]> Git Repo - binutils.git/blob - gdb/config/mips/tm-mips.h
d2b5d20491460fd4186dea829f0ac94654a99181
[binutils.git] / gdb / config / mips / tm-mips.h
1 /* Definitions to make GDB run on a mips box under 4.3bsd.
2    Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.
3    Contributed by Per Bothner ([email protected]) at U.Wisconsin
4    and by Alessandro Forin ([email protected]) at CMU..
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */
21
22 #include <bfd.h>
23 #include "coff/sym.h"           /* Needed for PDR below.  */
24 #include "coff/symconst.h"
25
26 #if !defined (TARGET_BYTE_ORDER)
27 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
28 #endif
29
30 /* Floating point is IEEE compliant */
31 #define IEEE_FLOAT
32
33 /* Some MIPS boards are provided both with and without a floating
34    point coprocessor; we provide a user settable variable to tell gdb
35    whether there is one or not.  */
36 extern int mips_fpu;
37
38 /* Offset from address of function to start of its code.
39    Zero on most machines.  */
40
41 #define FUNCTION_START_OFFSET 0
42
43 /* Advance PC across any function entry prologue instructions
44    to reach some "real" code.  */
45
46 #define SKIP_PROLOGUE(pc)       pc = mips_skip_prologue (pc, 0)
47 extern CORE_ADDR mips_skip_prologue PARAMS ((CORE_ADDR addr, int lenient));
48
49 /* Immediately after a function call, return the saved pc.
50    Can't always go through the frames for this because on some machines
51    the new frame is not set up until the new function executes
52    some instructions.  */
53
54 #define SAVED_PC_AFTER_CALL(frame)      read_register(RA_REGNUM)
55
56 /* Are we currently handling a signal */
57
58 #define IN_SIGTRAMP(pc, name)   in_sigtramp(pc, name)
59
60 /* Stack grows downward.  */
61
62 #define INNER_THAN <
63
64 #define BIG_ENDIAN 4321
65 #if TARGET_BYTE_ORDER == BIG_ENDIAN
66 #define BREAKPOINT {0, 0x5, 0, 0xd}
67 #else
68 #define BREAKPOINT {0xd, 0, 0x5, 0}
69 #endif
70
71 /* Amount PC must be decremented by after a breakpoint.
72    This is often the number of bytes in BREAKPOINT
73    but not always.  */
74
75 #define DECR_PC_AFTER_BREAK 0
76
77 /* Nonzero if instruction at PC is a return instruction. "j ra" on mips. */
78
79 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x3e00008)
80
81 /* This is taken care of in print_floating [IEEE_FLOAT].  */
82
83 #define INVALID_FLOAT(p,l) 0
84
85 /* Say how long (all) registers are.  */
86
87 #define REGISTER_TYPE long
88
89 /* Number of machine registers */
90
91 #define NUM_REGS 80
92
93 /* Initializer for an array of names of registers.
94    There should be NUM_REGS strings in this initializer.  */
95
96 #define REGISTER_NAMES  \
97     {   "zero", "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3", \
98         "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7", \
99         "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7", \
100         "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "s8",   "ra", \
101         "sr",   "lo",   "hi",   "bad",  "cause","pc",    \
102         "f0",   "f1",   "f2",   "f3",   "f4",   "f5",   "f6",   "f7", \
103         "f8",   "f9",   "f10",  "f11",  "f12",  "f13",  "f14",  "f15", \
104         "f16",  "f17",  "f18",  "f19",  "f20",  "f21",  "f22",  "f23",\
105         "f24",  "f25",  "f26",  "f27",  "f28",  "f29",  "f30",  "f31",\
106         "fsr",  "fir",  "fp",   "inx",  "rand", "tlblo","ctxt", "tlbhi",\
107         "epc",  "prid"\
108     }
109
110 /* Register numbers of various important registers.
111    Note that some of these values are "real" register numbers,
112    and correspond to the general registers of the machine,
113    and some are "phony" register numbers which are too large
114    to be actual register numbers as far as the user is concerned
115    but do serve to get the desired values when passed to read_register.  */
116
117 #define ZERO_REGNUM 0           /* read-only register, always 0 */
118 #define V0_REGNUM 2             /* Function integer return value */
119 #define A0_REGNUM 4             /* Loc of first arg during a subr call */
120 #define SP_REGNUM 29            /* Contains address of top of stack */
121 #define RA_REGNUM 31            /* Contains return address value */
122 #define PS_REGNUM 32            /* Contains processor status */
123 #define HI_REGNUM 34            /* Multiple/divide temp */
124 #define LO_REGNUM 33            /* ... */
125 #define BADVADDR_REGNUM 35      /* bad vaddr for addressing exception */
126 #define CAUSE_REGNUM 36         /* describes last exception */
127 #define PC_REGNUM 37            /* Contains program counter */
128 #define FP0_REGNUM 38           /* Floating point register 0 (single float) */
129 #define FCRCS_REGNUM 70         /* FP control/status */
130 #define FCRIR_REGNUM 71         /* FP implementation/revision */
131 #define FP_REGNUM 72            /* Pseudo register that contains true address of executing stack frame */
132 #define FIRST_EMBED_REGNUM 73   /* First supervisor register for embedded use */
133 #define LAST_EMBED_REGNUM 79    /* Last one */
134
135 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
136    of register dumps. */
137
138 #define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp)
139
140 /* Total amount of space needed to store our copies of the machine's
141    register state, the array `registers'.  */
142 #define REGISTER_BYTES (NUM_REGS*4)
143
144 /* Index within `registers' of the first byte of the space for
145    register N.  */
146
147 #define REGISTER_BYTE(N) ((N) * 4)
148
149 /* Number of bytes of storage in the actual machine representation
150    for register N.  On mips, all regs are 4 bytes.  */
151
152 #define REGISTER_RAW_SIZE(N) 4
153
154 /* Number of bytes of storage in the program's representation
155    for register N.  On mips, all regs are 4 bytes.  */
156
157 #define REGISTER_VIRTUAL_SIZE(N) 4
158
159 /* Largest value REGISTER_RAW_SIZE can have.  */
160
161 #define MAX_REGISTER_RAW_SIZE 8
162
163 /* Largest value REGISTER_VIRTUAL_SIZE can have.  */
164
165 #define MAX_REGISTER_VIRTUAL_SIZE 8
166
167 /* Nonzero if register N requires conversion
168    from raw format to virtual format.  */
169
170 #define REGISTER_CONVERTIBLE(N) 0
171
172 /* Convert data from raw format for register REGNUM
173    to virtual format for register REGNUM.  */
174
175 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO)     \
176   memcpy ((TO), (FROM), 4);
177
178 /* Convert data from virtual format for register REGNUM
179    to raw format for register REGNUM.  */
180
181 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
182   memcpy ((TO), (FROM), 4);
183
184 /* Return the GDB type object for the "standard" data type
185    of data in register N.  */
186
187 #define REGISTER_VIRTUAL_TYPE(N) \
188         (((N) >= FP0_REGNUM && (N) < FP0_REGNUM+32)  \
189          ? builtin_type_float : builtin_type_int) \
190
191 #if HOST_BYTE_ORDER == BIG_ENDIAN
192 /* All mips targets store doubles in a register pair with the least
193    significant register in the lower numbered register.
194    If the host is big endian, double register values need conversion between
195    memory and register formats.  */
196
197 #define REGISTER_CONVERT_TO_TYPE(n, type, buffer)                       \
198   do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 &&                 \
199           TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
200         char __temp[4];                                                 \
201         memcpy (__temp, ((char *)(buffer))+4, 4);                       \
202         memcpy (((char *)(buffer))+4, (buffer), 4);                     \
203         memcpy (((char *)(buffer)), __temp, 4); }} while (0)
204
205 #define REGISTER_CONVERT_FROM_TYPE(n, type, buffer)                     \
206   do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 &&                 \
207           TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
208         char __temp[4];                                                 \
209         memcpy (__temp, ((char *)(buffer))+4, 4);                       \
210         memcpy (((char *)(buffer))+4, (buffer), 4);                     \
211         memcpy (((char *)(buffer)), __temp, 4); }} while (0)
212 #endif
213
214 /* Store the address of the place in which to copy the structure the
215    subroutine will return.  This is called from call_function. */
216
217 #define STORE_STRUCT_RETURN(addr, sp) \
218   { sp = push_word(sp, addr);}
219
220 /* Extract from an array REGBUF containing the (raw) register state
221    a function return value of type TYPE, and copy that, in virtual format,
222    into VALBUF.  XXX floats */
223
224 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
225   mips_extract_return_value(TYPE, REGBUF, VALBUF)
226
227 /* Write into appropriate registers a function return value
228    of type TYPE, given in virtual format.  */
229
230 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
231   mips_store_return_value(TYPE, VALBUF)
232
233 /* Extract from an array REGBUF containing the (raw) register state
234    the address in which a function should return its structure value,
235    as a CORE_ADDR (or an expression that can be used as one).  */
236 /* The address is passed in a0 upon entry to the function, but when
237    the function exits, the compiler has copied the value to v0.  This
238    convention is specified by the System V ABI, so I think we can rely
239    on it.  */
240
241 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
242   (extract_address (REGBUF + REGISTER_BYTE (V0_REGNUM), \
243                     REGISTER_RAW_SIZE (V0_REGNUM)))
244
245 /* Structures are returned by ref in extra arg0 */
246 #define USE_STRUCT_CONVENTION(gcc_p, type)      1
247
248 \f
249 /* Describe the pointer in each stack frame to the previous stack frame
250    (its caller).  */
251
252 /* FRAME_CHAIN takes a frame's nominal address
253    and produces the frame's chain-pointer. */
254
255 #define FRAME_CHAIN(thisframe) (FRAME_ADDR)mips_frame_chain(thisframe)
256
257 /* Define other aspects of the stack frame.  */
258
259
260 /* A macro that tells us whether the function invocation represented
261    by FI does not have a frame on the stack associated with it.  If it
262    does not, FRAMELESS is set to 1, else 0.  */
263 /* We handle this differently for mips, and maybe we should not */
264
265 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS)  {(FRAMELESS) = 0;}
266
267 /* Saved Pc.  */
268
269 #define FRAME_SAVED_PC(FRAME)   (mips_frame_saved_pc(FRAME))
270
271 #define FRAME_ARGS_ADDRESS(fi)  (fi)->frame
272
273 #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
274
275 /* Return number of args passed to a frame.
276    Can return -1, meaning no way to tell.  */
277
278 #define FRAME_NUM_ARGS(num, fi) (num = mips_frame_num_args(fi))
279
280 /* Return number of bytes at start of arglist that are not really args.  */
281
282 #define FRAME_ARGS_SKIP 0
283
284 /* Put here the code to store, into a struct frame_saved_regs,
285    the addresses of the saved registers of frame described by FRAME_INFO.
286    This includes special registers such as pc and fp saved in special
287    ways in the stack frame.  sp is even more special:
288    the address we return for it IS the sp for the next frame.  */
289
290 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) ( \
291   (frame_saved_regs) = *(frame_info)->saved_regs, \
292   (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame)
293
294 \f
295 /* Things needed for making the inferior call functions.  */
296
297 /* Stack has strict alignment. However, use PUSH_ARGUMENTS
298    to take care of it. */
299 /*#define STACK_ALIGN(addr)     (((addr)+3)&~3)*/
300
301 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
302     sp = mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
303
304 /* Push an empty stack frame, to record the current PC, etc.  */
305
306 #define PUSH_DUMMY_FRAME        mips_push_dummy_frame()
307
308 /* Discard from the stack the innermost frame, restoring all registers.  */
309
310 #define POP_FRAME               mips_pop_frame()
311
312 #define MK_OP(op,rs,rt,offset) (((op)<<26)|((rs)<<21)|((rt)<<16)|(offset))
313 #define CALL_DUMMY_SIZE (16*4)
314 #define Dest_Reg 2
315 #define CALL_DUMMY {\
316  MK_OP(0,RA_REGNUM,0,8),        /* jr $ra # Fake ABOUT_TO_RETURN ...*/\
317  0,                             /* nop    #  ... to stop raw backtrace*/\
318  0x27bd0000,                    /* addu sp,?0 # Pseudo prologue */\
319 /* Start here: */\
320  MK_OP(061,SP_REGNUM,12,0),     /* lwc1 $f12,0(sp) # Reload FP regs*/\
321  MK_OP(061,SP_REGNUM,13,4),     /* lwc1 $f13,4(sp) */\
322  MK_OP(061,SP_REGNUM,14,8),     /* lwc1 $f14,8(sp) */\
323  MK_OP(061,SP_REGNUM,15,12),    /* lwc1 $f15,12(sp) */\
324  MK_OP(043,SP_REGNUM,4,0),      /* lw $r4,0(sp) # Reload first 4 args*/\
325  MK_OP(043,SP_REGNUM,5,4),      /* lw $r5,4(sp) */\
326  MK_OP(043,SP_REGNUM,6,8),      /* lw $r6,8(sp) */\
327  MK_OP(043,SP_REGNUM,7,12),     /* lw $r7,12(sp) */\
328  (017<<26)| (Dest_Reg << 16),   /* lui $r31,<target upper 16 bits>*/\
329  MK_OP(13,Dest_Reg,Dest_Reg,0), /* ori $r31,$r31,<lower 16 bits>*/ \
330  (Dest_Reg<<21) | (31<<11) | 9, /* jalr $r31 */\
331  MK_OP(043,SP_REGNUM,7,12),     /* lw $r7,12(sp) */\
332  0x5000d,                       /* bpt */\
333 }
334
335 #define CALL_DUMMY_START_OFFSET 12
336
337 /* Insert the specified number of args and function address
338    into a call sequence of the above form stored at DUMMYNAME.  */
339
340 #if TARGET_BYTE_ORDER == BIG_ENDIAN
341 /* For big endian mips machines the loading of FP values depends on whether
342    they are single or double precision. */
343 #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p) \
344   do {                                                                  \
345     ((int*)(dummyname))[11] |= ((unsigned long)(fun)) >> 16;            \
346     ((int*)(dummyname))[12] |= (unsigned short)(fun);                   \
347     if (! mips_fpu) {                                                   \
348       ((int *) (dummyname))[3] = 0; ((int *) (dummyname))[4] = 0;       \
349       ((int *) (dummyname))[5] = 0; ((int *) (dummyname))[6] = 0;       \
350     } else {                                                            \
351       if (nargs > 0 &&                                                  \
352           TYPE_CODE(VALUE_TYPE(args[0])) == TYPE_CODE_FLT &&            \
353           TYPE_LENGTH(VALUE_TYPE(args[0])) == 8) {                      \
354         ((int *) (dummyname))[3] = MK_OP(061,SP_REGNUM,12,4);           \
355         ((int *) (dummyname))[4] = MK_OP(061,SP_REGNUM,13,0);           \
356       }                                                                 \
357       if (nargs > 1 &&                                                  \
358           TYPE_CODE(VALUE_TYPE(args[1])) == TYPE_CODE_FLT &&            \
359           TYPE_LENGTH(VALUE_TYPE(args[1])) == 8) {                      \
360         ((int *) (dummyname))[5] = MK_OP(061,SP_REGNUM,14,12);          \
361         ((int *) (dummyname))[6] = MK_OP(061,SP_REGNUM,15,8);           \
362       }                                                                 \
363     }                                                                   \
364   } while (0)
365 #else
366 #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p)\
367   do \
368     { \
369       ((int*)(dummyname))[11] |= ((unsigned long)(fun)) >> 16; \
370       ((int*)(dummyname))[12] |= (unsigned short)(fun); \
371       if (! mips_fpu) \
372         { \
373           ((int *) (dummyname))[3] = 0; \
374           ((int *) (dummyname))[4] = 0; \
375           ((int *) (dummyname))[5] = 0; \
376           ((int *) (dummyname))[6] = 0; \
377         } \
378     } \
379   while (0)
380 #endif
381
382 /* There's a mess in stack frame creation.  See comments in blockframe.c
383    near reference to INIT_FRAME_PC_FIRST.  */
384
385 #define INIT_FRAME_PC(fromleaf, prev) /* nada */
386
387 #define INIT_FRAME_PC_FIRST(fromleaf, prev) \
388   (prev)->pc = ((fromleaf) ? SAVED_PC_AFTER_CALL ((prev)->next) : \
389               (prev)->next ? FRAME_SAVED_PC ((prev)->next) : read_pc ());
390
391 /* Special symbol found in blocks associated with routines.  We can hang
392    mips_extra_func_info_t's off of this.  */
393
394 #define MIPS_EFI_SYMBOL_NAME "__GDB_EFI_INFO__"
395
396 /* Specific information about a procedure.
397    This overlays the MIPS's PDR records, 
398    mipsread.c (ab)uses this to save memory */
399
400 typedef struct mips_extra_func_info {
401         long    numargs;        /* number of args to procedure (was iopt) */
402         PDR     pdr;            /* Procedure descriptor record */
403 } *mips_extra_func_info_t;
404
405 #define EXTRA_FRAME_INFO \
406   mips_extra_func_info_t proc_desc; \
407   int num_args;\
408   struct frame_saved_regs *saved_regs;
409
410 #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) init_extra_frame_info(fci)
411
412 #define PRINT_EXTRA_FRAME_INFO(fi) \
413   { \
414     if (fi && fi->proc_desc && fi->proc_desc->pdr.framereg < NUM_REGS) \
415       printf_filtered (" frame pointer is at %s+%d\n", \
416                        reg_names[fi->proc_desc->pdr.framereg], \
417                                  fi->proc_desc->pdr.frameoffset); \
418   }
419
420 /* It takes two values to specify a frame on the MIPS.  Sigh.
421
422    In fact, at the moment, the *PC* is the primary value that sets up
423    a frame.  The PC is looked up to see what function it's in; symbol
424    information from that function tells us which register is the frame
425    pointer base, and what offset from there is the "virtual frame pointer".
426    (This is usually an offset from SP.)  FIXME -- this should be cleaned
427    up so that the primary value is the SP, and the PC is used to disambiguate
428    multiple functions with the same SP that are at different stack levels. */
429
430 #define SETUP_ARBITRARY_FRAME(argc, argv) setup_arbitrary_frame (argc, argv)
431 /* FIXME:  Depends on equivalence between FRAME and "struct frame_info *",
432    and equivalence between CORE_ADDR and FRAME_ADDR. */
433 extern struct frame_info *setup_arbitrary_frame PARAMS ((int, CORE_ADDR *));
434
435 /* Convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
436
437 #define STAB_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-38)
This page took 0.040692 seconds and 2 git commands to generate.