1 /* Target-machine dependent code for the AMD 29000
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 2001
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by Jim Kingdon.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
32 /* If all these bits in an instruction word are zero, it is a "tag word"
33 which precedes a function entry point and gives stack traceback info.
34 This used to be defined as 0xff000000, but that treated 0x00000deb as
35 a tag word, while it is really used as a breakpoint. */
36 #define TAGWORD_ZERO_MASK 0xff00f800
38 extern CORE_ADDR text_start; /* FIXME, kludge... */
40 /* The user-settable top of the register stack in virtual memory. We
41 won't attempt to access any stored registers above this address, if set
44 static CORE_ADDR rstack_high_address = UINT_MAX;
47 /* Should call_function allocate stack space for a struct return? */
48 /* On the a29k objects over 16 words require the caller to allocate space. */
50 a29k_use_struct_convention (int gcc_p, struct type *type)
52 return (TYPE_LENGTH (type) > 16 * 4);
56 /* Structure to hold cached info about function prologues. */
60 CORE_ADDR pc; /* First addr after fn prologue */
61 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
62 unsigned mfp_used:1; /* memory frame pointer used */
63 unsigned rsize_valid:1; /* Validity bits for the above */
64 unsigned msize_valid:1;
68 /* Examine the prologue of a function which starts at PC. Return
69 the first addess past the prologue. If MSIZE is non-NULL, then
70 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
71 then set *RSIZE to the register stack frame size (not including
72 incoming arguments and the return address & frame pointer stored
73 with them). If no prologue is found, *RSIZE is set to zero.
74 If no prologue is found, or a prologue which doesn't involve
75 allocating a memory stack frame, then set *MSIZE to zero.
77 Note that both msize and rsize are in bytes. This is not consistent
78 with the _User's Manual_ with respect to rsize, but it is much more
81 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
82 frame pointer is being used. */
85 examine_prologue (CORE_ADDR pc, unsigned *rsize, unsigned *msize, int *mfp_used)
89 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
90 struct prologue_info *mi = 0;
93 mi = (struct prologue_info *) msymbol->info;
101 valid &= mi->rsize_valid;
106 valid &= mi->msize_valid;
108 if (mfp_used != NULL)
110 *mfp_used = mi->mfp_used;
111 valid &= mi->mfp_valid;
121 if (mfp_used != NULL)
124 /* Prologue must start with subtracting a constant from gr1.
125 Normally this is sub gr1,gr1,<rsize * 4>. */
126 insn = read_memory_integer (p, 4);
127 if ((insn & 0xffffff00) != 0x25010100)
129 /* If the frame is large, instead of a single instruction it
130 might be a pair of instructions:
131 const <reg>, <rsize * 4>
135 /* Possible value for rsize. */
138 if ((insn & 0xff000000) != 0x03000000)
143 reg = (insn >> 8) & 0xff;
144 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
146 insn = read_memory_integer (p, 4);
147 if ((insn & 0xffffff00) != 0x24010100
148 || (insn & 0xff) != reg)
159 *rsize = (insn & 0xff);
163 /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
164 * We don't check the vector number to allow for kernel debugging. The
165 * kernel will use a different trap number.
166 * If this insn is missing, we just keep going; Metaware R2.3u compiler
167 * generates prologue that intermixes initializations and puts the asgeu
170 insn = read_memory_integer (p, 4);
171 if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
176 /* Next instruction usually sets the frame pointer (lr1) by adding
177 <size * 4> from gr1. However, this can (and high C does) be
178 deferred until anytime before the first function call. So it is
179 OK if we don't see anything which sets lr1.
180 To allow for alternate register sets (gcc -mkernel-registers) the msp
181 register number is a compile time constant. */
183 /* Normally this is just add lr1,gr1,<size * 4>. */
184 insn = read_memory_integer (p, 4);
185 if ((insn & 0xffffff00) == 0x15810100)
189 /* However, for large frames it can be
190 const <reg>, <size *4>
196 if ((insn & 0xff000000) == 0x03000000)
198 reg = (insn >> 8) & 0xff;
200 insn = read_memory_integer (q, 4);
201 if ((insn & 0xffffff00) == 0x14810100
202 && (insn & 0xff) == reg)
207 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
208 frame pointer is in use. We just check for add lr<anything>,msp,0;
209 we don't check this rsize against the first instruction, and
210 we don't check that the trace-back tag indicates a memory frame pointer
212 To allow for alternate register sets (gcc -mkernel-registers) the msp
213 register number is a compile time constant.
215 The recommended instruction is actually "sll lr<whatever>,msp,0".
216 We check for that, too. Originally Jim Kingdon's code seemed
217 to be looking for a "sub" instruction here, but the mask was set
218 up to lose all the time. */
219 insn = read_memory_integer (p, 4);
220 if (((insn & 0xff80ffff) == (0x15800000 | (MSP_HW_REGNUM << 8))) /* add */
221 || ((insn & 0xff80ffff) == (0x81800000 | (MSP_HW_REGNUM << 8)))) /* sll */
224 if (mfp_used != NULL)
228 /* Next comes a subtraction from msp to allocate a memory frame,
229 but only if a memory frame is
230 being used. We don't check msize against the trace-back tag.
232 To allow for alternate register sets (gcc -mkernel-registers) the msp
233 register number is a compile time constant.
235 Normally this is just
238 insn = read_memory_integer (p, 4);
239 if ((insn & 0xffffff00) ==
240 (0x25000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8)))
244 *msize = insn & 0xff;
248 /* For large frames, instead of a single instruction it might
252 consth <reg>, <msize> ; optional
259 if ((insn & 0xff000000) == 0x03000000)
261 reg = (insn >> 8) & 0xff;
262 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
264 insn = read_memory_integer (q, 4);
265 /* Check for consth. */
266 if ((insn & 0xff000000) == 0x02000000
267 && (insn & 0x0000ff00) == reg)
269 msize0 |= (insn << 8) & 0xff000000;
270 msize0 |= (insn << 16) & 0x00ff0000;
272 insn = read_memory_integer (q, 4);
274 /* Check for sub msp,msp,<reg>. */
275 if ((insn & 0xffffff00) ==
276 (0x24000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8))
277 && (insn & 0xff) == reg)
286 /* Next instruction might be asgeu V_SPILL,gr1,rab.
287 * We don't check the vector number to allow for kernel debugging. The
288 * kernel will use a different trap number.
289 * Metaware R2.3u compiler
290 * generates prologue that intermixes initializations and puts the asgeu
291 * way down after everything else.
293 insn = read_memory_integer (p, 4);
294 if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
304 /* Add a new cache entry. */
305 mi = (struct prologue_info *) xmalloc (sizeof (struct prologue_info));
306 msymbol->info = (char *) mi;
311 /* else, cache entry exists, but info is incomplete. */
323 if (mfp_used != NULL)
325 mi->mfp_used = *mfp_used;
332 /* Advance PC across any function entry prologue instructions
333 to reach some "real" code. */
336 a29k_skip_prologue (CORE_ADDR pc)
338 return examine_prologue (pc, NULL, NULL, NULL);
342 * Examine the one or two word tag at the beginning of a function.
343 * The tag word is expect to be at 'p', if it is not there, we fail
344 * by returning 0. The documentation for the tag word was taken from
345 * page 7-15 of the 29050 User's Manual. We are assuming that the
346 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
347 * convention today (1/15/92).
348 * msize is return in bytes.
351 static int /* 0/1 - failure/success of finding the tag word */
352 examine_tag (CORE_ADDR p, int *is_trans, int *argcount, unsigned *msize,
355 unsigned int tag1, tag2;
357 tag1 = read_memory_integer (p, 4);
358 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
360 if (tag1 & (1 << 23)) /* A two word tag */
362 tag2 = read_memory_integer (p - 4, 4);
370 *msize = tag1 & 0x7ff;
373 *is_trans = ((tag1 & (1 << 21)) ? 1 : 0);
374 /* Note that this includes the frame pointer and the return address
375 register, so the actual number of registers of arguments is two less.
376 argcount can be zero, however, sometimes, for strange assembler
379 *argcount = (tag1 >> 16) & 0x1f;
381 *mfp_used = ((tag1 & (1 << 22)) ? 1 : 0);
385 /* Initialize the frame. In addition to setting "extra" frame info,
386 we also set ->frame because we use it in a nonstandard way, and ->pc
387 because we need to know it to get the other stuff. See the diagram
388 of stacks and the frame cache in tm-a29k.h for more detail. */
391 init_frame_info (int innermost_frame, struct frame_info *frame)
403 frame->frame = read_register (GR1_REGNUM);
405 frame->frame = frame->next->frame + frame->next->rsize;
407 #if 0 /* CALL_DUMMY_LOCATION == ON_STACK */
410 if (PC_IN_CALL_DUMMY (p, 0, 0))
413 frame->rsize = DUMMY_FRAME_RSIZE;
414 /* This doesn't matter since we never try to get locals or args
415 from a dummy frame. */
417 /* Dummy frames always use a memory frame pointer. */
419 read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4);
420 frame->flags |= (TRANSPARENT_FRAME | MFP_USED);
424 func = find_pc_function (p);
426 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
429 /* Search backward to find the trace-back tag. However,
430 do not trace back beyond the start of the text segment
431 (just as a sanity check to avoid going into never-never land). */
433 while (p >= text_start
434 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
441 store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
442 /* Enable this once target_search is enabled and tested. */
443 target_search (4, pat, mask, p, -4, text_start, p + 1, &p, &insn_raw);
444 insn = extract_unsigned_integer (insn_raw, 4);
449 /* Couldn't find the trace-back tag.
450 Something strange is going on. */
451 frame->saved_msp = 0;
454 frame->flags = TRANSPARENT_FRAME;
458 /* Advance to the first word of the function, i.e. the word
459 after the trace-back tag. */
463 /* We've found the start of the function.
464 Try looking for a tag word that indicates whether there is a
465 memory frame pointer and what the memory stack allocation is.
466 If one doesn't exist, try using a more exhaustive search of
469 if (examine_tag (p - 4, &trans, (int *) NULL, &msize, &mfp_used)) /* Found good tag */
470 examine_prologue (p, &rsize, 0, 0);
471 else /* No tag try prologue */
472 examine_prologue (p, &rsize, &msize, &mfp_used);
474 frame->rsize = rsize;
475 frame->msize = msize;
478 frame->flags |= MFP_USED;
480 frame->flags |= TRANSPARENT_FRAME;
483 frame->saved_msp = read_register (MSP_REGNUM) + msize;
489 read_register_stack_integer (frame->frame + rsize - 4, 4);
491 frame->saved_msp = frame->next->saved_msp + msize;
496 init_extra_frame_info (struct frame_info *frame)
498 if (frame->next == 0)
499 /* Assume innermost frame. May produce strange results for "info frame"
500 but there isn't any way to tell the difference. */
501 init_frame_info (1, frame);
504 /* We're in get_prev_frame.
505 Take care of everything in init_frame_pc. */
511 init_frame_pc (int fromleaf, struct frame_info *frame)
513 frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) :
514 frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ());
515 init_frame_info (fromleaf, frame);
518 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
519 offsets being relative to the memory stack pointer (high C) or
523 frame_locals_address (struct frame_info *fi)
525 if (fi->flags & MFP_USED)
526 return fi->saved_msp;
528 return fi->saved_msp - fi->msize;
531 /* Routines for reading the register stack. The caller gets to treat
532 the register stack as a uniform stack in memory, from address $gr1
533 straight through $rfb and beyond. */
535 /* Analogous to read_memory except the length is understood to be 4.
536 Also, myaddr can be NULL (meaning don't bother to read), and
537 if actual_mem_addr is non-NULL, store there the address that it
538 was fetched from (or if from a register the offset within
539 registers). Set *LVAL to lval_memory or lval_register, depending
540 on where it came from. The contents written into MYADDR are in
543 read_register_stack (CORE_ADDR memaddr, char *myaddr,
544 CORE_ADDR *actual_mem_addr, enum lval_type *lval)
546 long rfb = read_register (RFB_REGNUM);
547 long rsp = read_register (RSP_REGNUM);
549 /* If we don't do this 'info register' stops in the middle. */
550 if (memaddr >= rstack_high_address)
555 /* It's in a local register, but off the end of the stack. */
556 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
559 /* Provide bogusness */
560 memcpy (myaddr, val, 4);
562 supply_register (regnum, val); /* More bogusness */
564 *lval = lval_register;
565 if (actual_mem_addr != NULL)
566 *actual_mem_addr = REGISTER_BYTE (regnum);
568 /* If it's in the part of the register stack that's in real registers,
569 get the value from the registers. If it's anywhere else in memory
570 (e.g. in another thread's saved stack), skip this part and get
571 it from real live memory. */
572 else if (memaddr < rfb && memaddr >= rsp)
574 /* It's in a register. */
575 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
576 if (regnum > LR0_REGNUM + 127)
577 error ("Attempt to read register stack out of range.");
579 read_register_gen (regnum, myaddr);
581 *lval = lval_register;
582 if (actual_mem_addr != NULL)
583 *actual_mem_addr = REGISTER_BYTE (regnum);
587 /* It's in the memory portion of the register stack. */
589 read_memory (memaddr, myaddr, 4);
592 if (actual_mem_addr != NULL)
593 *actual_mem_addr = memaddr;
597 /* Analogous to read_memory_integer
598 except the length is understood to be 4. */
600 read_register_stack_integer (CORE_ADDR memaddr, int len)
603 read_register_stack (memaddr, buf, NULL, NULL);
604 return extract_signed_integer (buf, 4);
607 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
608 at MEMADDR and put the actual address written into in
611 write_register_stack (CORE_ADDR memaddr, char *myaddr,
612 CORE_ADDR *actual_mem_addr)
614 long rfb = read_register (RFB_REGNUM);
615 long rsp = read_register (RSP_REGNUM);
616 /* If we don't do this 'info register' stops in the middle. */
617 if (memaddr >= rstack_high_address)
619 /* It's in a register, but off the end of the stack. */
620 if (actual_mem_addr != NULL)
621 *actual_mem_addr = 0;
623 else if (memaddr < rfb)
625 /* It's in a register. */
626 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
627 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
628 error ("Attempt to read register stack out of range.");
630 write_register (regnum, *(long *) myaddr);
631 if (actual_mem_addr != NULL)
632 *actual_mem_addr = 0;
636 /* It's in the memory portion of the register stack. */
638 write_memory (memaddr, myaddr, 4);
639 if (actual_mem_addr != NULL)
640 *actual_mem_addr = memaddr;
644 /* Find register number REGNUM relative to FRAME and put its
645 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
646 was optimized out (and thus can't be fetched). If the variable
647 was fetched from memory, set *ADDRP to where it was fetched from,
648 otherwise it was fetched from a register.
650 The argument RAW_BUFFER must point to aligned memory. */
653 a29k_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
654 struct frame_info *frame, int regnum,
655 enum lval_type *lvalp)
657 struct frame_info *fi;
661 if (!target_has_registers)
662 error ("No registers.");
664 /* Probably now redundant with the target_has_registers check. */
668 /* Once something has a register number, it doesn't get optimized out. */
669 if (optimized != NULL)
671 if (regnum == RSP_REGNUM)
673 if (raw_buffer != NULL)
675 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
681 else if (regnum == PC_REGNUM && frame->next != NULL)
683 if (raw_buffer != NULL)
685 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
688 /* Not sure we have to do this. */
694 else if (regnum == MSP_REGNUM)
696 if (raw_buffer != NULL)
698 if (frame->next != NULL)
700 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
701 frame->next->saved_msp);
704 read_register_gen (MSP_REGNUM, raw_buffer);
706 /* The value may have been computed, not fetched. */
711 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
713 /* These registers are not saved over procedure calls,
714 so just print out the current values. */
715 if (raw_buffer != NULL)
716 read_register_gen (regnum, raw_buffer);
718 *lvalp = lval_register;
720 *addrp = REGISTER_BYTE (regnum);
724 addr = frame->frame + (regnum - LR0_REGNUM) * 4;
725 if (raw_buffer != NULL)
726 read_register_stack (addr, raw_buffer, &addr, &lval);
734 /* Discard from the stack the innermost frame,
735 restoring all saved registers. */
740 struct frame_info *frame = get_current_frame ();
741 CORE_ADDR rfb = read_register (RFB_REGNUM);
742 CORE_ADDR gr1 = frame->frame + frame->rsize;
744 CORE_ADDR original_lr0;
745 int must_fix_lr0 = 0;
748 /* If popping a dummy frame, need to restore registers. */
749 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
750 read_register (SP_REGNUM),
753 int lrnum = LR0_REGNUM + DUMMY_ARG / 4;
754 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
755 write_register (SR_REGNUM (i + 128), read_register (lrnum++));
756 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
757 write_register (SR_REGNUM (i + 160), read_register (lrnum++));
758 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
759 write_register (RETURN_REGNUM + i, read_register (lrnum++));
760 /* Restore the PCs and prepare to restore LR0. */
761 write_register (PC_REGNUM, read_register (lrnum++));
762 write_register (NPC_REGNUM, read_register (lrnum++));
763 write_register (PC2_REGNUM, read_register (lrnum++));
764 original_lr0 = read_register (lrnum++);
768 /* Restore the memory stack pointer. */
769 write_register (MSP_REGNUM, frame->saved_msp);
770 /* Restore the register stack pointer. */
771 write_register (GR1_REGNUM, gr1);
773 /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
775 write_register (LR0_REGNUM, original_lr0);
777 /* Check whether we need to fill registers. */
778 lr1 = read_register (LR0_REGNUM + 1);
782 int num_bytes = lr1 - rfb;
786 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
787 write_register (RFB_REGNUM, lr1);
788 for (i = 0; i < num_bytes; i += 4)
790 /* Note: word is in host byte order. */
791 word = read_memory_integer (rfb + i, 4);
792 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
795 flush_cached_frames ();
798 /* Push an empty stack frame, to record the current PC, etc. */
801 push_dummy_frame (void)
805 CORE_ADDR msp = read_register (MSP_REGNUM);
807 CORE_ADDR original_lr0;
809 /* Read original lr0 before changing gr1. This order isn't really needed
810 since GDB happens to have a snapshot of all the regs and doesn't toss
811 it when gr1 is changed. But it's The Right Thing To Do. */
812 original_lr0 = read_register (LR0_REGNUM);
814 /* Allocate the new frame. */
815 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
816 write_register (GR1_REGNUM, gr1);
818 #ifdef VXWORKS_TARGET
819 /* We force re-reading all registers to get the new local registers set
820 after gr1 has been modified. This fix is due to the lack of single
821 register read/write operation in the RPC interface between VxGDB and
822 VxWorks. This really must be changed ! */
824 vx_read_register (-1);
826 #endif /* VXWORK_TARGET */
828 rab = read_register (RAB_REGNUM);
831 /* We need to spill registers. */
832 int num_bytes = rab - gr1;
833 CORE_ADDR rfb = read_register (RFB_REGNUM);
837 write_register (RFB_REGNUM, rfb - num_bytes);
838 write_register (RAB_REGNUM, gr1);
839 for (i = 0; i < num_bytes; i += 4)
841 /* Note: word is in target byte order. */
842 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
843 write_memory (rfb - num_bytes + i, (char *) &word, 4);
847 /* There are no arguments in to the dummy frame, so we don't need
848 more than rsize plus the return address and lr1. */
849 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
851 /* Set the memory frame pointer. */
852 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
854 /* Allocate arg_slop. */
855 write_register (MSP_REGNUM, msp - 16 * 4);
857 /* Save registers. */
858 lrnum = LR0_REGNUM + DUMMY_ARG / 4;
859 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
860 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
861 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
862 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
863 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
864 write_register (lrnum++, read_register (RETURN_REGNUM + i));
865 /* Save the PCs and LR0. */
866 write_register (lrnum++, read_register (PC_REGNUM));
867 write_register (lrnum++, read_register (NPC_REGNUM));
868 write_register (lrnum++, read_register (PC2_REGNUM));
870 /* Why are we saving LR0? What would clobber it? (the dummy frame should
871 be below it on the register stack, no?). */
872 write_register (lrnum++, original_lr0);
878 This routine takes three arguments and makes the cached frames look
879 as if these arguments defined a frame on the cache. This allows the
880 rest of `info frame' to extract the important arguments without much
881 difficulty. Since an individual frame on the 29K is determined by
882 three values (FP, PC, and MSP), we really need all three to do a
886 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
888 struct frame_info *frame;
891 error ("AMD 29k frame specifications require three arguments: rsp pc msp");
893 frame = create_new_frame (argv[0], argv[1]);
896 internal_error (__FILE__, __LINE__,
897 "create_new_frame returned invalid frame id");
899 /* Creating a new frame munges the `frame' value from the current
900 GR1, so we restore it again here. FIXME, untangle all this
901 29K frame stuff... */
902 frame->frame = argv[0];
904 /* Our MSP is in argv[2]. It'd be intelligent if we could just
905 save this value in the FRAME. But the way it's set up (FIXME),
906 we must save our caller's MSP. We compute that by adding our
907 memory stack frame size to our MSP. */
908 frame->saved_msp = argv[2] + frame->msize;
914 gdb_print_insn_a29k (bfd_vma memaddr, disassemble_info *info)
916 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
917 return print_insn_big_a29k (memaddr, info);
919 return print_insn_little_a29k (memaddr, info);
922 enum a29k_processor_types processor_type = a29k_unknown;
925 a29k_get_processor_type (void)
927 unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
929 /* Most of these don't have freeze mode. */
930 processor_type = a29k_no_freeze_mode;
932 switch ((cfg_reg >> 28) & 0xf)
935 fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
938 fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
941 fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
942 processor_type = a29k_freeze_mode;
945 fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
948 fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
951 fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
954 fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
957 fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
960 fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
961 /* Don't bother to print the revision. */
964 fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
967 #ifdef GET_LONGJMP_TARGET
968 /* Figure out where the longjmp will land. We expect that we have just entered
969 longjmp and haven't yet setup the stack frame, so the args are still in the
970 output regs. lr2 (LR2_REGNUM) points at the jmp_buf structure from which we
971 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
972 This routine returns true on success */
975 get_longjmp_target (CORE_ADDR *pc)
978 char buf[sizeof (CORE_ADDR)];
980 jb_addr = read_register (LR2_REGNUM);
982 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf,
986 *pc = extract_address ((PTR) buf, sizeof (CORE_ADDR));
989 #endif /* GET_LONGJMP_TARGET */
992 _initialize_a29k_tdep (void)
994 extern CORE_ADDR text_end;
996 tm_print_insn = gdb_print_insn_a29k;
998 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
1000 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
1001 (char *) &rstack_high_address,
1002 "Set top address in memory of the register stack.\n\
1003 Attempts to access registers saved above this address will be ignored\n\
1004 or will produce the value -1.", &setlist),
1007 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
1009 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
1011 "Set address in memory where small amounts of RAM can be used\n\
1012 when making function calls into the inferior.", &setlist),