1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static void extract_string (CORE_ADDR addr, char *buf);
74 static void modify_general_field (char *, LONGEST, int, int);
76 static struct type *desc_base_type (struct type *);
78 static struct type *desc_bounds_type (struct type *);
80 static struct value *desc_bounds (struct value *);
82 static int fat_pntr_bounds_bitpos (struct type *);
84 static int fat_pntr_bounds_bitsize (struct type *);
86 static struct type *desc_data_type (struct type *);
88 static struct value *desc_data (struct value *);
90 static int fat_pntr_data_bitpos (struct type *);
92 static int fat_pntr_data_bitsize (struct type *);
94 static struct value *desc_one_bound (struct value *, int, int);
96 static int desc_bound_bitpos (struct type *, int, int);
98 static int desc_bound_bitsize (struct type *, int, int);
100 static struct type *desc_index_type (struct type *, int);
102 static int desc_arity (struct type *);
104 static int ada_type_match (struct type *, struct type *, int);
106 static int ada_args_match (struct symbol *, struct value **, int);
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
110 static struct value *convert_actual (struct value *, struct type *,
113 static struct value *make_array_descriptor (struct type *, struct value *,
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
121 static int is_nonfunction (struct ada_symbol_info *, int);
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
126 static int num_defns_collected (struct obstack *);
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
134 static struct symtab *symtab_for_sym (struct symbol *);
136 static struct value *resolve_subexp (struct expression **, int *, int,
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
144 static char *ada_op_name (enum exp_opcode);
146 static const char *ada_decoded_op_name (enum exp_opcode);
148 static int numeric_type_p (struct type *);
150 static int integer_type_p (struct type *);
152 static int scalar_type_p (struct type *);
154 static int discrete_type_p (struct type *);
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
161 static struct symbol *find_old_style_renaming_symbol (const char *,
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
167 static struct value *evaluate_subexp (struct type *, struct expression *,
170 static struct value *evaluate_subexp_type (struct expression *, int *);
172 static int is_dynamic_field (struct type *, int);
174 static struct type *to_fixed_variant_branch_type (struct type *,
176 CORE_ADDR, struct value *);
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
180 static struct type *to_fixed_range_type (char *, struct value *,
183 static struct type *to_static_fixed_type (struct type *);
185 static struct value *unwrap_value (struct value *);
187 static struct type *packed_array_type (struct type *, long *);
189 static struct type *decode_packed_array_type (struct type *);
191 static struct value *decode_packed_array (struct value *);
193 static struct value *value_subscript_packed (struct value *, int,
196 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198 static struct value *coerce_unspec_val_to_type (struct value *,
201 static struct value *get_var_value (char *, char *);
203 static int lesseq_defined_than (struct symbol *, struct symbol *);
205 static int equiv_types (struct type *, struct type *);
207 static int is_name_suffix (const char *);
209 static int wild_match (const char *, int, const char *);
211 static struct value *ada_coerce_ref (struct value *);
213 static LONGEST pos_atr (struct value *);
215 static struct value *value_pos_atr (struct value *);
217 static struct value *value_val_atr (struct type *, struct value *);
219 static struct symbol *standard_lookup (const char *, const struct block *,
222 static struct value *ada_search_struct_field (char *, struct value *, int,
225 static struct value *ada_value_primitive_field (struct value *, int, int,
228 static int find_struct_field (char *, struct type *, int,
229 struct type **, int *, int *, int *, int *);
231 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
234 static struct value *ada_to_fixed_value (struct value *);
236 static int ada_resolve_function (struct ada_symbol_info *, int,
237 struct value **, int, const char *,
240 static struct value *ada_coerce_to_simple_array (struct value *);
242 static int ada_is_direct_array_type (struct type *);
244 static void ada_language_arch_info (struct gdbarch *,
245 struct language_arch_info *);
247 static void check_size (const struct type *);
249 static struct value *ada_index_struct_field (int, struct value *, int,
252 static struct value *assign_aggregate (struct value *, struct value *,
253 struct expression *, int *, enum noside);
255 static void aggregate_assign_from_choices (struct value *, struct value *,
257 int *, LONGEST *, int *,
258 int, LONGEST, LONGEST);
260 static void aggregate_assign_positional (struct value *, struct value *,
262 int *, LONGEST *, int *, int,
266 static void aggregate_assign_others (struct value *, struct value *,
268 int *, LONGEST *, int, LONGEST, LONGEST);
271 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
274 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
277 static void ada_forward_operator_length (struct expression *, int, int *,
282 /* Maximum-sized dynamic type. */
283 static unsigned int varsize_limit;
285 /* FIXME: brobecker/2003-09-17: No longer a const because it is
286 returned by a function that does not return a const char *. */
287 static char *ada_completer_word_break_characters =
289 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
294 /* The name of the symbol to use to get the name of the main subprogram. */
295 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
296 = "__gnat_ada_main_program_name";
298 /* Limit on the number of warnings to raise per expression evaluation. */
299 static int warning_limit = 2;
301 /* Number of warning messages issued; reset to 0 by cleanups after
302 expression evaluation. */
303 static int warnings_issued = 0;
305 static const char *known_runtime_file_name_patterns[] = {
306 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
309 static const char *known_auxiliary_function_name_patterns[] = {
310 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
313 /* Space for allocating results of ada_lookup_symbol_list. */
314 static struct obstack symbol_list_obstack;
320 ada_get_gdb_completer_word_break_characters (void)
322 return ada_completer_word_break_characters;
325 /* Print an array element index using the Ada syntax. */
328 ada_print_array_index (struct value *index_value, struct ui_file *stream,
329 int format, enum val_prettyprint pretty)
331 LA_VALUE_PRINT (index_value, stream, format, pretty);
332 fprintf_filtered (stream, " => ");
335 /* Read the string located at ADDR from the inferior and store the
339 extract_string (CORE_ADDR addr, char *buf)
343 /* Loop, reading one byte at a time, until we reach the '\000'
344 end-of-string marker. */
347 target_read_memory (addr + char_index * sizeof (char),
348 buf + char_index * sizeof (char), sizeof (char));
351 while (buf[char_index - 1] != '\000');
354 /* Assuming VECT points to an array of *SIZE objects of size
355 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
356 updating *SIZE as necessary and returning the (new) array. */
359 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
361 if (*size < min_size)
364 if (*size < min_size)
366 vect = xrealloc (vect, *size * element_size);
371 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
372 suffix of FIELD_NAME beginning "___". */
375 field_name_match (const char *field_name, const char *target)
377 int len = strlen (target);
379 (strncmp (field_name, target, len) == 0
380 && (field_name[len] == '\0'
381 || (strncmp (field_name + len, "___", 3) == 0
382 && strcmp (field_name + strlen (field_name) - 6,
387 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
388 FIELD_NAME, and return its index. This function also handles fields
389 whose name have ___ suffixes because the compiler sometimes alters
390 their name by adding such a suffix to represent fields with certain
391 constraints. If the field could not be found, return a negative
392 number if MAYBE_MISSING is set. Otherwise raise an error. */
395 ada_get_field_index (const struct type *type, const char *field_name,
399 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
400 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
404 error (_("Unable to find field %s in struct %s. Aborting"),
405 field_name, TYPE_NAME (type));
410 /* The length of the prefix of NAME prior to any "___" suffix. */
413 ada_name_prefix_len (const char *name)
419 const char *p = strstr (name, "___");
421 return strlen (name);
427 /* Return non-zero if SUFFIX is a suffix of STR.
428 Return zero if STR is null. */
431 is_suffix (const char *str, const char *suffix)
437 len2 = strlen (suffix);
438 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
441 /* Create a value of type TYPE whose contents come from VALADDR, if it
442 is non-null, and whose memory address (in the inferior) is
446 value_from_contents_and_address (struct type *type,
447 const gdb_byte *valaddr,
450 struct value *v = allocate_value (type);
452 set_value_lazy (v, 1);
454 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
455 VALUE_ADDRESS (v) = address;
457 VALUE_LVAL (v) = lval_memory;
461 /* The contents of value VAL, treated as a value of type TYPE. The
462 result is an lval in memory if VAL is. */
464 static struct value *
465 coerce_unspec_val_to_type (struct value *val, struct type *type)
467 type = ada_check_typedef (type);
468 if (value_type (val) == type)
472 struct value *result;
474 /* Make sure that the object size is not unreasonable before
475 trying to allocate some memory for it. */
478 result = allocate_value (type);
479 VALUE_LVAL (result) = VALUE_LVAL (val);
480 set_value_bitsize (result, value_bitsize (val));
481 set_value_bitpos (result, value_bitpos (val));
482 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
484 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
485 set_value_lazy (result, 1);
487 memcpy (value_contents_raw (result), value_contents (val),
493 static const gdb_byte *
494 cond_offset_host (const gdb_byte *valaddr, long offset)
499 return valaddr + offset;
503 cond_offset_target (CORE_ADDR address, long offset)
508 return address + offset;
511 /* Issue a warning (as for the definition of warning in utils.c, but
512 with exactly one argument rather than ...), unless the limit on the
513 number of warnings has passed during the evaluation of the current
516 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
517 provided by "complaint". */
518 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
521 lim_warning (const char *format, ...)
524 va_start (args, format);
526 warnings_issued += 1;
527 if (warnings_issued <= warning_limit)
528 vwarning (format, args);
533 /* Issue an error if the size of an object of type T is unreasonable,
534 i.e. if it would be a bad idea to allocate a value of this type in
538 check_size (const struct type *type)
540 if (TYPE_LENGTH (type) > varsize_limit)
541 error (_("object size is larger than varsize-limit"));
545 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
546 gdbtypes.h, but some of the necessary definitions in that file
547 seem to have gone missing. */
549 /* Maximum value of a SIZE-byte signed integer type. */
551 max_of_size (int size)
553 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
554 return top_bit | (top_bit - 1);
557 /* Minimum value of a SIZE-byte signed integer type. */
559 min_of_size (int size)
561 return -max_of_size (size) - 1;
564 /* Maximum value of a SIZE-byte unsigned integer type. */
566 umax_of_size (int size)
568 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
569 return top_bit | (top_bit - 1);
572 /* Maximum value of integral type T, as a signed quantity. */
574 max_of_type (struct type *t)
576 if (TYPE_UNSIGNED (t))
577 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 return max_of_size (TYPE_LENGTH (t));
582 /* Minimum value of integral type T, as a signed quantity. */
584 min_of_type (struct type *t)
586 if (TYPE_UNSIGNED (t))
589 return min_of_size (TYPE_LENGTH (t));
592 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
593 static struct value *
594 discrete_type_high_bound (struct type *type)
596 switch (TYPE_CODE (type))
598 case TYPE_CODE_RANGE:
599 return value_from_longest (TYPE_TARGET_TYPE (type),
600 TYPE_HIGH_BOUND (type));
603 value_from_longest (type,
604 TYPE_FIELD_BITPOS (type,
605 TYPE_NFIELDS (type) - 1));
607 return value_from_longest (type, max_of_type (type));
609 error (_("Unexpected type in discrete_type_high_bound."));
613 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
614 static struct value *
615 discrete_type_low_bound (struct type *type)
617 switch (TYPE_CODE (type))
619 case TYPE_CODE_RANGE:
620 return value_from_longest (TYPE_TARGET_TYPE (type),
621 TYPE_LOW_BOUND (type));
623 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
625 return value_from_longest (type, min_of_type (type));
627 error (_("Unexpected type in discrete_type_low_bound."));
631 /* The identity on non-range types. For range types, the underlying
632 non-range scalar type. */
635 base_type (struct type *type)
637 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
639 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
641 type = TYPE_TARGET_TYPE (type);
647 /* Language Selection */
649 /* If the main program is in Ada, return language_ada, otherwise return LANG
650 (the main program is in Ada iif the adainit symbol is found).
652 MAIN_PST is not used. */
655 ada_update_initial_language (enum language lang,
656 struct partial_symtab *main_pst)
658 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
659 (struct objfile *) NULL) != NULL)
665 /* If the main procedure is written in Ada, then return its name.
666 The result is good until the next call. Return NULL if the main
667 procedure doesn't appear to be in Ada. */
672 struct minimal_symbol *msym;
673 CORE_ADDR main_program_name_addr;
674 static char main_program_name[1024];
676 /* For Ada, the name of the main procedure is stored in a specific
677 string constant, generated by the binder. Look for that symbol,
678 extract its address, and then read that string. If we didn't find
679 that string, then most probably the main procedure is not written
681 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
685 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
686 if (main_program_name_addr == 0)
687 error (_("Invalid address for Ada main program name."));
689 extract_string (main_program_name_addr, main_program_name);
690 return main_program_name;
693 /* The main procedure doesn't seem to be in Ada. */
699 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
702 const struct ada_opname_map ada_opname_table[] = {
703 {"Oadd", "\"+\"", BINOP_ADD},
704 {"Osubtract", "\"-\"", BINOP_SUB},
705 {"Omultiply", "\"*\"", BINOP_MUL},
706 {"Odivide", "\"/\"", BINOP_DIV},
707 {"Omod", "\"mod\"", BINOP_MOD},
708 {"Orem", "\"rem\"", BINOP_REM},
709 {"Oexpon", "\"**\"", BINOP_EXP},
710 {"Olt", "\"<\"", BINOP_LESS},
711 {"Ole", "\"<=\"", BINOP_LEQ},
712 {"Ogt", "\">\"", BINOP_GTR},
713 {"Oge", "\">=\"", BINOP_GEQ},
714 {"Oeq", "\"=\"", BINOP_EQUAL},
715 {"One", "\"/=\"", BINOP_NOTEQUAL},
716 {"Oand", "\"and\"", BINOP_BITWISE_AND},
717 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
718 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
719 {"Oconcat", "\"&\"", BINOP_CONCAT},
720 {"Oabs", "\"abs\"", UNOP_ABS},
721 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
722 {"Oadd", "\"+\"", UNOP_PLUS},
723 {"Osubtract", "\"-\"", UNOP_NEG},
727 /* Return non-zero if STR should be suppressed in info listings. */
730 is_suppressed_name (const char *str)
732 if (strncmp (str, "_ada_", 5) == 0)
734 if (str[0] == '_' || str[0] == '\000')
739 const char *suffix = strstr (str, "___");
740 if (suffix != NULL && suffix[3] != 'X')
743 suffix = str + strlen (str);
744 for (p = suffix - 1; p != str; p -= 1)
748 if (p[0] == 'X' && p[-1] != '_')
752 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
753 if (strncmp (ada_opname_table[i].encoded, p,
754 strlen (ada_opname_table[i].encoded)) == 0)
763 /* The "encoded" form of DECODED, according to GNAT conventions.
764 The result is valid until the next call to ada_encode. */
767 ada_encode (const char *decoded)
769 static char *encoding_buffer = NULL;
770 static size_t encoding_buffer_size = 0;
777 GROW_VECT (encoding_buffer, encoding_buffer_size,
778 2 * strlen (decoded) + 10);
781 for (p = decoded; *p != '\0'; p += 1)
783 if (!ADA_RETAIN_DOTS && *p == '.')
785 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
790 const struct ada_opname_map *mapping;
792 for (mapping = ada_opname_table;
793 mapping->encoded != NULL
794 && strncmp (mapping->decoded, p,
795 strlen (mapping->decoded)) != 0; mapping += 1)
797 if (mapping->encoded == NULL)
798 error (_("invalid Ada operator name: %s"), p);
799 strcpy (encoding_buffer + k, mapping->encoded);
800 k += strlen (mapping->encoded);
805 encoding_buffer[k] = *p;
810 encoding_buffer[k] = '\0';
811 return encoding_buffer;
814 /* Return NAME folded to lower case, or, if surrounded by single
815 quotes, unfolded, but with the quotes stripped away. Result good
819 ada_fold_name (const char *name)
821 static char *fold_buffer = NULL;
822 static size_t fold_buffer_size = 0;
824 int len = strlen (name);
825 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
829 strncpy (fold_buffer, name + 1, len - 2);
830 fold_buffer[len - 2] = '\000';
835 for (i = 0; i <= len; i += 1)
836 fold_buffer[i] = tolower (name[i]);
842 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
845 is_lower_alphanum (const char c)
847 return (isdigit (c) || (isalpha (c) && islower (c)));
851 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
852 These are suffixes introduced by GNAT5 to nested subprogram
853 names, and do not serve any purpose for the debugger.
854 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
855 . Discard final N if it follows a lowercase alphanumeric character
856 (protected object subprogram suffix)
857 . Convert other instances of embedded "__" to `.'.
858 . Discard leading _ada_.
859 . Convert operator names to the appropriate quoted symbols.
860 . Remove everything after first ___ if it is followed by
862 . Replace TK__ with __, and a trailing B or TKB with nothing.
863 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
864 . Put symbols that should be suppressed in <...> brackets.
865 . Remove trailing X[bn]* suffix (indicating names in package bodies).
867 The resulting string is valid until the next call of ada_decode.
868 If the string is unchanged by demangling, the original string pointer
872 ada_decode (const char *encoded)
879 static char *decoding_buffer = NULL;
880 static size_t decoding_buffer_size = 0;
882 if (strncmp (encoded, "_ada_", 5) == 0)
885 if (encoded[0] == '_' || encoded[0] == '<')
888 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
889 len0 = strlen (encoded);
890 if (len0 > 1 && isdigit (encoded[len0 - 1]))
893 while (i > 0 && isdigit (encoded[i]))
895 if (i >= 0 && encoded[i] == '.')
897 else if (i >= 0 && encoded[i] == '$')
899 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
901 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
905 /* Remove trailing N. */
907 /* Protected entry subprograms are broken into two
908 separate subprograms: The first one is unprotected, and has
909 a 'N' suffix; the second is the protected version, and has
910 the 'P' suffix. The second calls the first one after handling
911 the protection. Since the P subprograms are internally generated,
912 we leave these names undecoded, giving the user a clue that this
913 entity is internal. */
916 && encoded[len0 - 1] == 'N'
917 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
920 /* Remove the ___X.* suffix if present. Do not forget to verify that
921 the suffix is located before the current "end" of ENCODED. We want
922 to avoid re-matching parts of ENCODED that have previously been
923 marked as discarded (by decrementing LEN0). */
924 p = strstr (encoded, "___");
925 if (p != NULL && p - encoded < len0 - 3)
933 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
936 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
939 /* Make decoded big enough for possible expansion by operator name. */
940 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
941 decoded = decoding_buffer;
943 if (len0 > 1 && isdigit (encoded[len0 - 1]))
946 while ((i >= 0 && isdigit (encoded[i]))
947 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
949 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
951 else if (encoded[i] == '$')
955 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
956 decoded[j] = encoded[i];
961 if (at_start_name && encoded[i] == 'O')
964 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
966 int op_len = strlen (ada_opname_table[k].encoded);
967 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
969 && !isalnum (encoded[i + op_len]))
971 strcpy (decoded + j, ada_opname_table[k].decoded);
974 j += strlen (ada_opname_table[k].decoded);
978 if (ada_opname_table[k].encoded != NULL)
983 /* Replace "TK__" with "__", which will eventually be translated
984 into "." (just below). */
986 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
989 /* Remove _E{DIGITS}+[sb] */
991 /* Just as for protected object subprograms, there are 2 categories
992 of subprograms created by the compiler for each entry. The first
993 one implements the actual entry code, and has a suffix following
994 the convention above; the second one implements the barrier and
995 uses the same convention as above, except that the 'E' is replaced
998 Just as above, we do not decode the name of barrier functions
999 to give the user a clue that the code he is debugging has been
1000 internally generated. */
1002 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1003 && isdigit (encoded[i+2]))
1007 while (k < len0 && isdigit (encoded[k]))
1011 && (encoded[k] == 'b' || encoded[k] == 's'))
1014 /* Just as an extra precaution, make sure that if this
1015 suffix is followed by anything else, it is a '_'.
1016 Otherwise, we matched this sequence by accident. */
1018 || (k < len0 && encoded[k] == '_'))
1023 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1024 the GNAT front-end in protected object subprograms. */
1027 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1029 /* Backtrack a bit up until we reach either the begining of
1030 the encoded name, or "__". Make sure that we only find
1031 digits or lowercase characters. */
1032 const char *ptr = encoded + i - 1;
1034 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1037 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1041 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1045 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1049 else if (!ADA_RETAIN_DOTS
1050 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1059 decoded[j] = encoded[i];
1064 decoded[j] = '\000';
1066 for (i = 0; decoded[i] != '\0'; i += 1)
1067 if (isupper (decoded[i]) || decoded[i] == ' ')
1070 if (strcmp (decoded, encoded) == 0)
1076 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1077 decoded = decoding_buffer;
1078 if (encoded[0] == '<')
1079 strcpy (decoded, encoded);
1081 sprintf (decoded, "<%s>", encoded);
1086 /* Table for keeping permanent unique copies of decoded names. Once
1087 allocated, names in this table are never released. While this is a
1088 storage leak, it should not be significant unless there are massive
1089 changes in the set of decoded names in successive versions of a
1090 symbol table loaded during a single session. */
1091 static struct htab *decoded_names_store;
1093 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1094 in the language-specific part of GSYMBOL, if it has not been
1095 previously computed. Tries to save the decoded name in the same
1096 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1097 in any case, the decoded symbol has a lifetime at least that of
1099 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1100 const, but nevertheless modified to a semantically equivalent form
1101 when a decoded name is cached in it.
1105 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1108 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1109 if (*resultp == NULL)
1111 const char *decoded = ada_decode (gsymbol->name);
1112 if (gsymbol->bfd_section != NULL)
1114 bfd *obfd = gsymbol->bfd_section->owner;
1117 struct objfile *objf;
1120 if (obfd == objf->obfd)
1122 *resultp = obsavestring (decoded, strlen (decoded),
1123 &objf->objfile_obstack);
1129 /* Sometimes, we can't find a corresponding objfile, in which
1130 case, we put the result on the heap. Since we only decode
1131 when needed, we hope this usually does not cause a
1132 significant memory leak (FIXME). */
1133 if (*resultp == NULL)
1135 char **slot = (char **) htab_find_slot (decoded_names_store,
1138 *slot = xstrdup (decoded);
1147 ada_la_decode (const char *encoded, int options)
1149 return xstrdup (ada_decode (encoded));
1152 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1153 suffixes that encode debugging information or leading _ada_ on
1154 SYM_NAME (see is_name_suffix commentary for the debugging
1155 information that is ignored). If WILD, then NAME need only match a
1156 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1157 either argument is NULL. */
1160 ada_match_name (const char *sym_name, const char *name, int wild)
1162 if (sym_name == NULL || name == NULL)
1165 return wild_match (name, strlen (name), sym_name);
1168 int len_name = strlen (name);
1169 return (strncmp (sym_name, name, len_name) == 0
1170 && is_name_suffix (sym_name + len_name))
1171 || (strncmp (sym_name, "_ada_", 5) == 0
1172 && strncmp (sym_name + 5, name, len_name) == 0
1173 && is_name_suffix (sym_name + len_name + 5));
1177 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1178 suppressed in info listings. */
1181 ada_suppress_symbol_printing (struct symbol *sym)
1183 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1186 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1192 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1194 static char *bound_name[] = {
1195 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1196 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1199 /* Maximum number of array dimensions we are prepared to handle. */
1201 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1203 /* Like modify_field, but allows bitpos > wordlength. */
1206 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1208 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1212 /* The desc_* routines return primitive portions of array descriptors
1215 /* The descriptor or array type, if any, indicated by TYPE; removes
1216 level of indirection, if needed. */
1218 static struct type *
1219 desc_base_type (struct type *type)
1223 type = ada_check_typedef (type);
1225 && (TYPE_CODE (type) == TYPE_CODE_PTR
1226 || TYPE_CODE (type) == TYPE_CODE_REF))
1227 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1232 /* True iff TYPE indicates a "thin" array pointer type. */
1235 is_thin_pntr (struct type *type)
1238 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1239 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1242 /* The descriptor type for thin pointer type TYPE. */
1244 static struct type *
1245 thin_descriptor_type (struct type *type)
1247 struct type *base_type = desc_base_type (type);
1248 if (base_type == NULL)
1250 if (is_suffix (ada_type_name (base_type), "___XVE"))
1254 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1255 if (alt_type == NULL)
1262 /* A pointer to the array data for thin-pointer value VAL. */
1264 static struct value *
1265 thin_data_pntr (struct value *val)
1267 struct type *type = value_type (val);
1268 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1269 return value_cast (desc_data_type (thin_descriptor_type (type)),
1272 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1273 VALUE_ADDRESS (val) + value_offset (val));
1276 /* True iff TYPE indicates a "thick" array pointer type. */
1279 is_thick_pntr (struct type *type)
1281 type = desc_base_type (type);
1282 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1283 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1286 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1287 pointer to one, the type of its bounds data; otherwise, NULL. */
1289 static struct type *
1290 desc_bounds_type (struct type *type)
1294 type = desc_base_type (type);
1298 else if (is_thin_pntr (type))
1300 type = thin_descriptor_type (type);
1303 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1305 return ada_check_typedef (r);
1307 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1309 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1311 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1316 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1317 one, a pointer to its bounds data. Otherwise NULL. */
1319 static struct value *
1320 desc_bounds (struct value *arr)
1322 struct type *type = ada_check_typedef (value_type (arr));
1323 if (is_thin_pntr (type))
1325 struct type *bounds_type =
1326 desc_bounds_type (thin_descriptor_type (type));
1329 if (bounds_type == NULL)
1330 error (_("Bad GNAT array descriptor"));
1332 /* NOTE: The following calculation is not really kosher, but
1333 since desc_type is an XVE-encoded type (and shouldn't be),
1334 the correct calculation is a real pain. FIXME (and fix GCC). */
1335 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1336 addr = value_as_long (arr);
1338 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1341 value_from_longest (lookup_pointer_type (bounds_type),
1342 addr - TYPE_LENGTH (bounds_type));
1345 else if (is_thick_pntr (type))
1346 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1347 _("Bad GNAT array descriptor"));
1352 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1353 position of the field containing the address of the bounds data. */
1356 fat_pntr_bounds_bitpos (struct type *type)
1358 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1361 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1362 size of the field containing the address of the bounds data. */
1365 fat_pntr_bounds_bitsize (struct type *type)
1367 type = desc_base_type (type);
1369 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1370 return TYPE_FIELD_BITSIZE (type, 1);
1372 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1375 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1376 pointer to one, the type of its array data (a
1377 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1378 ada_type_of_array to get an array type with bounds data. */
1380 static struct type *
1381 desc_data_type (struct type *type)
1383 type = desc_base_type (type);
1385 /* NOTE: The following is bogus; see comment in desc_bounds. */
1386 if (is_thin_pntr (type))
1387 return lookup_pointer_type
1388 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1389 else if (is_thick_pntr (type))
1390 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1395 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1398 static struct value *
1399 desc_data (struct value *arr)
1401 struct type *type = value_type (arr);
1402 if (is_thin_pntr (type))
1403 return thin_data_pntr (arr);
1404 else if (is_thick_pntr (type))
1405 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1406 _("Bad GNAT array descriptor"));
1412 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1413 position of the field containing the address of the data. */
1416 fat_pntr_data_bitpos (struct type *type)
1418 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1421 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1422 size of the field containing the address of the data. */
1425 fat_pntr_data_bitsize (struct type *type)
1427 type = desc_base_type (type);
1429 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1430 return TYPE_FIELD_BITSIZE (type, 0);
1432 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1435 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1436 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1437 bound, if WHICH is 1. The first bound is I=1. */
1439 static struct value *
1440 desc_one_bound (struct value *bounds, int i, int which)
1442 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1443 _("Bad GNAT array descriptor bounds"));
1446 /* If BOUNDS is an array-bounds structure type, return the bit position
1447 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1448 bound, if WHICH is 1. The first bound is I=1. */
1451 desc_bound_bitpos (struct type *type, int i, int which)
1453 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1456 /* If BOUNDS is an array-bounds structure type, return the bit field size
1457 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1458 bound, if WHICH is 1. The first bound is I=1. */
1461 desc_bound_bitsize (struct type *type, int i, int which)
1463 type = desc_base_type (type);
1465 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1466 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1468 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1471 /* If TYPE is the type of an array-bounds structure, the type of its
1472 Ith bound (numbering from 1). Otherwise, NULL. */
1474 static struct type *
1475 desc_index_type (struct type *type, int i)
1477 type = desc_base_type (type);
1479 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1480 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1485 /* The number of index positions in the array-bounds type TYPE.
1486 Return 0 if TYPE is NULL. */
1489 desc_arity (struct type *type)
1491 type = desc_base_type (type);
1494 return TYPE_NFIELDS (type) / 2;
1498 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1499 an array descriptor type (representing an unconstrained array
1503 ada_is_direct_array_type (struct type *type)
1507 type = ada_check_typedef (type);
1508 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1509 || ada_is_array_descriptor_type (type));
1512 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1516 ada_is_array_type (struct type *type)
1519 && (TYPE_CODE (type) == TYPE_CODE_PTR
1520 || TYPE_CODE (type) == TYPE_CODE_REF))
1521 type = TYPE_TARGET_TYPE (type);
1522 return ada_is_direct_array_type (type);
1525 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1528 ada_is_simple_array_type (struct type *type)
1532 type = ada_check_typedef (type);
1533 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1534 || (TYPE_CODE (type) == TYPE_CODE_PTR
1535 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1538 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1541 ada_is_array_descriptor_type (struct type *type)
1543 struct type *data_type = desc_data_type (type);
1547 type = ada_check_typedef (type);
1550 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1551 && TYPE_TARGET_TYPE (data_type) != NULL
1552 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1553 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1554 && desc_arity (desc_bounds_type (type)) > 0;
1557 /* Non-zero iff type is a partially mal-formed GNAT array
1558 descriptor. FIXME: This is to compensate for some problems with
1559 debugging output from GNAT. Re-examine periodically to see if it
1563 ada_is_bogus_array_descriptor (struct type *type)
1567 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1568 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1569 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1570 && !ada_is_array_descriptor_type (type);
1574 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1575 (fat pointer) returns the type of the array data described---specifically,
1576 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1577 in from the descriptor; otherwise, they are left unspecified. If
1578 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1579 returns NULL. The result is simply the type of ARR if ARR is not
1582 ada_type_of_array (struct value *arr, int bounds)
1584 if (ada_is_packed_array_type (value_type (arr)))
1585 return decode_packed_array_type (value_type (arr));
1587 if (!ada_is_array_descriptor_type (value_type (arr)))
1588 return value_type (arr);
1592 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1595 struct type *elt_type;
1597 struct value *descriptor;
1598 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1600 elt_type = ada_array_element_type (value_type (arr), -1);
1601 arity = ada_array_arity (value_type (arr));
1603 if (elt_type == NULL || arity == 0)
1604 return ada_check_typedef (value_type (arr));
1606 descriptor = desc_bounds (arr);
1607 if (value_as_long (descriptor) == 0)
1611 struct type *range_type = alloc_type (objf);
1612 struct type *array_type = alloc_type (objf);
1613 struct value *low = desc_one_bound (descriptor, arity, 0);
1614 struct value *high = desc_one_bound (descriptor, arity, 1);
1617 create_range_type (range_type, value_type (low),
1618 longest_to_int (value_as_long (low)),
1619 longest_to_int (value_as_long (high)));
1620 elt_type = create_array_type (array_type, elt_type, range_type);
1623 return lookup_pointer_type (elt_type);
1627 /* If ARR does not represent an array, returns ARR unchanged.
1628 Otherwise, returns either a standard GDB array with bounds set
1629 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1630 GDB array. Returns NULL if ARR is a null fat pointer. */
1633 ada_coerce_to_simple_array_ptr (struct value *arr)
1635 if (ada_is_array_descriptor_type (value_type (arr)))
1637 struct type *arrType = ada_type_of_array (arr, 1);
1638 if (arrType == NULL)
1640 return value_cast (arrType, value_copy (desc_data (arr)));
1642 else if (ada_is_packed_array_type (value_type (arr)))
1643 return decode_packed_array (arr);
1648 /* If ARR does not represent an array, returns ARR unchanged.
1649 Otherwise, returns a standard GDB array describing ARR (which may
1650 be ARR itself if it already is in the proper form). */
1652 static struct value *
1653 ada_coerce_to_simple_array (struct value *arr)
1655 if (ada_is_array_descriptor_type (value_type (arr)))
1657 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1659 error (_("Bounds unavailable for null array pointer."));
1660 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1661 return value_ind (arrVal);
1663 else if (ada_is_packed_array_type (value_type (arr)))
1664 return decode_packed_array (arr);
1669 /* If TYPE represents a GNAT array type, return it translated to an
1670 ordinary GDB array type (possibly with BITSIZE fields indicating
1671 packing). For other types, is the identity. */
1674 ada_coerce_to_simple_array_type (struct type *type)
1676 struct value *mark = value_mark ();
1677 struct value *dummy = value_from_longest (builtin_type_long, 0);
1678 struct type *result;
1679 deprecated_set_value_type (dummy, type);
1680 result = ada_type_of_array (dummy, 0);
1681 value_free_to_mark (mark);
1685 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1688 ada_is_packed_array_type (struct type *type)
1692 type = desc_base_type (type);
1693 type = ada_check_typedef (type);
1695 ada_type_name (type) != NULL
1696 && strstr (ada_type_name (type), "___XP") != NULL;
1699 /* Given that TYPE is a standard GDB array type with all bounds filled
1700 in, and that the element size of its ultimate scalar constituents
1701 (that is, either its elements, or, if it is an array of arrays, its
1702 elements' elements, etc.) is *ELT_BITS, return an identical type,
1703 but with the bit sizes of its elements (and those of any
1704 constituent arrays) recorded in the BITSIZE components of its
1705 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1708 static struct type *
1709 packed_array_type (struct type *type, long *elt_bits)
1711 struct type *new_elt_type;
1712 struct type *new_type;
1713 LONGEST low_bound, high_bound;
1715 type = ada_check_typedef (type);
1716 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1719 new_type = alloc_type (TYPE_OBJFILE (type));
1720 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1722 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1723 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1724 TYPE_NAME (new_type) = ada_type_name (type);
1726 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1727 &low_bound, &high_bound) < 0)
1728 low_bound = high_bound = 0;
1729 if (high_bound < low_bound)
1730 *elt_bits = TYPE_LENGTH (new_type) = 0;
1733 *elt_bits *= (high_bound - low_bound + 1);
1734 TYPE_LENGTH (new_type) =
1735 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1738 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1742 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1744 static struct type *
1745 decode_packed_array_type (struct type *type)
1748 struct block **blocks;
1749 const char *raw_name = ada_type_name (ada_check_typedef (type));
1750 char *name = (char *) alloca (strlen (raw_name) + 1);
1751 char *tail = strstr (raw_name, "___XP");
1752 struct type *shadow_type;
1756 type = desc_base_type (type);
1758 memcpy (name, raw_name, tail - raw_name);
1759 name[tail - raw_name] = '\000';
1761 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1762 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1764 lim_warning (_("could not find bounds information on packed array"));
1767 shadow_type = SYMBOL_TYPE (sym);
1769 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1771 lim_warning (_("could not understand bounds information on packed array"));
1775 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1778 (_("could not understand bit size information on packed array"));
1782 return packed_array_type (shadow_type, &bits);
1785 /* Given that ARR is a struct value *indicating a GNAT packed array,
1786 returns a simple array that denotes that array. Its type is a
1787 standard GDB array type except that the BITSIZEs of the array
1788 target types are set to the number of bits in each element, and the
1789 type length is set appropriately. */
1791 static struct value *
1792 decode_packed_array (struct value *arr)
1796 arr = ada_coerce_ref (arr);
1797 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1798 arr = ada_value_ind (arr);
1800 type = decode_packed_array_type (value_type (arr));
1803 error (_("can't unpack array"));
1807 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1809 /* This is a (right-justified) modular type representing a packed
1810 array with no wrapper. In order to interpret the value through
1811 the (left-justified) packed array type we just built, we must
1812 first left-justify it. */
1813 int bit_size, bit_pos;
1816 mod = ada_modulus (value_type (arr)) - 1;
1823 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1824 arr = ada_value_primitive_packed_val (arr, NULL,
1825 bit_pos / HOST_CHAR_BIT,
1826 bit_pos % HOST_CHAR_BIT,
1831 return coerce_unspec_val_to_type (arr, type);
1835 /* The value of the element of packed array ARR at the ARITY indices
1836 given in IND. ARR must be a simple array. */
1838 static struct value *
1839 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1842 int bits, elt_off, bit_off;
1843 long elt_total_bit_offset;
1844 struct type *elt_type;
1848 elt_total_bit_offset = 0;
1849 elt_type = ada_check_typedef (value_type (arr));
1850 for (i = 0; i < arity; i += 1)
1852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1853 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1855 (_("attempt to do packed indexing of something other than a packed array"));
1858 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1859 LONGEST lowerbound, upperbound;
1862 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1864 lim_warning (_("don't know bounds of array"));
1865 lowerbound = upperbound = 0;
1868 idx = value_as_long (value_pos_atr (ind[i]));
1869 if (idx < lowerbound || idx > upperbound)
1870 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1871 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1872 elt_total_bit_offset += (idx - lowerbound) * bits;
1873 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1876 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1877 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1879 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1884 /* Non-zero iff TYPE includes negative integer values. */
1887 has_negatives (struct type *type)
1889 switch (TYPE_CODE (type))
1894 return !TYPE_UNSIGNED (type);
1895 case TYPE_CODE_RANGE:
1896 return TYPE_LOW_BOUND (type) < 0;
1901 /* Create a new value of type TYPE from the contents of OBJ starting
1902 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1903 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1904 assigning through the result will set the field fetched from.
1905 VALADDR is ignored unless OBJ is NULL, in which case,
1906 VALADDR+OFFSET must address the start of storage containing the
1907 packed value. The value returned in this case is never an lval.
1908 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1911 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1912 long offset, int bit_offset, int bit_size,
1916 int src, /* Index into the source area */
1917 targ, /* Index into the target area */
1918 srcBitsLeft, /* Number of source bits left to move */
1919 nsrc, ntarg, /* Number of source and target bytes */
1920 unusedLS, /* Number of bits in next significant
1921 byte of source that are unused */
1922 accumSize; /* Number of meaningful bits in accum */
1923 unsigned char *bytes; /* First byte containing data to unpack */
1924 unsigned char *unpacked;
1925 unsigned long accum; /* Staging area for bits being transferred */
1927 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1928 /* Transmit bytes from least to most significant; delta is the direction
1929 the indices move. */
1930 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1932 type = ada_check_typedef (type);
1936 v = allocate_value (type);
1937 bytes = (unsigned char *) (valaddr + offset);
1939 else if (value_lazy (obj))
1942 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1943 bytes = (unsigned char *) alloca (len);
1944 read_memory (VALUE_ADDRESS (v), bytes, len);
1948 v = allocate_value (type);
1949 bytes = (unsigned char *) value_contents (obj) + offset;
1954 VALUE_LVAL (v) = VALUE_LVAL (obj);
1955 if (VALUE_LVAL (obj) == lval_internalvar)
1956 VALUE_LVAL (v) = lval_internalvar_component;
1957 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1958 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1959 set_value_bitsize (v, bit_size);
1960 if (value_bitpos (v) >= HOST_CHAR_BIT)
1962 VALUE_ADDRESS (v) += 1;
1963 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1967 set_value_bitsize (v, bit_size);
1968 unpacked = (unsigned char *) value_contents (v);
1970 srcBitsLeft = bit_size;
1972 ntarg = TYPE_LENGTH (type);
1976 memset (unpacked, 0, TYPE_LENGTH (type));
1979 else if (BITS_BIG_ENDIAN)
1982 if (has_negatives (type)
1983 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1987 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1990 switch (TYPE_CODE (type))
1992 case TYPE_CODE_ARRAY:
1993 case TYPE_CODE_UNION:
1994 case TYPE_CODE_STRUCT:
1995 /* Non-scalar values must be aligned at a byte boundary... */
1997 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1998 /* ... And are placed at the beginning (most-significant) bytes
2000 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2004 targ = TYPE_LENGTH (type) - 1;
2010 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2013 unusedLS = bit_offset;
2016 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2023 /* Mask for removing bits of the next source byte that are not
2024 part of the value. */
2025 unsigned int unusedMSMask =
2026 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2028 /* Sign-extend bits for this byte. */
2029 unsigned int signMask = sign & ~unusedMSMask;
2031 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2032 accumSize += HOST_CHAR_BIT - unusedLS;
2033 if (accumSize >= HOST_CHAR_BIT)
2035 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2036 accumSize -= HOST_CHAR_BIT;
2037 accum >>= HOST_CHAR_BIT;
2041 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2048 accum |= sign << accumSize;
2049 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2050 accumSize -= HOST_CHAR_BIT;
2051 accum >>= HOST_CHAR_BIT;
2059 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2060 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2063 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2064 int src_offset, int n)
2066 unsigned int accum, mask;
2067 int accum_bits, chunk_size;
2069 target += targ_offset / HOST_CHAR_BIT;
2070 targ_offset %= HOST_CHAR_BIT;
2071 source += src_offset / HOST_CHAR_BIT;
2072 src_offset %= HOST_CHAR_BIT;
2073 if (BITS_BIG_ENDIAN)
2075 accum = (unsigned char) *source;
2077 accum_bits = HOST_CHAR_BIT - src_offset;
2082 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2083 accum_bits += HOST_CHAR_BIT;
2085 chunk_size = HOST_CHAR_BIT - targ_offset;
2088 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2089 mask = ((1 << chunk_size) - 1) << unused_right;
2092 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2094 accum_bits -= chunk_size;
2101 accum = (unsigned char) *source >> src_offset;
2103 accum_bits = HOST_CHAR_BIT - src_offset;
2107 accum = accum + ((unsigned char) *source << accum_bits);
2108 accum_bits += HOST_CHAR_BIT;
2110 chunk_size = HOST_CHAR_BIT - targ_offset;
2113 mask = ((1 << chunk_size) - 1) << targ_offset;
2114 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2116 accum_bits -= chunk_size;
2117 accum >>= chunk_size;
2124 /* Store the contents of FROMVAL into the location of TOVAL.
2125 Return a new value with the location of TOVAL and contents of
2126 FROMVAL. Handles assignment into packed fields that have
2127 floating-point or non-scalar types. */
2129 static struct value *
2130 ada_value_assign (struct value *toval, struct value *fromval)
2132 struct type *type = value_type (toval);
2133 int bits = value_bitsize (toval);
2135 toval = ada_coerce_ref (toval);
2136 fromval = ada_coerce_ref (fromval);
2138 if (ada_is_direct_array_type (value_type (toval)))
2139 toval = ada_coerce_to_simple_array (toval);
2140 if (ada_is_direct_array_type (value_type (fromval)))
2141 fromval = ada_coerce_to_simple_array (fromval);
2143 if (!deprecated_value_modifiable (toval))
2144 error (_("Left operand of assignment is not a modifiable lvalue."));
2146 if (VALUE_LVAL (toval) == lval_memory
2148 && (TYPE_CODE (type) == TYPE_CODE_FLT
2149 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2151 int len = (value_bitpos (toval)
2152 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2153 char *buffer = (char *) alloca (len);
2155 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2157 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2158 fromval = value_cast (type, fromval);
2160 read_memory (to_addr, buffer, len);
2161 if (BITS_BIG_ENDIAN)
2162 move_bits (buffer, value_bitpos (toval),
2163 value_contents (fromval),
2164 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2167 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2169 write_memory (to_addr, buffer, len);
2170 if (deprecated_memory_changed_hook)
2171 deprecated_memory_changed_hook (to_addr, len);
2173 val = value_copy (toval);
2174 memcpy (value_contents_raw (val), value_contents (fromval),
2175 TYPE_LENGTH (type));
2176 deprecated_set_value_type (val, type);
2181 return value_assign (toval, fromval);
2185 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2186 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2187 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2188 * COMPONENT, and not the inferior's memory. The current contents
2189 * of COMPONENT are ignored. */
2191 value_assign_to_component (struct value *container, struct value *component,
2194 LONGEST offset_in_container =
2195 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2196 - VALUE_ADDRESS (container) - value_offset (container));
2197 int bit_offset_in_container =
2198 value_bitpos (component) - value_bitpos (container);
2201 val = value_cast (value_type (component), val);
2203 if (value_bitsize (component) == 0)
2204 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2206 bits = value_bitsize (component);
2208 if (BITS_BIG_ENDIAN)
2209 move_bits (value_contents_writeable (container) + offset_in_container,
2210 value_bitpos (container) + bit_offset_in_container,
2211 value_contents (val),
2212 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2215 move_bits (value_contents_writeable (container) + offset_in_container,
2216 value_bitpos (container) + bit_offset_in_container,
2217 value_contents (val), 0, bits);
2220 /* The value of the element of array ARR at the ARITY indices given in IND.
2221 ARR may be either a simple array, GNAT array descriptor, or pointer
2225 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2229 struct type *elt_type;
2231 elt = ada_coerce_to_simple_array (arr);
2233 elt_type = ada_check_typedef (value_type (elt));
2234 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2235 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2236 return value_subscript_packed (elt, arity, ind);
2238 for (k = 0; k < arity; k += 1)
2240 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2241 error (_("too many subscripts (%d expected)"), k);
2242 elt = value_subscript (elt, value_pos_atr (ind[k]));
2247 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2248 value of the element of *ARR at the ARITY indices given in
2249 IND. Does not read the entire array into memory. */
2252 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2257 for (k = 0; k < arity; k += 1)
2262 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2263 error (_("too many subscripts (%d expected)"), k);
2264 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2266 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2267 idx = value_pos_atr (ind[k]);
2269 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2270 arr = value_add (arr, idx);
2271 type = TYPE_TARGET_TYPE (type);
2274 return value_ind (arr);
2277 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2278 actual type of ARRAY_PTR is ignored), returns a reference to
2279 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2280 bound of this array is LOW, as per Ada rules. */
2281 static struct value *
2282 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2285 CORE_ADDR base = value_as_address (array_ptr)
2286 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2287 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2288 struct type *index_type =
2289 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2291 struct type *slice_type =
2292 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2293 return value_from_pointer (lookup_reference_type (slice_type), base);
2297 static struct value *
2298 ada_value_slice (struct value *array, int low, int high)
2300 struct type *type = value_type (array);
2301 struct type *index_type =
2302 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2303 struct type *slice_type =
2304 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2305 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2308 /* If type is a record type in the form of a standard GNAT array
2309 descriptor, returns the number of dimensions for type. If arr is a
2310 simple array, returns the number of "array of"s that prefix its
2311 type designation. Otherwise, returns 0. */
2314 ada_array_arity (struct type *type)
2321 type = desc_base_type (type);
2324 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2325 return desc_arity (desc_bounds_type (type));
2327 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2330 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2336 /* If TYPE is a record type in the form of a standard GNAT array
2337 descriptor or a simple array type, returns the element type for
2338 TYPE after indexing by NINDICES indices, or by all indices if
2339 NINDICES is -1. Otherwise, returns NULL. */
2342 ada_array_element_type (struct type *type, int nindices)
2344 type = desc_base_type (type);
2346 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2349 struct type *p_array_type;
2351 p_array_type = desc_data_type (type);
2353 k = ada_array_arity (type);
2357 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2358 if (nindices >= 0 && k > nindices)
2360 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2361 while (k > 0 && p_array_type != NULL)
2363 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2366 return p_array_type;
2368 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2370 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2372 type = TYPE_TARGET_TYPE (type);
2381 /* The type of nth index in arrays of given type (n numbering from 1).
2382 Does not examine memory. */
2385 ada_index_type (struct type *type, int n)
2387 struct type *result_type;
2389 type = desc_base_type (type);
2391 if (n > ada_array_arity (type))
2394 if (ada_is_simple_array_type (type))
2398 for (i = 1; i < n; i += 1)
2399 type = TYPE_TARGET_TYPE (type);
2400 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2401 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2402 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2403 perhaps stabsread.c would make more sense. */
2404 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2405 result_type = builtin_type_int;
2410 return desc_index_type (desc_bounds_type (type), n);
2413 /* Given that arr is an array type, returns the lower bound of the
2414 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2415 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2416 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2417 bounds type. It works for other arrays with bounds supplied by
2418 run-time quantities other than discriminants. */
2421 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2422 struct type ** typep)
2425 struct type *index_type_desc;
2427 if (ada_is_packed_array_type (arr_type))
2428 arr_type = decode_packed_array_type (arr_type);
2430 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2433 *typep = builtin_type_int;
2434 return (LONGEST) - which;
2437 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2438 type = TYPE_TARGET_TYPE (arr_type);
2442 index_type_desc = ada_find_parallel_type (type, "___XA");
2443 if (index_type_desc == NULL)
2445 struct type *range_type;
2446 struct type *index_type;
2450 type = TYPE_TARGET_TYPE (type);
2454 range_type = TYPE_INDEX_TYPE (type);
2455 index_type = TYPE_TARGET_TYPE (range_type);
2456 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2457 index_type = builtin_type_long;
2459 *typep = index_type;
2461 (LONGEST) (which == 0
2462 ? TYPE_LOW_BOUND (range_type)
2463 : TYPE_HIGH_BOUND (range_type));
2467 struct type *index_type =
2468 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2469 NULL, TYPE_OBJFILE (arr_type));
2471 *typep = TYPE_TARGET_TYPE (index_type);
2473 (LONGEST) (which == 0
2474 ? TYPE_LOW_BOUND (index_type)
2475 : TYPE_HIGH_BOUND (index_type));
2479 /* Given that arr is an array value, returns the lower bound of the
2480 nth index (numbering from 1) if which is 0, and the upper bound if
2481 which is 1. This routine will also work for arrays with bounds
2482 supplied by run-time quantities other than discriminants. */
2485 ada_array_bound (struct value *arr, int n, int which)
2487 struct type *arr_type = value_type (arr);
2489 if (ada_is_packed_array_type (arr_type))
2490 return ada_array_bound (decode_packed_array (arr), n, which);
2491 else if (ada_is_simple_array_type (arr_type))
2494 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2495 return value_from_longest (type, v);
2498 return desc_one_bound (desc_bounds (arr), n, which);
2501 /* Given that arr is an array value, returns the length of the
2502 nth index. This routine will also work for arrays with bounds
2503 supplied by run-time quantities other than discriminants.
2504 Does not work for arrays indexed by enumeration types with representation
2505 clauses at the moment. */
2508 ada_array_length (struct value *arr, int n)
2510 struct type *arr_type = ada_check_typedef (value_type (arr));
2512 if (ada_is_packed_array_type (arr_type))
2513 return ada_array_length (decode_packed_array (arr), n);
2515 if (ada_is_simple_array_type (arr_type))
2519 ada_array_bound_from_type (arr_type, n, 1, &type) -
2520 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2521 return value_from_longest (type, v);
2525 value_from_longest (builtin_type_int,
2526 value_as_long (desc_one_bound (desc_bounds (arr),
2528 - value_as_long (desc_one_bound (desc_bounds (arr),
2532 /* An empty array whose type is that of ARR_TYPE (an array type),
2533 with bounds LOW to LOW-1. */
2535 static struct value *
2536 empty_array (struct type *arr_type, int low)
2538 struct type *index_type =
2539 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2541 struct type *elt_type = ada_array_element_type (arr_type, 1);
2542 return allocate_value (create_array_type (NULL, elt_type, index_type));
2546 /* Name resolution */
2548 /* The "decoded" name for the user-definable Ada operator corresponding
2552 ada_decoded_op_name (enum exp_opcode op)
2556 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2558 if (ada_opname_table[i].op == op)
2559 return ada_opname_table[i].decoded;
2561 error (_("Could not find operator name for opcode"));
2565 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2566 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2567 undefined namespace) and converts operators that are
2568 user-defined into appropriate function calls. If CONTEXT_TYPE is
2569 non-null, it provides a preferred result type [at the moment, only
2570 type void has any effect---causing procedures to be preferred over
2571 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2572 return type is preferred. May change (expand) *EXP. */
2575 resolve (struct expression **expp, int void_context_p)
2579 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2582 /* Resolve the operator of the subexpression beginning at
2583 position *POS of *EXPP. "Resolving" consists of replacing
2584 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2585 with their resolutions, replacing built-in operators with
2586 function calls to user-defined operators, where appropriate, and,
2587 when DEPROCEDURE_P is non-zero, converting function-valued variables
2588 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2589 are as in ada_resolve, above. */
2591 static struct value *
2592 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2593 struct type *context_type)
2597 struct expression *exp; /* Convenience: == *expp. */
2598 enum exp_opcode op = (*expp)->elts[pc].opcode;
2599 struct value **argvec; /* Vector of operand types (alloca'ed). */
2600 int nargs; /* Number of operands. */
2607 /* Pass one: resolve operands, saving their types and updating *pos,
2612 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2613 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2618 resolve_subexp (expp, pos, 0, NULL);
2620 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2625 resolve_subexp (expp, pos, 0, NULL);
2630 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2633 case OP_ATR_MODULUS:
2643 case TERNOP_IN_RANGE:
2644 case BINOP_IN_BOUNDS:
2650 case OP_DISCRETE_RANGE:
2652 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2661 arg1 = resolve_subexp (expp, pos, 0, NULL);
2663 resolve_subexp (expp, pos, 1, NULL);
2665 resolve_subexp (expp, pos, 1, value_type (arg1));
2682 case BINOP_LOGICAL_AND:
2683 case BINOP_LOGICAL_OR:
2684 case BINOP_BITWISE_AND:
2685 case BINOP_BITWISE_IOR:
2686 case BINOP_BITWISE_XOR:
2689 case BINOP_NOTEQUAL:
2696 case BINOP_SUBSCRIPT:
2704 case UNOP_LOGICAL_NOT:
2720 case OP_INTERNALVAR:
2730 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2733 case STRUCTOP_STRUCT:
2734 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2747 error (_("Unexpected operator during name resolution"));
2750 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2751 for (i = 0; i < nargs; i += 1)
2752 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2756 /* Pass two: perform any resolution on principal operator. */
2763 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2765 struct ada_symbol_info *candidates;
2769 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2770 (exp->elts[pc + 2].symbol),
2771 exp->elts[pc + 1].block, VAR_DOMAIN,
2774 if (n_candidates > 1)
2776 /* Types tend to get re-introduced locally, so if there
2777 are any local symbols that are not types, first filter
2780 for (j = 0; j < n_candidates; j += 1)
2781 switch (SYMBOL_CLASS (candidates[j].sym))
2787 case LOC_REGPARM_ADDR:
2791 case LOC_BASEREG_ARG:
2793 case LOC_COMPUTED_ARG:
2799 if (j < n_candidates)
2802 while (j < n_candidates)
2804 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2806 candidates[j] = candidates[n_candidates - 1];
2815 if (n_candidates == 0)
2816 error (_("No definition found for %s"),
2817 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2818 else if (n_candidates == 1)
2820 else if (deprocedure_p
2821 && !is_nonfunction (candidates, n_candidates))
2823 i = ada_resolve_function
2824 (candidates, n_candidates, NULL, 0,
2825 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2828 error (_("Could not find a match for %s"),
2829 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2833 printf_filtered (_("Multiple matches for %s\n"),
2834 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2835 user_select_syms (candidates, n_candidates, 1);
2839 exp->elts[pc + 1].block = candidates[i].block;
2840 exp->elts[pc + 2].symbol = candidates[i].sym;
2841 if (innermost_block == NULL
2842 || contained_in (candidates[i].block, innermost_block))
2843 innermost_block = candidates[i].block;
2847 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2850 replace_operator_with_call (expp, pc, 0, 0,
2851 exp->elts[pc + 2].symbol,
2852 exp->elts[pc + 1].block);
2859 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2860 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2862 struct ada_symbol_info *candidates;
2866 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2867 (exp->elts[pc + 5].symbol),
2868 exp->elts[pc + 4].block, VAR_DOMAIN,
2870 if (n_candidates == 1)
2874 i = ada_resolve_function
2875 (candidates, n_candidates,
2877 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2880 error (_("Could not find a match for %s"),
2881 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2884 exp->elts[pc + 4].block = candidates[i].block;
2885 exp->elts[pc + 5].symbol = candidates[i].sym;
2886 if (innermost_block == NULL
2887 || contained_in (candidates[i].block, innermost_block))
2888 innermost_block = candidates[i].block;
2899 case BINOP_BITWISE_AND:
2900 case BINOP_BITWISE_IOR:
2901 case BINOP_BITWISE_XOR:
2903 case BINOP_NOTEQUAL:
2911 case UNOP_LOGICAL_NOT:
2913 if (possible_user_operator_p (op, argvec))
2915 struct ada_symbol_info *candidates;
2919 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2920 (struct block *) NULL, VAR_DOMAIN,
2922 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2923 ada_decoded_op_name (op), NULL);
2927 replace_operator_with_call (expp, pc, nargs, 1,
2928 candidates[i].sym, candidates[i].block);
2938 return evaluate_subexp_type (exp, pos);
2941 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2942 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2943 a non-pointer. A type of 'void' (which is never a valid expression type)
2944 by convention matches anything. */
2945 /* The term "match" here is rather loose. The match is heuristic and
2946 liberal. FIXME: TOO liberal, in fact. */
2949 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2951 ftype = ada_check_typedef (ftype);
2952 atype = ada_check_typedef (atype);
2954 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2955 ftype = TYPE_TARGET_TYPE (ftype);
2956 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2957 atype = TYPE_TARGET_TYPE (atype);
2959 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2960 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2963 switch (TYPE_CODE (ftype))
2968 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2969 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2970 TYPE_TARGET_TYPE (atype), 0);
2973 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2975 case TYPE_CODE_ENUM:
2976 case TYPE_CODE_RANGE:
2977 switch (TYPE_CODE (atype))
2980 case TYPE_CODE_ENUM:
2981 case TYPE_CODE_RANGE:
2987 case TYPE_CODE_ARRAY:
2988 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2989 || ada_is_array_descriptor_type (atype));
2991 case TYPE_CODE_STRUCT:
2992 if (ada_is_array_descriptor_type (ftype))
2993 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2994 || ada_is_array_descriptor_type (atype));
2996 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2997 && !ada_is_array_descriptor_type (atype));
2999 case TYPE_CODE_UNION:
3001 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3005 /* Return non-zero if the formals of FUNC "sufficiently match" the
3006 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3007 may also be an enumeral, in which case it is treated as a 0-
3008 argument function. */
3011 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3014 struct type *func_type = SYMBOL_TYPE (func);
3016 if (SYMBOL_CLASS (func) == LOC_CONST
3017 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3018 return (n_actuals == 0);
3019 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3022 if (TYPE_NFIELDS (func_type) != n_actuals)
3025 for (i = 0; i < n_actuals; i += 1)
3027 if (actuals[i] == NULL)
3031 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3032 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3034 if (!ada_type_match (ftype, atype, 1))
3041 /* False iff function type FUNC_TYPE definitely does not produce a value
3042 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3043 FUNC_TYPE is not a valid function type with a non-null return type
3044 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3047 return_match (struct type *func_type, struct type *context_type)
3049 struct type *return_type;
3051 if (func_type == NULL)
3054 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3055 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3057 return_type = base_type (func_type);
3058 if (return_type == NULL)
3061 context_type = base_type (context_type);
3063 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3064 return context_type == NULL || return_type == context_type;
3065 else if (context_type == NULL)
3066 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3068 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3072 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3073 function (if any) that matches the types of the NARGS arguments in
3074 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3075 that returns that type, then eliminate matches that don't. If
3076 CONTEXT_TYPE is void and there is at least one match that does not
3077 return void, eliminate all matches that do.
3079 Asks the user if there is more than one match remaining. Returns -1
3080 if there is no such symbol or none is selected. NAME is used
3081 solely for messages. May re-arrange and modify SYMS in
3082 the process; the index returned is for the modified vector. */
3085 ada_resolve_function (struct ada_symbol_info syms[],
3086 int nsyms, struct value **args, int nargs,
3087 const char *name, struct type *context_type)
3090 int m; /* Number of hits */
3091 struct type *fallback;
3092 struct type *return_type;
3094 return_type = context_type;
3095 if (context_type == NULL)
3096 fallback = builtin_type_void;
3103 for (k = 0; k < nsyms; k += 1)
3105 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3107 if (ada_args_match (syms[k].sym, args, nargs)
3108 && return_match (type, return_type))
3114 if (m > 0 || return_type == fallback)
3117 return_type = fallback;
3124 printf_filtered (_("Multiple matches for %s\n"), name);
3125 user_select_syms (syms, m, 1);
3131 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3132 in a listing of choices during disambiguation (see sort_choices, below).
3133 The idea is that overloadings of a subprogram name from the
3134 same package should sort in their source order. We settle for ordering
3135 such symbols by their trailing number (__N or $N). */
3138 encoded_ordered_before (char *N0, char *N1)
3142 else if (N0 == NULL)
3147 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3149 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3151 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3152 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3156 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3159 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3161 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3162 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3164 return (strcmp (N0, N1) < 0);
3168 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3172 sort_choices (struct ada_symbol_info syms[], int nsyms)
3175 for (i = 1; i < nsyms; i += 1)
3177 struct ada_symbol_info sym = syms[i];
3180 for (j = i - 1; j >= 0; j -= 1)
3182 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3183 SYMBOL_LINKAGE_NAME (sym.sym)))
3185 syms[j + 1] = syms[j];
3191 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3192 by asking the user (if necessary), returning the number selected,
3193 and setting the first elements of SYMS items. Error if no symbols
3196 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3197 to be re-integrated one of these days. */
3200 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3203 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3205 int first_choice = (max_results == 1) ? 1 : 2;
3207 if (max_results < 1)
3208 error (_("Request to select 0 symbols!"));
3212 printf_unfiltered (_("[0] cancel\n"));
3213 if (max_results > 1)
3214 printf_unfiltered (_("[1] all\n"));
3216 sort_choices (syms, nsyms);
3218 for (i = 0; i < nsyms; i += 1)
3220 if (syms[i].sym == NULL)
3223 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3225 struct symtab_and_line sal =
3226 find_function_start_sal (syms[i].sym, 1);
3227 if (sal.symtab == NULL)
3228 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3230 SYMBOL_PRINT_NAME (syms[i].sym),
3233 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3234 SYMBOL_PRINT_NAME (syms[i].sym),
3235 sal.symtab->filename, sal.line);
3241 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3242 && SYMBOL_TYPE (syms[i].sym) != NULL
3243 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3244 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3246 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3247 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3249 SYMBOL_PRINT_NAME (syms[i].sym),
3250 symtab->filename, SYMBOL_LINE (syms[i].sym));
3251 else if (is_enumeral
3252 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3254 printf_unfiltered (("[%d] "), i + first_choice);
3255 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3257 printf_unfiltered (_("'(%s) (enumeral)\n"),
3258 SYMBOL_PRINT_NAME (syms[i].sym));
3260 else if (symtab != NULL)
3261 printf_unfiltered (is_enumeral
3262 ? _("[%d] %s in %s (enumeral)\n")
3263 : _("[%d] %s at %s:?\n"),
3265 SYMBOL_PRINT_NAME (syms[i].sym),
3268 printf_unfiltered (is_enumeral
3269 ? _("[%d] %s (enumeral)\n")
3270 : _("[%d] %s at ?\n"),
3272 SYMBOL_PRINT_NAME (syms[i].sym));
3276 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3279 for (i = 0; i < n_chosen; i += 1)
3280 syms[i] = syms[chosen[i]];
3285 /* Read and validate a set of numeric choices from the user in the
3286 range 0 .. N_CHOICES-1. Place the results in increasing
3287 order in CHOICES[0 .. N-1], and return N.
3289 The user types choices as a sequence of numbers on one line
3290 separated by blanks, encoding them as follows:
3292 + A choice of 0 means to cancel the selection, throwing an error.
3293 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3294 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3296 The user is not allowed to choose more than MAX_RESULTS values.
3298 ANNOTATION_SUFFIX, if present, is used to annotate the input
3299 prompts (for use with the -f switch). */
3302 get_selections (int *choices, int n_choices, int max_results,
3303 int is_all_choice, char *annotation_suffix)
3308 int first_choice = is_all_choice ? 2 : 1;
3310 prompt = getenv ("PS2");
3314 printf_unfiltered (("%s "), prompt);
3315 gdb_flush (gdb_stdout);
3317 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3320 error_no_arg (_("one or more choice numbers"));
3324 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3325 order, as given in args. Choices are validated. */
3331 while (isspace (*args))
3333 if (*args == '\0' && n_chosen == 0)
3334 error_no_arg (_("one or more choice numbers"));
3335 else if (*args == '\0')
3338 choice = strtol (args, &args2, 10);
3339 if (args == args2 || choice < 0
3340 || choice > n_choices + first_choice - 1)
3341 error (_("Argument must be choice number"));
3345 error (_("cancelled"));
3347 if (choice < first_choice)
3349 n_chosen = n_choices;
3350 for (j = 0; j < n_choices; j += 1)
3354 choice -= first_choice;
3356 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3360 if (j < 0 || choice != choices[j])
3363 for (k = n_chosen - 1; k > j; k -= 1)
3364 choices[k + 1] = choices[k];
3365 choices[j + 1] = choice;
3370 if (n_chosen > max_results)
3371 error (_("Select no more than %d of the above"), max_results);
3376 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3377 on the function identified by SYM and BLOCK, and taking NARGS
3378 arguments. Update *EXPP as needed to hold more space. */
3381 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3382 int oplen, struct symbol *sym,
3383 struct block *block)
3385 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3386 symbol, -oplen for operator being replaced). */
3387 struct expression *newexp = (struct expression *)
3388 xmalloc (sizeof (struct expression)
3389 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3390 struct expression *exp = *expp;
3392 newexp->nelts = exp->nelts + 7 - oplen;
3393 newexp->language_defn = exp->language_defn;
3394 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3395 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3396 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3398 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3399 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3401 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3402 newexp->elts[pc + 4].block = block;
3403 newexp->elts[pc + 5].symbol = sym;
3409 /* Type-class predicates */
3411 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3415 numeric_type_p (struct type *type)
3421 switch (TYPE_CODE (type))
3426 case TYPE_CODE_RANGE:
3427 return (type == TYPE_TARGET_TYPE (type)
3428 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3435 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3438 integer_type_p (struct type *type)
3444 switch (TYPE_CODE (type))
3448 case TYPE_CODE_RANGE:
3449 return (type == TYPE_TARGET_TYPE (type)
3450 || integer_type_p (TYPE_TARGET_TYPE (type)));
3457 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3460 scalar_type_p (struct type *type)
3466 switch (TYPE_CODE (type))
3469 case TYPE_CODE_RANGE:
3470 case TYPE_CODE_ENUM:
3479 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3482 discrete_type_p (struct type *type)
3488 switch (TYPE_CODE (type))
3491 case TYPE_CODE_RANGE:
3492 case TYPE_CODE_ENUM:
3500 /* Returns non-zero if OP with operands in the vector ARGS could be
3501 a user-defined function. Errs on the side of pre-defined operators
3502 (i.e., result 0). */
3505 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3507 struct type *type0 =
3508 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3509 struct type *type1 =
3510 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3524 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3528 case BINOP_BITWISE_AND:
3529 case BINOP_BITWISE_IOR:
3530 case BINOP_BITWISE_XOR:
3531 return (!(integer_type_p (type0) && integer_type_p (type1)));
3534 case BINOP_NOTEQUAL:
3539 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3542 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3545 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3549 case UNOP_LOGICAL_NOT:
3551 return (!numeric_type_p (type0));
3560 1. In the following, we assume that a renaming type's name may
3561 have an ___XD suffix. It would be nice if this went away at some
3563 2. We handle both the (old) purely type-based representation of
3564 renamings and the (new) variable-based encoding. At some point,
3565 it is devoutly to be hoped that the former goes away
3566 (FIXME: hilfinger-2007-07-09).
3567 3. Subprogram renamings are not implemented, although the XRS
3568 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3570 /* If SYM encodes a renaming,
3572 <renaming> renames <renamed entity>,
3574 sets *LEN to the length of the renamed entity's name,
3575 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3576 the string describing the subcomponent selected from the renamed
3577 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3578 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3579 are undefined). Otherwise, returns a value indicating the category
3580 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3581 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3582 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3583 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3584 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3585 may be NULL, in which case they are not assigned.
3587 [Currently, however, GCC does not generate subprogram renamings.] */
3589 enum ada_renaming_category
3590 ada_parse_renaming (struct symbol *sym,
3591 const char **renamed_entity, int *len,
3592 const char **renaming_expr)
3594 enum ada_renaming_category kind;
3599 return ADA_NOT_RENAMING;
3600 switch (SYMBOL_CLASS (sym))
3603 return ADA_NOT_RENAMING;
3605 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3606 renamed_entity, len, renaming_expr);
3610 case LOC_OPTIMIZED_OUT:
3611 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3613 return ADA_NOT_RENAMING;
3617 kind = ADA_OBJECT_RENAMING;
3621 kind = ADA_EXCEPTION_RENAMING;
3625 kind = ADA_PACKAGE_RENAMING;
3629 kind = ADA_SUBPROGRAM_RENAMING;
3633 return ADA_NOT_RENAMING;
3637 if (renamed_entity != NULL)
3638 *renamed_entity = info;
3639 suffix = strstr (info, "___XE");
3640 if (suffix == NULL || suffix == info)
3641 return ADA_NOT_RENAMING;
3643 *len = strlen (info) - strlen (suffix);
3645 if (renaming_expr != NULL)
3646 *renaming_expr = suffix;
3650 /* Assuming TYPE encodes a renaming according to the old encoding in
3651 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3652 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3653 ADA_NOT_RENAMING otherwise. */
3654 static enum ada_renaming_category
3655 parse_old_style_renaming (struct type *type,
3656 const char **renamed_entity, int *len,
3657 const char **renaming_expr)
3659 enum ada_renaming_category kind;
3664 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3665 || TYPE_NFIELDS (type) != 1)
3666 return ADA_NOT_RENAMING;
3668 name = type_name_no_tag (type);
3670 return ADA_NOT_RENAMING;
3672 name = strstr (name, "___XR");
3674 return ADA_NOT_RENAMING;
3679 kind = ADA_OBJECT_RENAMING;
3682 kind = ADA_EXCEPTION_RENAMING;
3685 kind = ADA_PACKAGE_RENAMING;
3688 kind = ADA_SUBPROGRAM_RENAMING;
3691 return ADA_NOT_RENAMING;
3694 info = TYPE_FIELD_NAME (type, 0);
3696 return ADA_NOT_RENAMING;
3697 if (renamed_entity != NULL)
3698 *renamed_entity = info;
3699 suffix = strstr (info, "___XE");
3700 if (renaming_expr != NULL)
3701 *renaming_expr = suffix + 5;
3702 if (suffix == NULL || suffix == info)
3703 return ADA_NOT_RENAMING;
3705 *len = suffix - info;
3711 /* Evaluation: Function Calls */
3713 /* Return an lvalue containing the value VAL. This is the identity on
3714 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3715 on the stack, using and updating *SP as the stack pointer, and
3716 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3718 static struct value *
3719 ensure_lval (struct value *val, CORE_ADDR *sp)
3721 if (! VALUE_LVAL (val))
3723 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3725 /* The following is taken from the structure-return code in
3726 call_function_by_hand. FIXME: Therefore, some refactoring seems
3728 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3730 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3731 reserving sufficient space. */
3733 if (gdbarch_frame_align_p (current_gdbarch))
3734 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3735 VALUE_ADDRESS (val) = *sp;
3739 /* Stack grows upward. Align the frame, allocate space, and
3740 then again, re-align the frame. */
3741 if (gdbarch_frame_align_p (current_gdbarch))
3742 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3743 VALUE_ADDRESS (val) = *sp;
3745 if (gdbarch_frame_align_p (current_gdbarch))
3746 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3749 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3755 /* Return the value ACTUAL, converted to be an appropriate value for a
3756 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3757 allocating any necessary descriptors (fat pointers), or copies of
3758 values not residing in memory, updating it as needed. */
3760 static struct value *
3761 convert_actual (struct value *actual, struct type *formal_type0,
3764 struct type *actual_type = ada_check_typedef (value_type (actual));
3765 struct type *formal_type = ada_check_typedef (formal_type0);
3766 struct type *formal_target =
3767 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3768 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3769 struct type *actual_target =
3770 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3771 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3773 if (ada_is_array_descriptor_type (formal_target)
3774 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3775 return make_array_descriptor (formal_type, actual, sp);
3776 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3778 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3779 && ada_is_array_descriptor_type (actual_target))
3780 return desc_data (actual);
3781 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3783 if (VALUE_LVAL (actual) != lval_memory)
3786 actual_type = ada_check_typedef (value_type (actual));
3787 val = allocate_value (actual_type);
3788 memcpy ((char *) value_contents_raw (val),
3789 (char *) value_contents (actual),
3790 TYPE_LENGTH (actual_type));
3791 actual = ensure_lval (val, sp);
3793 return value_addr (actual);
3796 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3797 return ada_value_ind (actual);
3803 /* Push a descriptor of type TYPE for array value ARR on the stack at
3804 *SP, updating *SP to reflect the new descriptor. Return either
3805 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3806 to-descriptor type rather than a descriptor type), a struct value *
3807 representing a pointer to this descriptor. */
3809 static struct value *
3810 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3812 struct type *bounds_type = desc_bounds_type (type);
3813 struct type *desc_type = desc_base_type (type);
3814 struct value *descriptor = allocate_value (desc_type);
3815 struct value *bounds = allocate_value (bounds_type);
3818 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3820 modify_general_field (value_contents_writeable (bounds),
3821 value_as_long (ada_array_bound (arr, i, 0)),
3822 desc_bound_bitpos (bounds_type, i, 0),
3823 desc_bound_bitsize (bounds_type, i, 0));
3824 modify_general_field (value_contents_writeable (bounds),
3825 value_as_long (ada_array_bound (arr, i, 1)),
3826 desc_bound_bitpos (bounds_type, i, 1),
3827 desc_bound_bitsize (bounds_type, i, 1));
3830 bounds = ensure_lval (bounds, sp);
3832 modify_general_field (value_contents_writeable (descriptor),
3833 VALUE_ADDRESS (ensure_lval (arr, sp)),
3834 fat_pntr_data_bitpos (desc_type),
3835 fat_pntr_data_bitsize (desc_type));
3837 modify_general_field (value_contents_writeable (descriptor),
3838 VALUE_ADDRESS (bounds),
3839 fat_pntr_bounds_bitpos (desc_type),
3840 fat_pntr_bounds_bitsize (desc_type));
3842 descriptor = ensure_lval (descriptor, sp);
3844 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3845 return value_addr (descriptor);
3851 /* Assuming a dummy frame has been established on the target, perform any
3852 conversions needed for calling function FUNC on the NARGS actual
3853 parameters in ARGS, other than standard C conversions. Does
3854 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3855 does not match the number of arguments expected. Use *SP as a
3856 stack pointer for additional data that must be pushed, updating its
3860 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3865 if (TYPE_NFIELDS (value_type (func)) == 0
3866 || nargs != TYPE_NFIELDS (value_type (func)))
3869 for (i = 0; i < nargs; i += 1)
3871 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3874 /* Dummy definitions for an experimental caching module that is not
3875 * used in the public sources. */
3878 lookup_cached_symbol (const char *name, domain_enum namespace,
3879 struct symbol **sym, struct block **block,
3880 struct symtab **symtab)
3886 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3887 struct block *block, struct symtab *symtab)
3893 /* Return the result of a standard (literal, C-like) lookup of NAME in
3894 given DOMAIN, visible from lexical block BLOCK. */
3896 static struct symbol *
3897 standard_lookup (const char *name, const struct block *block,
3901 struct symtab *symtab;
3903 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3906 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3907 cache_symbol (name, domain, sym, block_found, symtab);
3912 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3913 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3914 since they contend in overloading in the same way. */
3916 is_nonfunction (struct ada_symbol_info syms[], int n)
3920 for (i = 0; i < n; i += 1)
3921 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3922 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3923 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3929 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3930 struct types. Otherwise, they may not. */
3933 equiv_types (struct type *type0, struct type *type1)
3937 if (type0 == NULL || type1 == NULL
3938 || TYPE_CODE (type0) != TYPE_CODE (type1))
3940 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3941 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3942 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3943 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3949 /* True iff SYM0 represents the same entity as SYM1, or one that is
3950 no more defined than that of SYM1. */
3953 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3957 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3958 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3961 switch (SYMBOL_CLASS (sym0))
3967 struct type *type0 = SYMBOL_TYPE (sym0);
3968 struct type *type1 = SYMBOL_TYPE (sym1);
3969 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3970 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3971 int len0 = strlen (name0);
3973 TYPE_CODE (type0) == TYPE_CODE (type1)
3974 && (equiv_types (type0, type1)
3975 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3976 && strncmp (name1 + len0, "___XV", 5) == 0));
3979 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3980 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3986 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3987 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3990 add_defn_to_vec (struct obstack *obstackp,
3992 struct block *block, struct symtab *symtab)
3996 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3998 /* Do not try to complete stub types, as the debugger is probably
3999 already scanning all symbols matching a certain name at the
4000 time when this function is called. Trying to replace the stub
4001 type by its associated full type will cause us to restart a scan
4002 which may lead to an infinite recursion. Instead, the client
4003 collecting the matching symbols will end up collecting several
4004 matches, with at least one of them complete. It can then filter
4005 out the stub ones if needed. */
4007 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4009 if (lesseq_defined_than (sym, prevDefns[i].sym))
4011 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4013 prevDefns[i].sym = sym;
4014 prevDefns[i].block = block;
4015 prevDefns[i].symtab = symtab;
4021 struct ada_symbol_info info;
4025 info.symtab = symtab;
4026 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4030 /* Number of ada_symbol_info structures currently collected in
4031 current vector in *OBSTACKP. */
4034 num_defns_collected (struct obstack *obstackp)
4036 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4039 /* Vector of ada_symbol_info structures currently collected in current
4040 vector in *OBSTACKP. If FINISH, close off the vector and return
4041 its final address. */
4043 static struct ada_symbol_info *
4044 defns_collected (struct obstack *obstackp, int finish)
4047 return obstack_finish (obstackp);
4049 return (struct ada_symbol_info *) obstack_base (obstackp);
4052 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4053 Check the global symbols if GLOBAL, the static symbols if not.
4054 Do wild-card match if WILD. */
4056 static struct partial_symbol *
4057 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4058 int global, domain_enum namespace, int wild)
4060 struct partial_symbol **start;
4061 int name_len = strlen (name);
4062 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4071 pst->objfile->global_psymbols.list + pst->globals_offset :
4072 pst->objfile->static_psymbols.list + pst->statics_offset);
4076 for (i = 0; i < length; i += 1)
4078 struct partial_symbol *psym = start[i];
4080 if (SYMBOL_DOMAIN (psym) == namespace
4081 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4095 int M = (U + i) >> 1;
4096 struct partial_symbol *psym = start[M];
4097 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4099 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4101 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4112 struct partial_symbol *psym = start[i];
4114 if (SYMBOL_DOMAIN (psym) == namespace)
4116 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4124 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4138 int M = (U + i) >> 1;
4139 struct partial_symbol *psym = start[M];
4140 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4142 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4144 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4155 struct partial_symbol *psym = start[i];
4157 if (SYMBOL_DOMAIN (psym) == namespace)
4161 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4164 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4166 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4176 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4186 /* Find a symbol table containing symbol SYM or NULL if none. */
4188 static struct symtab *
4189 symtab_for_sym (struct symbol *sym)
4192 struct objfile *objfile;
4194 struct symbol *tmp_sym;
4195 struct dict_iterator iter;
4198 ALL_PRIMARY_SYMTABS (objfile, s)
4200 switch (SYMBOL_CLASS (sym))
4208 case LOC_CONST_BYTES:
4209 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4210 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4212 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4213 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4219 switch (SYMBOL_CLASS (sym))
4225 case LOC_REGPARM_ADDR:
4230 case LOC_BASEREG_ARG:
4232 case LOC_COMPUTED_ARG:
4233 for (j = FIRST_LOCAL_BLOCK;
4234 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4236 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4237 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4248 /* Return a minimal symbol matching NAME according to Ada decoding
4249 rules. Returns NULL if there is no such minimal symbol. Names
4250 prefixed with "standard__" are handled specially: "standard__" is
4251 first stripped off, and only static and global symbols are searched. */
4253 struct minimal_symbol *
4254 ada_lookup_simple_minsym (const char *name)
4256 struct objfile *objfile;
4257 struct minimal_symbol *msymbol;
4260 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4262 name += sizeof ("standard__") - 1;
4266 wild_match = (strstr (name, "__") == NULL);
4268 ALL_MSYMBOLS (objfile, msymbol)
4270 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4271 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4278 /* For all subprograms that statically enclose the subprogram of the
4279 selected frame, add symbols matching identifier NAME in DOMAIN
4280 and their blocks to the list of data in OBSTACKP, as for
4281 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4285 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4286 const char *name, domain_enum namespace,
4291 /* True if TYPE is definitely an artificial type supplied to a symbol
4292 for which no debugging information was given in the symbol file. */
4295 is_nondebugging_type (struct type *type)
4297 char *name = ada_type_name (type);
4298 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4301 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4302 duplicate other symbols in the list (The only case I know of where
4303 this happens is when object files containing stabs-in-ecoff are
4304 linked with files containing ordinary ecoff debugging symbols (or no
4305 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4306 Returns the number of items in the modified list. */
4309 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4316 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4317 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4318 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4320 for (j = 0; j < nsyms; j += 1)
4323 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4324 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4325 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4326 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4327 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4328 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4331 for (k = i + 1; k < nsyms; k += 1)
4332 syms[k - 1] = syms[k];
4345 /* Given a type that corresponds to a renaming entity, use the type name
4346 to extract the scope (package name or function name, fully qualified,
4347 and following the GNAT encoding convention) where this renaming has been
4348 defined. The string returned needs to be deallocated after use. */
4351 xget_renaming_scope (struct type *renaming_type)
4353 /* The renaming types adhere to the following convention:
4354 <scope>__<rename>___<XR extension>.
4355 So, to extract the scope, we search for the "___XR" extension,
4356 and then backtrack until we find the first "__". */
4358 const char *name = type_name_no_tag (renaming_type);
4359 char *suffix = strstr (name, "___XR");
4364 /* Now, backtrack a bit until we find the first "__". Start looking
4365 at suffix - 3, as the <rename> part is at least one character long. */
4367 for (last = suffix - 3; last > name; last--)
4368 if (last[0] == '_' && last[1] == '_')
4371 /* Make a copy of scope and return it. */
4373 scope_len = last - name;
4374 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4376 strncpy (scope, name, scope_len);
4377 scope[scope_len] = '\0';
4382 /* Return nonzero if NAME corresponds to a package name. */
4385 is_package_name (const char *name)
4387 /* Here, We take advantage of the fact that no symbols are generated
4388 for packages, while symbols are generated for each function.
4389 So the condition for NAME represent a package becomes equivalent
4390 to NAME not existing in our list of symbols. There is only one
4391 small complication with library-level functions (see below). */
4395 /* If it is a function that has not been defined at library level,
4396 then we should be able to look it up in the symbols. */
4397 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4400 /* Library-level function names start with "_ada_". See if function
4401 "_ada_" followed by NAME can be found. */
4403 /* Do a quick check that NAME does not contain "__", since library-level
4404 functions names cannot contain "__" in them. */
4405 if (strstr (name, "__") != NULL)
4408 fun_name = xstrprintf ("_ada_%s", name);
4410 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4413 /* Return nonzero if SYM corresponds to a renaming entity that is
4414 not visible from FUNCTION_NAME. */
4417 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4421 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4424 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4426 make_cleanup (xfree, scope);
4428 /* If the rename has been defined in a package, then it is visible. */
4429 if (is_package_name (scope))
4432 /* Check that the rename is in the current function scope by checking
4433 that its name starts with SCOPE. */
4435 /* If the function name starts with "_ada_", it means that it is
4436 a library-level function. Strip this prefix before doing the
4437 comparison, as the encoding for the renaming does not contain
4439 if (strncmp (function_name, "_ada_", 5) == 0)
4442 return (strncmp (function_name, scope, strlen (scope)) != 0);
4445 /* Remove entries from SYMS that corresponds to a renaming entity that
4446 is not visible from the function associated with CURRENT_BLOCK or
4447 that is superfluous due to the presence of more specific renaming
4448 information. Places surviving symbols in the initial entries of
4449 SYMS and returns the number of surviving symbols.
4452 First, in cases where an object renaming is implemented as a
4453 reference variable, GNAT may produce both the actual reference
4454 variable and the renaming encoding. In this case, we discard the
4457 Second, GNAT emits a type following a specified encoding for each renaming
4458 entity. Unfortunately, STABS currently does not support the definition
4459 of types that are local to a given lexical block, so all renamings types
4460 are emitted at library level. As a consequence, if an application
4461 contains two renaming entities using the same name, and a user tries to
4462 print the value of one of these entities, the result of the ada symbol
4463 lookup will also contain the wrong renaming type.
4465 This function partially covers for this limitation by attempting to
4466 remove from the SYMS list renaming symbols that should be visible
4467 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4468 method with the current information available. The implementation
4469 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4471 - When the user tries to print a rename in a function while there
4472 is another rename entity defined in a package: Normally, the
4473 rename in the function has precedence over the rename in the
4474 package, so the latter should be removed from the list. This is
4475 currently not the case.
4477 - This function will incorrectly remove valid renames if
4478 the CURRENT_BLOCK corresponds to a function which symbol name
4479 has been changed by an "Export" pragma. As a consequence,
4480 the user will be unable to print such rename entities. */
4483 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4484 int nsyms, const struct block *current_block)
4486 struct symbol *current_function;
4487 char *current_function_name;
4489 int is_new_style_renaming;
4491 /* If there is both a renaming foo___XR... encoded as a variable and
4492 a simple variable foo in the same block, discard the latter.
4493 First, zero out such symbols, then compress. */
4494 is_new_style_renaming = 0;
4495 for (i = 0; i < nsyms; i += 1)
4497 struct symbol *sym = syms[i].sym;
4498 struct block *block = syms[i].block;
4502 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4504 name = SYMBOL_LINKAGE_NAME (sym);
4505 suffix = strstr (name, "___XR");
4509 int name_len = suffix - name;
4511 is_new_style_renaming = 1;
4512 for (j = 0; j < nsyms; j += 1)
4513 if (i != j && syms[j].sym != NULL
4514 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4516 && block == syms[j].block)
4520 if (is_new_style_renaming)
4524 for (j = k = 0; j < nsyms; j += 1)
4525 if (syms[j].sym != NULL)
4533 /* Extract the function name associated to CURRENT_BLOCK.
4534 Abort if unable to do so. */
4536 if (current_block == NULL)
4539 current_function = block_function (current_block);
4540 if (current_function == NULL)
4543 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4544 if (current_function_name == NULL)
4547 /* Check each of the symbols, and remove it from the list if it is
4548 a type corresponding to a renaming that is out of the scope of
4549 the current block. */
4554 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4555 == ADA_OBJECT_RENAMING
4556 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4559 for (j = i + 1; j < nsyms; j += 1)
4560 syms[j - 1] = syms[j];
4570 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4571 scope and in global scopes, returning the number of matches. Sets
4572 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4573 indicating the symbols found and the blocks and symbol tables (if
4574 any) in which they were found. This vector are transient---good only to
4575 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4576 symbol match within the nest of blocks whose innermost member is BLOCK0,
4577 is the one match returned (no other matches in that or
4578 enclosing blocks is returned). If there are any matches in or
4579 surrounding BLOCK0, then these alone are returned. Otherwise, the
4580 search extends to global and file-scope (static) symbol tables.
4581 Names prefixed with "standard__" are handled specially: "standard__"
4582 is first stripped off, and only static and global symbols are searched. */
4585 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4586 domain_enum namespace,
4587 struct ada_symbol_info **results)
4591 struct partial_symtab *ps;
4592 struct blockvector *bv;
4593 struct objfile *objfile;
4594 struct block *block;
4596 struct minimal_symbol *msymbol;
4602 obstack_free (&symbol_list_obstack, NULL);
4603 obstack_init (&symbol_list_obstack);
4607 /* Search specified block and its superiors. */
4609 wild_match = (strstr (name0, "__") == NULL);
4611 block = (struct block *) block0; /* FIXME: No cast ought to be
4612 needed, but adding const will
4613 have a cascade effect. */
4614 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4618 name = name0 + sizeof ("standard__") - 1;
4622 while (block != NULL)
4625 ada_add_block_symbols (&symbol_list_obstack, block, name,
4626 namespace, NULL, NULL, wild_match);
4628 /* If we found a non-function match, assume that's the one. */
4629 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4630 num_defns_collected (&symbol_list_obstack)))
4633 block = BLOCK_SUPERBLOCK (block);
4636 /* If no luck so far, try to find NAME as a local symbol in some lexically
4637 enclosing subprogram. */
4638 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4639 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4640 name, namespace, wild_match);
4642 /* If we found ANY matches among non-global symbols, we're done. */
4644 if (num_defns_collected (&symbol_list_obstack) > 0)
4648 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4651 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4655 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4656 tables, and psymtab's. */
4658 ALL_PRIMARY_SYMTABS (objfile, s)
4661 bv = BLOCKVECTOR (s);
4662 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4663 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4664 objfile, s, wild_match);
4667 if (namespace == VAR_DOMAIN)
4669 ALL_MSYMBOLS (objfile, msymbol)
4671 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4673 switch (MSYMBOL_TYPE (msymbol))
4675 case mst_solib_trampoline:
4678 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4681 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4683 bv = BLOCKVECTOR (s);
4684 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4685 ada_add_block_symbols (&symbol_list_obstack, block,
4686 SYMBOL_LINKAGE_NAME (msymbol),
4687 namespace, objfile, s, wild_match);
4689 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4691 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4692 ada_add_block_symbols (&symbol_list_obstack, block,
4693 SYMBOL_LINKAGE_NAME (msymbol),
4694 namespace, objfile, s,
4703 ALL_PSYMTABS (objfile, ps)
4707 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4709 s = PSYMTAB_TO_SYMTAB (ps);
4712 bv = BLOCKVECTOR (s);
4713 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4714 ada_add_block_symbols (&symbol_list_obstack, block, name,
4715 namespace, objfile, s, wild_match);
4719 /* Now add symbols from all per-file blocks if we've gotten no hits
4720 (Not strictly correct, but perhaps better than an error).
4721 Do the symtabs first, then check the psymtabs. */
4723 if (num_defns_collected (&symbol_list_obstack) == 0)
4726 ALL_PRIMARY_SYMTABS (objfile, s)
4729 bv = BLOCKVECTOR (s);
4730 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4731 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4732 objfile, s, wild_match);
4735 ALL_PSYMTABS (objfile, ps)
4739 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4741 s = PSYMTAB_TO_SYMTAB (ps);
4742 bv = BLOCKVECTOR (s);
4745 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4746 ada_add_block_symbols (&symbol_list_obstack, block, name,
4747 namespace, objfile, s, wild_match);
4753 ndefns = num_defns_collected (&symbol_list_obstack);
4754 *results = defns_collected (&symbol_list_obstack, 1);
4756 ndefns = remove_extra_symbols (*results, ndefns);
4759 cache_symbol (name0, namespace, NULL, NULL, NULL);
4761 if (ndefns == 1 && cacheIfUnique)
4762 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4763 (*results)[0].symtab);
4765 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4771 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4772 domain_enum namespace,
4773 struct block **block_found, struct symtab **symtab)
4775 struct ada_symbol_info *candidates;
4778 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4780 if (n_candidates == 0)
4783 if (block_found != NULL)
4784 *block_found = candidates[0].block;
4788 *symtab = candidates[0].symtab;
4789 if (*symtab == NULL && candidates[0].block != NULL)
4791 struct objfile *objfile;
4794 struct blockvector *bv;
4796 /* Search the list of symtabs for one which contains the
4797 address of the start of this block. */
4798 ALL_PRIMARY_SYMTABS (objfile, s)
4800 bv = BLOCKVECTOR (s);
4801 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4802 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4803 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4806 return fixup_symbol_section (candidates[0].sym, objfile);
4809 /* FIXME: brobecker/2004-11-12: I think that we should never
4810 reach this point. I don't see a reason why we would not
4811 find a symtab for a given block, so I suggest raising an
4812 internal_error exception here. Otherwise, we end up
4813 returning a symbol but no symtab, which certain parts of
4814 the code that rely (indirectly) on this function do not
4815 expect, eventually causing a SEGV. */
4816 return fixup_symbol_section (candidates[0].sym, NULL);
4819 return candidates[0].sym;
4822 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4823 scope and in global scopes, or NULL if none. NAME is folded and
4824 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4825 choosing the first symbol if there are multiple choices.
4826 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4827 table in which the symbol was found (in both cases, these
4828 assignments occur only if the pointers are non-null). */
4830 ada_lookup_symbol (const char *name, const struct block *block0,
4831 domain_enum namespace, int *is_a_field_of_this,
4832 struct symtab **symtab)
4834 if (is_a_field_of_this != NULL)
4835 *is_a_field_of_this = 0;
4838 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4839 block0, namespace, NULL, symtab);
4842 static struct symbol *
4843 ada_lookup_symbol_nonlocal (const char *name,
4844 const char *linkage_name,
4845 const struct block *block,
4846 const domain_enum domain, struct symtab **symtab)
4848 if (linkage_name == NULL)
4849 linkage_name = name;
4850 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4855 /* True iff STR is a possible encoded suffix of a normal Ada name
4856 that is to be ignored for matching purposes. Suffixes of parallel
4857 names (e.g., XVE) are not included here. Currently, the possible suffixes
4858 are given by either of the regular expression:
4860 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4862 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4863 _E[0-9]+[bs]$ [protected object entry suffixes]
4864 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4868 is_name_suffix (const char *str)
4871 const char *matching;
4872 const int len = strlen (str);
4874 /* (__[0-9]+)?\.[0-9]+ */
4876 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4879 while (isdigit (matching[0]))
4881 if (matching[0] == '\0')
4885 if (matching[0] == '.' || matching[0] == '$')
4888 while (isdigit (matching[0]))
4890 if (matching[0] == '\0')
4895 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4898 while (isdigit (matching[0]))
4900 if (matching[0] == '\0')
4905 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4906 with a N at the end. Unfortunately, the compiler uses the same
4907 convention for other internal types it creates. So treating
4908 all entity names that end with an "N" as a name suffix causes
4909 some regressions. For instance, consider the case of an enumerated
4910 type. To support the 'Image attribute, it creates an array whose
4912 Having a single character like this as a suffix carrying some
4913 information is a bit risky. Perhaps we should change the encoding
4914 to be something like "_N" instead. In the meantime, do not do
4915 the following check. */
4916 /* Protected Object Subprograms */
4917 if (len == 1 && str [0] == 'N')
4922 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4925 while (isdigit (matching[0]))
4927 if ((matching[0] == 'b' || matching[0] == 's')
4928 && matching [1] == '\0')
4932 /* ??? We should not modify STR directly, as we are doing below. This
4933 is fine in this case, but may become problematic later if we find
4934 that this alternative did not work, and want to try matching
4935 another one from the begining of STR. Since we modified it, we
4936 won't be able to find the begining of the string anymore! */
4940 while (str[0] != '_' && str[0] != '\0')
4942 if (str[0] != 'n' && str[0] != 'b')
4947 if (str[0] == '\000')
4951 if (str[1] != '_' || str[2] == '\000')
4955 if (strcmp (str + 3, "JM") == 0)
4957 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4958 the LJM suffix in favor of the JM one. But we will
4959 still accept LJM as a valid suffix for a reasonable
4960 amount of time, just to allow ourselves to debug programs
4961 compiled using an older version of GNAT. */
4962 if (strcmp (str + 3, "LJM") == 0)
4966 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4967 || str[4] == 'U' || str[4] == 'P')
4969 if (str[4] == 'R' && str[5] != 'T')
4973 if (!isdigit (str[2]))
4975 for (k = 3; str[k] != '\0'; k += 1)
4976 if (!isdigit (str[k]) && str[k] != '_')
4980 if (str[0] == '$' && isdigit (str[1]))
4982 for (k = 2; str[k] != '\0'; k += 1)
4983 if (!isdigit (str[k]) && str[k] != '_')
4990 /* Return nonzero if the given string starts with a dot ('.')
4991 followed by zero or more digits.
4993 Note: brobecker/2003-11-10: A forward declaration has not been
4994 added at the begining of this file yet, because this function
4995 is only used to work around a problem found during wild matching
4996 when trying to match minimal symbol names against symbol names
4997 obtained from dwarf-2 data. This function is therefore currently
4998 only used in wild_match() and is likely to be deleted when the
4999 problem in dwarf-2 is fixed. */
5002 is_dot_digits_suffix (const char *str)
5008 while (isdigit (str[0]))
5010 return (str[0] == '\0');
5013 /* Return non-zero if the string starting at NAME and ending before
5014 NAME_END contains no capital letters. */
5017 is_valid_name_for_wild_match (const char *name0)
5019 const char *decoded_name = ada_decode (name0);
5022 for (i=0; decoded_name[i] != '\0'; i++)
5023 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5029 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5030 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5031 informational suffixes of NAME (i.e., for which is_name_suffix is
5035 wild_match (const char *patn0, int patn_len, const char *name0)
5042 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5043 stored in the symbol table for nested function names is sometimes
5044 different from the name of the associated entity stored in
5045 the dwarf-2 data: This is the case for nested subprograms, where
5046 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5047 while the symbol name from the dwarf-2 data does not.
5049 Although the DWARF-2 standard documents that entity names stored
5050 in the dwarf-2 data should be identical to the name as seen in
5051 the source code, GNAT takes a different approach as we already use
5052 a special encoding mechanism to convey the information so that
5053 a C debugger can still use the information generated to debug
5054 Ada programs. A corollary is that the symbol names in the dwarf-2
5055 data should match the names found in the symbol table. I therefore
5056 consider this issue as a compiler defect.
5058 Until the compiler is properly fixed, we work-around the problem
5059 by ignoring such suffixes during the match. We do so by making
5060 a copy of PATN0 and NAME0, and then by stripping such a suffix
5061 if present. We then perform the match on the resulting strings. */
5064 name_len = strlen (name0);
5066 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5067 strcpy (name, name0);
5068 dot = strrchr (name, '.');
5069 if (dot != NULL && is_dot_digits_suffix (dot))
5072 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5073 strncpy (patn, patn0, patn_len);
5074 patn[patn_len] = '\0';
5075 dot = strrchr (patn, '.');
5076 if (dot != NULL && is_dot_digits_suffix (dot))
5079 patn_len = dot - patn;
5083 /* Now perform the wild match. */
5085 name_len = strlen (name);
5086 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5087 && strncmp (patn, name + 5, patn_len) == 0
5088 && is_name_suffix (name + patn_len + 5))
5091 while (name_len >= patn_len)
5093 if (strncmp (patn, name, patn_len) == 0
5094 && is_name_suffix (name + patn_len))
5095 return (name == name_start || is_valid_name_for_wild_match (name0));
5102 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5107 if (!islower (name[2]))
5114 if (!islower (name[1]))
5125 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5126 vector *defn_symbols, updating the list of symbols in OBSTACKP
5127 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5128 OBJFILE is the section containing BLOCK.
5129 SYMTAB is recorded with each symbol added. */
5132 ada_add_block_symbols (struct obstack *obstackp,
5133 struct block *block, const char *name,
5134 domain_enum domain, struct objfile *objfile,
5135 struct symtab *symtab, int wild)
5137 struct dict_iterator iter;
5138 int name_len = strlen (name);
5139 /* A matching argument symbol, if any. */
5140 struct symbol *arg_sym;
5141 /* Set true when we find a matching non-argument symbol. */
5150 ALL_BLOCK_SYMBOLS (block, iter, sym)
5152 if (SYMBOL_DOMAIN (sym) == domain
5153 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5155 switch (SYMBOL_CLASS (sym))
5161 case LOC_REGPARM_ADDR:
5162 case LOC_BASEREG_ARG:
5163 case LOC_COMPUTED_ARG:
5166 case LOC_UNRESOLVED:
5170 add_defn_to_vec (obstackp,
5171 fixup_symbol_section (sym, objfile),
5180 ALL_BLOCK_SYMBOLS (block, iter, sym)
5182 if (SYMBOL_DOMAIN (sym) == domain)
5184 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5186 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5188 switch (SYMBOL_CLASS (sym))
5194 case LOC_REGPARM_ADDR:
5195 case LOC_BASEREG_ARG:
5196 case LOC_COMPUTED_ARG:
5199 case LOC_UNRESOLVED:
5203 add_defn_to_vec (obstackp,
5204 fixup_symbol_section (sym, objfile),
5213 if (!found_sym && arg_sym != NULL)
5215 add_defn_to_vec (obstackp,
5216 fixup_symbol_section (arg_sym, objfile),
5225 ALL_BLOCK_SYMBOLS (block, iter, sym)
5227 if (SYMBOL_DOMAIN (sym) == domain)
5231 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5234 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5236 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5241 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5243 switch (SYMBOL_CLASS (sym))
5249 case LOC_REGPARM_ADDR:
5250 case LOC_BASEREG_ARG:
5251 case LOC_COMPUTED_ARG:
5254 case LOC_UNRESOLVED:
5258 add_defn_to_vec (obstackp,
5259 fixup_symbol_section (sym, objfile),
5267 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5268 They aren't parameters, right? */
5269 if (!found_sym && arg_sym != NULL)
5271 add_defn_to_vec (obstackp,
5272 fixup_symbol_section (arg_sym, objfile),
5280 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5281 to be invisible to users. */
5284 ada_is_ignored_field (struct type *type, int field_num)
5286 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5290 const char *name = TYPE_FIELD_NAME (type, field_num);
5291 return (name == NULL
5292 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5296 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5297 pointer or reference type whose ultimate target has a tag field. */
5300 ada_is_tagged_type (struct type *type, int refok)
5302 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5305 /* True iff TYPE represents the type of X'Tag */
5308 ada_is_tag_type (struct type *type)
5310 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5314 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5315 return (name != NULL
5316 && strcmp (name, "ada__tags__dispatch_table") == 0);
5320 /* The type of the tag on VAL. */
5323 ada_tag_type (struct value *val)
5325 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5328 /* The value of the tag on VAL. */
5331 ada_value_tag (struct value *val)
5333 return ada_value_struct_elt (val, "_tag", 0);
5336 /* The value of the tag on the object of type TYPE whose contents are
5337 saved at VALADDR, if it is non-null, or is at memory address
5340 static struct value *
5341 value_tag_from_contents_and_address (struct type *type,
5342 const gdb_byte *valaddr,
5345 int tag_byte_offset, dummy1, dummy2;
5346 struct type *tag_type;
5347 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5350 const gdb_byte *valaddr1 = ((valaddr == NULL)
5352 : valaddr + tag_byte_offset);
5353 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5355 return value_from_contents_and_address (tag_type, valaddr1, address1);
5360 static struct type *
5361 type_from_tag (struct value *tag)
5363 const char *type_name = ada_tag_name (tag);
5364 if (type_name != NULL)
5365 return ada_find_any_type (ada_encode (type_name));
5376 static int ada_tag_name_1 (void *);
5377 static int ada_tag_name_2 (struct tag_args *);
5379 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5380 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5381 The value stored in ARGS->name is valid until the next call to
5385 ada_tag_name_1 (void *args0)
5387 struct tag_args *args = (struct tag_args *) args0;
5388 static char name[1024];
5392 val = ada_value_struct_elt (args->tag, "tsd", 1);
5394 return ada_tag_name_2 (args);
5395 val = ada_value_struct_elt (val, "expanded_name", 1);
5398 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5399 for (p = name; *p != '\0'; p += 1)
5406 /* Utility function for ada_tag_name_1 that tries the second
5407 representation for the dispatch table (in which there is no
5408 explicit 'tsd' field in the referent of the tag pointer, and instead
5409 the tsd pointer is stored just before the dispatch table. */
5412 ada_tag_name_2 (struct tag_args *args)
5414 struct type *info_type;
5415 static char name[1024];
5417 struct value *val, *valp;
5420 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5421 if (info_type == NULL)
5423 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5424 valp = value_cast (info_type, args->tag);
5427 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5430 val = ada_value_struct_elt (val, "expanded_name", 1);
5433 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5434 for (p = name; *p != '\0'; p += 1)
5441 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5445 ada_tag_name (struct value *tag)
5447 struct tag_args args;
5448 if (!ada_is_tag_type (value_type (tag)))
5452 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5456 /* The parent type of TYPE, or NULL if none. */
5459 ada_parent_type (struct type *type)
5463 type = ada_check_typedef (type);
5465 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5468 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5469 if (ada_is_parent_field (type, i))
5470 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5475 /* True iff field number FIELD_NUM of structure type TYPE contains the
5476 parent-type (inherited) fields of a derived type. Assumes TYPE is
5477 a structure type with at least FIELD_NUM+1 fields. */
5480 ada_is_parent_field (struct type *type, int field_num)
5482 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5483 return (name != NULL
5484 && (strncmp (name, "PARENT", 6) == 0
5485 || strncmp (name, "_parent", 7) == 0));
5488 /* True iff field number FIELD_NUM of structure type TYPE is a
5489 transparent wrapper field (which should be silently traversed when doing
5490 field selection and flattened when printing). Assumes TYPE is a
5491 structure type with at least FIELD_NUM+1 fields. Such fields are always
5495 ada_is_wrapper_field (struct type *type, int field_num)
5497 const char *name = TYPE_FIELD_NAME (type, field_num);
5498 return (name != NULL
5499 && (strncmp (name, "PARENT", 6) == 0
5500 || strcmp (name, "REP") == 0
5501 || strncmp (name, "_parent", 7) == 0
5502 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5505 /* True iff field number FIELD_NUM of structure or union type TYPE
5506 is a variant wrapper. Assumes TYPE is a structure type with at least
5507 FIELD_NUM+1 fields. */
5510 ada_is_variant_part (struct type *type, int field_num)
5512 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5513 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5514 || (is_dynamic_field (type, field_num)
5515 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5516 == TYPE_CODE_UNION)));
5519 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5520 whose discriminants are contained in the record type OUTER_TYPE,
5521 returns the type of the controlling discriminant for the variant. */
5524 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5526 char *name = ada_variant_discrim_name (var_type);
5528 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5530 return builtin_type_int;
5535 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5536 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5537 represents a 'when others' clause; otherwise 0. */
5540 ada_is_others_clause (struct type *type, int field_num)
5542 const char *name = TYPE_FIELD_NAME (type, field_num);
5543 return (name != NULL && name[0] == 'O');
5546 /* Assuming that TYPE0 is the type of the variant part of a record,
5547 returns the name of the discriminant controlling the variant.
5548 The value is valid until the next call to ada_variant_discrim_name. */
5551 ada_variant_discrim_name (struct type *type0)
5553 static char *result = NULL;
5554 static size_t result_len = 0;
5557 const char *discrim_end;
5558 const char *discrim_start;
5560 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5561 type = TYPE_TARGET_TYPE (type0);
5565 name = ada_type_name (type);
5567 if (name == NULL || name[0] == '\000')
5570 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5573 if (strncmp (discrim_end, "___XVN", 6) == 0)
5576 if (discrim_end == name)
5579 for (discrim_start = discrim_end; discrim_start != name + 3;
5582 if (discrim_start == name + 1)
5584 if ((discrim_start > name + 3
5585 && strncmp (discrim_start - 3, "___", 3) == 0)
5586 || discrim_start[-1] == '.')
5590 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5591 strncpy (result, discrim_start, discrim_end - discrim_start);
5592 result[discrim_end - discrim_start] = '\0';
5596 /* Scan STR for a subtype-encoded number, beginning at position K.
5597 Put the position of the character just past the number scanned in
5598 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5599 Return 1 if there was a valid number at the given position, and 0
5600 otherwise. A "subtype-encoded" number consists of the absolute value
5601 in decimal, followed by the letter 'm' to indicate a negative number.
5602 Assumes 0m does not occur. */
5605 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5609 if (!isdigit (str[k]))
5612 /* Do it the hard way so as not to make any assumption about
5613 the relationship of unsigned long (%lu scan format code) and
5616 while (isdigit (str[k]))
5618 RU = RU * 10 + (str[k] - '0');
5625 *R = (-(LONGEST) (RU - 1)) - 1;
5631 /* NOTE on the above: Technically, C does not say what the results of
5632 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5633 number representable as a LONGEST (although either would probably work
5634 in most implementations). When RU>0, the locution in the then branch
5635 above is always equivalent to the negative of RU. */
5642 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5643 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5644 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5647 ada_in_variant (LONGEST val, struct type *type, int field_num)
5649 const char *name = TYPE_FIELD_NAME (type, field_num);
5662 if (!ada_scan_number (name, p + 1, &W, &p))
5671 if (!ada_scan_number (name, p + 1, &L, &p)
5672 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5674 if (val >= L && val <= U)
5686 /* FIXME: Lots of redundancy below. Try to consolidate. */
5688 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5689 ARG_TYPE, extract and return the value of one of its (non-static)
5690 fields. FIELDNO says which field. Differs from value_primitive_field
5691 only in that it can handle packed values of arbitrary type. */
5693 static struct value *
5694 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5695 struct type *arg_type)
5699 arg_type = ada_check_typedef (arg_type);
5700 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5702 /* Handle packed fields. */
5704 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5706 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5707 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5709 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5710 offset + bit_pos / 8,
5711 bit_pos % 8, bit_size, type);
5714 return value_primitive_field (arg1, offset, fieldno, arg_type);
5717 /* Find field with name NAME in object of type TYPE. If found,
5718 set the following for each argument that is non-null:
5719 - *FIELD_TYPE_P to the field's type;
5720 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5721 an object of that type;
5722 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5723 - *BIT_SIZE_P to its size in bits if the field is packed, and
5725 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5726 fields up to but not including the desired field, or by the total
5727 number of fields if not found. A NULL value of NAME never
5728 matches; the function just counts visible fields in this case.
5730 Returns 1 if found, 0 otherwise. */
5733 find_struct_field (char *name, struct type *type, int offset,
5734 struct type **field_type_p,
5735 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5740 type = ada_check_typedef (type);
5742 if (field_type_p != NULL)
5743 *field_type_p = NULL;
5744 if (byte_offset_p != NULL)
5746 if (bit_offset_p != NULL)
5748 if (bit_size_p != NULL)
5751 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5753 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5754 int fld_offset = offset + bit_pos / 8;
5755 char *t_field_name = TYPE_FIELD_NAME (type, i);
5757 if (t_field_name == NULL)
5760 else if (name != NULL && field_name_match (t_field_name, name))
5762 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5763 if (field_type_p != NULL)
5764 *field_type_p = TYPE_FIELD_TYPE (type, i);
5765 if (byte_offset_p != NULL)
5766 *byte_offset_p = fld_offset;
5767 if (bit_offset_p != NULL)
5768 *bit_offset_p = bit_pos % 8;
5769 if (bit_size_p != NULL)
5770 *bit_size_p = bit_size;
5773 else if (ada_is_wrapper_field (type, i))
5775 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5776 field_type_p, byte_offset_p, bit_offset_p,
5777 bit_size_p, index_p))
5780 else if (ada_is_variant_part (type, i))
5782 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5785 struct type *field_type
5786 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5788 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5790 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5792 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5793 field_type_p, byte_offset_p,
5794 bit_offset_p, bit_size_p, index_p))
5798 else if (index_p != NULL)
5804 /* Number of user-visible fields in record type TYPE. */
5807 num_visible_fields (struct type *type)
5811 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5815 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5816 and search in it assuming it has (class) type TYPE.
5817 If found, return value, else return NULL.
5819 Searches recursively through wrapper fields (e.g., '_parent'). */
5821 static struct value *
5822 ada_search_struct_field (char *name, struct value *arg, int offset,
5826 type = ada_check_typedef (type);
5828 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5830 char *t_field_name = TYPE_FIELD_NAME (type, i);
5832 if (t_field_name == NULL)
5835 else if (field_name_match (t_field_name, name))
5836 return ada_value_primitive_field (arg, offset, i, type);
5838 else if (ada_is_wrapper_field (type, i))
5840 struct value *v = /* Do not let indent join lines here. */
5841 ada_search_struct_field (name, arg,
5842 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5843 TYPE_FIELD_TYPE (type, i));
5848 else if (ada_is_variant_part (type, i))
5850 /* PNH: Do we ever get here? See find_struct_field. */
5852 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5853 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5855 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5857 struct value *v = ada_search_struct_field /* Force line break. */
5859 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5860 TYPE_FIELD_TYPE (field_type, j));
5869 static struct value *ada_index_struct_field_1 (int *, struct value *,
5870 int, struct type *);
5873 /* Return field #INDEX in ARG, where the index is that returned by
5874 * find_struct_field through its INDEX_P argument. Adjust the address
5875 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5876 * If found, return value, else return NULL. */
5878 static struct value *
5879 ada_index_struct_field (int index, struct value *arg, int offset,
5882 return ada_index_struct_field_1 (&index, arg, offset, type);
5886 /* Auxiliary function for ada_index_struct_field. Like
5887 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5890 static struct value *
5891 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5895 type = ada_check_typedef (type);
5897 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5899 if (TYPE_FIELD_NAME (type, i) == NULL)
5901 else if (ada_is_wrapper_field (type, i))
5903 struct value *v = /* Do not let indent join lines here. */
5904 ada_index_struct_field_1 (index_p, arg,
5905 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5906 TYPE_FIELD_TYPE (type, i));
5911 else if (ada_is_variant_part (type, i))
5913 /* PNH: Do we ever get here? See ada_search_struct_field,
5914 find_struct_field. */
5915 error (_("Cannot assign this kind of variant record"));
5917 else if (*index_p == 0)
5918 return ada_value_primitive_field (arg, offset, i, type);
5925 /* Given ARG, a value of type (pointer or reference to a)*
5926 structure/union, extract the component named NAME from the ultimate
5927 target structure/union and return it as a value with its
5928 appropriate type. If ARG is a pointer or reference and the field
5929 is not packed, returns a reference to the field, otherwise the
5930 value of the field (an lvalue if ARG is an lvalue).
5932 The routine searches for NAME among all members of the structure itself
5933 and (recursively) among all members of any wrapper members
5936 If NO_ERR, then simply return NULL in case of error, rather than
5940 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5942 struct type *t, *t1;
5946 t1 = t = ada_check_typedef (value_type (arg));
5947 if (TYPE_CODE (t) == TYPE_CODE_REF)
5949 t1 = TYPE_TARGET_TYPE (t);
5952 t1 = ada_check_typedef (t1);
5953 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5955 arg = coerce_ref (arg);
5960 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5962 t1 = TYPE_TARGET_TYPE (t);
5965 t1 = ada_check_typedef (t1);
5966 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5968 arg = value_ind (arg);
5975 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5979 v = ada_search_struct_field (name, arg, 0, t);
5982 int bit_offset, bit_size, byte_offset;
5983 struct type *field_type;
5986 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5987 address = value_as_address (arg);
5989 address = unpack_pointer (t, value_contents (arg));
5991 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5992 if (find_struct_field (name, t1, 0,
5993 &field_type, &byte_offset, &bit_offset,
5998 if (TYPE_CODE (t) == TYPE_CODE_REF)
5999 arg = ada_coerce_ref (arg);
6001 arg = ada_value_ind (arg);
6002 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6003 bit_offset, bit_size,
6007 v = value_from_pointer (lookup_reference_type (field_type),
6008 address + byte_offset);
6012 if (v != NULL || no_err)
6015 error (_("There is no member named %s."), name);
6021 error (_("Attempt to extract a component of a value that is not a record."));
6024 /* Given a type TYPE, look up the type of the component of type named NAME.
6025 If DISPP is non-null, add its byte displacement from the beginning of a
6026 structure (pointed to by a value) of type TYPE to *DISPP (does not
6027 work for packed fields).
6029 Matches any field whose name has NAME as a prefix, possibly
6032 TYPE can be either a struct or union. If REFOK, TYPE may also
6033 be a (pointer or reference)+ to a struct or union, and the
6034 ultimate target type will be searched.
6036 Looks recursively into variant clauses and parent types.
6038 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6039 TYPE is not a type of the right kind. */
6041 static struct type *
6042 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6043 int noerr, int *dispp)
6050 if (refok && type != NULL)
6053 type = ada_check_typedef (type);
6054 if (TYPE_CODE (type) != TYPE_CODE_PTR
6055 && TYPE_CODE (type) != TYPE_CODE_REF)
6057 type = TYPE_TARGET_TYPE (type);
6061 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6062 && TYPE_CODE (type) != TYPE_CODE_UNION))
6068 target_terminal_ours ();
6069 gdb_flush (gdb_stdout);
6071 error (_("Type (null) is not a structure or union type"));
6074 /* XXX: type_sprint */
6075 fprintf_unfiltered (gdb_stderr, _("Type "));
6076 type_print (type, "", gdb_stderr, -1);
6077 error (_(" is not a structure or union type"));
6082 type = to_static_fixed_type (type);
6084 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6086 char *t_field_name = TYPE_FIELD_NAME (type, i);
6090 if (t_field_name == NULL)
6093 else if (field_name_match (t_field_name, name))
6096 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6097 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6100 else if (ada_is_wrapper_field (type, i))
6103 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6108 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6113 else if (ada_is_variant_part (type, i))
6116 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6118 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6121 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6126 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6137 target_terminal_ours ();
6138 gdb_flush (gdb_stdout);
6141 /* XXX: type_sprint */
6142 fprintf_unfiltered (gdb_stderr, _("Type "));
6143 type_print (type, "", gdb_stderr, -1);
6144 error (_(" has no component named <null>"));
6148 /* XXX: type_sprint */
6149 fprintf_unfiltered (gdb_stderr, _("Type "));
6150 type_print (type, "", gdb_stderr, -1);
6151 error (_(" has no component named %s"), name);
6158 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6159 within a value of type OUTER_TYPE that is stored in GDB at
6160 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6161 numbering from 0) is applicable. Returns -1 if none are. */
6164 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6165 const gdb_byte *outer_valaddr)
6170 struct type *discrim_type;
6171 char *discrim_name = ada_variant_discrim_name (var_type);
6172 LONGEST discrim_val;
6176 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6177 if (discrim_type == NULL)
6179 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6182 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6184 if (ada_is_others_clause (var_type, i))
6186 else if (ada_in_variant (discrim_val, var_type, i))
6190 return others_clause;
6195 /* Dynamic-Sized Records */
6197 /* Strategy: The type ostensibly attached to a value with dynamic size
6198 (i.e., a size that is not statically recorded in the debugging
6199 data) does not accurately reflect the size or layout of the value.
6200 Our strategy is to convert these values to values with accurate,
6201 conventional types that are constructed on the fly. */
6203 /* There is a subtle and tricky problem here. In general, we cannot
6204 determine the size of dynamic records without its data. However,
6205 the 'struct value' data structure, which GDB uses to represent
6206 quantities in the inferior process (the target), requires the size
6207 of the type at the time of its allocation in order to reserve space
6208 for GDB's internal copy of the data. That's why the
6209 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6210 rather than struct value*s.
6212 However, GDB's internal history variables ($1, $2, etc.) are
6213 struct value*s containing internal copies of the data that are not, in
6214 general, the same as the data at their corresponding addresses in
6215 the target. Fortunately, the types we give to these values are all
6216 conventional, fixed-size types (as per the strategy described
6217 above), so that we don't usually have to perform the
6218 'to_fixed_xxx_type' conversions to look at their values.
6219 Unfortunately, there is one exception: if one of the internal
6220 history variables is an array whose elements are unconstrained
6221 records, then we will need to create distinct fixed types for each
6222 element selected. */
6224 /* The upshot of all of this is that many routines take a (type, host
6225 address, target address) triple as arguments to represent a value.
6226 The host address, if non-null, is supposed to contain an internal
6227 copy of the relevant data; otherwise, the program is to consult the
6228 target at the target address. */
6230 /* Assuming that VAL0 represents a pointer value, the result of
6231 dereferencing it. Differs from value_ind in its treatment of
6232 dynamic-sized types. */
6235 ada_value_ind (struct value *val0)
6237 struct value *val = unwrap_value (value_ind (val0));
6238 return ada_to_fixed_value (val);
6241 /* The value resulting from dereferencing any "reference to"
6242 qualifiers on VAL0. */
6244 static struct value *
6245 ada_coerce_ref (struct value *val0)
6247 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6249 struct value *val = val0;
6250 val = coerce_ref (val);
6251 val = unwrap_value (val);
6252 return ada_to_fixed_value (val);
6258 /* Return OFF rounded upward if necessary to a multiple of
6259 ALIGNMENT (a power of 2). */
6262 align_value (unsigned int off, unsigned int alignment)
6264 return (off + alignment - 1) & ~(alignment - 1);
6267 /* Return the bit alignment required for field #F of template type TYPE. */
6270 field_alignment (struct type *type, int f)
6272 const char *name = TYPE_FIELD_NAME (type, f);
6276 /* The field name should never be null, unless the debugging information
6277 is somehow malformed. In this case, we assume the field does not
6278 require any alignment. */
6282 len = strlen (name);
6284 if (!isdigit (name[len - 1]))
6287 if (isdigit (name[len - 2]))
6288 align_offset = len - 2;
6290 align_offset = len - 1;
6292 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6293 return TARGET_CHAR_BIT;
6295 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6298 /* Find a symbol named NAME. Ignores ambiguity. */
6301 ada_find_any_symbol (const char *name)
6305 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6306 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6309 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6313 /* Find a type named NAME. Ignores ambiguity. */
6316 ada_find_any_type (const char *name)
6318 struct symbol *sym = ada_find_any_symbol (name);
6321 return SYMBOL_TYPE (sym);
6326 /* Given NAME and an associated BLOCK, search all symbols for
6327 NAME suffixed with "___XR", which is the ``renaming'' symbol
6328 associated to NAME. Return this symbol if found, return
6332 ada_find_renaming_symbol (const char *name, struct block *block)
6336 sym = find_old_style_renaming_symbol (name, block);
6341 /* Not right yet. FIXME pnh 7/20/2007. */
6342 sym = ada_find_any_symbol (name);
6343 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6349 static struct symbol *
6350 find_old_style_renaming_symbol (const char *name, struct block *block)
6352 const struct symbol *function_sym = block_function (block);
6355 if (function_sym != NULL)
6357 /* If the symbol is defined inside a function, NAME is not fully
6358 qualified. This means we need to prepend the function name
6359 as well as adding the ``___XR'' suffix to build the name of
6360 the associated renaming symbol. */
6361 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6362 /* Function names sometimes contain suffixes used
6363 for instance to qualify nested subprograms. When building
6364 the XR type name, we need to make sure that this suffix is
6365 not included. So do not include any suffix in the function
6366 name length below. */
6367 const int function_name_len = ada_name_prefix_len (function_name);
6368 const int rename_len = function_name_len + 2 /* "__" */
6369 + strlen (name) + 6 /* "___XR\0" */ ;
6371 /* Strip the suffix if necessary. */
6372 function_name[function_name_len] = '\0';
6374 /* Library-level functions are a special case, as GNAT adds
6375 a ``_ada_'' prefix to the function name to avoid namespace
6376 pollution. However, the renaming symbols themselves do not
6377 have this prefix, so we need to skip this prefix if present. */
6378 if (function_name_len > 5 /* "_ada_" */
6379 && strstr (function_name, "_ada_") == function_name)
6380 function_name = function_name + 5;
6382 rename = (char *) alloca (rename_len * sizeof (char));
6383 sprintf (rename, "%s__%s___XR", function_name, name);
6387 const int rename_len = strlen (name) + 6;
6388 rename = (char *) alloca (rename_len * sizeof (char));
6389 sprintf (rename, "%s___XR", name);
6392 return ada_find_any_symbol (rename);
6395 /* Because of GNAT encoding conventions, several GDB symbols may match a
6396 given type name. If the type denoted by TYPE0 is to be preferred to
6397 that of TYPE1 for purposes of type printing, return non-zero;
6398 otherwise return 0. */
6401 ada_prefer_type (struct type *type0, struct type *type1)
6405 else if (type0 == NULL)
6407 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6409 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6411 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6413 else if (ada_is_packed_array_type (type0))
6415 else if (ada_is_array_descriptor_type (type0)
6416 && !ada_is_array_descriptor_type (type1))
6420 const char *type0_name = type_name_no_tag (type0);
6421 const char *type1_name = type_name_no_tag (type1);
6423 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6424 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6430 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6431 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6434 ada_type_name (struct type *type)
6438 else if (TYPE_NAME (type) != NULL)
6439 return TYPE_NAME (type);
6441 return TYPE_TAG_NAME (type);
6444 /* Find a parallel type to TYPE whose name is formed by appending
6445 SUFFIX to the name of TYPE. */
6448 ada_find_parallel_type (struct type *type, const char *suffix)
6451 static size_t name_len = 0;
6453 char *typename = ada_type_name (type);
6455 if (typename == NULL)
6458 len = strlen (typename);
6460 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6462 strcpy (name, typename);
6463 strcpy (name + len, suffix);
6465 return ada_find_any_type (name);
6469 /* If TYPE is a variable-size record type, return the corresponding template
6470 type describing its fields. Otherwise, return NULL. */
6472 static struct type *
6473 dynamic_template_type (struct type *type)
6475 type = ada_check_typedef (type);
6477 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6478 || ada_type_name (type) == NULL)
6482 int len = strlen (ada_type_name (type));
6483 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6486 return ada_find_parallel_type (type, "___XVE");
6490 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6491 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6494 is_dynamic_field (struct type *templ_type, int field_num)
6496 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6498 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6499 && strstr (name, "___XVL") != NULL;
6502 /* The index of the variant field of TYPE, or -1 if TYPE does not
6503 represent a variant record type. */
6506 variant_field_index (struct type *type)
6510 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6513 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6515 if (ada_is_variant_part (type, f))
6521 /* A record type with no fields. */
6523 static struct type *
6524 empty_record (struct objfile *objfile)
6526 struct type *type = alloc_type (objfile);
6527 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6528 TYPE_NFIELDS (type) = 0;
6529 TYPE_FIELDS (type) = NULL;
6530 TYPE_NAME (type) = "<empty>";
6531 TYPE_TAG_NAME (type) = NULL;
6532 TYPE_FLAGS (type) = 0;
6533 TYPE_LENGTH (type) = 0;
6537 /* An ordinary record type (with fixed-length fields) that describes
6538 the value of type TYPE at VALADDR or ADDRESS (see comments at
6539 the beginning of this section) VAL according to GNAT conventions.
6540 DVAL0 should describe the (portion of a) record that contains any
6541 necessary discriminants. It should be NULL if value_type (VAL) is
6542 an outer-level type (i.e., as opposed to a branch of a variant.) A
6543 variant field (unless unchecked) is replaced by a particular branch
6546 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6547 length are not statically known are discarded. As a consequence,
6548 VALADDR, ADDRESS and DVAL0 are ignored.
6550 NOTE: Limitations: For now, we assume that dynamic fields and
6551 variants occupy whole numbers of bytes. However, they need not be
6555 ada_template_to_fixed_record_type_1 (struct type *type,
6556 const gdb_byte *valaddr,
6557 CORE_ADDR address, struct value *dval0,
6558 int keep_dynamic_fields)
6560 struct value *mark = value_mark ();
6563 int nfields, bit_len;
6566 int fld_bit_len, bit_incr;
6569 /* Compute the number of fields in this record type that are going
6570 to be processed: unless keep_dynamic_fields, this includes only
6571 fields whose position and length are static will be processed. */
6572 if (keep_dynamic_fields)
6573 nfields = TYPE_NFIELDS (type);
6577 while (nfields < TYPE_NFIELDS (type)
6578 && !ada_is_variant_part (type, nfields)
6579 && !is_dynamic_field (type, nfields))
6583 rtype = alloc_type (TYPE_OBJFILE (type));
6584 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6585 INIT_CPLUS_SPECIFIC (rtype);
6586 TYPE_NFIELDS (rtype) = nfields;
6587 TYPE_FIELDS (rtype) = (struct field *)
6588 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6589 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6590 TYPE_NAME (rtype) = ada_type_name (type);
6591 TYPE_TAG_NAME (rtype) = NULL;
6592 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6598 for (f = 0; f < nfields; f += 1)
6600 off = align_value (off, field_alignment (type, f))
6601 + TYPE_FIELD_BITPOS (type, f);
6602 TYPE_FIELD_BITPOS (rtype, f) = off;
6603 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6605 if (ada_is_variant_part (type, f))
6608 fld_bit_len = bit_incr = 0;
6610 else if (is_dynamic_field (type, f))
6613 dval = value_from_contents_and_address (rtype, valaddr, address);
6617 TYPE_FIELD_TYPE (rtype, f) =
6620 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6621 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6622 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6623 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6624 bit_incr = fld_bit_len =
6625 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6629 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6630 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6631 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6632 bit_incr = fld_bit_len =
6633 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6635 bit_incr = fld_bit_len =
6636 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6638 if (off + fld_bit_len > bit_len)
6639 bit_len = off + fld_bit_len;
6641 TYPE_LENGTH (rtype) =
6642 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6645 /* We handle the variant part, if any, at the end because of certain
6646 odd cases in which it is re-ordered so as NOT the last field of
6647 the record. This can happen in the presence of representation
6649 if (variant_field >= 0)
6651 struct type *branch_type;
6653 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6656 dval = value_from_contents_and_address (rtype, valaddr, address);
6661 to_fixed_variant_branch_type
6662 (TYPE_FIELD_TYPE (type, variant_field),
6663 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6664 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6665 if (branch_type == NULL)
6667 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6668 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6669 TYPE_NFIELDS (rtype) -= 1;
6673 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6674 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6676 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6678 if (off + fld_bit_len > bit_len)
6679 bit_len = off + fld_bit_len;
6680 TYPE_LENGTH (rtype) =
6681 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6685 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6686 should contain the alignment of that record, which should be a strictly
6687 positive value. If null or negative, then something is wrong, most
6688 probably in the debug info. In that case, we don't round up the size
6689 of the resulting type. If this record is not part of another structure,
6690 the current RTYPE length might be good enough for our purposes. */
6691 if (TYPE_LENGTH (type) <= 0)
6693 if (TYPE_NAME (rtype))
6694 warning (_("Invalid type size for `%s' detected: %d."),
6695 TYPE_NAME (rtype), TYPE_LENGTH (type));
6697 warning (_("Invalid type size for <unnamed> detected: %d."),
6698 TYPE_LENGTH (type));
6702 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6703 TYPE_LENGTH (type));
6706 value_free_to_mark (mark);
6707 if (TYPE_LENGTH (rtype) > varsize_limit)
6708 error (_("record type with dynamic size is larger than varsize-limit"));
6712 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6715 static struct type *
6716 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6717 CORE_ADDR address, struct value *dval0)
6719 return ada_template_to_fixed_record_type_1 (type, valaddr,
6723 /* An ordinary record type in which ___XVL-convention fields and
6724 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6725 static approximations, containing all possible fields. Uses
6726 no runtime values. Useless for use in values, but that's OK,
6727 since the results are used only for type determinations. Works on both
6728 structs and unions. Representation note: to save space, we memorize
6729 the result of this function in the TYPE_TARGET_TYPE of the
6732 static struct type *
6733 template_to_static_fixed_type (struct type *type0)
6739 if (TYPE_TARGET_TYPE (type0) != NULL)
6740 return TYPE_TARGET_TYPE (type0);
6742 nfields = TYPE_NFIELDS (type0);
6745 for (f = 0; f < nfields; f += 1)
6747 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6748 struct type *new_type;
6750 if (is_dynamic_field (type0, f))
6751 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6753 new_type = to_static_fixed_type (field_type);
6754 if (type == type0 && new_type != field_type)
6756 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6757 TYPE_CODE (type) = TYPE_CODE (type0);
6758 INIT_CPLUS_SPECIFIC (type);
6759 TYPE_NFIELDS (type) = nfields;
6760 TYPE_FIELDS (type) = (struct field *)
6761 TYPE_ALLOC (type, nfields * sizeof (struct field));
6762 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6763 sizeof (struct field) * nfields);
6764 TYPE_NAME (type) = ada_type_name (type0);
6765 TYPE_TAG_NAME (type) = NULL;
6766 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6767 TYPE_LENGTH (type) = 0;
6769 TYPE_FIELD_TYPE (type, f) = new_type;
6770 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6775 /* Given an object of type TYPE whose contents are at VALADDR and
6776 whose address in memory is ADDRESS, returns a revision of TYPE --
6777 a non-dynamic-sized record with a variant part -- in which
6778 the variant part is replaced with the appropriate branch. Looks
6779 for discriminant values in DVAL0, which can be NULL if the record
6780 contains the necessary discriminant values. */
6782 static struct type *
6783 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6784 CORE_ADDR address, struct value *dval0)
6786 struct value *mark = value_mark ();
6789 struct type *branch_type;
6790 int nfields = TYPE_NFIELDS (type);
6791 int variant_field = variant_field_index (type);
6793 if (variant_field == -1)
6797 dval = value_from_contents_and_address (type, valaddr, address);
6801 rtype = alloc_type (TYPE_OBJFILE (type));
6802 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6803 INIT_CPLUS_SPECIFIC (rtype);
6804 TYPE_NFIELDS (rtype) = nfields;
6805 TYPE_FIELDS (rtype) =
6806 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6807 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6808 sizeof (struct field) * nfields);
6809 TYPE_NAME (rtype) = ada_type_name (type);
6810 TYPE_TAG_NAME (rtype) = NULL;
6811 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6812 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6814 branch_type = to_fixed_variant_branch_type
6815 (TYPE_FIELD_TYPE (type, variant_field),
6816 cond_offset_host (valaddr,
6817 TYPE_FIELD_BITPOS (type, variant_field)
6819 cond_offset_target (address,
6820 TYPE_FIELD_BITPOS (type, variant_field)
6821 / TARGET_CHAR_BIT), dval);
6822 if (branch_type == NULL)
6825 for (f = variant_field + 1; f < nfields; f += 1)
6826 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6827 TYPE_NFIELDS (rtype) -= 1;
6831 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6832 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6833 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6834 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6836 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6838 value_free_to_mark (mark);
6842 /* An ordinary record type (with fixed-length fields) that describes
6843 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6844 beginning of this section]. Any necessary discriminants' values
6845 should be in DVAL, a record value; it may be NULL if the object
6846 at ADDR itself contains any necessary discriminant values.
6847 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6848 values from the record are needed. Except in the case that DVAL,
6849 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6850 unchecked) is replaced by a particular branch of the variant.
6852 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6853 is questionable and may be removed. It can arise during the
6854 processing of an unconstrained-array-of-record type where all the
6855 variant branches have exactly the same size. This is because in
6856 such cases, the compiler does not bother to use the XVS convention
6857 when encoding the record. I am currently dubious of this
6858 shortcut and suspect the compiler should be altered. FIXME. */
6860 static struct type *
6861 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6862 CORE_ADDR address, struct value *dval)
6864 struct type *templ_type;
6866 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6869 templ_type = dynamic_template_type (type0);
6871 if (templ_type != NULL)
6872 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6873 else if (variant_field_index (type0) >= 0)
6875 if (dval == NULL && valaddr == NULL && address == 0)
6877 return to_record_with_fixed_variant_part (type0, valaddr, address,
6882 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6888 /* An ordinary record type (with fixed-length fields) that describes
6889 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6890 union type. Any necessary discriminants' values should be in DVAL,
6891 a record value. That is, this routine selects the appropriate
6892 branch of the union at ADDR according to the discriminant value
6893 indicated in the union's type name. */
6895 static struct type *
6896 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6897 CORE_ADDR address, struct value *dval)
6900 struct type *templ_type;
6901 struct type *var_type;
6903 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6904 var_type = TYPE_TARGET_TYPE (var_type0);
6906 var_type = var_type0;
6908 templ_type = ada_find_parallel_type (var_type, "___XVU");
6910 if (templ_type != NULL)
6911 var_type = templ_type;
6914 ada_which_variant_applies (var_type,
6915 value_type (dval), value_contents (dval));
6918 return empty_record (TYPE_OBJFILE (var_type));
6919 else if (is_dynamic_field (var_type, which))
6920 return to_fixed_record_type
6921 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6922 valaddr, address, dval);
6923 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6925 to_fixed_record_type
6926 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6928 return TYPE_FIELD_TYPE (var_type, which);
6931 /* Assuming that TYPE0 is an array type describing the type of a value
6932 at ADDR, and that DVAL describes a record containing any
6933 discriminants used in TYPE0, returns a type for the value that
6934 contains no dynamic components (that is, no components whose sizes
6935 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6936 true, gives an error message if the resulting type's size is over
6939 static struct type *
6940 to_fixed_array_type (struct type *type0, struct value *dval,
6943 struct type *index_type_desc;
6944 struct type *result;
6946 if (ada_is_packed_array_type (type0) /* revisit? */
6947 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6950 index_type_desc = ada_find_parallel_type (type0, "___XA");
6951 if (index_type_desc == NULL)
6953 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6954 /* NOTE: elt_type---the fixed version of elt_type0---should never
6955 depend on the contents of the array in properly constructed
6957 /* Create a fixed version of the array element type.
6958 We're not providing the address of an element here,
6959 and thus the actual object value cannot be inspected to do
6960 the conversion. This should not be a problem, since arrays of
6961 unconstrained objects are not allowed. In particular, all
6962 the elements of an array of a tagged type should all be of
6963 the same type specified in the debugging info. No need to
6964 consult the object tag. */
6965 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6967 if (elt_type0 == elt_type)
6970 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6971 elt_type, TYPE_INDEX_TYPE (type0));
6976 struct type *elt_type0;
6979 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6980 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6982 /* NOTE: result---the fixed version of elt_type0---should never
6983 depend on the contents of the array in properly constructed
6985 /* Create a fixed version of the array element type.
6986 We're not providing the address of an element here,
6987 and thus the actual object value cannot be inspected to do
6988 the conversion. This should not be a problem, since arrays of
6989 unconstrained objects are not allowed. In particular, all
6990 the elements of an array of a tagged type should all be of
6991 the same type specified in the debugging info. No need to
6992 consult the object tag. */
6993 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6994 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6996 struct type *range_type =
6997 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6998 dval, TYPE_OBJFILE (type0));
6999 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7000 result, range_type);
7002 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7003 error (_("array type with dynamic size is larger than varsize-limit"));
7006 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7011 /* A standard type (containing no dynamically sized components)
7012 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7013 DVAL describes a record containing any discriminants used in TYPE0,
7014 and may be NULL if there are none, or if the object of type TYPE at
7015 ADDRESS or in VALADDR contains these discriminants.
7017 In the case of tagged types, this function attempts to locate the object's
7018 tag and use it to compute the actual type. However, when ADDRESS is null,
7019 we cannot use it to determine the location of the tag, and therefore
7020 compute the tagged type's actual type. So we return the tagged type
7021 without consulting the tag. */
7024 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7025 CORE_ADDR address, struct value *dval)
7027 type = ada_check_typedef (type);
7028 switch (TYPE_CODE (type))
7032 case TYPE_CODE_STRUCT:
7034 struct type *static_type = to_static_fixed_type (type);
7036 /* If STATIC_TYPE is a tagged type and we know the object's address,
7037 then we can determine its tag, and compute the object's actual
7040 if (address != 0 && ada_is_tagged_type (static_type, 0))
7042 struct type *real_type =
7043 type_from_tag (value_tag_from_contents_and_address (static_type,
7046 if (real_type != NULL)
7049 return to_fixed_record_type (type, valaddr, address, NULL);
7051 case TYPE_CODE_ARRAY:
7052 return to_fixed_array_type (type, dval, 1);
7053 case TYPE_CODE_UNION:
7057 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7061 /* A standard (static-sized) type corresponding as well as possible to
7062 TYPE0, but based on no runtime data. */
7064 static struct type *
7065 to_static_fixed_type (struct type *type0)
7072 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7075 type0 = ada_check_typedef (type0);
7077 switch (TYPE_CODE (type0))
7081 case TYPE_CODE_STRUCT:
7082 type = dynamic_template_type (type0);
7084 return template_to_static_fixed_type (type);
7086 return template_to_static_fixed_type (type0);
7087 case TYPE_CODE_UNION:
7088 type = ada_find_parallel_type (type0, "___XVU");
7090 return template_to_static_fixed_type (type);
7092 return template_to_static_fixed_type (type0);
7096 /* A static approximation of TYPE with all type wrappers removed. */
7098 static struct type *
7099 static_unwrap_type (struct type *type)
7101 if (ada_is_aligner_type (type))
7103 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7104 if (ada_type_name (type1) == NULL)
7105 TYPE_NAME (type1) = ada_type_name (type);
7107 return static_unwrap_type (type1);
7111 struct type *raw_real_type = ada_get_base_type (type);
7112 if (raw_real_type == type)
7115 return to_static_fixed_type (raw_real_type);
7119 /* In some cases, incomplete and private types require
7120 cross-references that are not resolved as records (for example,
7122 type FooP is access Foo;
7124 type Foo is array ...;
7125 ). In these cases, since there is no mechanism for producing
7126 cross-references to such types, we instead substitute for FooP a
7127 stub enumeration type that is nowhere resolved, and whose tag is
7128 the name of the actual type. Call these types "non-record stubs". */
7130 /* A type equivalent to TYPE that is not a non-record stub, if one
7131 exists, otherwise TYPE. */
7134 ada_check_typedef (struct type *type)
7136 CHECK_TYPEDEF (type);
7137 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7138 || !TYPE_STUB (type)
7139 || TYPE_TAG_NAME (type) == NULL)
7143 char *name = TYPE_TAG_NAME (type);
7144 struct type *type1 = ada_find_any_type (name);
7145 return (type1 == NULL) ? type : type1;
7149 /* A value representing the data at VALADDR/ADDRESS as described by
7150 type TYPE0, but with a standard (static-sized) type that correctly
7151 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7152 type, then return VAL0 [this feature is simply to avoid redundant
7153 creation of struct values]. */
7155 static struct value *
7156 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7159 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
7160 if (type == type0 && val0 != NULL)
7163 return value_from_contents_and_address (type, 0, address);
7166 /* A value representing VAL, but with a standard (static-sized) type
7167 that correctly describes it. Does not necessarily create a new
7170 static struct value *
7171 ada_to_fixed_value (struct value *val)
7173 return ada_to_fixed_value_create (value_type (val),
7174 VALUE_ADDRESS (val) + value_offset (val),
7178 /* A value representing VAL, but with a standard (static-sized) type
7179 chosen to approximate the real type of VAL as well as possible, but
7180 without consulting any runtime values. For Ada dynamic-sized
7181 types, therefore, the type of the result is likely to be inaccurate. */
7184 ada_to_static_fixed_value (struct value *val)
7187 to_static_fixed_type (static_unwrap_type (value_type (val)));
7188 if (type == value_type (val))
7191 return coerce_unspec_val_to_type (val, type);
7197 /* Table mapping attribute numbers to names.
7198 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7200 static const char *attribute_names[] = {
7218 ada_attribute_name (enum exp_opcode n)
7220 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7221 return attribute_names[n - OP_ATR_FIRST + 1];
7223 return attribute_names[0];
7226 /* Evaluate the 'POS attribute applied to ARG. */
7229 pos_atr (struct value *arg)
7231 struct type *type = value_type (arg);
7233 if (!discrete_type_p (type))
7234 error (_("'POS only defined on discrete types"));
7236 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7239 LONGEST v = value_as_long (arg);
7241 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7243 if (v == TYPE_FIELD_BITPOS (type, i))
7246 error (_("enumeration value is invalid: can't find 'POS"));
7249 return value_as_long (arg);
7252 static struct value *
7253 value_pos_atr (struct value *arg)
7255 return value_from_longest (builtin_type_int, pos_atr (arg));
7258 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7260 static struct value *
7261 value_val_atr (struct type *type, struct value *arg)
7263 if (!discrete_type_p (type))
7264 error (_("'VAL only defined on discrete types"));
7265 if (!integer_type_p (value_type (arg)))
7266 error (_("'VAL requires integral argument"));
7268 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7270 long pos = value_as_long (arg);
7271 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7272 error (_("argument to 'VAL out of range"));
7273 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7276 return value_from_longest (type, value_as_long (arg));
7282 /* True if TYPE appears to be an Ada character type.
7283 [At the moment, this is true only for Character and Wide_Character;
7284 It is a heuristic test that could stand improvement]. */
7287 ada_is_character_type (struct type *type)
7291 /* If the type code says it's a character, then assume it really is,
7292 and don't check any further. */
7293 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7296 /* Otherwise, assume it's a character type iff it is a discrete type
7297 with a known character type name. */
7298 name = ada_type_name (type);
7299 return (name != NULL
7300 && (TYPE_CODE (type) == TYPE_CODE_INT
7301 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7302 && (strcmp (name, "character") == 0
7303 || strcmp (name, "wide_character") == 0
7304 || strcmp (name, "unsigned char") == 0));
7307 /* True if TYPE appears to be an Ada string type. */
7310 ada_is_string_type (struct type *type)
7312 type = ada_check_typedef (type);
7314 && TYPE_CODE (type) != TYPE_CODE_PTR
7315 && (ada_is_simple_array_type (type)
7316 || ada_is_array_descriptor_type (type))
7317 && ada_array_arity (type) == 1)
7319 struct type *elttype = ada_array_element_type (type, 1);
7321 return ada_is_character_type (elttype);
7328 /* True if TYPE is a struct type introduced by the compiler to force the
7329 alignment of a value. Such types have a single field with a
7330 distinctive name. */
7333 ada_is_aligner_type (struct type *type)
7335 type = ada_check_typedef (type);
7337 /* If we can find a parallel XVS type, then the XVS type should
7338 be used instead of this type. And hence, this is not an aligner
7340 if (ada_find_parallel_type (type, "___XVS") != NULL)
7343 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7344 && TYPE_NFIELDS (type) == 1
7345 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7348 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7349 the parallel type. */
7352 ada_get_base_type (struct type *raw_type)
7354 struct type *real_type_namer;
7355 struct type *raw_real_type;
7357 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7360 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7361 if (real_type_namer == NULL
7362 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7363 || TYPE_NFIELDS (real_type_namer) != 1)
7366 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7367 if (raw_real_type == NULL)
7370 return raw_real_type;
7373 /* The type of value designated by TYPE, with all aligners removed. */
7376 ada_aligned_type (struct type *type)
7378 if (ada_is_aligner_type (type))
7379 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7381 return ada_get_base_type (type);
7385 /* The address of the aligned value in an object at address VALADDR
7386 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7389 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7391 if (ada_is_aligner_type (type))
7392 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7394 TYPE_FIELD_BITPOS (type,
7395 0) / TARGET_CHAR_BIT);
7402 /* The printed representation of an enumeration literal with encoded
7403 name NAME. The value is good to the next call of ada_enum_name. */
7405 ada_enum_name (const char *name)
7407 static char *result;
7408 static size_t result_len = 0;
7411 /* First, unqualify the enumeration name:
7412 1. Search for the last '.' character. If we find one, then skip
7413 all the preceeding characters, the unqualified name starts
7414 right after that dot.
7415 2. Otherwise, we may be debugging on a target where the compiler
7416 translates dots into "__". Search forward for double underscores,
7417 but stop searching when we hit an overloading suffix, which is
7418 of the form "__" followed by digits. */
7420 tmp = strrchr (name, '.');
7425 while ((tmp = strstr (name, "__")) != NULL)
7427 if (isdigit (tmp[2]))
7437 if (name[1] == 'U' || name[1] == 'W')
7439 if (sscanf (name + 2, "%x", &v) != 1)
7445 GROW_VECT (result, result_len, 16);
7446 if (isascii (v) && isprint (v))
7447 sprintf (result, "'%c'", v);
7448 else if (name[1] == 'U')
7449 sprintf (result, "[\"%02x\"]", v);
7451 sprintf (result, "[\"%04x\"]", v);
7457 tmp = strstr (name, "__");
7459 tmp = strstr (name, "$");
7462 GROW_VECT (result, result_len, tmp - name + 1);
7463 strncpy (result, name, tmp - name);
7464 result[tmp - name] = '\0';
7472 static struct value *
7473 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7476 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7477 (expect_type, exp, pos, noside);
7480 /* Evaluate the subexpression of EXP starting at *POS as for
7481 evaluate_type, updating *POS to point just past the evaluated
7484 static struct value *
7485 evaluate_subexp_type (struct expression *exp, int *pos)
7487 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7488 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7491 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7494 static struct value *
7495 unwrap_value (struct value *val)
7497 struct type *type = ada_check_typedef (value_type (val));
7498 if (ada_is_aligner_type (type))
7500 struct value *v = value_struct_elt (&val, NULL, "F",
7501 NULL, "internal structure");
7502 struct type *val_type = ada_check_typedef (value_type (v));
7503 if (ada_type_name (val_type) == NULL)
7504 TYPE_NAME (val_type) = ada_type_name (type);
7506 return unwrap_value (v);
7510 struct type *raw_real_type =
7511 ada_check_typedef (ada_get_base_type (type));
7513 if (type == raw_real_type)
7517 coerce_unspec_val_to_type
7518 (val, ada_to_fixed_type (raw_real_type, 0,
7519 VALUE_ADDRESS (val) + value_offset (val),
7524 static struct value *
7525 cast_to_fixed (struct type *type, struct value *arg)
7529 if (type == value_type (arg))
7531 else if (ada_is_fixed_point_type (value_type (arg)))
7532 val = ada_float_to_fixed (type,
7533 ada_fixed_to_float (value_type (arg),
7534 value_as_long (arg)));
7538 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7539 val = ada_float_to_fixed (type, argd);
7542 return value_from_longest (type, val);
7545 static struct value *
7546 cast_from_fixed_to_double (struct value *arg)
7548 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7549 value_as_long (arg));
7550 return value_from_double (builtin_type_double, val);
7553 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7554 return the converted value. */
7556 static struct value *
7557 coerce_for_assign (struct type *type, struct value *val)
7559 struct type *type2 = value_type (val);
7563 type2 = ada_check_typedef (type2);
7564 type = ada_check_typedef (type);
7566 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7567 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7569 val = ada_value_ind (val);
7570 type2 = value_type (val);
7573 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7574 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7576 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7577 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7578 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7579 error (_("Incompatible types in assignment"));
7580 deprecated_set_value_type (val, type);
7585 static struct value *
7586 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7589 struct type *type1, *type2;
7592 arg1 = coerce_ref (arg1);
7593 arg2 = coerce_ref (arg2);
7594 type1 = base_type (ada_check_typedef (value_type (arg1)));
7595 type2 = base_type (ada_check_typedef (value_type (arg2)));
7597 if (TYPE_CODE (type1) != TYPE_CODE_INT
7598 || TYPE_CODE (type2) != TYPE_CODE_INT)
7599 return value_binop (arg1, arg2, op);
7608 return value_binop (arg1, arg2, op);
7611 v2 = value_as_long (arg2);
7613 error (_("second operand of %s must not be zero."), op_string (op));
7615 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7616 return value_binop (arg1, arg2, op);
7618 v1 = value_as_long (arg1);
7623 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7624 v += v > 0 ? -1 : 1;
7632 /* Should not reach this point. */
7636 val = allocate_value (type1);
7637 store_unsigned_integer (value_contents_raw (val),
7638 TYPE_LENGTH (value_type (val)), v);
7643 ada_value_equal (struct value *arg1, struct value *arg2)
7645 if (ada_is_direct_array_type (value_type (arg1))
7646 || ada_is_direct_array_type (value_type (arg2)))
7648 arg1 = ada_coerce_to_simple_array (arg1);
7649 arg2 = ada_coerce_to_simple_array (arg2);
7650 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7651 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7652 error (_("Attempt to compare array with non-array"));
7653 /* FIXME: The following works only for types whose
7654 representations use all bits (no padding or undefined bits)
7655 and do not have user-defined equality. */
7657 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7658 && memcmp (value_contents (arg1), value_contents (arg2),
7659 TYPE_LENGTH (value_type (arg1))) == 0;
7661 return value_equal (arg1, arg2);
7664 /* Total number of component associations in the aggregate starting at
7665 index PC in EXP. Assumes that index PC is the start of an
7669 num_component_specs (struct expression *exp, int pc)
7672 m = exp->elts[pc + 1].longconst;
7675 for (i = 0; i < m; i += 1)
7677 switch (exp->elts[pc].opcode)
7683 n += exp->elts[pc + 1].longconst;
7686 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7691 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7692 component of LHS (a simple array or a record), updating *POS past
7693 the expression, assuming that LHS is contained in CONTAINER. Does
7694 not modify the inferior's memory, nor does it modify LHS (unless
7695 LHS == CONTAINER). */
7698 assign_component (struct value *container, struct value *lhs, LONGEST index,
7699 struct expression *exp, int *pos)
7701 struct value *mark = value_mark ();
7703 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7705 struct value *index_val = value_from_longest (builtin_type_int, index);
7706 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7710 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7711 elt = ada_to_fixed_value (unwrap_value (elt));
7714 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7715 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7717 value_assign_to_component (container, elt,
7718 ada_evaluate_subexp (NULL, exp, pos,
7721 value_free_to_mark (mark);
7724 /* Assuming that LHS represents an lvalue having a record or array
7725 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7726 of that aggregate's value to LHS, advancing *POS past the
7727 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7728 lvalue containing LHS (possibly LHS itself). Does not modify
7729 the inferior's memory, nor does it modify the contents of
7730 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7732 static struct value *
7733 assign_aggregate (struct value *container,
7734 struct value *lhs, struct expression *exp,
7735 int *pos, enum noside noside)
7737 struct type *lhs_type;
7738 int n = exp->elts[*pos+1].longconst;
7739 LONGEST low_index, high_index;
7742 int max_indices, num_indices;
7743 int is_array_aggregate;
7745 struct value *mark = value_mark ();
7748 if (noside != EVAL_NORMAL)
7751 for (i = 0; i < n; i += 1)
7752 ada_evaluate_subexp (NULL, exp, pos, noside);
7756 container = ada_coerce_ref (container);
7757 if (ada_is_direct_array_type (value_type (container)))
7758 container = ada_coerce_to_simple_array (container);
7759 lhs = ada_coerce_ref (lhs);
7760 if (!deprecated_value_modifiable (lhs))
7761 error (_("Left operand of assignment is not a modifiable lvalue."));
7763 lhs_type = value_type (lhs);
7764 if (ada_is_direct_array_type (lhs_type))
7766 lhs = ada_coerce_to_simple_array (lhs);
7767 lhs_type = value_type (lhs);
7768 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7769 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7770 is_array_aggregate = 1;
7772 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7775 high_index = num_visible_fields (lhs_type) - 1;
7776 is_array_aggregate = 0;
7779 error (_("Left-hand side must be array or record."));
7781 num_specs = num_component_specs (exp, *pos - 3);
7782 max_indices = 4 * num_specs + 4;
7783 indices = alloca (max_indices * sizeof (indices[0]));
7784 indices[0] = indices[1] = low_index - 1;
7785 indices[2] = indices[3] = high_index + 1;
7788 for (i = 0; i < n; i += 1)
7790 switch (exp->elts[*pos].opcode)
7793 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7794 &num_indices, max_indices,
7795 low_index, high_index);
7798 aggregate_assign_positional (container, lhs, exp, pos, indices,
7799 &num_indices, max_indices,
7800 low_index, high_index);
7804 error (_("Misplaced 'others' clause"));
7805 aggregate_assign_others (container, lhs, exp, pos, indices,
7806 num_indices, low_index, high_index);
7809 error (_("Internal error: bad aggregate clause"));
7816 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7817 construct at *POS, updating *POS past the construct, given that
7818 the positions are relative to lower bound LOW, where HIGH is the
7819 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7820 updating *NUM_INDICES as needed. CONTAINER is as for
7821 assign_aggregate. */
7823 aggregate_assign_positional (struct value *container,
7824 struct value *lhs, struct expression *exp,
7825 int *pos, LONGEST *indices, int *num_indices,
7826 int max_indices, LONGEST low, LONGEST high)
7828 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7830 if (ind - 1 == high)
7831 warning (_("Extra components in aggregate ignored."));
7834 add_component_interval (ind, ind, indices, num_indices, max_indices);
7836 assign_component (container, lhs, ind, exp, pos);
7839 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7842 /* Assign into the components of LHS indexed by the OP_CHOICES
7843 construct at *POS, updating *POS past the construct, given that
7844 the allowable indices are LOW..HIGH. Record the indices assigned
7845 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7846 needed. CONTAINER is as for assign_aggregate. */
7848 aggregate_assign_from_choices (struct value *container,
7849 struct value *lhs, struct expression *exp,
7850 int *pos, LONGEST *indices, int *num_indices,
7851 int max_indices, LONGEST low, LONGEST high)
7854 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7855 int choice_pos, expr_pc;
7856 int is_array = ada_is_direct_array_type (value_type (lhs));
7858 choice_pos = *pos += 3;
7860 for (j = 0; j < n_choices; j += 1)
7861 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7863 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7865 for (j = 0; j < n_choices; j += 1)
7867 LONGEST lower, upper;
7868 enum exp_opcode op = exp->elts[choice_pos].opcode;
7869 if (op == OP_DISCRETE_RANGE)
7872 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7874 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7879 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7890 name = &exp->elts[choice_pos + 2].string;
7893 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7896 error (_("Invalid record component association."));
7898 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7900 if (! find_struct_field (name, value_type (lhs), 0,
7901 NULL, NULL, NULL, NULL, &ind))
7902 error (_("Unknown component name: %s."), name);
7903 lower = upper = ind;
7906 if (lower <= upper && (lower < low || upper > high))
7907 error (_("Index in component association out of bounds."));
7909 add_component_interval (lower, upper, indices, num_indices,
7911 while (lower <= upper)
7915 assign_component (container, lhs, lower, exp, &pos1);
7921 /* Assign the value of the expression in the OP_OTHERS construct in
7922 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7923 have not been previously assigned. The index intervals already assigned
7924 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7925 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7927 aggregate_assign_others (struct value *container,
7928 struct value *lhs, struct expression *exp,
7929 int *pos, LONGEST *indices, int num_indices,
7930 LONGEST low, LONGEST high)
7933 int expr_pc = *pos+1;
7935 for (i = 0; i < num_indices - 2; i += 2)
7938 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7942 assign_component (container, lhs, ind, exp, &pos);
7945 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7948 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7949 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7950 modifying *SIZE as needed. It is an error if *SIZE exceeds
7951 MAX_SIZE. The resulting intervals do not overlap. */
7953 add_component_interval (LONGEST low, LONGEST high,
7954 LONGEST* indices, int *size, int max_size)
7957 for (i = 0; i < *size; i += 2) {
7958 if (high >= indices[i] && low <= indices[i + 1])
7961 for (kh = i + 2; kh < *size; kh += 2)
7962 if (high < indices[kh])
7964 if (low < indices[i])
7966 indices[i + 1] = indices[kh - 1];
7967 if (high > indices[i + 1])
7968 indices[i + 1] = high;
7969 memcpy (indices + i + 2, indices + kh, *size - kh);
7970 *size -= kh - i - 2;
7973 else if (high < indices[i])
7977 if (*size == max_size)
7978 error (_("Internal error: miscounted aggregate components."));
7980 for (j = *size-1; j >= i+2; j -= 1)
7981 indices[j] = indices[j - 2];
7983 indices[i + 1] = high;
7986 static struct value *
7987 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7988 int *pos, enum noside noside)
7991 int tem, tem2, tem3;
7993 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7996 struct value **argvec;
8000 op = exp->elts[pc].opcode;
8007 unwrap_value (evaluate_subexp_standard
8008 (expect_type, exp, pos, noside));
8012 struct value *result;
8014 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8015 /* The result type will have code OP_STRING, bashed there from
8016 OP_ARRAY. Bash it back. */
8017 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8018 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8024 type = exp->elts[pc + 1].type;
8025 arg1 = evaluate_subexp (type, exp, pos, noside);
8026 if (noside == EVAL_SKIP)
8028 if (type != ada_check_typedef (value_type (arg1)))
8030 if (ada_is_fixed_point_type (type))
8031 arg1 = cast_to_fixed (type, arg1);
8032 else if (ada_is_fixed_point_type (value_type (arg1)))
8033 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
8034 else if (VALUE_LVAL (arg1) == lval_memory)
8036 /* This is in case of the really obscure (and undocumented,
8037 but apparently expected) case of (Foo) Bar.all, where Bar
8038 is an integer constant and Foo is a dynamic-sized type.
8039 If we don't do this, ARG1 will simply be relabeled with
8041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8042 return value_zero (to_static_fixed_type (type), not_lval);
8044 ada_to_fixed_value_create
8045 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
8048 arg1 = value_cast (type, arg1);
8054 type = exp->elts[pc + 1].type;
8055 return ada_evaluate_subexp (type, exp, pos, noside);
8058 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8059 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8061 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8062 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8064 return ada_value_assign (arg1, arg1);
8066 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8067 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8069 if (ada_is_fixed_point_type (value_type (arg1)))
8070 arg2 = cast_to_fixed (value_type (arg1), arg2);
8071 else if (ada_is_fixed_point_type (value_type (arg2)))
8073 (_("Fixed-point values must be assigned to fixed-point variables"));
8075 arg2 = coerce_for_assign (value_type (arg1), arg2);
8076 return ada_value_assign (arg1, arg2);
8079 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8080 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8081 if (noside == EVAL_SKIP)
8083 if ((ada_is_fixed_point_type (value_type (arg1))
8084 || ada_is_fixed_point_type (value_type (arg2)))
8085 && value_type (arg1) != value_type (arg2))
8086 error (_("Operands of fixed-point addition must have the same type"));
8087 return value_cast (value_type (arg1), value_add (arg1, arg2));
8090 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8091 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8092 if (noside == EVAL_SKIP)
8094 if ((ada_is_fixed_point_type (value_type (arg1))
8095 || ada_is_fixed_point_type (value_type (arg2)))
8096 && value_type (arg1) != value_type (arg2))
8097 error (_("Operands of fixed-point subtraction must have the same type"));
8098 return value_cast (value_type (arg1), value_sub (arg1, arg2));
8102 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8103 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8104 if (noside == EVAL_SKIP)
8106 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8107 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8108 return value_zero (value_type (arg1), not_lval);
8111 if (ada_is_fixed_point_type (value_type (arg1)))
8112 arg1 = cast_from_fixed_to_double (arg1);
8113 if (ada_is_fixed_point_type (value_type (arg2)))
8114 arg2 = cast_from_fixed_to_double (arg2);
8115 return ada_value_binop (arg1, arg2, op);
8120 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8121 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8122 if (noside == EVAL_SKIP)
8124 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8125 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8126 return value_zero (value_type (arg1), not_lval);
8128 return ada_value_binop (arg1, arg2, op);
8131 case BINOP_NOTEQUAL:
8132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8133 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8134 if (noside == EVAL_SKIP)
8136 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8139 tem = ada_value_equal (arg1, arg2);
8140 if (op == BINOP_NOTEQUAL)
8142 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8146 if (noside == EVAL_SKIP)
8148 else if (ada_is_fixed_point_type (value_type (arg1)))
8149 return value_cast (value_type (arg1), value_neg (arg1));
8151 return value_neg (arg1);
8155 if (noside == EVAL_SKIP)
8160 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8161 /* Only encountered when an unresolved symbol occurs in a
8162 context other than a function call, in which case, it is
8164 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8166 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8170 (to_static_fixed_type
8171 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8177 unwrap_value (evaluate_subexp_standard
8178 (expect_type, exp, pos, noside));
8179 return ada_to_fixed_value (arg1);
8185 /* Allocate arg vector, including space for the function to be
8186 called in argvec[0] and a terminating NULL. */
8187 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8189 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8191 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8192 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8193 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8194 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8197 for (tem = 0; tem <= nargs; tem += 1)
8198 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8201 if (noside == EVAL_SKIP)
8205 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8206 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8207 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8208 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8209 && VALUE_LVAL (argvec[0]) == lval_memory))
8210 argvec[0] = value_addr (argvec[0]);
8212 type = ada_check_typedef (value_type (argvec[0]));
8213 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8215 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8217 case TYPE_CODE_FUNC:
8218 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8220 case TYPE_CODE_ARRAY:
8222 case TYPE_CODE_STRUCT:
8223 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8224 argvec[0] = ada_value_ind (argvec[0]);
8225 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8228 error (_("cannot subscript or call something of type `%s'"),
8229 ada_type_name (value_type (argvec[0])));
8234 switch (TYPE_CODE (type))
8236 case TYPE_CODE_FUNC:
8237 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8238 return allocate_value (TYPE_TARGET_TYPE (type));
8239 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8240 case TYPE_CODE_STRUCT:
8244 arity = ada_array_arity (type);
8245 type = ada_array_element_type (type, nargs);
8247 error (_("cannot subscript or call a record"));
8249 error (_("wrong number of subscripts; expecting %d"), arity);
8250 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8251 return allocate_value (ada_aligned_type (type));
8253 unwrap_value (ada_value_subscript
8254 (argvec[0], nargs, argvec + 1));
8256 case TYPE_CODE_ARRAY:
8257 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8259 type = ada_array_element_type (type, nargs);
8261 error (_("element type of array unknown"));
8263 return allocate_value (ada_aligned_type (type));
8266 unwrap_value (ada_value_subscript
8267 (ada_coerce_to_simple_array (argvec[0]),
8268 nargs, argvec + 1));
8269 case TYPE_CODE_PTR: /* Pointer to array */
8270 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8271 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8273 type = ada_array_element_type (type, nargs);
8275 error (_("element type of array unknown"));
8277 return allocate_value (ada_aligned_type (type));
8280 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8281 nargs, argvec + 1));
8284 error (_("Attempt to index or call something other than an "
8285 "array or function"));
8290 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8291 struct value *low_bound_val =
8292 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8293 struct value *high_bound_val =
8294 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8297 low_bound_val = coerce_ref (low_bound_val);
8298 high_bound_val = coerce_ref (high_bound_val);
8299 low_bound = pos_atr (low_bound_val);
8300 high_bound = pos_atr (high_bound_val);
8302 if (noside == EVAL_SKIP)
8305 /* If this is a reference to an aligner type, then remove all
8307 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8308 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8309 TYPE_TARGET_TYPE (value_type (array)) =
8310 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8312 if (ada_is_packed_array_type (value_type (array)))
8313 error (_("cannot slice a packed array"));
8315 /* If this is a reference to an array or an array lvalue,
8316 convert to a pointer. */
8317 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8318 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8319 && VALUE_LVAL (array) == lval_memory))
8320 array = value_addr (array);
8322 if (noside == EVAL_AVOID_SIDE_EFFECTS
8323 && ada_is_array_descriptor_type (ada_check_typedef
8324 (value_type (array))))
8325 return empty_array (ada_type_of_array (array, 0), low_bound);
8327 array = ada_coerce_to_simple_array_ptr (array);
8329 /* If we have more than one level of pointer indirection,
8330 dereference the value until we get only one level. */
8331 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8332 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8334 array = value_ind (array);
8336 /* Make sure we really do have an array type before going further,
8337 to avoid a SEGV when trying to get the index type or the target
8338 type later down the road if the debug info generated by
8339 the compiler is incorrect or incomplete. */
8340 if (!ada_is_simple_array_type (value_type (array)))
8341 error (_("cannot take slice of non-array"));
8343 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8345 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8346 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8350 struct type *arr_type0 =
8351 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8353 return ada_value_slice_ptr (array, arr_type0,
8354 longest_to_int (low_bound),
8355 longest_to_int (high_bound));
8358 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8360 else if (high_bound < low_bound)
8361 return empty_array (value_type (array), low_bound);
8363 return ada_value_slice (array, longest_to_int (low_bound),
8364 longest_to_int (high_bound));
8369 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8370 type = exp->elts[pc + 1].type;
8372 if (noside == EVAL_SKIP)
8375 switch (TYPE_CODE (type))
8378 lim_warning (_("Membership test incompletely implemented; "
8379 "always returns true"));
8380 return value_from_longest (builtin_type_int, (LONGEST) 1);
8382 case TYPE_CODE_RANGE:
8383 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8384 arg3 = value_from_longest (builtin_type_int,
8385 TYPE_HIGH_BOUND (type));
8387 value_from_longest (builtin_type_int,
8388 (value_less (arg1, arg3)
8389 || value_equal (arg1, arg3))
8390 && (value_less (arg2, arg1)
8391 || value_equal (arg2, arg1)));
8394 case BINOP_IN_BOUNDS:
8396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8397 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8399 if (noside == EVAL_SKIP)
8402 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8403 return value_zero (builtin_type_int, not_lval);
8405 tem = longest_to_int (exp->elts[pc + 1].longconst);
8407 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8408 error (_("invalid dimension number to 'range"));
8410 arg3 = ada_array_bound (arg2, tem, 1);
8411 arg2 = ada_array_bound (arg2, tem, 0);
8414 value_from_longest (builtin_type_int,
8415 (value_less (arg1, arg3)
8416 || value_equal (arg1, arg3))
8417 && (value_less (arg2, arg1)
8418 || value_equal (arg2, arg1)));
8420 case TERNOP_IN_RANGE:
8421 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8422 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8423 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8425 if (noside == EVAL_SKIP)
8429 value_from_longest (builtin_type_int,
8430 (value_less (arg1, arg3)
8431 || value_equal (arg1, arg3))
8432 && (value_less (arg2, arg1)
8433 || value_equal (arg2, arg1)));
8439 struct type *type_arg;
8440 if (exp->elts[*pos].opcode == OP_TYPE)
8442 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8444 type_arg = exp->elts[pc + 2].type;
8448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8452 if (exp->elts[*pos].opcode != OP_LONG)
8453 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8454 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8457 if (noside == EVAL_SKIP)
8460 if (type_arg == NULL)
8462 arg1 = ada_coerce_ref (arg1);
8464 if (ada_is_packed_array_type (value_type (arg1)))
8465 arg1 = ada_coerce_to_simple_array (arg1);
8467 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8468 error (_("invalid dimension number to '%s"),
8469 ada_attribute_name (op));
8471 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8473 type = ada_index_type (value_type (arg1), tem);
8476 (_("attempt to take bound of something that is not an array"));
8477 return allocate_value (type);
8482 default: /* Should never happen. */
8483 error (_("unexpected attribute encountered"));
8485 return ada_array_bound (arg1, tem, 0);
8487 return ada_array_bound (arg1, tem, 1);
8489 return ada_array_length (arg1, tem);
8492 else if (discrete_type_p (type_arg))
8494 struct type *range_type;
8495 char *name = ada_type_name (type_arg);
8497 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8499 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8500 if (range_type == NULL)
8501 range_type = type_arg;
8505 error (_("unexpected attribute encountered"));
8507 return discrete_type_low_bound (range_type);
8509 return discrete_type_high_bound (range_type);
8511 error (_("the 'length attribute applies only to array types"));
8514 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8515 error (_("unimplemented type attribute"));
8520 if (ada_is_packed_array_type (type_arg))
8521 type_arg = decode_packed_array_type (type_arg);
8523 if (tem < 1 || tem > ada_array_arity (type_arg))
8524 error (_("invalid dimension number to '%s"),
8525 ada_attribute_name (op));
8527 type = ada_index_type (type_arg, tem);
8530 (_("attempt to take bound of something that is not an array"));
8531 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8532 return allocate_value (type);
8537 error (_("unexpected attribute encountered"));
8539 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8540 return value_from_longest (type, low);
8542 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8543 return value_from_longest (type, high);
8545 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8546 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8547 return value_from_longest (type, high - low + 1);
8553 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8554 if (noside == EVAL_SKIP)
8557 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8558 return value_zero (ada_tag_type (arg1), not_lval);
8560 return ada_value_tag (arg1);
8564 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8566 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8567 if (noside == EVAL_SKIP)
8569 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8570 return value_zero (value_type (arg1), not_lval);
8572 return value_binop (arg1, arg2,
8573 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8575 case OP_ATR_MODULUS:
8577 struct type *type_arg = exp->elts[pc + 2].type;
8578 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8580 if (noside == EVAL_SKIP)
8583 if (!ada_is_modular_type (type_arg))
8584 error (_("'modulus must be applied to modular type"));
8586 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8587 ada_modulus (type_arg));
8592 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8593 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8594 if (noside == EVAL_SKIP)
8596 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8597 return value_zero (builtin_type_int, not_lval);
8599 return value_pos_atr (arg1);
8602 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8603 if (noside == EVAL_SKIP)
8605 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8606 return value_zero (builtin_type_int, not_lval);
8608 return value_from_longest (builtin_type_int,
8610 * TYPE_LENGTH (value_type (arg1)));
8613 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8614 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8615 type = exp->elts[pc + 2].type;
8616 if (noside == EVAL_SKIP)
8618 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8619 return value_zero (type, not_lval);
8621 return value_val_atr (type, arg1);
8624 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8625 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8626 if (noside == EVAL_SKIP)
8628 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8629 return value_zero (value_type (arg1), not_lval);
8631 return value_binop (arg1, arg2, op);
8634 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8635 if (noside == EVAL_SKIP)
8641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8642 if (noside == EVAL_SKIP)
8644 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8645 return value_neg (arg1);
8650 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8651 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8652 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8653 if (noside == EVAL_SKIP)
8655 type = ada_check_typedef (value_type (arg1));
8656 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8658 if (ada_is_array_descriptor_type (type))
8659 /* GDB allows dereferencing GNAT array descriptors. */
8661 struct type *arrType = ada_type_of_array (arg1, 0);
8662 if (arrType == NULL)
8663 error (_("Attempt to dereference null array pointer."));
8664 return value_at_lazy (arrType, 0);
8666 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8667 || TYPE_CODE (type) == TYPE_CODE_REF
8668 /* In C you can dereference an array to get the 1st elt. */
8669 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8671 type = to_static_fixed_type
8673 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8675 return value_zero (type, lval_memory);
8677 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8678 /* GDB allows dereferencing an int. */
8679 return value_zero (builtin_type_int, lval_memory);
8681 error (_("Attempt to take contents of a non-pointer value."));
8683 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8684 type = ada_check_typedef (value_type (arg1));
8686 if (ada_is_array_descriptor_type (type))
8687 /* GDB allows dereferencing GNAT array descriptors. */
8688 return ada_coerce_to_simple_array (arg1);
8690 return ada_value_ind (arg1);
8692 case STRUCTOP_STRUCT:
8693 tem = longest_to_int (exp->elts[pc + 1].longconst);
8694 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8695 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8696 if (noside == EVAL_SKIP)
8698 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8700 struct type *type1 = value_type (arg1);
8701 if (ada_is_tagged_type (type1, 1))
8703 type = ada_lookup_struct_elt_type (type1,
8704 &exp->elts[pc + 2].string,
8707 /* In this case, we assume that the field COULD exist
8708 in some extension of the type. Return an object of
8709 "type" void, which will match any formal
8710 (see ada_type_match). */
8711 return value_zero (builtin_type_void, lval_memory);
8715 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8718 return value_zero (ada_aligned_type (type), lval_memory);
8722 ada_to_fixed_value (unwrap_value
8723 (ada_value_struct_elt
8724 (arg1, &exp->elts[pc + 2].string, 0)));
8726 /* The value is not supposed to be used. This is here to make it
8727 easier to accommodate expressions that contain types. */
8729 if (noside == EVAL_SKIP)
8731 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8732 return allocate_value (exp->elts[pc + 1].type);
8734 error (_("Attempt to use a type name as an expression"));
8739 case OP_DISCRETE_RANGE:
8742 if (noside == EVAL_NORMAL)
8746 error (_("Undefined name, ambiguous name, or renaming used in "
8747 "component association: %s."), &exp->elts[pc+2].string);
8749 error (_("Aggregates only allowed on the right of an assignment"));
8751 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8754 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8756 for (tem = 0; tem < nargs; tem += 1)
8757 ada_evaluate_subexp (NULL, exp, pos, noside);
8762 return value_from_longest (builtin_type_long, (LONGEST) 1);
8768 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8769 type name that encodes the 'small and 'delta information.
8770 Otherwise, return NULL. */
8773 fixed_type_info (struct type *type)
8775 const char *name = ada_type_name (type);
8776 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8778 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8780 const char *tail = strstr (name, "___XF_");
8786 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8787 return fixed_type_info (TYPE_TARGET_TYPE (type));
8792 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8795 ada_is_fixed_point_type (struct type *type)
8797 return fixed_type_info (type) != NULL;
8800 /* Return non-zero iff TYPE represents a System.Address type. */
8803 ada_is_system_address_type (struct type *type)
8805 return (TYPE_NAME (type)
8806 && strcmp (TYPE_NAME (type), "system__address") == 0);
8809 /* Assuming that TYPE is the representation of an Ada fixed-point
8810 type, return its delta, or -1 if the type is malformed and the
8811 delta cannot be determined. */
8814 ada_delta (struct type *type)
8816 const char *encoding = fixed_type_info (type);
8819 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8822 return (DOUBLEST) num / (DOUBLEST) den;
8825 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8826 factor ('SMALL value) associated with the type. */
8829 scaling_factor (struct type *type)
8831 const char *encoding = fixed_type_info (type);
8832 unsigned long num0, den0, num1, den1;
8835 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8840 return (DOUBLEST) num1 / (DOUBLEST) den1;
8842 return (DOUBLEST) num0 / (DOUBLEST) den0;
8846 /* Assuming that X is the representation of a value of fixed-point
8847 type TYPE, return its floating-point equivalent. */
8850 ada_fixed_to_float (struct type *type, LONGEST x)
8852 return (DOUBLEST) x *scaling_factor (type);
8855 /* The representation of a fixed-point value of type TYPE
8856 corresponding to the value X. */
8859 ada_float_to_fixed (struct type *type, DOUBLEST x)
8861 return (LONGEST) (x / scaling_factor (type) + 0.5);
8865 /* VAX floating formats */
8867 /* Non-zero iff TYPE represents one of the special VAX floating-point
8871 ada_is_vax_floating_type (struct type *type)
8874 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8877 && (TYPE_CODE (type) == TYPE_CODE_INT
8878 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8879 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8882 /* The type of special VAX floating-point type this is, assuming
8883 ada_is_vax_floating_point. */
8886 ada_vax_float_type_suffix (struct type *type)
8888 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8891 /* A value representing the special debugging function that outputs
8892 VAX floating-point values of the type represented by TYPE. Assumes
8893 ada_is_vax_floating_type (TYPE). */
8896 ada_vax_float_print_function (struct type *type)
8898 switch (ada_vax_float_type_suffix (type))
8901 return get_var_value ("DEBUG_STRING_F", 0);
8903 return get_var_value ("DEBUG_STRING_D", 0);
8905 return get_var_value ("DEBUG_STRING_G", 0);
8907 error (_("invalid VAX floating-point type"));
8914 /* Scan STR beginning at position K for a discriminant name, and
8915 return the value of that discriminant field of DVAL in *PX. If
8916 PNEW_K is not null, put the position of the character beyond the
8917 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8918 not alter *PX and *PNEW_K if unsuccessful. */
8921 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8924 static char *bound_buffer = NULL;
8925 static size_t bound_buffer_len = 0;
8928 struct value *bound_val;
8930 if (dval == NULL || str == NULL || str[k] == '\0')
8933 pend = strstr (str + k, "__");
8937 k += strlen (bound);
8941 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8942 bound = bound_buffer;
8943 strncpy (bound_buffer, str + k, pend - (str + k));
8944 bound[pend - (str + k)] = '\0';
8948 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8949 if (bound_val == NULL)
8952 *px = value_as_long (bound_val);
8958 /* Value of variable named NAME in the current environment. If
8959 no such variable found, then if ERR_MSG is null, returns 0, and
8960 otherwise causes an error with message ERR_MSG. */
8962 static struct value *
8963 get_var_value (char *name, char *err_msg)
8965 struct ada_symbol_info *syms;
8968 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8973 if (err_msg == NULL)
8976 error (("%s"), err_msg);
8979 return value_of_variable (syms[0].sym, syms[0].block);
8982 /* Value of integer variable named NAME in the current environment. If
8983 no such variable found, returns 0, and sets *FLAG to 0. If
8984 successful, sets *FLAG to 1. */
8987 get_int_var_value (char *name, int *flag)
8989 struct value *var_val = get_var_value (name, 0);
9001 return value_as_long (var_val);
9006 /* Return a range type whose base type is that of the range type named
9007 NAME in the current environment, and whose bounds are calculated
9008 from NAME according to the GNAT range encoding conventions.
9009 Extract discriminant values, if needed, from DVAL. If a new type
9010 must be created, allocate in OBJFILE's space. The bounds
9011 information, in general, is encoded in NAME, the base type given in
9012 the named range type. */
9014 static struct type *
9015 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9017 struct type *raw_type = ada_find_any_type (name);
9018 struct type *base_type;
9021 if (raw_type == NULL)
9022 base_type = builtin_type_int;
9023 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9024 base_type = TYPE_TARGET_TYPE (raw_type);
9026 base_type = raw_type;
9028 subtype_info = strstr (name, "___XD");
9029 if (subtype_info == NULL)
9033 static char *name_buf = NULL;
9034 static size_t name_len = 0;
9035 int prefix_len = subtype_info - name;
9041 GROW_VECT (name_buf, name_len, prefix_len + 5);
9042 strncpy (name_buf, name, prefix_len);
9043 name_buf[prefix_len] = '\0';
9046 bounds_str = strchr (subtype_info, '_');
9049 if (*subtype_info == 'L')
9051 if (!ada_scan_number (bounds_str, n, &L, &n)
9052 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9054 if (bounds_str[n] == '_')
9056 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9063 strcpy (name_buf + prefix_len, "___L");
9064 L = get_int_var_value (name_buf, &ok);
9067 lim_warning (_("Unknown lower bound, using 1."));
9072 if (*subtype_info == 'U')
9074 if (!ada_scan_number (bounds_str, n, &U, &n)
9075 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9081 strcpy (name_buf + prefix_len, "___U");
9082 U = get_int_var_value (name_buf, &ok);
9085 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9090 if (objfile == NULL)
9091 objfile = TYPE_OBJFILE (base_type);
9092 type = create_range_type (alloc_type (objfile), base_type, L, U);
9093 TYPE_NAME (type) = name;
9098 /* True iff NAME is the name of a range type. */
9101 ada_is_range_type_name (const char *name)
9103 return (name != NULL && strstr (name, "___XD"));
9109 /* True iff TYPE is an Ada modular type. */
9112 ada_is_modular_type (struct type *type)
9114 struct type *subranged_type = base_type (type);
9116 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9117 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9118 && TYPE_UNSIGNED (subranged_type));
9121 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9124 ada_modulus (struct type * type)
9126 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9130 /* Ada exception catchpoint support:
9131 ---------------------------------
9133 We support 3 kinds of exception catchpoints:
9134 . catchpoints on Ada exceptions
9135 . catchpoints on unhandled Ada exceptions
9136 . catchpoints on failed assertions
9138 Exceptions raised during failed assertions, or unhandled exceptions
9139 could perfectly be caught with the general catchpoint on Ada exceptions.
9140 However, we can easily differentiate these two special cases, and having
9141 the option to distinguish these two cases from the rest can be useful
9142 to zero-in on certain situations.
9144 Exception catchpoints are a specialized form of breakpoint,
9145 since they rely on inserting breakpoints inside known routines
9146 of the GNAT runtime. The implementation therefore uses a standard
9147 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9150 Support in the runtime for exception catchpoints have been changed
9151 a few times already, and these changes affect the implementation
9152 of these catchpoints. In order to be able to support several
9153 variants of the runtime, we use a sniffer that will determine
9154 the runtime variant used by the program being debugged.
9156 At this time, we do not support the use of conditions on Ada exception
9157 catchpoints. The COND and COND_STRING fields are therefore set
9158 to NULL (most of the time, see below).
9160 Conditions where EXP_STRING, COND, and COND_STRING are used:
9162 When a user specifies the name of a specific exception in the case
9163 of catchpoints on Ada exceptions, we store the name of that exception
9164 in the EXP_STRING. We then translate this request into an actual
9165 condition stored in COND_STRING, and then parse it into an expression
9168 /* The different types of catchpoints that we introduced for catching
9171 enum exception_catchpoint_kind
9174 ex_catch_exception_unhandled,
9178 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9180 /* A structure that describes how to support exception catchpoints
9181 for a given executable. */
9183 struct exception_support_info
9185 /* The name of the symbol to break on in order to insert
9186 a catchpoint on exceptions. */
9187 const char *catch_exception_sym;
9189 /* The name of the symbol to break on in order to insert
9190 a catchpoint on unhandled exceptions. */
9191 const char *catch_exception_unhandled_sym;
9193 /* The name of the symbol to break on in order to insert
9194 a catchpoint on failed assertions. */
9195 const char *catch_assert_sym;
9197 /* Assuming that the inferior just triggered an unhandled exception
9198 catchpoint, this function is responsible for returning the address
9199 in inferior memory where the name of that exception is stored.
9200 Return zero if the address could not be computed. */
9201 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9204 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9205 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9207 /* The following exception support info structure describes how to
9208 implement exception catchpoints with the latest version of the
9209 Ada runtime (as of 2007-03-06). */
9211 static const struct exception_support_info default_exception_support_info =
9213 "__gnat_debug_raise_exception", /* catch_exception_sym */
9214 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9215 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9216 ada_unhandled_exception_name_addr
9219 /* The following exception support info structure describes how to
9220 implement exception catchpoints with a slightly older version
9221 of the Ada runtime. */
9223 static const struct exception_support_info exception_support_info_fallback =
9225 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9226 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9227 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9228 ada_unhandled_exception_name_addr_from_raise
9231 /* For each executable, we sniff which exception info structure to use
9232 and cache it in the following global variable. */
9234 static const struct exception_support_info *exception_info = NULL;
9236 /* Inspect the Ada runtime and determine which exception info structure
9237 should be used to provide support for exception catchpoints.
9239 This function will always set exception_info, or raise an error. */
9242 ada_exception_support_info_sniffer (void)
9246 /* If the exception info is already known, then no need to recompute it. */
9247 if (exception_info != NULL)
9250 /* Check the latest (default) exception support info. */
9251 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9255 exception_info = &default_exception_support_info;
9259 /* Try our fallback exception suport info. */
9260 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9264 exception_info = &exception_support_info_fallback;
9268 /* Sometimes, it is normal for us to not be able to find the routine
9269 we are looking for. This happens when the program is linked with
9270 the shared version of the GNAT runtime, and the program has not been
9271 started yet. Inform the user of these two possible causes if
9274 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9275 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9277 /* If the symbol does not exist, then check that the program is
9278 already started, to make sure that shared libraries have been
9279 loaded. If it is not started, this may mean that the symbol is
9280 in a shared library. */
9282 if (ptid_get_pid (inferior_ptid) == 0)
9283 error (_("Unable to insert catchpoint. Try to start the program first."));
9285 /* At this point, we know that we are debugging an Ada program and
9286 that the inferior has been started, but we still are not able to
9287 find the run-time symbols. That can mean that we are in
9288 configurable run time mode, or that a-except as been optimized
9289 out by the linker... In any case, at this point it is not worth
9290 supporting this feature. */
9292 error (_("Cannot insert catchpoints in this configuration."));
9295 /* An observer of "executable_changed" events.
9296 Its role is to clear certain cached values that need to be recomputed
9297 each time a new executable is loaded by GDB. */
9300 ada_executable_changed_observer (void *unused)
9302 /* If the executable changed, then it is possible that the Ada runtime
9303 is different. So we need to invalidate the exception support info
9305 exception_info = NULL;
9308 /* Return the name of the function at PC, NULL if could not find it.
9309 This function only checks the debugging information, not the symbol
9313 function_name_from_pc (CORE_ADDR pc)
9317 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9323 /* True iff FRAME is very likely to be that of a function that is
9324 part of the runtime system. This is all very heuristic, but is
9325 intended to be used as advice as to what frames are uninteresting
9329 is_known_support_routine (struct frame_info *frame)
9331 struct symtab_and_line sal;
9335 /* If this code does not have any debugging information (no symtab),
9336 This cannot be any user code. */
9338 find_frame_sal (frame, &sal);
9339 if (sal.symtab == NULL)
9342 /* If there is a symtab, but the associated source file cannot be
9343 located, then assume this is not user code: Selecting a frame
9344 for which we cannot display the code would not be very helpful
9345 for the user. This should also take care of case such as VxWorks
9346 where the kernel has some debugging info provided for a few units. */
9348 if (symtab_to_fullname (sal.symtab) == NULL)
9351 /* Check the unit filename againt the Ada runtime file naming.
9352 We also check the name of the objfile against the name of some
9353 known system libraries that sometimes come with debugging info
9356 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9358 re_comp (known_runtime_file_name_patterns[i]);
9359 if (re_exec (sal.symtab->filename))
9361 if (sal.symtab->objfile != NULL
9362 && re_exec (sal.symtab->objfile->name))
9366 /* Check whether the function is a GNAT-generated entity. */
9368 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9369 if (func_name == NULL)
9372 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9374 re_comp (known_auxiliary_function_name_patterns[i]);
9375 if (re_exec (func_name))
9382 /* Find the first frame that contains debugging information and that is not
9383 part of the Ada run-time, starting from FI and moving upward. */
9386 ada_find_printable_frame (struct frame_info *fi)
9388 for (; fi != NULL; fi = get_prev_frame (fi))
9390 if (!is_known_support_routine (fi))
9399 /* Assuming that the inferior just triggered an unhandled exception
9400 catchpoint, return the address in inferior memory where the name
9401 of the exception is stored.
9403 Return zero if the address could not be computed. */
9406 ada_unhandled_exception_name_addr (void)
9408 return parse_and_eval_address ("e.full_name");
9411 /* Same as ada_unhandled_exception_name_addr, except that this function
9412 should be used when the inferior uses an older version of the runtime,
9413 where the exception name needs to be extracted from a specific frame
9414 several frames up in the callstack. */
9417 ada_unhandled_exception_name_addr_from_raise (void)
9420 struct frame_info *fi;
9422 /* To determine the name of this exception, we need to select
9423 the frame corresponding to RAISE_SYM_NAME. This frame is
9424 at least 3 levels up, so we simply skip the first 3 frames
9425 without checking the name of their associated function. */
9426 fi = get_current_frame ();
9427 for (frame_level = 0; frame_level < 3; frame_level += 1)
9429 fi = get_prev_frame (fi);
9433 const char *func_name =
9434 function_name_from_pc (get_frame_address_in_block (fi));
9435 if (func_name != NULL
9436 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9437 break; /* We found the frame we were looking for... */
9438 fi = get_prev_frame (fi);
9445 return parse_and_eval_address ("id.full_name");
9448 /* Assuming the inferior just triggered an Ada exception catchpoint
9449 (of any type), return the address in inferior memory where the name
9450 of the exception is stored, if applicable.
9452 Return zero if the address could not be computed, or if not relevant. */
9455 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9456 struct breakpoint *b)
9460 case ex_catch_exception:
9461 return (parse_and_eval_address ("e.full_name"));
9464 case ex_catch_exception_unhandled:
9465 return exception_info->unhandled_exception_name_addr ();
9468 case ex_catch_assert:
9469 return 0; /* Exception name is not relevant in this case. */
9473 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9477 return 0; /* Should never be reached. */
9480 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9481 any error that ada_exception_name_addr_1 might cause to be thrown.
9482 When an error is intercepted, a warning with the error message is printed,
9483 and zero is returned. */
9486 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9487 struct breakpoint *b)
9489 struct gdb_exception e;
9490 CORE_ADDR result = 0;
9492 TRY_CATCH (e, RETURN_MASK_ERROR)
9494 result = ada_exception_name_addr_1 (ex, b);
9499 warning (_("failed to get exception name: %s"), e.message);
9506 /* Implement the PRINT_IT method in the breakpoint_ops structure
9507 for all exception catchpoint kinds. */
9509 static enum print_stop_action
9510 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9512 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9513 char exception_name[256];
9517 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9518 exception_name [sizeof (exception_name) - 1] = '\0';
9521 ada_find_printable_frame (get_current_frame ());
9523 annotate_catchpoint (b->number);
9526 case ex_catch_exception:
9528 printf_filtered (_("\nCatchpoint %d, %s at "),
9529 b->number, exception_name);
9531 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9533 case ex_catch_exception_unhandled:
9535 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9536 b->number, exception_name);
9538 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9541 case ex_catch_assert:
9542 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9547 return PRINT_SRC_AND_LOC;
9550 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9551 for all exception catchpoint kinds. */
9554 print_one_exception (enum exception_catchpoint_kind ex,
9555 struct breakpoint *b, CORE_ADDR *last_addr)
9560 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9564 *last_addr = b->loc->address;
9567 case ex_catch_exception:
9568 if (b->exp_string != NULL)
9570 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9572 ui_out_field_string (uiout, "what", msg);
9576 ui_out_field_string (uiout, "what", "all Ada exceptions");
9580 case ex_catch_exception_unhandled:
9581 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9584 case ex_catch_assert:
9585 ui_out_field_string (uiout, "what", "failed Ada assertions");
9589 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9594 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9595 for all exception catchpoint kinds. */
9598 print_mention_exception (enum exception_catchpoint_kind ex,
9599 struct breakpoint *b)
9603 case ex_catch_exception:
9604 if (b->exp_string != NULL)
9605 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9606 b->number, b->exp_string);
9608 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9612 case ex_catch_exception_unhandled:
9613 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9617 case ex_catch_assert:
9618 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9622 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9627 /* Virtual table for "catch exception" breakpoints. */
9629 static enum print_stop_action
9630 print_it_catch_exception (struct breakpoint *b)
9632 return print_it_exception (ex_catch_exception, b);
9636 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9638 print_one_exception (ex_catch_exception, b, last_addr);
9642 print_mention_catch_exception (struct breakpoint *b)
9644 print_mention_exception (ex_catch_exception, b);
9647 static struct breakpoint_ops catch_exception_breakpoint_ops =
9649 print_it_catch_exception,
9650 print_one_catch_exception,
9651 print_mention_catch_exception
9654 /* Virtual table for "catch exception unhandled" breakpoints. */
9656 static enum print_stop_action
9657 print_it_catch_exception_unhandled (struct breakpoint *b)
9659 return print_it_exception (ex_catch_exception_unhandled, b);
9663 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9665 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9669 print_mention_catch_exception_unhandled (struct breakpoint *b)
9671 print_mention_exception (ex_catch_exception_unhandled, b);
9674 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9675 print_it_catch_exception_unhandled,
9676 print_one_catch_exception_unhandled,
9677 print_mention_catch_exception_unhandled
9680 /* Virtual table for "catch assert" breakpoints. */
9682 static enum print_stop_action
9683 print_it_catch_assert (struct breakpoint *b)
9685 return print_it_exception (ex_catch_assert, b);
9689 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9691 print_one_exception (ex_catch_assert, b, last_addr);
9695 print_mention_catch_assert (struct breakpoint *b)
9697 print_mention_exception (ex_catch_assert, b);
9700 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9701 print_it_catch_assert,
9702 print_one_catch_assert,
9703 print_mention_catch_assert
9706 /* Return non-zero if B is an Ada exception catchpoint. */
9709 ada_exception_catchpoint_p (struct breakpoint *b)
9711 return (b->ops == &catch_exception_breakpoint_ops
9712 || b->ops == &catch_exception_unhandled_breakpoint_ops
9713 || b->ops == &catch_assert_breakpoint_ops);
9716 /* Return a newly allocated copy of the first space-separated token
9717 in ARGSP, and then adjust ARGSP to point immediately after that
9720 Return NULL if ARGPS does not contain any more tokens. */
9723 ada_get_next_arg (char **argsp)
9725 char *args = *argsp;
9729 /* Skip any leading white space. */
9731 while (isspace (*args))
9734 if (args[0] == '\0')
9735 return NULL; /* No more arguments. */
9737 /* Find the end of the current argument. */
9740 while (*end != '\0' && !isspace (*end))
9743 /* Adjust ARGSP to point to the start of the next argument. */
9747 /* Make a copy of the current argument and return it. */
9749 result = xmalloc (end - args + 1);
9750 strncpy (result, args, end - args);
9751 result[end - args] = '\0';
9756 /* Split the arguments specified in a "catch exception" command.
9757 Set EX to the appropriate catchpoint type.
9758 Set EXP_STRING to the name of the specific exception if
9759 specified by the user. */
9762 catch_ada_exception_command_split (char *args,
9763 enum exception_catchpoint_kind *ex,
9766 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9767 char *exception_name;
9769 exception_name = ada_get_next_arg (&args);
9770 make_cleanup (xfree, exception_name);
9772 /* Check that we do not have any more arguments. Anything else
9775 while (isspace (*args))
9778 if (args[0] != '\0')
9779 error (_("Junk at end of expression"));
9781 discard_cleanups (old_chain);
9783 if (exception_name == NULL)
9785 /* Catch all exceptions. */
9786 *ex = ex_catch_exception;
9789 else if (strcmp (exception_name, "unhandled") == 0)
9791 /* Catch unhandled exceptions. */
9792 *ex = ex_catch_exception_unhandled;
9797 /* Catch a specific exception. */
9798 *ex = ex_catch_exception;
9799 *exp_string = exception_name;
9803 /* Return the name of the symbol on which we should break in order to
9804 implement a catchpoint of the EX kind. */
9807 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9809 gdb_assert (exception_info != NULL);
9813 case ex_catch_exception:
9814 return (exception_info->catch_exception_sym);
9816 case ex_catch_exception_unhandled:
9817 return (exception_info->catch_exception_unhandled_sym);
9819 case ex_catch_assert:
9820 return (exception_info->catch_assert_sym);
9823 internal_error (__FILE__, __LINE__,
9824 _("unexpected catchpoint kind (%d)"), ex);
9828 /* Return the breakpoint ops "virtual table" used for catchpoints
9831 static struct breakpoint_ops *
9832 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9836 case ex_catch_exception:
9837 return (&catch_exception_breakpoint_ops);
9839 case ex_catch_exception_unhandled:
9840 return (&catch_exception_unhandled_breakpoint_ops);
9842 case ex_catch_assert:
9843 return (&catch_assert_breakpoint_ops);
9846 internal_error (__FILE__, __LINE__,
9847 _("unexpected catchpoint kind (%d)"), ex);
9851 /* Return the condition that will be used to match the current exception
9852 being raised with the exception that the user wants to catch. This
9853 assumes that this condition is used when the inferior just triggered
9854 an exception catchpoint.
9856 The string returned is a newly allocated string that needs to be
9857 deallocated later. */
9860 ada_exception_catchpoint_cond_string (const char *exp_string)
9862 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9865 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9867 static struct expression *
9868 ada_parse_catchpoint_condition (char *cond_string,
9869 struct symtab_and_line sal)
9871 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9874 /* Return the symtab_and_line that should be used to insert an exception
9875 catchpoint of the TYPE kind.
9877 EX_STRING should contain the name of a specific exception
9878 that the catchpoint should catch, or NULL otherwise.
9880 The idea behind all the remaining parameters is that their names match
9881 the name of certain fields in the breakpoint structure that are used to
9882 handle exception catchpoints. This function returns the value to which
9883 these fields should be set, depending on the type of catchpoint we need
9886 If COND and COND_STRING are both non-NULL, any value they might
9887 hold will be free'ed, and then replaced by newly allocated ones.
9888 These parameters are left untouched otherwise. */
9890 static struct symtab_and_line
9891 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9892 char **addr_string, char **cond_string,
9893 struct expression **cond, struct breakpoint_ops **ops)
9895 const char *sym_name;
9897 struct symtab_and_line sal;
9899 /* First, find out which exception support info to use. */
9900 ada_exception_support_info_sniffer ();
9902 /* Then lookup the function on which we will break in order to catch
9903 the Ada exceptions requested by the user. */
9905 sym_name = ada_exception_sym_name (ex);
9906 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9908 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9909 that should be compiled with debugging information. As a result, we
9910 expect to find that symbol in the symtabs. If we don't find it, then
9911 the target most likely does not support Ada exceptions, or we cannot
9912 insert exception breakpoints yet, because the GNAT runtime hasn't been
9915 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9916 in such a way that no debugging information is produced for the symbol
9917 we are looking for. In this case, we could search the minimal symbols
9918 as a fall-back mechanism. This would still be operating in degraded
9919 mode, however, as we would still be missing the debugging information
9920 that is needed in order to extract the name of the exception being
9921 raised (this name is printed in the catchpoint message, and is also
9922 used when trying to catch a specific exception). We do not handle
9923 this case for now. */
9926 error (_("Unable to break on '%s' in this configuration."), sym_name);
9928 /* Make sure that the symbol we found corresponds to a function. */
9929 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9930 error (_("Symbol \"%s\" is not a function (class = %d)"),
9931 sym_name, SYMBOL_CLASS (sym));
9933 sal = find_function_start_sal (sym, 1);
9935 /* Set ADDR_STRING. */
9937 *addr_string = xstrdup (sym_name);
9939 /* Set the COND and COND_STRING (if not NULL). */
9941 if (cond_string != NULL && cond != NULL)
9943 if (*cond_string != NULL)
9945 xfree (*cond_string);
9946 *cond_string = NULL;
9953 if (exp_string != NULL)
9955 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9956 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9961 *ops = ada_exception_breakpoint_ops (ex);
9966 /* Parse the arguments (ARGS) of the "catch exception" command.
9968 Set TYPE to the appropriate exception catchpoint type.
9969 If the user asked the catchpoint to catch only a specific
9970 exception, then save the exception name in ADDR_STRING.
9972 See ada_exception_sal for a description of all the remaining
9973 function arguments of this function. */
9975 struct symtab_and_line
9976 ada_decode_exception_location (char *args, char **addr_string,
9977 char **exp_string, char **cond_string,
9978 struct expression **cond,
9979 struct breakpoint_ops **ops)
9981 enum exception_catchpoint_kind ex;
9983 catch_ada_exception_command_split (args, &ex, exp_string);
9984 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9988 struct symtab_and_line
9989 ada_decode_assert_location (char *args, char **addr_string,
9990 struct breakpoint_ops **ops)
9992 /* Check that no argument where provided at the end of the command. */
9996 while (isspace (*args))
9999 error (_("Junk at end of arguments."));
10002 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10007 /* Information about operators given special treatment in functions
10009 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10011 #define ADA_OPERATORS \
10012 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10013 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10014 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10015 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10016 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10017 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10018 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10019 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10020 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10021 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10022 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10023 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10024 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10025 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10026 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10027 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10028 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10029 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10030 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10033 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10035 switch (exp->elts[pc - 1].opcode)
10038 operator_length_standard (exp, pc, oplenp, argsp);
10041 #define OP_DEFN(op, len, args, binop) \
10042 case op: *oplenp = len; *argsp = args; break;
10048 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10053 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10059 ada_op_name (enum exp_opcode opcode)
10064 return op_name_standard (opcode);
10066 #define OP_DEFN(op, len, args, binop) case op: return #op;
10071 return "OP_AGGREGATE";
10073 return "OP_CHOICES";
10079 /* As for operator_length, but assumes PC is pointing at the first
10080 element of the operator, and gives meaningful results only for the
10081 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10084 ada_forward_operator_length (struct expression *exp, int pc,
10085 int *oplenp, int *argsp)
10087 switch (exp->elts[pc].opcode)
10090 *oplenp = *argsp = 0;
10093 #define OP_DEFN(op, len, args, binop) \
10094 case op: *oplenp = len; *argsp = args; break;
10100 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10105 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10111 int len = longest_to_int (exp->elts[pc + 1].longconst);
10112 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10120 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10122 enum exp_opcode op = exp->elts[elt].opcode;
10127 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10131 /* Ada attributes ('Foo). */
10134 case OP_ATR_LENGTH:
10138 case OP_ATR_MODULUS:
10145 case UNOP_IN_RANGE:
10147 /* XXX: gdb_sprint_host_address, type_sprint */
10148 fprintf_filtered (stream, _("Type @"));
10149 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10150 fprintf_filtered (stream, " (");
10151 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10152 fprintf_filtered (stream, ")");
10154 case BINOP_IN_BOUNDS:
10155 fprintf_filtered (stream, " (%d)",
10156 longest_to_int (exp->elts[pc + 2].longconst));
10158 case TERNOP_IN_RANGE:
10163 case OP_DISCRETE_RANGE:
10164 case OP_POSITIONAL:
10171 char *name = &exp->elts[elt + 2].string;
10172 int len = longest_to_int (exp->elts[elt + 1].longconst);
10173 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10178 return dump_subexp_body_standard (exp, stream, elt);
10182 for (i = 0; i < nargs; i += 1)
10183 elt = dump_subexp (exp, stream, elt);
10188 /* The Ada extension of print_subexp (q.v.). */
10191 ada_print_subexp (struct expression *exp, int *pos,
10192 struct ui_file *stream, enum precedence prec)
10194 int oplen, nargs, i;
10196 enum exp_opcode op = exp->elts[pc].opcode;
10198 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10205 print_subexp_standard (exp, pos, stream, prec);
10209 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10212 case BINOP_IN_BOUNDS:
10213 /* XXX: sprint_subexp */
10214 print_subexp (exp, pos, stream, PREC_SUFFIX);
10215 fputs_filtered (" in ", stream);
10216 print_subexp (exp, pos, stream, PREC_SUFFIX);
10217 fputs_filtered ("'range", stream);
10218 if (exp->elts[pc + 1].longconst > 1)
10219 fprintf_filtered (stream, "(%ld)",
10220 (long) exp->elts[pc + 1].longconst);
10223 case TERNOP_IN_RANGE:
10224 if (prec >= PREC_EQUAL)
10225 fputs_filtered ("(", stream);
10226 /* XXX: sprint_subexp */
10227 print_subexp (exp, pos, stream, PREC_SUFFIX);
10228 fputs_filtered (" in ", stream);
10229 print_subexp (exp, pos, stream, PREC_EQUAL);
10230 fputs_filtered (" .. ", stream);
10231 print_subexp (exp, pos, stream, PREC_EQUAL);
10232 if (prec >= PREC_EQUAL)
10233 fputs_filtered (")", stream);
10238 case OP_ATR_LENGTH:
10242 case OP_ATR_MODULUS:
10247 if (exp->elts[*pos].opcode == OP_TYPE)
10249 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10250 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10254 print_subexp (exp, pos, stream, PREC_SUFFIX);
10255 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10259 for (tem = 1; tem < nargs; tem += 1)
10261 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10262 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10264 fputs_filtered (")", stream);
10269 type_print (exp->elts[pc + 1].type, "", stream, 0);
10270 fputs_filtered ("'(", stream);
10271 print_subexp (exp, pos, stream, PREC_PREFIX);
10272 fputs_filtered (")", stream);
10275 case UNOP_IN_RANGE:
10276 /* XXX: sprint_subexp */
10277 print_subexp (exp, pos, stream, PREC_SUFFIX);
10278 fputs_filtered (" in ", stream);
10279 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10282 case OP_DISCRETE_RANGE:
10283 print_subexp (exp, pos, stream, PREC_SUFFIX);
10284 fputs_filtered ("..", stream);
10285 print_subexp (exp, pos, stream, PREC_SUFFIX);
10289 fputs_filtered ("others => ", stream);
10290 print_subexp (exp, pos, stream, PREC_SUFFIX);
10294 for (i = 0; i < nargs-1; i += 1)
10297 fputs_filtered ("|", stream);
10298 print_subexp (exp, pos, stream, PREC_SUFFIX);
10300 fputs_filtered (" => ", stream);
10301 print_subexp (exp, pos, stream, PREC_SUFFIX);
10304 case OP_POSITIONAL:
10305 print_subexp (exp, pos, stream, PREC_SUFFIX);
10309 fputs_filtered ("(", stream);
10310 for (i = 0; i < nargs; i += 1)
10313 fputs_filtered (", ", stream);
10314 print_subexp (exp, pos, stream, PREC_SUFFIX);
10316 fputs_filtered (")", stream);
10321 /* Table mapping opcodes into strings for printing operators
10322 and precedences of the operators. */
10324 static const struct op_print ada_op_print_tab[] = {
10325 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10326 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10327 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10328 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10329 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10330 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10331 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10332 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10333 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10334 {">=", BINOP_GEQ, PREC_ORDER, 0},
10335 {">", BINOP_GTR, PREC_ORDER, 0},
10336 {"<", BINOP_LESS, PREC_ORDER, 0},
10337 {">>", BINOP_RSH, PREC_SHIFT, 0},
10338 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10339 {"+", BINOP_ADD, PREC_ADD, 0},
10340 {"-", BINOP_SUB, PREC_ADD, 0},
10341 {"&", BINOP_CONCAT, PREC_ADD, 0},
10342 {"*", BINOP_MUL, PREC_MUL, 0},
10343 {"/", BINOP_DIV, PREC_MUL, 0},
10344 {"rem", BINOP_REM, PREC_MUL, 0},
10345 {"mod", BINOP_MOD, PREC_MUL, 0},
10346 {"**", BINOP_EXP, PREC_REPEAT, 0},
10347 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10348 {"-", UNOP_NEG, PREC_PREFIX, 0},
10349 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10350 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10351 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10352 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10353 {".all", UNOP_IND, PREC_SUFFIX, 1},
10354 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10355 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10359 enum ada_primitive_types {
10360 ada_primitive_type_int,
10361 ada_primitive_type_long,
10362 ada_primitive_type_short,
10363 ada_primitive_type_char,
10364 ada_primitive_type_float,
10365 ada_primitive_type_double,
10366 ada_primitive_type_void,
10367 ada_primitive_type_long_long,
10368 ada_primitive_type_long_double,
10369 ada_primitive_type_natural,
10370 ada_primitive_type_positive,
10371 ada_primitive_type_system_address,
10372 nr_ada_primitive_types
10376 ada_language_arch_info (struct gdbarch *gdbarch,
10377 struct language_arch_info *lai)
10379 const struct builtin_type *builtin = builtin_type (gdbarch);
10380 lai->primitive_type_vector
10381 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10383 lai->primitive_type_vector [ada_primitive_type_int] =
10384 init_type (TYPE_CODE_INT,
10385 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10386 0, "integer", (struct objfile *) NULL);
10387 lai->primitive_type_vector [ada_primitive_type_long] =
10388 init_type (TYPE_CODE_INT,
10389 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10390 0, "long_integer", (struct objfile *) NULL);
10391 lai->primitive_type_vector [ada_primitive_type_short] =
10392 init_type (TYPE_CODE_INT,
10393 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10394 0, "short_integer", (struct objfile *) NULL);
10395 lai->string_char_type =
10396 lai->primitive_type_vector [ada_primitive_type_char] =
10397 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10398 0, "character", (struct objfile *) NULL);
10399 lai->primitive_type_vector [ada_primitive_type_float] =
10400 init_type (TYPE_CODE_FLT,
10401 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10402 0, "float", (struct objfile *) NULL);
10403 lai->primitive_type_vector [ada_primitive_type_double] =
10404 init_type (TYPE_CODE_FLT,
10405 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10406 0, "long_float", (struct objfile *) NULL);
10407 lai->primitive_type_vector [ada_primitive_type_long_long] =
10408 init_type (TYPE_CODE_INT,
10409 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10410 0, "long_long_integer", (struct objfile *) NULL);
10411 lai->primitive_type_vector [ada_primitive_type_long_double] =
10412 init_type (TYPE_CODE_FLT,
10413 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10414 0, "long_long_float", (struct objfile *) NULL);
10415 lai->primitive_type_vector [ada_primitive_type_natural] =
10416 init_type (TYPE_CODE_INT,
10417 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10418 0, "natural", (struct objfile *) NULL);
10419 lai->primitive_type_vector [ada_primitive_type_positive] =
10420 init_type (TYPE_CODE_INT,
10421 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10422 0, "positive", (struct objfile *) NULL);
10423 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10425 lai->primitive_type_vector [ada_primitive_type_system_address] =
10426 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10427 (struct objfile *) NULL));
10428 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10429 = "system__address";
10432 /* Language vector */
10434 /* Not really used, but needed in the ada_language_defn. */
10437 emit_char (int c, struct ui_file *stream, int quoter)
10439 ada_emit_char (c, stream, quoter, 1);
10445 warnings_issued = 0;
10446 return ada_parse ();
10449 static const struct exp_descriptor ada_exp_descriptor = {
10451 ada_operator_length,
10453 ada_dump_subexp_body,
10454 ada_evaluate_subexp
10457 const struct language_defn ada_language_defn = {
10458 "ada", /* Language name */
10462 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10463 that's not quite what this means. */
10465 &ada_exp_descriptor,
10469 ada_printchar, /* Print a character constant */
10470 ada_printstr, /* Function to print string constant */
10471 emit_char, /* Function to print single char (not used) */
10472 ada_print_type, /* Print a type using appropriate syntax */
10473 ada_val_print, /* Print a value using appropriate syntax */
10474 ada_value_print, /* Print a top-level value */
10475 NULL, /* Language specific skip_trampoline */
10476 NULL, /* value_of_this */
10477 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10478 basic_lookup_transparent_type, /* lookup_transparent_type */
10479 ada_la_decode, /* Language specific symbol demangler */
10480 NULL, /* Language specific class_name_from_physname */
10481 ada_op_print_tab, /* expression operators for printing */
10482 0, /* c-style arrays */
10483 1, /* String lower bound */
10484 ada_get_gdb_completer_word_break_characters,
10485 ada_language_arch_info,
10486 ada_print_array_index,
10487 default_pass_by_reference,
10492 _initialize_ada_language (void)
10494 add_language (&ada_language_defn);
10496 varsize_limit = 65536;
10498 obstack_init (&symbol_list_obstack);
10500 decoded_names_store = htab_create_alloc
10501 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10502 NULL, xcalloc, xfree);