1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "target-dcache.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
45 #include "target-debug.h"
47 #include "event-top.h"
49 #include "byte-vector.h"
51 static void info_target_command (char *, int);
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55 static void default_terminal_info (struct target_ops *, const char *, int);
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
68 static int default_follow_fork (struct target_ops *self, int follow_child,
71 static void default_mourn_inferior (struct target_ops *self);
73 static int default_search_memory (struct target_ops *ops,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
78 CORE_ADDR *found_addrp);
80 static int default_verify_memory (struct target_ops *self,
82 CORE_ADDR memaddr, ULONGEST size);
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
89 static int return_zero (struct target_ops *);
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
93 static struct target_ops *find_default_run_target (const char *);
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
105 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
110 static struct target_ops debug_target;
112 #include "target-delegates.c"
114 static void init_dummy_target (void);
116 static void update_current_target (void);
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
123 /* The initial current target, so that there is always a semi-valid
126 static struct target_ops dummy_target;
128 /* Top of target stack. */
130 static struct target_ops *target_stack;
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
135 struct target_ops current_target;
137 /* Command list for target. */
139 static struct cmd_list_element *targetlist = NULL;
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
144 static int trust_readonly = 0;
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
149 static int show_memory_breakpoints = 0;
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
155 int may_write_registers = 1;
157 int may_write_memory = 1;
159 int may_insert_breakpoints = 1;
161 int may_insert_tracepoints = 1;
163 int may_insert_fast_tracepoints = 1;
167 /* Non-zero if we want to see trace of target level stuff. */
169 static unsigned int targetdebug = 0;
172 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
174 update_current_target ();
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 static void setup_target_debug (void);
186 /* The user just typed 'target' without the name of a target. */
189 target_command (const char *arg, int from_tty)
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
195 /* Default target_has_* methods for process_stratum targets. */
198 default_child_has_all_memory (struct target_ops *ops)
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
208 default_child_has_memory (struct target_ops *ops)
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
218 default_child_has_stack (struct target_ops *ops)
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
228 default_child_has_registers (struct target_ops *ops)
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
240 /* If there's no thread selected, then we can't make it run through
242 if (ptid_equal (the_ptid, null_ptid))
250 target_has_all_memory_1 (void)
252 struct target_ops *t;
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
262 target_has_memory_1 (void)
264 struct target_ops *t;
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
274 target_has_stack_1 (void)
276 struct target_ops *t;
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
286 target_has_registers_1 (void)
288 struct target_ops *t;
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
298 target_has_execution_1 (ptid_t the_ptid)
300 struct target_ops *t;
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
310 target_has_execution_current (void)
312 return target_has_execution_1 (inferior_ptid);
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
319 complete_target_initialization (struct target_ops *t)
321 /* Provide default values for all "must have" methods. */
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
344 install_delegators (t);
347 /* This is used to implement the various target commands. */
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_open (args, from_tty);
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
373 struct cmd_list_element *c;
375 complete_target_initialization (t);
377 VEC_safe_push (target_ops_p, target_structs, t);
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
394 /* Add a possible target architecture to the list. */
397 add_target (struct target_ops *t)
399 add_target_with_completer (t, NULL);
405 add_deprecated_target_alias (struct target_ops *t, const char *alias)
407 struct cmd_list_element *c;
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
412 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
424 current_target.to_kill (¤t_target);
428 target_load (const char *arg, int from_tty)
430 target_dcache_invalidate ();
431 (*current_target.to_load) (¤t_target, arg, from_tty);
436 enum target_terminal::terminal_state target_terminal::terminal_state
437 = target_terminal::terminal_is_ours;
439 /* See target/target.h. */
442 target_terminal::init (void)
444 (*current_target.to_terminal_init) (¤t_target);
446 terminal_state = terminal_is_ours;
449 /* See target/target.h. */
452 target_terminal::inferior (void)
454 struct ui *ui = current_ui;
456 /* A background resume (``run&'') should leave GDB in control of the
458 if (ui->prompt_state != PROMPT_BLOCKED)
461 /* Since we always run the inferior in the main console (unless "set
462 inferior-tty" is in effect), when some UI other than the main one
463 calls target_terminal::inferior, then we leave the main UI's
464 terminal settings as is. */
468 if (terminal_state == terminal_is_inferior)
471 /* If GDB is resuming the inferior in the foreground, install
472 inferior's terminal modes. */
473 (*current_target.to_terminal_inferior) (¤t_target);
474 terminal_state = terminal_is_inferior;
476 /* If the user hit C-c before, pretend that it was hit right
478 if (check_quit_flag ())
479 target_pass_ctrlc ();
482 /* See target/target.h. */
485 target_terminal::ours ()
487 struct ui *ui = current_ui;
489 /* See target_terminal::inferior. */
493 if (terminal_state == terminal_is_ours)
496 (*current_target.to_terminal_ours) (¤t_target);
497 terminal_state = terminal_is_ours;
500 /* See target/target.h. */
503 target_terminal::ours_for_output ()
505 struct ui *ui = current_ui;
507 /* See target_terminal::inferior. */
511 if (terminal_state != terminal_is_inferior)
513 (*current_target.to_terminal_ours_for_output) (¤t_target);
514 terminal_state = terminal_is_ours_for_output;
517 /* See target/target.h. */
520 target_terminal::info (const char *arg, int from_tty)
522 (*current_target.to_terminal_info) (¤t_target, arg, from_tty);
528 target_supports_terminal_ours (void)
530 struct target_ops *t;
532 for (t = current_target.beneath; t != NULL; t = t->beneath)
534 if (t->to_terminal_ours != delegate_terminal_ours
535 && t->to_terminal_ours != tdefault_terminal_ours)
545 error (_("You can't do that when your target is `%s'"),
546 current_target.to_shortname);
552 error (_("You can't do that without a process to debug."));
556 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
558 printf_unfiltered (_("No saved terminal information.\n"));
561 /* A default implementation for the to_get_ada_task_ptid target method.
563 This function builds the PTID by using both LWP and TID as part of
564 the PTID lwp and tid elements. The pid used is the pid of the
568 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
570 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
573 static enum exec_direction_kind
574 default_execution_direction (struct target_ops *self)
576 if (!target_can_execute_reverse)
578 else if (!target_can_async_p ())
581 gdb_assert_not_reached ("\
582 to_execution_direction must be implemented for reverse async");
585 /* Go through the target stack from top to bottom, copying over zero
586 entries in current_target, then filling in still empty entries. In
587 effect, we are doing class inheritance through the pushed target
590 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
591 is currently implemented, is that it discards any knowledge of
592 which target an inherited method originally belonged to.
593 Consequently, new new target methods should instead explicitly and
594 locally search the target stack for the target that can handle the
598 update_current_target (void)
600 struct target_ops *t;
602 /* First, reset current's contents. */
603 memset (¤t_target, 0, sizeof (current_target));
605 /* Install the delegators. */
606 install_delegators (¤t_target);
608 current_target.to_stratum = target_stack->to_stratum;
610 #define INHERIT(FIELD, TARGET) \
611 if (!current_target.FIELD) \
612 current_target.FIELD = (TARGET)->FIELD
614 /* Do not add any new INHERITs here. Instead, use the delegation
615 mechanism provided by make-target-delegates. */
616 for (t = target_stack; t; t = t->beneath)
618 INHERIT (to_shortname, t);
619 INHERIT (to_longname, t);
620 INHERIT (to_attach_no_wait, t);
621 INHERIT (to_have_steppable_watchpoint, t);
622 INHERIT (to_have_continuable_watchpoint, t);
623 INHERIT (to_has_thread_control, t);
627 /* Finally, position the target-stack beneath the squashed
628 "current_target". That way code looking for a non-inherited
629 target method can quickly and simply find it. */
630 current_target.beneath = target_stack;
633 setup_target_debug ();
636 /* Push a new target type into the stack of the existing target accessors,
637 possibly superseding some of the existing accessors.
639 Rather than allow an empty stack, we always have the dummy target at
640 the bottom stratum, so we can call the function vectors without
644 push_target (struct target_ops *t)
646 struct target_ops **cur;
648 /* Check magic number. If wrong, it probably means someone changed
649 the struct definition, but not all the places that initialize one. */
650 if (t->to_magic != OPS_MAGIC)
652 fprintf_unfiltered (gdb_stderr,
653 "Magic number of %s target struct wrong\n",
655 internal_error (__FILE__, __LINE__,
656 _("failed internal consistency check"));
659 /* Find the proper stratum to install this target in. */
660 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
662 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
666 /* If there's already targets at this stratum, remove them. */
667 /* FIXME: cagney/2003-10-15: I think this should be popping all
668 targets to CUR, and not just those at this stratum level. */
669 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
671 /* There's already something at this stratum level. Close it,
672 and un-hook it from the stack. */
673 struct target_ops *tmp = (*cur);
675 (*cur) = (*cur)->beneath;
680 /* We have removed all targets in our stratum, now add the new one. */
684 update_current_target ();
687 /* Remove a target_ops vector from the stack, wherever it may be.
688 Return how many times it was removed (0 or 1). */
691 unpush_target (struct target_ops *t)
693 struct target_ops **cur;
694 struct target_ops *tmp;
696 if (t->to_stratum == dummy_stratum)
697 internal_error (__FILE__, __LINE__,
698 _("Attempt to unpush the dummy target"));
700 /* Look for the specified target. Note that we assume that a target
701 can only occur once in the target stack. */
703 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
709 /* If we don't find target_ops, quit. Only open targets should be
714 /* Unchain the target. */
716 (*cur) = (*cur)->beneath;
719 update_current_target ();
721 /* Finally close the target. Note we do this after unchaining, so
722 any target method calls from within the target_close
723 implementation don't end up in T anymore. */
729 /* Unpush TARGET and assert that it worked. */
732 unpush_target_and_assert (struct target_ops *target)
734 if (!unpush_target (target))
736 fprintf_unfiltered (gdb_stderr,
737 "pop_all_targets couldn't find target %s\n",
738 target->to_shortname);
739 internal_error (__FILE__, __LINE__,
740 _("failed internal consistency check"));
745 pop_all_targets_above (enum strata above_stratum)
747 while ((int) (current_target.to_stratum) > (int) above_stratum)
748 unpush_target_and_assert (target_stack);
754 pop_all_targets_at_and_above (enum strata stratum)
756 while ((int) (current_target.to_stratum) >= (int) stratum)
757 unpush_target_and_assert (target_stack);
761 pop_all_targets (void)
763 pop_all_targets_above (dummy_stratum);
766 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
769 target_is_pushed (struct target_ops *t)
771 struct target_ops *cur;
773 /* Check magic number. If wrong, it probably means someone changed
774 the struct definition, but not all the places that initialize one. */
775 if (t->to_magic != OPS_MAGIC)
777 fprintf_unfiltered (gdb_stderr,
778 "Magic number of %s target struct wrong\n",
780 internal_error (__FILE__, __LINE__,
781 _("failed internal consistency check"));
784 for (cur = target_stack; cur != NULL; cur = cur->beneath)
791 /* Default implementation of to_get_thread_local_address. */
794 generic_tls_error (void)
796 throw_error (TLS_GENERIC_ERROR,
797 _("Cannot find thread-local variables on this target"));
800 /* Using the objfile specified in OBJFILE, find the address for the
801 current thread's thread-local storage with offset OFFSET. */
803 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
805 volatile CORE_ADDR addr = 0;
806 struct target_ops *target = ¤t_target;
808 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
810 ptid_t ptid = inferior_ptid;
816 /* Fetch the load module address for this objfile. */
817 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
820 addr = target->to_get_thread_local_address (target, ptid,
823 /* If an error occurred, print TLS related messages here. Otherwise,
824 throw the error to some higher catcher. */
825 CATCH (ex, RETURN_MASK_ALL)
827 int objfile_is_library = (objfile->flags & OBJF_SHARED);
831 case TLS_NO_LIBRARY_SUPPORT_ERROR:
832 error (_("Cannot find thread-local variables "
833 "in this thread library."));
835 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
836 if (objfile_is_library)
837 error (_("Cannot find shared library `%s' in dynamic"
838 " linker's load module list"), objfile_name (objfile));
840 error (_("Cannot find executable file `%s' in dynamic"
841 " linker's load module list"), objfile_name (objfile));
843 case TLS_NOT_ALLOCATED_YET_ERROR:
844 if (objfile_is_library)
845 error (_("The inferior has not yet allocated storage for"
846 " thread-local variables in\n"
847 "the shared library `%s'\n"
849 objfile_name (objfile), target_pid_to_str (ptid));
851 error (_("The inferior has not yet allocated storage for"
852 " thread-local variables in\n"
853 "the executable `%s'\n"
855 objfile_name (objfile), target_pid_to_str (ptid));
857 case TLS_GENERIC_ERROR:
858 if (objfile_is_library)
859 error (_("Cannot find thread-local storage for %s, "
860 "shared library %s:\n%s"),
861 target_pid_to_str (ptid),
862 objfile_name (objfile), ex.message);
864 error (_("Cannot find thread-local storage for %s, "
865 "executable file %s:\n%s"),
866 target_pid_to_str (ptid),
867 objfile_name (objfile), ex.message);
870 throw_exception (ex);
876 /* It wouldn't be wrong here to try a gdbarch method, too; finding
877 TLS is an ABI-specific thing. But we don't do that yet. */
879 error (_("Cannot find thread-local variables on this target"));
885 target_xfer_status_to_string (enum target_xfer_status status)
887 #define CASE(X) case X: return #X
890 CASE(TARGET_XFER_E_IO);
891 CASE(TARGET_XFER_UNAVAILABLE);
900 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
902 /* target_read_string -- read a null terminated string, up to LEN bytes,
903 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
904 Set *STRING to a pointer to malloc'd memory containing the data; the caller
905 is responsible for freeing it. Return the number of bytes successfully
909 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
915 int buffer_allocated;
917 unsigned int nbytes_read = 0;
921 /* Small for testing. */
922 buffer_allocated = 4;
923 buffer = (char *) xmalloc (buffer_allocated);
928 tlen = MIN (len, 4 - (memaddr & 3));
929 offset = memaddr & 3;
931 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
934 /* The transfer request might have crossed the boundary to an
935 unallocated region of memory. Retry the transfer, requesting
939 errcode = target_read_memory (memaddr, buf, 1);
944 if (bufptr - buffer + tlen > buffer_allocated)
948 bytes = bufptr - buffer;
949 buffer_allocated *= 2;
950 buffer = (char *) xrealloc (buffer, buffer_allocated);
951 bufptr = buffer + bytes;
954 for (i = 0; i < tlen; i++)
956 *bufptr++ = buf[i + offset];
957 if (buf[i + offset] == '\000')
959 nbytes_read += i + 1;
975 struct target_section_table *
976 target_get_section_table (struct target_ops *target)
978 return (*target->to_get_section_table) (target);
981 /* Find a section containing ADDR. */
983 struct target_section *
984 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
986 struct target_section_table *table = target_get_section_table (target);
987 struct target_section *secp;
992 for (secp = table->sections; secp < table->sections_end; secp++)
994 if (addr >= secp->addr && addr < secp->endaddr)
1001 /* Helper for the memory xfer routines. Checks the attributes of the
1002 memory region of MEMADDR against the read or write being attempted.
1003 If the access is permitted returns true, otherwise returns false.
1004 REGION_P is an optional output parameter. If not-NULL, it is
1005 filled with a pointer to the memory region of MEMADDR. REG_LEN
1006 returns LEN trimmed to the end of the region. This is how much the
1007 caller can continue requesting, if the access is permitted. A
1008 single xfer request must not straddle memory region boundaries. */
1011 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1012 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1013 struct mem_region **region_p)
1015 struct mem_region *region;
1017 region = lookup_mem_region (memaddr);
1019 if (region_p != NULL)
1022 switch (region->attrib.mode)
1025 if (writebuf != NULL)
1030 if (readbuf != NULL)
1035 /* We only support writing to flash during "load" for now. */
1036 if (writebuf != NULL)
1037 error (_("Writing to flash memory forbidden in this context"));
1044 /* region->hi == 0 means there's no upper bound. */
1045 if (memaddr + len < region->hi || region->hi == 0)
1048 *reg_len = region->hi - memaddr;
1053 /* Read memory from more than one valid target. A core file, for
1054 instance, could have some of memory but delegate other bits to
1055 the target below it. So, we must manually try all targets. */
1057 enum target_xfer_status
1058 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1059 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1060 ULONGEST *xfered_len)
1062 enum target_xfer_status res;
1066 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1067 readbuf, writebuf, memaddr, len,
1069 if (res == TARGET_XFER_OK)
1072 /* Stop if the target reports that the memory is not available. */
1073 if (res == TARGET_XFER_UNAVAILABLE)
1076 /* We want to continue past core files to executables, but not
1077 past a running target's memory. */
1078 if (ops->to_has_all_memory (ops))
1083 while (ops != NULL);
1085 /* The cache works at the raw memory level. Make sure the cache
1086 gets updated with raw contents no matter what kind of memory
1087 object was originally being written. Note we do write-through
1088 first, so that if it fails, we don't write to the cache contents
1089 that never made it to the target. */
1090 if (writebuf != NULL
1091 && !ptid_equal (inferior_ptid, null_ptid)
1092 && target_dcache_init_p ()
1093 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1095 DCACHE *dcache = target_dcache_get ();
1097 /* Note that writing to an area of memory which wasn't present
1098 in the cache doesn't cause it to be loaded in. */
1099 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1105 /* Perform a partial memory transfer.
1106 For docs see target.h, to_xfer_partial. */
1108 static enum target_xfer_status
1109 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1110 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1111 ULONGEST len, ULONGEST *xfered_len)
1113 enum target_xfer_status res;
1115 struct mem_region *region;
1116 struct inferior *inf;
1118 /* For accesses to unmapped overlay sections, read directly from
1119 files. Must do this first, as MEMADDR may need adjustment. */
1120 if (readbuf != NULL && overlay_debugging)
1122 struct obj_section *section = find_pc_overlay (memaddr);
1124 if (pc_in_unmapped_range (memaddr, section))
1126 struct target_section_table *table
1127 = target_get_section_table (ops);
1128 const char *section_name = section->the_bfd_section->name;
1130 memaddr = overlay_mapped_address (memaddr, section);
1131 return section_table_xfer_memory_partial (readbuf, writebuf,
1132 memaddr, len, xfered_len,
1134 table->sections_end,
1139 /* Try the executable files, if "trust-readonly-sections" is set. */
1140 if (readbuf != NULL && trust_readonly)
1142 struct target_section *secp;
1143 struct target_section_table *table;
1145 secp = target_section_by_addr (ops, memaddr);
1147 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1148 secp->the_bfd_section)
1151 table = target_get_section_table (ops);
1152 return section_table_xfer_memory_partial (readbuf, writebuf,
1153 memaddr, len, xfered_len,
1155 table->sections_end,
1160 /* Try GDB's internal data cache. */
1162 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
1164 return TARGET_XFER_E_IO;
1166 if (!ptid_equal (inferior_ptid, null_ptid))
1167 inf = find_inferior_ptid (inferior_ptid);
1173 /* The dcache reads whole cache lines; that doesn't play well
1174 with reading from a trace buffer, because reading outside of
1175 the collected memory range fails. */
1176 && get_traceframe_number () == -1
1177 && (region->attrib.cache
1178 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1179 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1181 DCACHE *dcache = target_dcache_get_or_init ();
1183 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1184 reg_len, xfered_len);
1187 /* If none of those methods found the memory we wanted, fall back
1188 to a target partial transfer. Normally a single call to
1189 to_xfer_partial is enough; if it doesn't recognize an object
1190 it will call the to_xfer_partial of the next target down.
1191 But for memory this won't do. Memory is the only target
1192 object which can be read from more than one valid target.
1193 A core file, for instance, could have some of memory but
1194 delegate other bits to the target below it. So, we must
1195 manually try all targets. */
1197 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1200 /* If we still haven't got anything, return the last error. We
1205 /* Perform a partial memory transfer. For docs see target.h,
1208 static enum target_xfer_status
1209 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1210 gdb_byte *readbuf, const gdb_byte *writebuf,
1211 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1213 enum target_xfer_status res;
1215 /* Zero length requests are ok and require no work. */
1217 return TARGET_XFER_EOF;
1219 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1220 breakpoint insns, thus hiding out from higher layers whether
1221 there are software breakpoints inserted in the code stream. */
1222 if (readbuf != NULL)
1224 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1227 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1228 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1232 /* A large write request is likely to be partially satisfied
1233 by memory_xfer_partial_1. We will continually malloc
1234 and free a copy of the entire write request for breakpoint
1235 shadow handling even though we only end up writing a small
1236 subset of it. Cap writes to a limit specified by the target
1237 to mitigate this. */
1238 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1240 gdb::byte_vector buf (writebuf, writebuf + len);
1241 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1242 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1249 scoped_restore_tmpl<int>
1250 make_scoped_restore_show_memory_breakpoints (int show)
1252 return make_scoped_restore (&show_memory_breakpoints, show);
1255 /* For docs see target.h, to_xfer_partial. */
1257 enum target_xfer_status
1258 target_xfer_partial (struct target_ops *ops,
1259 enum target_object object, const char *annex,
1260 gdb_byte *readbuf, const gdb_byte *writebuf,
1261 ULONGEST offset, ULONGEST len,
1262 ULONGEST *xfered_len)
1264 enum target_xfer_status retval;
1266 gdb_assert (ops->to_xfer_partial != NULL);
1268 /* Transfer is done when LEN is zero. */
1270 return TARGET_XFER_EOF;
1272 if (writebuf && !may_write_memory)
1273 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1274 core_addr_to_string_nz (offset), plongest (len));
1278 /* If this is a memory transfer, let the memory-specific code
1279 have a look at it instead. Memory transfers are more
1281 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1282 || object == TARGET_OBJECT_CODE_MEMORY)
1283 retval = memory_xfer_partial (ops, object, readbuf,
1284 writebuf, offset, len, xfered_len);
1285 else if (object == TARGET_OBJECT_RAW_MEMORY)
1287 /* Skip/avoid accessing the target if the memory region
1288 attributes block the access. Check this here instead of in
1289 raw_memory_xfer_partial as otherwise we'd end up checking
1290 this twice in the case of the memory_xfer_partial path is
1291 taken; once before checking the dcache, and another in the
1292 tail call to raw_memory_xfer_partial. */
1293 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1295 return TARGET_XFER_E_IO;
1297 /* Request the normal memory object from other layers. */
1298 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1302 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1303 writebuf, offset, len, xfered_len);
1307 const unsigned char *myaddr = NULL;
1309 fprintf_unfiltered (gdb_stdlog,
1310 "%s:target_xfer_partial "
1311 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1314 (annex ? annex : "(null)"),
1315 host_address_to_string (readbuf),
1316 host_address_to_string (writebuf),
1317 core_addr_to_string_nz (offset),
1318 pulongest (len), retval,
1319 pulongest (*xfered_len));
1325 if (retval == TARGET_XFER_OK && myaddr != NULL)
1329 fputs_unfiltered (", bytes =", gdb_stdlog);
1330 for (i = 0; i < *xfered_len; i++)
1332 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1334 if (targetdebug < 2 && i > 0)
1336 fprintf_unfiltered (gdb_stdlog, " ...");
1339 fprintf_unfiltered (gdb_stdlog, "\n");
1342 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1346 fputc_unfiltered ('\n', gdb_stdlog);
1349 /* Check implementations of to_xfer_partial update *XFERED_LEN
1350 properly. Do assertion after printing debug messages, so that we
1351 can find more clues on assertion failure from debugging messages. */
1352 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1353 gdb_assert (*xfered_len > 0);
1358 /* Read LEN bytes of target memory at address MEMADDR, placing the
1359 results in GDB's memory at MYADDR. Returns either 0 for success or
1360 -1 if any error occurs.
1362 If an error occurs, no guarantee is made about the contents of the data at
1363 MYADDR. In particular, the caller should not depend upon partial reads
1364 filling the buffer with good data. There is no way for the caller to know
1365 how much good data might have been transfered anyway. Callers that can
1366 deal with partial reads should call target_read (which will retry until
1367 it makes no progress, and then return how much was transferred). */
1370 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1372 /* Dispatch to the topmost target, not the flattened current_target.
1373 Memory accesses check target->to_has_(all_)memory, and the
1374 flattened target doesn't inherit those. */
1375 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1376 myaddr, memaddr, len) == len)
1382 /* See target/target.h. */
1385 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1390 r = target_read_memory (memaddr, buf, sizeof buf);
1393 *result = extract_unsigned_integer (buf, sizeof buf,
1394 gdbarch_byte_order (target_gdbarch ()));
1398 /* Like target_read_memory, but specify explicitly that this is a read
1399 from the target's raw memory. That is, this read bypasses the
1400 dcache, breakpoint shadowing, etc. */
1403 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1405 /* See comment in target_read_memory about why the request starts at
1406 current_target.beneath. */
1407 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1408 myaddr, memaddr, len) == len)
1414 /* Like target_read_memory, but specify explicitly that this is a read from
1415 the target's stack. This may trigger different cache behavior. */
1418 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1420 /* See comment in target_read_memory about why the request starts at
1421 current_target.beneath. */
1422 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1423 myaddr, memaddr, len) == len)
1429 /* Like target_read_memory, but specify explicitly that this is a read from
1430 the target's code. This may trigger different cache behavior. */
1433 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1435 /* See comment in target_read_memory about why the request starts at
1436 current_target.beneath. */
1437 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1438 myaddr, memaddr, len) == len)
1444 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1445 Returns either 0 for success or -1 if any error occurs. If an
1446 error occurs, no guarantee is made about how much data got written.
1447 Callers that can deal with partial writes should call
1451 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1453 /* See comment in target_read_memory about why the request starts at
1454 current_target.beneath. */
1455 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1456 myaddr, memaddr, len) == len)
1462 /* Write LEN bytes from MYADDR to target raw memory at address
1463 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1464 If an error occurs, no guarantee is made about how much data got
1465 written. Callers that can deal with partial writes should call
1469 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1471 /* See comment in target_read_memory about why the request starts at
1472 current_target.beneath. */
1473 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1474 myaddr, memaddr, len) == len)
1480 /* Fetch the target's memory map. */
1483 target_memory_map (void)
1485 VEC(mem_region_s) *result;
1486 struct mem_region *last_one, *this_one;
1488 result = current_target.to_memory_map (¤t_target);
1492 qsort (VEC_address (mem_region_s, result),
1493 VEC_length (mem_region_s, result),
1494 sizeof (struct mem_region), mem_region_cmp);
1496 /* Check that regions do not overlap. Simultaneously assign
1497 a numbering for the "mem" commands to use to refer to
1500 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1502 this_one->number = ix;
1504 if (last_one && last_one->hi > this_one->lo)
1506 warning (_("Overlapping regions in memory map: ignoring"));
1507 VEC_free (mem_region_s, result);
1510 last_one = this_one;
1517 target_flash_erase (ULONGEST address, LONGEST length)
1519 current_target.to_flash_erase (¤t_target, address, length);
1523 target_flash_done (void)
1525 current_target.to_flash_done (¤t_target);
1529 show_trust_readonly (struct ui_file *file, int from_tty,
1530 struct cmd_list_element *c, const char *value)
1532 fprintf_filtered (file,
1533 _("Mode for reading from readonly sections is %s.\n"),
1537 /* Target vector read/write partial wrapper functions. */
1539 static enum target_xfer_status
1540 target_read_partial (struct target_ops *ops,
1541 enum target_object object,
1542 const char *annex, gdb_byte *buf,
1543 ULONGEST offset, ULONGEST len,
1544 ULONGEST *xfered_len)
1546 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1550 static enum target_xfer_status
1551 target_write_partial (struct target_ops *ops,
1552 enum target_object object,
1553 const char *annex, const gdb_byte *buf,
1554 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1556 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1560 /* Wrappers to perform the full transfer. */
1562 /* For docs on target_read see target.h. */
1565 target_read (struct target_ops *ops,
1566 enum target_object object,
1567 const char *annex, gdb_byte *buf,
1568 ULONGEST offset, LONGEST len)
1570 LONGEST xfered_total = 0;
1573 /* If we are reading from a memory object, find the length of an addressable
1574 unit for that architecture. */
1575 if (object == TARGET_OBJECT_MEMORY
1576 || object == TARGET_OBJECT_STACK_MEMORY
1577 || object == TARGET_OBJECT_CODE_MEMORY
1578 || object == TARGET_OBJECT_RAW_MEMORY)
1579 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1581 while (xfered_total < len)
1583 ULONGEST xfered_partial;
1584 enum target_xfer_status status;
1586 status = target_read_partial (ops, object, annex,
1587 buf + xfered_total * unit_size,
1588 offset + xfered_total, len - xfered_total,
1591 /* Call an observer, notifying them of the xfer progress? */
1592 if (status == TARGET_XFER_EOF)
1593 return xfered_total;
1594 else if (status == TARGET_XFER_OK)
1596 xfered_total += xfered_partial;
1600 return TARGET_XFER_E_IO;
1606 /* Assuming that the entire [begin, end) range of memory cannot be
1607 read, try to read whatever subrange is possible to read.
1609 The function returns, in RESULT, either zero or one memory block.
1610 If there's a readable subrange at the beginning, it is completely
1611 read and returned. Any further readable subrange will not be read.
1612 Otherwise, if there's a readable subrange at the end, it will be
1613 completely read and returned. Any readable subranges before it
1614 (obviously, not starting at the beginning), will be ignored. In
1615 other cases -- either no readable subrange, or readable subrange(s)
1616 that is neither at the beginning, or end, nothing is returned.
1618 The purpose of this function is to handle a read across a boundary
1619 of accessible memory in a case when memory map is not available.
1620 The above restrictions are fine for this case, but will give
1621 incorrect results if the memory is 'patchy'. However, supporting
1622 'patchy' memory would require trying to read every single byte,
1623 and it seems unacceptable solution. Explicit memory map is
1624 recommended for this case -- and target_read_memory_robust will
1625 take care of reading multiple ranges then. */
1628 read_whatever_is_readable (struct target_ops *ops,
1629 const ULONGEST begin, const ULONGEST end,
1631 std::vector<memory_read_result> *result)
1633 ULONGEST current_begin = begin;
1634 ULONGEST current_end = end;
1636 ULONGEST xfered_len;
1638 /* If we previously failed to read 1 byte, nothing can be done here. */
1639 if (end - begin <= 1)
1642 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1644 /* Check that either first or the last byte is readable, and give up
1645 if not. This heuristic is meant to permit reading accessible memory
1646 at the boundary of accessible region. */
1647 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1648 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1653 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1654 buf.get () + (end - begin) - 1, end - 1, 1,
1655 &xfered_len) == TARGET_XFER_OK)
1663 /* Loop invariant is that the [current_begin, current_end) was previously
1664 found to be not readable as a whole.
1666 Note loop condition -- if the range has 1 byte, we can't divide the range
1667 so there's no point trying further. */
1668 while (current_end - current_begin > 1)
1670 ULONGEST first_half_begin, first_half_end;
1671 ULONGEST second_half_begin, second_half_end;
1673 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1677 first_half_begin = current_begin;
1678 first_half_end = middle;
1679 second_half_begin = middle;
1680 second_half_end = current_end;
1684 first_half_begin = middle;
1685 first_half_end = current_end;
1686 second_half_begin = current_begin;
1687 second_half_end = middle;
1690 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1691 buf.get () + (first_half_begin - begin) * unit_size,
1693 first_half_end - first_half_begin);
1695 if (xfer == first_half_end - first_half_begin)
1697 /* This half reads up fine. So, the error must be in the
1699 current_begin = second_half_begin;
1700 current_end = second_half_end;
1704 /* This half is not readable. Because we've tried one byte, we
1705 know some part of this half if actually readable. Go to the next
1706 iteration to divide again and try to read.
1708 We don't handle the other half, because this function only tries
1709 to read a single readable subrange. */
1710 current_begin = first_half_begin;
1711 current_end = first_half_end;
1717 /* The [begin, current_begin) range has been read. */
1718 result->emplace_back (begin, current_end, std::move (buf));
1722 /* The [current_end, end) range has been read. */
1723 LONGEST region_len = end - current_end;
1725 gdb::unique_xmalloc_ptr<gdb_byte> data
1726 ((gdb_byte *) xmalloc (region_len * unit_size));
1727 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1728 region_len * unit_size);
1729 result->emplace_back (current_end, end, std::move (data));
1733 std::vector<memory_read_result>
1734 read_memory_robust (struct target_ops *ops,
1735 const ULONGEST offset, const LONGEST len)
1737 std::vector<memory_read_result> result;
1738 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1740 LONGEST xfered_total = 0;
1741 while (xfered_total < len)
1743 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1746 /* If there is no explicit region, a fake one should be created. */
1747 gdb_assert (region);
1749 if (region->hi == 0)
1750 region_len = len - xfered_total;
1752 region_len = region->hi - offset;
1754 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1756 /* Cannot read this region. Note that we can end up here only
1757 if the region is explicitly marked inaccessible, or
1758 'inaccessible-by-default' is in effect. */
1759 xfered_total += region_len;
1763 LONGEST to_read = std::min (len - xfered_total, region_len);
1764 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1765 ((gdb_byte *) xmalloc (to_read * unit_size));
1767 LONGEST xfered_partial =
1768 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1769 offset + xfered_total, to_read);
1770 /* Call an observer, notifying them of the xfer progress? */
1771 if (xfered_partial <= 0)
1773 /* Got an error reading full chunk. See if maybe we can read
1775 read_whatever_is_readable (ops, offset + xfered_total,
1776 offset + xfered_total + to_read,
1777 unit_size, &result);
1778 xfered_total += to_read;
1782 result.emplace_back (offset + xfered_total,
1783 offset + xfered_total + xfered_partial,
1784 std::move (buffer));
1785 xfered_total += xfered_partial;
1795 /* An alternative to target_write with progress callbacks. */
1798 target_write_with_progress (struct target_ops *ops,
1799 enum target_object object,
1800 const char *annex, const gdb_byte *buf,
1801 ULONGEST offset, LONGEST len,
1802 void (*progress) (ULONGEST, void *), void *baton)
1804 LONGEST xfered_total = 0;
1807 /* If we are writing to a memory object, find the length of an addressable
1808 unit for that architecture. */
1809 if (object == TARGET_OBJECT_MEMORY
1810 || object == TARGET_OBJECT_STACK_MEMORY
1811 || object == TARGET_OBJECT_CODE_MEMORY
1812 || object == TARGET_OBJECT_RAW_MEMORY)
1813 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1815 /* Give the progress callback a chance to set up. */
1817 (*progress) (0, baton);
1819 while (xfered_total < len)
1821 ULONGEST xfered_partial;
1822 enum target_xfer_status status;
1824 status = target_write_partial (ops, object, annex,
1825 buf + xfered_total * unit_size,
1826 offset + xfered_total, len - xfered_total,
1829 if (status != TARGET_XFER_OK)
1830 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1833 (*progress) (xfered_partial, baton);
1835 xfered_total += xfered_partial;
1841 /* For docs on target_write see target.h. */
1844 target_write (struct target_ops *ops,
1845 enum target_object object,
1846 const char *annex, const gdb_byte *buf,
1847 ULONGEST offset, LONGEST len)
1849 return target_write_with_progress (ops, object, annex, buf, offset, len,
1853 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1854 the size of the transferred data. PADDING additional bytes are
1855 available in *BUF_P. This is a helper function for
1856 target_read_alloc; see the declaration of that function for more
1860 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1861 const char *annex, gdb_byte **buf_p, int padding)
1863 size_t buf_alloc, buf_pos;
1866 /* This function does not have a length parameter; it reads the
1867 entire OBJECT). Also, it doesn't support objects fetched partly
1868 from one target and partly from another (in a different stratum,
1869 e.g. a core file and an executable). Both reasons make it
1870 unsuitable for reading memory. */
1871 gdb_assert (object != TARGET_OBJECT_MEMORY);
1873 /* Start by reading up to 4K at a time. The target will throttle
1874 this number down if necessary. */
1876 buf = (gdb_byte *) xmalloc (buf_alloc);
1880 ULONGEST xfered_len;
1881 enum target_xfer_status status;
1883 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1884 buf_pos, buf_alloc - buf_pos - padding,
1887 if (status == TARGET_XFER_EOF)
1889 /* Read all there was. */
1896 else if (status != TARGET_XFER_OK)
1898 /* An error occurred. */
1900 return TARGET_XFER_E_IO;
1903 buf_pos += xfered_len;
1905 /* If the buffer is filling up, expand it. */
1906 if (buf_alloc < buf_pos * 2)
1909 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1916 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1917 the size of the transferred data. See the declaration in "target.h"
1918 function for more information about the return value. */
1921 target_read_alloc (struct target_ops *ops, enum target_object object,
1922 const char *annex, gdb_byte **buf_p)
1924 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1929 gdb::unique_xmalloc_ptr<char>
1930 target_read_stralloc (struct target_ops *ops, enum target_object object,
1935 LONGEST i, transferred;
1937 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1938 bufstr = (char *) buffer;
1940 if (transferred < 0)
1943 if (transferred == 0)
1944 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
1946 bufstr[transferred] = 0;
1948 /* Check for embedded NUL bytes; but allow trailing NULs. */
1949 for (i = strlen (bufstr); i < transferred; i++)
1952 warning (_("target object %d, annex %s, "
1953 "contained unexpected null characters"),
1954 (int) object, annex ? annex : "(none)");
1958 return gdb::unique_xmalloc_ptr<char> (bufstr);
1961 /* Memory transfer methods. */
1964 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1967 /* This method is used to read from an alternate, non-current
1968 target. This read must bypass the overlay support (as symbols
1969 don't match this target), and GDB's internal cache (wrong cache
1970 for this target). */
1971 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1973 memory_error (TARGET_XFER_E_IO, addr);
1977 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1978 int len, enum bfd_endian byte_order)
1980 gdb_byte buf[sizeof (ULONGEST)];
1982 gdb_assert (len <= sizeof (buf));
1983 get_target_memory (ops, addr, buf, len);
1984 return extract_unsigned_integer (buf, len, byte_order);
1990 target_insert_breakpoint (struct gdbarch *gdbarch,
1991 struct bp_target_info *bp_tgt)
1993 if (!may_insert_breakpoints)
1995 warning (_("May not insert breakpoints"));
1999 return current_target.to_insert_breakpoint (¤t_target,
2006 target_remove_breakpoint (struct gdbarch *gdbarch,
2007 struct bp_target_info *bp_tgt,
2008 enum remove_bp_reason reason)
2010 /* This is kind of a weird case to handle, but the permission might
2011 have been changed after breakpoints were inserted - in which case
2012 we should just take the user literally and assume that any
2013 breakpoints should be left in place. */
2014 if (!may_insert_breakpoints)
2016 warning (_("May not remove breakpoints"));
2020 return current_target.to_remove_breakpoint (¤t_target,
2021 gdbarch, bp_tgt, reason);
2025 info_target_command (char *args, int from_tty)
2027 struct target_ops *t;
2028 int has_all_mem = 0;
2030 if (symfile_objfile != NULL)
2031 printf_unfiltered (_("Symbols from \"%s\".\n"),
2032 objfile_name (symfile_objfile));
2034 for (t = target_stack; t != NULL; t = t->beneath)
2036 if (!(*t->to_has_memory) (t))
2039 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2042 printf_unfiltered (_("\tWhile running this, "
2043 "GDB does not access memory from...\n"));
2044 printf_unfiltered ("%s:\n", t->to_longname);
2045 (t->to_files_info) (t);
2046 has_all_mem = (*t->to_has_all_memory) (t);
2050 /* This function is called before any new inferior is created, e.g.
2051 by running a program, attaching, or connecting to a target.
2052 It cleans up any state from previous invocations which might
2053 change between runs. This is a subset of what target_preopen
2054 resets (things which might change between targets). */
2057 target_pre_inferior (int from_tty)
2059 /* Clear out solib state. Otherwise the solib state of the previous
2060 inferior might have survived and is entirely wrong for the new
2061 target. This has been observed on GNU/Linux using glibc 2.3. How
2073 Cannot access memory at address 0xdeadbeef
2076 /* In some OSs, the shared library list is the same/global/shared
2077 across inferiors. If code is shared between processes, so are
2078 memory regions and features. */
2079 if (!gdbarch_has_global_solist (target_gdbarch ()))
2081 no_shared_libraries (NULL, from_tty);
2083 invalidate_target_mem_regions ();
2085 target_clear_description ();
2088 /* attach_flag may be set if the previous process associated with
2089 the inferior was attached to. */
2090 current_inferior ()->attach_flag = 0;
2092 current_inferior ()->highest_thread_num = 0;
2094 agent_capability_invalidate ();
2097 /* Callback for iterate_over_inferiors. Gets rid of the given
2101 dispose_inferior (struct inferior *inf, void *args)
2103 struct thread_info *thread;
2105 thread = any_thread_of_process (inf->pid);
2108 switch_to_thread (thread->ptid);
2110 /* Core inferiors actually should be detached, not killed. */
2111 if (target_has_execution)
2114 target_detach (NULL, 0);
2120 /* This is to be called by the open routine before it does
2124 target_preopen (int from_tty)
2128 if (have_inferiors ())
2131 || !have_live_inferiors ()
2132 || query (_("A program is being debugged already. Kill it? ")))
2133 iterate_over_inferiors (dispose_inferior, NULL);
2135 error (_("Program not killed."));
2138 /* Calling target_kill may remove the target from the stack. But if
2139 it doesn't (which seems like a win for UDI), remove it now. */
2140 /* Leave the exec target, though. The user may be switching from a
2141 live process to a core of the same program. */
2142 pop_all_targets_above (file_stratum);
2144 target_pre_inferior (from_tty);
2147 /* Detach a target after doing deferred register stores. */
2150 target_detach (const char *args, int from_tty)
2152 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2153 /* Don't remove global breakpoints here. They're removed on
2154 disconnection from the target. */
2157 /* If we're in breakpoints-always-inserted mode, have to remove
2158 them before detaching. */
2159 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2161 prepare_for_detach ();
2163 current_target.to_detach (¤t_target, args, from_tty);
2167 target_disconnect (const char *args, int from_tty)
2169 /* If we're in breakpoints-always-inserted mode or if breakpoints
2170 are global across processes, we have to remove them before
2172 remove_breakpoints ();
2174 current_target.to_disconnect (¤t_target, args, from_tty);
2177 /* See target/target.h. */
2180 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2182 return (current_target.to_wait) (¤t_target, ptid, status, options);
2188 default_target_wait (struct target_ops *ops,
2189 ptid_t ptid, struct target_waitstatus *status,
2192 status->kind = TARGET_WAITKIND_IGNORE;
2193 return minus_one_ptid;
2197 target_pid_to_str (ptid_t ptid)
2199 return (*current_target.to_pid_to_str) (¤t_target, ptid);
2203 target_thread_name (struct thread_info *info)
2205 return current_target.to_thread_name (¤t_target, info);
2208 struct thread_info *
2209 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2211 struct inferior *inf)
2213 return current_target.to_thread_handle_to_thread_info
2214 (¤t_target, thread_handle, handle_len, inf);
2218 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2220 target_dcache_invalidate ();
2222 current_target.to_resume (¤t_target, ptid, step, signal);
2224 registers_changed_ptid (ptid);
2225 /* We only set the internal executing state here. The user/frontend
2226 running state is set at a higher level. */
2227 set_executing (ptid, 1);
2228 clear_inline_frame_state (ptid);
2231 /* If true, target_commit_resume is a nop. */
2232 static int defer_target_commit_resume;
2237 target_commit_resume (void)
2239 struct target_ops *t;
2241 if (defer_target_commit_resume)
2244 current_target.to_commit_resume (¤t_target);
2249 scoped_restore_tmpl<int>
2250 make_scoped_defer_target_commit_resume ()
2252 return make_scoped_restore (&defer_target_commit_resume, 1);
2256 target_pass_signals (int numsigs, unsigned char *pass_signals)
2258 (*current_target.to_pass_signals) (¤t_target, numsigs, pass_signals);
2262 target_program_signals (int numsigs, unsigned char *program_signals)
2264 (*current_target.to_program_signals) (¤t_target,
2265 numsigs, program_signals);
2269 default_follow_fork (struct target_ops *self, int follow_child,
2272 /* Some target returned a fork event, but did not know how to follow it. */
2273 internal_error (__FILE__, __LINE__,
2274 _("could not find a target to follow fork"));
2277 /* Look through the list of possible targets for a target that can
2281 target_follow_fork (int follow_child, int detach_fork)
2283 return current_target.to_follow_fork (¤t_target,
2284 follow_child, detach_fork);
2287 /* Target wrapper for follow exec hook. */
2290 target_follow_exec (struct inferior *inf, char *execd_pathname)
2292 current_target.to_follow_exec (¤t_target, inf, execd_pathname);
2296 default_mourn_inferior (struct target_ops *self)
2298 internal_error (__FILE__, __LINE__,
2299 _("could not find a target to follow mourn inferior"));
2303 target_mourn_inferior (ptid_t ptid)
2305 gdb_assert (ptid_equal (ptid, inferior_ptid));
2306 current_target.to_mourn_inferior (¤t_target);
2308 /* We no longer need to keep handles on any of the object files.
2309 Make sure to release them to avoid unnecessarily locking any
2310 of them while we're not actually debugging. */
2311 bfd_cache_close_all ();
2314 /* Look for a target which can describe architectural features, starting
2315 from TARGET. If we find one, return its description. */
2317 const struct target_desc *
2318 target_read_description (struct target_ops *target)
2320 return target->to_read_description (target);
2323 /* This implements a basic search of memory, reading target memory and
2324 performing the search here (as opposed to performing the search in on the
2325 target side with, for example, gdbserver). */
2328 simple_search_memory (struct target_ops *ops,
2329 CORE_ADDR start_addr, ULONGEST search_space_len,
2330 const gdb_byte *pattern, ULONGEST pattern_len,
2331 CORE_ADDR *found_addrp)
2333 /* NOTE: also defined in find.c testcase. */
2334 #define SEARCH_CHUNK_SIZE 16000
2335 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2336 /* Buffer to hold memory contents for searching. */
2337 unsigned search_buf_size;
2339 search_buf_size = chunk_size + pattern_len - 1;
2341 /* No point in trying to allocate a buffer larger than the search space. */
2342 if (search_space_len < search_buf_size)
2343 search_buf_size = search_space_len;
2345 gdb::byte_vector search_buf (search_buf_size);
2347 /* Prime the search buffer. */
2349 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2350 search_buf.data (), start_addr, search_buf_size)
2353 warning (_("Unable to access %s bytes of target "
2354 "memory at %s, halting search."),
2355 pulongest (search_buf_size), hex_string (start_addr));
2359 /* Perform the search.
2361 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2362 When we've scanned N bytes we copy the trailing bytes to the start and
2363 read in another N bytes. */
2365 while (search_space_len >= pattern_len)
2367 gdb_byte *found_ptr;
2368 unsigned nr_search_bytes
2369 = std::min (search_space_len, (ULONGEST) search_buf_size);
2371 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2372 pattern, pattern_len);
2374 if (found_ptr != NULL)
2376 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2378 *found_addrp = found_addr;
2382 /* Not found in this chunk, skip to next chunk. */
2384 /* Don't let search_space_len wrap here, it's unsigned. */
2385 if (search_space_len >= chunk_size)
2386 search_space_len -= chunk_size;
2388 search_space_len = 0;
2390 if (search_space_len >= pattern_len)
2392 unsigned keep_len = search_buf_size - chunk_size;
2393 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2396 /* Copy the trailing part of the previous iteration to the front
2397 of the buffer for the next iteration. */
2398 gdb_assert (keep_len == pattern_len - 1);
2399 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2401 nr_to_read = std::min (search_space_len - keep_len,
2402 (ULONGEST) chunk_size);
2404 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2405 &search_buf[keep_len], read_addr,
2406 nr_to_read) != nr_to_read)
2408 warning (_("Unable to access %s bytes of target "
2409 "memory at %s, halting search."),
2410 plongest (nr_to_read),
2411 hex_string (read_addr));
2415 start_addr += chunk_size;
2424 /* Default implementation of memory-searching. */
2427 default_search_memory (struct target_ops *self,
2428 CORE_ADDR start_addr, ULONGEST search_space_len,
2429 const gdb_byte *pattern, ULONGEST pattern_len,
2430 CORE_ADDR *found_addrp)
2432 /* Start over from the top of the target stack. */
2433 return simple_search_memory (current_target.beneath,
2434 start_addr, search_space_len,
2435 pattern, pattern_len, found_addrp);
2438 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2439 sequence of bytes in PATTERN with length PATTERN_LEN.
2441 The result is 1 if found, 0 if not found, and -1 if there was an error
2442 requiring halting of the search (e.g. memory read error).
2443 If the pattern is found the address is recorded in FOUND_ADDRP. */
2446 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2447 const gdb_byte *pattern, ULONGEST pattern_len,
2448 CORE_ADDR *found_addrp)
2450 return current_target.to_search_memory (¤t_target, start_addr,
2452 pattern, pattern_len, found_addrp);
2455 /* Look through the currently pushed targets. If none of them will
2456 be able to restart the currently running process, issue an error
2460 target_require_runnable (void)
2462 struct target_ops *t;
2464 for (t = target_stack; t != NULL; t = t->beneath)
2466 /* If this target knows how to create a new program, then
2467 assume we will still be able to after killing the current
2468 one. Either killing and mourning will not pop T, or else
2469 find_default_run_target will find it again. */
2470 if (t->to_create_inferior != NULL)
2473 /* Do not worry about targets at certain strata that can not
2474 create inferiors. Assume they will be pushed again if
2475 necessary, and continue to the process_stratum. */
2476 if (t->to_stratum == thread_stratum
2477 || t->to_stratum == record_stratum
2478 || t->to_stratum == arch_stratum)
2481 error (_("The \"%s\" target does not support \"run\". "
2482 "Try \"help target\" or \"continue\"."),
2486 /* This function is only called if the target is running. In that
2487 case there should have been a process_stratum target and it
2488 should either know how to create inferiors, or not... */
2489 internal_error (__FILE__, __LINE__, _("No targets found"));
2492 /* Whether GDB is allowed to fall back to the default run target for
2493 "run", "attach", etc. when no target is connected yet. */
2494 static int auto_connect_native_target = 1;
2497 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2498 struct cmd_list_element *c, const char *value)
2500 fprintf_filtered (file,
2501 _("Whether GDB may automatically connect to the "
2502 "native target is %s.\n"),
2506 /* Look through the list of possible targets for a target that can
2507 execute a run or attach command without any other data. This is
2508 used to locate the default process stratum.
2510 If DO_MESG is not NULL, the result is always valid (error() is
2511 called for errors); else, return NULL on error. */
2513 static struct target_ops *
2514 find_default_run_target (const char *do_mesg)
2516 struct target_ops *runable = NULL;
2518 if (auto_connect_native_target)
2520 struct target_ops *t;
2524 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2526 if (t->to_can_run != delegate_can_run && target_can_run (t))
2537 if (runable == NULL)
2540 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2551 find_attach_target (void)
2553 struct target_ops *t;
2555 /* If a target on the current stack can attach, use it. */
2556 for (t = current_target.beneath; t != NULL; t = t->beneath)
2558 if (t->to_attach != NULL)
2562 /* Otherwise, use the default run target for attaching. */
2564 t = find_default_run_target ("attach");
2572 find_run_target (void)
2574 struct target_ops *t;
2576 /* If a target on the current stack can attach, use it. */
2577 for (t = current_target.beneath; t != NULL; t = t->beneath)
2579 if (t->to_create_inferior != NULL)
2583 /* Otherwise, use the default run target. */
2585 t = find_default_run_target ("run");
2590 /* Implement the "info proc" command. */
2593 target_info_proc (const char *args, enum info_proc_what what)
2595 struct target_ops *t;
2597 /* If we're already connected to something that can get us OS
2598 related data, use it. Otherwise, try using the native
2600 if (current_target.to_stratum >= process_stratum)
2601 t = current_target.beneath;
2603 t = find_default_run_target (NULL);
2605 for (; t != NULL; t = t->beneath)
2607 if (t->to_info_proc != NULL)
2609 t->to_info_proc (t, args, what);
2612 fprintf_unfiltered (gdb_stdlog,
2613 "target_info_proc (\"%s\", %d)\n", args, what);
2623 find_default_supports_disable_randomization (struct target_ops *self)
2625 struct target_ops *t;
2627 t = find_default_run_target (NULL);
2628 if (t && t->to_supports_disable_randomization)
2629 return (t->to_supports_disable_randomization) (t);
2634 target_supports_disable_randomization (void)
2636 struct target_ops *t;
2638 for (t = ¤t_target; t != NULL; t = t->beneath)
2639 if (t->to_supports_disable_randomization)
2640 return t->to_supports_disable_randomization (t);
2645 /* See target/target.h. */
2648 target_supports_multi_process (void)
2650 return (*current_target.to_supports_multi_process) (¤t_target);
2655 gdb::unique_xmalloc_ptr<char>
2656 target_get_osdata (const char *type)
2658 struct target_ops *t;
2660 /* If we're already connected to something that can get us OS
2661 related data, use it. Otherwise, try using the native
2663 if (current_target.to_stratum >= process_stratum)
2664 t = current_target.beneath;
2666 t = find_default_run_target ("get OS data");
2671 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2674 static struct address_space *
2675 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2677 struct inferior *inf;
2679 /* Fall-back to the "main" address space of the inferior. */
2680 inf = find_inferior_ptid (ptid);
2682 if (inf == NULL || inf->aspace == NULL)
2683 internal_error (__FILE__, __LINE__,
2684 _("Can't determine the current "
2685 "address space of thread %s\n"),
2686 target_pid_to_str (ptid));
2691 /* Determine the current address space of thread PTID. */
2693 struct address_space *
2694 target_thread_address_space (ptid_t ptid)
2696 struct address_space *aspace;
2698 aspace = current_target.to_thread_address_space (¤t_target, ptid);
2699 gdb_assert (aspace != NULL);
2705 /* Target file operations. */
2707 static struct target_ops *
2708 default_fileio_target (void)
2710 /* If we're already connected to something that can perform
2711 file I/O, use it. Otherwise, try using the native target. */
2712 if (current_target.to_stratum >= process_stratum)
2713 return current_target.beneath;
2715 return find_default_run_target ("file I/O");
2718 /* File handle for target file operations. */
2722 /* The target on which this file is open. */
2723 struct target_ops *t;
2725 /* The file descriptor on the target. */
2729 DEF_VEC_O (fileio_fh_t);
2731 /* Vector of currently open file handles. The value returned by
2732 target_fileio_open and passed as the FD argument to other
2733 target_fileio_* functions is an index into this vector. This
2734 vector's entries are never freed; instead, files are marked as
2735 closed, and the handle becomes available for reuse. */
2736 static VEC (fileio_fh_t) *fileio_fhandles;
2738 /* Macro to check whether a fileio_fh_t represents a closed file. */
2739 #define is_closed_fileio_fh(fd) ((fd) < 0)
2741 /* Index into fileio_fhandles of the lowest handle that might be
2742 closed. This permits handle reuse without searching the whole
2743 list each time a new file is opened. */
2744 static int lowest_closed_fd;
2746 /* Acquire a target fileio file descriptor. */
2749 acquire_fileio_fd (struct target_ops *t, int fd)
2753 gdb_assert (!is_closed_fileio_fh (fd));
2755 /* Search for closed handles to reuse. */
2757 VEC_iterate (fileio_fh_t, fileio_fhandles,
2758 lowest_closed_fd, fh);
2760 if (is_closed_fileio_fh (fh->fd))
2763 /* Push a new handle if no closed handles were found. */
2764 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2765 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2767 /* Fill in the handle. */
2771 /* Return its index, and start the next lookup at
2773 return lowest_closed_fd++;
2776 /* Release a target fileio file descriptor. */
2779 release_fileio_fd (int fd, fileio_fh_t *fh)
2782 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2785 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2787 #define fileio_fd_to_fh(fd) \
2788 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2790 /* Helper for target_fileio_open and
2791 target_fileio_open_warn_if_slow. */
2794 target_fileio_open_1 (struct inferior *inf, const char *filename,
2795 int flags, int mode, int warn_if_slow,
2798 struct target_ops *t;
2800 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2802 if (t->to_fileio_open != NULL)
2804 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2805 warn_if_slow, target_errno);
2810 fd = acquire_fileio_fd (t, fd);
2813 fprintf_unfiltered (gdb_stdlog,
2814 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2816 inf == NULL ? 0 : inf->num,
2817 filename, flags, mode,
2819 fd != -1 ? 0 : *target_errno);
2824 *target_errno = FILEIO_ENOSYS;
2831 target_fileio_open (struct inferior *inf, const char *filename,
2832 int flags, int mode, int *target_errno)
2834 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2841 target_fileio_open_warn_if_slow (struct inferior *inf,
2842 const char *filename,
2843 int flags, int mode, int *target_errno)
2845 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2852 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2853 ULONGEST offset, int *target_errno)
2855 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2858 if (is_closed_fileio_fh (fh->fd))
2859 *target_errno = EBADF;
2861 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2862 len, offset, target_errno);
2865 fprintf_unfiltered (gdb_stdlog,
2866 "target_fileio_pwrite (%d,...,%d,%s) "
2868 fd, len, pulongest (offset),
2869 ret, ret != -1 ? 0 : *target_errno);
2876 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2877 ULONGEST offset, int *target_errno)
2879 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2882 if (is_closed_fileio_fh (fh->fd))
2883 *target_errno = EBADF;
2885 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2886 len, offset, target_errno);
2889 fprintf_unfiltered (gdb_stdlog,
2890 "target_fileio_pread (%d,...,%d,%s) "
2892 fd, len, pulongest (offset),
2893 ret, ret != -1 ? 0 : *target_errno);
2900 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2902 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2905 if (is_closed_fileio_fh (fh->fd))
2906 *target_errno = EBADF;
2908 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2911 fprintf_unfiltered (gdb_stdlog,
2912 "target_fileio_fstat (%d) = %d (%d)\n",
2913 fd, ret, ret != -1 ? 0 : *target_errno);
2920 target_fileio_close (int fd, int *target_errno)
2922 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2925 if (is_closed_fileio_fh (fh->fd))
2926 *target_errno = EBADF;
2929 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2930 release_fileio_fd (fd, fh);
2934 fprintf_unfiltered (gdb_stdlog,
2935 "target_fileio_close (%d) = %d (%d)\n",
2936 fd, ret, ret != -1 ? 0 : *target_errno);
2943 target_fileio_unlink (struct inferior *inf, const char *filename,
2946 struct target_ops *t;
2948 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2950 if (t->to_fileio_unlink != NULL)
2952 int ret = t->to_fileio_unlink (t, inf, filename,
2956 fprintf_unfiltered (gdb_stdlog,
2957 "target_fileio_unlink (%d,%s)"
2959 inf == NULL ? 0 : inf->num, filename,
2960 ret, ret != -1 ? 0 : *target_errno);
2965 *target_errno = FILEIO_ENOSYS;
2972 target_fileio_readlink (struct inferior *inf, const char *filename,
2975 struct target_ops *t;
2977 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2979 if (t->to_fileio_readlink != NULL)
2981 char *ret = t->to_fileio_readlink (t, inf, filename,
2985 fprintf_unfiltered (gdb_stdlog,
2986 "target_fileio_readlink (%d,%s)"
2988 inf == NULL ? 0 : inf->num,
2989 filename, ret? ret : "(nil)",
2990 ret? 0 : *target_errno);
2995 *target_errno = FILEIO_ENOSYS;
3000 target_fileio_close_cleanup (void *opaque)
3002 int fd = *(int *) opaque;
3005 target_fileio_close (fd, &target_errno);
3008 /* Read target file FILENAME, in the filesystem as seen by INF. If
3009 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3010 remote targets, the remote stub). Store the result in *BUF_P and
3011 return the size of the transferred data. PADDING additional bytes
3012 are available in *BUF_P. This is a helper function for
3013 target_fileio_read_alloc; see the declaration of that function for
3014 more information. */
3017 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3018 gdb_byte **buf_p, int padding)
3020 struct cleanup *close_cleanup;
3021 size_t buf_alloc, buf_pos;
3027 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3032 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3034 /* Start by reading up to 4K at a time. The target will throttle
3035 this number down if necessary. */
3037 buf = (gdb_byte *) xmalloc (buf_alloc);
3041 n = target_fileio_pread (fd, &buf[buf_pos],
3042 buf_alloc - buf_pos - padding, buf_pos,
3046 /* An error occurred. */
3047 do_cleanups (close_cleanup);
3053 /* Read all there was. */
3054 do_cleanups (close_cleanup);
3064 /* If the buffer is filling up, expand it. */
3065 if (buf_alloc < buf_pos * 2)
3068 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3078 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3081 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3087 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3091 LONGEST i, transferred;
3093 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3094 bufstr = (char *) buffer;
3096 if (transferred < 0)
3099 if (transferred == 0)
3100 return xstrdup ("");
3102 bufstr[transferred] = 0;
3104 /* Check for embedded NUL bytes; but allow trailing NULs. */
3105 for (i = strlen (bufstr); i < transferred; i++)
3108 warning (_("target file %s "
3109 "contained unexpected null characters"),
3119 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3120 CORE_ADDR addr, int len)
3122 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3126 default_watchpoint_addr_within_range (struct target_ops *target,
3128 CORE_ADDR start, int length)
3130 return addr >= start && addr < start + length;
3133 static struct gdbarch *
3134 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3136 inferior *inf = find_inferior_ptid (ptid);
3137 gdb_assert (inf != NULL);
3138 return inf->gdbarch;
3142 return_zero (struct target_ops *ignore)
3148 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3154 * Find the next target down the stack from the specified target.
3158 find_target_beneath (struct target_ops *t)
3166 find_target_at (enum strata stratum)
3168 struct target_ops *t;
3170 for (t = current_target.beneath; t != NULL; t = t->beneath)
3171 if (t->to_stratum == stratum)
3182 target_announce_detach (int from_tty)
3185 const char *exec_file;
3190 exec_file = get_exec_file (0);
3191 if (exec_file == NULL)
3194 pid = ptid_get_pid (inferior_ptid);
3195 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3196 target_pid_to_str (pid_to_ptid (pid)));
3197 gdb_flush (gdb_stdout);
3200 /* The inferior process has died. Long live the inferior! */
3203 generic_mourn_inferior (void)
3207 ptid = inferior_ptid;
3208 inferior_ptid = null_ptid;
3210 /* Mark breakpoints uninserted in case something tries to delete a
3211 breakpoint while we delete the inferior's threads (which would
3212 fail, since the inferior is long gone). */
3213 mark_breakpoints_out ();
3215 if (!ptid_equal (ptid, null_ptid))
3217 int pid = ptid_get_pid (ptid);
3218 exit_inferior (pid);
3221 /* Note this wipes step-resume breakpoints, so needs to be done
3222 after exit_inferior, which ends up referencing the step-resume
3223 breakpoints through clear_thread_inferior_resources. */
3224 breakpoint_init_inferior (inf_exited);
3226 registers_changed ();
3228 reopen_exec_file ();
3229 reinit_frame_cache ();
3231 if (deprecated_detach_hook)
3232 deprecated_detach_hook ();
3235 /* Convert a normal process ID to a string. Returns the string in a
3239 normal_pid_to_str (ptid_t ptid)
3241 static char buf[32];
3243 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3248 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3250 return normal_pid_to_str (ptid);
3253 /* Error-catcher for target_find_memory_regions. */
3255 dummy_find_memory_regions (struct target_ops *self,
3256 find_memory_region_ftype ignore1, void *ignore2)
3258 error (_("Command not implemented for this target."));
3262 /* Error-catcher for target_make_corefile_notes. */
3264 dummy_make_corefile_notes (struct target_ops *self,
3265 bfd *ignore1, int *ignore2)
3267 error (_("Command not implemented for this target."));
3271 /* Set up the handful of non-empty slots needed by the dummy target
3275 init_dummy_target (void)
3277 dummy_target.to_shortname = "None";
3278 dummy_target.to_longname = "None";
3279 dummy_target.to_doc = "";
3280 dummy_target.to_supports_disable_randomization
3281 = find_default_supports_disable_randomization;
3282 dummy_target.to_stratum = dummy_stratum;
3283 dummy_target.to_has_all_memory = return_zero;
3284 dummy_target.to_has_memory = return_zero;
3285 dummy_target.to_has_stack = return_zero;
3286 dummy_target.to_has_registers = return_zero;
3287 dummy_target.to_has_execution = return_zero_has_execution;
3288 dummy_target.to_magic = OPS_MAGIC;
3290 install_dummy_methods (&dummy_target);
3295 target_close (struct target_ops *targ)
3297 gdb_assert (!target_is_pushed (targ));
3299 if (targ->to_xclose != NULL)
3300 targ->to_xclose (targ);
3301 else if (targ->to_close != NULL)
3302 targ->to_close (targ);
3305 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3309 target_thread_alive (ptid_t ptid)
3311 return current_target.to_thread_alive (¤t_target, ptid);
3315 target_update_thread_list (void)
3317 current_target.to_update_thread_list (¤t_target);
3321 target_stop (ptid_t ptid)
3325 warning (_("May not interrupt or stop the target, ignoring attempt"));
3329 (*current_target.to_stop) (¤t_target, ptid);
3333 target_interrupt (ptid_t ptid)
3337 warning (_("May not interrupt or stop the target, ignoring attempt"));
3341 (*current_target.to_interrupt) (¤t_target, ptid);
3347 target_pass_ctrlc (void)
3349 (*current_target.to_pass_ctrlc) (¤t_target);
3355 default_target_pass_ctrlc (struct target_ops *ops)
3357 target_interrupt (inferior_ptid);
3360 /* See target/target.h. */
3363 target_stop_and_wait (ptid_t ptid)
3365 struct target_waitstatus status;
3366 int was_non_stop = non_stop;
3371 memset (&status, 0, sizeof (status));
3372 target_wait (ptid, &status, 0);
3374 non_stop = was_non_stop;
3377 /* See target/target.h. */
3380 target_continue_no_signal (ptid_t ptid)
3382 target_resume (ptid, 0, GDB_SIGNAL_0);
3385 /* See target/target.h. */
3388 target_continue (ptid_t ptid, enum gdb_signal signal)
3390 target_resume (ptid, 0, signal);
3393 /* Concatenate ELEM to LIST, a comma separate list, and return the
3394 result. The LIST incoming argument is released. */
3397 str_comma_list_concat_elem (char *list, const char *elem)
3400 return xstrdup (elem);
3402 return reconcat (list, list, ", ", elem, (char *) NULL);
3405 /* Helper for target_options_to_string. If OPT is present in
3406 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3407 Returns the new resulting string. OPT is removed from
3411 do_option (int *target_options, char *ret,
3412 int opt, const char *opt_str)
3414 if ((*target_options & opt) != 0)
3416 ret = str_comma_list_concat_elem (ret, opt_str);
3417 *target_options &= ~opt;
3424 target_options_to_string (int target_options)
3428 #define DO_TARG_OPTION(OPT) \
3429 ret = do_option (&target_options, ret, OPT, #OPT)
3431 DO_TARG_OPTION (TARGET_WNOHANG);
3433 if (target_options != 0)
3434 ret = str_comma_list_concat_elem (ret, "unknown???");
3442 target_fetch_registers (struct regcache *regcache, int regno)
3444 current_target.to_fetch_registers (¤t_target, regcache, regno);
3446 regcache->debug_print_register ("target_fetch_registers", regno);
3450 target_store_registers (struct regcache *regcache, int regno)
3452 if (!may_write_registers)
3453 error (_("Writing to registers is not allowed (regno %d)"), regno);
3455 current_target.to_store_registers (¤t_target, regcache, regno);
3458 regcache->debug_print_register ("target_store_registers", regno);
3463 target_core_of_thread (ptid_t ptid)
3465 return current_target.to_core_of_thread (¤t_target, ptid);
3469 simple_verify_memory (struct target_ops *ops,
3470 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3472 LONGEST total_xfered = 0;
3474 while (total_xfered < size)
3476 ULONGEST xfered_len;
3477 enum target_xfer_status status;
3479 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3481 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3482 buf, NULL, lma + total_xfered, howmuch,
3484 if (status == TARGET_XFER_OK
3485 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3487 total_xfered += xfered_len;
3496 /* Default implementation of memory verification. */
3499 default_verify_memory (struct target_ops *self,
3500 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3502 /* Start over from the top of the target stack. */
3503 return simple_verify_memory (current_target.beneath,
3504 data, memaddr, size);
3508 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3510 return current_target.to_verify_memory (¤t_target,
3511 data, memaddr, size);
3514 /* The documentation for this function is in its prototype declaration in
3518 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3519 enum target_hw_bp_type rw)
3521 return current_target.to_insert_mask_watchpoint (¤t_target,
3525 /* The documentation for this function is in its prototype declaration in
3529 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3530 enum target_hw_bp_type rw)
3532 return current_target.to_remove_mask_watchpoint (¤t_target,
3536 /* The documentation for this function is in its prototype declaration
3540 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3542 return current_target.to_masked_watch_num_registers (¤t_target,
3546 /* The documentation for this function is in its prototype declaration
3550 target_ranged_break_num_registers (void)
3552 return current_target.to_ranged_break_num_registers (¤t_target);
3558 target_supports_btrace (enum btrace_format format)
3560 return current_target.to_supports_btrace (¤t_target, format);
3565 struct btrace_target_info *
3566 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3568 return current_target.to_enable_btrace (¤t_target, ptid, conf);
3574 target_disable_btrace (struct btrace_target_info *btinfo)
3576 current_target.to_disable_btrace (¤t_target, btinfo);
3582 target_teardown_btrace (struct btrace_target_info *btinfo)
3584 current_target.to_teardown_btrace (¤t_target, btinfo);
3590 target_read_btrace (struct btrace_data *btrace,
3591 struct btrace_target_info *btinfo,
3592 enum btrace_read_type type)
3594 return current_target.to_read_btrace (¤t_target, btrace, btinfo, type);
3599 const struct btrace_config *
3600 target_btrace_conf (const struct btrace_target_info *btinfo)
3602 return current_target.to_btrace_conf (¤t_target, btinfo);
3608 target_stop_recording (void)
3610 current_target.to_stop_recording (¤t_target);
3616 target_save_record (const char *filename)
3618 current_target.to_save_record (¤t_target, filename);
3624 target_supports_delete_record (void)
3626 struct target_ops *t;
3628 for (t = current_target.beneath; t != NULL; t = t->beneath)
3629 if (t->to_delete_record != delegate_delete_record
3630 && t->to_delete_record != tdefault_delete_record)
3639 target_delete_record (void)
3641 current_target.to_delete_record (¤t_target);
3647 target_record_method (ptid_t ptid)
3649 return current_target.to_record_method (¤t_target, ptid);
3655 target_record_is_replaying (ptid_t ptid)
3657 return current_target.to_record_is_replaying (¤t_target, ptid);
3663 target_record_will_replay (ptid_t ptid, int dir)
3665 return current_target.to_record_will_replay (¤t_target, ptid, dir);
3671 target_record_stop_replaying (void)
3673 current_target.to_record_stop_replaying (¤t_target);
3679 target_goto_record_begin (void)
3681 current_target.to_goto_record_begin (¤t_target);
3687 target_goto_record_end (void)
3689 current_target.to_goto_record_end (¤t_target);
3695 target_goto_record (ULONGEST insn)
3697 current_target.to_goto_record (¤t_target, insn);
3703 target_insn_history (int size, gdb_disassembly_flags flags)
3705 current_target.to_insn_history (¤t_target, size, flags);
3711 target_insn_history_from (ULONGEST from, int size,
3712 gdb_disassembly_flags flags)
3714 current_target.to_insn_history_from (¤t_target, from, size, flags);
3720 target_insn_history_range (ULONGEST begin, ULONGEST end,
3721 gdb_disassembly_flags flags)
3723 current_target.to_insn_history_range (¤t_target, begin, end, flags);
3729 target_call_history (int size, int flags)
3731 current_target.to_call_history (¤t_target, size, flags);
3737 target_call_history_from (ULONGEST begin, int size, int flags)
3739 current_target.to_call_history_from (¤t_target, begin, size, flags);
3745 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3747 current_target.to_call_history_range (¤t_target, begin, end, flags);
3752 const struct frame_unwind *
3753 target_get_unwinder (void)
3755 return current_target.to_get_unwinder (¤t_target);
3760 const struct frame_unwind *
3761 target_get_tailcall_unwinder (void)
3763 return current_target.to_get_tailcall_unwinder (¤t_target);
3769 target_prepare_to_generate_core (void)
3771 current_target.to_prepare_to_generate_core (¤t_target);
3777 target_done_generating_core (void)
3779 current_target.to_done_generating_core (¤t_target);
3783 setup_target_debug (void)
3785 memcpy (&debug_target, ¤t_target, sizeof debug_target);
3787 init_debug_target (¤t_target);
3791 static char targ_desc[] =
3792 "Names of targets and files being debugged.\nShows the entire \
3793 stack of targets currently in use (including the exec-file,\n\
3794 core-file, and process, if any), as well as the symbol file name.";
3797 default_rcmd (struct target_ops *self, const char *command,
3798 struct ui_file *output)
3800 error (_("\"monitor\" command not supported by this target."));
3804 do_monitor_command (char *cmd,
3807 target_rcmd (cmd, gdb_stdtarg);
3810 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3814 flash_erase_command (char *cmd, int from_tty)
3816 /* Used to communicate termination of flash operations to the target. */
3817 bool found_flash_region = false;
3818 struct mem_region *m;
3819 struct gdbarch *gdbarch = target_gdbarch ();
3821 VEC(mem_region_s) *mem_regions = target_memory_map ();
3823 /* Iterate over all memory regions. */
3824 for (int i = 0; VEC_iterate (mem_region_s, mem_regions, i, m); i++)
3826 /* Fetch the memory attribute. */
3827 struct mem_attrib *attrib = &m->attrib;
3829 /* Is this a flash memory region? */
3830 if (attrib->mode == MEM_FLASH)
3832 found_flash_region = true;
3833 target_flash_erase (m->lo, m->hi - m->lo);
3835 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3837 current_uiout->message (_("Erasing flash memory region at address "));
3838 current_uiout->field_fmt ("address", "%s", paddress (gdbarch,
3840 current_uiout->message (", size = ");
3841 current_uiout->field_fmt ("size", "%s", hex_string (m->hi - m->lo));
3842 current_uiout->message ("\n");
3846 /* Did we do any flash operations? If so, we need to finalize them. */
3847 if (found_flash_region)
3848 target_flash_done ();
3850 current_uiout->message (_("No flash memory regions found.\n"));
3853 /* Print the name of each layers of our target stack. */
3856 maintenance_print_target_stack (const char *cmd, int from_tty)
3858 struct target_ops *t;
3860 printf_filtered (_("The current target stack is:\n"));
3862 for (t = target_stack; t != NULL; t = t->beneath)
3864 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3871 target_async (int enable)
3873 infrun_async (enable);
3874 current_target.to_async (¤t_target, enable);
3880 target_thread_events (int enable)
3882 current_target.to_thread_events (¤t_target, enable);
3885 /* Controls if targets can report that they can/are async. This is
3886 just for maintainers to use when debugging gdb. */
3887 int target_async_permitted = 1;
3889 /* The set command writes to this variable. If the inferior is
3890 executing, target_async_permitted is *not* updated. */
3891 static int target_async_permitted_1 = 1;
3894 maint_set_target_async_command (char *args, int from_tty,
3895 struct cmd_list_element *c)
3897 if (have_live_inferiors ())
3899 target_async_permitted_1 = target_async_permitted;
3900 error (_("Cannot change this setting while the inferior is running."));
3903 target_async_permitted = target_async_permitted_1;
3907 maint_show_target_async_command (struct ui_file *file, int from_tty,
3908 struct cmd_list_element *c,
3911 fprintf_filtered (file,
3912 _("Controlling the inferior in "
3913 "asynchronous mode is %s.\n"), value);
3916 /* Return true if the target operates in non-stop mode even with "set
3920 target_always_non_stop_p (void)
3922 return current_target.to_always_non_stop_p (¤t_target);
3928 target_is_non_stop_p (void)
3931 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3932 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3933 && target_always_non_stop_p ()));
3936 /* Controls if targets can report that they always run in non-stop
3937 mode. This is just for maintainers to use when debugging gdb. */
3938 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3940 /* The set command writes to this variable. If the inferior is
3941 executing, target_non_stop_enabled is *not* updated. */
3942 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3944 /* Implementation of "maint set target-non-stop". */
3947 maint_set_target_non_stop_command (char *args, int from_tty,
3948 struct cmd_list_element *c)
3950 if (have_live_inferiors ())
3952 target_non_stop_enabled_1 = target_non_stop_enabled;
3953 error (_("Cannot change this setting while the inferior is running."));
3956 target_non_stop_enabled = target_non_stop_enabled_1;
3959 /* Implementation of "maint show target-non-stop". */
3962 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3963 struct cmd_list_element *c,
3966 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3967 fprintf_filtered (file,
3968 _("Whether the target is always in non-stop mode "
3969 "is %s (currently %s).\n"), value,
3970 target_always_non_stop_p () ? "on" : "off");
3972 fprintf_filtered (file,
3973 _("Whether the target is always in non-stop mode "
3974 "is %s.\n"), value);
3977 /* Temporary copies of permission settings. */
3979 static int may_write_registers_1 = 1;
3980 static int may_write_memory_1 = 1;
3981 static int may_insert_breakpoints_1 = 1;
3982 static int may_insert_tracepoints_1 = 1;
3983 static int may_insert_fast_tracepoints_1 = 1;
3984 static int may_stop_1 = 1;
3986 /* Make the user-set values match the real values again. */
3989 update_target_permissions (void)
3991 may_write_registers_1 = may_write_registers;
3992 may_write_memory_1 = may_write_memory;
3993 may_insert_breakpoints_1 = may_insert_breakpoints;
3994 may_insert_tracepoints_1 = may_insert_tracepoints;
3995 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3996 may_stop_1 = may_stop;
3999 /* The one function handles (most of) the permission flags in the same
4003 set_target_permissions (char *args, int from_tty,
4004 struct cmd_list_element *c)
4006 if (target_has_execution)
4008 update_target_permissions ();
4009 error (_("Cannot change this setting while the inferior is running."));
4012 /* Make the real values match the user-changed values. */
4013 may_write_registers = may_write_registers_1;
4014 may_insert_breakpoints = may_insert_breakpoints_1;
4015 may_insert_tracepoints = may_insert_tracepoints_1;
4016 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4017 may_stop = may_stop_1;
4018 update_observer_mode ();
4021 /* Set memory write permission independently of observer mode. */
4024 set_write_memory_permission (char *args, int from_tty,
4025 struct cmd_list_element *c)
4027 /* Make the real values match the user-changed values. */
4028 may_write_memory = may_write_memory_1;
4029 update_observer_mode ();
4034 initialize_targets (void)
4036 init_dummy_target ();
4037 push_target (&dummy_target);
4039 add_info ("target", info_target_command, targ_desc);
4040 add_info ("files", info_target_command, targ_desc);
4042 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4043 Set target debugging."), _("\
4044 Show target debugging."), _("\
4045 When non-zero, target debugging is enabled. Higher numbers are more\n\
4049 &setdebuglist, &showdebuglist);
4051 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4052 &trust_readonly, _("\
4053 Set mode for reading from readonly sections."), _("\
4054 Show mode for reading from readonly sections."), _("\
4055 When this mode is on, memory reads from readonly sections (such as .text)\n\
4056 will be read from the object file instead of from the target. This will\n\
4057 result in significant performance improvement for remote targets."),
4059 show_trust_readonly,
4060 &setlist, &showlist);
4062 add_com ("monitor", class_obscure, do_monitor_command,
4063 _("Send a command to the remote monitor (remote targets only)."));
4065 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4066 _("Print the name of each layer of the internal target stack."),
4067 &maintenanceprintlist);
4069 add_setshow_boolean_cmd ("target-async", no_class,
4070 &target_async_permitted_1, _("\
4071 Set whether gdb controls the inferior in asynchronous mode."), _("\
4072 Show whether gdb controls the inferior in asynchronous mode."), _("\
4073 Tells gdb whether to control the inferior in asynchronous mode."),
4074 maint_set_target_async_command,
4075 maint_show_target_async_command,
4076 &maintenance_set_cmdlist,
4077 &maintenance_show_cmdlist);
4079 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4080 &target_non_stop_enabled_1, _("\
4081 Set whether gdb always controls the inferior in non-stop mode."), _("\
4082 Show whether gdb always controls the inferior in non-stop mode."), _("\
4083 Tells gdb whether to control the inferior in non-stop mode."),
4084 maint_set_target_non_stop_command,
4085 maint_show_target_non_stop_command,
4086 &maintenance_set_cmdlist,
4087 &maintenance_show_cmdlist);
4089 add_setshow_boolean_cmd ("may-write-registers", class_support,
4090 &may_write_registers_1, _("\
4091 Set permission to write into registers."), _("\
4092 Show permission to write into registers."), _("\
4093 When this permission is on, GDB may write into the target's registers.\n\
4094 Otherwise, any sort of write attempt will result in an error."),
4095 set_target_permissions, NULL,
4096 &setlist, &showlist);
4098 add_setshow_boolean_cmd ("may-write-memory", class_support,
4099 &may_write_memory_1, _("\
4100 Set permission to write into target memory."), _("\
4101 Show permission to write into target memory."), _("\
4102 When this permission is on, GDB may write into the target's memory.\n\
4103 Otherwise, any sort of write attempt will result in an error."),
4104 set_write_memory_permission, NULL,
4105 &setlist, &showlist);
4107 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4108 &may_insert_breakpoints_1, _("\
4109 Set permission to insert breakpoints in the target."), _("\
4110 Show permission to insert breakpoints in the target."), _("\
4111 When this permission is on, GDB may insert breakpoints in the program.\n\
4112 Otherwise, any sort of insertion attempt will result in an error."),
4113 set_target_permissions, NULL,
4114 &setlist, &showlist);
4116 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4117 &may_insert_tracepoints_1, _("\
4118 Set permission to insert tracepoints in the target."), _("\
4119 Show permission to insert tracepoints in the target."), _("\
4120 When this permission is on, GDB may insert tracepoints in the program.\n\
4121 Otherwise, any sort of insertion attempt will result in an error."),
4122 set_target_permissions, NULL,
4123 &setlist, &showlist);
4125 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4126 &may_insert_fast_tracepoints_1, _("\
4127 Set permission to insert fast tracepoints in the target."), _("\
4128 Show permission to insert fast tracepoints in the target."), _("\
4129 When this permission is on, GDB may insert fast tracepoints.\n\
4130 Otherwise, any sort of insertion attempt will result in an error."),
4131 set_target_permissions, NULL,
4132 &setlist, &showlist);
4134 add_setshow_boolean_cmd ("may-interrupt", class_support,
4136 Set permission to interrupt or signal the target."), _("\
4137 Show permission to interrupt or signal the target."), _("\
4138 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4139 Otherwise, any attempt to interrupt or stop will be ignored."),
4140 set_target_permissions, NULL,
4141 &setlist, &showlist);
4143 add_com ("flash-erase", no_class, flash_erase_command,
4144 _("Erase all flash memory regions."));
4146 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4147 &auto_connect_native_target, _("\
4148 Set whether GDB may automatically connect to the native target."), _("\
4149 Show whether GDB may automatically connect to the native target."), _("\
4150 When on, and GDB is not connected to a target yet, GDB\n\
4151 attempts \"run\" and other commands with the native target."),
4152 NULL, show_auto_connect_native_target,
4153 &setlist, &showlist);