent} frag. This function must return an estimated size
1338 GAS will then loop over the frags, calling @code{md_relax_frag} on each
1339 @code{rs_machine_dependent} frag. This function should return the change in
1340 size of the frag. GAS will keep looping over the frags until none of the frags
1344 @section Broken words
1345 @cindex internals, broken words
1346 @cindex broken words
1348 Some compilers, including GCC, will sometimes emit switch tables specifying
1349 16-bit @code{.word} displacements to branch targets, and branch instructions
1350 that load entries from that table to compute the target address. If this is
1351 done on a 32-bit machine, there is a chance (at least with really large
1352 functions) that the displacement will not fit in 16 bits. The assembler
1353 handles this using a concept called @dfn{broken words}. This idea is well
1354 named, since there is an implied promise that the 16-bit field will in fact
1355 hold the specified displacement.
1357 If broken word processing is enabled, and a situation like this is encountered,
1358 the assembler will insert a jump instruction into the instruction stream, close
1359 enough to be reached with the 16-bit displacement. This jump instruction will
1360 transfer to the real desired target address. Thus, as long as the @code{.word}
1361 value really is used as a displacement to compute an address to jump to, the
1362 net effect will be correct (minus a very small efficiency cost). If
1363 @code{.word} directives with label differences for values are used for other
1364 purposes, however, things may not work properly. For targets which use broken
1365 words, the @samp{-K} option will warn when a broken word is discovered.
1367 The broken word code is turned off by the @code{WORKING_DOT_WORD} macro. It
1368 isn't needed if @code{.word} emits a value large enough to contain an address
1369 (or, more correctly, any possible difference between two addresses).
1371 @node Internal functions
1372 @section Internal functions
1374 This section describes basic internal functions used by GAS.
1377 * Warning and error messages:: Warning and error messages
1378 * Hash tables:: Hash tables
1381 @node Warning and error messages
1382 @subsection Warning and error messages
1384 @deftypefun @{@} int had_warnings (void)
1385 @deftypefunx @{@} int had_errors (void)
1386 Returns non-zero if any warnings or errors, respectively, have been printed
1387 during this invocation.
1390 @deftypefun @{@} void as_perror (const char *@var{gripe}, const char *@var{filename})
1391 Displays a BFD or system error, then clears the error status.
1394 @deftypefun @{@} void as_tsktsk (const char *@var{format}, ...)
1395 @deftypefunx @{@} void as_warn (const char *@var{format}, ...)
1396 @deftypefunx @{@} void as_bad (const char *@var{format}, ...)
1397 @deftypefunx @{@} void as_fatal (const char *@var{format}, ...)
1398 These functions display messages about something amiss with the input file, or
1399 internal problems in the assembler itself. The current file name and line
1400 number are printed, followed by the supplied message, formatted using
1401 @code{vfprintf}, and a final newline.
1403 An error indicated by @code{as_bad} will result in a non-zero exit status when
1404 the assembler has finished. Calling @code{as_fatal} will result in immediate
1405 termination of the assembler process.
1408 @deftypefun @{@} void as_warn_where (char *@var{file}, unsigned int @var{line}, const char *@var{format}, ...)
1409 @deftypefunx @{@} void as_bad_where (char *@var{file}, unsigned int @var{line}, const char *@var{format}, ...)
1410 These variants permit specification of the file name and line number, and are
1411 used when problems are detected when reprocessing information saved away when
1412 processing some earlier part of the file. For example, fixups are processed
1413 after all input has been read, but messages about fixups should refer to the
1414 original filename and line number that they are applicable to.
1417 @deftypefun @{@} void fprint_value (FILE *@var{file}, valueT @var{val})
1418 @deftypefunx @{@} void sprint_value (char *@var{buf}, valueT @var{val})
1419 These functions are helpful for converting a @code{valueT} value into printable
1420 format, in case it's wider than modes that @code{*printf} can handle. If the
1421 type is narrow enough, a decimal number will be produced; otherwise, it will be
1422 in hexadecimal. The value itself is not examined to make this determination.
1426 @subsection Hash tables
1429 @deftypefun @{@} @{struct hash_control *@} hash_new (void)
1430 Creates the hash table control structure.
1433 @deftypefun @{@} void hash_die (struct hash_control *)
1434 Destroy a hash table.
1437 @deftypefun @{@} PTR hash_delete (struct hash_control *, const char *)
1438 Deletes entry from the hash table, returns the value it had.
1441 @deftypefun @{@} PTR hash_replace (struct hash_control *, const char *, PTR)
1442 Updates the value for an entry already in the table, returning the old value.
1443 If no entry was found, just returns NULL.
1446 @deftypefun @{@} @{const char *@} hash_insert (struct hash_control *, const char *, PTR)
1447 Inserting a value already in the table is an error.
1448 Returns an error message or NULL.
1451 @deftypefun @{@} @{const char *@} hash_jam (struct hash_control *, const char *, PTR)
1452 Inserts if the value isn't already present, updates it if it is.
1459 The test suite is kind of lame for most processors. Often it only checks to
1460 see if a couple of files can be assembled without the assembler reporting any
1461 errors. For more complete testing, write a test which either examines the
1462 assembler listing, or runs @code{objdump} and examines its output. For the
1463 latter, the TCL procedure @code{run_dump_test} may come in handy. It takes the
1464 base name of a file, and looks for @file{@var{file}.d}. This file should
1465 contain as its initial lines a set of variable settings in @samp{#} comments,
1469 #@var{varname}: @var{value}
1472 The @var{varname} may be @code{objdump}, @code{nm}, or @code{as}, in which case
1473 it specifies the options to be passed to the specified programs. Exactly one
1474 of @code{objdump} or @code{nm} must be specified, as that also specifies which
1475 program to run after the assembler has finished. If @var{varname} is
1476 @code{source}, it specifies the name of the source file; otherwise,
1477 @file{@var{file}.s} is used. If @var{varname} is @code{name}, it specifies the
1478 name of the test to be used in the @code{pass} or @code{fail} messages.
1480 The non-commented parts of the file are interpreted as regular expressions, one
1481 per line. Blank lines in the @code{objdump} or @code{nm} output are skipped,
1482 as are blank lines in the @code{.d} file; the other lines are tested to see if
1483 the regular expression matches the program output. If it does not, the test
1486 Note that this means the tests must be modified if the @code{objdump} output