1 /* DWARF debugging format support for GDB.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 Free Software Foundation, Inc.
5 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
6 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 FIXME: Do we need to generate dependencies in partial symtabs?
27 (Perhaps we don't need to).
29 FIXME: Resolve minor differences between what information we put in the
30 partial symbol table and what dbxread puts in. For example, we don't yet
31 put enum constants there. And dbxread seems to invent a lot of typedefs
32 we never see. Use the new printpsym command to see the partial symbol table
35 FIXME: Figure out a better way to tell gdb about the name of the function
36 contain the user's entry point (I.E. main())
38 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39 other things to work on, if you get bored. :-)
48 #include "elf/dwarf.h"
51 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
53 #include "complaints.h"
56 #include "gdb_string.h"
58 /* Some macros to provide DIE info for complaints. */
60 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
61 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
63 /* Complaints that can be issued during DWARF debug info reading. */
65 struct complaint no_bfd_get_N =
67 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
70 struct complaint malformed_die =
72 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
75 struct complaint bad_die_ref =
77 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
80 struct complaint unknown_attribute_form =
82 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
85 struct complaint unknown_attribute_length =
87 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
90 struct complaint unexpected_fund_type =
92 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
95 struct complaint unknown_type_modifier =
97 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
100 struct complaint volatile_ignored =
102 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
105 struct complaint const_ignored =
107 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
110 struct complaint botched_modified_type =
112 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
115 struct complaint op_deref2 =
117 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
120 struct complaint op_deref4 =
122 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
125 struct complaint basereg_not_handled =
127 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
130 struct complaint dup_user_type_allocation =
132 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
135 struct complaint dup_user_type_definition =
137 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
140 struct complaint missing_tag =
142 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
145 struct complaint bad_array_element_type =
147 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
150 struct complaint subscript_data_items =
152 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
155 struct complaint unhandled_array_subscript_format =
157 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
160 struct complaint unknown_array_subscript_format =
162 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
165 struct complaint not_row_major =
167 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
170 struct complaint missing_at_name =
172 "DIE @ 0x%x, AT_name tag missing", 0, 0
175 typedef unsigned int DIE_REF; /* Reference to a DIE */
178 #define GCC_PRODUCER "GNU C "
181 #ifndef GPLUS_PRODUCER
182 #define GPLUS_PRODUCER "GNU C++ "
186 #define LCC_PRODUCER "NCR C/C++"
189 #ifndef CHILL_PRODUCER
190 #define CHILL_PRODUCER "GNU Chill "
193 /* Flags to target_to_host() that tell whether or not the data object is
194 expected to be signed. Used, for example, when fetching a signed
195 integer in the target environment which is used as a signed integer
196 in the host environment, and the two environments have different sized
197 ints. In this case, *somebody* has to sign extend the smaller sized
200 #define GET_UNSIGNED 0 /* No sign extension required */
201 #define GET_SIGNED 1 /* Sign extension required */
203 /* Defines for things which are specified in the document "DWARF Debugging
204 Information Format" published by UNIX International, Programming Languages
205 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
207 #define SIZEOF_DIE_LENGTH 4
208 #define SIZEOF_DIE_TAG 2
209 #define SIZEOF_ATTRIBUTE 2
210 #define SIZEOF_FORMAT_SPECIFIER 1
211 #define SIZEOF_FMT_FT 2
212 #define SIZEOF_LINETBL_LENGTH 4
213 #define SIZEOF_LINETBL_LINENO 4
214 #define SIZEOF_LINETBL_STMT 2
215 #define SIZEOF_LINETBL_DELTA 4
216 #define SIZEOF_LOC_ATOM_CODE 1
218 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
220 /* Macros that return the sizes of various types of data in the target
223 FIXME: Currently these are just compile time constants (as they are in
224 other parts of gdb as well). They need to be able to get the right size
225 either from the bfd or possibly from the DWARF info. It would be nice if
226 the DWARF producer inserted DIES that describe the fundamental types in
227 the target environment into the DWARF info, similar to the way dbx stabs
228 producers produce information about their fundamental types. */
230 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
231 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
233 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
234 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
235 However, the Issue 2 DWARF specification from AT&T defines it as
236 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
237 For backwards compatibility with the AT&T compiler produced executables
238 we define AT_short_element_list for this variant. */
240 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
242 /* The DWARF debugging information consists of two major pieces,
243 one is a block of DWARF Information Entries (DIE's) and the other
244 is a line number table. The "struct dieinfo" structure contains
245 the information for a single DIE, the one currently being processed.
247 In order to make it easier to randomly access the attribute fields
248 of the current DIE, which are specifically unordered within the DIE,
249 each DIE is scanned and an instance of the "struct dieinfo"
250 structure is initialized.
252 Initialization is done in two levels. The first, done by basicdieinfo(),
253 just initializes those fields that are vital to deciding whether or not
254 to use this DIE, how to skip past it, etc. The second, done by the
255 function completedieinfo(), fills in the rest of the information.
257 Attributes which have block forms are not interpreted at the time
258 the DIE is scanned, instead we just save pointers to the start
259 of their value fields.
261 Some fields have a flag <name>_p that is set when the value of the
262 field is valid (I.E. we found a matching attribute in the DIE). Since
263 we may want to test for the presence of some attributes in the DIE,
264 such as AT_low_pc, without restricting the values of the field,
265 we need someway to note that we found such an attribute.
273 char *die; /* Pointer to the raw DIE data */
274 unsigned long die_length; /* Length of the raw DIE data */
275 DIE_REF die_ref; /* Offset of this DIE */
276 unsigned short die_tag; /* Tag for this DIE */
277 unsigned long at_padding;
278 unsigned long at_sibling;
281 unsigned short at_fund_type;
282 BLOCK *at_mod_fund_type;
283 unsigned long at_user_def_type;
284 BLOCK *at_mod_u_d_type;
285 unsigned short at_ordering;
286 BLOCK *at_subscr_data;
287 unsigned long at_byte_size;
288 unsigned short at_bit_offset;
289 unsigned long at_bit_size;
290 BLOCK *at_element_list;
291 unsigned long at_stmt_list;
293 CORE_ADDR at_high_pc;
294 unsigned long at_language;
295 unsigned long at_member;
296 unsigned long at_discr;
297 BLOCK *at_discr_value;
298 BLOCK *at_string_length;
301 unsigned long at_start_scope;
302 unsigned long at_stride_size;
303 unsigned long at_src_info;
305 unsigned int has_at_low_pc:1;
306 unsigned int has_at_stmt_list:1;
307 unsigned int has_at_byte_size:1;
308 unsigned int short_element_list:1;
310 /* Kludge to identify register variables */
314 /* Kludge to identify optimized out variables */
316 unsigned int optimized_out;
318 /* Kludge to identify basereg references.
319 Nonzero if we have an offset relative to a basereg. */
323 /* Kludge to identify which base register is it relative to. */
325 unsigned int basereg;
328 static int diecount; /* Approximate count of dies for compilation unit */
329 static struct dieinfo *curdie; /* For warnings and such */
331 static char *dbbase; /* Base pointer to dwarf info */
332 static int dbsize; /* Size of dwarf info in bytes */
333 static int dbroff; /* Relative offset from start of .debug section */
334 static char *lnbase; /* Base pointer to line section */
336 /* This value is added to each symbol value. FIXME: Generalize to
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
339 static CORE_ADDR baseaddr; /* Add to each symbol value */
341 /* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343 static struct section_offsets *base_section_offsets;
345 /* We put a pointer to this structure in the read_symtab_private field
350 /* Always the absolute file offset to the start of the ".debug"
351 section for the file containing the DIE's being accessed. */
353 /* Relative offset from the start of the ".debug" section to the
354 first DIE to be accessed. When building the partial symbol
355 table, this value will be zero since we are accessing the
356 entire ".debug" section. When expanding a partial symbol
357 table entry, this value will be the offset to the first
358 DIE for the compilation unit containing the symbol that
359 triggers the expansion. */
361 /* The size of the chunk of DIE's being examined, in bytes. */
363 /* The absolute file offset to the line table fragment. Ignored
364 when building partial symbol tables, but used when expanding
365 them, and contains the absolute file offset to the fragment
366 of the ".line" section containing the line numbers for the
367 current compilation unit. */
371 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
372 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
373 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
374 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
376 /* The generic symbol table building routines have separate lists for
377 file scope symbols and all all other scopes (local scopes). So
378 we need to select the right one to pass to add_symbol_to_list().
379 We do it by keeping a pointer to the correct list in list_in_scope.
381 FIXME: The original dwarf code just treated the file scope as the first
382 local scope, and all other local scopes as nested local scopes, and worked
383 fine. Check to see if we really need to distinguish these in buildsym.c */
385 struct pending **list_in_scope = &file_symbols;
387 /* DIES which have user defined types or modified user defined types refer to
388 other DIES for the type information. Thus we need to associate the offset
389 of a DIE for a user defined type with a pointer to the type information.
391 Originally this was done using a simple but expensive algorithm, with an
392 array of unsorted structures, each containing an offset/type-pointer pair.
393 This array was scanned linearly each time a lookup was done. The result
394 was that gdb was spending over half it's startup time munging through this
395 array of pointers looking for a structure that had the right offset member.
397 The second attempt used the same array of structures, but the array was
398 sorted using qsort each time a new offset/type was recorded, and a binary
399 search was used to find the type pointer for a given DIE offset. This was
400 even slower, due to the overhead of sorting the array each time a new
401 offset/type pair was entered.
403 The third attempt uses a fixed size array of type pointers, indexed by a
404 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
405 we can divide any DIE offset by 4 to obtain a unique index into this fixed
406 size array. Since each element is a 4 byte pointer, it takes exactly as
407 much memory to hold this array as to hold the DWARF info for a given
408 compilation unit. But it gets freed as soon as we are done with it.
409 This has worked well in practice, as a reasonable tradeoff between memory
410 consumption and speed, without having to resort to much more complicated
413 static struct type **utypes; /* Pointer to array of user type pointers */
414 static int numutypes; /* Max number of user type pointers */
416 /* Maintain an array of referenced fundamental types for the current
417 compilation unit being read. For DWARF version 1, we have to construct
418 the fundamental types on the fly, since no information about the
419 fundamental types is supplied. Each such fundamental type is created by
420 calling a language dependent routine to create the type, and then a
421 pointer to that type is then placed in the array at the index specified
422 by it's FT_<TYPENAME> value. The array has a fixed size set by the
423 FT_NUM_MEMBERS compile time constant, which is the number of predefined
424 fundamental types gdb knows how to construct. */
426 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
428 /* Record the language for the compilation unit which is currently being
429 processed. We know it once we have seen the TAG_compile_unit DIE,
430 and we need it while processing the DIE's for that compilation unit.
431 It is eventually saved in the symtab structure, but we don't finalize
432 the symtab struct until we have processed all the DIE's for the
433 compilation unit. We also need to get and save a pointer to the
434 language struct for this language, so we can call the language
435 dependent routines for doing things such as creating fundamental
438 static enum language cu_language;
439 static const struct language_defn *cu_language_defn;
441 /* Forward declarations of static functions so we don't have to worry
442 about ordering within this file. */
444 static void free_utypes (PTR);
446 static int attribute_size (unsigned int);
448 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
450 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
452 static void handle_producer (char *);
455 read_file_scope (struct dieinfo *, char *, char *, struct objfile *);
458 read_func_scope (struct dieinfo *, char *, char *, struct objfile *);
461 read_lexical_block_scope (struct dieinfo *, char *, char *, struct objfile *);
463 static void scan_partial_symbols (char *, char *, struct objfile *);
466 scan_compilation_units (char *, char *, file_ptr, file_ptr, struct objfile *);
468 static void add_partial_symbol (struct dieinfo *, struct objfile *);
470 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
472 static void completedieinfo (struct dieinfo *, struct objfile *);
474 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
476 static void psymtab_to_symtab_1 (struct partial_symtab *);
478 static void read_ofile_symtab (struct partial_symtab *);
480 static void process_dies (char *, char *, struct objfile *);
483 read_structure_scope (struct dieinfo *, char *, char *, struct objfile *);
485 static struct type *decode_array_element_type (char *);
487 static struct type *decode_subscript_data_item (char *, char *);
489 static void dwarf_read_array_type (struct dieinfo *);
491 static void read_tag_pointer_type (struct dieinfo *dip);
493 static void read_tag_string_type (struct dieinfo *dip);
495 static void read_subroutine_type (struct dieinfo *, char *, char *);
498 read_enumeration (struct dieinfo *, char *, char *, struct objfile *);
500 static struct type *struct_type (struct dieinfo *, char *, char *,
503 static struct type *enum_type (struct dieinfo *, struct objfile *);
505 static void decode_line_numbers (char *);
507 static struct type *decode_die_type (struct dieinfo *);
509 static struct type *decode_mod_fund_type (char *);
511 static struct type *decode_mod_u_d_type (char *);
513 static struct type *decode_modified_type (char *, unsigned int, int);
515 static struct type *decode_fund_type (unsigned int);
517 static char *create_name (char *, struct obstack *);
519 static struct type *lookup_utype (DIE_REF);
521 static struct type *alloc_utype (DIE_REF, struct type *);
523 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
526 synthesize_typedef (struct dieinfo *, struct objfile *, struct type *);
528 static int locval (struct dieinfo *);
530 static void set_cu_language (struct dieinfo *);
532 static struct type *dwarf_fundamental_type (struct objfile *, int);
539 dwarf_fundamental_type -- lookup or create a fundamental type
544 dwarf_fundamental_type (struct objfile *objfile, int typeid)
548 DWARF version 1 doesn't supply any fundamental type information,
549 so gdb has to construct such types. It has a fixed number of
550 fundamental types that it knows how to construct, which is the
551 union of all types that it knows how to construct for all languages
552 that it knows about. These are enumerated in gdbtypes.h.
554 As an example, assume we find a DIE that references a DWARF
555 fundamental type of FT_integer. We first look in the ftypes
556 array to see if we already have such a type, indexed by the
557 gdb internal value of FT_INTEGER. If so, we simply return a
558 pointer to that type. If not, then we ask an appropriate
559 language dependent routine to create a type FT_INTEGER, using
560 defaults reasonable for the current target machine, and install
561 that type in ftypes for future reference.
565 Pointer to a fundamental type.
570 dwarf_fundamental_type (struct objfile *objfile, int typeid)
572 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
574 error ("internal error - invalid fundamental type id %d", typeid);
577 /* Look for this particular type in the fundamental type vector. If one is
578 not found, create and install one appropriate for the current language
579 and the current target machine. */
581 if (ftypes[typeid] == NULL)
583 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
586 return (ftypes[typeid]);
593 set_cu_language -- set local copy of language for compilation unit
598 set_cu_language (struct dieinfo *dip)
602 Decode the language attribute for a compilation unit DIE and
603 remember what the language was. We use this at various times
604 when processing DIE's for a given compilation unit.
613 set_cu_language (struct dieinfo *dip)
615 switch (dip->at_language)
619 cu_language = language_c;
621 case LANG_C_PLUS_PLUS:
622 cu_language = language_cplus;
625 cu_language = language_chill;
628 cu_language = language_m2;
632 cu_language = language_fortran;
638 /* We don't know anything special about these yet. */
639 cu_language = language_unknown;
642 /* If no at_language, try to deduce one from the filename */
643 cu_language = deduce_language_from_filename (dip->at_name);
646 cu_language_defn = language_def (cu_language);
653 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
657 void dwarf_build_psymtabs (struct objfile *objfile,
658 int mainline, file_ptr dbfoff, unsigned int dbfsize,
659 file_ptr lnoffset, unsigned int lnsize)
663 This function is called upon to build partial symtabs from files
664 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
666 It is passed a bfd* containing the DIES
667 and line number information, the corresponding filename for that
668 file, a base address for relocating the symbols, a flag indicating
669 whether or not this debugging information is from a "main symbol
670 table" rather than a shared library or dynamically linked file,
671 and file offset/size pairs for the DIE information and line number
681 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
682 unsigned int dbfsize, file_ptr lnoffset,
685 bfd *abfd = objfile->obfd;
686 struct cleanup *back_to;
688 current_objfile = objfile;
690 dbbase = xmalloc (dbsize);
692 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
693 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
696 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
698 back_to = make_cleanup (xfree, dbbase);
700 /* If we are reinitializing, or if we have never loaded syms yet, init.
701 Since we have no idea how many DIES we are looking at, we just guess
702 some arbitrary value. */
705 || (objfile->global_psymbols.size == 0
706 && objfile->static_psymbols.size == 0))
708 init_psymbol_list (objfile, 1024);
711 /* Save the relocation factor where everybody can see it. */
713 base_section_offsets = objfile->section_offsets;
714 baseaddr = ANOFFSET (objfile->section_offsets, 0);
716 /* Follow the compilation unit sibling chain, building a partial symbol
717 table entry for each one. Save enough information about each compilation
718 unit to locate the full DWARF information later. */
720 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
722 do_cleanups (back_to);
723 current_objfile = NULL;
730 read_lexical_block_scope -- process all dies in a lexical block
734 static void read_lexical_block_scope (struct dieinfo *dip,
735 char *thisdie, char *enddie)
739 Process all the DIES contained within a lexical block scope.
740 Start a new scope, process the dies, and then close the scope.
745 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
746 struct objfile *objfile)
748 register struct context_stack *new;
750 push_context (0, dip->at_low_pc);
751 process_dies (thisdie + dip->die_length, enddie, objfile);
752 new = pop_context ();
753 if (local_symbols != NULL)
755 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
756 dip->at_high_pc, objfile);
758 local_symbols = new->locals;
765 lookup_utype -- look up a user defined type from die reference
769 static type *lookup_utype (DIE_REF die_ref)
773 Given a DIE reference, lookup the user defined type associated with
774 that DIE, if it has been registered already. If not registered, then
775 return NULL. Alloc_utype() can be called to register an empty
776 type for this reference, which will be filled in later when the
777 actual referenced DIE is processed.
781 lookup_utype (DIE_REF die_ref)
783 struct type *type = NULL;
786 utypeidx = (die_ref - dbroff) / 4;
787 if ((utypeidx < 0) || (utypeidx >= numutypes))
789 complain (&bad_die_ref, DIE_ID, DIE_NAME);
793 type = *(utypes + utypeidx);
803 alloc_utype -- add a user defined type for die reference
807 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
811 Given a die reference DIE_REF, and a possible pointer to a user
812 defined type UTYPEP, register that this reference has a user
813 defined type and either use the specified type in UTYPEP or
814 make a new empty type that will be filled in later.
816 We should only be called after calling lookup_utype() to verify that
817 there is not currently a type registered for DIE_REF.
821 alloc_utype (DIE_REF die_ref, struct type *utypep)
826 utypeidx = (die_ref - dbroff) / 4;
827 typep = utypes + utypeidx;
828 if ((utypeidx < 0) || (utypeidx >= numutypes))
830 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
831 complain (&bad_die_ref, DIE_ID, DIE_NAME);
833 else if (*typep != NULL)
836 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
842 utypep = alloc_type (current_objfile);
853 free_utypes -- free the utypes array and reset pointer & count
857 static void free_utypes (PTR dummy)
861 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
862 and set numutypes back to zero. This ensures that the utypes does not get
863 referenced after being freed.
867 free_utypes (PTR dummy)
879 decode_die_type -- return a type for a specified die
883 static struct type *decode_die_type (struct dieinfo *dip)
887 Given a pointer to a die information structure DIP, decode the
888 type of the die and return a pointer to the decoded type. All
889 dies without specific types default to type int.
893 decode_die_type (struct dieinfo *dip)
895 struct type *type = NULL;
897 if (dip->at_fund_type != 0)
899 type = decode_fund_type (dip->at_fund_type);
901 else if (dip->at_mod_fund_type != NULL)
903 type = decode_mod_fund_type (dip->at_mod_fund_type);
905 else if (dip->at_user_def_type)
907 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
909 type = alloc_utype (dip->at_user_def_type, NULL);
912 else if (dip->at_mod_u_d_type)
914 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
918 type = dwarf_fundamental_type (current_objfile, FT_VOID);
927 struct_type -- compute and return the type for a struct or union
931 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
932 char *enddie, struct objfile *objfile)
936 Given pointer to a die information structure for a die which
937 defines a union or structure (and MUST define one or the other),
938 and pointers to the raw die data that define the range of dies which
939 define the members, compute and return the user defined type for the
944 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
945 struct objfile *objfile)
950 struct nextfield *next;
953 struct nextfield *list = NULL;
954 struct nextfield *new;
961 if ((type = lookup_utype (dip->die_ref)) == NULL)
963 /* No forward references created an empty type, so install one now */
964 type = alloc_utype (dip->die_ref, NULL);
966 INIT_CPLUS_SPECIFIC (type);
967 switch (dip->die_tag)
970 TYPE_CODE (type) = TYPE_CODE_CLASS;
972 case TAG_structure_type:
973 TYPE_CODE (type) = TYPE_CODE_STRUCT;
976 TYPE_CODE (type) = TYPE_CODE_UNION;
979 /* Should never happen */
980 TYPE_CODE (type) = TYPE_CODE_UNDEF;
981 complain (&missing_tag, DIE_ID, DIE_NAME);
984 /* Some compilers try to be helpful by inventing "fake" names for
985 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
986 Thanks, but no thanks... */
987 if (dip->at_name != NULL
988 && *dip->at_name != '~'
989 && *dip->at_name != '.')
991 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
992 "", "", dip->at_name);
994 /* Use whatever size is known. Zero is a valid size. We might however
995 wish to check has_at_byte_size to make sure that some byte size was
996 given explicitly, but DWARF doesn't specify that explicit sizes of
997 zero have to present, so complaining about missing sizes should
998 probably not be the default. */
999 TYPE_LENGTH (type) = dip->at_byte_size;
1000 thisdie += dip->die_length;
1001 while (thisdie < enddie)
1003 basicdieinfo (&mbr, thisdie, objfile);
1004 completedieinfo (&mbr, objfile);
1005 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1009 else if (mbr.at_sibling != 0)
1011 nextdie = dbbase + mbr.at_sibling - dbroff;
1015 nextdie = thisdie + mbr.die_length;
1017 switch (mbr.die_tag)
1020 /* Get space to record the next field's data. */
1021 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1024 /* Save the data. */
1026 obsavestring (mbr.at_name, strlen (mbr.at_name),
1027 &objfile->type_obstack);
1028 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1029 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1030 /* Handle bit fields. */
1031 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1032 if (BITS_BIG_ENDIAN)
1034 /* For big endian bits, the at_bit_offset gives the
1035 additional bit offset from the MSB of the containing
1036 anonymous object to the MSB of the field. We don't
1037 have to do anything special since we don't need to
1038 know the size of the anonymous object. */
1039 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1043 /* For little endian bits, we need to have a non-zero
1044 at_bit_size, so that we know we are in fact dealing
1045 with a bitfield. Compute the bit offset to the MSB
1046 of the anonymous object, subtract off the number of
1047 bits from the MSB of the field to the MSB of the
1048 object, and then subtract off the number of bits of
1049 the field itself. The result is the bit offset of
1050 the LSB of the field. */
1051 if (mbr.at_bit_size > 0)
1053 if (mbr.has_at_byte_size)
1055 /* The size of the anonymous object containing
1056 the bit field is explicit, so use the
1057 indicated size (in bytes). */
1058 anonymous_size = mbr.at_byte_size;
1062 /* The size of the anonymous object containing
1063 the bit field matches the size of an object
1064 of the bit field's type. DWARF allows
1065 at_byte_size to be left out in such cases, as
1066 a debug information size optimization. */
1067 anonymous_size = TYPE_LENGTH (list->field.type);
1069 FIELD_BITPOS (list->field) +=
1070 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1076 process_dies (thisdie, nextdie, objfile);
1081 /* Now create the vector of fields, and record how big it is. We may
1082 not even have any fields, if this DIE was generated due to a reference
1083 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1084 set, which clues gdb in to the fact that it needs to search elsewhere
1085 for the full structure definition. */
1088 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1092 TYPE_NFIELDS (type) = nfields;
1093 TYPE_FIELDS (type) = (struct field *)
1094 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1095 /* Copy the saved-up fields into the field vector. */
1096 for (n = nfields; list; list = list->next)
1098 TYPE_FIELD (type, --n) = list->field;
1108 read_structure_scope -- process all dies within struct or union
1112 static void read_structure_scope (struct dieinfo *dip,
1113 char *thisdie, char *enddie, struct objfile *objfile)
1117 Called when we find the DIE that starts a structure or union
1118 scope (definition) to process all dies that define the members
1119 of the structure or union. DIP is a pointer to the die info
1120 struct for the DIE that names the structure or union.
1124 Note that we need to call struct_type regardless of whether or not
1125 the DIE has an at_name attribute, since it might be an anonymous
1126 structure or union. This gets the type entered into our set of
1129 However, if the structure is incomplete (an opaque struct/union)
1130 then suppress creating a symbol table entry for it since gdb only
1131 wants to find the one with the complete definition. Note that if
1132 it is complete, we just call new_symbol, which does it's own
1133 checking about whether the struct/union is anonymous or not (and
1134 suppresses creating a symbol table entry itself).
1139 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1140 struct objfile *objfile)
1145 type = struct_type (dip, thisdie, enddie, objfile);
1146 if (!TYPE_STUB (type))
1148 sym = new_symbol (dip, objfile);
1151 SYMBOL_TYPE (sym) = type;
1152 if (cu_language == language_cplus)
1154 synthesize_typedef (dip, objfile, type);
1164 decode_array_element_type -- decode type of the array elements
1168 static struct type *decode_array_element_type (char *scan, char *end)
1172 As the last step in decoding the array subscript information for an
1173 array DIE, we need to decode the type of the array elements. We are
1174 passed a pointer to this last part of the subscript information and
1175 must return the appropriate type. If the type attribute is not
1176 recognized, just warn about the problem and return type int.
1179 static struct type *
1180 decode_array_element_type (char *scan)
1184 unsigned short attribute;
1185 unsigned short fundtype;
1188 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1190 scan += SIZEOF_ATTRIBUTE;
1191 if ((nbytes = attribute_size (attribute)) == -1)
1193 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1194 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1201 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1203 typep = decode_fund_type (fundtype);
1205 case AT_mod_fund_type:
1206 typep = decode_mod_fund_type (scan);
1208 case AT_user_def_type:
1209 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1211 if ((typep = lookup_utype (die_ref)) == NULL)
1213 typep = alloc_utype (die_ref, NULL);
1216 case AT_mod_u_d_type:
1217 typep = decode_mod_u_d_type (scan);
1220 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1221 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1232 decode_subscript_data_item -- decode array subscript item
1236 static struct type *
1237 decode_subscript_data_item (char *scan, char *end)
1241 The array subscripts and the data type of the elements of an
1242 array are described by a list of data items, stored as a block
1243 of contiguous bytes. There is a data item describing each array
1244 dimension, and a final data item describing the element type.
1245 The data items are ordered the same as their appearance in the
1246 source (I.E. leftmost dimension first, next to leftmost second,
1249 The data items describing each array dimension consist of four
1250 parts: (1) a format specifier, (2) type type of the subscript
1251 index, (3) a description of the low bound of the array dimension,
1252 and (4) a description of the high bound of the array dimension.
1254 The last data item is the description of the type of each of
1257 We are passed a pointer to the start of the block of bytes
1258 containing the remaining data items, and a pointer to the first
1259 byte past the data. This function recursively decodes the
1260 remaining data items and returns a type.
1262 If we somehow fail to decode some data, we complain about it
1263 and return a type "array of int".
1266 FIXME: This code only implements the forms currently used
1267 by the AT&T and GNU C compilers.
1269 The end pointer is supplied for error checking, maybe we should
1273 static struct type *
1274 decode_subscript_data_item (char *scan, char *end)
1276 struct type *typep = NULL; /* Array type we are building */
1277 struct type *nexttype; /* Type of each element (may be array) */
1278 struct type *indextype; /* Type of this index */
1279 struct type *rangetype;
1280 unsigned int format;
1281 unsigned short fundtype;
1282 unsigned long lowbound;
1283 unsigned long highbound;
1286 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1288 scan += SIZEOF_FORMAT_SPECIFIER;
1292 typep = decode_array_element_type (scan);
1295 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1297 indextype = decode_fund_type (fundtype);
1298 scan += SIZEOF_FMT_FT;
1299 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1300 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1302 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1304 nexttype = decode_subscript_data_item (scan, end);
1305 if (nexttype == NULL)
1307 /* Munged subscript data or other problem, fake it. */
1308 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1309 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1311 rangetype = create_range_type ((struct type *) NULL, indextype,
1312 lowbound, highbound);
1313 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1322 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1323 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1324 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1325 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1328 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1329 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1330 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1331 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1341 dwarf_read_array_type -- read TAG_array_type DIE
1345 static void dwarf_read_array_type (struct dieinfo *dip)
1349 Extract all information from a TAG_array_type DIE and add to
1350 the user defined type vector.
1354 dwarf_read_array_type (struct dieinfo *dip)
1360 unsigned short blocksz;
1363 if (dip->at_ordering != ORD_row_major)
1365 /* FIXME: Can gdb even handle column major arrays? */
1366 complain (¬_row_major, DIE_ID, DIE_NAME);
1368 if ((sub = dip->at_subscr_data) != NULL)
1370 nbytes = attribute_size (AT_subscr_data);
1371 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1372 subend = sub + nbytes + blocksz;
1374 type = decode_subscript_data_item (sub, subend);
1375 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1377 /* Install user defined type that has not been referenced yet. */
1378 alloc_utype (dip->die_ref, type);
1380 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1382 /* Ick! A forward ref has already generated a blank type in our
1383 slot, and this type probably already has things pointing to it
1384 (which is what caused it to be created in the first place).
1385 If it's just a place holder we can plop our fully defined type
1386 on top of it. We can't recover the space allocated for our
1387 new type since it might be on an obstack, but we could reuse
1388 it if we kept a list of them, but it might not be worth it
1394 /* Double ick! Not only is a type already in our slot, but
1395 someone has decorated it. Complain and leave it alone. */
1396 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1405 read_tag_pointer_type -- read TAG_pointer_type DIE
1409 static void read_tag_pointer_type (struct dieinfo *dip)
1413 Extract all information from a TAG_pointer_type DIE and add to
1414 the user defined type vector.
1418 read_tag_pointer_type (struct dieinfo *dip)
1423 type = decode_die_type (dip);
1424 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1426 utype = lookup_pointer_type (type);
1427 alloc_utype (dip->die_ref, utype);
1431 TYPE_TARGET_TYPE (utype) = type;
1432 TYPE_POINTER_TYPE (type) = utype;
1434 /* We assume the machine has only one representation for pointers! */
1435 /* FIXME: Possably a poor assumption */
1436 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1437 TYPE_CODE (utype) = TYPE_CODE_PTR;
1445 read_tag_string_type -- read TAG_string_type DIE
1449 static void read_tag_string_type (struct dieinfo *dip)
1453 Extract all information from a TAG_string_type DIE and add to
1454 the user defined type vector. It isn't really a user defined
1455 type, but it behaves like one, with other DIE's using an
1456 AT_user_def_type attribute to reference it.
1460 read_tag_string_type (struct dieinfo *dip)
1463 struct type *indextype;
1464 struct type *rangetype;
1465 unsigned long lowbound = 0;
1466 unsigned long highbound;
1468 if (dip->has_at_byte_size)
1470 /* A fixed bounds string */
1471 highbound = dip->at_byte_size - 1;
1475 /* A varying length string. Stub for now. (FIXME) */
1478 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1479 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1482 utype = lookup_utype (dip->die_ref);
1485 /* No type defined, go ahead and create a blank one to use. */
1486 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1490 /* Already a type in our slot due to a forward reference. Make sure it
1491 is a blank one. If not, complain and leave it alone. */
1492 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1494 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1499 /* Create the string type using the blank type we either found or created. */
1500 utype = create_string_type (utype, rangetype);
1507 read_subroutine_type -- process TAG_subroutine_type dies
1511 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1516 Handle DIES due to C code like:
1519 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1525 The parameter DIES are currently ignored. See if gdb has a way to
1526 include this info in it's type system, and decode them if so. Is
1527 this what the type structure's "arg_types" field is for? (FIXME)
1531 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1533 struct type *type; /* Type that this function returns */
1534 struct type *ftype; /* Function that returns above type */
1536 /* Decode the type that this subroutine returns */
1538 type = decode_die_type (dip);
1540 /* Check to see if we already have a partially constructed user
1541 defined type for this DIE, from a forward reference. */
1543 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
1545 /* This is the first reference to one of these types. Make
1546 a new one and place it in the user defined types. */
1547 ftype = lookup_function_type (type);
1548 alloc_utype (dip->die_ref, ftype);
1550 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1552 /* We have an existing partially constructed type, so bash it
1553 into the correct type. */
1554 TYPE_TARGET_TYPE (ftype) = type;
1555 TYPE_LENGTH (ftype) = 1;
1556 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1560 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1568 read_enumeration -- process dies which define an enumeration
1572 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1573 char *enddie, struct objfile *objfile)
1577 Given a pointer to a die which begins an enumeration, process all
1578 the dies that define the members of the enumeration.
1582 Note that we need to call enum_type regardless of whether or not we
1583 have a symbol, since we might have an enum without a tag name (thus
1584 no symbol for the tagname).
1588 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1589 struct objfile *objfile)
1594 type = enum_type (dip, objfile);
1595 sym = new_symbol (dip, objfile);
1598 SYMBOL_TYPE (sym) = type;
1599 if (cu_language == language_cplus)
1601 synthesize_typedef (dip, objfile, type);
1610 enum_type -- decode and return a type for an enumeration
1614 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1618 Given a pointer to a die information structure for the die which
1619 starts an enumeration, process all the dies that define the members
1620 of the enumeration and return a type pointer for the enumeration.
1622 At the same time, for each member of the enumeration, create a
1623 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1624 and give it the type of the enumeration itself.
1628 Note that the DWARF specification explicitly mandates that enum
1629 constants occur in reverse order from the source program order,
1630 for "consistency" and because this ordering is easier for many
1631 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1632 Entries). Because gdb wants to see the enum members in program
1633 source order, we have to ensure that the order gets reversed while
1634 we are processing them.
1637 static struct type *
1638 enum_type (struct dieinfo *dip, struct objfile *objfile)
1643 struct nextfield *next;
1646 struct nextfield *list = NULL;
1647 struct nextfield *new;
1652 unsigned short blocksz;
1655 int unsigned_enum = 1;
1657 if ((type = lookup_utype (dip->die_ref)) == NULL)
1659 /* No forward references created an empty type, so install one now */
1660 type = alloc_utype (dip->die_ref, NULL);
1662 TYPE_CODE (type) = TYPE_CODE_ENUM;
1663 /* Some compilers try to be helpful by inventing "fake" names for
1664 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1665 Thanks, but no thanks... */
1666 if (dip->at_name != NULL
1667 && *dip->at_name != '~'
1668 && *dip->at_name != '.')
1670 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1671 "", "", dip->at_name);
1673 if (dip->at_byte_size != 0)
1675 TYPE_LENGTH (type) = dip->at_byte_size;
1677 if ((scan = dip->at_element_list) != NULL)
1679 if (dip->short_element_list)
1681 nbytes = attribute_size (AT_short_element_list);
1685 nbytes = attribute_size (AT_element_list);
1687 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1688 listend = scan + nbytes + blocksz;
1690 while (scan < listend)
1692 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1695 FIELD_TYPE (list->field) = NULL;
1696 FIELD_BITSIZE (list->field) = 0;
1697 FIELD_BITPOS (list->field) =
1698 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1700 scan += TARGET_FT_LONG_SIZE (objfile);
1701 list->field.name = obsavestring (scan, strlen (scan),
1702 &objfile->type_obstack);
1703 scan += strlen (scan) + 1;
1705 /* Handcraft a new symbol for this enum member. */
1706 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1707 sizeof (struct symbol));
1708 memset (sym, 0, sizeof (struct symbol));
1709 SYMBOL_NAME (sym) = create_name (list->field.name,
1710 &objfile->symbol_obstack);
1711 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1712 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1713 SYMBOL_CLASS (sym) = LOC_CONST;
1714 SYMBOL_TYPE (sym) = type;
1715 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1716 if (SYMBOL_VALUE (sym) < 0)
1718 add_symbol_to_list (sym, list_in_scope);
1720 /* Now create the vector of fields, and record how big it is. This is
1721 where we reverse the order, by pulling the members off the list in
1722 reverse order from how they were inserted. If we have no fields
1723 (this is apparently possible in C++) then skip building a field
1728 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1729 TYPE_NFIELDS (type) = nfields;
1730 TYPE_FIELDS (type) = (struct field *)
1731 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1732 /* Copy the saved-up fields into the field vector. */
1733 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1735 TYPE_FIELD (type, n++) = list->field;
1746 read_func_scope -- process all dies within a function scope
1750 Process all dies within a given function scope. We are passed
1751 a die information structure pointer DIP for the die which
1752 starts the function scope, and pointers into the raw die data
1753 that define the dies within the function scope.
1755 For now, we ignore lexical block scopes within the function.
1756 The problem is that AT&T cc does not define a DWARF lexical
1757 block scope for the function itself, while gcc defines a
1758 lexical block scope for the function. We need to think about
1759 how to handle this difference, or if it is even a problem.
1764 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1765 struct objfile *objfile)
1767 register struct context_stack *new;
1769 /* AT_name is absent if the function is described with an
1770 AT_abstract_origin tag.
1771 Ignore the function description for now to avoid GDB core dumps.
1772 FIXME: Add code to handle AT_abstract_origin tags properly. */
1773 if (dip->at_name == NULL)
1775 complain (&missing_at_name, DIE_ID);
1779 if (objfile->ei.entry_point >= dip->at_low_pc &&
1780 objfile->ei.entry_point < dip->at_high_pc)
1782 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1783 objfile->ei.entry_func_highpc = dip->at_high_pc;
1785 new = push_context (0, dip->at_low_pc);
1786 new->name = new_symbol (dip, objfile);
1787 list_in_scope = &local_symbols;
1788 process_dies (thisdie + dip->die_length, enddie, objfile);
1789 new = pop_context ();
1790 /* Make a block for the local symbols within. */
1791 finish_block (new->name, &local_symbols, new->old_blocks,
1792 new->start_addr, dip->at_high_pc, objfile);
1793 list_in_scope = &file_symbols;
1801 handle_producer -- process the AT_producer attribute
1805 Perform any operations that depend on finding a particular
1806 AT_producer attribute.
1811 handle_producer (char *producer)
1814 /* If this compilation unit was compiled with g++ or gcc, then set the
1815 processing_gcc_compilation flag. */
1817 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1819 char version = producer[strlen (GCC_PRODUCER)];
1820 processing_gcc_compilation = (version == '2' ? 2 : 1);
1824 processing_gcc_compilation =
1825 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1826 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1829 /* Select a demangling style if we can identify the producer and if
1830 the current style is auto. We leave the current style alone if it
1831 is not auto. We also leave the demangling style alone if we find a
1832 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1834 if (AUTO_DEMANGLING)
1836 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1839 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1840 know whether it will use the old style or v3 mangling. */
1841 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1844 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1846 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1856 read_file_scope -- process all dies within a file scope
1860 Process all dies within a given file scope. We are passed a
1861 pointer to the die information structure for the die which
1862 starts the file scope, and pointers into the raw die data which
1863 mark the range of dies within the file scope.
1865 When the partial symbol table is built, the file offset for the line
1866 number table for each compilation unit is saved in the partial symbol
1867 table entry for that compilation unit. As the symbols for each
1868 compilation unit are read, the line number table is read into memory
1869 and the variable lnbase is set to point to it. Thus all we have to
1870 do is use lnbase to access the line number table for the current
1875 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1876 struct objfile *objfile)
1878 struct cleanup *back_to;
1879 struct symtab *symtab;
1881 if (objfile->ei.entry_point >= dip->at_low_pc &&
1882 objfile->ei.entry_point < dip->at_high_pc)
1884 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1885 objfile->ei.entry_file_highpc = dip->at_high_pc;
1887 set_cu_language (dip);
1888 if (dip->at_producer != NULL)
1890 handle_producer (dip->at_producer);
1892 numutypes = (enddie - thisdie) / 4;
1893 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1894 back_to = make_cleanup (free_utypes, NULL);
1895 memset (utypes, 0, numutypes * sizeof (struct type *));
1896 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1897 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1898 record_debugformat ("DWARF 1");
1899 decode_line_numbers (lnbase);
1900 process_dies (thisdie + dip->die_length, enddie, objfile);
1902 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1905 symtab->language = cu_language;
1907 do_cleanups (back_to);
1914 process_dies -- process a range of DWARF Information Entries
1918 static void process_dies (char *thisdie, char *enddie,
1919 struct objfile *objfile)
1923 Process all DIE's in a specified range. May be (and almost
1924 certainly will be) called recursively.
1928 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1933 while (thisdie < enddie)
1935 basicdieinfo (&di, thisdie, objfile);
1936 if (di.die_length < SIZEOF_DIE_LENGTH)
1940 else if (di.die_tag == TAG_padding)
1942 nextdie = thisdie + di.die_length;
1946 completedieinfo (&di, objfile);
1947 if (di.at_sibling != 0)
1949 nextdie = dbbase + di.at_sibling - dbroff;
1953 nextdie = thisdie + di.die_length;
1955 #ifdef SMASH_TEXT_ADDRESS
1956 /* I think that these are always text, not data, addresses. */
1957 SMASH_TEXT_ADDRESS (di.at_low_pc);
1958 SMASH_TEXT_ADDRESS (di.at_high_pc);
1962 case TAG_compile_unit:
1963 /* Skip Tag_compile_unit if we are already inside a compilation
1964 unit, we are unable to handle nested compilation units
1965 properly (FIXME). */
1966 if (current_subfile == NULL)
1967 read_file_scope (&di, thisdie, nextdie, objfile);
1969 nextdie = thisdie + di.die_length;
1971 case TAG_global_subroutine:
1972 case TAG_subroutine:
1973 if (di.has_at_low_pc)
1975 read_func_scope (&di, thisdie, nextdie, objfile);
1978 case TAG_lexical_block:
1979 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1981 case TAG_class_type:
1982 case TAG_structure_type:
1983 case TAG_union_type:
1984 read_structure_scope (&di, thisdie, nextdie, objfile);
1986 case TAG_enumeration_type:
1987 read_enumeration (&di, thisdie, nextdie, objfile);
1989 case TAG_subroutine_type:
1990 read_subroutine_type (&di, thisdie, nextdie);
1992 case TAG_array_type:
1993 dwarf_read_array_type (&di);
1995 case TAG_pointer_type:
1996 read_tag_pointer_type (&di);
1998 case TAG_string_type:
1999 read_tag_string_type (&di);
2002 new_symbol (&di, objfile);
2014 decode_line_numbers -- decode a line number table fragment
2018 static void decode_line_numbers (char *tblscan, char *tblend,
2019 long length, long base, long line, long pc)
2023 Translate the DWARF line number information to gdb form.
2025 The ".line" section contains one or more line number tables, one for
2026 each ".line" section from the objects that were linked.
2028 The AT_stmt_list attribute for each TAG_source_file entry in the
2029 ".debug" section contains the offset into the ".line" section for the
2030 start of the table for that file.
2032 The table itself has the following structure:
2034 <table length><base address><source statement entry>
2035 4 bytes 4 bytes 10 bytes
2037 The table length is the total size of the table, including the 4 bytes
2038 for the length information.
2040 The base address is the address of the first instruction generated
2041 for the source file.
2043 Each source statement entry has the following structure:
2045 <line number><statement position><address delta>
2046 4 bytes 2 bytes 4 bytes
2048 The line number is relative to the start of the file, starting with
2051 The statement position either -1 (0xFFFF) or the number of characters
2052 from the beginning of the line to the beginning of the statement.
2054 The address delta is the difference between the base address and
2055 the address of the first instruction for the statement.
2057 Note that we must copy the bytes from the packed table to our local
2058 variables before attempting to use them, to avoid alignment problems
2059 on some machines, particularly RISC processors.
2063 Does gdb expect the line numbers to be sorted? They are now by
2064 chance/luck, but are not required to be. (FIXME)
2066 The line with number 0 is unused, gdb apparently can discover the
2067 span of the last line some other way. How? (FIXME)
2071 decode_line_numbers (char *linetable)
2075 unsigned long length;
2080 if (linetable != NULL)
2082 tblscan = tblend = linetable;
2083 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2085 tblscan += SIZEOF_LINETBL_LENGTH;
2087 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2088 GET_UNSIGNED, current_objfile);
2089 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2091 while (tblscan < tblend)
2093 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2095 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2096 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2098 tblscan += SIZEOF_LINETBL_DELTA;
2102 record_line (current_subfile, line, pc);
2112 locval -- compute the value of a location attribute
2116 static int locval (struct dieinfo *dip)
2120 Given pointer to a string of bytes that define a location, compute
2121 the location and return the value.
2122 A location description containing no atoms indicates that the
2123 object is optimized out. The optimized_out flag is set for those,
2124 the return value is meaningless.
2126 When computing values involving the current value of the frame pointer,
2127 the value zero is used, which results in a value relative to the frame
2128 pointer, rather than the absolute value. This is what GDB wants
2131 When the result is a register number, the isreg flag is set, otherwise
2132 it is cleared. This is a kludge until we figure out a better
2133 way to handle the problem. Gdb's design does not mesh well with the
2134 DWARF notion of a location computing interpreter, which is a shame
2135 because the flexibility goes unused.
2139 Note that stack[0] is unused except as a default error return.
2140 Note that stack overflow is not yet handled.
2144 locval (struct dieinfo *dip)
2146 unsigned short nbytes;
2147 unsigned short locsize;
2148 auto long stack[64];
2155 loc = dip->at_location;
2156 nbytes = attribute_size (AT_location);
2157 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2159 end = loc + locsize;
2164 dip->optimized_out = 1;
2165 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2168 dip->optimized_out = 0;
2169 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2171 loc += SIZEOF_LOC_ATOM_CODE;
2172 switch (loc_atom_code)
2179 /* push register (number) */
2181 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2184 loc += loc_value_size;
2188 /* push value of register (number) */
2189 /* Actually, we compute the value as if register has 0, so the
2190 value ends up being the offset from that register. */
2192 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2194 loc += loc_value_size;
2195 stack[++stacki] = 0;
2198 /* push address (relocated address) */
2199 stack[++stacki] = target_to_host (loc, loc_value_size,
2200 GET_UNSIGNED, current_objfile);
2201 loc += loc_value_size;
2204 /* push constant (number) FIXME: signed or unsigned! */
2205 stack[++stacki] = target_to_host (loc, loc_value_size,
2206 GET_SIGNED, current_objfile);
2207 loc += loc_value_size;
2210 /* pop, deref and push 2 bytes (as a long) */
2211 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2213 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2214 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2216 case OP_ADD: /* pop top 2 items, add, push result */
2217 stack[stacki - 1] += stack[stacki];
2222 return (stack[stacki]);
2229 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2233 static void read_ofile_symtab (struct partial_symtab *pst)
2237 When expanding a partial symbol table entry to a full symbol table
2238 entry, this is the function that gets called to read in the symbols
2239 for the compilation unit. A pointer to the newly constructed symtab,
2240 which is now the new first one on the objfile's symtab list, is
2241 stashed in the partial symbol table entry.
2245 read_ofile_symtab (struct partial_symtab *pst)
2247 struct cleanup *back_to;
2248 unsigned long lnsize;
2251 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2253 abfd = pst->objfile->obfd;
2254 current_objfile = pst->objfile;
2256 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2257 unit, seek to the location in the file, and read in all the DIE's. */
2260 dbsize = DBLENGTH (pst);
2261 dbbase = xmalloc (dbsize);
2262 dbroff = DBROFF (pst);
2263 foffset = DBFOFF (pst) + dbroff;
2264 base_section_offsets = pst->section_offsets;
2265 baseaddr = ANOFFSET (pst->section_offsets, 0);
2266 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2267 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
2270 error ("can't read DWARF data");
2272 back_to = make_cleanup (xfree, dbbase);
2274 /* If there is a line number table associated with this compilation unit
2275 then read the size of this fragment in bytes, from the fragment itself.
2276 Allocate a buffer for the fragment and read it in for future
2282 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2283 (bfd_bread ((PTR) lnsizedata, sizeof (lnsizedata), abfd)
2284 != sizeof (lnsizedata)))
2286 error ("can't read DWARF line number table size");
2288 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2289 GET_UNSIGNED, pst->objfile);
2290 lnbase = xmalloc (lnsize);
2291 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2292 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
2295 error ("can't read DWARF line numbers");
2297 make_cleanup (xfree, lnbase);
2300 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2301 do_cleanups (back_to);
2302 current_objfile = NULL;
2303 pst->symtab = pst->objfile->symtabs;
2310 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2314 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2318 Called once for each partial symbol table entry that needs to be
2319 expanded into a full symbol table entry.
2324 psymtab_to_symtab_1 (struct partial_symtab *pst)
2327 struct cleanup *old_chain;
2333 warning ("psymtab for %s already read in. Shouldn't happen.",
2338 /* Read in all partial symtabs on which this one is dependent */
2339 for (i = 0; i < pst->number_of_dependencies; i++)
2341 if (!pst->dependencies[i]->readin)
2343 /* Inform about additional files that need to be read in. */
2346 fputs_filtered (" ", gdb_stdout);
2348 fputs_filtered ("and ", gdb_stdout);
2350 printf_filtered ("%s...",
2351 pst->dependencies[i]->filename);
2353 gdb_flush (gdb_stdout); /* Flush output */
2355 psymtab_to_symtab_1 (pst->dependencies[i]);
2358 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2361 old_chain = make_cleanup (really_free_pendings, 0);
2362 read_ofile_symtab (pst);
2365 printf_filtered ("%d DIE's, sorting...", diecount);
2367 gdb_flush (gdb_stdout);
2369 sort_symtab_syms (pst->symtab);
2370 do_cleanups (old_chain);
2381 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2385 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2389 This is the DWARF support entry point for building a full symbol
2390 table entry from a partial symbol table entry. We are passed a
2391 pointer to the partial symbol table entry that needs to be expanded.
2396 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2403 warning ("psymtab for %s already read in. Shouldn't happen.",
2408 if (DBLENGTH (pst) || pst->number_of_dependencies)
2410 /* Print the message now, before starting serious work, to avoid
2411 disconcerting pauses. */
2414 printf_filtered ("Reading in symbols for %s...",
2416 gdb_flush (gdb_stdout);
2419 psymtab_to_symtab_1 (pst);
2421 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2422 we need to do an equivalent or is this something peculiar to
2424 Match with global symbols. This only needs to be done once,
2425 after all of the symtabs and dependencies have been read in.
2427 scan_file_globals (pst->objfile);
2430 /* Finish up the verbose info message. */
2433 printf_filtered ("done.\n");
2434 gdb_flush (gdb_stdout);
2445 add_enum_psymbol -- add enumeration members to partial symbol table
2449 Given pointer to a DIE that is known to be for an enumeration,
2450 extract the symbolic names of the enumeration members and add
2451 partial symbols for them.
2455 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2459 unsigned short blocksz;
2462 if ((scan = dip->at_element_list) != NULL)
2464 if (dip->short_element_list)
2466 nbytes = attribute_size (AT_short_element_list);
2470 nbytes = attribute_size (AT_element_list);
2472 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2474 listend = scan + blocksz;
2475 while (scan < listend)
2477 scan += TARGET_FT_LONG_SIZE (objfile);
2478 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2479 &objfile->static_psymbols, 0, 0, cu_language,
2481 scan += strlen (scan) + 1;
2490 add_partial_symbol -- add symbol to partial symbol table
2494 Given a DIE, if it is one of the types that we want to
2495 add to a partial symbol table, finish filling in the die info
2496 and then add a partial symbol table entry for it.
2500 The caller must ensure that the DIE has a valid name attribute.
2504 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2506 switch (dip->die_tag)
2508 case TAG_global_subroutine:
2509 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2510 VAR_NAMESPACE, LOC_BLOCK,
2511 &objfile->global_psymbols,
2512 0, dip->at_low_pc, cu_language, objfile);
2514 case TAG_global_variable:
2515 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2516 VAR_NAMESPACE, LOC_STATIC,
2517 &objfile->global_psymbols,
2518 0, 0, cu_language, objfile);
2520 case TAG_subroutine:
2521 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2522 VAR_NAMESPACE, LOC_BLOCK,
2523 &objfile->static_psymbols,
2524 0, dip->at_low_pc, cu_language, objfile);
2526 case TAG_local_variable:
2527 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2528 VAR_NAMESPACE, LOC_STATIC,
2529 &objfile->static_psymbols,
2530 0, 0, cu_language, objfile);
2533 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2534 VAR_NAMESPACE, LOC_TYPEDEF,
2535 &objfile->static_psymbols,
2536 0, 0, cu_language, objfile);
2538 case TAG_class_type:
2539 case TAG_structure_type:
2540 case TAG_union_type:
2541 case TAG_enumeration_type:
2542 /* Do not add opaque aggregate definitions to the psymtab. */
2543 if (!dip->has_at_byte_size)
2545 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2546 STRUCT_NAMESPACE, LOC_TYPEDEF,
2547 &objfile->static_psymbols,
2548 0, 0, cu_language, objfile);
2549 if (cu_language == language_cplus)
2551 /* For C++, these implicitly act as typedefs as well. */
2552 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2553 VAR_NAMESPACE, LOC_TYPEDEF,
2554 &objfile->static_psymbols,
2555 0, 0, cu_language, objfile);
2565 scan_partial_symbols -- scan DIE's within a single compilation unit
2569 Process the DIE's within a single compilation unit, looking for
2570 interesting DIE's that contribute to the partial symbol table entry
2571 for this compilation unit.
2575 There are some DIE's that may appear both at file scope and within
2576 the scope of a function. We are only interested in the ones at file
2577 scope, and the only way to tell them apart is to keep track of the
2578 scope. For example, consider the test case:
2583 for which the relevant DWARF segment has the structure:
2586 0x23 global subrtn sibling 0x9b
2588 fund_type FT_integer
2593 0x23 local var sibling 0x97
2595 fund_type FT_integer
2596 location OP_BASEREG 0xe
2603 0x1d local var sibling 0xb8
2605 fund_type FT_integer
2606 location OP_ADDR 0x800025dc
2611 We want to include the symbol 'i' in the partial symbol table, but
2612 not the symbol 'j'. In essence, we want to skip all the dies within
2613 the scope of a TAG_global_subroutine DIE.
2615 Don't attempt to add anonymous structures or unions since they have
2616 no name. Anonymous enumerations however are processed, because we
2617 want to extract their member names (the check for a tag name is
2620 Also, for variables and subroutines, check that this is the place
2621 where the actual definition occurs, rather than just a reference
2629 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2635 while (thisdie < enddie)
2637 basicdieinfo (&di, thisdie, objfile);
2638 if (di.die_length < SIZEOF_DIE_LENGTH)
2644 nextdie = thisdie + di.die_length;
2645 /* To avoid getting complete die information for every die, we
2646 only do it (below) for the cases we are interested in. */
2649 case TAG_global_subroutine:
2650 case TAG_subroutine:
2651 completedieinfo (&di, objfile);
2652 if (di.at_name && (di.has_at_low_pc || di.at_location))
2654 add_partial_symbol (&di, objfile);
2655 /* If there is a sibling attribute, adjust the nextdie
2656 pointer to skip the entire scope of the subroutine.
2657 Apply some sanity checking to make sure we don't
2658 overrun or underrun the range of remaining DIE's */
2659 if (di.at_sibling != 0)
2661 temp = dbbase + di.at_sibling - dbroff;
2662 if ((temp < thisdie) || (temp >= enddie))
2664 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2674 case TAG_global_variable:
2675 case TAG_local_variable:
2676 completedieinfo (&di, objfile);
2677 if (di.at_name && (di.has_at_low_pc || di.at_location))
2679 add_partial_symbol (&di, objfile);
2683 case TAG_class_type:
2684 case TAG_structure_type:
2685 case TAG_union_type:
2686 completedieinfo (&di, objfile);
2689 add_partial_symbol (&di, objfile);
2692 case TAG_enumeration_type:
2693 completedieinfo (&di, objfile);
2696 add_partial_symbol (&di, objfile);
2698 add_enum_psymbol (&di, objfile);
2710 scan_compilation_units -- build a psymtab entry for each compilation
2714 This is the top level dwarf parsing routine for building partial
2717 It scans from the beginning of the DWARF table looking for the first
2718 TAG_compile_unit DIE, and then follows the sibling chain to locate
2719 each additional TAG_compile_unit DIE.
2721 For each TAG_compile_unit DIE it creates a partial symtab structure,
2722 calls a subordinate routine to collect all the compilation unit's
2723 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2724 new partial symtab structure into the partial symbol table. It also
2725 records the appropriate information in the partial symbol table entry
2726 to allow the chunk of DIE's and line number table for this compilation
2727 unit to be located and re-read later, to generate a complete symbol
2728 table entry for the compilation unit.
2730 Thus it effectively partitions up a chunk of DIE's for multiple
2731 compilation units into smaller DIE chunks and line number tables,
2732 and associates them with a partial symbol table entry.
2736 If any compilation unit has no line number table associated with
2737 it for some reason (a missing at_stmt_list attribute, rather than
2738 just one with a value of zero, which is valid) then we ensure that
2739 the recorded file offset is zero so that the routine which later
2740 reads line number table fragments knows that there is no fragment
2750 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2751 file_ptr lnoffset, struct objfile *objfile)
2755 struct partial_symtab *pst;
2758 file_ptr curlnoffset;
2760 while (thisdie < enddie)
2762 basicdieinfo (&di, thisdie, objfile);
2763 if (di.die_length < SIZEOF_DIE_LENGTH)
2767 else if (di.die_tag != TAG_compile_unit)
2769 nextdie = thisdie + di.die_length;
2773 completedieinfo (&di, objfile);
2774 set_cu_language (&di);
2775 if (di.at_sibling != 0)
2777 nextdie = dbbase + di.at_sibling - dbroff;
2781 nextdie = thisdie + di.die_length;
2783 curoff = thisdie - dbbase;
2784 culength = nextdie - thisdie;
2785 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2787 /* First allocate a new partial symbol table structure */
2789 pst = start_psymtab_common (objfile, base_section_offsets,
2790 di.at_name, di.at_low_pc,
2791 objfile->global_psymbols.next,
2792 objfile->static_psymbols.next);
2794 pst->texthigh = di.at_high_pc;
2795 pst->read_symtab_private = (char *)
2796 obstack_alloc (&objfile->psymbol_obstack,
2797 sizeof (struct dwfinfo));
2798 DBFOFF (pst) = dbfoff;
2799 DBROFF (pst) = curoff;
2800 DBLENGTH (pst) = culength;
2801 LNFOFF (pst) = curlnoffset;
2802 pst->read_symtab = dwarf_psymtab_to_symtab;
2804 /* Now look for partial symbols */
2806 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2808 pst->n_global_syms = objfile->global_psymbols.next -
2809 (objfile->global_psymbols.list + pst->globals_offset);
2810 pst->n_static_syms = objfile->static_psymbols.next -
2811 (objfile->static_psymbols.list + pst->statics_offset);
2812 sort_pst_symbols (pst);
2813 /* If there is already a psymtab or symtab for a file of this name,
2814 remove it. (If there is a symtab, more drastic things also
2815 happen.) This happens in VxWorks. */
2816 free_named_symtabs (pst->filename);
2826 new_symbol -- make a symbol table entry for a new symbol
2830 static struct symbol *new_symbol (struct dieinfo *dip,
2831 struct objfile *objfile)
2835 Given a pointer to a DWARF information entry, figure out if we need
2836 to make a symbol table entry for it, and if so, create a new entry
2837 and return a pointer to it.
2840 static struct symbol *
2841 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2843 struct symbol *sym = NULL;
2845 if (dip->at_name != NULL)
2847 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
2848 sizeof (struct symbol));
2849 OBJSTAT (objfile, n_syms++);
2850 memset (sym, 0, sizeof (struct symbol));
2851 SYMBOL_NAME (sym) = create_name (dip->at_name,
2852 &objfile->symbol_obstack);
2853 /* default assumptions */
2854 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2855 SYMBOL_CLASS (sym) = LOC_STATIC;
2856 SYMBOL_TYPE (sym) = decode_die_type (dip);
2858 /* If this symbol is from a C++ compilation, then attempt to cache the
2859 demangled form for future reference. This is a typical time versus
2860 space tradeoff, that was decided in favor of time because it sped up
2861 C++ symbol lookups by a factor of about 20. */
2863 SYMBOL_LANGUAGE (sym) = cu_language;
2864 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2865 switch (dip->die_tag)
2868 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2869 SYMBOL_CLASS (sym) = LOC_LABEL;
2871 case TAG_global_subroutine:
2872 case TAG_subroutine:
2873 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2874 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2875 if (dip->at_prototyped)
2876 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2877 SYMBOL_CLASS (sym) = LOC_BLOCK;
2878 if (dip->die_tag == TAG_global_subroutine)
2880 add_symbol_to_list (sym, &global_symbols);
2884 add_symbol_to_list (sym, list_in_scope);
2887 case TAG_global_variable:
2888 if (dip->at_location != NULL)
2890 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2891 add_symbol_to_list (sym, &global_symbols);
2892 SYMBOL_CLASS (sym) = LOC_STATIC;
2893 SYMBOL_VALUE (sym) += baseaddr;
2896 case TAG_local_variable:
2897 if (dip->at_location != NULL)
2899 int loc = locval (dip);
2900 if (dip->optimized_out)
2902 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2904 else if (dip->isreg)
2906 SYMBOL_CLASS (sym) = LOC_REGISTER;
2908 else if (dip->offreg)
2910 SYMBOL_CLASS (sym) = LOC_BASEREG;
2911 SYMBOL_BASEREG (sym) = dip->basereg;
2915 SYMBOL_CLASS (sym) = LOC_STATIC;
2916 SYMBOL_VALUE (sym) += baseaddr;
2918 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2920 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2921 which may store to a bigger location than SYMBOL_VALUE. */
2922 SYMBOL_VALUE_ADDRESS (sym) = loc;
2926 SYMBOL_VALUE (sym) = loc;
2928 add_symbol_to_list (sym, list_in_scope);
2931 case TAG_formal_parameter:
2932 if (dip->at_location != NULL)
2934 SYMBOL_VALUE (sym) = locval (dip);
2936 add_symbol_to_list (sym, list_in_scope);
2939 SYMBOL_CLASS (sym) = LOC_REGPARM;
2941 else if (dip->offreg)
2943 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2944 SYMBOL_BASEREG (sym) = dip->basereg;
2948 SYMBOL_CLASS (sym) = LOC_ARG;
2951 case TAG_unspecified_parameters:
2952 /* From varargs functions; gdb doesn't seem to have any interest in
2953 this information, so just ignore it for now. (FIXME?) */
2955 case TAG_class_type:
2956 case TAG_structure_type:
2957 case TAG_union_type:
2958 case TAG_enumeration_type:
2959 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2960 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2961 add_symbol_to_list (sym, list_in_scope);
2964 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2965 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2966 add_symbol_to_list (sym, list_in_scope);
2969 /* Not a tag we recognize. Hopefully we aren't processing trash
2970 data, but since we must specifically ignore things we don't
2971 recognize, there is nothing else we should do at this point. */
2982 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2986 static void synthesize_typedef (struct dieinfo *dip,
2987 struct objfile *objfile,
2992 Given a pointer to a DWARF information entry, synthesize a typedef
2993 for the name in the DIE, using the specified type.
2995 This is used for C++ class, structs, unions, and enumerations to
2996 set up the tag name as a type.
3001 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3004 struct symbol *sym = NULL;
3006 if (dip->at_name != NULL)
3008 sym = (struct symbol *)
3009 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3010 OBJSTAT (objfile, n_syms++);
3011 memset (sym, 0, sizeof (struct symbol));
3012 SYMBOL_NAME (sym) = create_name (dip->at_name,
3013 &objfile->symbol_obstack);
3014 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3015 SYMBOL_TYPE (sym) = type;
3016 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3017 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3018 add_symbol_to_list (sym, list_in_scope);
3026 decode_mod_fund_type -- decode a modified fundamental type
3030 static struct type *decode_mod_fund_type (char *typedata)
3034 Decode a block of data containing a modified fundamental
3035 type specification. TYPEDATA is a pointer to the block,
3036 which starts with a length containing the size of the rest
3037 of the block. At the end of the block is a fundmental type
3038 code value that gives the fundamental type. Everything
3039 in between are type modifiers.
3041 We simply compute the number of modifiers and call the general
3042 function decode_modified_type to do the actual work.
3045 static struct type *
3046 decode_mod_fund_type (char *typedata)
3048 struct type *typep = NULL;
3049 unsigned short modcount;
3052 /* Get the total size of the block, exclusive of the size itself */
3054 nbytes = attribute_size (AT_mod_fund_type);
3055 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3058 /* Deduct the size of the fundamental type bytes at the end of the block. */
3060 modcount -= attribute_size (AT_fund_type);
3062 /* Now do the actual decoding */
3064 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3072 decode_mod_u_d_type -- decode a modified user defined type
3076 static struct type *decode_mod_u_d_type (char *typedata)
3080 Decode a block of data containing a modified user defined
3081 type specification. TYPEDATA is a pointer to the block,
3082 which consists of a two byte length, containing the size
3083 of the rest of the block. At the end of the block is a
3084 four byte value that gives a reference to a user defined type.
3085 Everything in between are type modifiers.
3087 We simply compute the number of modifiers and call the general
3088 function decode_modified_type to do the actual work.
3091 static struct type *
3092 decode_mod_u_d_type (char *typedata)
3094 struct type *typep = NULL;
3095 unsigned short modcount;
3098 /* Get the total size of the block, exclusive of the size itself */
3100 nbytes = attribute_size (AT_mod_u_d_type);
3101 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3104 /* Deduct the size of the reference type bytes at the end of the block. */
3106 modcount -= attribute_size (AT_user_def_type);
3108 /* Now do the actual decoding */
3110 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3118 decode_modified_type -- decode modified user or fundamental type
3122 static struct type *decode_modified_type (char *modifiers,
3123 unsigned short modcount, int mtype)
3127 Decode a modified type, either a modified fundamental type or
3128 a modified user defined type. MODIFIERS is a pointer to the
3129 block of bytes that define MODCOUNT modifiers. Immediately
3130 following the last modifier is a short containing the fundamental
3131 type or a long containing the reference to the user defined
3132 type. Which one is determined by MTYPE, which is either
3133 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3134 type we are generating.
3136 We call ourself recursively to generate each modified type,`
3137 until MODCOUNT reaches zero, at which point we have consumed
3138 all the modifiers and generate either the fundamental type or
3139 user defined type. When the recursion unwinds, each modifier
3140 is applied in turn to generate the full modified type.
3144 If we find a modifier that we don't recognize, and it is not one
3145 of those reserved for application specific use, then we issue a
3146 warning and simply ignore the modifier.
3150 We currently ignore MOD_const and MOD_volatile. (FIXME)
3154 static struct type *
3155 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3157 struct type *typep = NULL;
3158 unsigned short fundtype;
3167 case AT_mod_fund_type:
3168 nbytes = attribute_size (AT_fund_type);
3169 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3171 typep = decode_fund_type (fundtype);
3173 case AT_mod_u_d_type:
3174 nbytes = attribute_size (AT_user_def_type);
3175 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3177 if ((typep = lookup_utype (die_ref)) == NULL)
3179 typep = alloc_utype (die_ref, NULL);
3183 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3184 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3190 modifier = *modifiers++;
3191 typep = decode_modified_type (modifiers, --modcount, mtype);
3194 case MOD_pointer_to:
3195 typep = lookup_pointer_type (typep);
3197 case MOD_reference_to:
3198 typep = lookup_reference_type (typep);
3201 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3204 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3207 if (!(MOD_lo_user <= (unsigned char) modifier
3208 && (unsigned char) modifier <= MOD_hi_user))
3210 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3222 decode_fund_type -- translate basic DWARF type to gdb base type
3226 Given an integer that is one of the fundamental DWARF types,
3227 translate it to one of the basic internal gdb types and return
3228 a pointer to the appropriate gdb type (a "struct type *").
3232 For robustness, if we are asked to translate a fundamental
3233 type that we are unprepared to deal with, we return int so
3234 callers can always depend upon a valid type being returned,
3235 and so gdb may at least do something reasonable by default.
3236 If the type is not in the range of those types defined as
3237 application specific types, we also issue a warning.
3240 static struct type *
3241 decode_fund_type (unsigned int fundtype)
3243 struct type *typep = NULL;
3249 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3252 case FT_boolean: /* Was FT_set in AT&T version */
3253 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3256 case FT_pointer: /* (void *) */
3257 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3258 typep = lookup_pointer_type (typep);
3262 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3265 case FT_signed_char:
3266 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3269 case FT_unsigned_char:
3270 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3274 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3277 case FT_signed_short:
3278 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3281 case FT_unsigned_short:
3282 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3286 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3289 case FT_signed_integer:
3290 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3293 case FT_unsigned_integer:
3294 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3298 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3301 case FT_signed_long:
3302 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3305 case FT_unsigned_long:
3306 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3310 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3313 case FT_signed_long_long:
3314 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3317 case FT_unsigned_long_long:
3318 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3322 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3325 case FT_dbl_prec_float:
3326 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3329 case FT_ext_prec_float:
3330 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3334 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3337 case FT_dbl_prec_complex:
3338 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3341 case FT_ext_prec_complex:
3342 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3349 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3350 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3352 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3363 create_name -- allocate a fresh copy of a string on an obstack
3367 Given a pointer to a string and a pointer to an obstack, allocates
3368 a fresh copy of the string on the specified obstack.
3373 create_name (char *name, struct obstack *obstackp)
3378 length = strlen (name) + 1;
3379 newname = (char *) obstack_alloc (obstackp, length);
3380 strcpy (newname, name);
3388 basicdieinfo -- extract the minimal die info from raw die data
3392 void basicdieinfo (char *diep, struct dieinfo *dip,
3393 struct objfile *objfile)
3397 Given a pointer to raw DIE data, and a pointer to an instance of a
3398 die info structure, this function extracts the basic information
3399 from the DIE data required to continue processing this DIE, along
3400 with some bookkeeping information about the DIE.
3402 The information we absolutely must have includes the DIE tag,
3403 and the DIE length. If we need the sibling reference, then we
3404 will have to call completedieinfo() to process all the remaining
3407 Note that since there is no guarantee that the data is properly
3408 aligned in memory for the type of access required (indirection
3409 through anything other than a char pointer), and there is no
3410 guarantee that it is in the same byte order as the gdb host,
3411 we call a function which deals with both alignment and byte
3412 swapping issues. Possibly inefficient, but quite portable.
3414 We also take care of some other basic things at this point, such
3415 as ensuring that the instance of the die info structure starts
3416 out completely zero'd and that curdie is initialized for use
3417 in error reporting if we have a problem with the current die.
3421 All DIE's must have at least a valid length, thus the minimum
3422 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3423 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3424 are forced to be TAG_padding DIES.
3426 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3427 that if a padding DIE is used for alignment and the amount needed is
3428 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3429 enough to align to the next alignment boundry.
3431 We do some basic sanity checking here, such as verifying that the
3432 length of the die would not cause it to overrun the recorded end of
3433 the buffer holding the DIE info. If we find a DIE that is either
3434 too small or too large, we force it's length to zero which should
3435 cause the caller to take appropriate action.
3439 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3442 memset (dip, 0, sizeof (struct dieinfo));
3444 dip->die_ref = dbroff + (diep - dbbase);
3445 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3447 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3448 ((diep + dip->die_length) > (dbbase + dbsize)))
3450 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3451 dip->die_length = 0;
3453 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3455 dip->die_tag = TAG_padding;
3459 diep += SIZEOF_DIE_LENGTH;
3460 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3469 completedieinfo -- finish reading the information for a given DIE
3473 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3477 Given a pointer to an already partially initialized die info structure,
3478 scan the raw DIE data and finish filling in the die info structure
3479 from the various attributes found.
3481 Note that since there is no guarantee that the data is properly
3482 aligned in memory for the type of access required (indirection
3483 through anything other than a char pointer), and there is no
3484 guarantee that it is in the same byte order as the gdb host,
3485 we call a function which deals with both alignment and byte
3486 swapping issues. Possibly inefficient, but quite portable.
3490 Each time we are called, we increment the diecount variable, which
3491 keeps an approximate count of the number of dies processed for
3492 each compilation unit. This information is presented to the user
3493 if the info_verbose flag is set.
3498 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3500 char *diep; /* Current pointer into raw DIE data */
3501 char *end; /* Terminate DIE scan here */
3502 unsigned short attr; /* Current attribute being scanned */
3503 unsigned short form; /* Form of the attribute */
3504 int nbytes; /* Size of next field to read */
3508 end = diep + dip->die_length;
3509 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3512 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3513 diep += SIZEOF_ATTRIBUTE;
3514 if ((nbytes = attribute_size (attr)) == -1)
3516 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3523 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3527 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3531 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3535 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3539 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3541 dip->has_at_stmt_list = 1;
3544 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3546 dip->at_low_pc += baseaddr;
3547 dip->has_at_low_pc = 1;
3550 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3552 dip->at_high_pc += baseaddr;
3555 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3558 case AT_user_def_type:
3559 dip->at_user_def_type = target_to_host (diep, nbytes,
3560 GET_UNSIGNED, objfile);
3563 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3565 dip->has_at_byte_size = 1;
3568 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3572 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3576 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3580 dip->at_location = diep;
3582 case AT_mod_fund_type:
3583 dip->at_mod_fund_type = diep;
3585 case AT_subscr_data:
3586 dip->at_subscr_data = diep;
3588 case AT_mod_u_d_type:
3589 dip->at_mod_u_d_type = diep;
3591 case AT_element_list:
3592 dip->at_element_list = diep;
3593 dip->short_element_list = 0;
3595 case AT_short_element_list:
3596 dip->at_element_list = diep;
3597 dip->short_element_list = 1;
3599 case AT_discr_value:
3600 dip->at_discr_value = diep;
3602 case AT_string_length:
3603 dip->at_string_length = diep;
3606 dip->at_name = diep;
3609 /* For now, ignore any "hostname:" portion, since gdb doesn't
3610 know how to deal with it. (FIXME). */
3611 dip->at_comp_dir = strrchr (diep, ':');
3612 if (dip->at_comp_dir != NULL)
3618 dip->at_comp_dir = diep;
3622 dip->at_producer = diep;
3624 case AT_start_scope:
3625 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3628 case AT_stride_size:
3629 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3633 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3637 dip->at_prototyped = diep;
3640 /* Found an attribute that we are unprepared to handle. However
3641 it is specifically one of the design goals of DWARF that
3642 consumers should ignore unknown attributes. As long as the
3643 form is one that we recognize (so we know how to skip it),
3644 we can just ignore the unknown attribute. */
3647 form = FORM_FROM_ATTR (attr);
3661 diep += TARGET_FT_POINTER_SIZE (objfile);
3664 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3667 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3670 diep += strlen (diep) + 1;
3673 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3684 target_to_host -- swap in target data to host
3688 target_to_host (char *from, int nbytes, int signextend,
3689 struct objfile *objfile)
3693 Given pointer to data in target format in FROM, a byte count for
3694 the size of the data in NBYTES, a flag indicating whether or not
3695 the data is signed in SIGNEXTEND, and a pointer to the current
3696 objfile in OBJFILE, convert the data to host format and return
3697 the converted value.
3701 FIXME: If we read data that is known to be signed, and expect to
3702 use it as signed data, then we need to explicitly sign extend the
3703 result until the bfd library is able to do this for us.
3705 FIXME: Would a 32 bit target ever need an 8 byte result?
3710 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3711 struct objfile *objfile)
3718 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3721 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3724 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3727 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3730 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3741 attribute_size -- compute size of data for a DWARF attribute
3745 static int attribute_size (unsigned int attr)
3749 Given a DWARF attribute in ATTR, compute the size of the first
3750 piece of data associated with this attribute and return that
3753 Returns -1 for unrecognized attributes.
3758 attribute_size (unsigned int attr)
3760 int nbytes; /* Size of next data for this attribute */
3761 unsigned short form; /* Form of the attribute */
3763 form = FORM_FROM_ATTR (attr);
3766 case FORM_STRING: /* A variable length field is next */
3769 case FORM_DATA2: /* Next 2 byte field is the data itself */
3770 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3773 case FORM_DATA4: /* Next 4 byte field is the data itself */
3774 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3775 case FORM_REF: /* Next 4 byte field is a DIE offset */
3778 case FORM_DATA8: /* Next 8 byte field is the data itself */
3781 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3782 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3785 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);