1 /* Support routines for manipulating internal types for GDB.
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28 #include "expression.h"
33 #include "complaints.h"
37 #include "cp-support.h"
39 #include "dwarf2/loc.h"
41 #include "floatformat.h"
44 /* Initialize BADNESS constants. */
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
118 const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
119 &floatformat_bfloat16_big,
120 &floatformat_bfloat16_little
123 /* Should opaque types be resolved? */
125 static bool opaque_type_resolution = true;
127 /* See gdbtypes.h. */
129 unsigned int overload_debug = 0;
131 /* A flag to enable strict type checking. */
133 static bool strict_type_checking = true;
135 /* A function to show whether opaque types are resolved. */
138 show_opaque_type_resolution (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c,
142 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
143 "(if set before loading symbols) is %s.\n"),
147 /* A function to show whether C++ overload debugging is enabled. */
150 show_overload_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
153 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
157 /* A function to show the status of strict type checking. */
160 show_strict_type_checking (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
163 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
167 /* Allocate a new OBJFILE-associated type structure and fill it
168 with some defaults. Space for the type structure is allocated
169 on the objfile's objfile_obstack. */
172 alloc_type (struct objfile *objfile)
176 gdb_assert (objfile != NULL);
178 /* Alloc the structure and start off with all fields zeroed. */
179 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
180 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
182 OBJSTAT (objfile, n_types++);
184 TYPE_OBJFILE_OWNED (type) = 1;
185 TYPE_OWNER (type).objfile = objfile;
187 /* Initialize the fields that might not be zero. */
189 type->set_code (TYPE_CODE_UNDEF);
190 TYPE_CHAIN (type) = type; /* Chain back to itself. */
195 /* Allocate a new GDBARCH-associated type structure and fill it
196 with some defaults. Space for the type structure is allocated
197 on the obstack associated with GDBARCH. */
200 alloc_type_arch (struct gdbarch *gdbarch)
204 gdb_assert (gdbarch != NULL);
206 /* Alloc the structure and start off with all fields zeroed. */
208 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
209 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
211 TYPE_OBJFILE_OWNED (type) = 0;
212 TYPE_OWNER (type).gdbarch = gdbarch;
214 /* Initialize the fields that might not be zero. */
216 type->set_code (TYPE_CODE_UNDEF);
217 TYPE_CHAIN (type) = type; /* Chain back to itself. */
222 /* If TYPE is objfile-associated, allocate a new type structure
223 associated with the same objfile. If TYPE is gdbarch-associated,
224 allocate a new type structure associated with the same gdbarch. */
227 alloc_type_copy (const struct type *type)
229 if (TYPE_OBJFILE_OWNED (type))
230 return alloc_type (TYPE_OWNER (type).objfile);
232 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
235 /* If TYPE is gdbarch-associated, return that architecture.
236 If TYPE is objfile-associated, return that objfile's architecture. */
239 get_type_arch (const struct type *type)
241 struct gdbarch *arch;
243 if (TYPE_OBJFILE_OWNED (type))
244 arch = TYPE_OWNER (type).objfile->arch ();
246 arch = TYPE_OWNER (type).gdbarch;
248 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
249 a gdbarch, however, this is very rare, and even then, in most cases
250 that get_type_arch is called, we assume that a non-NULL value is
252 gdb_assert (arch != NULL);
256 /* See gdbtypes.h. */
259 get_target_type (struct type *type)
263 type = TYPE_TARGET_TYPE (type);
265 type = check_typedef (type);
271 /* See gdbtypes.h. */
274 type_length_units (struct type *type)
276 struct gdbarch *arch = get_type_arch (type);
277 int unit_size = gdbarch_addressable_memory_unit_size (arch);
279 return TYPE_LENGTH (type) / unit_size;
282 /* Alloc a new type instance structure, fill it with some defaults,
283 and point it at OLDTYPE. Allocate the new type instance from the
284 same place as OLDTYPE. */
287 alloc_type_instance (struct type *oldtype)
291 /* Allocate the structure. */
293 if (! TYPE_OBJFILE_OWNED (oldtype))
294 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
296 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
299 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
301 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
306 /* Clear all remnants of the previous type at TYPE, in preparation for
307 replacing it with something else. Preserve owner information. */
310 smash_type (struct type *type)
312 int objfile_owned = TYPE_OBJFILE_OWNED (type);
313 union type_owner owner = TYPE_OWNER (type);
315 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
317 /* Restore owner information. */
318 TYPE_OBJFILE_OWNED (type) = objfile_owned;
319 TYPE_OWNER (type) = owner;
321 /* For now, delete the rings. */
322 TYPE_CHAIN (type) = type;
324 /* For now, leave the pointer/reference types alone. */
327 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
328 to a pointer to memory where the pointer type should be stored.
329 If *TYPEPTR is zero, update it to point to the pointer type we return.
330 We allocate new memory if needed. */
333 make_pointer_type (struct type *type, struct type **typeptr)
335 struct type *ntype; /* New type */
338 ntype = TYPE_POINTER_TYPE (type);
343 return ntype; /* Don't care about alloc,
344 and have new type. */
345 else if (*typeptr == 0)
347 *typeptr = ntype; /* Tracking alloc, and have new type. */
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
354 ntype = alloc_type_copy (type);
358 else /* We have storage, but need to reset it. */
361 chain = TYPE_CHAIN (ntype);
363 TYPE_CHAIN (ntype) = chain;
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_POINTER_TYPE (type) = ntype;
369 /* FIXME! Assumes the machine has only one representation for pointers! */
372 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
373 ntype->set_code (TYPE_CODE_PTR);
375 /* Mark pointers as unsigned. The target converts between pointers
376 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
377 gdbarch_address_to_pointer. */
378 TYPE_UNSIGNED (ntype) = 1;
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
391 /* Given a type TYPE, return a type of pointers to that type.
392 May need to construct such a type if this is the first use. */
395 lookup_pointer_type (struct type *type)
397 return make_pointer_type (type, (struct type **) 0);
400 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
401 points to a pointer to memory where the reference type should be
402 stored. If *TYPEPTR is zero, update it to point to the reference
403 type we return. We allocate new memory if needed. REFCODE denotes
404 the kind of reference type to lookup (lvalue or rvalue reference). */
407 make_reference_type (struct type *type, struct type **typeptr,
408 enum type_code refcode)
410 struct type *ntype; /* New type */
411 struct type **reftype;
414 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
416 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
417 : TYPE_RVALUE_REFERENCE_TYPE (type));
422 return ntype; /* Don't care about alloc,
423 and have new type. */
424 else if (*typeptr == 0)
426 *typeptr = ntype; /* Tracking alloc, and have new type. */
431 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
433 ntype = alloc_type_copy (type);
437 else /* We have storage, but need to reset it. */
440 chain = TYPE_CHAIN (ntype);
442 TYPE_CHAIN (ntype) = chain;
445 TYPE_TARGET_TYPE (ntype) = type;
446 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
447 : &TYPE_RVALUE_REFERENCE_TYPE (type));
451 /* FIXME! Assume the machine has only one representation for
452 references, and that it matches the (only) representation for
455 TYPE_LENGTH (ntype) =
456 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
457 ntype->set_code (refcode);
461 /* Update the length of all the other variants of this type. */
462 chain = TYPE_CHAIN (ntype);
463 while (chain != ntype)
465 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
466 chain = TYPE_CHAIN (chain);
472 /* Same as above, but caller doesn't care about memory allocation
476 lookup_reference_type (struct type *type, enum type_code refcode)
478 return make_reference_type (type, (struct type **) 0, refcode);
481 /* Lookup the lvalue reference type for the type TYPE. */
484 lookup_lvalue_reference_type (struct type *type)
486 return lookup_reference_type (type, TYPE_CODE_REF);
489 /* Lookup the rvalue reference type for the type TYPE. */
492 lookup_rvalue_reference_type (struct type *type)
494 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
497 /* Lookup a function type that returns type TYPE. TYPEPTR, if
498 nonzero, points to a pointer to memory where the function type
499 should be stored. If *TYPEPTR is zero, update it to point to the
500 function type we return. We allocate new memory if needed. */
503 make_function_type (struct type *type, struct type **typeptr)
505 struct type *ntype; /* New type */
507 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
509 ntype = alloc_type_copy (type);
513 else /* We have storage, but need to reset it. */
519 TYPE_TARGET_TYPE (ntype) = type;
521 TYPE_LENGTH (ntype) = 1;
522 ntype->set_code (TYPE_CODE_FUNC);
524 INIT_FUNC_SPECIFIC (ntype);
529 /* Given a type TYPE, return a type of functions that return that type.
530 May need to construct such a type if this is the first use. */
533 lookup_function_type (struct type *type)
535 return make_function_type (type, (struct type **) 0);
538 /* Given a type TYPE and argument types, return the appropriate
539 function type. If the final type in PARAM_TYPES is NULL, make a
543 lookup_function_type_with_arguments (struct type *type,
545 struct type **param_types)
547 struct type *fn = make_function_type (type, (struct type **) 0);
552 if (param_types[nparams - 1] == NULL)
555 TYPE_VARARGS (fn) = 1;
557 else if (check_typedef (param_types[nparams - 1])->code ()
561 /* Caller should have ensured this. */
562 gdb_assert (nparams == 0);
563 TYPE_PROTOTYPED (fn) = 1;
566 TYPE_PROTOTYPED (fn) = 1;
569 fn->set_num_fields (nparams);
571 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
572 for (i = 0; i < nparams; ++i)
573 fn->field (i).set_type (param_types[i]);
578 /* Identify address space identifier by name --
579 return the integer flag defined in gdbtypes.h. */
582 address_space_name_to_int (struct gdbarch *gdbarch,
583 const char *space_identifier)
587 /* Check for known address space delimiters. */
588 if (!strcmp (space_identifier, "code"))
589 return TYPE_INSTANCE_FLAG_CODE_SPACE;
590 else if (!strcmp (space_identifier, "data"))
591 return TYPE_INSTANCE_FLAG_DATA_SPACE;
592 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
593 && gdbarch_address_class_name_to_type_flags (gdbarch,
598 error (_("Unknown address space specifier: \"%s\""), space_identifier);
601 /* Identify address space identifier by integer flag as defined in
602 gdbtypes.h -- return the string version of the adress space name. */
605 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
607 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
609 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
611 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
612 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
613 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
618 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
620 If STORAGE is non-NULL, create the new type instance there.
621 STORAGE must be in the same obstack as TYPE. */
624 make_qualified_type (struct type *type, int new_flags,
625 struct type *storage)
632 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
634 ntype = TYPE_CHAIN (ntype);
636 while (ntype != type);
638 /* Create a new type instance. */
640 ntype = alloc_type_instance (type);
643 /* If STORAGE was provided, it had better be in the same objfile
644 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
645 if one objfile is freed and the other kept, we'd have
646 dangling pointers. */
647 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
650 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
651 TYPE_CHAIN (ntype) = ntype;
654 /* Pointers or references to the original type are not relevant to
656 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
657 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
659 /* Chain the new qualified type to the old type. */
660 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
661 TYPE_CHAIN (type) = ntype;
663 /* Now set the instance flags and return the new type. */
664 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
666 /* Set length of new type to that of the original type. */
667 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
672 /* Make an address-space-delimited variant of a type -- a type that
673 is identical to the one supplied except that it has an address
674 space attribute attached to it (such as "code" or "data").
676 The space attributes "code" and "data" are for Harvard
677 architectures. The address space attributes are for architectures
678 which have alternately sized pointers or pointers with alternate
682 make_type_with_address_space (struct type *type, int space_flag)
684 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
685 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
686 | TYPE_INSTANCE_FLAG_DATA_SPACE
687 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
690 return make_qualified_type (type, new_flags, NULL);
693 /* Make a "c-v" variant of a type -- a type that is identical to the
694 one supplied except that it may have const or volatile attributes
695 CNST is a flag for setting the const attribute
696 VOLTL is a flag for setting the volatile attribute
697 TYPE is the base type whose variant we are creating.
699 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
700 storage to hold the new qualified type; *TYPEPTR and TYPE must be
701 in the same objfile. Otherwise, allocate fresh memory for the new
702 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
703 new type we construct. */
706 make_cv_type (int cnst, int voltl,
708 struct type **typeptr)
710 struct type *ntype; /* New type */
712 int new_flags = (TYPE_INSTANCE_FLAGS (type)
713 & ~(TYPE_INSTANCE_FLAG_CONST
714 | TYPE_INSTANCE_FLAG_VOLATILE));
717 new_flags |= TYPE_INSTANCE_FLAG_CONST;
720 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
722 if (typeptr && *typeptr != NULL)
724 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
725 a C-V variant chain that threads across objfiles: if one
726 objfile gets freed, then the other has a broken C-V chain.
728 This code used to try to copy over the main type from TYPE to
729 *TYPEPTR if they were in different objfiles, but that's
730 wrong, too: TYPE may have a field list or member function
731 lists, which refer to types of their own, etc. etc. The
732 whole shebang would need to be copied over recursively; you
733 can't have inter-objfile pointers. The only thing to do is
734 to leave stub types as stub types, and look them up afresh by
735 name each time you encounter them. */
736 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
739 ntype = make_qualified_type (type, new_flags,
740 typeptr ? *typeptr : NULL);
748 /* Make a 'restrict'-qualified version of TYPE. */
751 make_restrict_type (struct type *type)
753 return make_qualified_type (type,
754 (TYPE_INSTANCE_FLAGS (type)
755 | TYPE_INSTANCE_FLAG_RESTRICT),
759 /* Make a type without const, volatile, or restrict. */
762 make_unqualified_type (struct type *type)
764 return make_qualified_type (type,
765 (TYPE_INSTANCE_FLAGS (type)
766 & ~(TYPE_INSTANCE_FLAG_CONST
767 | TYPE_INSTANCE_FLAG_VOLATILE
768 | TYPE_INSTANCE_FLAG_RESTRICT)),
772 /* Make a '_Atomic'-qualified version of TYPE. */
775 make_atomic_type (struct type *type)
777 return make_qualified_type (type,
778 (TYPE_INSTANCE_FLAGS (type)
779 | TYPE_INSTANCE_FLAG_ATOMIC),
783 /* Replace the contents of ntype with the type *type. This changes the
784 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
785 the changes are propogated to all types in the TYPE_CHAIN.
787 In order to build recursive types, it's inevitable that we'll need
788 to update types in place --- but this sort of indiscriminate
789 smashing is ugly, and needs to be replaced with something more
790 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
791 clear if more steps are needed. */
794 replace_type (struct type *ntype, struct type *type)
798 /* These two types had better be in the same objfile. Otherwise,
799 the assignment of one type's main type structure to the other
800 will produce a type with references to objects (names; field
801 lists; etc.) allocated on an objfile other than its own. */
802 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
804 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
806 /* The type length is not a part of the main type. Update it for
807 each type on the variant chain. */
811 /* Assert that this element of the chain has no address-class bits
812 set in its flags. Such type variants might have type lengths
813 which are supposed to be different from the non-address-class
814 variants. This assertion shouldn't ever be triggered because
815 symbol readers which do construct address-class variants don't
816 call replace_type(). */
817 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
819 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
820 chain = TYPE_CHAIN (chain);
822 while (ntype != chain);
824 /* Assert that the two types have equivalent instance qualifiers.
825 This should be true for at least all of our debug readers. */
826 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
829 /* Implement direct support for MEMBER_TYPE in GNU C++.
830 May need to construct such a type if this is the first use.
831 The TYPE is the type of the member. The DOMAIN is the type
832 of the aggregate that the member belongs to. */
835 lookup_memberptr_type (struct type *type, struct type *domain)
839 mtype = alloc_type_copy (type);
840 smash_to_memberptr_type (mtype, domain, type);
844 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
847 lookup_methodptr_type (struct type *to_type)
851 mtype = alloc_type_copy (to_type);
852 smash_to_methodptr_type (mtype, to_type);
856 /* Allocate a stub method whose return type is TYPE. This apparently
857 happens for speed of symbol reading, since parsing out the
858 arguments to the method is cpu-intensive, the way we are doing it.
859 So, we will fill in arguments later. This always returns a fresh
863 allocate_stub_method (struct type *type)
867 mtype = alloc_type_copy (type);
868 mtype->set_code (TYPE_CODE_METHOD);
869 TYPE_LENGTH (mtype) = 1;
870 TYPE_STUB (mtype) = 1;
871 TYPE_TARGET_TYPE (mtype) = type;
872 /* TYPE_SELF_TYPE (mtype) = unknown yet */
876 /* See gdbtypes.h. */
879 operator== (const dynamic_prop &l, const dynamic_prop &r)
881 if (l.kind () != r.kind ())
889 return l.const_val () == r.const_val ();
890 case PROP_ADDR_OFFSET:
893 return l.baton () == r.baton ();
894 case PROP_VARIANT_PARTS:
895 return l.variant_parts () == r.variant_parts ();
897 return l.original_type () == r.original_type ();
900 gdb_assert_not_reached ("unhandled dynamic_prop kind");
903 /* See gdbtypes.h. */
906 operator== (const range_bounds &l, const range_bounds &r)
908 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
910 return (FIELD_EQ (low)
912 && FIELD_EQ (flag_upper_bound_is_count)
913 && FIELD_EQ (flag_bound_evaluated)
919 /* Create a range type with a dynamic range from LOW_BOUND to
920 HIGH_BOUND, inclusive. See create_range_type for further details. */
923 create_range_type (struct type *result_type, struct type *index_type,
924 const struct dynamic_prop *low_bound,
925 const struct dynamic_prop *high_bound,
928 /* The INDEX_TYPE should be a type capable of holding the upper and lower
929 bounds, as such a zero sized, or void type makes no sense. */
930 gdb_assert (index_type->code () != TYPE_CODE_VOID);
931 gdb_assert (TYPE_LENGTH (index_type) > 0);
933 if (result_type == NULL)
934 result_type = alloc_type_copy (index_type);
935 result_type->set_code (TYPE_CODE_RANGE);
936 TYPE_TARGET_TYPE (result_type) = index_type;
937 if (TYPE_STUB (index_type))
938 TYPE_TARGET_STUB (result_type) = 1;
940 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
943 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
944 bounds->low = *low_bound;
945 bounds->high = *high_bound;
947 bounds->stride.set_const_val (0);
949 result_type->set_bounds (bounds);
951 if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
952 TYPE_UNSIGNED (result_type) = 1;
954 /* Ada allows the declaration of range types whose upper bound is
955 less than the lower bound, so checking the lower bound is not
956 enough. Make sure we do not mark a range type whose upper bound
957 is negative as unsigned. */
958 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
959 TYPE_UNSIGNED (result_type) = 0;
961 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
962 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
967 /* See gdbtypes.h. */
970 create_range_type_with_stride (struct type *result_type,
971 struct type *index_type,
972 const struct dynamic_prop *low_bound,
973 const struct dynamic_prop *high_bound,
975 const struct dynamic_prop *stride,
978 result_type = create_range_type (result_type, index_type, low_bound,
981 gdb_assert (stride != nullptr);
982 result_type->bounds ()->stride = *stride;
983 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
990 /* Create a range type using either a blank type supplied in
991 RESULT_TYPE, or creating a new type, inheriting the objfile from
994 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
995 to HIGH_BOUND, inclusive.
997 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
998 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
1001 create_static_range_type (struct type *result_type, struct type *index_type,
1002 LONGEST low_bound, LONGEST high_bound)
1004 struct dynamic_prop low, high;
1006 low.set_const_val (low_bound);
1007 high.set_const_val (high_bound);
1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1014 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1018 has_static_range (const struct range_bounds *bounds)
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
1022 return (bounds->low.kind () == PROP_CONST
1023 && bounds->high.kind () == PROP_CONST
1024 && bounds->stride.kind () == PROP_CONST);
1028 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1031 Return 1 if type is a range type with two defined, constant bounds.
1032 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1036 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1038 type = check_typedef (type);
1039 switch (type->code ())
1041 case TYPE_CODE_RANGE:
1042 /* This function currently only works for ranges with two defined,
1044 if (type->bounds ()->low.kind () != PROP_CONST
1045 || type->bounds ()->high.kind () != PROP_CONST)
1048 *lowp = type->bounds ()->low.const_val ();
1049 *highp = type->bounds ()->high.const_val ();
1051 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1053 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1054 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1058 case TYPE_CODE_ENUM:
1059 if (type->num_fields () > 0)
1061 /* The enums may not be sorted by value, so search all
1065 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1066 for (i = 0; i < type->num_fields (); i++)
1068 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1069 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1070 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1071 *highp = TYPE_FIELD_ENUMVAL (type, i);
1074 /* Set unsigned indicator if warranted. */
1077 TYPE_UNSIGNED (type) = 1;
1086 case TYPE_CODE_BOOL:
1091 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1093 if (!TYPE_UNSIGNED (type))
1095 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1096 *highp = -*lowp - 1;
1100 case TYPE_CODE_CHAR:
1102 /* This round-about calculation is to avoid shifting by
1103 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1104 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1105 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1106 *highp = (*highp - 1) | *highp;
1113 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1114 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1115 Save the high bound into HIGH_BOUND if not NULL.
1117 Return 1 if the operation was successful. Return zero otherwise,
1118 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
1121 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1123 struct type *index = type->index_type ();
1131 res = get_discrete_bounds (index, &low, &high);
1144 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1145 representation of a value of this type, save the corresponding
1146 position number in POS.
1148 Its differs from VAL only in the case of enumeration types. In
1149 this case, the position number of the value of the first listed
1150 enumeration literal is zero; the position number of the value of
1151 each subsequent enumeration literal is one more than that of its
1152 predecessor in the list.
1154 Return 1 if the operation was successful. Return zero otherwise,
1155 in which case the value of POS is unmodified.
1159 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1161 if (type->code () == TYPE_CODE_RANGE)
1162 type = TYPE_TARGET_TYPE (type);
1164 if (type->code () == TYPE_CODE_ENUM)
1168 for (i = 0; i < type->num_fields (); i += 1)
1170 if (val == TYPE_FIELD_ENUMVAL (type, i))
1176 /* Invalid enumeration value. */
1186 /* If the array TYPE has static bounds calculate and update its
1187 size, then return true. Otherwise return false and leave TYPE
1191 update_static_array_size (struct type *type)
1193 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1195 struct type *range_type = type->index_type ();
1197 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1198 && has_static_range (range_type->bounds ())
1199 && (!type_not_associated (type)
1200 && !type_not_allocated (type)))
1202 LONGEST low_bound, high_bound;
1204 struct type *element_type;
1206 /* If the array itself doesn't provide a stride value then take
1207 whatever stride the range provides. Don't update BIT_STRIDE as
1208 we don't want to place the stride value from the range into this
1209 arrays bit size field. */
1210 stride = TYPE_FIELD_BITSIZE (type, 0);
1212 stride = range_type->bit_stride ();
1214 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1215 low_bound = high_bound = 0;
1216 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1217 /* Be careful when setting the array length. Ada arrays can be
1218 empty arrays with the high_bound being smaller than the low_bound.
1219 In such cases, the array length should be zero. */
1220 if (high_bound < low_bound)
1221 TYPE_LENGTH (type) = 0;
1222 else if (stride != 0)
1224 /* Ensure that the type length is always positive, even in the
1225 case where (for example in Fortran) we have a negative
1226 stride. It is possible to have a single element array with a
1227 negative stride in Fortran (this doesn't mean anything
1228 special, it's still just a single element array) so do
1229 consider that case when touching this code. */
1230 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1232 = ((std::abs (stride) * element_count) + 7) / 8;
1235 TYPE_LENGTH (type) =
1236 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1244 /* Create an array type using either a blank type supplied in
1245 RESULT_TYPE, or creating a new type, inheriting the objfile from
1248 Elements will be of type ELEMENT_TYPE, the indices will be of type
1251 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1252 This byte stride property is added to the resulting array type
1253 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1254 argument can only be used to create types that are objfile-owned
1255 (see add_dyn_prop), meaning that either this function must be called
1256 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1258 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1259 If BIT_STRIDE is not zero, build a packed array type whose element
1260 size is BIT_STRIDE. Otherwise, ignore this parameter.
1262 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1263 sure it is TYPE_CODE_UNDEF before we bash it into an array
1267 create_array_type_with_stride (struct type *result_type,
1268 struct type *element_type,
1269 struct type *range_type,
1270 struct dynamic_prop *byte_stride_prop,
1271 unsigned int bit_stride)
1273 if (byte_stride_prop != NULL
1274 && byte_stride_prop->kind () == PROP_CONST)
1276 /* The byte stride is actually not dynamic. Pretend we were
1277 called with bit_stride set instead of byte_stride_prop.
1278 This will give us the same result type, while avoiding
1279 the need to handle this as a special case. */
1280 bit_stride = byte_stride_prop->const_val () * 8;
1281 byte_stride_prop = NULL;
1284 if (result_type == NULL)
1285 result_type = alloc_type_copy (range_type);
1287 result_type->set_code (TYPE_CODE_ARRAY);
1288 TYPE_TARGET_TYPE (result_type) = element_type;
1290 result_type->set_num_fields (1);
1291 result_type->set_fields
1292 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1293 result_type->set_index_type (range_type);
1294 if (byte_stride_prop != NULL)
1295 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1296 else if (bit_stride > 0)
1297 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1299 if (!update_static_array_size (result_type))
1301 /* This type is dynamic and its length needs to be computed
1302 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1303 undefined by setting it to zero. Although we are not expected
1304 to trust TYPE_LENGTH in this case, setting the size to zero
1305 allows us to avoid allocating objects of random sizes in case
1306 we accidently do. */
1307 TYPE_LENGTH (result_type) = 0;
1310 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1311 if (TYPE_LENGTH (result_type) == 0)
1312 TYPE_TARGET_STUB (result_type) = 1;
1317 /* Same as create_array_type_with_stride but with no bit_stride
1318 (BIT_STRIDE = 0), thus building an unpacked array. */
1321 create_array_type (struct type *result_type,
1322 struct type *element_type,
1323 struct type *range_type)
1325 return create_array_type_with_stride (result_type, element_type,
1326 range_type, NULL, 0);
1330 lookup_array_range_type (struct type *element_type,
1331 LONGEST low_bound, LONGEST high_bound)
1333 struct type *index_type;
1334 struct type *range_type;
1336 if (TYPE_OBJFILE_OWNED (element_type))
1337 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1339 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1340 range_type = create_static_range_type (NULL, index_type,
1341 low_bound, high_bound);
1343 return create_array_type (NULL, element_type, range_type);
1346 /* Create a string type using either a blank type supplied in
1347 RESULT_TYPE, or creating a new type. String types are similar
1348 enough to array of char types that we can use create_array_type to
1349 build the basic type and then bash it into a string type.
1351 For fixed length strings, the range type contains 0 as the lower
1352 bound and the length of the string minus one as the upper bound.
1354 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1355 sure it is TYPE_CODE_UNDEF before we bash it into a string
1359 create_string_type (struct type *result_type,
1360 struct type *string_char_type,
1361 struct type *range_type)
1363 result_type = create_array_type (result_type,
1366 result_type->set_code (TYPE_CODE_STRING);
1371 lookup_string_range_type (struct type *string_char_type,
1372 LONGEST low_bound, LONGEST high_bound)
1374 struct type *result_type;
1376 result_type = lookup_array_range_type (string_char_type,
1377 low_bound, high_bound);
1378 result_type->set_code (TYPE_CODE_STRING);
1383 create_set_type (struct type *result_type, struct type *domain_type)
1385 if (result_type == NULL)
1386 result_type = alloc_type_copy (domain_type);
1388 result_type->set_code (TYPE_CODE_SET);
1389 result_type->set_num_fields (1);
1390 result_type->set_fields
1391 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1393 if (!TYPE_STUB (domain_type))
1395 LONGEST low_bound, high_bound, bit_length;
1397 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1398 low_bound = high_bound = 0;
1399 bit_length = high_bound - low_bound + 1;
1400 TYPE_LENGTH (result_type)
1401 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1403 TYPE_UNSIGNED (result_type) = 1;
1405 result_type->field (0).set_type (domain_type);
1410 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1411 and any array types nested inside it. */
1414 make_vector_type (struct type *array_type)
1416 struct type *inner_array, *elt_type;
1419 /* Find the innermost array type, in case the array is
1420 multi-dimensional. */
1421 inner_array = array_type;
1422 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1423 inner_array = TYPE_TARGET_TYPE (inner_array);
1425 elt_type = TYPE_TARGET_TYPE (inner_array);
1426 if (elt_type->code () == TYPE_CODE_INT)
1428 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1429 elt_type = make_qualified_type (elt_type, flags, NULL);
1430 TYPE_TARGET_TYPE (inner_array) = elt_type;
1433 TYPE_VECTOR (array_type) = 1;
1437 init_vector_type (struct type *elt_type, int n)
1439 struct type *array_type;
1441 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1442 make_vector_type (array_type);
1446 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1447 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1448 confusing. "self" is a common enough replacement for "this".
1449 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1450 TYPE_CODE_METHOD. */
1453 internal_type_self_type (struct type *type)
1455 switch (type->code ())
1457 case TYPE_CODE_METHODPTR:
1458 case TYPE_CODE_MEMBERPTR:
1459 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1461 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1462 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1463 case TYPE_CODE_METHOD:
1464 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1466 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1467 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1469 gdb_assert_not_reached ("bad type");
1473 /* Set the type of the class that TYPE belongs to.
1474 In c++ this is the class of "this".
1475 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1476 TYPE_CODE_METHOD. */
1479 set_type_self_type (struct type *type, struct type *self_type)
1481 switch (type->code ())
1483 case TYPE_CODE_METHODPTR:
1484 case TYPE_CODE_MEMBERPTR:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1488 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1490 case TYPE_CODE_METHOD:
1491 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1492 INIT_FUNC_SPECIFIC (type);
1493 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1494 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1497 gdb_assert_not_reached ("bad type");
1501 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1502 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1503 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1504 TYPE doesn't include the offset (that's the value of the MEMBER
1505 itself), but does include the structure type into which it points
1508 When "smashing" the type, we preserve the objfile that the old type
1509 pointed to, since we aren't changing where the type is actually
1513 smash_to_memberptr_type (struct type *type, struct type *self_type,
1514 struct type *to_type)
1517 type->set_code (TYPE_CODE_MEMBERPTR);
1518 TYPE_TARGET_TYPE (type) = to_type;
1519 set_type_self_type (type, self_type);
1520 /* Assume that a data member pointer is the same size as a normal
1523 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1526 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1528 When "smashing" the type, we preserve the objfile that the old type
1529 pointed to, since we aren't changing where the type is actually
1533 smash_to_methodptr_type (struct type *type, struct type *to_type)
1536 type->set_code (TYPE_CODE_METHODPTR);
1537 TYPE_TARGET_TYPE (type) = to_type;
1538 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1539 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1542 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1543 METHOD just means `function that gets an extra "this" argument'.
1545 When "smashing" the type, we preserve the objfile that the old type
1546 pointed to, since we aren't changing where the type is actually
1550 smash_to_method_type (struct type *type, struct type *self_type,
1551 struct type *to_type, struct field *args,
1552 int nargs, int varargs)
1555 type->set_code (TYPE_CODE_METHOD);
1556 TYPE_TARGET_TYPE (type) = to_type;
1557 set_type_self_type (type, self_type);
1558 type->set_fields (args);
1559 type->set_num_fields (nargs);
1561 TYPE_VARARGS (type) = 1;
1562 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1565 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1566 Since GCC PR debug/47510 DWARF provides associated information to detect the
1567 anonymous class linkage name from its typedef.
1569 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1573 type_name_or_error (struct type *type)
1575 struct type *saved_type = type;
1577 struct objfile *objfile;
1579 type = check_typedef (type);
1581 name = type->name ();
1585 name = saved_type->name ();
1586 objfile = TYPE_OBJFILE (saved_type);
1587 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1588 name ? name : "<anonymous>",
1589 objfile ? objfile_name (objfile) : "<arch>");
1592 /* Lookup a typedef or primitive type named NAME, visible in lexical
1593 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1594 suitably defined. */
1597 lookup_typename (const struct language_defn *language,
1599 const struct block *block, int noerr)
1603 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1604 language->la_language, NULL).symbol;
1605 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1606 return SYMBOL_TYPE (sym);
1610 error (_("No type named %s."), name);
1614 lookup_unsigned_typename (const struct language_defn *language,
1617 char *uns = (char *) alloca (strlen (name) + 10);
1619 strcpy (uns, "unsigned ");
1620 strcpy (uns + 9, name);
1621 return lookup_typename (language, uns, NULL, 0);
1625 lookup_signed_typename (const struct language_defn *language, const char *name)
1628 char *uns = (char *) alloca (strlen (name) + 8);
1630 strcpy (uns, "signed ");
1631 strcpy (uns + 7, name);
1632 t = lookup_typename (language, uns, NULL, 1);
1633 /* If we don't find "signed FOO" just try again with plain "FOO". */
1636 return lookup_typename (language, name, NULL, 0);
1639 /* Lookup a structure type named "struct NAME",
1640 visible in lexical block BLOCK. */
1643 lookup_struct (const char *name, const struct block *block)
1647 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1651 error (_("No struct type named %s."), name);
1653 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1655 error (_("This context has class, union or enum %s, not a struct."),
1658 return (SYMBOL_TYPE (sym));
1661 /* Lookup a union type named "union NAME",
1662 visible in lexical block BLOCK. */
1665 lookup_union (const char *name, const struct block *block)
1670 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1673 error (_("No union type named %s."), name);
1675 t = SYMBOL_TYPE (sym);
1677 if (t->code () == TYPE_CODE_UNION)
1680 /* If we get here, it's not a union. */
1681 error (_("This context has class, struct or enum %s, not a union."),
1685 /* Lookup an enum type named "enum NAME",
1686 visible in lexical block BLOCK. */
1689 lookup_enum (const char *name, const struct block *block)
1693 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1696 error (_("No enum type named %s."), name);
1698 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1700 error (_("This context has class, struct or union %s, not an enum."),
1703 return (SYMBOL_TYPE (sym));
1706 /* Lookup a template type named "template NAME<TYPE>",
1707 visible in lexical block BLOCK. */
1710 lookup_template_type (const char *name, struct type *type,
1711 const struct block *block)
1714 char *nam = (char *)
1715 alloca (strlen (name) + strlen (type->name ()) + 4);
1719 strcat (nam, type->name ());
1720 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1722 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1726 error (_("No template type named %s."), name);
1728 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1730 error (_("This context has class, union or enum %s, not a struct."),
1733 return (SYMBOL_TYPE (sym));
1736 /* See gdbtypes.h. */
1739 lookup_struct_elt (struct type *type, const char *name, int noerr)
1745 type = check_typedef (type);
1746 if (type->code () != TYPE_CODE_PTR
1747 && type->code () != TYPE_CODE_REF)
1749 type = TYPE_TARGET_TYPE (type);
1752 if (type->code () != TYPE_CODE_STRUCT
1753 && type->code () != TYPE_CODE_UNION)
1755 std::string type_name = type_to_string (type);
1756 error (_("Type %s is not a structure or union type."),
1757 type_name.c_str ());
1760 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1762 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1764 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1766 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1768 else if (!t_field_name || *t_field_name == '\0')
1771 = lookup_struct_elt (type->field (i).type (), name, 1);
1772 if (elt.field != NULL)
1774 elt.offset += TYPE_FIELD_BITPOS (type, i);
1780 /* OK, it's not in this class. Recursively check the baseclasses. */
1781 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1783 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1784 if (elt.field != NULL)
1789 return {nullptr, 0};
1791 std::string type_name = type_to_string (type);
1792 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1795 /* See gdbtypes.h. */
1798 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1800 struct_elt elt = lookup_struct_elt (type, name, noerr);
1801 if (elt.field != NULL)
1802 return elt.field->type ();
1807 /* Store in *MAX the largest number representable by unsigned integer type
1811 get_unsigned_type_max (struct type *type, ULONGEST *max)
1815 type = check_typedef (type);
1816 gdb_assert (type->code () == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1817 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1819 /* Written this way to avoid overflow. */
1820 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1821 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1824 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1825 signed integer type TYPE. */
1828 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1832 type = check_typedef (type);
1833 gdb_assert (type->code () == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1834 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1836 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1837 *min = -((ULONGEST) 1 << (n - 1));
1838 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1841 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1842 cplus_stuff.vptr_fieldno.
1844 cplus_stuff is initialized to cplus_struct_default which does not
1845 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1846 designated initializers). We cope with that here. */
1849 internal_type_vptr_fieldno (struct type *type)
1851 type = check_typedef (type);
1852 gdb_assert (type->code () == TYPE_CODE_STRUCT
1853 || type->code () == TYPE_CODE_UNION);
1854 if (!HAVE_CPLUS_STRUCT (type))
1856 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1859 /* Set the value of cplus_stuff.vptr_fieldno. */
1862 set_type_vptr_fieldno (struct type *type, int fieldno)
1864 type = check_typedef (type);
1865 gdb_assert (type->code () == TYPE_CODE_STRUCT
1866 || type->code () == TYPE_CODE_UNION);
1867 if (!HAVE_CPLUS_STRUCT (type))
1868 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1869 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1872 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1873 cplus_stuff.vptr_basetype. */
1876 internal_type_vptr_basetype (struct type *type)
1878 type = check_typedef (type);
1879 gdb_assert (type->code () == TYPE_CODE_STRUCT
1880 || type->code () == TYPE_CODE_UNION);
1881 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1882 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1885 /* Set the value of cplus_stuff.vptr_basetype. */
1888 set_type_vptr_basetype (struct type *type, struct type *basetype)
1890 type = check_typedef (type);
1891 gdb_assert (type->code () == TYPE_CODE_STRUCT
1892 || type->code () == TYPE_CODE_UNION);
1893 if (!HAVE_CPLUS_STRUCT (type))
1894 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1895 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1898 /* Lookup the vptr basetype/fieldno values for TYPE.
1899 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1900 vptr_fieldno. Also, if found and basetype is from the same objfile,
1902 If not found, return -1 and ignore BASETYPEP.
1903 Callers should be aware that in some cases (for example,
1904 the type or one of its baseclasses is a stub type and we are
1905 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1906 this function will not be able to find the
1907 virtual function table pointer, and vptr_fieldno will remain -1 and
1908 vptr_basetype will remain NULL or incomplete. */
1911 get_vptr_fieldno (struct type *type, struct type **basetypep)
1913 type = check_typedef (type);
1915 if (TYPE_VPTR_FIELDNO (type) < 0)
1919 /* We must start at zero in case the first (and only) baseclass
1920 is virtual (and hence we cannot share the table pointer). */
1921 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1923 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1925 struct type *basetype;
1927 fieldno = get_vptr_fieldno (baseclass, &basetype);
1930 /* If the type comes from a different objfile we can't cache
1931 it, it may have a different lifetime. PR 2384 */
1932 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1934 set_type_vptr_fieldno (type, fieldno);
1935 set_type_vptr_basetype (type, basetype);
1938 *basetypep = basetype;
1949 *basetypep = TYPE_VPTR_BASETYPE (type);
1950 return TYPE_VPTR_FIELDNO (type);
1955 stub_noname_complaint (void)
1957 complaint (_("stub type has NULL name"));
1960 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1961 attached to it, and that property has a non-constant value. */
1964 array_type_has_dynamic_stride (struct type *type)
1966 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1968 return (prop != NULL && prop->kind () != PROP_CONST);
1971 /* Worker for is_dynamic_type. */
1974 is_dynamic_type_internal (struct type *type, int top_level)
1976 type = check_typedef (type);
1978 /* We only want to recognize references at the outermost level. */
1979 if (top_level && type->code () == TYPE_CODE_REF)
1980 type = check_typedef (TYPE_TARGET_TYPE (type));
1982 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1983 dynamic, even if the type itself is statically defined.
1984 From a user's point of view, this may appear counter-intuitive;
1985 but it makes sense in this context, because the point is to determine
1986 whether any part of the type needs to be resolved before it can
1988 if (TYPE_DATA_LOCATION (type) != NULL
1989 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1990 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1993 if (TYPE_ASSOCIATED_PROP (type))
1996 if (TYPE_ALLOCATED_PROP (type))
1999 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2000 if (prop != nullptr && prop->kind () != PROP_TYPE)
2003 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2006 switch (type->code ())
2008 case TYPE_CODE_RANGE:
2010 /* A range type is obviously dynamic if it has at least one
2011 dynamic bound. But also consider the range type to be
2012 dynamic when its subtype is dynamic, even if the bounds
2013 of the range type are static. It allows us to assume that
2014 the subtype of a static range type is also static. */
2015 return (!has_static_range (type->bounds ())
2016 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2019 case TYPE_CODE_STRING:
2020 /* Strings are very much like an array of characters, and can be
2021 treated as one here. */
2022 case TYPE_CODE_ARRAY:
2024 gdb_assert (type->num_fields () == 1);
2026 /* The array is dynamic if either the bounds are dynamic... */
2027 if (is_dynamic_type_internal (type->index_type (), 0))
2029 /* ... or the elements it contains have a dynamic contents... */
2030 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2032 /* ... or if it has a dynamic stride... */
2033 if (array_type_has_dynamic_stride (type))
2038 case TYPE_CODE_STRUCT:
2039 case TYPE_CODE_UNION:
2043 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2045 for (i = 0; i < type->num_fields (); ++i)
2047 /* Static fields can be ignored here. */
2048 if (field_is_static (&type->field (i)))
2050 /* If the field has dynamic type, then so does TYPE. */
2051 if (is_dynamic_type_internal (type->field (i).type (), 0))
2053 /* If the field is at a fixed offset, then it is not
2055 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2057 /* Do not consider C++ virtual base types to be dynamic
2058 due to the field's offset being dynamic; these are
2059 handled via other means. */
2060 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2071 /* See gdbtypes.h. */
2074 is_dynamic_type (struct type *type)
2076 return is_dynamic_type_internal (type, 1);
2079 static struct type *resolve_dynamic_type_internal
2080 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2082 /* Given a dynamic range type (dyn_range_type) and a stack of
2083 struct property_addr_info elements, return a static version
2086 static struct type *
2087 resolve_dynamic_range (struct type *dyn_range_type,
2088 struct property_addr_info *addr_stack)
2091 struct type *static_range_type, *static_target_type;
2092 struct dynamic_prop low_bound, high_bound, stride;
2094 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2096 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
2097 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2098 low_bound.set_const_val (value);
2100 low_bound.set_undefined ();
2102 prop = &dyn_range_type->bounds ()->high;
2103 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2105 high_bound.set_const_val (value);
2107 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
2108 high_bound.set_const_val
2109 (low_bound.const_val () + high_bound.const_val () - 1);
2112 high_bound.set_undefined ();
2114 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2115 prop = &dyn_range_type->bounds ()->stride;
2116 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2118 stride.set_const_val (value);
2120 /* If we have a bit stride that is not an exact number of bytes then
2121 I really don't think this is going to work with current GDB, the
2122 array indexing code in GDB seems to be pretty heavily tied to byte
2123 offsets right now. Assuming 8 bits in a byte. */
2124 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2125 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2126 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2127 error (_("bit strides that are not a multiple of the byte size "
2128 "are currently not supported"));
2132 stride.set_undefined ();
2133 byte_stride_p = true;
2137 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2139 LONGEST bias = dyn_range_type->bounds ()->bias;
2140 static_range_type = create_range_type_with_stride
2141 (copy_type (dyn_range_type), static_target_type,
2142 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2143 static_range_type->bounds ()->flag_bound_evaluated = 1;
2144 return static_range_type;
2147 /* Resolves dynamic bound values of an array or string type TYPE to static
2148 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2149 needed during the dynamic resolution. */
2151 static struct type *
2152 resolve_dynamic_array_or_string (struct type *type,
2153 struct property_addr_info *addr_stack)
2156 struct type *elt_type;
2157 struct type *range_type;
2158 struct type *ary_dim;
2159 struct dynamic_prop *prop;
2160 unsigned int bit_stride = 0;
2162 /* For dynamic type resolution strings can be treated like arrays of
2164 gdb_assert (type->code () == TYPE_CODE_ARRAY
2165 || type->code () == TYPE_CODE_STRING);
2167 type = copy_type (type);
2170 range_type = check_typedef (elt_type->index_type ());
2171 range_type = resolve_dynamic_range (range_type, addr_stack);
2173 /* Resolve allocated/associated here before creating a new array type, which
2174 will update the length of the array accordingly. */
2175 prop = TYPE_ALLOCATED_PROP (type);
2176 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2177 prop->set_const_val (value);
2179 prop = TYPE_ASSOCIATED_PROP (type);
2180 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2181 prop->set_const_val (value);
2183 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2185 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2186 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2188 elt_type = TYPE_TARGET_TYPE (type);
2190 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2193 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2195 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2196 bit_stride = (unsigned int) (value * 8);
2200 /* Could be a bug in our code, but it could also happen
2201 if the DWARF info is not correct. Issue a warning,
2202 and assume no byte/bit stride (leave bit_stride = 0). */
2203 warning (_("cannot determine array stride for type %s"),
2204 type->name () ? type->name () : "<no name>");
2208 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2210 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2214 /* Resolve dynamic bounds of members of the union TYPE to static
2215 bounds. ADDR_STACK is a stack of struct property_addr_info
2216 to be used if needed during the dynamic resolution. */
2218 static struct type *
2219 resolve_dynamic_union (struct type *type,
2220 struct property_addr_info *addr_stack)
2222 struct type *resolved_type;
2224 unsigned int max_len = 0;
2226 gdb_assert (type->code () == TYPE_CODE_UNION);
2228 resolved_type = copy_type (type);
2229 resolved_type->set_fields
2231 TYPE_ALLOC (resolved_type,
2232 resolved_type->num_fields () * sizeof (struct field)));
2233 memcpy (resolved_type->fields (),
2235 resolved_type->num_fields () * sizeof (struct field));
2236 for (i = 0; i < resolved_type->num_fields (); ++i)
2240 if (field_is_static (&type->field (i)))
2243 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2245 resolved_type->field (i).set_type (t);
2247 struct type *real_type = check_typedef (t);
2248 if (TYPE_LENGTH (real_type) > max_len)
2249 max_len = TYPE_LENGTH (real_type);
2252 TYPE_LENGTH (resolved_type) = max_len;
2253 return resolved_type;
2256 /* See gdbtypes.h. */
2259 variant::matches (ULONGEST value, bool is_unsigned) const
2261 for (const discriminant_range &range : discriminants)
2262 if (range.contains (value, is_unsigned))
2268 compute_variant_fields_inner (struct type *type,
2269 struct property_addr_info *addr_stack,
2270 const variant_part &part,
2271 std::vector<bool> &flags);
2273 /* A helper function to determine which variant fields will be active.
2274 This handles both the variant's direct fields, and any variant
2275 parts embedded in this variant. TYPE is the type we're examining.
2276 ADDR_STACK holds information about the concrete object. VARIANT is
2277 the current variant to be handled. FLAGS is where the results are
2278 stored -- this function sets the Nth element in FLAGS if the
2279 corresponding field is enabled. ENABLED is whether this variant is
2283 compute_variant_fields_recurse (struct type *type,
2284 struct property_addr_info *addr_stack,
2285 const variant &variant,
2286 std::vector<bool> &flags,
2289 for (int field = variant.first_field; field < variant.last_field; ++field)
2290 flags[field] = enabled;
2292 for (const variant_part &new_part : variant.parts)
2295 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2298 for (const auto &sub_variant : new_part.variants)
2299 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2305 /* A helper function to determine which variant fields will be active.
2306 This evaluates the discriminant, decides which variant (if any) is
2307 active, and then updates FLAGS to reflect which fields should be
2308 available. TYPE is the type we're examining. ADDR_STACK holds
2309 information about the concrete object. VARIANT is the current
2310 variant to be handled. FLAGS is where the results are stored --
2311 this function sets the Nth element in FLAGS if the corresponding
2312 field is enabled. */
2315 compute_variant_fields_inner (struct type *type,
2316 struct property_addr_info *addr_stack,
2317 const variant_part &part,
2318 std::vector<bool> &flags)
2320 /* Evaluate the discriminant. */
2321 gdb::optional<ULONGEST> discr_value;
2322 if (part.discriminant_index != -1)
2324 int idx = part.discriminant_index;
2326 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2327 error (_("Cannot determine struct field location"
2328 " (invalid location kind)"));
2330 if (addr_stack->valaddr.data () != NULL)
2331 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2335 CORE_ADDR addr = (addr_stack->addr
2336 + (TYPE_FIELD_BITPOS (type, idx)
2337 / TARGET_CHAR_BIT));
2339 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2340 LONGEST size = bitsize / 8;
2342 size = TYPE_LENGTH (type->field (idx).type ());
2344 gdb_byte bits[sizeof (ULONGEST)];
2345 read_memory (addr, bits, size);
2347 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2350 discr_value = unpack_bits_as_long (type->field (idx).type (),
2351 bits, bitpos, bitsize);
2355 /* Go through each variant and see which applies. */
2356 const variant *default_variant = nullptr;
2357 const variant *applied_variant = nullptr;
2358 for (const auto &variant : part.variants)
2360 if (variant.is_default ())
2361 default_variant = &variant;
2362 else if (discr_value.has_value ()
2363 && variant.matches (*discr_value, part.is_unsigned))
2365 applied_variant = &variant;
2369 if (applied_variant == nullptr)
2370 applied_variant = default_variant;
2372 for (const auto &variant : part.variants)
2373 compute_variant_fields_recurse (type, addr_stack, variant,
2374 flags, applied_variant == &variant);
2377 /* Determine which variant fields are available in TYPE. The enabled
2378 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2379 about the concrete object. PARTS describes the top-level variant
2380 parts for this type. */
2383 compute_variant_fields (struct type *type,
2384 struct type *resolved_type,
2385 struct property_addr_info *addr_stack,
2386 const gdb::array_view<variant_part> &parts)
2388 /* Assume all fields are included by default. */
2389 std::vector<bool> flags (resolved_type->num_fields (), true);
2391 /* Now disable fields based on the variants that control them. */
2392 for (const auto &part : parts)
2393 compute_variant_fields_inner (type, addr_stack, part, flags);
2395 resolved_type->set_num_fields
2396 (std::count (flags.begin (), flags.end (), true));
2397 resolved_type->set_fields
2399 TYPE_ALLOC (resolved_type,
2400 resolved_type->num_fields () * sizeof (struct field)));
2403 for (int i = 0; i < type->num_fields (); ++i)
2408 resolved_type->field (out) = type->field (i);
2413 /* Resolve dynamic bounds of members of the struct TYPE to static
2414 bounds. ADDR_STACK is a stack of struct property_addr_info to
2415 be used if needed during the dynamic resolution. */
2417 static struct type *
2418 resolve_dynamic_struct (struct type *type,
2419 struct property_addr_info *addr_stack)
2421 struct type *resolved_type;
2423 unsigned resolved_type_bit_length = 0;
2425 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2426 gdb_assert (type->num_fields () > 0);
2428 resolved_type = copy_type (type);
2430 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2431 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
2433 compute_variant_fields (type, resolved_type, addr_stack,
2434 *variant_prop->variant_parts ());
2435 /* We want to leave the property attached, so that the Rust code
2436 can tell whether the type was originally an enum. */
2437 variant_prop->set_original_type (type);
2441 resolved_type->set_fields
2443 TYPE_ALLOC (resolved_type,
2444 resolved_type->num_fields () * sizeof (struct field)));
2445 memcpy (resolved_type->fields (),
2447 resolved_type->num_fields () * sizeof (struct field));
2450 for (i = 0; i < resolved_type->num_fields (); ++i)
2452 unsigned new_bit_length;
2453 struct property_addr_info pinfo;
2455 if (field_is_static (&resolved_type->field (i)))
2458 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2460 struct dwarf2_property_baton baton;
2462 = lookup_pointer_type (resolved_type->field (i).type ());
2463 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2465 struct dynamic_prop prop;
2466 prop.set_locexpr (&baton);
2469 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2471 SET_FIELD_BITPOS (resolved_type->field (i),
2472 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2475 /* As we know this field is not a static field, the field's
2476 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2477 this is the case, but only trigger a simple error rather
2478 than an internal error if that fails. While failing
2479 that verification indicates a bug in our code, the error
2480 is not severe enough to suggest to the user he stops
2481 his debugging session because of it. */
2482 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2483 error (_("Cannot determine struct field location"
2484 " (invalid location kind)"));
2486 pinfo.type = check_typedef (resolved_type->field (i).type ());
2487 pinfo.valaddr = addr_stack->valaddr;
2490 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2491 pinfo.next = addr_stack;
2493 resolved_type->field (i).set_type
2494 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2496 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2497 == FIELD_LOC_KIND_BITPOS);
2499 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2500 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2501 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2504 struct type *real_type
2505 = check_typedef (resolved_type->field (i).type ());
2507 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2510 /* Normally, we would use the position and size of the last field
2511 to determine the size of the enclosing structure. But GCC seems
2512 to be encoding the position of some fields incorrectly when
2513 the struct contains a dynamic field that is not placed last.
2514 So we compute the struct size based on the field that has
2515 the highest position + size - probably the best we can do. */
2516 if (new_bit_length > resolved_type_bit_length)
2517 resolved_type_bit_length = new_bit_length;
2520 /* The length of a type won't change for fortran, but it does for C and Ada.
2521 For fortran the size of dynamic fields might change over time but not the
2522 type length of the structure. If we adapt it, we run into problems
2523 when calculating the element offset for arrays of structs. */
2524 if (current_language->la_language != language_fortran)
2525 TYPE_LENGTH (resolved_type)
2526 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2528 /* The Ada language uses this field as a cache for static fixed types: reset
2529 it as RESOLVED_TYPE must have its own static fixed type. */
2530 TYPE_TARGET_TYPE (resolved_type) = NULL;
2532 return resolved_type;
2535 /* Worker for resolved_dynamic_type. */
2537 static struct type *
2538 resolve_dynamic_type_internal (struct type *type,
2539 struct property_addr_info *addr_stack,
2542 struct type *real_type = check_typedef (type);
2543 struct type *resolved_type = nullptr;
2544 struct dynamic_prop *prop;
2547 if (!is_dynamic_type_internal (real_type, top_level))
2550 gdb::optional<CORE_ADDR> type_length;
2551 prop = TYPE_DYNAMIC_LENGTH (type);
2553 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2554 type_length = value;
2556 if (type->code () == TYPE_CODE_TYPEDEF)
2558 resolved_type = copy_type (type);
2559 TYPE_TARGET_TYPE (resolved_type)
2560 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2565 /* Before trying to resolve TYPE, make sure it is not a stub. */
2568 switch (type->code ())
2572 struct property_addr_info pinfo;
2574 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2576 if (addr_stack->valaddr.data () != NULL)
2577 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2580 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2581 pinfo.next = addr_stack;
2583 resolved_type = copy_type (type);
2584 TYPE_TARGET_TYPE (resolved_type)
2585 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2590 case TYPE_CODE_STRING:
2591 /* Strings are very much like an array of characters, and can be
2592 treated as one here. */
2593 case TYPE_CODE_ARRAY:
2594 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2597 case TYPE_CODE_RANGE:
2598 resolved_type = resolve_dynamic_range (type, addr_stack);
2601 case TYPE_CODE_UNION:
2602 resolved_type = resolve_dynamic_union (type, addr_stack);
2605 case TYPE_CODE_STRUCT:
2606 resolved_type = resolve_dynamic_struct (type, addr_stack);
2611 if (resolved_type == nullptr)
2614 if (type_length.has_value ())
2616 TYPE_LENGTH (resolved_type) = *type_length;
2617 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2620 /* Resolve data_location attribute. */
2621 prop = TYPE_DATA_LOCATION (resolved_type);
2623 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2624 prop->set_const_val (value);
2626 return resolved_type;
2629 /* See gdbtypes.h */
2632 resolve_dynamic_type (struct type *type,
2633 gdb::array_view<const gdb_byte> valaddr,
2636 struct property_addr_info pinfo
2637 = {check_typedef (type), valaddr, addr, NULL};
2639 return resolve_dynamic_type_internal (type, &pinfo, 1);
2642 /* See gdbtypes.h */
2645 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2647 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2649 while (node != NULL)
2651 if (node->prop_kind == prop_kind)
2658 /* See gdbtypes.h */
2661 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2663 struct dynamic_prop_list *temp;
2665 gdb_assert (TYPE_OBJFILE_OWNED (this));
2667 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2668 struct dynamic_prop_list);
2669 temp->prop_kind = prop_kind;
2671 temp->next = this->main_type->dyn_prop_list;
2673 this->main_type->dyn_prop_list = temp;
2676 /* See gdbtypes.h. */
2679 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2681 struct dynamic_prop_list *prev_node, *curr_node;
2683 curr_node = this->main_type->dyn_prop_list;
2686 while (NULL != curr_node)
2688 if (curr_node->prop_kind == kind)
2690 /* Update the linked list but don't free anything.
2691 The property was allocated on objstack and it is not known
2692 if we are on top of it. Nevertheless, everything is released
2693 when the complete objstack is freed. */
2694 if (NULL == prev_node)
2695 this->main_type->dyn_prop_list = curr_node->next;
2697 prev_node->next = curr_node->next;
2702 prev_node = curr_node;
2703 curr_node = curr_node->next;
2707 /* Find the real type of TYPE. This function returns the real type,
2708 after removing all layers of typedefs, and completing opaque or stub
2709 types. Completion changes the TYPE argument, but stripping of
2712 Instance flags (e.g. const/volatile) are preserved as typedefs are
2713 stripped. If necessary a new qualified form of the underlying type
2716 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2717 not been computed and we're either in the middle of reading symbols, or
2718 there was no name for the typedef in the debug info.
2720 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2721 QUITs in the symbol reading code can also throw.
2722 Thus this function can throw an exception.
2724 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2727 If this is a stubbed struct (i.e. declared as struct foo *), see if
2728 we can find a full definition in some other file. If so, copy this
2729 definition, so we can use it in future. There used to be a comment
2730 (but not any code) that if we don't find a full definition, we'd
2731 set a flag so we don't spend time in the future checking the same
2732 type. That would be a mistake, though--we might load in more
2733 symbols which contain a full definition for the type. */
2736 check_typedef (struct type *type)
2738 struct type *orig_type = type;
2739 /* While we're removing typedefs, we don't want to lose qualifiers.
2740 E.g., const/volatile. */
2741 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2745 while (type->code () == TYPE_CODE_TYPEDEF)
2747 if (!TYPE_TARGET_TYPE (type))
2752 /* It is dangerous to call lookup_symbol if we are currently
2753 reading a symtab. Infinite recursion is one danger. */
2754 if (currently_reading_symtab)
2755 return make_qualified_type (type, instance_flags, NULL);
2757 name = type->name ();
2758 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2759 VAR_DOMAIN as appropriate? */
2762 stub_noname_complaint ();
2763 return make_qualified_type (type, instance_flags, NULL);
2765 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2767 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2768 else /* TYPE_CODE_UNDEF */
2769 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2771 type = TYPE_TARGET_TYPE (type);
2773 /* Preserve the instance flags as we traverse down the typedef chain.
2775 Handling address spaces/classes is nasty, what do we do if there's a
2777 E.g., what if an outer typedef marks the type as class_1 and an inner
2778 typedef marks the type as class_2?
2779 This is the wrong place to do such error checking. We leave it to
2780 the code that created the typedef in the first place to flag the
2781 error. We just pick the outer address space (akin to letting the
2782 outer cast in a chain of casting win), instead of assuming
2783 "it can't happen". */
2785 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2786 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2787 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2788 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2790 /* Treat code vs data spaces and address classes separately. */
2791 if ((instance_flags & ALL_SPACES) != 0)
2792 new_instance_flags &= ~ALL_SPACES;
2793 if ((instance_flags & ALL_CLASSES) != 0)
2794 new_instance_flags &= ~ALL_CLASSES;
2796 instance_flags |= new_instance_flags;
2800 /* If this is a struct/class/union with no fields, then check
2801 whether a full definition exists somewhere else. This is for
2802 systems where a type definition with no fields is issued for such
2803 types, instead of identifying them as stub types in the first
2806 if (TYPE_IS_OPAQUE (type)
2807 && opaque_type_resolution
2808 && !currently_reading_symtab)
2810 const char *name = type->name ();
2811 struct type *newtype;
2815 stub_noname_complaint ();
2816 return make_qualified_type (type, instance_flags, NULL);
2818 newtype = lookup_transparent_type (name);
2822 /* If the resolved type and the stub are in the same
2823 objfile, then replace the stub type with the real deal.
2824 But if they're in separate objfiles, leave the stub
2825 alone; we'll just look up the transparent type every time
2826 we call check_typedef. We can't create pointers between
2827 types allocated to different objfiles, since they may
2828 have different lifetimes. Trying to copy NEWTYPE over to
2829 TYPE's objfile is pointless, too, since you'll have to
2830 move over any other types NEWTYPE refers to, which could
2831 be an unbounded amount of stuff. */
2832 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2833 type = make_qualified_type (newtype,
2834 TYPE_INSTANCE_FLAGS (type),
2840 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2842 else if (TYPE_STUB (type) && !currently_reading_symtab)
2844 const char *name = type->name ();
2845 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2851 stub_noname_complaint ();
2852 return make_qualified_type (type, instance_flags, NULL);
2854 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2857 /* Same as above for opaque types, we can replace the stub
2858 with the complete type only if they are in the same
2860 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2861 type = make_qualified_type (SYMBOL_TYPE (sym),
2862 TYPE_INSTANCE_FLAGS (type),
2865 type = SYMBOL_TYPE (sym);
2869 if (TYPE_TARGET_STUB (type))
2871 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2873 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2875 /* Nothing we can do. */
2877 else if (type->code () == TYPE_CODE_RANGE)
2879 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2880 TYPE_TARGET_STUB (type) = 0;
2882 else if (type->code () == TYPE_CODE_ARRAY
2883 && update_static_array_size (type))
2884 TYPE_TARGET_STUB (type) = 0;
2887 type = make_qualified_type (type, instance_flags, NULL);
2889 /* Cache TYPE_LENGTH for future use. */
2890 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2895 /* Parse a type expression in the string [P..P+LENGTH). If an error
2896 occurs, silently return a void type. */
2898 static struct type *
2899 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2901 struct ui_file *saved_gdb_stderr;
2902 struct type *type = NULL; /* Initialize to keep gcc happy. */
2904 /* Suppress error messages. */
2905 saved_gdb_stderr = gdb_stderr;
2906 gdb_stderr = &null_stream;
2908 /* Call parse_and_eval_type() without fear of longjmp()s. */
2911 type = parse_and_eval_type (p, length);
2913 catch (const gdb_exception_error &except)
2915 type = builtin_type (gdbarch)->builtin_void;
2918 /* Stop suppressing error messages. */
2919 gdb_stderr = saved_gdb_stderr;
2924 /* Ugly hack to convert method stubs into method types.
2926 He ain't kiddin'. This demangles the name of the method into a
2927 string including argument types, parses out each argument type,
2928 generates a string casting a zero to that type, evaluates the
2929 string, and stuffs the resulting type into an argtype vector!!!
2930 Then it knows the type of the whole function (including argument
2931 types for overloading), which info used to be in the stab's but was
2932 removed to hack back the space required for them. */
2935 check_stub_method (struct type *type, int method_id, int signature_id)
2937 struct gdbarch *gdbarch = get_type_arch (type);
2939 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2940 char *demangled_name = gdb_demangle (mangled_name,
2941 DMGL_PARAMS | DMGL_ANSI);
2942 char *argtypetext, *p;
2943 int depth = 0, argcount = 1;
2944 struct field *argtypes;
2947 /* Make sure we got back a function string that we can use. */
2949 p = strchr (demangled_name, '(');
2953 if (demangled_name == NULL || p == NULL)
2954 error (_("Internal: Cannot demangle mangled name `%s'."),
2957 /* Now, read in the parameters that define this type. */
2962 if (*p == '(' || *p == '<')
2966 else if (*p == ')' || *p == '>')
2970 else if (*p == ',' && depth == 0)
2978 /* If we read one argument and it was ``void'', don't count it. */
2979 if (startswith (argtypetext, "(void)"))
2982 /* We need one extra slot, for the THIS pointer. */
2984 argtypes = (struct field *)
2985 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2988 /* Add THIS pointer for non-static methods. */
2989 f = TYPE_FN_FIELDLIST1 (type, method_id);
2990 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2994 argtypes[0].set_type (lookup_pointer_type (type));
2998 if (*p != ')') /* () means no args, skip while. */
3003 if (depth <= 0 && (*p == ',' || *p == ')'))
3005 /* Avoid parsing of ellipsis, they will be handled below.
3006 Also avoid ``void'' as above. */
3007 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3008 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3010 argtypes[argcount].set_type
3011 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3014 argtypetext = p + 1;
3017 if (*p == '(' || *p == '<')
3021 else if (*p == ')' || *p == '>')
3030 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3032 /* Now update the old "stub" type into a real type. */
3033 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3034 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3035 We want a method (TYPE_CODE_METHOD). */
3036 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3037 argtypes, argcount, p[-2] == '.');
3038 TYPE_STUB (mtype) = 0;
3039 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3041 xfree (demangled_name);
3044 /* This is the external interface to check_stub_method, above. This
3045 function unstubs all of the signatures for TYPE's METHOD_ID method
3046 name. After calling this function TYPE_FN_FIELD_STUB will be
3047 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3050 This function unfortunately can not die until stabs do. */
3053 check_stub_method_group (struct type *type, int method_id)
3055 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3056 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3058 for (int j = 0; j < len; j++)
3060 if (TYPE_FN_FIELD_STUB (f, j))
3061 check_stub_method (type, method_id, j);
3065 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3066 const struct cplus_struct_type cplus_struct_default = { };
3069 allocate_cplus_struct_type (struct type *type)
3071 if (HAVE_CPLUS_STRUCT (type))
3072 /* Structure was already allocated. Nothing more to do. */
3075 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3076 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3077 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3078 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3079 set_type_vptr_fieldno (type, -1);
3082 const struct gnat_aux_type gnat_aux_default =
3085 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3086 and allocate the associated gnat-specific data. The gnat-specific
3087 data is also initialized to gnat_aux_default. */
3090 allocate_gnat_aux_type (struct type *type)
3092 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3093 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3094 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3095 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3098 /* Helper function to initialize a newly allocated type. Set type code
3099 to CODE and initialize the type-specific fields accordingly. */
3102 set_type_code (struct type *type, enum type_code code)
3104 type->set_code (code);
3108 case TYPE_CODE_STRUCT:
3109 case TYPE_CODE_UNION:
3110 case TYPE_CODE_NAMESPACE:
3111 INIT_CPLUS_SPECIFIC (type);
3114 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3116 case TYPE_CODE_FUNC:
3117 INIT_FUNC_SPECIFIC (type);
3122 /* Helper function to verify floating-point format and size.
3123 BIT is the type size in bits; if BIT equals -1, the size is
3124 determined by the floatformat. Returns size to be used. */
3127 verify_floatformat (int bit, const struct floatformat *floatformat)
3129 gdb_assert (floatformat != NULL);
3132 bit = floatformat->totalsize;
3134 gdb_assert (bit >= 0);
3135 gdb_assert (bit >= floatformat->totalsize);
3140 /* Return the floating-point format for a floating-point variable of
3143 const struct floatformat *
3144 floatformat_from_type (const struct type *type)
3146 gdb_assert (type->code () == TYPE_CODE_FLT);
3147 gdb_assert (TYPE_FLOATFORMAT (type));
3148 return TYPE_FLOATFORMAT (type);
3151 /* Helper function to initialize the standard scalar types.
3153 If NAME is non-NULL, then it is used to initialize the type name.
3154 Note that NAME is not copied; it is required to have a lifetime at
3155 least as long as OBJFILE. */
3158 init_type (struct objfile *objfile, enum type_code code, int bit,
3163 type = alloc_type (objfile);
3164 set_type_code (type, code);
3165 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3166 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3167 type->set_name (name);
3172 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3173 to use with variables that have no debug info. NAME is the type
3176 static struct type *
3177 init_nodebug_var_type (struct objfile *objfile, const char *name)
3179 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3182 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3183 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3184 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3187 init_integer_type (struct objfile *objfile,
3188 int bit, int unsigned_p, const char *name)
3192 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3194 TYPE_UNSIGNED (t) = 1;
3199 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3200 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3201 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3204 init_character_type (struct objfile *objfile,
3205 int bit, int unsigned_p, const char *name)
3209 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3211 TYPE_UNSIGNED (t) = 1;
3216 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3217 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3218 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3221 init_boolean_type (struct objfile *objfile,
3222 int bit, int unsigned_p, const char *name)
3226 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3228 TYPE_UNSIGNED (t) = 1;
3233 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3234 BIT is the type size in bits; if BIT equals -1, the size is
3235 determined by the floatformat. NAME is the type name. Set the
3236 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3237 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3238 order of the objfile's architecture is used. */
3241 init_float_type (struct objfile *objfile,
3242 int bit, const char *name,
3243 const struct floatformat **floatformats,
3244 enum bfd_endian byte_order)
3246 if (byte_order == BFD_ENDIAN_UNKNOWN)
3248 struct gdbarch *gdbarch = objfile->arch ();
3249 byte_order = gdbarch_byte_order (gdbarch);
3251 const struct floatformat *fmt = floatformats[byte_order];
3254 bit = verify_floatformat (bit, fmt);
3255 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3256 TYPE_FLOATFORMAT (t) = fmt;
3261 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3262 BIT is the type size in bits. NAME is the type name. */
3265 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3269 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3273 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3274 name. TARGET_TYPE is the component type. */
3277 init_complex_type (const char *name, struct type *target_type)
3281 gdb_assert (target_type->code () == TYPE_CODE_INT
3282 || target_type->code () == TYPE_CODE_FLT);
3284 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3286 if (name == nullptr)
3289 = (char *) TYPE_ALLOC (target_type,
3290 strlen (target_type->name ())
3291 + strlen ("_Complex ") + 1);
3292 strcpy (new_name, "_Complex ");
3293 strcat (new_name, target_type->name ());
3297 t = alloc_type_copy (target_type);
3298 set_type_code (t, TYPE_CODE_COMPLEX);
3299 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3302 TYPE_TARGET_TYPE (t) = target_type;
3303 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3306 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3309 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3310 BIT is the pointer type size in bits. NAME is the type name.
3311 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3312 TYPE_UNSIGNED flag. */
3315 init_pointer_type (struct objfile *objfile,
3316 int bit, const char *name, struct type *target_type)
3320 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3321 TYPE_TARGET_TYPE (t) = target_type;
3322 TYPE_UNSIGNED (t) = 1;
3326 /* See gdbtypes.h. */
3329 type_raw_align (struct type *type)
3331 if (type->align_log2 != 0)
3332 return 1 << (type->align_log2 - 1);
3336 /* See gdbtypes.h. */
3339 type_align (struct type *type)
3341 /* Check alignment provided in the debug information. */
3342 unsigned raw_align = type_raw_align (type);
3346 /* Allow the architecture to provide an alignment. */
3347 struct gdbarch *arch = get_type_arch (type);
3348 ULONGEST align = gdbarch_type_align (arch, type);
3352 switch (type->code ())
3355 case TYPE_CODE_FUNC:
3356 case TYPE_CODE_FLAGS:
3358 case TYPE_CODE_RANGE:
3360 case TYPE_CODE_ENUM:
3362 case TYPE_CODE_RVALUE_REF:
3363 case TYPE_CODE_CHAR:
3364 case TYPE_CODE_BOOL:
3365 case TYPE_CODE_DECFLOAT:
3366 case TYPE_CODE_METHODPTR:
3367 case TYPE_CODE_MEMBERPTR:
3368 align = type_length_units (check_typedef (type));
3371 case TYPE_CODE_ARRAY:
3372 case TYPE_CODE_COMPLEX:
3373 case TYPE_CODE_TYPEDEF:
3374 align = type_align (TYPE_TARGET_TYPE (type));
3377 case TYPE_CODE_STRUCT:
3378 case TYPE_CODE_UNION:
3380 int number_of_non_static_fields = 0;
3381 for (unsigned i = 0; i < type->num_fields (); ++i)
3383 if (!field_is_static (&type->field (i)))
3385 number_of_non_static_fields++;
3386 ULONGEST f_align = type_align (type->field (i).type ());
3389 /* Don't pretend we know something we don't. */
3393 if (f_align > align)
3397 /* A struct with no fields, or with only static fields has an
3399 if (number_of_non_static_fields == 0)
3405 case TYPE_CODE_STRING:
3406 /* Not sure what to do here, and these can't appear in C or C++
3410 case TYPE_CODE_VOID:
3414 case TYPE_CODE_ERROR:
3415 case TYPE_CODE_METHOD:
3420 if ((align & (align - 1)) != 0)
3422 /* Not a power of 2, so pass. */
3429 /* See gdbtypes.h. */
3432 set_type_align (struct type *type, ULONGEST align)
3434 /* Must be a power of 2. Zero is ok. */
3435 gdb_assert ((align & (align - 1)) == 0);
3437 unsigned result = 0;
3444 if (result >= (1 << TYPE_ALIGN_BITS))
3447 type->align_log2 = result;
3452 /* Queries on types. */
3455 can_dereference (struct type *t)
3457 /* FIXME: Should we return true for references as well as
3459 t = check_typedef (t);
3462 && t->code () == TYPE_CODE_PTR
3463 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3467 is_integral_type (struct type *t)
3469 t = check_typedef (t);
3472 && ((t->code () == TYPE_CODE_INT)
3473 || (t->code () == TYPE_CODE_ENUM)
3474 || (t->code () == TYPE_CODE_FLAGS)
3475 || (t->code () == TYPE_CODE_CHAR)
3476 || (t->code () == TYPE_CODE_RANGE)
3477 || (t->code () == TYPE_CODE_BOOL)));
3481 is_floating_type (struct type *t)
3483 t = check_typedef (t);
3486 && ((t->code () == TYPE_CODE_FLT)
3487 || (t->code () == TYPE_CODE_DECFLOAT)));
3490 /* Return true if TYPE is scalar. */
3493 is_scalar_type (struct type *type)
3495 type = check_typedef (type);
3497 switch (type->code ())
3499 case TYPE_CODE_ARRAY:
3500 case TYPE_CODE_STRUCT:
3501 case TYPE_CODE_UNION:
3503 case TYPE_CODE_STRING:
3510 /* Return true if T is scalar, or a composite type which in practice has
3511 the memory layout of a scalar type. E.g., an array or struct with only
3512 one scalar element inside it, or a union with only scalar elements. */
3515 is_scalar_type_recursive (struct type *t)
3517 t = check_typedef (t);
3519 if (is_scalar_type (t))
3521 /* Are we dealing with an array or string of known dimensions? */
3522 else if ((t->code () == TYPE_CODE_ARRAY
3523 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3524 && t->index_type ()->code () == TYPE_CODE_RANGE)
3526 LONGEST low_bound, high_bound;
3527 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3529 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
3531 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3533 /* Are we dealing with a struct with one element? */
3534 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3535 return is_scalar_type_recursive (t->field (0).type ());
3536 else if (t->code () == TYPE_CODE_UNION)
3538 int i, n = t->num_fields ();
3540 /* If all elements of the union are scalar, then the union is scalar. */
3541 for (i = 0; i < n; i++)
3542 if (!is_scalar_type_recursive (t->field (i).type ()))
3551 /* Return true is T is a class or a union. False otherwise. */
3554 class_or_union_p (const struct type *t)
3556 return (t->code () == TYPE_CODE_STRUCT
3557 || t->code () == TYPE_CODE_UNION);
3560 /* A helper function which returns true if types A and B represent the
3561 "same" class type. This is true if the types have the same main
3562 type, or the same name. */
3565 class_types_same_p (const struct type *a, const struct type *b)
3567 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3568 || (a->name () && b->name ()
3569 && !strcmp (a->name (), b->name ())));
3572 /* If BASE is an ancestor of DCLASS return the distance between them.
3573 otherwise return -1;
3577 class B: public A {};
3578 class C: public B {};
3581 distance_to_ancestor (A, A, 0) = 0
3582 distance_to_ancestor (A, B, 0) = 1
3583 distance_to_ancestor (A, C, 0) = 2
3584 distance_to_ancestor (A, D, 0) = 3
3586 If PUBLIC is 1 then only public ancestors are considered,
3587 and the function returns the distance only if BASE is a public ancestor
3591 distance_to_ancestor (A, D, 1) = -1. */
3594 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3599 base = check_typedef (base);
3600 dclass = check_typedef (dclass);
3602 if (class_types_same_p (base, dclass))
3605 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3607 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3610 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3618 /* Check whether BASE is an ancestor or base class or DCLASS
3619 Return 1 if so, and 0 if not.
3620 Note: If BASE and DCLASS are of the same type, this function
3621 will return 1. So for some class A, is_ancestor (A, A) will
3625 is_ancestor (struct type *base, struct type *dclass)
3627 return distance_to_ancestor (base, dclass, 0) >= 0;
3630 /* Like is_ancestor, but only returns true when BASE is a public
3631 ancestor of DCLASS. */
3634 is_public_ancestor (struct type *base, struct type *dclass)
3636 return distance_to_ancestor (base, dclass, 1) >= 0;
3639 /* A helper function for is_unique_ancestor. */
3642 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3644 const gdb_byte *valaddr, int embedded_offset,
3645 CORE_ADDR address, struct value *val)
3649 base = check_typedef (base);
3650 dclass = check_typedef (dclass);
3652 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3657 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3659 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3662 if (class_types_same_p (base, iter))
3664 /* If this is the first subclass, set *OFFSET and set count
3665 to 1. Otherwise, if this is at the same offset as
3666 previous instances, do nothing. Otherwise, increment
3670 *offset = this_offset;
3673 else if (this_offset == *offset)
3681 count += is_unique_ancestor_worker (base, iter, offset,
3683 embedded_offset + this_offset,
3690 /* Like is_ancestor, but only returns true if BASE is a unique base
3691 class of the type of VAL. */
3694 is_unique_ancestor (struct type *base, struct value *val)
3698 return is_unique_ancestor_worker (base, value_type (val), &offset,
3699 value_contents_for_printing (val),
3700 value_embedded_offset (val),
3701 value_address (val), val) == 1;
3704 /* See gdbtypes.h. */
3707 type_byte_order (const struct type *type)
3709 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3710 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3712 if (byteorder == BFD_ENDIAN_BIG)
3713 return BFD_ENDIAN_LITTLE;
3716 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3717 return BFD_ENDIAN_BIG;
3725 /* Overload resolution. */
3727 /* Return the sum of the rank of A with the rank of B. */
3730 sum_ranks (struct rank a, struct rank b)
3733 c.rank = a.rank + b.rank;
3734 c.subrank = a.subrank + b.subrank;
3738 /* Compare rank A and B and return:
3740 1 if a is better than b
3741 -1 if b is better than a. */
3744 compare_ranks (struct rank a, struct rank b)
3746 if (a.rank == b.rank)
3748 if (a.subrank == b.subrank)
3750 if (a.subrank < b.subrank)
3752 if (a.subrank > b.subrank)
3756 if (a.rank < b.rank)
3759 /* a.rank > b.rank */
3763 /* Functions for overload resolution begin here. */
3765 /* Compare two badness vectors A and B and return the result.
3766 0 => A and B are identical
3767 1 => A and B are incomparable
3768 2 => A is better than B
3769 3 => A is worse than B */
3772 compare_badness (const badness_vector &a, const badness_vector &b)
3776 short found_pos = 0; /* any positives in c? */
3777 short found_neg = 0; /* any negatives in c? */
3779 /* differing sizes => incomparable */
3780 if (a.size () != b.size ())
3783 /* Subtract b from a */
3784 for (i = 0; i < a.size (); i++)
3786 tmp = compare_ranks (b[i], a[i]);
3796 return 1; /* incomparable */
3798 return 3; /* A > B */
3804 return 2; /* A < B */
3806 return 0; /* A == B */
3810 /* Rank a function by comparing its parameter types (PARMS), to the
3811 types of an argument list (ARGS). Return the badness vector. This
3812 has ARGS.size() + 1 entries. */
3815 rank_function (gdb::array_view<type *> parms,
3816 gdb::array_view<value *> args)
3818 /* add 1 for the length-match rank. */
3820 bv.reserve (1 + args.size ());
3822 /* First compare the lengths of the supplied lists.
3823 If there is a mismatch, set it to a high value. */
3825 /* pai/1997-06-03 FIXME: when we have debug info about default
3826 arguments and ellipsis parameter lists, we should consider those
3827 and rank the length-match more finely. */
3829 bv.push_back ((args.size () != parms.size ())
3830 ? LENGTH_MISMATCH_BADNESS
3831 : EXACT_MATCH_BADNESS);
3833 /* Now rank all the parameters of the candidate function. */
3834 size_t min_len = std::min (parms.size (), args.size ());
3836 for (size_t i = 0; i < min_len; i++)
3837 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3840 /* If more arguments than parameters, add dummy entries. */
3841 for (size_t i = min_len; i < args.size (); i++)
3842 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3847 /* Compare the names of two integer types, assuming that any sign
3848 qualifiers have been checked already. We do it this way because
3849 there may be an "int" in the name of one of the types. */
3852 integer_types_same_name_p (const char *first, const char *second)
3854 int first_p, second_p;
3856 /* If both are shorts, return 1; if neither is a short, keep
3858 first_p = (strstr (first, "short") != NULL);
3859 second_p = (strstr (second, "short") != NULL);
3860 if (first_p && second_p)
3862 if (first_p || second_p)
3865 /* Likewise for long. */
3866 first_p = (strstr (first, "long") != NULL);
3867 second_p = (strstr (second, "long") != NULL);
3868 if (first_p && second_p)
3870 if (first_p || second_p)
3873 /* Likewise for char. */
3874 first_p = (strstr (first, "char") != NULL);
3875 second_p = (strstr (second, "char") != NULL);
3876 if (first_p && second_p)
3878 if (first_p || second_p)
3881 /* They must both be ints. */
3885 /* Compares type A to type B. Returns true if they represent the same
3886 type, false otherwise. */
3889 types_equal (struct type *a, struct type *b)
3891 /* Identical type pointers. */
3892 /* However, this still doesn't catch all cases of same type for b
3893 and a. The reason is that builtin types are different from
3894 the same ones constructed from the object. */
3898 /* Resolve typedefs */
3899 if (a->code () == TYPE_CODE_TYPEDEF)
3900 a = check_typedef (a);
3901 if (b->code () == TYPE_CODE_TYPEDEF)
3902 b = check_typedef (b);
3904 /* If after resolving typedefs a and b are not of the same type
3905 code then they are not equal. */
3906 if (a->code () != b->code ())
3909 /* If a and b are both pointers types or both reference types then
3910 they are equal of the same type iff the objects they refer to are
3911 of the same type. */
3912 if (a->code () == TYPE_CODE_PTR
3913 || a->code () == TYPE_CODE_REF)
3914 return types_equal (TYPE_TARGET_TYPE (a),
3915 TYPE_TARGET_TYPE (b));
3917 /* Well, damnit, if the names are exactly the same, I'll say they
3918 are exactly the same. This happens when we generate method
3919 stubs. The types won't point to the same address, but they
3920 really are the same. */
3922 if (a->name () && b->name ()
3923 && strcmp (a->name (), b->name ()) == 0)
3926 /* Check if identical after resolving typedefs. */
3930 /* Two function types are equal if their argument and return types
3932 if (a->code () == TYPE_CODE_FUNC)
3936 if (a->num_fields () != b->num_fields ())
3939 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3942 for (i = 0; i < a->num_fields (); ++i)
3943 if (!types_equal (a->field (i).type (), b->field (i).type ()))
3952 /* Deep comparison of types. */
3954 /* An entry in the type-equality bcache. */
3956 struct type_equality_entry
3958 type_equality_entry (struct type *t1, struct type *t2)
3964 struct type *type1, *type2;
3967 /* A helper function to compare two strings. Returns true if they are
3968 the same, false otherwise. Handles NULLs properly. */
3971 compare_maybe_null_strings (const char *s, const char *t)
3973 if (s == NULL || t == NULL)
3975 return strcmp (s, t) == 0;
3978 /* A helper function for check_types_worklist that checks two types for
3979 "deep" equality. Returns true if the types are considered the
3980 same, false otherwise. */
3983 check_types_equal (struct type *type1, struct type *type2,
3984 std::vector<type_equality_entry> *worklist)
3986 type1 = check_typedef (type1);
3987 type2 = check_typedef (type2);
3992 if (type1->code () != type2->code ()
3993 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3994 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3995 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3996 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3997 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3998 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3999 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4000 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
4001 || type1->num_fields () != type2->num_fields ())
4004 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4006 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4009 if (type1->code () == TYPE_CODE_RANGE)
4011 if (*type1->bounds () != *type2->bounds ())
4018 for (i = 0; i < type1->num_fields (); ++i)
4020 const struct field *field1 = &type1->field (i);
4021 const struct field *field2 = &type2->field (i);
4023 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4024 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4025 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4027 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4028 FIELD_NAME (*field2)))
4030 switch (FIELD_LOC_KIND (*field1))
4032 case FIELD_LOC_KIND_BITPOS:
4033 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4036 case FIELD_LOC_KIND_ENUMVAL:
4037 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4040 case FIELD_LOC_KIND_PHYSADDR:
4041 if (FIELD_STATIC_PHYSADDR (*field1)
4042 != FIELD_STATIC_PHYSADDR (*field2))
4045 case FIELD_LOC_KIND_PHYSNAME:
4046 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4047 FIELD_STATIC_PHYSNAME (*field2)))
4050 case FIELD_LOC_KIND_DWARF_BLOCK:
4052 struct dwarf2_locexpr_baton *block1, *block2;
4054 block1 = FIELD_DWARF_BLOCK (*field1);
4055 block2 = FIELD_DWARF_BLOCK (*field2);
4056 if (block1->per_cu != block2->per_cu
4057 || block1->size != block2->size
4058 || memcmp (block1->data, block2->data, block1->size) != 0)
4063 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4064 "%d by check_types_equal"),
4065 FIELD_LOC_KIND (*field1));
4068 worklist->emplace_back (field1->type (), field2->type ());
4072 if (TYPE_TARGET_TYPE (type1) != NULL)
4074 if (TYPE_TARGET_TYPE (type2) == NULL)
4077 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4078 TYPE_TARGET_TYPE (type2));
4080 else if (TYPE_TARGET_TYPE (type2) != NULL)
4086 /* Check types on a worklist for equality. Returns false if any pair
4087 is not equal, true if they are all considered equal. */
4090 check_types_worklist (std::vector<type_equality_entry> *worklist,
4093 while (!worklist->empty ())
4097 struct type_equality_entry entry = std::move (worklist->back ());
4098 worklist->pop_back ();
4100 /* If the type pair has already been visited, we know it is
4102 cache->insert (&entry, sizeof (entry), &added);
4106 if (!check_types_equal (entry.type1, entry.type2, worklist))
4113 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4114 "deep comparison". Otherwise return false. */
4117 types_deeply_equal (struct type *type1, struct type *type2)
4119 std::vector<type_equality_entry> worklist;
4121 gdb_assert (type1 != NULL && type2 != NULL);
4123 /* Early exit for the simple case. */
4127 gdb::bcache cache (nullptr, nullptr);
4128 worklist.emplace_back (type1, type2);
4129 return check_types_worklist (&worklist, &cache);
4132 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4133 Otherwise return one. */
4136 type_not_allocated (const struct type *type)
4138 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4140 return (prop != nullptr && prop->kind () == PROP_CONST
4141 && prop->const_val () == 0);
4144 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4145 Otherwise return one. */
4148 type_not_associated (const struct type *type)
4150 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4152 return (prop != nullptr && prop->kind () == PROP_CONST
4153 && prop->const_val () == 0);
4156 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4159 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4161 struct rank rank = {0,0};
4163 switch (arg->code ())
4167 /* Allowed pointer conversions are:
4168 (a) pointer to void-pointer conversion. */
4169 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4170 return VOID_PTR_CONVERSION_BADNESS;
4172 /* (b) pointer to ancestor-pointer conversion. */
4173 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4174 TYPE_TARGET_TYPE (arg),
4176 if (rank.subrank >= 0)
4177 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4179 return INCOMPATIBLE_TYPE_BADNESS;
4180 case TYPE_CODE_ARRAY:
4182 struct type *t1 = TYPE_TARGET_TYPE (parm);
4183 struct type *t2 = TYPE_TARGET_TYPE (arg);
4185 if (types_equal (t1, t2))
4187 /* Make sure they are CV equal. */
4188 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4189 rank.subrank |= CV_CONVERSION_CONST;
4190 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4191 rank.subrank |= CV_CONVERSION_VOLATILE;
4192 if (rank.subrank != 0)
4193 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4194 return EXACT_MATCH_BADNESS;
4196 return INCOMPATIBLE_TYPE_BADNESS;
4198 case TYPE_CODE_FUNC:
4199 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4201 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4203 if (value_as_long (value) == 0)
4205 /* Null pointer conversion: allow it to be cast to a pointer.
4206 [4.10.1 of C++ standard draft n3290] */
4207 return NULL_POINTER_CONVERSION_BADNESS;
4211 /* If type checking is disabled, allow the conversion. */
4212 if (!strict_type_checking)
4213 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4217 case TYPE_CODE_ENUM:
4218 case TYPE_CODE_FLAGS:
4219 case TYPE_CODE_CHAR:
4220 case TYPE_CODE_RANGE:
4221 case TYPE_CODE_BOOL:
4223 return INCOMPATIBLE_TYPE_BADNESS;
4227 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4230 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4232 switch (arg->code ())
4235 case TYPE_CODE_ARRAY:
4236 return rank_one_type (TYPE_TARGET_TYPE (parm),
4237 TYPE_TARGET_TYPE (arg), NULL);
4239 return INCOMPATIBLE_TYPE_BADNESS;
4243 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4246 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4248 switch (arg->code ())
4250 case TYPE_CODE_PTR: /* funcptr -> func */
4251 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4253 return INCOMPATIBLE_TYPE_BADNESS;
4257 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4260 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4262 switch (arg->code ())
4265 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4267 /* Deal with signed, unsigned, and plain chars and
4268 signed and unsigned ints. */
4269 if (TYPE_NOSIGN (parm))
4271 /* This case only for character types. */
4272 if (TYPE_NOSIGN (arg))
4273 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4274 else /* signed/unsigned char -> plain char */
4275 return INTEGER_CONVERSION_BADNESS;
4277 else if (TYPE_UNSIGNED (parm))
4279 if (TYPE_UNSIGNED (arg))
4281 /* unsigned int -> unsigned int, or
4282 unsigned long -> unsigned long */
4283 if (integer_types_same_name_p (parm->name (),
4285 return EXACT_MATCH_BADNESS;
4286 else if (integer_types_same_name_p (arg->name (),
4288 && integer_types_same_name_p (parm->name (),
4290 /* unsigned int -> unsigned long */
4291 return INTEGER_PROMOTION_BADNESS;
4293 /* unsigned long -> unsigned int */
4294 return INTEGER_CONVERSION_BADNESS;
4298 if (integer_types_same_name_p (arg->name (),
4300 && integer_types_same_name_p (parm->name (),
4302 /* signed long -> unsigned int */
4303 return INTEGER_CONVERSION_BADNESS;
4305 /* signed int/long -> unsigned int/long */
4306 return INTEGER_CONVERSION_BADNESS;
4309 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4311 if (integer_types_same_name_p (parm->name (),
4313 return EXACT_MATCH_BADNESS;
4314 else if (integer_types_same_name_p (arg->name (),
4316 && integer_types_same_name_p (parm->name (),
4318 return INTEGER_PROMOTION_BADNESS;
4320 return INTEGER_CONVERSION_BADNESS;
4323 return INTEGER_CONVERSION_BADNESS;
4325 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4326 return INTEGER_PROMOTION_BADNESS;
4328 return INTEGER_CONVERSION_BADNESS;
4329 case TYPE_CODE_ENUM:
4330 case TYPE_CODE_FLAGS:
4331 case TYPE_CODE_CHAR:
4332 case TYPE_CODE_RANGE:
4333 case TYPE_CODE_BOOL:
4334 if (TYPE_DECLARED_CLASS (arg))
4335 return INCOMPATIBLE_TYPE_BADNESS;
4336 return INTEGER_PROMOTION_BADNESS;
4338 return INT_FLOAT_CONVERSION_BADNESS;
4340 return NS_POINTER_CONVERSION_BADNESS;
4342 return INCOMPATIBLE_TYPE_BADNESS;
4346 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4349 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4351 switch (arg->code ())
4354 case TYPE_CODE_CHAR:
4355 case TYPE_CODE_RANGE:
4356 case TYPE_CODE_BOOL:
4357 case TYPE_CODE_ENUM:
4358 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4359 return INCOMPATIBLE_TYPE_BADNESS;
4360 return INTEGER_CONVERSION_BADNESS;
4362 return INT_FLOAT_CONVERSION_BADNESS;
4364 return INCOMPATIBLE_TYPE_BADNESS;
4368 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4371 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4373 switch (arg->code ())
4375 case TYPE_CODE_RANGE:
4376 case TYPE_CODE_BOOL:
4377 case TYPE_CODE_ENUM:
4378 if (TYPE_DECLARED_CLASS (arg))
4379 return INCOMPATIBLE_TYPE_BADNESS;
4380 return INTEGER_CONVERSION_BADNESS;
4382 return INT_FLOAT_CONVERSION_BADNESS;
4384 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4385 return INTEGER_CONVERSION_BADNESS;
4386 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4387 return INTEGER_PROMOTION_BADNESS;
4389 case TYPE_CODE_CHAR:
4390 /* Deal with signed, unsigned, and plain chars for C++ and
4391 with int cases falling through from previous case. */
4392 if (TYPE_NOSIGN (parm))
4394 if (TYPE_NOSIGN (arg))
4395 return EXACT_MATCH_BADNESS;
4397 return INTEGER_CONVERSION_BADNESS;
4399 else if (TYPE_UNSIGNED (parm))
4401 if (TYPE_UNSIGNED (arg))
4402 return EXACT_MATCH_BADNESS;
4404 return INTEGER_PROMOTION_BADNESS;
4406 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4407 return EXACT_MATCH_BADNESS;
4409 return INTEGER_CONVERSION_BADNESS;
4411 return INCOMPATIBLE_TYPE_BADNESS;
4415 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4418 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4420 switch (arg->code ())
4423 case TYPE_CODE_CHAR:
4424 case TYPE_CODE_RANGE:
4425 case TYPE_CODE_BOOL:
4426 case TYPE_CODE_ENUM:
4427 return INTEGER_CONVERSION_BADNESS;
4429 return INT_FLOAT_CONVERSION_BADNESS;
4431 return INCOMPATIBLE_TYPE_BADNESS;
4435 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4438 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4440 switch (arg->code ())
4442 /* n3290 draft, section 4.12.1 (conv.bool):
4444 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4445 pointer to member type can be converted to a prvalue of type
4446 bool. A zero value, null pointer value, or null member pointer
4447 value is converted to false; any other value is converted to
4448 true. A prvalue of type std::nullptr_t can be converted to a
4449 prvalue of type bool; the resulting value is false." */
4451 case TYPE_CODE_CHAR:
4452 case TYPE_CODE_ENUM:
4454 case TYPE_CODE_MEMBERPTR:
4456 return BOOL_CONVERSION_BADNESS;
4457 case TYPE_CODE_RANGE:
4458 return INCOMPATIBLE_TYPE_BADNESS;
4459 case TYPE_CODE_BOOL:
4460 return EXACT_MATCH_BADNESS;
4462 return INCOMPATIBLE_TYPE_BADNESS;
4466 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4469 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4471 switch (arg->code ())
4474 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4475 return FLOAT_PROMOTION_BADNESS;
4476 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4477 return EXACT_MATCH_BADNESS;
4479 return FLOAT_CONVERSION_BADNESS;
4481 case TYPE_CODE_BOOL:
4482 case TYPE_CODE_ENUM:
4483 case TYPE_CODE_RANGE:
4484 case TYPE_CODE_CHAR:
4485 return INT_FLOAT_CONVERSION_BADNESS;
4487 return INCOMPATIBLE_TYPE_BADNESS;
4491 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4494 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4496 switch (arg->code ())
4497 { /* Strictly not needed for C++, but... */
4499 return FLOAT_PROMOTION_BADNESS;
4500 case TYPE_CODE_COMPLEX:
4501 return EXACT_MATCH_BADNESS;
4503 return INCOMPATIBLE_TYPE_BADNESS;
4507 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4510 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4512 struct rank rank = {0, 0};
4514 switch (arg->code ())
4516 case TYPE_CODE_STRUCT:
4517 /* Check for derivation */
4518 rank.subrank = distance_to_ancestor (parm, arg, 0);
4519 if (rank.subrank >= 0)
4520 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4523 return INCOMPATIBLE_TYPE_BADNESS;
4527 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4530 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4532 switch (arg->code ())
4536 return rank_one_type (parm->field (0).type (),
4537 arg->field (0).type (), NULL);
4539 return INCOMPATIBLE_TYPE_BADNESS;
4543 /* Compare one type (PARM) for compatibility with another (ARG).
4544 * PARM is intended to be the parameter type of a function; and
4545 * ARG is the supplied argument's type. This function tests if
4546 * the latter can be converted to the former.
4547 * VALUE is the argument's value or NULL if none (or called recursively)
4549 * Return 0 if they are identical types;
4550 * Otherwise, return an integer which corresponds to how compatible
4551 * PARM is to ARG. The higher the return value, the worse the match.
4552 * Generally the "bad" conversions are all uniformly assigned a 100. */
4555 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4557 struct rank rank = {0,0};
4559 /* Resolve typedefs */
4560 if (parm->code () == TYPE_CODE_TYPEDEF)
4561 parm = check_typedef (parm);
4562 if (arg->code () == TYPE_CODE_TYPEDEF)
4563 arg = check_typedef (arg);
4565 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4567 if (VALUE_LVAL (value) == not_lval)
4569 /* Rvalues should preferably bind to rvalue references or const
4570 lvalue references. */
4571 if (parm->code () == TYPE_CODE_RVALUE_REF)
4572 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4573 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4574 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4576 return INCOMPATIBLE_TYPE_BADNESS;
4577 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4581 /* It's illegal to pass an lvalue as an rvalue. */
4582 if (parm->code () == TYPE_CODE_RVALUE_REF)
4583 return INCOMPATIBLE_TYPE_BADNESS;
4587 if (types_equal (parm, arg))
4589 struct type *t1 = parm;
4590 struct type *t2 = arg;
4592 /* For pointers and references, compare target type. */
4593 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4595 t1 = TYPE_TARGET_TYPE (parm);
4596 t2 = TYPE_TARGET_TYPE (arg);
4599 /* Make sure they are CV equal, too. */
4600 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4601 rank.subrank |= CV_CONVERSION_CONST;
4602 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4603 rank.subrank |= CV_CONVERSION_VOLATILE;
4604 if (rank.subrank != 0)
4605 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4606 return EXACT_MATCH_BADNESS;
4609 /* See through references, since we can almost make non-references
4612 if (TYPE_IS_REFERENCE (arg))
4613 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4614 REFERENCE_SEE_THROUGH_BADNESS));
4615 if (TYPE_IS_REFERENCE (parm))
4616 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4617 REFERENCE_SEE_THROUGH_BADNESS));
4619 /* Debugging only. */
4620 fprintf_filtered (gdb_stderr,
4621 "------ Arg is %s [%d], parm is %s [%d]\n",
4622 arg->name (), arg->code (),
4623 parm->name (), parm->code ());
4625 /* x -> y means arg of type x being supplied for parameter of type y. */
4627 switch (parm->code ())
4630 return rank_one_type_parm_ptr (parm, arg, value);
4631 case TYPE_CODE_ARRAY:
4632 return rank_one_type_parm_array (parm, arg, value);
4633 case TYPE_CODE_FUNC:
4634 return rank_one_type_parm_func (parm, arg, value);
4636 return rank_one_type_parm_int (parm, arg, value);
4637 case TYPE_CODE_ENUM:
4638 return rank_one_type_parm_enum (parm, arg, value);
4639 case TYPE_CODE_CHAR:
4640 return rank_one_type_parm_char (parm, arg, value);
4641 case TYPE_CODE_RANGE:
4642 return rank_one_type_parm_range (parm, arg, value);
4643 case TYPE_CODE_BOOL:
4644 return rank_one_type_parm_bool (parm, arg, value);
4646 return rank_one_type_parm_float (parm, arg, value);
4647 case TYPE_CODE_COMPLEX:
4648 return rank_one_type_parm_complex (parm, arg, value);
4649 case TYPE_CODE_STRUCT:
4650 return rank_one_type_parm_struct (parm, arg, value);
4652 return rank_one_type_parm_set (parm, arg, value);
4654 return INCOMPATIBLE_TYPE_BADNESS;
4655 } /* switch (arg->code ()) */
4658 /* End of functions for overload resolution. */
4660 /* Routines to pretty-print types. */
4663 print_bit_vector (B_TYPE *bits, int nbits)
4667 for (bitno = 0; bitno < nbits; bitno++)
4669 if ((bitno % 8) == 0)
4671 puts_filtered (" ");
4673 if (B_TST (bits, bitno))
4674 printf_filtered (("1"));
4676 printf_filtered (("0"));
4680 /* Note the first arg should be the "this" pointer, we may not want to
4681 include it since we may get into a infinitely recursive
4685 print_args (struct field *args, int nargs, int spaces)
4691 for (i = 0; i < nargs; i++)
4693 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4694 args[i].name != NULL ? args[i].name : "<NULL>");
4695 recursive_dump_type (args[i].type (), spaces + 2);
4701 field_is_static (struct field *f)
4703 /* "static" fields are the fields whose location is not relative
4704 to the address of the enclosing struct. It would be nice to
4705 have a dedicated flag that would be set for static fields when
4706 the type is being created. But in practice, checking the field
4707 loc_kind should give us an accurate answer. */
4708 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4709 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4713 dump_fn_fieldlists (struct type *type, int spaces)
4719 printfi_filtered (spaces, "fn_fieldlists ");
4720 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4721 printf_filtered ("\n");
4722 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4724 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4725 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4727 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4728 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4730 printf_filtered (_(") length %d\n"),
4731 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4732 for (overload_idx = 0;
4733 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4736 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4738 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4739 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4741 printf_filtered (")\n");
4742 printfi_filtered (spaces + 8, "type ");
4743 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4745 printf_filtered ("\n");
4747 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4750 printfi_filtered (spaces + 8, "args ");
4751 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4753 printf_filtered ("\n");
4754 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4755 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4757 printfi_filtered (spaces + 8, "fcontext ");
4758 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4760 printf_filtered ("\n");
4762 printfi_filtered (spaces + 8, "is_const %d\n",
4763 TYPE_FN_FIELD_CONST (f, overload_idx));
4764 printfi_filtered (spaces + 8, "is_volatile %d\n",
4765 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4766 printfi_filtered (spaces + 8, "is_private %d\n",
4767 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4768 printfi_filtered (spaces + 8, "is_protected %d\n",
4769 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4770 printfi_filtered (spaces + 8, "is_stub %d\n",
4771 TYPE_FN_FIELD_STUB (f, overload_idx));
4772 printfi_filtered (spaces + 8, "defaulted %d\n",
4773 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4774 printfi_filtered (spaces + 8, "is_deleted %d\n",
4775 TYPE_FN_FIELD_DELETED (f, overload_idx));
4776 printfi_filtered (spaces + 8, "voffset %u\n",
4777 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4783 print_cplus_stuff (struct type *type, int spaces)
4785 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4786 printfi_filtered (spaces, "vptr_basetype ");
4787 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4788 puts_filtered ("\n");
4789 if (TYPE_VPTR_BASETYPE (type) != NULL)
4790 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4792 printfi_filtered (spaces, "n_baseclasses %d\n",
4793 TYPE_N_BASECLASSES (type));
4794 printfi_filtered (spaces, "nfn_fields %d\n",
4795 TYPE_NFN_FIELDS (type));
4796 if (TYPE_N_BASECLASSES (type) > 0)
4798 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4799 TYPE_N_BASECLASSES (type));
4800 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4802 printf_filtered (")");
4804 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4805 TYPE_N_BASECLASSES (type));
4806 puts_filtered ("\n");
4808 if (type->num_fields () > 0)
4810 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4812 printfi_filtered (spaces,
4813 "private_field_bits (%d bits at *",
4814 type->num_fields ());
4815 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4817 printf_filtered (")");
4818 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4819 type->num_fields ());
4820 puts_filtered ("\n");
4822 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4824 printfi_filtered (spaces,
4825 "protected_field_bits (%d bits at *",
4826 type->num_fields ());
4827 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4829 printf_filtered (")");
4830 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4831 type->num_fields ());
4832 puts_filtered ("\n");
4835 if (TYPE_NFN_FIELDS (type) > 0)
4837 dump_fn_fieldlists (type, spaces);
4840 printfi_filtered (spaces, "calling_convention %d\n",
4841 TYPE_CPLUS_CALLING_CONVENTION (type));
4844 /* Print the contents of the TYPE's type_specific union, assuming that
4845 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4848 print_gnat_stuff (struct type *type, int spaces)
4850 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4852 if (descriptive_type == NULL)
4853 printfi_filtered (spaces + 2, "no descriptive type\n");
4856 printfi_filtered (spaces + 2, "descriptive type\n");
4857 recursive_dump_type (descriptive_type, spaces + 4);
4861 static struct obstack dont_print_type_obstack;
4863 /* Print the dynamic_prop PROP. */
4866 dump_dynamic_prop (dynamic_prop const& prop)
4868 switch (prop.kind ())
4871 printf_filtered ("%s", plongest (prop.const_val ()));
4873 case PROP_UNDEFINED:
4874 printf_filtered ("(undefined)");
4878 printf_filtered ("(dynamic)");
4881 gdb_assert_not_reached ("unhandled prop kind");
4887 recursive_dump_type (struct type *type, int spaces)
4892 obstack_begin (&dont_print_type_obstack, 0);
4894 if (type->num_fields () > 0
4895 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4897 struct type **first_dont_print
4898 = (struct type **) obstack_base (&dont_print_type_obstack);
4900 int i = (struct type **)
4901 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4905 if (type == first_dont_print[i])
4907 printfi_filtered (spaces, "type node ");
4908 gdb_print_host_address (type, gdb_stdout);
4909 printf_filtered (_(" <same as already seen type>\n"));
4914 obstack_ptr_grow (&dont_print_type_obstack, type);
4917 printfi_filtered (spaces, "type node ");
4918 gdb_print_host_address (type, gdb_stdout);
4919 printf_filtered ("\n");
4920 printfi_filtered (spaces, "name '%s' (",
4921 type->name () ? type->name () : "<NULL>");
4922 gdb_print_host_address (type->name (), gdb_stdout);
4923 printf_filtered (")\n");
4924 printfi_filtered (spaces, "code 0x%x ", type->code ());
4925 switch (type->code ())
4927 case TYPE_CODE_UNDEF:
4928 printf_filtered ("(TYPE_CODE_UNDEF)");
4931 printf_filtered ("(TYPE_CODE_PTR)");
4933 case TYPE_CODE_ARRAY:
4934 printf_filtered ("(TYPE_CODE_ARRAY)");
4936 case TYPE_CODE_STRUCT:
4937 printf_filtered ("(TYPE_CODE_STRUCT)");
4939 case TYPE_CODE_UNION:
4940 printf_filtered ("(TYPE_CODE_UNION)");
4942 case TYPE_CODE_ENUM:
4943 printf_filtered ("(TYPE_CODE_ENUM)");
4945 case TYPE_CODE_FLAGS:
4946 printf_filtered ("(TYPE_CODE_FLAGS)");
4948 case TYPE_CODE_FUNC:
4949 printf_filtered ("(TYPE_CODE_FUNC)");
4952 printf_filtered ("(TYPE_CODE_INT)");
4955 printf_filtered ("(TYPE_CODE_FLT)");
4957 case TYPE_CODE_VOID:
4958 printf_filtered ("(TYPE_CODE_VOID)");
4961 printf_filtered ("(TYPE_CODE_SET)");
4963 case TYPE_CODE_RANGE:
4964 printf_filtered ("(TYPE_CODE_RANGE)");
4966 case TYPE_CODE_STRING:
4967 printf_filtered ("(TYPE_CODE_STRING)");
4969 case TYPE_CODE_ERROR:
4970 printf_filtered ("(TYPE_CODE_ERROR)");
4972 case TYPE_CODE_MEMBERPTR:
4973 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4975 case TYPE_CODE_METHODPTR:
4976 printf_filtered ("(TYPE_CODE_METHODPTR)");
4978 case TYPE_CODE_METHOD:
4979 printf_filtered ("(TYPE_CODE_METHOD)");
4982 printf_filtered ("(TYPE_CODE_REF)");
4984 case TYPE_CODE_CHAR:
4985 printf_filtered ("(TYPE_CODE_CHAR)");
4987 case TYPE_CODE_BOOL:
4988 printf_filtered ("(TYPE_CODE_BOOL)");
4990 case TYPE_CODE_COMPLEX:
4991 printf_filtered ("(TYPE_CODE_COMPLEX)");
4993 case TYPE_CODE_TYPEDEF:
4994 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4996 case TYPE_CODE_NAMESPACE:
4997 printf_filtered ("(TYPE_CODE_NAMESPACE)");
5000 printf_filtered ("(UNKNOWN TYPE CODE)");
5003 puts_filtered ("\n");
5004 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
5005 if (TYPE_OBJFILE_OWNED (type))
5007 printfi_filtered (spaces, "objfile ");
5008 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5012 printfi_filtered (spaces, "gdbarch ");
5013 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5015 printf_filtered ("\n");
5016 printfi_filtered (spaces, "target_type ");
5017 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5018 printf_filtered ("\n");
5019 if (TYPE_TARGET_TYPE (type) != NULL)
5021 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5023 printfi_filtered (spaces, "pointer_type ");
5024 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5025 printf_filtered ("\n");
5026 printfi_filtered (spaces, "reference_type ");
5027 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5028 printf_filtered ("\n");
5029 printfi_filtered (spaces, "type_chain ");
5030 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5031 printf_filtered ("\n");
5032 printfi_filtered (spaces, "instance_flags 0x%x",
5033 TYPE_INSTANCE_FLAGS (type));
5034 if (TYPE_CONST (type))
5036 puts_filtered (" TYPE_CONST");
5038 if (TYPE_VOLATILE (type))
5040 puts_filtered (" TYPE_VOLATILE");
5042 if (TYPE_CODE_SPACE (type))
5044 puts_filtered (" TYPE_CODE_SPACE");
5046 if (TYPE_DATA_SPACE (type))
5048 puts_filtered (" TYPE_DATA_SPACE");
5050 if (TYPE_ADDRESS_CLASS_1 (type))
5052 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5054 if (TYPE_ADDRESS_CLASS_2 (type))
5056 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5058 if (TYPE_RESTRICT (type))
5060 puts_filtered (" TYPE_RESTRICT");
5062 if (TYPE_ATOMIC (type))
5064 puts_filtered (" TYPE_ATOMIC");
5066 puts_filtered ("\n");
5068 printfi_filtered (spaces, "flags");
5069 if (TYPE_UNSIGNED (type))
5071 puts_filtered (" TYPE_UNSIGNED");
5073 if (TYPE_NOSIGN (type))
5075 puts_filtered (" TYPE_NOSIGN");
5077 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5079 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5081 if (TYPE_STUB (type))
5083 puts_filtered (" TYPE_STUB");
5085 if (TYPE_TARGET_STUB (type))
5087 puts_filtered (" TYPE_TARGET_STUB");
5089 if (TYPE_PROTOTYPED (type))
5091 puts_filtered (" TYPE_PROTOTYPED");
5093 if (TYPE_VARARGS (type))
5095 puts_filtered (" TYPE_VARARGS");
5097 /* This is used for things like AltiVec registers on ppc. Gcc emits
5098 an attribute for the array type, which tells whether or not we
5099 have a vector, instead of a regular array. */
5100 if (TYPE_VECTOR (type))
5102 puts_filtered (" TYPE_VECTOR");
5104 if (TYPE_FIXED_INSTANCE (type))
5106 puts_filtered (" TYPE_FIXED_INSTANCE");
5108 if (TYPE_STUB_SUPPORTED (type))
5110 puts_filtered (" TYPE_STUB_SUPPORTED");
5112 if (TYPE_NOTTEXT (type))
5114 puts_filtered (" TYPE_NOTTEXT");
5116 puts_filtered ("\n");
5117 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
5118 gdb_print_host_address (type->fields (), gdb_stdout);
5119 puts_filtered ("\n");
5120 for (idx = 0; idx < type->num_fields (); idx++)
5122 if (type->code () == TYPE_CODE_ENUM)
5123 printfi_filtered (spaces + 2,
5124 "[%d] enumval %s type ",
5125 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5127 printfi_filtered (spaces + 2,
5128 "[%d] bitpos %s bitsize %d type ",
5129 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5130 TYPE_FIELD_BITSIZE (type, idx));
5131 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5132 printf_filtered (" name '%s' (",
5133 TYPE_FIELD_NAME (type, idx) != NULL
5134 ? TYPE_FIELD_NAME (type, idx)
5136 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5137 printf_filtered (")\n");
5138 if (type->field (idx).type () != NULL)
5140 recursive_dump_type (type->field (idx).type (), spaces + 4);
5143 if (type->code () == TYPE_CODE_RANGE)
5145 printfi_filtered (spaces, "low ");
5146 dump_dynamic_prop (type->bounds ()->low);
5147 printf_filtered (" high ");
5148 dump_dynamic_prop (type->bounds ()->high);
5149 printf_filtered ("\n");
5152 switch (TYPE_SPECIFIC_FIELD (type))
5154 case TYPE_SPECIFIC_CPLUS_STUFF:
5155 printfi_filtered (spaces, "cplus_stuff ");
5156 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5158 puts_filtered ("\n");
5159 print_cplus_stuff (type, spaces);
5162 case TYPE_SPECIFIC_GNAT_STUFF:
5163 printfi_filtered (spaces, "gnat_stuff ");
5164 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5165 puts_filtered ("\n");
5166 print_gnat_stuff (type, spaces);
5169 case TYPE_SPECIFIC_FLOATFORMAT:
5170 printfi_filtered (spaces, "floatformat ");
5171 if (TYPE_FLOATFORMAT (type) == NULL
5172 || TYPE_FLOATFORMAT (type)->name == NULL)
5173 puts_filtered ("(null)");
5175 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5176 puts_filtered ("\n");
5179 case TYPE_SPECIFIC_FUNC:
5180 printfi_filtered (spaces, "calling_convention %d\n",
5181 TYPE_CALLING_CONVENTION (type));
5182 /* tail_call_list is not printed. */
5185 case TYPE_SPECIFIC_SELF_TYPE:
5186 printfi_filtered (spaces, "self_type ");
5187 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5188 puts_filtered ("\n");
5193 obstack_free (&dont_print_type_obstack, NULL);
5196 /* Trivial helpers for the libiberty hash table, for mapping one
5199 struct type_pair : public allocate_on_obstack
5201 type_pair (struct type *old_, struct type *newobj_)
5202 : old (old_), newobj (newobj_)
5205 struct type * const old, * const newobj;
5209 type_pair_hash (const void *item)
5211 const struct type_pair *pair = (const struct type_pair *) item;
5213 return htab_hash_pointer (pair->old);
5217 type_pair_eq (const void *item_lhs, const void *item_rhs)
5219 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5220 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5222 return lhs->old == rhs->old;
5225 /* Allocate the hash table used by copy_type_recursive to walk
5226 types without duplicates. We use OBJFILE's obstack, because
5227 OBJFILE is about to be deleted. */
5230 create_copied_types_hash (struct objfile *objfile)
5232 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5233 NULL, &objfile->objfile_obstack,
5234 hashtab_obstack_allocate,
5235 dummy_obstack_deallocate);
5238 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5240 static struct dynamic_prop_list *
5241 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5242 struct dynamic_prop_list *list)
5244 struct dynamic_prop_list *copy = list;
5245 struct dynamic_prop_list **node_ptr = ©
5247 while (*node_ptr != NULL)
5249 struct dynamic_prop_list *node_copy;
5251 node_copy = ((struct dynamic_prop_list *)
5252 obstack_copy (objfile_obstack, *node_ptr,
5253 sizeof (struct dynamic_prop_list)));
5254 node_copy->prop = (*node_ptr)->prop;
5255 *node_ptr = node_copy;
5257 node_ptr = &node_copy->next;
5263 /* Recursively copy (deep copy) TYPE, if it is associated with
5264 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5265 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5266 it is not associated with OBJFILE. */
5269 copy_type_recursive (struct objfile *objfile,
5271 htab_t copied_types)
5274 struct type *new_type;
5276 if (! TYPE_OBJFILE_OWNED (type))
5279 /* This type shouldn't be pointing to any types in other objfiles;
5280 if it did, the type might disappear unexpectedly. */
5281 gdb_assert (TYPE_OBJFILE (type) == objfile);
5283 struct type_pair pair (type, nullptr);
5285 slot = htab_find_slot (copied_types, &pair, INSERT);
5287 return ((struct type_pair *) *slot)->newobj;
5289 new_type = alloc_type_arch (get_type_arch (type));
5291 /* We must add the new type to the hash table immediately, in case
5292 we encounter this type again during a recursive call below. */
5293 struct type_pair *stored
5294 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5298 /* Copy the common fields of types. For the main type, we simply
5299 copy the entire thing and then update specific fields as needed. */
5300 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5301 TYPE_OBJFILE_OWNED (new_type) = 0;
5302 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5305 new_type->set_name (xstrdup (type->name ()));
5307 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5308 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5310 /* Copy the fields. */
5311 if (type->num_fields ())
5315 nfields = type->num_fields ();
5316 new_type->set_fields
5318 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5320 for (i = 0; i < nfields; i++)
5322 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5323 TYPE_FIELD_ARTIFICIAL (type, i);
5324 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5325 if (type->field (i).type ())
5326 new_type->field (i).set_type
5327 (copy_type_recursive (objfile, type->field (i).type (),
5329 if (TYPE_FIELD_NAME (type, i))
5330 TYPE_FIELD_NAME (new_type, i) =
5331 xstrdup (TYPE_FIELD_NAME (type, i));
5332 switch (TYPE_FIELD_LOC_KIND (type, i))
5334 case FIELD_LOC_KIND_BITPOS:
5335 SET_FIELD_BITPOS (new_type->field (i),
5336 TYPE_FIELD_BITPOS (type, i));
5338 case FIELD_LOC_KIND_ENUMVAL:
5339 SET_FIELD_ENUMVAL (new_type->field (i),
5340 TYPE_FIELD_ENUMVAL (type, i));
5342 case FIELD_LOC_KIND_PHYSADDR:
5343 SET_FIELD_PHYSADDR (new_type->field (i),
5344 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5346 case FIELD_LOC_KIND_PHYSNAME:
5347 SET_FIELD_PHYSNAME (new_type->field (i),
5348 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5352 internal_error (__FILE__, __LINE__,
5353 _("Unexpected type field location kind: %d"),
5354 TYPE_FIELD_LOC_KIND (type, i));
5359 /* For range types, copy the bounds information. */
5360 if (type->code () == TYPE_CODE_RANGE)
5362 range_bounds *bounds
5363 = ((struct range_bounds *) TYPE_ALLOC
5364 (new_type, sizeof (struct range_bounds)));
5366 *bounds = *type->bounds ();
5367 new_type->set_bounds (bounds);
5370 if (type->main_type->dyn_prop_list != NULL)
5371 new_type->main_type->dyn_prop_list
5372 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5373 type->main_type->dyn_prop_list);
5376 /* Copy pointers to other types. */
5377 if (TYPE_TARGET_TYPE (type))
5378 TYPE_TARGET_TYPE (new_type) =
5379 copy_type_recursive (objfile,
5380 TYPE_TARGET_TYPE (type),
5383 /* Maybe copy the type_specific bits.
5385 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5386 base classes and methods. There's no fundamental reason why we
5387 can't, but at the moment it is not needed. */
5389 switch (TYPE_SPECIFIC_FIELD (type))
5391 case TYPE_SPECIFIC_NONE:
5393 case TYPE_SPECIFIC_FUNC:
5394 INIT_FUNC_SPECIFIC (new_type);
5395 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5396 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5397 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5399 case TYPE_SPECIFIC_FLOATFORMAT:
5400 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5402 case TYPE_SPECIFIC_CPLUS_STUFF:
5403 INIT_CPLUS_SPECIFIC (new_type);
5405 case TYPE_SPECIFIC_GNAT_STUFF:
5406 INIT_GNAT_SPECIFIC (new_type);
5408 case TYPE_SPECIFIC_SELF_TYPE:
5409 set_type_self_type (new_type,
5410 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5414 gdb_assert_not_reached ("bad type_specific_kind");
5420 /* Make a copy of the given TYPE, except that the pointer & reference
5421 types are not preserved.
5423 This function assumes that the given type has an associated objfile.
5424 This objfile is used to allocate the new type. */
5427 copy_type (const struct type *type)
5429 struct type *new_type;
5431 gdb_assert (TYPE_OBJFILE_OWNED (type));
5433 new_type = alloc_type_copy (type);
5434 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5435 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5436 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5437 sizeof (struct main_type));
5438 if (type->main_type->dyn_prop_list != NULL)
5439 new_type->main_type->dyn_prop_list
5440 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5441 type->main_type->dyn_prop_list);
5446 /* Helper functions to initialize architecture-specific types. */
5448 /* Allocate a type structure associated with GDBARCH and set its
5449 CODE, LENGTH, and NAME fields. */
5452 arch_type (struct gdbarch *gdbarch,
5453 enum type_code code, int bit, const char *name)
5457 type = alloc_type_arch (gdbarch);
5458 set_type_code (type, code);
5459 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5460 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5463 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5468 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5469 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5470 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5473 arch_integer_type (struct gdbarch *gdbarch,
5474 int bit, int unsigned_p, const char *name)
5478 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5480 TYPE_UNSIGNED (t) = 1;
5485 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5486 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5487 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5490 arch_character_type (struct gdbarch *gdbarch,
5491 int bit, int unsigned_p, const char *name)
5495 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5497 TYPE_UNSIGNED (t) = 1;
5502 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5503 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5504 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5507 arch_boolean_type (struct gdbarch *gdbarch,
5508 int bit, int unsigned_p, const char *name)
5512 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5514 TYPE_UNSIGNED (t) = 1;
5519 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5520 BIT is the type size in bits; if BIT equals -1, the size is
5521 determined by the floatformat. NAME is the type name. Set the
5522 TYPE_FLOATFORMAT from FLOATFORMATS. */
5525 arch_float_type (struct gdbarch *gdbarch,
5526 int bit, const char *name,
5527 const struct floatformat **floatformats)
5529 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5532 bit = verify_floatformat (bit, fmt);
5533 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5534 TYPE_FLOATFORMAT (t) = fmt;
5539 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5540 BIT is the type size in bits. NAME is the type name. */
5543 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5547 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5551 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5552 BIT is the pointer type size in bits. NAME is the type name.
5553 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5554 TYPE_UNSIGNED flag. */
5557 arch_pointer_type (struct gdbarch *gdbarch,
5558 int bit, const char *name, struct type *target_type)
5562 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5563 TYPE_TARGET_TYPE (t) = target_type;
5564 TYPE_UNSIGNED (t) = 1;
5568 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5569 NAME is the type name. BIT is the size of the flag word in bits. */
5572 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5576 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5577 TYPE_UNSIGNED (type) = 1;
5578 type->set_num_fields (0);
5579 /* Pre-allocate enough space assuming every field is one bit. */
5581 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5586 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5587 position BITPOS is called NAME. Pass NAME as "" for fields that
5588 should not be printed. */
5591 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5592 struct type *field_type, const char *name)
5594 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5595 int field_nr = type->num_fields ();
5597 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5598 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5599 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5600 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5601 gdb_assert (name != NULL);
5603 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5604 type->field (field_nr).set_type (field_type);
5605 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5606 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5607 type->set_num_fields (type->num_fields () + 1);
5610 /* Special version of append_flags_type_field to add a flag field.
5611 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5612 position BITPOS is called NAME. */
5615 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5617 struct gdbarch *gdbarch = get_type_arch (type);
5619 append_flags_type_field (type, bitpos, 1,
5620 builtin_type (gdbarch)->builtin_bool,
5624 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5625 specified by CODE) associated with GDBARCH. NAME is the type name. */
5628 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5629 enum type_code code)
5633 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5634 t = arch_type (gdbarch, code, 0, NULL);
5636 INIT_CPLUS_SPECIFIC (t);
5640 /* Add new field with name NAME and type FIELD to composite type T.
5641 Do not set the field's position or adjust the type's length;
5642 the caller should do so. Return the new field. */
5645 append_composite_type_field_raw (struct type *t, const char *name,
5650 t->set_num_fields (t->num_fields () + 1);
5651 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5653 f = &t->field (t->num_fields () - 1);
5654 memset (f, 0, sizeof f[0]);
5655 f[0].set_type (field);
5656 FIELD_NAME (f[0]) = name;
5660 /* Add new field with name NAME and type FIELD to composite type T.
5661 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5664 append_composite_type_field_aligned (struct type *t, const char *name,
5665 struct type *field, int alignment)
5667 struct field *f = append_composite_type_field_raw (t, name, field);
5669 if (t->code () == TYPE_CODE_UNION)
5671 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5672 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5674 else if (t->code () == TYPE_CODE_STRUCT)
5676 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5677 if (t->num_fields () > 1)
5679 SET_FIELD_BITPOS (f[0],
5680 (FIELD_BITPOS (f[-1])
5681 + (TYPE_LENGTH (f[-1].type ())
5682 * TARGET_CHAR_BIT)));
5688 alignment *= TARGET_CHAR_BIT;
5689 left = FIELD_BITPOS (f[0]) % alignment;
5693 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5694 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5701 /* Add new field with name NAME and type FIELD to composite type T. */
5704 append_composite_type_field (struct type *t, const char *name,
5707 append_composite_type_field_aligned (t, name, field, 0);
5710 static struct gdbarch_data *gdbtypes_data;
5712 const struct builtin_type *
5713 builtin_type (struct gdbarch *gdbarch)
5715 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5719 gdbtypes_post_init (struct gdbarch *gdbarch)
5721 struct builtin_type *builtin_type
5722 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5725 builtin_type->builtin_void
5726 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5727 builtin_type->builtin_char
5728 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5729 !gdbarch_char_signed (gdbarch), "char");
5730 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5731 builtin_type->builtin_signed_char
5732 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5734 builtin_type->builtin_unsigned_char
5735 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5736 1, "unsigned char");
5737 builtin_type->builtin_short
5738 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5740 builtin_type->builtin_unsigned_short
5741 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5742 1, "unsigned short");
5743 builtin_type->builtin_int
5744 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5746 builtin_type->builtin_unsigned_int
5747 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5749 builtin_type->builtin_long
5750 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5752 builtin_type->builtin_unsigned_long
5753 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5754 1, "unsigned long");
5755 builtin_type->builtin_long_long
5756 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5758 builtin_type->builtin_unsigned_long_long
5759 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5760 1, "unsigned long long");
5761 builtin_type->builtin_half
5762 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5763 "half", gdbarch_half_format (gdbarch));
5764 builtin_type->builtin_float
5765 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5766 "float", gdbarch_float_format (gdbarch));
5767 builtin_type->builtin_bfloat16
5768 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
5769 "bfloat16", gdbarch_bfloat16_format (gdbarch));
5770 builtin_type->builtin_double
5771 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5772 "double", gdbarch_double_format (gdbarch));
5773 builtin_type->builtin_long_double
5774 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5775 "long double", gdbarch_long_double_format (gdbarch));
5776 builtin_type->builtin_complex
5777 = init_complex_type ("complex", builtin_type->builtin_float);
5778 builtin_type->builtin_double_complex
5779 = init_complex_type ("double complex", builtin_type->builtin_double);
5780 builtin_type->builtin_string
5781 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5782 builtin_type->builtin_bool
5783 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5785 /* The following three are about decimal floating point types, which
5786 are 32-bits, 64-bits and 128-bits respectively. */
5787 builtin_type->builtin_decfloat
5788 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5789 builtin_type->builtin_decdouble
5790 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5791 builtin_type->builtin_declong
5792 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5794 /* "True" character types. */
5795 builtin_type->builtin_true_char
5796 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5797 builtin_type->builtin_true_unsigned_char
5798 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5800 /* Fixed-size integer types. */
5801 builtin_type->builtin_int0
5802 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5803 builtin_type->builtin_int8
5804 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5805 builtin_type->builtin_uint8
5806 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5807 builtin_type->builtin_int16
5808 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5809 builtin_type->builtin_uint16
5810 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5811 builtin_type->builtin_int24
5812 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5813 builtin_type->builtin_uint24
5814 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5815 builtin_type->builtin_int32
5816 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5817 builtin_type->builtin_uint32
5818 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5819 builtin_type->builtin_int64
5820 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5821 builtin_type->builtin_uint64
5822 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5823 builtin_type->builtin_int128
5824 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5825 builtin_type->builtin_uint128
5826 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5827 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5828 TYPE_INSTANCE_FLAG_NOTTEXT;
5829 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5830 TYPE_INSTANCE_FLAG_NOTTEXT;
5832 /* Wide character types. */
5833 builtin_type->builtin_char16
5834 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5835 builtin_type->builtin_char32
5836 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5837 builtin_type->builtin_wchar
5838 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5839 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5841 /* Default data/code pointer types. */
5842 builtin_type->builtin_data_ptr
5843 = lookup_pointer_type (builtin_type->builtin_void);
5844 builtin_type->builtin_func_ptr
5845 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5846 builtin_type->builtin_func_func
5847 = lookup_function_type (builtin_type->builtin_func_ptr);
5849 /* This type represents a GDB internal function. */
5850 builtin_type->internal_fn
5851 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5852 "<internal function>");
5854 /* This type represents an xmethod. */
5855 builtin_type->xmethod
5856 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5858 return builtin_type;
5861 /* This set of objfile-based types is intended to be used by symbol
5862 readers as basic types. */
5864 static const struct objfile_key<struct objfile_type,
5865 gdb::noop_deleter<struct objfile_type>>
5868 const struct objfile_type *
5869 objfile_type (struct objfile *objfile)
5871 struct gdbarch *gdbarch;
5872 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5875 return objfile_type;
5877 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5878 1, struct objfile_type);
5880 /* Use the objfile architecture to determine basic type properties. */
5881 gdbarch = objfile->arch ();
5884 objfile_type->builtin_void
5885 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5886 objfile_type->builtin_char
5887 = init_integer_type (objfile, TARGET_CHAR_BIT,
5888 !gdbarch_char_signed (gdbarch), "char");
5889 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5890 objfile_type->builtin_signed_char
5891 = init_integer_type (objfile, TARGET_CHAR_BIT,
5893 objfile_type->builtin_unsigned_char
5894 = init_integer_type (objfile, TARGET_CHAR_BIT,
5895 1, "unsigned char");
5896 objfile_type->builtin_short
5897 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5899 objfile_type->builtin_unsigned_short
5900 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5901 1, "unsigned short");
5902 objfile_type->builtin_int
5903 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5905 objfile_type->builtin_unsigned_int
5906 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5908 objfile_type->builtin_long
5909 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5911 objfile_type->builtin_unsigned_long
5912 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5913 1, "unsigned long");
5914 objfile_type->builtin_long_long
5915 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5917 objfile_type->builtin_unsigned_long_long
5918 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5919 1, "unsigned long long");
5920 objfile_type->builtin_float
5921 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5922 "float", gdbarch_float_format (gdbarch));
5923 objfile_type->builtin_double
5924 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5925 "double", gdbarch_double_format (gdbarch));
5926 objfile_type->builtin_long_double
5927 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5928 "long double", gdbarch_long_double_format (gdbarch));
5930 /* This type represents a type that was unrecognized in symbol read-in. */
5931 objfile_type->builtin_error
5932 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5934 /* The following set of types is used for symbols with no
5935 debug information. */
5936 objfile_type->nodebug_text_symbol
5937 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5938 "<text variable, no debug info>");
5939 objfile_type->nodebug_text_gnu_ifunc_symbol
5940 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5941 "<text gnu-indirect-function variable, no debug info>");
5942 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5943 objfile_type->nodebug_got_plt_symbol
5944 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5945 "<text from jump slot in .got.plt, no debug info>",
5946 objfile_type->nodebug_text_symbol);
5947 objfile_type->nodebug_data_symbol
5948 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5949 objfile_type->nodebug_unknown_symbol
5950 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5951 objfile_type->nodebug_tls_symbol
5952 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5954 /* NOTE: on some targets, addresses and pointers are not necessarily
5958 - gdb's `struct type' always describes the target's
5960 - gdb's `struct value' objects should always hold values in
5962 - gdb's CORE_ADDR values are addresses in the unified virtual
5963 address space that the assembler and linker work with. Thus,
5964 since target_read_memory takes a CORE_ADDR as an argument, it
5965 can access any memory on the target, even if the processor has
5966 separate code and data address spaces.
5968 In this context, objfile_type->builtin_core_addr is a bit odd:
5969 it's a target type for a value the target will never see. It's
5970 only used to hold the values of (typeless) linker symbols, which
5971 are indeed in the unified virtual address space. */
5973 objfile_type->builtin_core_addr
5974 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5977 objfile_type_data.set (objfile, objfile_type);
5978 return objfile_type;
5981 void _initialize_gdbtypes ();
5983 _initialize_gdbtypes ()
5985 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5987 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5988 _("Set debugging of C++ overloading."),
5989 _("Show debugging of C++ overloading."),
5990 _("When enabled, ranking of the "
5991 "functions is displayed."),
5993 show_overload_debug,
5994 &setdebuglist, &showdebuglist);
5996 /* Add user knob for controlling resolution of opaque types. */
5997 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5998 &opaque_type_resolution,
5999 _("Set resolution of opaque struct/class/union"
6000 " types (if set before loading symbols)."),
6001 _("Show resolution of opaque struct/class/union"
6002 " types (if set before loading symbols)."),
6004 show_opaque_type_resolution,
6005 &setlist, &showlist);
6007 /* Add an option to permit non-strict type checking. */
6008 add_setshow_boolean_cmd ("type", class_support,
6009 &strict_type_checking,
6010 _("Set strict type checking."),
6011 _("Show strict type checking."),
6013 show_strict_type_checking,
6014 &setchecklist, &showchecklist);