1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 static struct type *desc_base_type (struct type *);
73 static struct type *desc_bounds_type (struct type *);
75 static struct value *desc_bounds (struct value *);
77 static int fat_pntr_bounds_bitpos (struct type *);
79 static int fat_pntr_bounds_bitsize (struct type *);
81 static struct type *desc_data_target_type (struct type *);
83 static struct value *desc_data (struct value *);
85 static int fat_pntr_data_bitpos (struct type *);
87 static int fat_pntr_data_bitsize (struct type *);
89 static struct value *desc_one_bound (struct value *, int, int);
91 static int desc_bound_bitpos (struct type *, int, int);
93 static int desc_bound_bitsize (struct type *, int, int);
95 static struct type *desc_index_type (struct type *, int);
97 static int desc_arity (struct type *);
99 static int ada_args_match (struct symbol *, struct value **, int);
101 static struct value *make_array_descriptor (struct type *, struct value *);
103 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
108 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
113 static int is_nonfunction (const std::vector<struct block_symbol> &);
115 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 const struct block *);
119 static int possible_user_operator_p (enum exp_opcode, struct value **);
121 static const char *ada_decoded_op_name (enum exp_opcode);
123 static int numeric_type_p (struct type *);
125 static int integer_type_p (struct type *);
127 static int scalar_type_p (struct type *);
129 static int discrete_type_p (struct type *);
131 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
134 static struct type *ada_find_parallel_type_with_name (struct type *,
137 static int is_dynamic_field (struct type *, int);
139 static struct type *to_fixed_variant_branch_type (struct type *,
141 CORE_ADDR, struct value *);
143 static struct type *to_fixed_array_type (struct type *, struct value *, int);
145 static struct type *to_fixed_range_type (struct type *, struct value *);
147 static struct type *to_static_fixed_type (struct type *);
148 static struct type *static_unwrap_type (struct type *type);
150 static struct value *unwrap_value (struct value *);
152 static struct type *constrained_packed_array_type (struct type *, long *);
154 static struct type *decode_constrained_packed_array_type (struct type *);
156 static long decode_packed_array_bitsize (struct type *);
158 static struct value *decode_constrained_packed_array (struct value *);
160 static int ada_is_unconstrained_packed_array_type (struct type *);
162 static struct value *value_subscript_packed (struct value *, int,
165 static struct value *coerce_unspec_val_to_type (struct value *,
168 static int lesseq_defined_than (struct symbol *, struct symbol *);
170 static int equiv_types (struct type *, struct type *);
172 static int is_name_suffix (const char *);
174 static int advance_wild_match (const char **, const char *, char);
176 static bool wild_match (const char *name, const char *patn);
178 static struct value *ada_coerce_ref (struct value *);
180 static LONGEST pos_atr (struct value *);
182 static struct value *val_atr (struct type *, LONGEST);
184 static struct symbol *standard_lookup (const char *, const struct block *,
187 static struct value *ada_search_struct_field (const char *, struct value *, int,
190 static int find_struct_field (const char *, struct type *, int,
191 struct type **, int *, int *, int *, int *);
193 static int ada_resolve_function (std::vector<struct block_symbol> &,
194 struct value **, int, const char *,
195 struct type *, bool);
197 static int ada_is_direct_array_type (struct type *);
199 static struct value *ada_index_struct_field (int, struct value *, int,
202 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
205 static struct type *ada_find_any_type (const char *name);
207 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
212 /* The result of a symbol lookup to be stored in our symbol cache. */
216 /* The name used to perform the lookup. */
218 /* The namespace used during the lookup. */
220 /* The symbol returned by the lookup, or NULL if no matching symbol
223 /* The block where the symbol was found, or NULL if no matching
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
230 /* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
239 #define HASH_SIZE 1009
241 struct ada_symbol_cache
243 /* An obstack used to store the entries in our cache. */
244 struct auto_obstack cache_space;
246 /* The root of the hash table used to implement our symbol cache. */
247 struct cache_entry *root[HASH_SIZE] {};
250 /* Maximum-sized dynamic type. */
251 static unsigned int varsize_limit;
253 static const char ada_completer_word_break_characters[] =
255 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
257 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
260 /* The name of the symbol to use to get the name of the main subprogram. */
261 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
262 = "__gnat_ada_main_program_name";
264 /* Limit on the number of warnings to raise per expression evaluation. */
265 static int warning_limit = 2;
267 /* Number of warning messages issued; reset to 0 by cleanups after
268 expression evaluation. */
269 static int warnings_issued = 0;
271 static const char * const known_runtime_file_name_patterns[] = {
272 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
275 static const char * const known_auxiliary_function_name_patterns[] = {
276 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
279 /* Maintenance-related settings for this module. */
281 static struct cmd_list_element *maint_set_ada_cmdlist;
282 static struct cmd_list_element *maint_show_ada_cmdlist;
284 /* The "maintenance ada set/show ignore-descriptive-type" value. */
286 static bool ada_ignore_descriptive_types_p = false;
288 /* Inferior-specific data. */
290 /* Per-inferior data for this module. */
292 struct ada_inferior_data
294 /* The ada__tags__type_specific_data type, which is used when decoding
295 tagged types. With older versions of GNAT, this type was directly
296 accessible through a component ("tsd") in the object tag. But this
297 is no longer the case, so we cache it for each inferior. */
298 struct type *tsd_type = nullptr;
300 /* The exception_support_info data. This data is used to determine
301 how to implement support for Ada exception catchpoints in a given
303 const struct exception_support_info *exception_info = nullptr;
306 /* Our key to this module's inferior data. */
307 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
309 /* Return our inferior data for the given inferior (INF).
311 This function always returns a valid pointer to an allocated
312 ada_inferior_data structure. If INF's inferior data has not
313 been previously set, this functions creates a new one with all
314 fields set to zero, sets INF's inferior to it, and then returns
315 a pointer to that newly allocated ada_inferior_data. */
317 static struct ada_inferior_data *
318 get_ada_inferior_data (struct inferior *inf)
320 struct ada_inferior_data *data;
322 data = ada_inferior_data.get (inf);
324 data = ada_inferior_data.emplace (inf);
329 /* Perform all necessary cleanups regarding our module's inferior data
330 that is required after the inferior INF just exited. */
333 ada_inferior_exit (struct inferior *inf)
335 ada_inferior_data.clear (inf);
339 /* program-space-specific data. */
341 /* This module's per-program-space data. */
342 struct ada_pspace_data
344 /* The Ada symbol cache. */
345 std::unique_ptr<ada_symbol_cache> sym_cache;
348 /* Key to our per-program-space data. */
349 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
351 /* Return this module's data for the given program space (PSPACE).
352 If not is found, add a zero'ed one now.
354 This function always returns a valid object. */
356 static struct ada_pspace_data *
357 get_ada_pspace_data (struct program_space *pspace)
359 struct ada_pspace_data *data;
361 data = ada_pspace_data_handle.get (pspace);
363 data = ada_pspace_data_handle.emplace (pspace);
370 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
371 all typedef layers have been peeled. Otherwise, return TYPE.
373 Normally, we really expect a typedef type to only have 1 typedef layer.
374 In other words, we really expect the target type of a typedef type to be
375 a non-typedef type. This is particularly true for Ada units, because
376 the language does not have a typedef vs not-typedef distinction.
377 In that respect, the Ada compiler has been trying to eliminate as many
378 typedef definitions in the debugging information, since they generally
379 do not bring any extra information (we still use typedef under certain
380 circumstances related mostly to the GNAT encoding).
382 Unfortunately, we have seen situations where the debugging information
383 generated by the compiler leads to such multiple typedef layers. For
384 instance, consider the following example with stabs:
386 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
387 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
389 This is an error in the debugging information which causes type
390 pck__float_array___XUP to be defined twice, and the second time,
391 it is defined as a typedef of a typedef.
393 This is on the fringe of legality as far as debugging information is
394 concerned, and certainly unexpected. But it is easy to handle these
395 situations correctly, so we can afford to be lenient in this case. */
398 ada_typedef_target_type (struct type *type)
400 while (type->code () == TYPE_CODE_TYPEDEF)
401 type = TYPE_TARGET_TYPE (type);
405 /* Given DECODED_NAME a string holding a symbol name in its
406 decoded form (ie using the Ada dotted notation), returns
407 its unqualified name. */
410 ada_unqualified_name (const char *decoded_name)
414 /* If the decoded name starts with '<', it means that the encoded
415 name does not follow standard naming conventions, and thus that
416 it is not your typical Ada symbol name. Trying to unqualify it
417 is therefore pointless and possibly erroneous. */
418 if (decoded_name[0] == '<')
421 result = strrchr (decoded_name, '.');
423 result++; /* Skip the dot... */
425 result = decoded_name;
430 /* Return a string starting with '<', followed by STR, and '>'. */
433 add_angle_brackets (const char *str)
435 return string_printf ("<%s>", str);
438 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
439 suffix of FIELD_NAME beginning "___". */
442 field_name_match (const char *field_name, const char *target)
444 int len = strlen (target);
447 (strncmp (field_name, target, len) == 0
448 && (field_name[len] == '\0'
449 || (startswith (field_name + len, "___")
450 && strcmp (field_name + strlen (field_name) - 6,
455 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
456 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
457 and return its index. This function also handles fields whose name
458 have ___ suffixes because the compiler sometimes alters their name
459 by adding such a suffix to represent fields with certain constraints.
460 If the field could not be found, return a negative number if
461 MAYBE_MISSING is set. Otherwise raise an error. */
464 ada_get_field_index (const struct type *type, const char *field_name,
468 struct type *struct_type = check_typedef ((struct type *) type);
470 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
471 if (field_name_match (struct_type->field (fieldno).name (), field_name))
475 error (_("Unable to find field %s in struct %s. Aborting"),
476 field_name, struct_type->name ());
481 /* The length of the prefix of NAME prior to any "___" suffix. */
484 ada_name_prefix_len (const char *name)
490 const char *p = strstr (name, "___");
493 return strlen (name);
499 /* Return non-zero if SUFFIX is a suffix of STR.
500 Return zero if STR is null. */
503 is_suffix (const char *str, const char *suffix)
510 len2 = strlen (suffix);
511 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
514 /* The contents of value VAL, treated as a value of type TYPE. The
515 result is an lval in memory if VAL is. */
517 static struct value *
518 coerce_unspec_val_to_type (struct value *val, struct type *type)
520 type = ada_check_typedef (type);
521 if (value_type (val) == type)
525 struct value *result;
527 /* Make sure that the object size is not unreasonable before
528 trying to allocate some memory for it. */
529 ada_ensure_varsize_limit (type);
531 if (value_optimized_out (val))
532 result = allocate_optimized_out_value (type);
533 else if (value_lazy (val)
534 /* Be careful not to make a lazy not_lval value. */
535 || (VALUE_LVAL (val) != not_lval
536 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
537 result = allocate_value_lazy (type);
540 result = allocate_value (type);
541 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
543 set_value_component_location (result, val);
544 set_value_bitsize (result, value_bitsize (val));
545 set_value_bitpos (result, value_bitpos (val));
546 if (VALUE_LVAL (result) == lval_memory)
547 set_value_address (result, value_address (val));
552 static const gdb_byte *
553 cond_offset_host (const gdb_byte *valaddr, long offset)
558 return valaddr + offset;
562 cond_offset_target (CORE_ADDR address, long offset)
567 return address + offset;
570 /* Issue a warning (as for the definition of warning in utils.c, but
571 with exactly one argument rather than ...), unless the limit on the
572 number of warnings has passed during the evaluation of the current
575 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
576 provided by "complaint". */
577 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
580 lim_warning (const char *format, ...)
584 va_start (args, format);
585 warnings_issued += 1;
586 if (warnings_issued <= warning_limit)
587 vwarning (format, args);
592 /* Issue an error if the size of an object of type T is unreasonable,
593 i.e. if it would be a bad idea to allocate a value of this type in
597 ada_ensure_varsize_limit (const struct type *type)
599 if (TYPE_LENGTH (type) > varsize_limit)
600 error (_("object size is larger than varsize-limit"));
603 /* Maximum value of a SIZE-byte signed integer type. */
605 max_of_size (int size)
607 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
609 return top_bit | (top_bit - 1);
612 /* Minimum value of a SIZE-byte signed integer type. */
614 min_of_size (int size)
616 return -max_of_size (size) - 1;
619 /* Maximum value of a SIZE-byte unsigned integer type. */
621 umax_of_size (int size)
623 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
625 return top_bit | (top_bit - 1);
628 /* Maximum value of integral type T, as a signed quantity. */
630 max_of_type (struct type *t)
632 if (t->is_unsigned ())
633 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
635 return max_of_size (TYPE_LENGTH (t));
638 /* Minimum value of integral type T, as a signed quantity. */
640 min_of_type (struct type *t)
642 if (t->is_unsigned ())
645 return min_of_size (TYPE_LENGTH (t));
648 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
650 ada_discrete_type_high_bound (struct type *type)
652 type = resolve_dynamic_type (type, {}, 0);
653 switch (type->code ())
655 case TYPE_CODE_RANGE:
657 const dynamic_prop &high = type->bounds ()->high;
659 if (high.kind () == PROP_CONST)
660 return high.const_val ();
663 gdb_assert (high.kind () == PROP_UNDEFINED);
665 /* This happens when trying to evaluate a type's dynamic bound
666 without a live target. There is nothing relevant for us to
667 return here, so return 0. */
672 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
677 return max_of_type (type);
679 error (_("Unexpected type in ada_discrete_type_high_bound."));
683 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
685 ada_discrete_type_low_bound (struct type *type)
687 type = resolve_dynamic_type (type, {}, 0);
688 switch (type->code ())
690 case TYPE_CODE_RANGE:
692 const dynamic_prop &low = type->bounds ()->low;
694 if (low.kind () == PROP_CONST)
695 return low.const_val ();
698 gdb_assert (low.kind () == PROP_UNDEFINED);
700 /* This happens when trying to evaluate a type's dynamic bound
701 without a live target. There is nothing relevant for us to
702 return here, so return 0. */
707 return TYPE_FIELD_ENUMVAL (type, 0);
712 return min_of_type (type);
714 error (_("Unexpected type in ada_discrete_type_low_bound."));
718 /* The identity on non-range types. For range types, the underlying
719 non-range scalar type. */
722 get_base_type (struct type *type)
724 while (type != NULL && type->code () == TYPE_CODE_RANGE)
726 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
728 type = TYPE_TARGET_TYPE (type);
733 /* Return a decoded version of the given VALUE. This means returning
734 a value whose type is obtained by applying all the GNAT-specific
735 encodings, making the resulting type a static but standard description
736 of the initial type. */
739 ada_get_decoded_value (struct value *value)
741 struct type *type = ada_check_typedef (value_type (value));
743 if (ada_is_array_descriptor_type (type)
744 || (ada_is_constrained_packed_array_type (type)
745 && type->code () != TYPE_CODE_PTR))
747 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
748 value = ada_coerce_to_simple_array_ptr (value);
750 value = ada_coerce_to_simple_array (value);
753 value = ada_to_fixed_value (value);
758 /* Same as ada_get_decoded_value, but with the given TYPE.
759 Because there is no associated actual value for this type,
760 the resulting type might be a best-effort approximation in
761 the case of dynamic types. */
764 ada_get_decoded_type (struct type *type)
766 type = to_static_fixed_type (type);
767 if (ada_is_constrained_packed_array_type (type))
768 type = ada_coerce_to_simple_array_type (type);
774 /* Language Selection */
776 /* If the main program is in Ada, return language_ada, otherwise return LANG
777 (the main program is in Ada iif the adainit symbol is found). */
780 ada_update_initial_language (enum language lang)
782 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
788 /* If the main procedure is written in Ada, then return its name.
789 The result is good until the next call. Return NULL if the main
790 procedure doesn't appear to be in Ada. */
795 struct bound_minimal_symbol msym;
796 static gdb::unique_xmalloc_ptr<char> main_program_name;
798 /* For Ada, the name of the main procedure is stored in a specific
799 string constant, generated by the binder. Look for that symbol,
800 extract its address, and then read that string. If we didn't find
801 that string, then most probably the main procedure is not written
803 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
805 if (msym.minsym != NULL)
807 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
808 if (main_program_name_addr == 0)
809 error (_("Invalid address for Ada main program name."));
811 main_program_name = target_read_string (main_program_name_addr, 1024);
812 return main_program_name.get ();
815 /* The main procedure doesn't seem to be in Ada. */
821 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
824 const struct ada_opname_map ada_opname_table[] = {
825 {"Oadd", "\"+\"", BINOP_ADD},
826 {"Osubtract", "\"-\"", BINOP_SUB},
827 {"Omultiply", "\"*\"", BINOP_MUL},
828 {"Odivide", "\"/\"", BINOP_DIV},
829 {"Omod", "\"mod\"", BINOP_MOD},
830 {"Orem", "\"rem\"", BINOP_REM},
831 {"Oexpon", "\"**\"", BINOP_EXP},
832 {"Olt", "\"<\"", BINOP_LESS},
833 {"Ole", "\"<=\"", BINOP_LEQ},
834 {"Ogt", "\">\"", BINOP_GTR},
835 {"Oge", "\">=\"", BINOP_GEQ},
836 {"Oeq", "\"=\"", BINOP_EQUAL},
837 {"One", "\"/=\"", BINOP_NOTEQUAL},
838 {"Oand", "\"and\"", BINOP_BITWISE_AND},
839 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
840 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
841 {"Oconcat", "\"&\"", BINOP_CONCAT},
842 {"Oabs", "\"abs\"", UNOP_ABS},
843 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
844 {"Oadd", "\"+\"", UNOP_PLUS},
845 {"Osubtract", "\"-\"", UNOP_NEG},
849 /* If STR is a decoded version of a compiler-provided suffix (like the
850 "[cold]" in "symbol[cold]"), return true. Otherwise, return
854 is_compiler_suffix (const char *str)
856 gdb_assert (*str == '[');
858 while (*str != '\0' && isalpha (*str))
860 /* We accept a missing "]" in order to support completion. */
861 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
864 /* The "encoded" form of DECODED, according to GNAT conventions. If
865 THROW_ERRORS, throw an error if invalid operator name is found.
866 Otherwise, return the empty string in that case. */
869 ada_encode_1 (const char *decoded, bool throw_errors)
874 std::string encoding_buffer;
875 for (const char *p = decoded; *p != '\0'; p += 1)
878 encoding_buffer.append ("__");
879 else if (*p == '[' && is_compiler_suffix (p))
881 encoding_buffer = encoding_buffer + "." + (p + 1);
882 if (encoding_buffer.back () == ']')
883 encoding_buffer.pop_back ();
888 const struct ada_opname_map *mapping;
890 for (mapping = ada_opname_table;
891 mapping->encoded != NULL
892 && !startswith (p, mapping->decoded); mapping += 1)
894 if (mapping->encoded == NULL)
897 error (_("invalid Ada operator name: %s"), p);
901 encoding_buffer.append (mapping->encoded);
905 encoding_buffer.push_back (*p);
908 return encoding_buffer;
911 /* The "encoded" form of DECODED, according to GNAT conventions. */
914 ada_encode (const char *decoded)
916 return ada_encode_1 (decoded, true);
919 /* Return NAME folded to lower case, or, if surrounded by single
920 quotes, unfolded, but with the quotes stripped away. Result good
924 ada_fold_name (gdb::string_view name)
926 static std::string fold_storage;
928 if (!name.empty () && name[0] == '\'')
929 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
932 fold_storage = gdb::to_string (name);
933 for (int i = 0; i < name.size (); i += 1)
934 fold_storage[i] = tolower (fold_storage[i]);
937 return fold_storage.c_str ();
940 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
943 is_lower_alphanum (const char c)
945 return (isdigit (c) || (isalpha (c) && islower (c)));
948 /* ENCODED is the linkage name of a symbol and LEN contains its length.
949 This function saves in LEN the length of that same symbol name but
950 without either of these suffixes:
956 These are suffixes introduced by the compiler for entities such as
957 nested subprogram for instance, in order to avoid name clashes.
958 They do not serve any purpose for the debugger. */
961 ada_remove_trailing_digits (const char *encoded, int *len)
963 if (*len > 1 && isdigit (encoded[*len - 1]))
967 while (i > 0 && isdigit (encoded[i]))
969 if (i >= 0 && encoded[i] == '.')
971 else if (i >= 0 && encoded[i] == '$')
973 else if (i >= 2 && startswith (encoded + i - 2, "___"))
975 else if (i >= 1 && startswith (encoded + i - 1, "__"))
980 /* Remove the suffix introduced by the compiler for protected object
984 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
986 /* Remove trailing N. */
988 /* Protected entry subprograms are broken into two
989 separate subprograms: The first one is unprotected, and has
990 a 'N' suffix; the second is the protected version, and has
991 the 'P' suffix. The second calls the first one after handling
992 the protection. Since the P subprograms are internally generated,
993 we leave these names undecoded, giving the user a clue that this
994 entity is internal. */
997 && encoded[*len - 1] == 'N'
998 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1002 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1003 then update *LEN to remove the suffix and return the offset of the
1004 character just past the ".". Otherwise, return -1. */
1007 remove_compiler_suffix (const char *encoded, int *len)
1009 int offset = *len - 1;
1010 while (offset > 0 && isalpha (encoded[offset]))
1012 if (offset > 0 && encoded[offset] == '.')
1020 /* See ada-lang.h. */
1023 ada_decode (const char *encoded, bool wrap)
1029 std::string decoded;
1032 /* With function descriptors on PPC64, the value of a symbol named
1033 ".FN", if it exists, is the entry point of the function "FN". */
1034 if (encoded[0] == '.')
1037 /* The name of the Ada main procedure starts with "_ada_".
1038 This prefix is not part of the decoded name, so skip this part
1039 if we see this prefix. */
1040 if (startswith (encoded, "_ada_"))
1043 /* If the name starts with '_', then it is not a properly encoded
1044 name, so do not attempt to decode it. Similarly, if the name
1045 starts with '<', the name should not be decoded. */
1046 if (encoded[0] == '_' || encoded[0] == '<')
1049 len0 = strlen (encoded);
1051 suffix = remove_compiler_suffix (encoded, &len0);
1053 ada_remove_trailing_digits (encoded, &len0);
1054 ada_remove_po_subprogram_suffix (encoded, &len0);
1056 /* Remove the ___X.* suffix if present. Do not forget to verify that
1057 the suffix is located before the current "end" of ENCODED. We want
1058 to avoid re-matching parts of ENCODED that have previously been
1059 marked as discarded (by decrementing LEN0). */
1060 p = strstr (encoded, "___");
1061 if (p != NULL && p - encoded < len0 - 3)
1069 /* Remove any trailing TKB suffix. It tells us that this symbol
1070 is for the body of a task, but that information does not actually
1071 appear in the decoded name. */
1073 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1076 /* Remove any trailing TB suffix. The TB suffix is slightly different
1077 from the TKB suffix because it is used for non-anonymous task
1080 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1083 /* Remove trailing "B" suffixes. */
1084 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1086 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1089 /* Make decoded big enough for possible expansion by operator name. */
1091 decoded.resize (2 * len0 + 1, 'X');
1093 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1095 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1098 while ((i >= 0 && isdigit (encoded[i]))
1099 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1101 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1103 else if (encoded[i] == '$')
1107 /* The first few characters that are not alphabetic are not part
1108 of any encoding we use, so we can copy them over verbatim. */
1110 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1111 decoded[j] = encoded[i];
1116 /* Is this a symbol function? */
1117 if (at_start_name && encoded[i] == 'O')
1121 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1123 int op_len = strlen (ada_opname_table[k].encoded);
1124 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1126 && !isalnum (encoded[i + op_len]))
1128 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1131 j += strlen (ada_opname_table[k].decoded);
1135 if (ada_opname_table[k].encoded != NULL)
1140 /* Replace "TK__" with "__", which will eventually be translated
1141 into "." (just below). */
1143 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1146 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1147 be translated into "." (just below). These are internal names
1148 generated for anonymous blocks inside which our symbol is nested. */
1150 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1151 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1152 && isdigit (encoded [i+4]))
1156 while (k < len0 && isdigit (encoded[k]))
1157 k++; /* Skip any extra digit. */
1159 /* Double-check that the "__B_{DIGITS}+" sequence we found
1160 is indeed followed by "__". */
1161 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1165 /* Remove _E{DIGITS}+[sb] */
1167 /* Just as for protected object subprograms, there are 2 categories
1168 of subprograms created by the compiler for each entry. The first
1169 one implements the actual entry code, and has a suffix following
1170 the convention above; the second one implements the barrier and
1171 uses the same convention as above, except that the 'E' is replaced
1174 Just as above, we do not decode the name of barrier functions
1175 to give the user a clue that the code he is debugging has been
1176 internally generated. */
1178 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1179 && isdigit (encoded[i+2]))
1183 while (k < len0 && isdigit (encoded[k]))
1187 && (encoded[k] == 'b' || encoded[k] == 's'))
1190 /* Just as an extra precaution, make sure that if this
1191 suffix is followed by anything else, it is a '_'.
1192 Otherwise, we matched this sequence by accident. */
1194 || (k < len0 && encoded[k] == '_'))
1199 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1200 the GNAT front-end in protected object subprograms. */
1203 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1205 /* Backtrack a bit up until we reach either the begining of
1206 the encoded name, or "__". Make sure that we only find
1207 digits or lowercase characters. */
1208 const char *ptr = encoded + i - 1;
1210 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1213 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1217 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1219 /* This is a X[bn]* sequence not separated from the previous
1220 part of the name with a non-alpha-numeric character (in other
1221 words, immediately following an alpha-numeric character), then
1222 verify that it is placed at the end of the encoded name. If
1223 not, then the encoding is not valid and we should abort the
1224 decoding. Otherwise, just skip it, it is used in body-nested
1228 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1232 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1234 /* Replace '__' by '.'. */
1242 /* It's a character part of the decoded name, so just copy it
1244 decoded[j] = encoded[i];
1251 /* Decoded names should never contain any uppercase character.
1252 Double-check this, and abort the decoding if we find one. */
1254 for (i = 0; i < decoded.length(); ++i)
1255 if (isupper (decoded[i]) || decoded[i] == ' ')
1258 /* If the compiler added a suffix, append it now. */
1260 decoded = decoded + "[" + &encoded[suffix] + "]";
1268 if (encoded[0] == '<')
1271 decoded = '<' + std::string(encoded) + '>';
1275 /* Table for keeping permanent unique copies of decoded names. Once
1276 allocated, names in this table are never released. While this is a
1277 storage leak, it should not be significant unless there are massive
1278 changes in the set of decoded names in successive versions of a
1279 symbol table loaded during a single session. */
1280 static struct htab *decoded_names_store;
1282 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1283 in the language-specific part of GSYMBOL, if it has not been
1284 previously computed. Tries to save the decoded name in the same
1285 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1286 in any case, the decoded symbol has a lifetime at least that of
1288 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1289 const, but nevertheless modified to a semantically equivalent form
1290 when a decoded name is cached in it. */
1293 ada_decode_symbol (const struct general_symbol_info *arg)
1295 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1296 const char **resultp =
1297 &gsymbol->language_specific.demangled_name;
1299 if (!gsymbol->ada_mangled)
1301 std::string decoded = ada_decode (gsymbol->linkage_name ());
1302 struct obstack *obstack = gsymbol->language_specific.obstack;
1304 gsymbol->ada_mangled = 1;
1306 if (obstack != NULL)
1307 *resultp = obstack_strdup (obstack, decoded.c_str ());
1310 /* Sometimes, we can't find a corresponding objfile, in
1311 which case, we put the result on the heap. Since we only
1312 decode when needed, we hope this usually does not cause a
1313 significant memory leak (FIXME). */
1315 char **slot = (char **) htab_find_slot (decoded_names_store,
1316 decoded.c_str (), INSERT);
1319 *slot = xstrdup (decoded.c_str ());
1331 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1332 generated by the GNAT compiler to describe the index type used
1333 for each dimension of an array, check whether it follows the latest
1334 known encoding. If not, fix it up to conform to the latest encoding.
1335 Otherwise, do nothing. This function also does nothing if
1336 INDEX_DESC_TYPE is NULL.
1338 The GNAT encoding used to describe the array index type evolved a bit.
1339 Initially, the information would be provided through the name of each
1340 field of the structure type only, while the type of these fields was
1341 described as unspecified and irrelevant. The debugger was then expected
1342 to perform a global type lookup using the name of that field in order
1343 to get access to the full index type description. Because these global
1344 lookups can be very expensive, the encoding was later enhanced to make
1345 the global lookup unnecessary by defining the field type as being
1346 the full index type description.
1348 The purpose of this routine is to allow us to support older versions
1349 of the compiler by detecting the use of the older encoding, and by
1350 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1351 we essentially replace each field's meaningless type by the associated
1355 ada_fixup_array_indexes_type (struct type *index_desc_type)
1359 if (index_desc_type == NULL)
1361 gdb_assert (index_desc_type->num_fields () > 0);
1363 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1364 to check one field only, no need to check them all). If not, return
1367 If our INDEX_DESC_TYPE was generated using the older encoding,
1368 the field type should be a meaningless integer type whose name
1369 is not equal to the field name. */
1370 if (index_desc_type->field (0).type ()->name () != NULL
1371 && strcmp (index_desc_type->field (0).type ()->name (),
1372 index_desc_type->field (0).name ()) == 0)
1375 /* Fixup each field of INDEX_DESC_TYPE. */
1376 for (i = 0; i < index_desc_type->num_fields (); i++)
1378 const char *name = index_desc_type->field (i).name ();
1379 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1382 index_desc_type->field (i).set_type (raw_type);
1386 /* The desc_* routines return primitive portions of array descriptors
1389 /* The descriptor or array type, if any, indicated by TYPE; removes
1390 level of indirection, if needed. */
1392 static struct type *
1393 desc_base_type (struct type *type)
1397 type = ada_check_typedef (type);
1398 if (type->code () == TYPE_CODE_TYPEDEF)
1399 type = ada_typedef_target_type (type);
1402 && (type->code () == TYPE_CODE_PTR
1403 || type->code () == TYPE_CODE_REF))
1404 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1409 /* True iff TYPE indicates a "thin" array pointer type. */
1412 is_thin_pntr (struct type *type)
1415 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1416 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1419 /* The descriptor type for thin pointer type TYPE. */
1421 static struct type *
1422 thin_descriptor_type (struct type *type)
1424 struct type *base_type = desc_base_type (type);
1426 if (base_type == NULL)
1428 if (is_suffix (ada_type_name (base_type), "___XVE"))
1432 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1434 if (alt_type == NULL)
1441 /* A pointer to the array data for thin-pointer value VAL. */
1443 static struct value *
1444 thin_data_pntr (struct value *val)
1446 struct type *type = ada_check_typedef (value_type (val));
1447 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1449 data_type = lookup_pointer_type (data_type);
1451 if (type->code () == TYPE_CODE_PTR)
1452 return value_cast (data_type, value_copy (val));
1454 return value_from_longest (data_type, value_address (val));
1457 /* True iff TYPE indicates a "thick" array pointer type. */
1460 is_thick_pntr (struct type *type)
1462 type = desc_base_type (type);
1463 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1464 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1467 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1468 pointer to one, the type of its bounds data; otherwise, NULL. */
1470 static struct type *
1471 desc_bounds_type (struct type *type)
1475 type = desc_base_type (type);
1479 else if (is_thin_pntr (type))
1481 type = thin_descriptor_type (type);
1484 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1486 return ada_check_typedef (r);
1488 else if (type->code () == TYPE_CODE_STRUCT)
1490 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1492 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1497 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1498 one, a pointer to its bounds data. Otherwise NULL. */
1500 static struct value *
1501 desc_bounds (struct value *arr)
1503 struct type *type = ada_check_typedef (value_type (arr));
1505 if (is_thin_pntr (type))
1507 struct type *bounds_type =
1508 desc_bounds_type (thin_descriptor_type (type));
1511 if (bounds_type == NULL)
1512 error (_("Bad GNAT array descriptor"));
1514 /* NOTE: The following calculation is not really kosher, but
1515 since desc_type is an XVE-encoded type (and shouldn't be),
1516 the correct calculation is a real pain. FIXME (and fix GCC). */
1517 if (type->code () == TYPE_CODE_PTR)
1518 addr = value_as_long (arr);
1520 addr = value_address (arr);
1523 value_from_longest (lookup_pointer_type (bounds_type),
1524 addr - TYPE_LENGTH (bounds_type));
1527 else if (is_thick_pntr (type))
1529 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1530 _("Bad GNAT array descriptor"));
1531 struct type *p_bounds_type = value_type (p_bounds);
1534 && p_bounds_type->code () == TYPE_CODE_PTR)
1536 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1538 if (target_type->is_stub ())
1539 p_bounds = value_cast (lookup_pointer_type
1540 (ada_check_typedef (target_type)),
1544 error (_("Bad GNAT array descriptor"));
1552 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1553 position of the field containing the address of the bounds data. */
1556 fat_pntr_bounds_bitpos (struct type *type)
1558 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1561 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1562 size of the field containing the address of the bounds data. */
1565 fat_pntr_bounds_bitsize (struct type *type)
1567 type = desc_base_type (type);
1569 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1570 return TYPE_FIELD_BITSIZE (type, 1);
1572 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1575 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1576 pointer to one, the type of its array data (a array-with-no-bounds type);
1577 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1580 static struct type *
1581 desc_data_target_type (struct type *type)
1583 type = desc_base_type (type);
1585 /* NOTE: The following is bogus; see comment in desc_bounds. */
1586 if (is_thin_pntr (type))
1587 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1588 else if (is_thick_pntr (type))
1590 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1593 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1594 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1600 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1603 static struct value *
1604 desc_data (struct value *arr)
1606 struct type *type = value_type (arr);
1608 if (is_thin_pntr (type))
1609 return thin_data_pntr (arr);
1610 else if (is_thick_pntr (type))
1611 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1612 _("Bad GNAT array descriptor"));
1618 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1619 position of the field containing the address of the data. */
1622 fat_pntr_data_bitpos (struct type *type)
1624 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1627 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1628 size of the field containing the address of the data. */
1631 fat_pntr_data_bitsize (struct type *type)
1633 type = desc_base_type (type);
1635 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1636 return TYPE_FIELD_BITSIZE (type, 0);
1638 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1641 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1642 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1643 bound, if WHICH is 1. The first bound is I=1. */
1645 static struct value *
1646 desc_one_bound (struct value *bounds, int i, int which)
1648 char bound_name[20];
1649 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1650 which ? 'U' : 'L', i - 1);
1651 return value_struct_elt (&bounds, {}, bound_name, NULL,
1652 _("Bad GNAT array descriptor bounds"));
1655 /* If BOUNDS is an array-bounds structure type, return the bit position
1656 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1657 bound, if WHICH is 1. The first bound is I=1. */
1660 desc_bound_bitpos (struct type *type, int i, int which)
1662 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1665 /* If BOUNDS is an array-bounds structure type, return the bit field size
1666 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1667 bound, if WHICH is 1. The first bound is I=1. */
1670 desc_bound_bitsize (struct type *type, int i, int which)
1672 type = desc_base_type (type);
1674 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1675 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1677 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1680 /* If TYPE is the type of an array-bounds structure, the type of its
1681 Ith bound (numbering from 1). Otherwise, NULL. */
1683 static struct type *
1684 desc_index_type (struct type *type, int i)
1686 type = desc_base_type (type);
1688 if (type->code () == TYPE_CODE_STRUCT)
1690 char bound_name[20];
1691 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1692 return lookup_struct_elt_type (type, bound_name, 1);
1698 /* The number of index positions in the array-bounds type TYPE.
1699 Return 0 if TYPE is NULL. */
1702 desc_arity (struct type *type)
1704 type = desc_base_type (type);
1707 return type->num_fields () / 2;
1711 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1712 an array descriptor type (representing an unconstrained array
1716 ada_is_direct_array_type (struct type *type)
1720 type = ada_check_typedef (type);
1721 return (type->code () == TYPE_CODE_ARRAY
1722 || ada_is_array_descriptor_type (type));
1725 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1729 ada_is_array_type (struct type *type)
1732 && (type->code () == TYPE_CODE_PTR
1733 || type->code () == TYPE_CODE_REF))
1734 type = TYPE_TARGET_TYPE (type);
1735 return ada_is_direct_array_type (type);
1738 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1741 ada_is_simple_array_type (struct type *type)
1745 type = ada_check_typedef (type);
1746 return (type->code () == TYPE_CODE_ARRAY
1747 || (type->code () == TYPE_CODE_PTR
1748 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1749 == TYPE_CODE_ARRAY)));
1752 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1755 ada_is_array_descriptor_type (struct type *type)
1757 struct type *data_type = desc_data_target_type (type);
1761 type = ada_check_typedef (type);
1762 return (data_type != NULL
1763 && data_type->code () == TYPE_CODE_ARRAY
1764 && desc_arity (desc_bounds_type (type)) > 0);
1767 /* Non-zero iff type is a partially mal-formed GNAT array
1768 descriptor. FIXME: This is to compensate for some problems with
1769 debugging output from GNAT. Re-examine periodically to see if it
1773 ada_is_bogus_array_descriptor (struct type *type)
1777 && type->code () == TYPE_CODE_STRUCT
1778 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1779 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1780 && !ada_is_array_descriptor_type (type);
1784 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1785 (fat pointer) returns the type of the array data described---specifically,
1786 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1787 in from the descriptor; otherwise, they are left unspecified. If
1788 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1789 returns NULL. The result is simply the type of ARR if ARR is not
1792 static struct type *
1793 ada_type_of_array (struct value *arr, int bounds)
1795 if (ada_is_constrained_packed_array_type (value_type (arr)))
1796 return decode_constrained_packed_array_type (value_type (arr));
1798 if (!ada_is_array_descriptor_type (value_type (arr)))
1799 return value_type (arr);
1803 struct type *array_type =
1804 ada_check_typedef (desc_data_target_type (value_type (arr)));
1806 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1807 TYPE_FIELD_BITSIZE (array_type, 0) =
1808 decode_packed_array_bitsize (value_type (arr));
1814 struct type *elt_type;
1816 struct value *descriptor;
1818 elt_type = ada_array_element_type (value_type (arr), -1);
1819 arity = ada_array_arity (value_type (arr));
1821 if (elt_type == NULL || arity == 0)
1822 return ada_check_typedef (value_type (arr));
1824 descriptor = desc_bounds (arr);
1825 if (value_as_long (descriptor) == 0)
1829 struct type *range_type = alloc_type_copy (value_type (arr));
1830 struct type *array_type = alloc_type_copy (value_type (arr));
1831 struct value *low = desc_one_bound (descriptor, arity, 0);
1832 struct value *high = desc_one_bound (descriptor, arity, 1);
1835 create_static_range_type (range_type, value_type (low),
1836 longest_to_int (value_as_long (low)),
1837 longest_to_int (value_as_long (high)));
1838 elt_type = create_array_type (array_type, elt_type, range_type);
1840 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1842 /* We need to store the element packed bitsize, as well as
1843 recompute the array size, because it was previously
1844 computed based on the unpacked element size. */
1845 LONGEST lo = value_as_long (low);
1846 LONGEST hi = value_as_long (high);
1848 TYPE_FIELD_BITSIZE (elt_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850 /* If the array has no element, then the size is already
1851 zero, and does not need to be recomputed. */
1855 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1857 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1862 return lookup_pointer_type (elt_type);
1866 /* If ARR does not represent an array, returns ARR unchanged.
1867 Otherwise, returns either a standard GDB array with bounds set
1868 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1869 GDB array. Returns NULL if ARR is a null fat pointer. */
1872 ada_coerce_to_simple_array_ptr (struct value *arr)
1874 if (ada_is_array_descriptor_type (value_type (arr)))
1876 struct type *arrType = ada_type_of_array (arr, 1);
1878 if (arrType == NULL)
1880 return value_cast (arrType, value_copy (desc_data (arr)));
1882 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1883 return decode_constrained_packed_array (arr);
1888 /* If ARR does not represent an array, returns ARR unchanged.
1889 Otherwise, returns a standard GDB array describing ARR (which may
1890 be ARR itself if it already is in the proper form). */
1893 ada_coerce_to_simple_array (struct value *arr)
1895 if (ada_is_array_descriptor_type (value_type (arr)))
1897 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1900 error (_("Bounds unavailable for null array pointer."));
1901 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1902 return value_ind (arrVal);
1904 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1905 return decode_constrained_packed_array (arr);
1910 /* If TYPE represents a GNAT array type, return it translated to an
1911 ordinary GDB array type (possibly with BITSIZE fields indicating
1912 packing). For other types, is the identity. */
1915 ada_coerce_to_simple_array_type (struct type *type)
1917 if (ada_is_constrained_packed_array_type (type))
1918 return decode_constrained_packed_array_type (type);
1920 if (ada_is_array_descriptor_type (type))
1921 return ada_check_typedef (desc_data_target_type (type));
1926 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1929 ada_is_gnat_encoded_packed_array_type (struct type *type)
1933 type = desc_base_type (type);
1934 type = ada_check_typedef (type);
1936 ada_type_name (type) != NULL
1937 && strstr (ada_type_name (type), "___XP") != NULL;
1940 /* Non-zero iff TYPE represents a standard GNAT constrained
1941 packed-array type. */
1944 ada_is_constrained_packed_array_type (struct type *type)
1946 return ada_is_gnat_encoded_packed_array_type (type)
1947 && !ada_is_array_descriptor_type (type);
1950 /* Non-zero iff TYPE represents an array descriptor for a
1951 unconstrained packed-array type. */
1954 ada_is_unconstrained_packed_array_type (struct type *type)
1956 if (!ada_is_array_descriptor_type (type))
1959 if (ada_is_gnat_encoded_packed_array_type (type))
1962 /* If we saw GNAT encodings, then the above code is sufficient.
1963 However, with minimal encodings, we will just have a thick
1965 if (is_thick_pntr (type))
1967 type = desc_base_type (type);
1968 /* The structure's first field is a pointer to an array, so this
1969 fetches the array type. */
1970 type = TYPE_TARGET_TYPE (type->field (0).type ());
1971 /* Now we can see if the array elements are packed. */
1972 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1978 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1979 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1982 ada_is_any_packed_array_type (struct type *type)
1984 return (ada_is_constrained_packed_array_type (type)
1985 || (type->code () == TYPE_CODE_ARRAY
1986 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1989 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1990 return the size of its elements in bits. */
1993 decode_packed_array_bitsize (struct type *type)
1995 const char *raw_name;
1999 /* Access to arrays implemented as fat pointers are encoded as a typedef
2000 of the fat pointer type. We need the name of the fat pointer type
2001 to do the decoding, so strip the typedef layer. */
2002 if (type->code () == TYPE_CODE_TYPEDEF)
2003 type = ada_typedef_target_type (type);
2005 raw_name = ada_type_name (ada_check_typedef (type));
2007 raw_name = ada_type_name (desc_base_type (type));
2012 tail = strstr (raw_name, "___XP");
2013 if (tail == nullptr)
2015 gdb_assert (is_thick_pntr (type));
2016 /* The structure's first field is a pointer to an array, so this
2017 fetches the array type. */
2018 type = TYPE_TARGET_TYPE (type->field (0).type ());
2019 /* Now we can see if the array elements are packed. */
2020 return TYPE_FIELD_BITSIZE (type, 0);
2023 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2026 (_("could not understand bit size information on packed array"));
2033 /* Given that TYPE is a standard GDB array type with all bounds filled
2034 in, and that the element size of its ultimate scalar constituents
2035 (that is, either its elements, or, if it is an array of arrays, its
2036 elements' elements, etc.) is *ELT_BITS, return an identical type,
2037 but with the bit sizes of its elements (and those of any
2038 constituent arrays) recorded in the BITSIZE components of its
2039 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2042 Note that, for arrays whose index type has an XA encoding where
2043 a bound references a record discriminant, getting that discriminant,
2044 and therefore the actual value of that bound, is not possible
2045 because none of the given parameters gives us access to the record.
2046 This function assumes that it is OK in the context where it is being
2047 used to return an array whose bounds are still dynamic and where
2048 the length is arbitrary. */
2050 static struct type *
2051 constrained_packed_array_type (struct type *type, long *elt_bits)
2053 struct type *new_elt_type;
2054 struct type *new_type;
2055 struct type *index_type_desc;
2056 struct type *index_type;
2057 LONGEST low_bound, high_bound;
2059 type = ada_check_typedef (type);
2060 if (type->code () != TYPE_CODE_ARRAY)
2063 index_type_desc = ada_find_parallel_type (type, "___XA");
2064 if (index_type_desc)
2065 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2068 index_type = type->index_type ();
2070 new_type = alloc_type_copy (type);
2072 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2074 create_array_type (new_type, new_elt_type, index_type);
2075 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2076 new_type->set_name (ada_type_name (type));
2078 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2079 && is_dynamic_type (check_typedef (index_type)))
2080 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2081 low_bound = high_bound = 0;
2082 if (high_bound < low_bound)
2083 *elt_bits = TYPE_LENGTH (new_type) = 0;
2086 *elt_bits *= (high_bound - low_bound + 1);
2087 TYPE_LENGTH (new_type) =
2088 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2091 new_type->set_is_fixed_instance (true);
2095 /* The array type encoded by TYPE, where
2096 ada_is_constrained_packed_array_type (TYPE). */
2098 static struct type *
2099 decode_constrained_packed_array_type (struct type *type)
2101 const char *raw_name = ada_type_name (ada_check_typedef (type));
2104 struct type *shadow_type;
2108 raw_name = ada_type_name (desc_base_type (type));
2113 name = (char *) alloca (strlen (raw_name) + 1);
2114 tail = strstr (raw_name, "___XP");
2115 type = desc_base_type (type);
2117 memcpy (name, raw_name, tail - raw_name);
2118 name[tail - raw_name] = '\000';
2120 shadow_type = ada_find_parallel_type_with_name (type, name);
2122 if (shadow_type == NULL)
2124 lim_warning (_("could not find bounds information on packed array"));
2127 shadow_type = check_typedef (shadow_type);
2129 if (shadow_type->code () != TYPE_CODE_ARRAY)
2131 lim_warning (_("could not understand bounds "
2132 "information on packed array"));
2136 bits = decode_packed_array_bitsize (type);
2137 return constrained_packed_array_type (shadow_type, &bits);
2140 /* Helper function for decode_constrained_packed_array. Set the field
2141 bitsize on a series of packed arrays. Returns the number of
2142 elements in TYPE. */
2145 recursively_update_array_bitsize (struct type *type)
2147 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2150 if (!get_discrete_bounds (type->index_type (), &low, &high)
2153 LONGEST our_len = high - low + 1;
2155 struct type *elt_type = TYPE_TARGET_TYPE (type);
2156 if (elt_type->code () == TYPE_CODE_ARRAY)
2158 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2159 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2160 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2162 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2169 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2170 array, returns a simple array that denotes that array. Its type is a
2171 standard GDB array type except that the BITSIZEs of the array
2172 target types are set to the number of bits in each element, and the
2173 type length is set appropriately. */
2175 static struct value *
2176 decode_constrained_packed_array (struct value *arr)
2180 /* If our value is a pointer, then dereference it. Likewise if
2181 the value is a reference. Make sure that this operation does not
2182 cause the target type to be fixed, as this would indirectly cause
2183 this array to be decoded. The rest of the routine assumes that
2184 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2185 and "value_ind" routines to perform the dereferencing, as opposed
2186 to using "ada_coerce_ref" or "ada_value_ind". */
2187 arr = coerce_ref (arr);
2188 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2189 arr = value_ind (arr);
2191 type = decode_constrained_packed_array_type (value_type (arr));
2194 error (_("can't unpack array"));
2198 /* Decoding the packed array type could not correctly set the field
2199 bitsizes for any dimension except the innermost, because the
2200 bounds may be variable and were not passed to that function. So,
2201 we further resolve the array bounds here and then update the
2203 const gdb_byte *valaddr = value_contents_for_printing (arr);
2204 CORE_ADDR address = value_address (arr);
2205 gdb::array_view<const gdb_byte> view
2206 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2207 type = resolve_dynamic_type (type, view, address);
2208 recursively_update_array_bitsize (type);
2210 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2211 && ada_is_modular_type (value_type (arr)))
2213 /* This is a (right-justified) modular type representing a packed
2214 array with no wrapper. In order to interpret the value through
2215 the (left-justified) packed array type we just built, we must
2216 first left-justify it. */
2217 int bit_size, bit_pos;
2220 mod = ada_modulus (value_type (arr)) - 1;
2227 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2228 arr = ada_value_primitive_packed_val (arr, NULL,
2229 bit_pos / HOST_CHAR_BIT,
2230 bit_pos % HOST_CHAR_BIT,
2235 return coerce_unspec_val_to_type (arr, type);
2239 /* The value of the element of packed array ARR at the ARITY indices
2240 given in IND. ARR must be a simple array. */
2242 static struct value *
2243 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2246 int bits, elt_off, bit_off;
2247 long elt_total_bit_offset;
2248 struct type *elt_type;
2252 elt_total_bit_offset = 0;
2253 elt_type = ada_check_typedef (value_type (arr));
2254 for (i = 0; i < arity; i += 1)
2256 if (elt_type->code () != TYPE_CODE_ARRAY
2257 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2259 (_("attempt to do packed indexing of "
2260 "something other than a packed array"));
2263 struct type *range_type = elt_type->index_type ();
2264 LONGEST lowerbound, upperbound;
2267 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2269 lim_warning (_("don't know bounds of array"));
2270 lowerbound = upperbound = 0;
2273 idx = pos_atr (ind[i]);
2274 if (idx < lowerbound || idx > upperbound)
2275 lim_warning (_("packed array index %ld out of bounds"),
2277 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2278 elt_total_bit_offset += (idx - lowerbound) * bits;
2279 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2282 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2283 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2285 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2290 /* Non-zero iff TYPE includes negative integer values. */
2293 has_negatives (struct type *type)
2295 switch (type->code ())
2300 return !type->is_unsigned ();
2301 case TYPE_CODE_RANGE:
2302 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2306 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2307 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2308 the unpacked buffer.
2310 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2311 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2313 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2316 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2318 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2321 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2322 gdb_byte *unpacked, int unpacked_len,
2323 int is_big_endian, int is_signed_type,
2326 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2327 int src_idx; /* Index into the source area */
2328 int src_bytes_left; /* Number of source bytes left to process. */
2329 int srcBitsLeft; /* Number of source bits left to move */
2330 int unusedLS; /* Number of bits in next significant
2331 byte of source that are unused */
2333 int unpacked_idx; /* Index into the unpacked buffer */
2334 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2336 unsigned long accum; /* Staging area for bits being transferred */
2337 int accumSize; /* Number of meaningful bits in accum */
2340 /* Transmit bytes from least to most significant; delta is the direction
2341 the indices move. */
2342 int delta = is_big_endian ? -1 : 1;
2344 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2346 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2347 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2348 bit_size, unpacked_len);
2350 srcBitsLeft = bit_size;
2351 src_bytes_left = src_len;
2352 unpacked_bytes_left = unpacked_len;
2357 src_idx = src_len - 1;
2359 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2363 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2369 unpacked_idx = unpacked_len - 1;
2373 /* Non-scalar values must be aligned at a byte boundary... */
2375 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2376 /* ... And are placed at the beginning (most-significant) bytes
2378 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2379 unpacked_bytes_left = unpacked_idx + 1;
2384 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2386 src_idx = unpacked_idx = 0;
2387 unusedLS = bit_offset;
2390 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2395 while (src_bytes_left > 0)
2397 /* Mask for removing bits of the next source byte that are not
2398 part of the value. */
2399 unsigned int unusedMSMask =
2400 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2402 /* Sign-extend bits for this byte. */
2403 unsigned int signMask = sign & ~unusedMSMask;
2406 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2407 accumSize += HOST_CHAR_BIT - unusedLS;
2408 if (accumSize >= HOST_CHAR_BIT)
2410 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2411 accumSize -= HOST_CHAR_BIT;
2412 accum >>= HOST_CHAR_BIT;
2413 unpacked_bytes_left -= 1;
2414 unpacked_idx += delta;
2416 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2418 src_bytes_left -= 1;
2421 while (unpacked_bytes_left > 0)
2423 accum |= sign << accumSize;
2424 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2425 accumSize -= HOST_CHAR_BIT;
2428 accum >>= HOST_CHAR_BIT;
2429 unpacked_bytes_left -= 1;
2430 unpacked_idx += delta;
2434 /* Create a new value of type TYPE from the contents of OBJ starting
2435 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2436 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2437 assigning through the result will set the field fetched from.
2438 VALADDR is ignored unless OBJ is NULL, in which case,
2439 VALADDR+OFFSET must address the start of storage containing the
2440 packed value. The value returned in this case is never an lval.
2441 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2444 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2445 long offset, int bit_offset, int bit_size,
2449 const gdb_byte *src; /* First byte containing data to unpack */
2451 const int is_scalar = is_scalar_type (type);
2452 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2453 gdb::byte_vector staging;
2455 type = ada_check_typedef (type);
2458 src = valaddr + offset;
2460 src = value_contents (obj) + offset;
2462 if (is_dynamic_type (type))
2464 /* The length of TYPE might by dynamic, so we need to resolve
2465 TYPE in order to know its actual size, which we then use
2466 to create the contents buffer of the value we return.
2467 The difficulty is that the data containing our object is
2468 packed, and therefore maybe not at a byte boundary. So, what
2469 we do, is unpack the data into a byte-aligned buffer, and then
2470 use that buffer as our object's value for resolving the type. */
2471 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2472 staging.resize (staging_len);
2474 ada_unpack_from_contents (src, bit_offset, bit_size,
2475 staging.data (), staging.size (),
2476 is_big_endian, has_negatives (type),
2478 type = resolve_dynamic_type (type, staging, 0);
2479 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2481 /* This happens when the length of the object is dynamic,
2482 and is actually smaller than the space reserved for it.
2483 For instance, in an array of variant records, the bit_size
2484 we're given is the array stride, which is constant and
2485 normally equal to the maximum size of its element.
2486 But, in reality, each element only actually spans a portion
2488 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2494 v = allocate_value (type);
2495 src = valaddr + offset;
2497 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2499 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2502 v = value_at (type, value_address (obj) + offset);
2503 buf = (gdb_byte *) alloca (src_len);
2504 read_memory (value_address (v), buf, src_len);
2509 v = allocate_value (type);
2510 src = value_contents (obj) + offset;
2515 long new_offset = offset;
2517 set_value_component_location (v, obj);
2518 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2519 set_value_bitsize (v, bit_size);
2520 if (value_bitpos (v) >= HOST_CHAR_BIT)
2523 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2525 set_value_offset (v, new_offset);
2527 /* Also set the parent value. This is needed when trying to
2528 assign a new value (in inferior memory). */
2529 set_value_parent (v, obj);
2532 set_value_bitsize (v, bit_size);
2533 unpacked = value_contents_writeable (v);
2537 memset (unpacked, 0, TYPE_LENGTH (type));
2541 if (staging.size () == TYPE_LENGTH (type))
2543 /* Small short-cut: If we've unpacked the data into a buffer
2544 of the same size as TYPE's length, then we can reuse that,
2545 instead of doing the unpacking again. */
2546 memcpy (unpacked, staging.data (), staging.size ());
2549 ada_unpack_from_contents (src, bit_offset, bit_size,
2550 unpacked, TYPE_LENGTH (type),
2551 is_big_endian, has_negatives (type), is_scalar);
2556 /* Store the contents of FROMVAL into the location of TOVAL.
2557 Return a new value with the location of TOVAL and contents of
2558 FROMVAL. Handles assignment into packed fields that have
2559 floating-point or non-scalar types. */
2561 static struct value *
2562 ada_value_assign (struct value *toval, struct value *fromval)
2564 struct type *type = value_type (toval);
2565 int bits = value_bitsize (toval);
2567 toval = ada_coerce_ref (toval);
2568 fromval = ada_coerce_ref (fromval);
2570 if (ada_is_direct_array_type (value_type (toval)))
2571 toval = ada_coerce_to_simple_array (toval);
2572 if (ada_is_direct_array_type (value_type (fromval)))
2573 fromval = ada_coerce_to_simple_array (fromval);
2575 if (!deprecated_value_modifiable (toval))
2576 error (_("Left operand of assignment is not a modifiable lvalue."));
2578 if (VALUE_LVAL (toval) == lval_memory
2580 && (type->code () == TYPE_CODE_FLT
2581 || type->code () == TYPE_CODE_STRUCT))
2583 int len = (value_bitpos (toval)
2584 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2586 gdb_byte *buffer = (gdb_byte *) alloca (len);
2588 CORE_ADDR to_addr = value_address (toval);
2590 if (type->code () == TYPE_CODE_FLT)
2591 fromval = value_cast (type, fromval);
2593 read_memory (to_addr, buffer, len);
2594 from_size = value_bitsize (fromval);
2596 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2598 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2599 ULONGEST from_offset = 0;
2600 if (is_big_endian && is_scalar_type (value_type (fromval)))
2601 from_offset = from_size - bits;
2602 copy_bitwise (buffer, value_bitpos (toval),
2603 value_contents (fromval), from_offset,
2604 bits, is_big_endian);
2605 write_memory_with_notification (to_addr, buffer, len);
2607 val = value_copy (toval);
2608 memcpy (value_contents_raw (val), value_contents (fromval),
2609 TYPE_LENGTH (type));
2610 deprecated_set_value_type (val, type);
2615 return value_assign (toval, fromval);
2619 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2620 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2621 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2622 COMPONENT, and not the inferior's memory. The current contents
2623 of COMPONENT are ignored.
2625 Although not part of the initial design, this function also works
2626 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2627 had a null address, and COMPONENT had an address which is equal to
2628 its offset inside CONTAINER. */
2631 value_assign_to_component (struct value *container, struct value *component,
2634 LONGEST offset_in_container =
2635 (LONGEST) (value_address (component) - value_address (container));
2636 int bit_offset_in_container =
2637 value_bitpos (component) - value_bitpos (container);
2640 val = value_cast (value_type (component), val);
2642 if (value_bitsize (component) == 0)
2643 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2645 bits = value_bitsize (component);
2647 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2651 if (is_scalar_type (check_typedef (value_type (component))))
2653 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2656 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2657 value_bitpos (container) + bit_offset_in_container,
2658 value_contents (val), src_offset, bits, 1);
2661 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2662 value_bitpos (container) + bit_offset_in_container,
2663 value_contents (val), 0, bits, 0);
2666 /* Determine if TYPE is an access to an unconstrained array. */
2669 ada_is_access_to_unconstrained_array (struct type *type)
2671 return (type->code () == TYPE_CODE_TYPEDEF
2672 && is_thick_pntr (ada_typedef_target_type (type)));
2675 /* The value of the element of array ARR at the ARITY indices given in IND.
2676 ARR may be either a simple array, GNAT array descriptor, or pointer
2680 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2684 struct type *elt_type;
2686 elt = ada_coerce_to_simple_array (arr);
2688 elt_type = ada_check_typedef (value_type (elt));
2689 if (elt_type->code () == TYPE_CODE_ARRAY
2690 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2691 return value_subscript_packed (elt, arity, ind);
2693 for (k = 0; k < arity; k += 1)
2695 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2697 if (elt_type->code () != TYPE_CODE_ARRAY)
2698 error (_("too many subscripts (%d expected)"), k);
2700 elt = value_subscript (elt, pos_atr (ind[k]));
2702 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2703 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2705 /* The element is a typedef to an unconstrained array,
2706 except that the value_subscript call stripped the
2707 typedef layer. The typedef layer is GNAT's way to
2708 specify that the element is, at the source level, an
2709 access to the unconstrained array, rather than the
2710 unconstrained array. So, we need to restore that
2711 typedef layer, which we can do by forcing the element's
2712 type back to its original type. Otherwise, the returned
2713 value is going to be printed as the array, rather
2714 than as an access. Another symptom of the same issue
2715 would be that an expression trying to dereference the
2716 element would also be improperly rejected. */
2717 deprecated_set_value_type (elt, saved_elt_type);
2720 elt_type = ada_check_typedef (value_type (elt));
2726 /* Assuming ARR is a pointer to a GDB array, the value of the element
2727 of *ARR at the ARITY indices given in IND.
2728 Does not read the entire array into memory.
2730 Note: Unlike what one would expect, this function is used instead of
2731 ada_value_subscript for basically all non-packed array types. The reason
2732 for this is that a side effect of doing our own pointer arithmetics instead
2733 of relying on value_subscript is that there is no implicit typedef peeling.
2734 This is important for arrays of array accesses, where it allows us to
2735 preserve the fact that the array's element is an array access, where the
2736 access part os encoded in a typedef layer. */
2738 static struct value *
2739 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2742 struct value *array_ind = ada_value_ind (arr);
2744 = check_typedef (value_enclosing_type (array_ind));
2746 if (type->code () == TYPE_CODE_ARRAY
2747 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2748 return value_subscript_packed (array_ind, arity, ind);
2750 for (k = 0; k < arity; k += 1)
2754 if (type->code () != TYPE_CODE_ARRAY)
2755 error (_("too many subscripts (%d expected)"), k);
2756 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2758 get_discrete_bounds (type->index_type (), &lwb, &upb);
2759 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2760 type = TYPE_TARGET_TYPE (type);
2763 return value_ind (arr);
2766 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2767 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2768 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2769 this array is LOW, as per Ada rules. */
2770 static struct value *
2771 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2774 struct type *type0 = ada_check_typedef (type);
2775 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2776 struct type *index_type
2777 = create_static_range_type (NULL, base_index_type, low, high);
2778 struct type *slice_type = create_array_type_with_stride
2779 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2780 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2781 TYPE_FIELD_BITSIZE (type0, 0));
2782 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2783 gdb::optional<LONGEST> base_low_pos, low_pos;
2786 low_pos = discrete_position (base_index_type, low);
2787 base_low_pos = discrete_position (base_index_type, base_low);
2789 if (!low_pos.has_value () || !base_low_pos.has_value ())
2791 warning (_("unable to get positions in slice, use bounds instead"));
2793 base_low_pos = base_low;
2796 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2798 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2800 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2801 return value_at_lazy (slice_type, base);
2805 static struct value *
2806 ada_value_slice (struct value *array, int low, int high)
2808 struct type *type = ada_check_typedef (value_type (array));
2809 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2810 struct type *index_type
2811 = create_static_range_type (NULL, type->index_type (), low, high);
2812 struct type *slice_type = create_array_type_with_stride
2813 (NULL, TYPE_TARGET_TYPE (type), index_type,
2814 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2815 TYPE_FIELD_BITSIZE (type, 0));
2816 gdb::optional<LONGEST> low_pos, high_pos;
2819 low_pos = discrete_position (base_index_type, low);
2820 high_pos = discrete_position (base_index_type, high);
2822 if (!low_pos.has_value () || !high_pos.has_value ())
2824 warning (_("unable to get positions in slice, use bounds instead"));
2829 return value_cast (slice_type,
2830 value_slice (array, low, *high_pos - *low_pos + 1));
2833 /* If type is a record type in the form of a standard GNAT array
2834 descriptor, returns the number of dimensions for type. If arr is a
2835 simple array, returns the number of "array of"s that prefix its
2836 type designation. Otherwise, returns 0. */
2839 ada_array_arity (struct type *type)
2846 type = desc_base_type (type);
2849 if (type->code () == TYPE_CODE_STRUCT)
2850 return desc_arity (desc_bounds_type (type));
2852 while (type->code () == TYPE_CODE_ARRAY)
2855 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2861 /* If TYPE is a record type in the form of a standard GNAT array
2862 descriptor or a simple array type, returns the element type for
2863 TYPE after indexing by NINDICES indices, or by all indices if
2864 NINDICES is -1. Otherwise, returns NULL. */
2867 ada_array_element_type (struct type *type, int nindices)
2869 type = desc_base_type (type);
2871 if (type->code () == TYPE_CODE_STRUCT)
2874 struct type *p_array_type;
2876 p_array_type = desc_data_target_type (type);
2878 k = ada_array_arity (type);
2882 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2883 if (nindices >= 0 && k > nindices)
2885 while (k > 0 && p_array_type != NULL)
2887 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2890 return p_array_type;
2892 else if (type->code () == TYPE_CODE_ARRAY)
2894 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2896 type = TYPE_TARGET_TYPE (type);
2905 /* See ada-lang.h. */
2908 ada_index_type (struct type *type, int n, const char *name)
2910 struct type *result_type;
2912 type = desc_base_type (type);
2914 if (n < 0 || n > ada_array_arity (type))
2915 error (_("invalid dimension number to '%s"), name);
2917 if (ada_is_simple_array_type (type))
2921 for (i = 1; i < n; i += 1)
2923 type = ada_check_typedef (type);
2924 type = TYPE_TARGET_TYPE (type);
2926 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
2927 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2928 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2929 perhaps stabsread.c would make more sense. */
2930 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2935 result_type = desc_index_type (desc_bounds_type (type), n);
2936 if (result_type == NULL)
2937 error (_("attempt to take bound of something that is not an array"));
2943 /* Given that arr is an array type, returns the lower bound of the
2944 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2945 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2946 array-descriptor type. It works for other arrays with bounds supplied
2947 by run-time quantities other than discriminants. */
2950 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2952 struct type *type, *index_type_desc, *index_type;
2955 gdb_assert (which == 0 || which == 1);
2957 if (ada_is_constrained_packed_array_type (arr_type))
2958 arr_type = decode_constrained_packed_array_type (arr_type);
2960 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2961 return (LONGEST) - which;
2963 if (arr_type->code () == TYPE_CODE_PTR)
2964 type = TYPE_TARGET_TYPE (arr_type);
2968 if (type->is_fixed_instance ())
2970 /* The array has already been fixed, so we do not need to
2971 check the parallel ___XA type again. That encoding has
2972 already been applied, so ignore it now. */
2973 index_type_desc = NULL;
2977 index_type_desc = ada_find_parallel_type (type, "___XA");
2978 ada_fixup_array_indexes_type (index_type_desc);
2981 if (index_type_desc != NULL)
2982 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2986 struct type *elt_type = check_typedef (type);
2988 for (i = 1; i < n; i++)
2989 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2991 index_type = elt_type->index_type ();
2995 (LONGEST) (which == 0
2996 ? ada_discrete_type_low_bound (index_type)
2997 : ada_discrete_type_high_bound (index_type));
3000 /* Given that arr is an array value, returns the lower bound of the
3001 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3002 WHICH is 1. This routine will also work for arrays with bounds
3003 supplied by run-time quantities other than discriminants. */
3006 ada_array_bound (struct value *arr, int n, int which)
3008 struct type *arr_type;
3010 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3011 arr = value_ind (arr);
3012 arr_type = value_enclosing_type (arr);
3014 if (ada_is_constrained_packed_array_type (arr_type))
3015 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3016 else if (ada_is_simple_array_type (arr_type))
3017 return ada_array_bound_from_type (arr_type, n, which);
3019 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3022 /* Given that arr is an array value, returns the length of the
3023 nth index. This routine will also work for arrays with bounds
3024 supplied by run-time quantities other than discriminants.
3025 Does not work for arrays indexed by enumeration types with representation
3026 clauses at the moment. */
3029 ada_array_length (struct value *arr, int n)
3031 struct type *arr_type, *index_type;
3034 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3035 arr = value_ind (arr);
3036 arr_type = value_enclosing_type (arr);
3038 if (ada_is_constrained_packed_array_type (arr_type))
3039 return ada_array_length (decode_constrained_packed_array (arr), n);
3041 if (ada_is_simple_array_type (arr_type))
3043 low = ada_array_bound_from_type (arr_type, n, 0);
3044 high = ada_array_bound_from_type (arr_type, n, 1);
3048 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3049 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3052 arr_type = check_typedef (arr_type);
3053 index_type = ada_index_type (arr_type, n, "length");
3054 if (index_type != NULL)
3056 struct type *base_type;
3057 if (index_type->code () == TYPE_CODE_RANGE)
3058 base_type = TYPE_TARGET_TYPE (index_type);
3060 base_type = index_type;
3062 low = pos_atr (value_from_longest (base_type, low));
3063 high = pos_atr (value_from_longest (base_type, high));
3065 return high - low + 1;
3068 /* An array whose type is that of ARR_TYPE (an array type), with
3069 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3070 less than LOW, then LOW-1 is used. */
3072 static struct value *
3073 empty_array (struct type *arr_type, int low, int high)
3075 struct type *arr_type0 = ada_check_typedef (arr_type);
3076 struct type *index_type
3077 = create_static_range_type
3078 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3079 high < low ? low - 1 : high);
3080 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3082 return allocate_value (create_array_type (NULL, elt_type, index_type));
3086 /* Name resolution */
3088 /* The "decoded" name for the user-definable Ada operator corresponding
3092 ada_decoded_op_name (enum exp_opcode op)
3096 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3098 if (ada_opname_table[i].op == op)
3099 return ada_opname_table[i].decoded;
3101 error (_("Could not find operator name for opcode"));
3104 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3105 in a listing of choices during disambiguation (see sort_choices, below).
3106 The idea is that overloadings of a subprogram name from the
3107 same package should sort in their source order. We settle for ordering
3108 such symbols by their trailing number (__N or $N). */
3111 encoded_ordered_before (const char *N0, const char *N1)
3115 else if (N0 == NULL)
3121 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3123 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3125 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3126 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3131 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3134 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3136 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3137 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3139 return (strcmp (N0, N1) < 0);
3143 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3147 sort_choices (struct block_symbol syms[], int nsyms)
3151 for (i = 1; i < nsyms; i += 1)
3153 struct block_symbol sym = syms[i];
3156 for (j = i - 1; j >= 0; j -= 1)
3158 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3159 sym.symbol->linkage_name ()))
3161 syms[j + 1] = syms[j];
3167 /* Whether GDB should display formals and return types for functions in the
3168 overloads selection menu. */
3169 static bool print_signatures = true;
3171 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3172 all but functions, the signature is just the name of the symbol. For
3173 functions, this is the name of the function, the list of types for formals
3174 and the return type (if any). */
3177 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3178 const struct type_print_options *flags)
3180 struct type *type = SYMBOL_TYPE (sym);
3182 fprintf_filtered (stream, "%s", sym->print_name ());
3183 if (!print_signatures
3185 || type->code () != TYPE_CODE_FUNC)
3188 if (type->num_fields () > 0)
3192 fprintf_filtered (stream, " (");
3193 for (i = 0; i < type->num_fields (); ++i)
3196 fprintf_filtered (stream, "; ");
3197 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3200 fprintf_filtered (stream, ")");
3202 if (TYPE_TARGET_TYPE (type) != NULL
3203 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3205 fprintf_filtered (stream, " return ");
3206 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3210 /* Read and validate a set of numeric choices from the user in the
3211 range 0 .. N_CHOICES-1. Place the results in increasing
3212 order in CHOICES[0 .. N-1], and return N.
3214 The user types choices as a sequence of numbers on one line
3215 separated by blanks, encoding them as follows:
3217 + A choice of 0 means to cancel the selection, throwing an error.
3218 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3219 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3221 The user is not allowed to choose more than MAX_RESULTS values.
3223 ANNOTATION_SUFFIX, if present, is used to annotate the input
3224 prompts (for use with the -f switch). */
3227 get_selections (int *choices, int n_choices, int max_results,
3228 int is_all_choice, const char *annotation_suffix)
3233 int first_choice = is_all_choice ? 2 : 1;
3235 prompt = getenv ("PS2");
3239 args = command_line_input (prompt, annotation_suffix);
3242 error_no_arg (_("one or more choice numbers"));
3246 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3247 order, as given in args. Choices are validated. */
3253 args = skip_spaces (args);
3254 if (*args == '\0' && n_chosen == 0)
3255 error_no_arg (_("one or more choice numbers"));
3256 else if (*args == '\0')
3259 choice = strtol (args, &args2, 10);
3260 if (args == args2 || choice < 0
3261 || choice > n_choices + first_choice - 1)
3262 error (_("Argument must be choice number"));
3266 error (_("cancelled"));
3268 if (choice < first_choice)
3270 n_chosen = n_choices;
3271 for (j = 0; j < n_choices; j += 1)
3275 choice -= first_choice;
3277 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3281 if (j < 0 || choice != choices[j])
3285 for (k = n_chosen - 1; k > j; k -= 1)
3286 choices[k + 1] = choices[k];
3287 choices[j + 1] = choice;
3292 if (n_chosen > max_results)
3293 error (_("Select no more than %d of the above"), max_results);
3298 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3299 by asking the user (if necessary), returning the number selected,
3300 and setting the first elements of SYMS items. Error if no symbols
3303 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3304 to be re-integrated one of these days. */
3307 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3310 int *chosen = XALLOCAVEC (int , nsyms);
3312 int first_choice = (max_results == 1) ? 1 : 2;
3313 const char *select_mode = multiple_symbols_select_mode ();
3315 if (max_results < 1)
3316 error (_("Request to select 0 symbols!"));
3320 if (select_mode == multiple_symbols_cancel)
3322 canceled because the command is ambiguous\n\
3323 See set/show multiple-symbol."));
3325 /* If select_mode is "all", then return all possible symbols.
3326 Only do that if more than one symbol can be selected, of course.
3327 Otherwise, display the menu as usual. */
3328 if (select_mode == multiple_symbols_all && max_results > 1)
3331 printf_filtered (_("[0] cancel\n"));
3332 if (max_results > 1)
3333 printf_filtered (_("[1] all\n"));
3335 sort_choices (syms, nsyms);
3337 for (i = 0; i < nsyms; i += 1)
3339 if (syms[i].symbol == NULL)
3342 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3344 struct symtab_and_line sal =
3345 find_function_start_sal (syms[i].symbol, 1);
3347 printf_filtered ("[%d] ", i + first_choice);
3348 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3349 &type_print_raw_options);
3350 if (sal.symtab == NULL)
3351 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3352 metadata_style.style ().ptr (), nullptr, sal.line);
3356 styled_string (file_name_style.style (),
3357 symtab_to_filename_for_display (sal.symtab)),
3364 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3365 && SYMBOL_TYPE (syms[i].symbol) != NULL
3366 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3367 struct symtab *symtab = NULL;
3369 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3370 symtab = symbol_symtab (syms[i].symbol);
3372 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3374 printf_filtered ("[%d] ", i + first_choice);
3375 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3376 &type_print_raw_options);
3377 printf_filtered (_(" at %s:%d\n"),
3378 symtab_to_filename_for_display (symtab),
3379 SYMBOL_LINE (syms[i].symbol));
3381 else if (is_enumeral
3382 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3384 printf_filtered (("[%d] "), i + first_choice);
3385 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3386 gdb_stdout, -1, 0, &type_print_raw_options);
3387 printf_filtered (_("'(%s) (enumeral)\n"),
3388 syms[i].symbol->print_name ());
3392 printf_filtered ("[%d] ", i + first_choice);
3393 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3394 &type_print_raw_options);
3397 printf_filtered (is_enumeral
3398 ? _(" in %s (enumeral)\n")
3400 symtab_to_filename_for_display (symtab));
3402 printf_filtered (is_enumeral
3403 ? _(" (enumeral)\n")
3409 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3412 for (i = 0; i < n_chosen; i += 1)
3413 syms[i] = syms[chosen[i]];
3418 /* See ada-lang.h. */
3421 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3422 int nargs, value *argvec[])
3424 if (possible_user_operator_p (op, argvec))
3426 std::vector<struct block_symbol> candidates
3427 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3430 int i = ada_resolve_function (candidates, argvec,
3431 nargs, ada_decoded_op_name (op), NULL,
3434 return candidates[i];
3439 /* See ada-lang.h. */
3442 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3443 struct type *context_type,
3444 bool parse_completion,
3445 int nargs, value *argvec[],
3446 innermost_block_tracker *tracker)
3448 std::vector<struct block_symbol> candidates
3449 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3452 if (candidates.size () == 1)
3456 i = ada_resolve_function
3459 sym->linkage_name (),
3460 context_type, parse_completion);
3462 error (_("Could not find a match for %s"), sym->print_name ());
3465 tracker->update (candidates[i]);
3466 return candidates[i];
3469 /* Resolve a mention of a name where the context type is an
3470 enumeration type. */
3473 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3474 const char *name, struct type *context_type,
3475 bool parse_completion)
3477 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3478 context_type = ada_check_typedef (context_type);
3480 for (int i = 0; i < syms.size (); ++i)
3482 /* We already know the name matches, so we're just looking for
3483 an element of the correct enum type. */
3484 if (ada_check_typedef (SYMBOL_TYPE (syms[i].symbol)) == context_type)
3488 error (_("No name '%s' in enumeration type '%s'"), name,
3489 ada_type_name (context_type));
3492 /* See ada-lang.h. */
3495 ada_resolve_variable (struct symbol *sym, const struct block *block,
3496 struct type *context_type,
3497 bool parse_completion,
3499 innermost_block_tracker *tracker)
3501 std::vector<struct block_symbol> candidates
3502 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3504 if (std::any_of (candidates.begin (),
3506 [] (block_symbol &bsym)
3508 switch (SYMBOL_CLASS (bsym.symbol))
3513 case LOC_REGPARM_ADDR:
3522 /* Types tend to get re-introduced locally, so if there
3523 are any local symbols that are not types, first filter
3527 (candidates.begin (),
3529 [] (block_symbol &bsym)
3531 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3536 /* Filter out artificial symbols. */
3539 (candidates.begin (),
3541 [] (block_symbol &bsym)
3543 return bsym.symbol->artificial;
3548 if (candidates.empty ())
3549 error (_("No definition found for %s"), sym->print_name ());
3550 else if (candidates.size () == 1)
3552 else if (context_type != nullptr
3553 && context_type->code () == TYPE_CODE_ENUM)
3554 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3556 else if (deprocedure_p && !is_nonfunction (candidates))
3558 i = ada_resolve_function
3559 (candidates, NULL, 0,
3560 sym->linkage_name (),
3561 context_type, parse_completion);
3563 error (_("Could not find a match for %s"), sym->print_name ());
3567 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3568 user_select_syms (candidates.data (), candidates.size (), 1);
3572 tracker->update (candidates[i]);
3573 return candidates[i];
3576 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3577 /* The term "match" here is rather loose. The match is heuristic and
3581 ada_type_match (struct type *ftype, struct type *atype)
3583 ftype = ada_check_typedef (ftype);
3584 atype = ada_check_typedef (atype);
3586 if (ftype->code () == TYPE_CODE_REF)
3587 ftype = TYPE_TARGET_TYPE (ftype);
3588 if (atype->code () == TYPE_CODE_REF)
3589 atype = TYPE_TARGET_TYPE (atype);
3591 switch (ftype->code ())
3594 return ftype->code () == atype->code ();
3596 if (atype->code () != TYPE_CODE_PTR)
3598 atype = TYPE_TARGET_TYPE (atype);
3599 /* This can only happen if the actual argument is 'null'. */
3600 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3602 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3604 case TYPE_CODE_ENUM:
3605 case TYPE_CODE_RANGE:
3606 switch (atype->code ())
3609 case TYPE_CODE_ENUM:
3610 case TYPE_CODE_RANGE:
3616 case TYPE_CODE_ARRAY:
3617 return (atype->code () == TYPE_CODE_ARRAY
3618 || ada_is_array_descriptor_type (atype));
3620 case TYPE_CODE_STRUCT:
3621 if (ada_is_array_descriptor_type (ftype))
3622 return (atype->code () == TYPE_CODE_ARRAY
3623 || ada_is_array_descriptor_type (atype));
3625 return (atype->code () == TYPE_CODE_STRUCT
3626 && !ada_is_array_descriptor_type (atype));
3628 case TYPE_CODE_UNION:
3630 return (atype->code () == ftype->code ());
3634 /* Return non-zero if the formals of FUNC "sufficiently match" the
3635 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3636 may also be an enumeral, in which case it is treated as a 0-
3637 argument function. */
3640 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3643 struct type *func_type = SYMBOL_TYPE (func);
3645 if (SYMBOL_CLASS (func) == LOC_CONST
3646 && func_type->code () == TYPE_CODE_ENUM)
3647 return (n_actuals == 0);
3648 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3651 if (func_type->num_fields () != n_actuals)
3654 for (i = 0; i < n_actuals; i += 1)
3656 if (actuals[i] == NULL)
3660 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3661 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3663 if (!ada_type_match (ftype, atype))
3670 /* False iff function type FUNC_TYPE definitely does not produce a value
3671 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3672 FUNC_TYPE is not a valid function type with a non-null return type
3673 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3676 return_match (struct type *func_type, struct type *context_type)
3678 struct type *return_type;
3680 if (func_type == NULL)
3683 if (func_type->code () == TYPE_CODE_FUNC)
3684 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3686 return_type = get_base_type (func_type);
3687 if (return_type == NULL)
3690 context_type = get_base_type (context_type);
3692 if (return_type->code () == TYPE_CODE_ENUM)
3693 return context_type == NULL || return_type == context_type;
3694 else if (context_type == NULL)
3695 return return_type->code () != TYPE_CODE_VOID;
3697 return return_type->code () == context_type->code ();
3701 /* Returns the index in SYMS that contains the symbol for the
3702 function (if any) that matches the types of the NARGS arguments in
3703 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3704 that returns that type, then eliminate matches that don't. If
3705 CONTEXT_TYPE is void and there is at least one match that does not
3706 return void, eliminate all matches that do.
3708 Asks the user if there is more than one match remaining. Returns -1
3709 if there is no such symbol or none is selected. NAME is used
3710 solely for messages. May re-arrange and modify SYMS in
3711 the process; the index returned is for the modified vector. */
3714 ada_resolve_function (std::vector<struct block_symbol> &syms,
3715 struct value **args, int nargs,
3716 const char *name, struct type *context_type,
3717 bool parse_completion)
3721 int m; /* Number of hits */
3724 /* In the first pass of the loop, we only accept functions matching
3725 context_type. If none are found, we add a second pass of the loop
3726 where every function is accepted. */
3727 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3729 for (k = 0; k < syms.size (); k += 1)
3731 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3733 if (ada_args_match (syms[k].symbol, args, nargs)
3734 && (fallback || return_match (type, context_type)))
3742 /* If we got multiple matches, ask the user which one to use. Don't do this
3743 interactive thing during completion, though, as the purpose of the
3744 completion is providing a list of all possible matches. Prompting the
3745 user to filter it down would be completely unexpected in this case. */
3748 else if (m > 1 && !parse_completion)
3750 printf_filtered (_("Multiple matches for %s\n"), name);
3751 user_select_syms (syms.data (), m, 1);
3757 /* Type-class predicates */
3759 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3763 numeric_type_p (struct type *type)
3769 switch (type->code ())
3773 case TYPE_CODE_FIXED_POINT:
3775 case TYPE_CODE_RANGE:
3776 return (type == TYPE_TARGET_TYPE (type)
3777 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3784 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3787 integer_type_p (struct type *type)
3793 switch (type->code ())
3797 case TYPE_CODE_RANGE:
3798 return (type == TYPE_TARGET_TYPE (type)
3799 || integer_type_p (TYPE_TARGET_TYPE (type)));
3806 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3809 scalar_type_p (struct type *type)
3815 switch (type->code ())
3818 case TYPE_CODE_RANGE:
3819 case TYPE_CODE_ENUM:
3821 case TYPE_CODE_FIXED_POINT:
3829 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3832 discrete_type_p (struct type *type)
3838 switch (type->code ())
3841 case TYPE_CODE_RANGE:
3842 case TYPE_CODE_ENUM:
3843 case TYPE_CODE_BOOL:
3851 /* Returns non-zero if OP with operands in the vector ARGS could be
3852 a user-defined function. Errs on the side of pre-defined operators
3853 (i.e., result 0). */
3856 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3858 struct type *type0 =
3859 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3860 struct type *type1 =
3861 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3875 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3879 case BINOP_BITWISE_AND:
3880 case BINOP_BITWISE_IOR:
3881 case BINOP_BITWISE_XOR:
3882 return (!(integer_type_p (type0) && integer_type_p (type1)));
3885 case BINOP_NOTEQUAL:
3890 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3893 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3896 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3900 case UNOP_LOGICAL_NOT:
3902 return (!numeric_type_p (type0));
3911 1. In the following, we assume that a renaming type's name may
3912 have an ___XD suffix. It would be nice if this went away at some
3914 2. We handle both the (old) purely type-based representation of
3915 renamings and the (new) variable-based encoding. At some point,
3916 it is devoutly to be hoped that the former goes away
3917 (FIXME: hilfinger-2007-07-09).
3918 3. Subprogram renamings are not implemented, although the XRS
3919 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3921 /* If SYM encodes a renaming,
3923 <renaming> renames <renamed entity>,
3925 sets *LEN to the length of the renamed entity's name,
3926 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3927 the string describing the subcomponent selected from the renamed
3928 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3929 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3930 are undefined). Otherwise, returns a value indicating the category
3931 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3932 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3933 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3934 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3935 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3936 may be NULL, in which case they are not assigned.
3938 [Currently, however, GCC does not generate subprogram renamings.] */
3940 enum ada_renaming_category
3941 ada_parse_renaming (struct symbol *sym,
3942 const char **renamed_entity, int *len,
3943 const char **renaming_expr)
3945 enum ada_renaming_category kind;
3950 return ADA_NOT_RENAMING;
3951 switch (SYMBOL_CLASS (sym))
3954 return ADA_NOT_RENAMING;
3958 case LOC_OPTIMIZED_OUT:
3959 info = strstr (sym->linkage_name (), "___XR");
3961 return ADA_NOT_RENAMING;
3965 kind = ADA_OBJECT_RENAMING;
3969 kind = ADA_EXCEPTION_RENAMING;
3973 kind = ADA_PACKAGE_RENAMING;
3977 kind = ADA_SUBPROGRAM_RENAMING;
3981 return ADA_NOT_RENAMING;
3985 if (renamed_entity != NULL)
3986 *renamed_entity = info;
3987 suffix = strstr (info, "___XE");
3988 if (suffix == NULL || suffix == info)
3989 return ADA_NOT_RENAMING;
3991 *len = strlen (info) - strlen (suffix);
3993 if (renaming_expr != NULL)
3994 *renaming_expr = suffix;
3998 /* Compute the value of the given RENAMING_SYM, which is expected to
3999 be a symbol encoding a renaming expression. BLOCK is the block
4000 used to evaluate the renaming. */
4002 static struct value *
4003 ada_read_renaming_var_value (struct symbol *renaming_sym,
4004 const struct block *block)
4006 const char *sym_name;
4008 sym_name = renaming_sym->linkage_name ();
4009 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4010 return evaluate_expression (expr.get ());
4014 /* Evaluation: Function Calls */
4016 /* Return an lvalue containing the value VAL. This is the identity on
4017 lvalues, and otherwise has the side-effect of allocating memory
4018 in the inferior where a copy of the value contents is copied. */
4020 static struct value *
4021 ensure_lval (struct value *val)
4023 if (VALUE_LVAL (val) == not_lval
4024 || VALUE_LVAL (val) == lval_internalvar)
4026 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4027 const CORE_ADDR addr =
4028 value_as_long (value_allocate_space_in_inferior (len));
4030 VALUE_LVAL (val) = lval_memory;
4031 set_value_address (val, addr);
4032 write_memory (addr, value_contents (val), len);
4038 /* Given ARG, a value of type (pointer or reference to a)*
4039 structure/union, extract the component named NAME from the ultimate
4040 target structure/union and return it as a value with its
4043 The routine searches for NAME among all members of the structure itself
4044 and (recursively) among all members of any wrapper members
4047 If NO_ERR, then simply return NULL in case of error, rather than
4050 static struct value *
4051 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4053 struct type *t, *t1;
4058 t1 = t = ada_check_typedef (value_type (arg));
4059 if (t->code () == TYPE_CODE_REF)
4061 t1 = TYPE_TARGET_TYPE (t);
4064 t1 = ada_check_typedef (t1);
4065 if (t1->code () == TYPE_CODE_PTR)
4067 arg = coerce_ref (arg);
4072 while (t->code () == TYPE_CODE_PTR)
4074 t1 = TYPE_TARGET_TYPE (t);
4077 t1 = ada_check_typedef (t1);
4078 if (t1->code () == TYPE_CODE_PTR)
4080 arg = value_ind (arg);
4087 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4091 v = ada_search_struct_field (name, arg, 0, t);
4094 int bit_offset, bit_size, byte_offset;
4095 struct type *field_type;
4098 if (t->code () == TYPE_CODE_PTR)
4099 address = value_address (ada_value_ind (arg));
4101 address = value_address (ada_coerce_ref (arg));
4103 /* Check to see if this is a tagged type. We also need to handle
4104 the case where the type is a reference to a tagged type, but
4105 we have to be careful to exclude pointers to tagged types.
4106 The latter should be shown as usual (as a pointer), whereas
4107 a reference should mostly be transparent to the user. */
4109 if (ada_is_tagged_type (t1, 0)
4110 || (t1->code () == TYPE_CODE_REF
4111 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4113 /* We first try to find the searched field in the current type.
4114 If not found then let's look in the fixed type. */
4116 if (!find_struct_field (name, t1, 0,
4117 &field_type, &byte_offset, &bit_offset,
4126 /* Convert to fixed type in all cases, so that we have proper
4127 offsets to each field in unconstrained record types. */
4128 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4129 address, NULL, check_tag);
4131 /* Resolve the dynamic type as well. */
4132 arg = value_from_contents_and_address (t1, nullptr, address);
4133 t1 = value_type (arg);
4135 if (find_struct_field (name, t1, 0,
4136 &field_type, &byte_offset, &bit_offset,
4141 if (t->code () == TYPE_CODE_REF)
4142 arg = ada_coerce_ref (arg);
4144 arg = ada_value_ind (arg);
4145 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4146 bit_offset, bit_size,
4150 v = value_at_lazy (field_type, address + byte_offset);
4154 if (v != NULL || no_err)
4157 error (_("There is no member named %s."), name);
4163 error (_("Attempt to extract a component of "
4164 "a value that is not a record."));
4167 /* Return the value ACTUAL, converted to be an appropriate value for a
4168 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4169 allocating any necessary descriptors (fat pointers), or copies of
4170 values not residing in memory, updating it as needed. */
4173 ada_convert_actual (struct value *actual, struct type *formal_type0)
4175 struct type *actual_type = ada_check_typedef (value_type (actual));
4176 struct type *formal_type = ada_check_typedef (formal_type0);
4177 struct type *formal_target =
4178 formal_type->code () == TYPE_CODE_PTR
4179 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4180 struct type *actual_target =
4181 actual_type->code () == TYPE_CODE_PTR
4182 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4184 if (ada_is_array_descriptor_type (formal_target)
4185 && actual_target->code () == TYPE_CODE_ARRAY)
4186 return make_array_descriptor (formal_type, actual);
4187 else if (formal_type->code () == TYPE_CODE_PTR
4188 || formal_type->code () == TYPE_CODE_REF)
4190 struct value *result;
4192 if (formal_target->code () == TYPE_CODE_ARRAY
4193 && ada_is_array_descriptor_type (actual_target))
4194 result = desc_data (actual);
4195 else if (formal_type->code () != TYPE_CODE_PTR)
4197 if (VALUE_LVAL (actual) != lval_memory)
4201 actual_type = ada_check_typedef (value_type (actual));
4202 val = allocate_value (actual_type);
4203 memcpy ((char *) value_contents_raw (val),
4204 (char *) value_contents (actual),
4205 TYPE_LENGTH (actual_type));
4206 actual = ensure_lval (val);
4208 result = value_addr (actual);
4212 return value_cast_pointers (formal_type, result, 0);
4214 else if (actual_type->code () == TYPE_CODE_PTR)
4215 return ada_value_ind (actual);
4216 else if (ada_is_aligner_type (formal_type))
4218 /* We need to turn this parameter into an aligner type
4220 struct value *aligner = allocate_value (formal_type);
4221 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4223 value_assign_to_component (aligner, component, actual);
4230 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4231 type TYPE. This is usually an inefficient no-op except on some targets
4232 (such as AVR) where the representation of a pointer and an address
4236 value_pointer (struct value *value, struct type *type)
4238 unsigned len = TYPE_LENGTH (type);
4239 gdb_byte *buf = (gdb_byte *) alloca (len);
4242 addr = value_address (value);
4243 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4244 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4249 /* Push a descriptor of type TYPE for array value ARR on the stack at
4250 *SP, updating *SP to reflect the new descriptor. Return either
4251 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4252 to-descriptor type rather than a descriptor type), a struct value *
4253 representing a pointer to this descriptor. */
4255 static struct value *
4256 make_array_descriptor (struct type *type, struct value *arr)
4258 struct type *bounds_type = desc_bounds_type (type);
4259 struct type *desc_type = desc_base_type (type);
4260 struct value *descriptor = allocate_value (desc_type);
4261 struct value *bounds = allocate_value (bounds_type);
4264 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4267 modify_field (value_type (bounds), value_contents_writeable (bounds),
4268 ada_array_bound (arr, i, 0),
4269 desc_bound_bitpos (bounds_type, i, 0),
4270 desc_bound_bitsize (bounds_type, i, 0));
4271 modify_field (value_type (bounds), value_contents_writeable (bounds),
4272 ada_array_bound (arr, i, 1),
4273 desc_bound_bitpos (bounds_type, i, 1),
4274 desc_bound_bitsize (bounds_type, i, 1));
4277 bounds = ensure_lval (bounds);
4279 modify_field (value_type (descriptor),
4280 value_contents_writeable (descriptor),
4281 value_pointer (ensure_lval (arr),
4282 desc_type->field (0).type ()),
4283 fat_pntr_data_bitpos (desc_type),
4284 fat_pntr_data_bitsize (desc_type));
4286 modify_field (value_type (descriptor),
4287 value_contents_writeable (descriptor),
4288 value_pointer (bounds,
4289 desc_type->field (1).type ()),
4290 fat_pntr_bounds_bitpos (desc_type),
4291 fat_pntr_bounds_bitsize (desc_type));
4293 descriptor = ensure_lval (descriptor);
4295 if (type->code () == TYPE_CODE_PTR)
4296 return value_addr (descriptor);
4301 /* Symbol Cache Module */
4303 /* Performance measurements made as of 2010-01-15 indicate that
4304 this cache does bring some noticeable improvements. Depending
4305 on the type of entity being printed, the cache can make it as much
4306 as an order of magnitude faster than without it.
4308 The descriptive type DWARF extension has significantly reduced
4309 the need for this cache, at least when DWARF is being used. However,
4310 even in this case, some expensive name-based symbol searches are still
4311 sometimes necessary - to find an XVZ variable, mostly. */
4313 /* Return the symbol cache associated to the given program space PSPACE.
4314 If not allocated for this PSPACE yet, allocate and initialize one. */
4316 static struct ada_symbol_cache *
4317 ada_get_symbol_cache (struct program_space *pspace)
4319 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4321 if (pspace_data->sym_cache == nullptr)
4322 pspace_data->sym_cache.reset (new ada_symbol_cache);
4324 return pspace_data->sym_cache.get ();
4327 /* Clear all entries from the symbol cache. */
4330 ada_clear_symbol_cache ()
4332 struct ada_pspace_data *pspace_data
4333 = get_ada_pspace_data (current_program_space);
4335 if (pspace_data->sym_cache != nullptr)
4336 pspace_data->sym_cache.reset ();
4339 /* Search our cache for an entry matching NAME and DOMAIN.
4340 Return it if found, or NULL otherwise. */
4342 static struct cache_entry **
4343 find_entry (const char *name, domain_enum domain)
4345 struct ada_symbol_cache *sym_cache
4346 = ada_get_symbol_cache (current_program_space);
4347 int h = msymbol_hash (name) % HASH_SIZE;
4348 struct cache_entry **e;
4350 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4352 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4358 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4359 Return 1 if found, 0 otherwise.
4361 If an entry was found and SYM is not NULL, set *SYM to the entry's
4362 SYM. Same principle for BLOCK if not NULL. */
4365 lookup_cached_symbol (const char *name, domain_enum domain,
4366 struct symbol **sym, const struct block **block)
4368 struct cache_entry **e = find_entry (name, domain);
4375 *block = (*e)->block;
4379 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4380 in domain DOMAIN, save this result in our symbol cache. */
4383 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4384 const struct block *block)
4386 struct ada_symbol_cache *sym_cache
4387 = ada_get_symbol_cache (current_program_space);
4389 struct cache_entry *e;
4391 /* Symbols for builtin types don't have a block.
4392 For now don't cache such symbols. */
4393 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4396 /* If the symbol is a local symbol, then do not cache it, as a search
4397 for that symbol depends on the context. To determine whether
4398 the symbol is local or not, we check the block where we found it
4399 against the global and static blocks of its associated symtab. */
4401 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4402 GLOBAL_BLOCK) != block
4403 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4404 STATIC_BLOCK) != block)
4407 h = msymbol_hash (name) % HASH_SIZE;
4408 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4409 e->next = sym_cache->root[h];
4410 sym_cache->root[h] = e;
4411 e->name = obstack_strdup (&sym_cache->cache_space, name);
4419 /* Return the symbol name match type that should be used used when
4420 searching for all symbols matching LOOKUP_NAME.
4422 LOOKUP_NAME is expected to be a symbol name after transformation
4425 static symbol_name_match_type
4426 name_match_type_from_name (const char *lookup_name)
4428 return (strstr (lookup_name, "__") == NULL
4429 ? symbol_name_match_type::WILD
4430 : symbol_name_match_type::FULL);
4433 /* Return the result of a standard (literal, C-like) lookup of NAME in
4434 given DOMAIN, visible from lexical block BLOCK. */
4436 static struct symbol *
4437 standard_lookup (const char *name, const struct block *block,
4440 /* Initialize it just to avoid a GCC false warning. */
4441 struct block_symbol sym = {};
4443 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4445 ada_lookup_encoded_symbol (name, block, domain, &sym);
4446 cache_symbol (name, domain, sym.symbol, sym.block);
4451 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4452 in the symbol fields of SYMS. We treat enumerals as functions,
4453 since they contend in overloading in the same way. */
4455 is_nonfunction (const std::vector<struct block_symbol> &syms)
4457 for (const block_symbol &sym : syms)
4458 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4459 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4460 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4466 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4467 struct types. Otherwise, they may not. */
4470 equiv_types (struct type *type0, struct type *type1)
4474 if (type0 == NULL || type1 == NULL
4475 || type0->code () != type1->code ())
4477 if ((type0->code () == TYPE_CODE_STRUCT
4478 || type0->code () == TYPE_CODE_ENUM)
4479 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4480 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4486 /* True iff SYM0 represents the same entity as SYM1, or one that is
4487 no more defined than that of SYM1. */
4490 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4494 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4495 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4498 switch (SYMBOL_CLASS (sym0))
4504 struct type *type0 = SYMBOL_TYPE (sym0);
4505 struct type *type1 = SYMBOL_TYPE (sym1);
4506 const char *name0 = sym0->linkage_name ();
4507 const char *name1 = sym1->linkage_name ();
4508 int len0 = strlen (name0);
4511 type0->code () == type1->code ()
4512 && (equiv_types (type0, type1)
4513 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4514 && startswith (name1 + len0, "___XV")));
4517 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4518 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4522 const char *name0 = sym0->linkage_name ();
4523 const char *name1 = sym1->linkage_name ();
4524 return (strcmp (name0, name1) == 0
4525 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4533 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4534 records in RESULT. Do nothing if SYM is a duplicate. */
4537 add_defn_to_vec (std::vector<struct block_symbol> &result,
4539 const struct block *block)
4541 /* Do not try to complete stub types, as the debugger is probably
4542 already scanning all symbols matching a certain name at the
4543 time when this function is called. Trying to replace the stub
4544 type by its associated full type will cause us to restart a scan
4545 which may lead to an infinite recursion. Instead, the client
4546 collecting the matching symbols will end up collecting several
4547 matches, with at least one of them complete. It can then filter
4548 out the stub ones if needed. */
4550 for (int i = result.size () - 1; i >= 0; i -= 1)
4552 if (lesseq_defined_than (sym, result[i].symbol))
4554 else if (lesseq_defined_than (result[i].symbol, sym))
4556 result[i].symbol = sym;
4557 result[i].block = block;
4562 struct block_symbol info;
4565 result.push_back (info);
4568 /* Return a bound minimal symbol matching NAME according to Ada
4569 decoding rules. Returns an invalid symbol if there is no such
4570 minimal symbol. Names prefixed with "standard__" are handled
4571 specially: "standard__" is first stripped off, and only static and
4572 global symbols are searched. */
4574 struct bound_minimal_symbol
4575 ada_lookup_simple_minsym (const char *name)
4577 struct bound_minimal_symbol result;
4579 memset (&result, 0, sizeof (result));
4581 symbol_name_match_type match_type = name_match_type_from_name (name);
4582 lookup_name_info lookup_name (name, match_type);
4584 symbol_name_matcher_ftype *match_name
4585 = ada_get_symbol_name_matcher (lookup_name);
4587 for (objfile *objfile : current_program_space->objfiles ())
4589 for (minimal_symbol *msymbol : objfile->msymbols ())
4591 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4592 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4594 result.minsym = msymbol;
4595 result.objfile = objfile;
4604 /* True if TYPE is definitely an artificial type supplied to a symbol
4605 for which no debugging information was given in the symbol file. */
4608 is_nondebugging_type (struct type *type)
4610 const char *name = ada_type_name (type);
4612 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4615 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4616 that are deemed "identical" for practical purposes.
4618 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4619 types and that their number of enumerals is identical (in other
4620 words, type1->num_fields () == type2->num_fields ()). */
4623 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4627 /* The heuristic we use here is fairly conservative. We consider
4628 that 2 enumerate types are identical if they have the same
4629 number of enumerals and that all enumerals have the same
4630 underlying value and name. */
4632 /* All enums in the type should have an identical underlying value. */
4633 for (i = 0; i < type1->num_fields (); i++)
4634 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4637 /* All enumerals should also have the same name (modulo any numerical
4639 for (i = 0; i < type1->num_fields (); i++)
4641 const char *name_1 = type1->field (i).name ();
4642 const char *name_2 = type2->field (i).name ();
4643 int len_1 = strlen (name_1);
4644 int len_2 = strlen (name_2);
4646 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4647 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4649 || strncmp (type1->field (i).name (),
4650 type2->field (i).name (),
4658 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4659 that are deemed "identical" for practical purposes. Sometimes,
4660 enumerals are not strictly identical, but their types are so similar
4661 that they can be considered identical.
4663 For instance, consider the following code:
4665 type Color is (Black, Red, Green, Blue, White);
4666 type RGB_Color is new Color range Red .. Blue;
4668 Type RGB_Color is a subrange of an implicit type which is a copy
4669 of type Color. If we call that implicit type RGB_ColorB ("B" is
4670 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4671 As a result, when an expression references any of the enumeral
4672 by name (Eg. "print green"), the expression is technically
4673 ambiguous and the user should be asked to disambiguate. But
4674 doing so would only hinder the user, since it wouldn't matter
4675 what choice he makes, the outcome would always be the same.
4676 So, for practical purposes, we consider them as the same. */
4679 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4683 /* Before performing a thorough comparison check of each type,
4684 we perform a series of inexpensive checks. We expect that these
4685 checks will quickly fail in the vast majority of cases, and thus
4686 help prevent the unnecessary use of a more expensive comparison.
4687 Said comparison also expects us to make some of these checks
4688 (see ada_identical_enum_types_p). */
4690 /* Quick check: All symbols should have an enum type. */
4691 for (i = 0; i < syms.size (); i++)
4692 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4695 /* Quick check: They should all have the same value. */
4696 for (i = 1; i < syms.size (); i++)
4697 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4700 /* Quick check: They should all have the same number of enumerals. */
4701 for (i = 1; i < syms.size (); i++)
4702 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4703 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4706 /* All the sanity checks passed, so we might have a set of
4707 identical enumeration types. Perform a more complete
4708 comparison of the type of each symbol. */
4709 for (i = 1; i < syms.size (); i++)
4710 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4711 SYMBOL_TYPE (syms[0].symbol)))
4717 /* Remove any non-debugging symbols in SYMS that definitely
4718 duplicate other symbols in the list (The only case I know of where
4719 this happens is when object files containing stabs-in-ecoff are
4720 linked with files containing ordinary ecoff debugging symbols (or no
4721 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4724 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4728 /* We should never be called with less than 2 symbols, as there
4729 cannot be any extra symbol in that case. But it's easy to
4730 handle, since we have nothing to do in that case. */
4731 if (syms->size () < 2)
4735 while (i < syms->size ())
4739 /* If two symbols have the same name and one of them is a stub type,
4740 the get rid of the stub. */
4742 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4743 && (*syms)[i].symbol->linkage_name () != NULL)
4745 for (j = 0; j < syms->size (); j++)
4748 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4749 && (*syms)[j].symbol->linkage_name () != NULL
4750 && strcmp ((*syms)[i].symbol->linkage_name (),
4751 (*syms)[j].symbol->linkage_name ()) == 0)
4756 /* Two symbols with the same name, same class and same address
4757 should be identical. */
4759 else if ((*syms)[i].symbol->linkage_name () != NULL
4760 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4761 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4763 for (j = 0; j < syms->size (); j += 1)
4766 && (*syms)[j].symbol->linkage_name () != NULL
4767 && strcmp ((*syms)[i].symbol->linkage_name (),
4768 (*syms)[j].symbol->linkage_name ()) == 0
4769 && SYMBOL_CLASS ((*syms)[i].symbol)
4770 == SYMBOL_CLASS ((*syms)[j].symbol)
4771 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4772 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4778 syms->erase (syms->begin () + i);
4783 /* If all the remaining symbols are identical enumerals, then
4784 just keep the first one and discard the rest.
4786 Unlike what we did previously, we do not discard any entry
4787 unless they are ALL identical. This is because the symbol
4788 comparison is not a strict comparison, but rather a practical
4789 comparison. If all symbols are considered identical, then
4790 we can just go ahead and use the first one and discard the rest.
4791 But if we cannot reduce the list to a single element, we have
4792 to ask the user to disambiguate anyways. And if we have to
4793 present a multiple-choice menu, it's less confusing if the list
4794 isn't missing some choices that were identical and yet distinct. */
4795 if (symbols_are_identical_enums (*syms))
4799 /* Given a type that corresponds to a renaming entity, use the type name
4800 to extract the scope (package name or function name, fully qualified,
4801 and following the GNAT encoding convention) where this renaming has been
4805 xget_renaming_scope (struct type *renaming_type)
4807 /* The renaming types adhere to the following convention:
4808 <scope>__<rename>___<XR extension>.
4809 So, to extract the scope, we search for the "___XR" extension,
4810 and then backtrack until we find the first "__". */
4812 const char *name = renaming_type->name ();
4813 const char *suffix = strstr (name, "___XR");
4816 /* Now, backtrack a bit until we find the first "__". Start looking
4817 at suffix - 3, as the <rename> part is at least one character long. */
4819 for (last = suffix - 3; last > name; last--)
4820 if (last[0] == '_' && last[1] == '_')
4823 /* Make a copy of scope and return it. */
4824 return std::string (name, last);
4827 /* Return nonzero if NAME corresponds to a package name. */
4830 is_package_name (const char *name)
4832 /* Here, We take advantage of the fact that no symbols are generated
4833 for packages, while symbols are generated for each function.
4834 So the condition for NAME represent a package becomes equivalent
4835 to NAME not existing in our list of symbols. There is only one
4836 small complication with library-level functions (see below). */
4838 /* If it is a function that has not been defined at library level,
4839 then we should be able to look it up in the symbols. */
4840 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4843 /* Library-level function names start with "_ada_". See if function
4844 "_ada_" followed by NAME can be found. */
4846 /* Do a quick check that NAME does not contain "__", since library-level
4847 functions names cannot contain "__" in them. */
4848 if (strstr (name, "__") != NULL)
4851 std::string fun_name = string_printf ("_ada_%s", name);
4853 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4856 /* Return nonzero if SYM corresponds to a renaming entity that is
4857 not visible from FUNCTION_NAME. */
4860 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4862 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4865 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4867 /* If the rename has been defined in a package, then it is visible. */
4868 if (is_package_name (scope.c_str ()))
4871 /* Check that the rename is in the current function scope by checking
4872 that its name starts with SCOPE. */
4874 /* If the function name starts with "_ada_", it means that it is
4875 a library-level function. Strip this prefix before doing the
4876 comparison, as the encoding for the renaming does not contain
4878 if (startswith (function_name, "_ada_"))
4881 return !startswith (function_name, scope.c_str ());
4884 /* Remove entries from SYMS that corresponds to a renaming entity that
4885 is not visible from the function associated with CURRENT_BLOCK or
4886 that is superfluous due to the presence of more specific renaming
4887 information. Places surviving symbols in the initial entries of
4891 First, in cases where an object renaming is implemented as a
4892 reference variable, GNAT may produce both the actual reference
4893 variable and the renaming encoding. In this case, we discard the
4896 Second, GNAT emits a type following a specified encoding for each renaming
4897 entity. Unfortunately, STABS currently does not support the definition
4898 of types that are local to a given lexical block, so all renamings types
4899 are emitted at library level. As a consequence, if an application
4900 contains two renaming entities using the same name, and a user tries to
4901 print the value of one of these entities, the result of the ada symbol
4902 lookup will also contain the wrong renaming type.
4904 This function partially covers for this limitation by attempting to
4905 remove from the SYMS list renaming symbols that should be visible
4906 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4907 method with the current information available. The implementation
4908 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4910 - When the user tries to print a rename in a function while there
4911 is another rename entity defined in a package: Normally, the
4912 rename in the function has precedence over the rename in the
4913 package, so the latter should be removed from the list. This is
4914 currently not the case.
4916 - This function will incorrectly remove valid renames if
4917 the CURRENT_BLOCK corresponds to a function which symbol name
4918 has been changed by an "Export" pragma. As a consequence,
4919 the user will be unable to print such rename entities. */
4922 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4923 const struct block *current_block)
4925 struct symbol *current_function;
4926 const char *current_function_name;
4928 int is_new_style_renaming;
4930 /* If there is both a renaming foo___XR... encoded as a variable and
4931 a simple variable foo in the same block, discard the latter.
4932 First, zero out such symbols, then compress. */
4933 is_new_style_renaming = 0;
4934 for (i = 0; i < syms->size (); i += 1)
4936 struct symbol *sym = (*syms)[i].symbol;
4937 const struct block *block = (*syms)[i].block;
4941 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4943 name = sym->linkage_name ();
4944 suffix = strstr (name, "___XR");
4948 int name_len = suffix - name;
4951 is_new_style_renaming = 1;
4952 for (j = 0; j < syms->size (); j += 1)
4953 if (i != j && (*syms)[j].symbol != NULL
4954 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4956 && block == (*syms)[j].block)
4957 (*syms)[j].symbol = NULL;
4960 if (is_new_style_renaming)
4964 for (j = k = 0; j < syms->size (); j += 1)
4965 if ((*syms)[j].symbol != NULL)
4967 (*syms)[k] = (*syms)[j];
4974 /* Extract the function name associated to CURRENT_BLOCK.
4975 Abort if unable to do so. */
4977 if (current_block == NULL)
4980 current_function = block_linkage_function (current_block);
4981 if (current_function == NULL)
4984 current_function_name = current_function->linkage_name ();
4985 if (current_function_name == NULL)
4988 /* Check each of the symbols, and remove it from the list if it is
4989 a type corresponding to a renaming that is out of the scope of
4990 the current block. */
4993 while (i < syms->size ())
4995 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4996 == ADA_OBJECT_RENAMING
4997 && old_renaming_is_invisible ((*syms)[i].symbol,
4998 current_function_name))
4999 syms->erase (syms->begin () + i);
5005 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
5006 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
5008 Note: This function assumes that RESULT is empty. */
5011 ada_add_local_symbols (std::vector<struct block_symbol> &result,
5012 const lookup_name_info &lookup_name,
5013 const struct block *block, domain_enum domain)
5015 while (block != NULL)
5017 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5019 /* If we found a non-function match, assume that's the one. We
5020 only check this when finding a function boundary, so that we
5021 can accumulate all results from intervening blocks first. */
5022 if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result))
5025 block = BLOCK_SUPERBLOCK (block);
5029 /* An object of this type is used as the callback argument when
5030 calling the map_matching_symbols method. */
5034 explicit match_data (std::vector<struct block_symbol> *rp)
5038 DISABLE_COPY_AND_ASSIGN (match_data);
5040 bool operator() (struct block_symbol *bsym);
5042 struct objfile *objfile = nullptr;
5043 std::vector<struct block_symbol> *resultp;
5044 struct symbol *arg_sym = nullptr;
5045 bool found_sym = false;
5048 /* A callback for add_nonlocal_symbols that adds symbol, found in
5049 BSYM, to a list of symbols. */
5052 match_data::operator() (struct block_symbol *bsym)
5054 const struct block *block = bsym->block;
5055 struct symbol *sym = bsym->symbol;
5059 if (!found_sym && arg_sym != NULL)
5060 add_defn_to_vec (*resultp,
5061 fixup_symbol_section (arg_sym, objfile),
5068 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5070 else if (SYMBOL_IS_ARGUMENT (sym))
5075 add_defn_to_vec (*resultp,
5076 fixup_symbol_section (sym, objfile),
5083 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5084 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5085 symbols to RESULT. Return whether we found such symbols. */
5088 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5089 const struct block *block,
5090 const lookup_name_info &lookup_name,
5093 struct using_direct *renaming;
5094 int defns_mark = result.size ();
5096 symbol_name_matcher_ftype *name_match
5097 = ada_get_symbol_name_matcher (lookup_name);
5099 for (renaming = block_using (block);
5101 renaming = renaming->next)
5105 /* Avoid infinite recursions: skip this renaming if we are actually
5106 already traversing it.
5108 Currently, symbol lookup in Ada don't use the namespace machinery from
5109 C++/Fortran support: skip namespace imports that use them. */
5110 if (renaming->searched
5111 || (renaming->import_src != NULL
5112 && renaming->import_src[0] != '\0')
5113 || (renaming->import_dest != NULL
5114 && renaming->import_dest[0] != '\0'))
5116 renaming->searched = 1;
5118 /* TODO: here, we perform another name-based symbol lookup, which can
5119 pull its own multiple overloads. In theory, we should be able to do
5120 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5121 not a simple name. But in order to do this, we would need to enhance
5122 the DWARF reader to associate a symbol to this renaming, instead of a
5123 name. So, for now, we do something simpler: re-use the C++/Fortran
5124 namespace machinery. */
5125 r_name = (renaming->alias != NULL
5127 : renaming->declaration);
5128 if (name_match (r_name, lookup_name, NULL))
5130 lookup_name_info decl_lookup_name (renaming->declaration,
5131 lookup_name.match_type ());
5132 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5135 renaming->searched = 0;
5137 return result.size () != defns_mark;
5140 /* Implements compare_names, but only applying the comparision using
5141 the given CASING. */
5144 compare_names_with_case (const char *string1, const char *string2,
5145 enum case_sensitivity casing)
5147 while (*string1 != '\0' && *string2 != '\0')
5151 if (isspace (*string1) || isspace (*string2))
5152 return strcmp_iw_ordered (string1, string2);
5154 if (casing == case_sensitive_off)
5156 c1 = tolower (*string1);
5157 c2 = tolower (*string2);
5174 return strcmp_iw_ordered (string1, string2);
5176 if (*string2 == '\0')
5178 if (is_name_suffix (string1))
5185 if (*string2 == '(')
5186 return strcmp_iw_ordered (string1, string2);
5189 if (casing == case_sensitive_off)
5190 return tolower (*string1) - tolower (*string2);
5192 return *string1 - *string2;
5197 /* Compare STRING1 to STRING2, with results as for strcmp.
5198 Compatible with strcmp_iw_ordered in that...
5200 strcmp_iw_ordered (STRING1, STRING2) <= 0
5204 compare_names (STRING1, STRING2) <= 0
5206 (they may differ as to what symbols compare equal). */
5209 compare_names (const char *string1, const char *string2)
5213 /* Similar to what strcmp_iw_ordered does, we need to perform
5214 a case-insensitive comparison first, and only resort to
5215 a second, case-sensitive, comparison if the first one was
5216 not sufficient to differentiate the two strings. */
5218 result = compare_names_with_case (string1, string2, case_sensitive_off);
5220 result = compare_names_with_case (string1, string2, case_sensitive_on);
5225 /* Convenience function to get at the Ada encoded lookup name for
5226 LOOKUP_NAME, as a C string. */
5229 ada_lookup_name (const lookup_name_info &lookup_name)
5231 return lookup_name.ada ().lookup_name ().c_str ();
5234 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5235 for OBJFILE, then walk the objfile's symtabs and update the
5239 map_matching_symbols (struct objfile *objfile,
5240 const lookup_name_info &lookup_name,
5246 data.objfile = objfile;
5247 objfile->expand_matching_symbols (lookup_name, domain, global,
5248 is_wild_match ? nullptr : compare_names);
5250 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5251 for (compunit_symtab *symtab : objfile->compunits ())
5253 const struct block *block
5254 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5255 if (!iterate_over_symbols_terminated (block, lookup_name,
5261 /* Add to RESULT all non-local symbols whose name and domain match
5262 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5263 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5264 symbols otherwise. */
5267 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5268 const lookup_name_info &lookup_name,
5269 domain_enum domain, int global)
5271 struct match_data data (&result);
5273 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5275 for (objfile *objfile : current_program_space->objfiles ())
5277 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5280 for (compunit_symtab *cu : objfile->compunits ())
5282 const struct block *global_block
5283 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5285 if (ada_add_block_renamings (result, global_block, lookup_name,
5287 data.found_sym = true;
5291 if (result.empty () && global && !is_wild_match)
5293 const char *name = ada_lookup_name (lookup_name);
5294 std::string bracket_name = std::string ("<_ada_") + name + '>';
5295 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5297 for (objfile *objfile : current_program_space->objfiles ())
5298 map_matching_symbols (objfile, name1, false, domain, global, data);
5302 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5303 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5304 returning the number of matches. Add these to RESULT.
5306 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5307 symbol match within the nest of blocks whose innermost member is BLOCK,
5308 is the one match returned (no other matches in that or
5309 enclosing blocks is returned). If there are any matches in or
5310 surrounding BLOCK, then these alone are returned.
5312 Names prefixed with "standard__" are handled specially:
5313 "standard__" is first stripped off (by the lookup_name
5314 constructor), and only static and global symbols are searched.
5316 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5317 to lookup global symbols. */
5320 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5321 const struct block *block,
5322 const lookup_name_info &lookup_name,
5325 int *made_global_lookup_p)
5329 if (made_global_lookup_p)
5330 *made_global_lookup_p = 0;
5332 /* Special case: If the user specifies a symbol name inside package
5333 Standard, do a non-wild matching of the symbol name without
5334 the "standard__" prefix. This was primarily introduced in order
5335 to allow the user to specifically access the standard exceptions
5336 using, for instance, Standard.Constraint_Error when Constraint_Error
5337 is ambiguous (due to the user defining its own Constraint_Error
5338 entity inside its program). */
5339 if (lookup_name.ada ().standard_p ())
5342 /* Check the non-global symbols. If we have ANY match, then we're done. */
5347 ada_add_local_symbols (result, lookup_name, block, domain);
5350 /* In the !full_search case we're are being called by
5351 iterate_over_symbols, and we don't want to search
5353 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5355 if (!result.empty () || !full_search)
5359 /* No non-global symbols found. Check our cache to see if we have
5360 already performed this search before. If we have, then return
5363 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5364 domain, &sym, &block))
5367 add_defn_to_vec (result, sym, block);
5371 if (made_global_lookup_p)
5372 *made_global_lookup_p = 1;
5374 /* Search symbols from all global blocks. */
5376 add_nonlocal_symbols (result, lookup_name, domain, 1);
5378 /* Now add symbols from all per-file blocks if we've gotten no hits
5379 (not strictly correct, but perhaps better than an error). */
5381 if (result.empty ())
5382 add_nonlocal_symbols (result, lookup_name, domain, 0);
5385 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5386 is non-zero, enclosing scope and in global scopes.
5388 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5389 blocks and symbol tables (if any) in which they were found.
5391 When full_search is non-zero, any non-function/non-enumeral
5392 symbol match within the nest of blocks whose innermost member is BLOCK,
5393 is the one match returned (no other matches in that or
5394 enclosing blocks is returned). If there are any matches in or
5395 surrounding BLOCK, then these alone are returned.
5397 Names prefixed with "standard__" are handled specially: "standard__"
5398 is first stripped off, and only static and global symbols are searched. */
5400 static std::vector<struct block_symbol>
5401 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5402 const struct block *block,
5406 int syms_from_global_search;
5407 std::vector<struct block_symbol> results;
5409 ada_add_all_symbols (results, block, lookup_name,
5410 domain, full_search, &syms_from_global_search);
5412 remove_extra_symbols (&results);
5414 if (results.empty () && full_search && syms_from_global_search)
5415 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5417 if (results.size () == 1 && full_search && syms_from_global_search)
5418 cache_symbol (ada_lookup_name (lookup_name), domain,
5419 results[0].symbol, results[0].block);
5421 remove_irrelevant_renamings (&results, block);
5425 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5426 in global scopes, returning (SYM,BLOCK) tuples.
5428 See ada_lookup_symbol_list_worker for further details. */
5430 std::vector<struct block_symbol>
5431 ada_lookup_symbol_list (const char *name, const struct block *block,
5434 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5435 lookup_name_info lookup_name (name, name_match_type);
5437 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5440 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5441 to 1, but choosing the first symbol found if there are multiple
5444 The result is stored in *INFO, which must be non-NULL.
5445 If no match is found, INFO->SYM is set to NULL. */
5448 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5450 struct block_symbol *info)
5452 /* Since we already have an encoded name, wrap it in '<>' to force a
5453 verbatim match. Otherwise, if the name happens to not look like
5454 an encoded name (because it doesn't include a "__"),
5455 ada_lookup_name_info would re-encode/fold it again, and that
5456 would e.g., incorrectly lowercase object renaming names like
5457 "R28b" -> "r28b". */
5458 std::string verbatim = add_angle_brackets (name);
5460 gdb_assert (info != NULL);
5461 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5464 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5465 scope and in global scopes, or NULL if none. NAME is folded and
5466 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5467 choosing the first symbol if there are multiple choices. */
5470 ada_lookup_symbol (const char *name, const struct block *block0,
5473 std::vector<struct block_symbol> candidates
5474 = ada_lookup_symbol_list (name, block0, domain);
5476 if (candidates.empty ())
5479 block_symbol info = candidates[0];
5480 info.symbol = fixup_symbol_section (info.symbol, NULL);
5485 /* True iff STR is a possible encoded suffix of a normal Ada name
5486 that is to be ignored for matching purposes. Suffixes of parallel
5487 names (e.g., XVE) are not included here. Currently, the possible suffixes
5488 are given by any of the regular expressions:
5490 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5491 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5492 TKB [subprogram suffix for task bodies]
5493 _E[0-9]+[bs]$ [protected object entry suffixes]
5494 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5496 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5497 match is performed. This sequence is used to differentiate homonyms,
5498 is an optional part of a valid name suffix. */
5501 is_name_suffix (const char *str)
5504 const char *matching;
5505 const int len = strlen (str);
5507 /* Skip optional leading __[0-9]+. */
5509 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5512 while (isdigit (str[0]))
5518 if (str[0] == '.' || str[0] == '$')
5521 while (isdigit (matching[0]))
5523 if (matching[0] == '\0')
5529 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5532 while (isdigit (matching[0]))
5534 if (matching[0] == '\0')
5538 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5540 if (strcmp (str, "TKB") == 0)
5544 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5545 with a N at the end. Unfortunately, the compiler uses the same
5546 convention for other internal types it creates. So treating
5547 all entity names that end with an "N" as a name suffix causes
5548 some regressions. For instance, consider the case of an enumerated
5549 type. To support the 'Image attribute, it creates an array whose
5551 Having a single character like this as a suffix carrying some
5552 information is a bit risky. Perhaps we should change the encoding
5553 to be something like "_N" instead. In the meantime, do not do
5554 the following check. */
5555 /* Protected Object Subprograms */
5556 if (len == 1 && str [0] == 'N')
5561 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5564 while (isdigit (matching[0]))
5566 if ((matching[0] == 'b' || matching[0] == 's')
5567 && matching [1] == '\0')
5571 /* ??? We should not modify STR directly, as we are doing below. This
5572 is fine in this case, but may become problematic later if we find
5573 that this alternative did not work, and want to try matching
5574 another one from the begining of STR. Since we modified it, we
5575 won't be able to find the begining of the string anymore! */
5579 while (str[0] != '_' && str[0] != '\0')
5581 if (str[0] != 'n' && str[0] != 'b')
5587 if (str[0] == '\000')
5592 if (str[1] != '_' || str[2] == '\000')
5596 if (strcmp (str + 3, "JM") == 0)
5598 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5599 the LJM suffix in favor of the JM one. But we will
5600 still accept LJM as a valid suffix for a reasonable
5601 amount of time, just to allow ourselves to debug programs
5602 compiled using an older version of GNAT. */
5603 if (strcmp (str + 3, "LJM") == 0)
5607 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5608 || str[4] == 'U' || str[4] == 'P')
5610 if (str[4] == 'R' && str[5] != 'T')
5614 if (!isdigit (str[2]))
5616 for (k = 3; str[k] != '\0'; k += 1)
5617 if (!isdigit (str[k]) && str[k] != '_')
5621 if (str[0] == '$' && isdigit (str[1]))
5623 for (k = 2; str[k] != '\0'; k += 1)
5624 if (!isdigit (str[k]) && str[k] != '_')
5631 /* Return non-zero if the string starting at NAME and ending before
5632 NAME_END contains no capital letters. */
5635 is_valid_name_for_wild_match (const char *name0)
5637 std::string decoded_name = ada_decode (name0);
5640 /* If the decoded name starts with an angle bracket, it means that
5641 NAME0 does not follow the GNAT encoding format. It should then
5642 not be allowed as a possible wild match. */
5643 if (decoded_name[0] == '<')
5646 for (i=0; decoded_name[i] != '\0'; i++)
5647 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5653 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5654 character which could start a simple name. Assumes that *NAMEP points
5655 somewhere inside the string beginning at NAME0. */
5658 advance_wild_match (const char **namep, const char *name0, char target0)
5660 const char *name = *namep;
5670 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5673 if (name == name0 + 5 && startswith (name0, "_ada"))
5678 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5679 || name[2] == target0))
5684 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5686 /* Names like "pkg__B_N__name", where N is a number, are
5687 block-local. We can handle these by simply skipping
5694 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5704 /* Return true iff NAME encodes a name of the form prefix.PATN.
5705 Ignores any informational suffixes of NAME (i.e., for which
5706 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5710 wild_match (const char *name, const char *patn)
5713 const char *name0 = name;
5717 const char *match = name;
5721 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5724 if (*p == '\0' && is_name_suffix (name))
5725 return match == name0 || is_valid_name_for_wild_match (name0);
5727 if (name[-1] == '_')
5730 if (!advance_wild_match (&name, name0, *patn))
5735 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5736 necessary). OBJFILE is the section containing BLOCK. */
5739 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5740 const struct block *block,
5741 const lookup_name_info &lookup_name,
5742 domain_enum domain, struct objfile *objfile)
5744 struct block_iterator iter;
5745 /* A matching argument symbol, if any. */
5746 struct symbol *arg_sym;
5747 /* Set true when we find a matching non-argument symbol. */
5753 for (sym = block_iter_match_first (block, lookup_name, &iter);
5755 sym = block_iter_match_next (lookup_name, &iter))
5757 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5759 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5761 if (SYMBOL_IS_ARGUMENT (sym))
5766 add_defn_to_vec (result,
5767 fixup_symbol_section (sym, objfile),
5774 /* Handle renamings. */
5776 if (ada_add_block_renamings (result, block, lookup_name, domain))
5779 if (!found_sym && arg_sym != NULL)
5781 add_defn_to_vec (result,
5782 fixup_symbol_section (arg_sym, objfile),
5786 if (!lookup_name.ada ().wild_match_p ())
5790 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5791 const char *name = ada_lookup_name.c_str ();
5792 size_t name_len = ada_lookup_name.size ();
5794 ALL_BLOCK_SYMBOLS (block, iter, sym)
5796 if (symbol_matches_domain (sym->language (),
5797 SYMBOL_DOMAIN (sym), domain))
5801 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5804 cmp = !startswith (sym->linkage_name (), "_ada_");
5806 cmp = strncmp (name, sym->linkage_name () + 5,
5811 && is_name_suffix (sym->linkage_name () + name_len + 5))
5813 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5815 if (SYMBOL_IS_ARGUMENT (sym))
5820 add_defn_to_vec (result,
5821 fixup_symbol_section (sym, objfile),
5829 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5830 They aren't parameters, right? */
5831 if (!found_sym && arg_sym != NULL)
5833 add_defn_to_vec (result,
5834 fixup_symbol_section (arg_sym, objfile),
5841 /* Symbol Completion */
5846 ada_lookup_name_info::matches
5847 (const char *sym_name,
5848 symbol_name_match_type match_type,
5849 completion_match_result *comp_match_res) const
5852 const char *text = m_encoded_name.c_str ();
5853 size_t text_len = m_encoded_name.size ();
5855 /* First, test against the fully qualified name of the symbol. */
5857 if (strncmp (sym_name, text, text_len) == 0)
5860 std::string decoded_name = ada_decode (sym_name);
5861 if (match && !m_encoded_p)
5863 /* One needed check before declaring a positive match is to verify
5864 that iff we are doing a verbatim match, the decoded version
5865 of the symbol name starts with '<'. Otherwise, this symbol name
5866 is not a suitable completion. */
5868 bool has_angle_bracket = (decoded_name[0] == '<');
5869 match = (has_angle_bracket == m_verbatim_p);
5872 if (match && !m_verbatim_p)
5874 /* When doing non-verbatim match, another check that needs to
5875 be done is to verify that the potentially matching symbol name
5876 does not include capital letters, because the ada-mode would
5877 not be able to understand these symbol names without the
5878 angle bracket notation. */
5881 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5886 /* Second: Try wild matching... */
5888 if (!match && m_wild_match_p)
5890 /* Since we are doing wild matching, this means that TEXT
5891 may represent an unqualified symbol name. We therefore must
5892 also compare TEXT against the unqualified name of the symbol. */
5893 sym_name = ada_unqualified_name (decoded_name.c_str ());
5895 if (strncmp (sym_name, text, text_len) == 0)
5899 /* Finally: If we found a match, prepare the result to return. */
5904 if (comp_match_res != NULL)
5906 std::string &match_str = comp_match_res->match.storage ();
5909 match_str = ada_decode (sym_name);
5913 match_str = add_angle_brackets (sym_name);
5915 match_str = sym_name;
5919 comp_match_res->set_match (match_str.c_str ());
5927 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5928 for tagged types. */
5931 ada_is_dispatch_table_ptr_type (struct type *type)
5935 if (type->code () != TYPE_CODE_PTR)
5938 name = TYPE_TARGET_TYPE (type)->name ();
5942 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5945 /* Return non-zero if TYPE is an interface tag. */
5948 ada_is_interface_tag (struct type *type)
5950 const char *name = type->name ();
5955 return (strcmp (name, "ada__tags__interface_tag") == 0);
5958 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5959 to be invisible to users. */
5962 ada_is_ignored_field (struct type *type, int field_num)
5964 if (field_num < 0 || field_num > type->num_fields ())
5967 /* Check the name of that field. */
5969 const char *name = type->field (field_num).name ();
5971 /* Anonymous field names should not be printed.
5972 brobecker/2007-02-20: I don't think this can actually happen
5973 but we don't want to print the value of anonymous fields anyway. */
5977 /* Normally, fields whose name start with an underscore ("_")
5978 are fields that have been internally generated by the compiler,
5979 and thus should not be printed. The "_parent" field is special,
5980 however: This is a field internally generated by the compiler
5981 for tagged types, and it contains the components inherited from
5982 the parent type. This field should not be printed as is, but
5983 should not be ignored either. */
5984 if (name[0] == '_' && !startswith (name, "_parent"))
5988 /* If this is the dispatch table of a tagged type or an interface tag,
5990 if (ada_is_tagged_type (type, 1)
5991 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5992 || ada_is_interface_tag (type->field (field_num).type ())))
5995 /* Not a special field, so it should not be ignored. */
5999 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6000 pointer or reference type whose ultimate target has a tag field. */
6003 ada_is_tagged_type (struct type *type, int refok)
6005 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6008 /* True iff TYPE represents the type of X'Tag */
6011 ada_is_tag_type (struct type *type)
6013 type = ada_check_typedef (type);
6015 if (type == NULL || type->code () != TYPE_CODE_PTR)
6019 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6021 return (name != NULL
6022 && strcmp (name, "ada__tags__dispatch_table") == 0);
6026 /* The type of the tag on VAL. */
6028 static struct type *
6029 ada_tag_type (struct value *val)
6031 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6034 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6035 retired at Ada 05). */
6038 is_ada95_tag (struct value *tag)
6040 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6043 /* The value of the tag on VAL. */
6045 static struct value *
6046 ada_value_tag (struct value *val)
6048 return ada_value_struct_elt (val, "_tag", 0);
6051 /* The value of the tag on the object of type TYPE whose contents are
6052 saved at VALADDR, if it is non-null, or is at memory address
6055 static struct value *
6056 value_tag_from_contents_and_address (struct type *type,
6057 const gdb_byte *valaddr,
6060 int tag_byte_offset;
6061 struct type *tag_type;
6063 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6066 const gdb_byte *valaddr1 = ((valaddr == NULL)
6068 : valaddr + tag_byte_offset);
6069 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6071 return value_from_contents_and_address (tag_type, valaddr1, address1);
6076 static struct type *
6077 type_from_tag (struct value *tag)
6079 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6081 if (type_name != NULL)
6082 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6086 /* Given a value OBJ of a tagged type, return a value of this
6087 type at the base address of the object. The base address, as
6088 defined in Ada.Tags, it is the address of the primary tag of
6089 the object, and therefore where the field values of its full
6090 view can be fetched. */
6093 ada_tag_value_at_base_address (struct value *obj)
6096 LONGEST offset_to_top = 0;
6097 struct type *ptr_type, *obj_type;
6099 CORE_ADDR base_address;
6101 obj_type = value_type (obj);
6103 /* It is the responsability of the caller to deref pointers. */
6105 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6108 tag = ada_value_tag (obj);
6112 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6114 if (is_ada95_tag (tag))
6117 ptr_type = language_lookup_primitive_type
6118 (language_def (language_ada), target_gdbarch(), "storage_offset");
6119 ptr_type = lookup_pointer_type (ptr_type);
6120 val = value_cast (ptr_type, tag);
6124 /* It is perfectly possible that an exception be raised while
6125 trying to determine the base address, just like for the tag;
6126 see ada_tag_name for more details. We do not print the error
6127 message for the same reason. */
6131 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6134 catch (const gdb_exception_error &e)
6139 /* If offset is null, nothing to do. */
6141 if (offset_to_top == 0)
6144 /* -1 is a special case in Ada.Tags; however, what should be done
6145 is not quite clear from the documentation. So do nothing for
6148 if (offset_to_top == -1)
6151 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6152 from the base address. This was however incompatible with
6153 C++ dispatch table: C++ uses a *negative* value to *add*
6154 to the base address. Ada's convention has therefore been
6155 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6156 use the same convention. Here, we support both cases by
6157 checking the sign of OFFSET_TO_TOP. */
6159 if (offset_to_top > 0)
6160 offset_to_top = -offset_to_top;
6162 base_address = value_address (obj) + offset_to_top;
6163 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6165 /* Make sure that we have a proper tag at the new address.
6166 Otherwise, offset_to_top is bogus (which can happen when
6167 the object is not initialized yet). */
6172 obj_type = type_from_tag (tag);
6177 return value_from_contents_and_address (obj_type, NULL, base_address);
6180 /* Return the "ada__tags__type_specific_data" type. */
6182 static struct type *
6183 ada_get_tsd_type (struct inferior *inf)
6185 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6187 if (data->tsd_type == 0)
6188 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6189 return data->tsd_type;
6192 /* Return the TSD (type-specific data) associated to the given TAG.
6193 TAG is assumed to be the tag of a tagged-type entity.
6195 May return NULL if we are unable to get the TSD. */
6197 static struct value *
6198 ada_get_tsd_from_tag (struct value *tag)
6203 /* First option: The TSD is simply stored as a field of our TAG.
6204 Only older versions of GNAT would use this format, but we have
6205 to test it first, because there are no visible markers for
6206 the current approach except the absence of that field. */
6208 val = ada_value_struct_elt (tag, "tsd", 1);
6212 /* Try the second representation for the dispatch table (in which
6213 there is no explicit 'tsd' field in the referent of the tag pointer,
6214 and instead the tsd pointer is stored just before the dispatch
6217 type = ada_get_tsd_type (current_inferior());
6220 type = lookup_pointer_type (lookup_pointer_type (type));
6221 val = value_cast (type, tag);
6224 return value_ind (value_ptradd (val, -1));
6227 /* Given the TSD of a tag (type-specific data), return a string
6228 containing the name of the associated type.
6230 May return NULL if we are unable to determine the tag name. */
6232 static gdb::unique_xmalloc_ptr<char>
6233 ada_tag_name_from_tsd (struct value *tsd)
6238 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6241 gdb::unique_xmalloc_ptr<char> buffer
6242 = target_read_string (value_as_address (val), INT_MAX);
6243 if (buffer == nullptr)
6246 for (p = buffer.get (); *p != '\0'; ++p)
6255 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6258 Return NULL if the TAG is not an Ada tag, or if we were unable to
6259 determine the name of that tag. */
6261 gdb::unique_xmalloc_ptr<char>
6262 ada_tag_name (struct value *tag)
6264 gdb::unique_xmalloc_ptr<char> name;
6266 if (!ada_is_tag_type (value_type (tag)))
6269 /* It is perfectly possible that an exception be raised while trying
6270 to determine the TAG's name, even under normal circumstances:
6271 The associated variable may be uninitialized or corrupted, for
6272 instance. We do not let any exception propagate past this point.
6273 instead we return NULL.
6275 We also do not print the error message either (which often is very
6276 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6277 the caller print a more meaningful message if necessary. */
6280 struct value *tsd = ada_get_tsd_from_tag (tag);
6283 name = ada_tag_name_from_tsd (tsd);
6285 catch (const gdb_exception_error &e)
6292 /* The parent type of TYPE, or NULL if none. */
6295 ada_parent_type (struct type *type)
6299 type = ada_check_typedef (type);
6301 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6304 for (i = 0; i < type->num_fields (); i += 1)
6305 if (ada_is_parent_field (type, i))
6307 struct type *parent_type = type->field (i).type ();
6309 /* If the _parent field is a pointer, then dereference it. */
6310 if (parent_type->code () == TYPE_CODE_PTR)
6311 parent_type = TYPE_TARGET_TYPE (parent_type);
6312 /* If there is a parallel XVS type, get the actual base type. */
6313 parent_type = ada_get_base_type (parent_type);
6315 return ada_check_typedef (parent_type);
6321 /* True iff field number FIELD_NUM of structure type TYPE contains the
6322 parent-type (inherited) fields of a derived type. Assumes TYPE is
6323 a structure type with at least FIELD_NUM+1 fields. */
6326 ada_is_parent_field (struct type *type, int field_num)
6328 const char *name = ada_check_typedef (type)->field (field_num).name ();
6330 return (name != NULL
6331 && (startswith (name, "PARENT")
6332 || startswith (name, "_parent")));
6335 /* True iff field number FIELD_NUM of structure type TYPE is a
6336 transparent wrapper field (which should be silently traversed when doing
6337 field selection and flattened when printing). Assumes TYPE is a
6338 structure type with at least FIELD_NUM+1 fields. Such fields are always
6342 ada_is_wrapper_field (struct type *type, int field_num)
6344 const char *name = type->field (field_num).name ();
6346 if (name != NULL && strcmp (name, "RETVAL") == 0)
6348 /* This happens in functions with "out" or "in out" parameters
6349 which are passed by copy. For such functions, GNAT describes
6350 the function's return type as being a struct where the return
6351 value is in a field called RETVAL, and where the other "out"
6352 or "in out" parameters are fields of that struct. This is not
6357 return (name != NULL
6358 && (startswith (name, "PARENT")
6359 || strcmp (name, "REP") == 0
6360 || startswith (name, "_parent")
6361 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6364 /* True iff field number FIELD_NUM of structure or union type TYPE
6365 is a variant wrapper. Assumes TYPE is a structure type with at least
6366 FIELD_NUM+1 fields. */
6369 ada_is_variant_part (struct type *type, int field_num)
6371 /* Only Ada types are eligible. */
6372 if (!ADA_TYPE_P (type))
6375 struct type *field_type = type->field (field_num).type ();
6377 return (field_type->code () == TYPE_CODE_UNION
6378 || (is_dynamic_field (type, field_num)
6379 && (TYPE_TARGET_TYPE (field_type)->code ()
6380 == TYPE_CODE_UNION)));
6383 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6384 whose discriminants are contained in the record type OUTER_TYPE,
6385 returns the type of the controlling discriminant for the variant.
6386 May return NULL if the type could not be found. */
6389 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6391 const char *name = ada_variant_discrim_name (var_type);
6393 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6396 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6397 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6398 represents a 'when others' clause; otherwise 0. */
6401 ada_is_others_clause (struct type *type, int field_num)
6403 const char *name = type->field (field_num).name ();
6405 return (name != NULL && name[0] == 'O');
6408 /* Assuming that TYPE0 is the type of the variant part of a record,
6409 returns the name of the discriminant controlling the variant.
6410 The value is valid until the next call to ada_variant_discrim_name. */
6413 ada_variant_discrim_name (struct type *type0)
6415 static std::string result;
6418 const char *discrim_end;
6419 const char *discrim_start;
6421 if (type0->code () == TYPE_CODE_PTR)
6422 type = TYPE_TARGET_TYPE (type0);
6426 name = ada_type_name (type);
6428 if (name == NULL || name[0] == '\000')
6431 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6434 if (startswith (discrim_end, "___XVN"))
6437 if (discrim_end == name)
6440 for (discrim_start = discrim_end; discrim_start != name + 3;
6443 if (discrim_start == name + 1)
6445 if ((discrim_start > name + 3
6446 && startswith (discrim_start - 3, "___"))
6447 || discrim_start[-1] == '.')
6451 result = std::string (discrim_start, discrim_end - discrim_start);
6452 return result.c_str ();
6455 /* Scan STR for a subtype-encoded number, beginning at position K.
6456 Put the position of the character just past the number scanned in
6457 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6458 Return 1 if there was a valid number at the given position, and 0
6459 otherwise. A "subtype-encoded" number consists of the absolute value
6460 in decimal, followed by the letter 'm' to indicate a negative number.
6461 Assumes 0m does not occur. */
6464 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6468 if (!isdigit (str[k]))
6471 /* Do it the hard way so as not to make any assumption about
6472 the relationship of unsigned long (%lu scan format code) and
6475 while (isdigit (str[k]))
6477 RU = RU * 10 + (str[k] - '0');
6484 *R = (-(LONGEST) (RU - 1)) - 1;
6490 /* NOTE on the above: Technically, C does not say what the results of
6491 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6492 number representable as a LONGEST (although either would probably work
6493 in most implementations). When RU>0, the locution in the then branch
6494 above is always equivalent to the negative of RU. */
6501 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6502 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6503 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6506 ada_in_variant (LONGEST val, struct type *type, int field_num)
6508 const char *name = type->field (field_num).name ();
6522 if (!ada_scan_number (name, p + 1, &W, &p))
6532 if (!ada_scan_number (name, p + 1, &L, &p)
6533 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6535 if (val >= L && val <= U)
6547 /* FIXME: Lots of redundancy below. Try to consolidate. */
6549 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6550 ARG_TYPE, extract and return the value of one of its (non-static)
6551 fields. FIELDNO says which field. Differs from value_primitive_field
6552 only in that it can handle packed values of arbitrary type. */
6555 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6556 struct type *arg_type)
6560 arg_type = ada_check_typedef (arg_type);
6561 type = arg_type->field (fieldno).type ();
6563 /* Handle packed fields. It might be that the field is not packed
6564 relative to its containing structure, but the structure itself is
6565 packed; in this case we must take the bit-field path. */
6566 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6568 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6569 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6571 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6572 offset + bit_pos / 8,
6573 bit_pos % 8, bit_size, type);
6576 return value_primitive_field (arg1, offset, fieldno, arg_type);
6579 /* Find field with name NAME in object of type TYPE. If found,
6580 set the following for each argument that is non-null:
6581 - *FIELD_TYPE_P to the field's type;
6582 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6583 an object of that type;
6584 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6585 - *BIT_SIZE_P to its size in bits if the field is packed, and
6587 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6588 fields up to but not including the desired field, or by the total
6589 number of fields if not found. A NULL value of NAME never
6590 matches; the function just counts visible fields in this case.
6592 Notice that we need to handle when a tagged record hierarchy
6593 has some components with the same name, like in this scenario:
6595 type Top_T is tagged record
6601 type Middle_T is new Top.Top_T with record
6602 N : Character := 'a';
6606 type Bottom_T is new Middle.Middle_T with record
6608 C : Character := '5';
6610 A : Character := 'J';
6613 Let's say we now have a variable declared and initialized as follow:
6615 TC : Top_A := new Bottom_T;
6617 And then we use this variable to call this function
6619 procedure Assign (Obj: in out Top_T; TV : Integer);
6623 Assign (Top_T (B), 12);
6625 Now, we're in the debugger, and we're inside that procedure
6626 then and we want to print the value of obj.c:
6628 Usually, the tagged record or one of the parent type owns the
6629 component to print and there's no issue but in this particular
6630 case, what does it mean to ask for Obj.C? Since the actual
6631 type for object is type Bottom_T, it could mean two things: type
6632 component C from the Middle_T view, but also component C from
6633 Bottom_T. So in that "undefined" case, when the component is
6634 not found in the non-resolved type (which includes all the
6635 components of the parent type), then resolve it and see if we
6636 get better luck once expanded.
6638 In the case of homonyms in the derived tagged type, we don't
6639 guaranty anything, and pick the one that's easiest for us
6642 Returns 1 if found, 0 otherwise. */
6645 find_struct_field (const char *name, struct type *type, int offset,
6646 struct type **field_type_p,
6647 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6651 int parent_offset = -1;
6653 type = ada_check_typedef (type);
6655 if (field_type_p != NULL)
6656 *field_type_p = NULL;
6657 if (byte_offset_p != NULL)
6659 if (bit_offset_p != NULL)
6661 if (bit_size_p != NULL)
6664 for (i = 0; i < type->num_fields (); i += 1)
6666 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6667 int fld_offset = offset + bit_pos / 8;
6668 const char *t_field_name = type->field (i).name ();
6670 if (t_field_name == NULL)
6673 else if (ada_is_parent_field (type, i))
6675 /* This is a field pointing us to the parent type of a tagged
6676 type. As hinted in this function's documentation, we give
6677 preference to fields in the current record first, so what
6678 we do here is just record the index of this field before
6679 we skip it. If it turns out we couldn't find our field
6680 in the current record, then we'll get back to it and search
6681 inside it whether the field might exist in the parent. */
6687 else if (name != NULL && field_name_match (t_field_name, name))
6689 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6691 if (field_type_p != NULL)
6692 *field_type_p = type->field (i).type ();
6693 if (byte_offset_p != NULL)
6694 *byte_offset_p = fld_offset;
6695 if (bit_offset_p != NULL)
6696 *bit_offset_p = bit_pos % 8;
6697 if (bit_size_p != NULL)
6698 *bit_size_p = bit_size;
6701 else if (ada_is_wrapper_field (type, i))
6703 if (find_struct_field (name, type->field (i).type (), fld_offset,
6704 field_type_p, byte_offset_p, bit_offset_p,
6705 bit_size_p, index_p))
6708 else if (ada_is_variant_part (type, i))
6710 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6713 struct type *field_type
6714 = ada_check_typedef (type->field (i).type ());
6716 for (j = 0; j < field_type->num_fields (); j += 1)
6718 if (find_struct_field (name, field_type->field (j).type (),
6720 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6721 field_type_p, byte_offset_p,
6722 bit_offset_p, bit_size_p, index_p))
6726 else if (index_p != NULL)
6730 /* Field not found so far. If this is a tagged type which
6731 has a parent, try finding that field in the parent now. */
6733 if (parent_offset != -1)
6735 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6736 int fld_offset = offset + bit_pos / 8;
6738 if (find_struct_field (name, type->field (parent_offset).type (),
6739 fld_offset, field_type_p, byte_offset_p,
6740 bit_offset_p, bit_size_p, index_p))
6747 /* Number of user-visible fields in record type TYPE. */
6750 num_visible_fields (struct type *type)
6755 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6759 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6760 and search in it assuming it has (class) type TYPE.
6761 If found, return value, else return NULL.
6763 Searches recursively through wrapper fields (e.g., '_parent').
6765 In the case of homonyms in the tagged types, please refer to the
6766 long explanation in find_struct_field's function documentation. */
6768 static struct value *
6769 ada_search_struct_field (const char *name, struct value *arg, int offset,
6773 int parent_offset = -1;
6775 type = ada_check_typedef (type);
6776 for (i = 0; i < type->num_fields (); i += 1)
6778 const char *t_field_name = type->field (i).name ();
6780 if (t_field_name == NULL)
6783 else if (ada_is_parent_field (type, i))
6785 /* This is a field pointing us to the parent type of a tagged
6786 type. As hinted in this function's documentation, we give
6787 preference to fields in the current record first, so what
6788 we do here is just record the index of this field before
6789 we skip it. If it turns out we couldn't find our field
6790 in the current record, then we'll get back to it and search
6791 inside it whether the field might exist in the parent. */
6797 else if (field_name_match (t_field_name, name))
6798 return ada_value_primitive_field (arg, offset, i, type);
6800 else if (ada_is_wrapper_field (type, i))
6802 struct value *v = /* Do not let indent join lines here. */
6803 ada_search_struct_field (name, arg,
6804 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6805 type->field (i).type ());
6811 else if (ada_is_variant_part (type, i))
6813 /* PNH: Do we ever get here? See find_struct_field. */
6815 struct type *field_type = ada_check_typedef (type->field (i).type ());
6816 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6818 for (j = 0; j < field_type->num_fields (); j += 1)
6820 struct value *v = ada_search_struct_field /* Force line
6823 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6824 field_type->field (j).type ());
6832 /* Field not found so far. If this is a tagged type which
6833 has a parent, try finding that field in the parent now. */
6835 if (parent_offset != -1)
6837 struct value *v = ada_search_struct_field (
6838 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
6839 type->field (parent_offset).type ());
6848 static struct value *ada_index_struct_field_1 (int *, struct value *,
6849 int, struct type *);
6852 /* Return field #INDEX in ARG, where the index is that returned by
6853 * find_struct_field through its INDEX_P argument. Adjust the address
6854 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6855 * If found, return value, else return NULL. */
6857 static struct value *
6858 ada_index_struct_field (int index, struct value *arg, int offset,
6861 return ada_index_struct_field_1 (&index, arg, offset, type);
6865 /* Auxiliary function for ada_index_struct_field. Like
6866 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6869 static struct value *
6870 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6874 type = ada_check_typedef (type);
6876 for (i = 0; i < type->num_fields (); i += 1)
6878 if (type->field (i).name () == NULL)
6880 else if (ada_is_wrapper_field (type, i))
6882 struct value *v = /* Do not let indent join lines here. */
6883 ada_index_struct_field_1 (index_p, arg,
6884 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6885 type->field (i).type ());
6891 else if (ada_is_variant_part (type, i))
6893 /* PNH: Do we ever get here? See ada_search_struct_field,
6894 find_struct_field. */
6895 error (_("Cannot assign this kind of variant record"));
6897 else if (*index_p == 0)
6898 return ada_value_primitive_field (arg, offset, i, type);
6905 /* Return a string representation of type TYPE. */
6908 type_as_string (struct type *type)
6910 string_file tmp_stream;
6912 type_print (type, "", &tmp_stream, -1);
6914 return std::move (tmp_stream.string ());
6917 /* Given a type TYPE, look up the type of the component of type named NAME.
6918 If DISPP is non-null, add its byte displacement from the beginning of a
6919 structure (pointed to by a value) of type TYPE to *DISPP (does not
6920 work for packed fields).
6922 Matches any field whose name has NAME as a prefix, possibly
6925 TYPE can be either a struct or union. If REFOK, TYPE may also
6926 be a (pointer or reference)+ to a struct or union, and the
6927 ultimate target type will be searched.
6929 Looks recursively into variant clauses and parent types.
6931 In the case of homonyms in the tagged types, please refer to the
6932 long explanation in find_struct_field's function documentation.
6934 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6935 TYPE is not a type of the right kind. */
6937 static struct type *
6938 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6942 int parent_offset = -1;
6947 if (refok && type != NULL)
6950 type = ada_check_typedef (type);
6951 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6953 type = TYPE_TARGET_TYPE (type);
6957 || (type->code () != TYPE_CODE_STRUCT
6958 && type->code () != TYPE_CODE_UNION))
6963 error (_("Type %s is not a structure or union type"),
6964 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6967 type = to_static_fixed_type (type);
6969 for (i = 0; i < type->num_fields (); i += 1)
6971 const char *t_field_name = type->field (i).name ();
6974 if (t_field_name == NULL)
6977 else if (ada_is_parent_field (type, i))
6979 /* This is a field pointing us to the parent type of a tagged
6980 type. As hinted in this function's documentation, we give
6981 preference to fields in the current record first, so what
6982 we do here is just record the index of this field before
6983 we skip it. If it turns out we couldn't find our field
6984 in the current record, then we'll get back to it and search
6985 inside it whether the field might exist in the parent. */
6991 else if (field_name_match (t_field_name, name))
6992 return type->field (i).type ();
6994 else if (ada_is_wrapper_field (type, i))
6996 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7002 else if (ada_is_variant_part (type, i))
7005 struct type *field_type = ada_check_typedef (type->field (i).type ());
7007 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7009 /* FIXME pnh 2008/01/26: We check for a field that is
7010 NOT wrapped in a struct, since the compiler sometimes
7011 generates these for unchecked variant types. Revisit
7012 if the compiler changes this practice. */
7013 const char *v_field_name = field_type->field (j).name ();
7015 if (v_field_name != NULL
7016 && field_name_match (v_field_name, name))
7017 t = field_type->field (j).type ();
7019 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7029 /* Field not found so far. If this is a tagged type which
7030 has a parent, try finding that field in the parent now. */
7032 if (parent_offset != -1)
7036 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7045 const char *name_str = name != NULL ? name : _("<null>");
7047 error (_("Type %s has no component named %s"),
7048 type_as_string (type).c_str (), name_str);
7054 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7055 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7056 represents an unchecked union (that is, the variant part of a
7057 record that is named in an Unchecked_Union pragma). */
7060 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7062 const char *discrim_name = ada_variant_discrim_name (var_type);
7064 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7068 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7069 within OUTER, determine which variant clause (field number in VAR_TYPE,
7070 numbering from 0) is applicable. Returns -1 if none are. */
7073 ada_which_variant_applies (struct type *var_type, struct value *outer)
7077 const char *discrim_name = ada_variant_discrim_name (var_type);
7078 struct value *discrim;
7079 LONGEST discrim_val;
7081 /* Using plain value_from_contents_and_address here causes problems
7082 because we will end up trying to resolve a type that is currently
7083 being constructed. */
7084 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7085 if (discrim == NULL)
7087 discrim_val = value_as_long (discrim);
7090 for (i = 0; i < var_type->num_fields (); i += 1)
7092 if (ada_is_others_clause (var_type, i))
7094 else if (ada_in_variant (discrim_val, var_type, i))
7098 return others_clause;
7103 /* Dynamic-Sized Records */
7105 /* Strategy: The type ostensibly attached to a value with dynamic size
7106 (i.e., a size that is not statically recorded in the debugging
7107 data) does not accurately reflect the size or layout of the value.
7108 Our strategy is to convert these values to values with accurate,
7109 conventional types that are constructed on the fly. */
7111 /* There is a subtle and tricky problem here. In general, we cannot
7112 determine the size of dynamic records without its data. However,
7113 the 'struct value' data structure, which GDB uses to represent
7114 quantities in the inferior process (the target), requires the size
7115 of the type at the time of its allocation in order to reserve space
7116 for GDB's internal copy of the data. That's why the
7117 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7118 rather than struct value*s.
7120 However, GDB's internal history variables ($1, $2, etc.) are
7121 struct value*s containing internal copies of the data that are not, in
7122 general, the same as the data at their corresponding addresses in
7123 the target. Fortunately, the types we give to these values are all
7124 conventional, fixed-size types (as per the strategy described
7125 above), so that we don't usually have to perform the
7126 'to_fixed_xxx_type' conversions to look at their values.
7127 Unfortunately, there is one exception: if one of the internal
7128 history variables is an array whose elements are unconstrained
7129 records, then we will need to create distinct fixed types for each
7130 element selected. */
7132 /* The upshot of all of this is that many routines take a (type, host
7133 address, target address) triple as arguments to represent a value.
7134 The host address, if non-null, is supposed to contain an internal
7135 copy of the relevant data; otherwise, the program is to consult the
7136 target at the target address. */
7138 /* Assuming that VAL0 represents a pointer value, the result of
7139 dereferencing it. Differs from value_ind in its treatment of
7140 dynamic-sized types. */
7143 ada_value_ind (struct value *val0)
7145 struct value *val = value_ind (val0);
7147 if (ada_is_tagged_type (value_type (val), 0))
7148 val = ada_tag_value_at_base_address (val);
7150 return ada_to_fixed_value (val);
7153 /* The value resulting from dereferencing any "reference to"
7154 qualifiers on VAL0. */
7156 static struct value *
7157 ada_coerce_ref (struct value *val0)
7159 if (value_type (val0)->code () == TYPE_CODE_REF)
7161 struct value *val = val0;
7163 val = coerce_ref (val);
7165 if (ada_is_tagged_type (value_type (val), 0))
7166 val = ada_tag_value_at_base_address (val);
7168 return ada_to_fixed_value (val);
7174 /* Return the bit alignment required for field #F of template type TYPE. */
7177 field_alignment (struct type *type, int f)
7179 const char *name = type->field (f).name ();
7183 /* The field name should never be null, unless the debugging information
7184 is somehow malformed. In this case, we assume the field does not
7185 require any alignment. */
7189 len = strlen (name);
7191 if (!isdigit (name[len - 1]))
7194 if (isdigit (name[len - 2]))
7195 align_offset = len - 2;
7197 align_offset = len - 1;
7199 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7200 return TARGET_CHAR_BIT;
7202 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7205 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7207 static struct symbol *
7208 ada_find_any_type_symbol (const char *name)
7212 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7213 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7216 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7220 /* Find a type named NAME. Ignores ambiguity. This routine will look
7221 solely for types defined by debug info, it will not search the GDB
7224 static struct type *
7225 ada_find_any_type (const char *name)
7227 struct symbol *sym = ada_find_any_type_symbol (name);
7230 return SYMBOL_TYPE (sym);
7235 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7236 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7237 symbol, in which case it is returned. Otherwise, this looks for
7238 symbols whose name is that of NAME_SYM suffixed with "___XR".
7239 Return symbol if found, and NULL otherwise. */
7242 ada_is_renaming_symbol (struct symbol *name_sym)
7244 const char *name = name_sym->linkage_name ();
7245 return strstr (name, "___XR") != NULL;
7248 /* Because of GNAT encoding conventions, several GDB symbols may match a
7249 given type name. If the type denoted by TYPE0 is to be preferred to
7250 that of TYPE1 for purposes of type printing, return non-zero;
7251 otherwise return 0. */
7254 ada_prefer_type (struct type *type0, struct type *type1)
7258 else if (type0 == NULL)
7260 else if (type1->code () == TYPE_CODE_VOID)
7262 else if (type0->code () == TYPE_CODE_VOID)
7264 else if (type1->name () == NULL && type0->name () != NULL)
7266 else if (ada_is_constrained_packed_array_type (type0))
7268 else if (ada_is_array_descriptor_type (type0)
7269 && !ada_is_array_descriptor_type (type1))
7273 const char *type0_name = type0->name ();
7274 const char *type1_name = type1->name ();
7276 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7277 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7283 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7287 ada_type_name (struct type *type)
7291 return type->name ();
7294 /* Search the list of "descriptive" types associated to TYPE for a type
7295 whose name is NAME. */
7297 static struct type *
7298 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7300 struct type *result, *tmp;
7302 if (ada_ignore_descriptive_types_p)
7305 /* If there no descriptive-type info, then there is no parallel type
7307 if (!HAVE_GNAT_AUX_INFO (type))
7310 result = TYPE_DESCRIPTIVE_TYPE (type);
7311 while (result != NULL)
7313 const char *result_name = ada_type_name (result);
7315 if (result_name == NULL)
7317 warning (_("unexpected null name on descriptive type"));
7321 /* If the names match, stop. */
7322 if (strcmp (result_name, name) == 0)
7325 /* Otherwise, look at the next item on the list, if any. */
7326 if (HAVE_GNAT_AUX_INFO (result))
7327 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7331 /* If not found either, try after having resolved the typedef. */
7336 result = check_typedef (result);
7337 if (HAVE_GNAT_AUX_INFO (result))
7338 result = TYPE_DESCRIPTIVE_TYPE (result);
7344 /* If we didn't find a match, see whether this is a packed array. With
7345 older compilers, the descriptive type information is either absent or
7346 irrelevant when it comes to packed arrays so the above lookup fails.
7347 Fall back to using a parallel lookup by name in this case. */
7348 if (result == NULL && ada_is_constrained_packed_array_type (type))
7349 return ada_find_any_type (name);
7354 /* Find a parallel type to TYPE with the specified NAME, using the
7355 descriptive type taken from the debugging information, if available,
7356 and otherwise using the (slower) name-based method. */
7358 static struct type *
7359 ada_find_parallel_type_with_name (struct type *type, const char *name)
7361 struct type *result = NULL;
7363 if (HAVE_GNAT_AUX_INFO (type))
7364 result = find_parallel_type_by_descriptive_type (type, name);
7366 result = ada_find_any_type (name);
7371 /* Same as above, but specify the name of the parallel type by appending
7372 SUFFIX to the name of TYPE. */
7375 ada_find_parallel_type (struct type *type, const char *suffix)
7378 const char *type_name = ada_type_name (type);
7381 if (type_name == NULL)
7384 len = strlen (type_name);
7386 name = (char *) alloca (len + strlen (suffix) + 1);
7388 strcpy (name, type_name);
7389 strcpy (name + len, suffix);
7391 return ada_find_parallel_type_with_name (type, name);
7394 /* If TYPE is a variable-size record type, return the corresponding template
7395 type describing its fields. Otherwise, return NULL. */
7397 static struct type *
7398 dynamic_template_type (struct type *type)
7400 type = ada_check_typedef (type);
7402 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7403 || ada_type_name (type) == NULL)
7407 int len = strlen (ada_type_name (type));
7409 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7412 return ada_find_parallel_type (type, "___XVE");
7416 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7417 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7420 is_dynamic_field (struct type *templ_type, int field_num)
7422 const char *name = templ_type->field (field_num).name ();
7425 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7426 && strstr (name, "___XVL") != NULL;
7429 /* The index of the variant field of TYPE, or -1 if TYPE does not
7430 represent a variant record type. */
7433 variant_field_index (struct type *type)
7437 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7440 for (f = 0; f < type->num_fields (); f += 1)
7442 if (ada_is_variant_part (type, f))
7448 /* A record type with no fields. */
7450 static struct type *
7451 empty_record (struct type *templ)
7453 struct type *type = alloc_type_copy (templ);
7455 type->set_code (TYPE_CODE_STRUCT);
7456 INIT_NONE_SPECIFIC (type);
7457 type->set_name ("<empty>");
7458 TYPE_LENGTH (type) = 0;
7462 /* An ordinary record type (with fixed-length fields) that describes
7463 the value of type TYPE at VALADDR or ADDRESS (see comments at
7464 the beginning of this section) VAL according to GNAT conventions.
7465 DVAL0 should describe the (portion of a) record that contains any
7466 necessary discriminants. It should be NULL if value_type (VAL) is
7467 an outer-level type (i.e., as opposed to a branch of a variant.) A
7468 variant field (unless unchecked) is replaced by a particular branch
7471 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7472 length are not statically known are discarded. As a consequence,
7473 VALADDR, ADDRESS and DVAL0 are ignored.
7475 NOTE: Limitations: For now, we assume that dynamic fields and
7476 variants occupy whole numbers of bytes. However, they need not be
7480 ada_template_to_fixed_record_type_1 (struct type *type,
7481 const gdb_byte *valaddr,
7482 CORE_ADDR address, struct value *dval0,
7483 int keep_dynamic_fields)
7485 struct value *mark = value_mark ();
7488 int nfields, bit_len;
7494 /* Compute the number of fields in this record type that are going
7495 to be processed: unless keep_dynamic_fields, this includes only
7496 fields whose position and length are static will be processed. */
7497 if (keep_dynamic_fields)
7498 nfields = type->num_fields ();
7502 while (nfields < type->num_fields ()
7503 && !ada_is_variant_part (type, nfields)
7504 && !is_dynamic_field (type, nfields))
7508 rtype = alloc_type_copy (type);
7509 rtype->set_code (TYPE_CODE_STRUCT);
7510 INIT_NONE_SPECIFIC (rtype);
7511 rtype->set_num_fields (nfields);
7513 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7514 rtype->set_name (ada_type_name (type));
7515 rtype->set_is_fixed_instance (true);
7521 for (f = 0; f < nfields; f += 1)
7523 off = align_up (off, field_alignment (type, f))
7524 + TYPE_FIELD_BITPOS (type, f);
7525 SET_FIELD_BITPOS (rtype->field (f), off);
7526 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7528 if (ada_is_variant_part (type, f))
7533 else if (is_dynamic_field (type, f))
7535 const gdb_byte *field_valaddr = valaddr;
7536 CORE_ADDR field_address = address;
7537 struct type *field_type =
7538 TYPE_TARGET_TYPE (type->field (f).type ());
7542 /* rtype's length is computed based on the run-time
7543 value of discriminants. If the discriminants are not
7544 initialized, the type size may be completely bogus and
7545 GDB may fail to allocate a value for it. So check the
7546 size first before creating the value. */
7547 ada_ensure_varsize_limit (rtype);
7548 /* Using plain value_from_contents_and_address here
7549 causes problems because we will end up trying to
7550 resolve a type that is currently being
7552 dval = value_from_contents_and_address_unresolved (rtype,
7555 rtype = value_type (dval);
7560 /* If the type referenced by this field is an aligner type, we need
7561 to unwrap that aligner type, because its size might not be set.
7562 Keeping the aligner type would cause us to compute the wrong
7563 size for this field, impacting the offset of the all the fields
7564 that follow this one. */
7565 if (ada_is_aligner_type (field_type))
7567 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7569 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7570 field_address = cond_offset_target (field_address, field_offset);
7571 field_type = ada_aligned_type (field_type);
7574 field_valaddr = cond_offset_host (field_valaddr,
7575 off / TARGET_CHAR_BIT);
7576 field_address = cond_offset_target (field_address,
7577 off / TARGET_CHAR_BIT);
7579 /* Get the fixed type of the field. Note that, in this case,
7580 we do not want to get the real type out of the tag: if
7581 the current field is the parent part of a tagged record,
7582 we will get the tag of the object. Clearly wrong: the real
7583 type of the parent is not the real type of the child. We
7584 would end up in an infinite loop. */
7585 field_type = ada_get_base_type (field_type);
7586 field_type = ada_to_fixed_type (field_type, field_valaddr,
7587 field_address, dval, 0);
7588 /* If the field size is already larger than the maximum
7589 object size, then the record itself will necessarily
7590 be larger than the maximum object size. We need to make
7591 this check now, because the size might be so ridiculously
7592 large (due to an uninitialized variable in the inferior)
7593 that it would cause an overflow when adding it to the
7595 ada_ensure_varsize_limit (field_type);
7597 rtype->field (f).set_type (field_type);
7598 rtype->field (f).set_name (type->field (f).name ());
7599 /* The multiplication can potentially overflow. But because
7600 the field length has been size-checked just above, and
7601 assuming that the maximum size is a reasonable value,
7602 an overflow should not happen in practice. So rather than
7603 adding overflow recovery code to this already complex code,
7604 we just assume that it's not going to happen. */
7606 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7610 /* Note: If this field's type is a typedef, it is important
7611 to preserve the typedef layer.
7613 Otherwise, we might be transforming a typedef to a fat
7614 pointer (encoding a pointer to an unconstrained array),
7615 into a basic fat pointer (encoding an unconstrained
7616 array). As both types are implemented using the same
7617 structure, the typedef is the only clue which allows us
7618 to distinguish between the two options. Stripping it
7619 would prevent us from printing this field appropriately. */
7620 rtype->field (f).set_type (type->field (f).type ());
7621 rtype->field (f).set_name (type->field (f).name ());
7622 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7624 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7627 struct type *field_type = type->field (f).type ();
7629 /* We need to be careful of typedefs when computing
7630 the length of our field. If this is a typedef,
7631 get the length of the target type, not the length
7633 if (field_type->code () == TYPE_CODE_TYPEDEF)
7634 field_type = ada_typedef_target_type (field_type);
7637 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7640 if (off + fld_bit_len > bit_len)
7641 bit_len = off + fld_bit_len;
7643 TYPE_LENGTH (rtype) =
7644 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7647 /* We handle the variant part, if any, at the end because of certain
7648 odd cases in which it is re-ordered so as NOT to be the last field of
7649 the record. This can happen in the presence of representation
7651 if (variant_field >= 0)
7653 struct type *branch_type;
7655 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7659 /* Using plain value_from_contents_and_address here causes
7660 problems because we will end up trying to resolve a type
7661 that is currently being constructed. */
7662 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7664 rtype = value_type (dval);
7670 to_fixed_variant_branch_type
7671 (type->field (variant_field).type (),
7672 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7673 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7674 if (branch_type == NULL)
7676 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7677 rtype->field (f - 1) = rtype->field (f);
7678 rtype->set_num_fields (rtype->num_fields () - 1);
7682 rtype->field (variant_field).set_type (branch_type);
7683 rtype->field (variant_field).set_name ("S");
7685 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7687 if (off + fld_bit_len > bit_len)
7688 bit_len = off + fld_bit_len;
7689 TYPE_LENGTH (rtype) =
7690 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7694 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7695 should contain the alignment of that record, which should be a strictly
7696 positive value. If null or negative, then something is wrong, most
7697 probably in the debug info. In that case, we don't round up the size
7698 of the resulting type. If this record is not part of another structure,
7699 the current RTYPE length might be good enough for our purposes. */
7700 if (TYPE_LENGTH (type) <= 0)
7703 warning (_("Invalid type size for `%s' detected: %s."),
7704 rtype->name (), pulongest (TYPE_LENGTH (type)));
7706 warning (_("Invalid type size for <unnamed> detected: %s."),
7707 pulongest (TYPE_LENGTH (type)));
7711 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7712 TYPE_LENGTH (type));
7715 value_free_to_mark (mark);
7716 if (TYPE_LENGTH (rtype) > varsize_limit)
7717 error (_("record type with dynamic size is larger than varsize-limit"));
7721 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7724 static struct type *
7725 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7726 CORE_ADDR address, struct value *dval0)
7728 return ada_template_to_fixed_record_type_1 (type, valaddr,
7732 /* An ordinary record type in which ___XVL-convention fields and
7733 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7734 static approximations, containing all possible fields. Uses
7735 no runtime values. Useless for use in values, but that's OK,
7736 since the results are used only for type determinations. Works on both
7737 structs and unions. Representation note: to save space, we memorize
7738 the result of this function in the TYPE_TARGET_TYPE of the
7741 static struct type *
7742 template_to_static_fixed_type (struct type *type0)
7748 /* No need no do anything if the input type is already fixed. */
7749 if (type0->is_fixed_instance ())
7752 /* Likewise if we already have computed the static approximation. */
7753 if (TYPE_TARGET_TYPE (type0) != NULL)
7754 return TYPE_TARGET_TYPE (type0);
7756 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7758 nfields = type0->num_fields ();
7760 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7761 recompute all over next time. */
7762 TYPE_TARGET_TYPE (type0) = type;
7764 for (f = 0; f < nfields; f += 1)
7766 struct type *field_type = type0->field (f).type ();
7767 struct type *new_type;
7769 if (is_dynamic_field (type0, f))
7771 field_type = ada_check_typedef (field_type);
7772 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7775 new_type = static_unwrap_type (field_type);
7777 if (new_type != field_type)
7779 /* Clone TYPE0 only the first time we get a new field type. */
7782 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7783 type->set_code (type0->code ());
7784 INIT_NONE_SPECIFIC (type);
7785 type->set_num_fields (nfields);
7789 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7790 memcpy (fields, type0->fields (),
7791 sizeof (struct field) * nfields);
7792 type->set_fields (fields);
7794 type->set_name (ada_type_name (type0));
7795 type->set_is_fixed_instance (true);
7796 TYPE_LENGTH (type) = 0;
7798 type->field (f).set_type (new_type);
7799 type->field (f).set_name (type0->field (f).name ());
7806 /* Given an object of type TYPE whose contents are at VALADDR and
7807 whose address in memory is ADDRESS, returns a revision of TYPE,
7808 which should be a non-dynamic-sized record, in which the variant
7809 part, if any, is replaced with the appropriate branch. Looks
7810 for discriminant values in DVAL0, which can be NULL if the record
7811 contains the necessary discriminant values. */
7813 static struct type *
7814 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7815 CORE_ADDR address, struct value *dval0)
7817 struct value *mark = value_mark ();
7820 struct type *branch_type;
7821 int nfields = type->num_fields ();
7822 int variant_field = variant_field_index (type);
7824 if (variant_field == -1)
7829 dval = value_from_contents_and_address (type, valaddr, address);
7830 type = value_type (dval);
7835 rtype = alloc_type_copy (type);
7836 rtype->set_code (TYPE_CODE_STRUCT);
7837 INIT_NONE_SPECIFIC (rtype);
7838 rtype->set_num_fields (nfields);
7841 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7842 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7843 rtype->set_fields (fields);
7845 rtype->set_name (ada_type_name (type));
7846 rtype->set_is_fixed_instance (true);
7847 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7849 branch_type = to_fixed_variant_branch_type
7850 (type->field (variant_field).type (),
7851 cond_offset_host (valaddr,
7852 TYPE_FIELD_BITPOS (type, variant_field)
7854 cond_offset_target (address,
7855 TYPE_FIELD_BITPOS (type, variant_field)
7856 / TARGET_CHAR_BIT), dval);
7857 if (branch_type == NULL)
7861 for (f = variant_field + 1; f < nfields; f += 1)
7862 rtype->field (f - 1) = rtype->field (f);
7863 rtype->set_num_fields (rtype->num_fields () - 1);
7867 rtype->field (variant_field).set_type (branch_type);
7868 rtype->field (variant_field).set_name ("S");
7869 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7870 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7872 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7874 value_free_to_mark (mark);
7878 /* An ordinary record type (with fixed-length fields) that describes
7879 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7880 beginning of this section]. Any necessary discriminants' values
7881 should be in DVAL, a record value; it may be NULL if the object
7882 at ADDR itself contains any necessary discriminant values.
7883 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7884 values from the record are needed. Except in the case that DVAL,
7885 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7886 unchecked) is replaced by a particular branch of the variant.
7888 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7889 is questionable and may be removed. It can arise during the
7890 processing of an unconstrained-array-of-record type where all the
7891 variant branches have exactly the same size. This is because in
7892 such cases, the compiler does not bother to use the XVS convention
7893 when encoding the record. I am currently dubious of this
7894 shortcut and suspect the compiler should be altered. FIXME. */
7896 static struct type *
7897 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7898 CORE_ADDR address, struct value *dval)
7900 struct type *templ_type;
7902 if (type0->is_fixed_instance ())
7905 templ_type = dynamic_template_type (type0);
7907 if (templ_type != NULL)
7908 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7909 else if (variant_field_index (type0) >= 0)
7911 if (dval == NULL && valaddr == NULL && address == 0)
7913 return to_record_with_fixed_variant_part (type0, valaddr, address,
7918 type0->set_is_fixed_instance (true);
7924 /* An ordinary record type (with fixed-length fields) that describes
7925 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7926 union type. Any necessary discriminants' values should be in DVAL,
7927 a record value. That is, this routine selects the appropriate
7928 branch of the union at ADDR according to the discriminant value
7929 indicated in the union's type name. Returns VAR_TYPE0 itself if
7930 it represents a variant subject to a pragma Unchecked_Union. */
7932 static struct type *
7933 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7934 CORE_ADDR address, struct value *dval)
7937 struct type *templ_type;
7938 struct type *var_type;
7940 if (var_type0->code () == TYPE_CODE_PTR)
7941 var_type = TYPE_TARGET_TYPE (var_type0);
7943 var_type = var_type0;
7945 templ_type = ada_find_parallel_type (var_type, "___XVU");
7947 if (templ_type != NULL)
7948 var_type = templ_type;
7950 if (is_unchecked_variant (var_type, value_type (dval)))
7952 which = ada_which_variant_applies (var_type, dval);
7955 return empty_record (var_type);
7956 else if (is_dynamic_field (var_type, which))
7957 return to_fixed_record_type
7958 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7959 valaddr, address, dval);
7960 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7962 to_fixed_record_type
7963 (var_type->field (which).type (), valaddr, address, dval);
7965 return var_type->field (which).type ();
7968 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7969 ENCODING_TYPE, a type following the GNAT conventions for discrete
7970 type encodings, only carries redundant information. */
7973 ada_is_redundant_range_encoding (struct type *range_type,
7974 struct type *encoding_type)
7976 const char *bounds_str;
7980 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7982 if (get_base_type (range_type)->code ()
7983 != get_base_type (encoding_type)->code ())
7985 /* The compiler probably used a simple base type to describe
7986 the range type instead of the range's actual base type,
7987 expecting us to get the real base type from the encoding
7988 anyway. In this situation, the encoding cannot be ignored
7993 if (is_dynamic_type (range_type))
7996 if (encoding_type->name () == NULL)
7999 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8000 if (bounds_str == NULL)
8003 n = 8; /* Skip "___XDLU_". */
8004 if (!ada_scan_number (bounds_str, n, &lo, &n))
8006 if (range_type->bounds ()->low.const_val () != lo)
8009 n += 2; /* Skip the "__" separator between the two bounds. */
8010 if (!ada_scan_number (bounds_str, n, &hi, &n))
8012 if (range_type->bounds ()->high.const_val () != hi)
8018 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8019 a type following the GNAT encoding for describing array type
8020 indices, only carries redundant information. */
8023 ada_is_redundant_index_type_desc (struct type *array_type,
8024 struct type *desc_type)
8026 struct type *this_layer = check_typedef (array_type);
8029 for (i = 0; i < desc_type->num_fields (); i++)
8031 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8032 desc_type->field (i).type ()))
8034 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8040 /* Assuming that TYPE0 is an array type describing the type of a value
8041 at ADDR, and that DVAL describes a record containing any
8042 discriminants used in TYPE0, returns a type for the value that
8043 contains no dynamic components (that is, no components whose sizes
8044 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8045 true, gives an error message if the resulting type's size is over
8048 static struct type *
8049 to_fixed_array_type (struct type *type0, struct value *dval,
8052 struct type *index_type_desc;
8053 struct type *result;
8054 int constrained_packed_array_p;
8055 static const char *xa_suffix = "___XA";
8057 type0 = ada_check_typedef (type0);
8058 if (type0->is_fixed_instance ())
8061 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8062 if (constrained_packed_array_p)
8064 type0 = decode_constrained_packed_array_type (type0);
8065 if (type0 == nullptr)
8066 error (_("could not decode constrained packed array type"));
8069 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8071 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8072 encoding suffixed with 'P' may still be generated. If so,
8073 it should be used to find the XA type. */
8075 if (index_type_desc == NULL)
8077 const char *type_name = ada_type_name (type0);
8079 if (type_name != NULL)
8081 const int len = strlen (type_name);
8082 char *name = (char *) alloca (len + strlen (xa_suffix));
8084 if (type_name[len - 1] == 'P')
8086 strcpy (name, type_name);
8087 strcpy (name + len - 1, xa_suffix);
8088 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8093 ada_fixup_array_indexes_type (index_type_desc);
8094 if (index_type_desc != NULL
8095 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8097 /* Ignore this ___XA parallel type, as it does not bring any
8098 useful information. This allows us to avoid creating fixed
8099 versions of the array's index types, which would be identical
8100 to the original ones. This, in turn, can also help avoid
8101 the creation of fixed versions of the array itself. */
8102 index_type_desc = NULL;
8105 if (index_type_desc == NULL)
8107 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8109 /* NOTE: elt_type---the fixed version of elt_type0---should never
8110 depend on the contents of the array in properly constructed
8112 /* Create a fixed version of the array element type.
8113 We're not providing the address of an element here,
8114 and thus the actual object value cannot be inspected to do
8115 the conversion. This should not be a problem, since arrays of
8116 unconstrained objects are not allowed. In particular, all
8117 the elements of an array of a tagged type should all be of
8118 the same type specified in the debugging info. No need to
8119 consult the object tag. */
8120 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8122 /* Make sure we always create a new array type when dealing with
8123 packed array types, since we're going to fix-up the array
8124 type length and element bitsize a little further down. */
8125 if (elt_type0 == elt_type && !constrained_packed_array_p)
8128 result = create_array_type (alloc_type_copy (type0),
8129 elt_type, type0->index_type ());
8134 struct type *elt_type0;
8137 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8138 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8140 /* NOTE: result---the fixed version of elt_type0---should never
8141 depend on the contents of the array in properly constructed
8143 /* Create a fixed version of the array element type.
8144 We're not providing the address of an element here,
8145 and thus the actual object value cannot be inspected to do
8146 the conversion. This should not be a problem, since arrays of
8147 unconstrained objects are not allowed. In particular, all
8148 the elements of an array of a tagged type should all be of
8149 the same type specified in the debugging info. No need to
8150 consult the object tag. */
8152 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8155 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8157 struct type *range_type =
8158 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8160 result = create_array_type (alloc_type_copy (elt_type0),
8161 result, range_type);
8162 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8164 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8165 error (_("array type with dynamic size is larger than varsize-limit"));
8168 /* We want to preserve the type name. This can be useful when
8169 trying to get the type name of a value that has already been
8170 printed (for instance, if the user did "print VAR; whatis $". */
8171 result->set_name (type0->name ());
8173 if (constrained_packed_array_p)
8175 /* So far, the resulting type has been created as if the original
8176 type was a regular (non-packed) array type. As a result, the
8177 bitsize of the array elements needs to be set again, and the array
8178 length needs to be recomputed based on that bitsize. */
8179 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8180 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8182 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8183 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8184 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8185 TYPE_LENGTH (result)++;
8188 result->set_is_fixed_instance (true);
8193 /* A standard type (containing no dynamically sized components)
8194 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8195 DVAL describes a record containing any discriminants used in TYPE0,
8196 and may be NULL if there are none, or if the object of type TYPE at
8197 ADDRESS or in VALADDR contains these discriminants.
8199 If CHECK_TAG is not null, in the case of tagged types, this function
8200 attempts to locate the object's tag and use it to compute the actual
8201 type. However, when ADDRESS is null, we cannot use it to determine the
8202 location of the tag, and therefore compute the tagged type's actual type.
8203 So we return the tagged type without consulting the tag. */
8205 static struct type *
8206 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8207 CORE_ADDR address, struct value *dval, int check_tag)
8209 type = ada_check_typedef (type);
8211 /* Only un-fixed types need to be handled here. */
8212 if (!HAVE_GNAT_AUX_INFO (type))
8215 switch (type->code ())
8219 case TYPE_CODE_STRUCT:
8221 struct type *static_type = to_static_fixed_type (type);
8222 struct type *fixed_record_type =
8223 to_fixed_record_type (type, valaddr, address, NULL);
8225 /* If STATIC_TYPE is a tagged type and we know the object's address,
8226 then we can determine its tag, and compute the object's actual
8227 type from there. Note that we have to use the fixed record
8228 type (the parent part of the record may have dynamic fields
8229 and the way the location of _tag is expressed may depend on
8232 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8235 value_tag_from_contents_and_address
8239 struct type *real_type = type_from_tag (tag);
8241 value_from_contents_and_address (fixed_record_type,
8244 fixed_record_type = value_type (obj);
8245 if (real_type != NULL)
8246 return to_fixed_record_type
8248 value_address (ada_tag_value_at_base_address (obj)), NULL);
8251 /* Check to see if there is a parallel ___XVZ variable.
8252 If there is, then it provides the actual size of our type. */
8253 else if (ada_type_name (fixed_record_type) != NULL)
8255 const char *name = ada_type_name (fixed_record_type);
8257 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8258 bool xvz_found = false;
8261 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8264 xvz_found = get_int_var_value (xvz_name, size);
8266 catch (const gdb_exception_error &except)
8268 /* We found the variable, but somehow failed to read
8269 its value. Rethrow the same error, but with a little
8270 bit more information, to help the user understand
8271 what went wrong (Eg: the variable might have been
8273 throw_error (except.error,
8274 _("unable to read value of %s (%s)"),
8275 xvz_name, except.what ());
8278 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8280 fixed_record_type = copy_type (fixed_record_type);
8281 TYPE_LENGTH (fixed_record_type) = size;
8283 /* The FIXED_RECORD_TYPE may have be a stub. We have
8284 observed this when the debugging info is STABS, and
8285 apparently it is something that is hard to fix.
8287 In practice, we don't need the actual type definition
8288 at all, because the presence of the XVZ variable allows us
8289 to assume that there must be a XVS type as well, which we
8290 should be able to use later, when we need the actual type
8293 In the meantime, pretend that the "fixed" type we are
8294 returning is NOT a stub, because this can cause trouble
8295 when using this type to create new types targeting it.
8296 Indeed, the associated creation routines often check
8297 whether the target type is a stub and will try to replace
8298 it, thus using a type with the wrong size. This, in turn,
8299 might cause the new type to have the wrong size too.
8300 Consider the case of an array, for instance, where the size
8301 of the array is computed from the number of elements in
8302 our array multiplied by the size of its element. */
8303 fixed_record_type->set_is_stub (false);
8306 return fixed_record_type;
8308 case TYPE_CODE_ARRAY:
8309 return to_fixed_array_type (type, dval, 1);
8310 case TYPE_CODE_UNION:
8314 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8318 /* The same as ada_to_fixed_type_1, except that it preserves the type
8319 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8321 The typedef layer needs be preserved in order to differentiate between
8322 arrays and array pointers when both types are implemented using the same
8323 fat pointer. In the array pointer case, the pointer is encoded as
8324 a typedef of the pointer type. For instance, considering:
8326 type String_Access is access String;
8327 S1 : String_Access := null;
8329 To the debugger, S1 is defined as a typedef of type String. But
8330 to the user, it is a pointer. So if the user tries to print S1,
8331 we should not dereference the array, but print the array address
8334 If we didn't preserve the typedef layer, we would lose the fact that
8335 the type is to be presented as a pointer (needs de-reference before
8336 being printed). And we would also use the source-level type name. */
8339 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8340 CORE_ADDR address, struct value *dval, int check_tag)
8343 struct type *fixed_type =
8344 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8346 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8347 then preserve the typedef layer.
8349 Implementation note: We can only check the main-type portion of
8350 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8351 from TYPE now returns a type that has the same instance flags
8352 as TYPE. For instance, if TYPE is a "typedef const", and its
8353 target type is a "struct", then the typedef elimination will return
8354 a "const" version of the target type. See check_typedef for more
8355 details about how the typedef layer elimination is done.
8357 brobecker/2010-11-19: It seems to me that the only case where it is
8358 useful to preserve the typedef layer is when dealing with fat pointers.
8359 Perhaps, we could add a check for that and preserve the typedef layer
8360 only in that situation. But this seems unnecessary so far, probably
8361 because we call check_typedef/ada_check_typedef pretty much everywhere.
8363 if (type->code () == TYPE_CODE_TYPEDEF
8364 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8365 == TYPE_MAIN_TYPE (fixed_type)))
8371 /* A standard (static-sized) type corresponding as well as possible to
8372 TYPE0, but based on no runtime data. */
8374 static struct type *
8375 to_static_fixed_type (struct type *type0)
8382 if (type0->is_fixed_instance ())
8385 type0 = ada_check_typedef (type0);
8387 switch (type0->code ())
8391 case TYPE_CODE_STRUCT:
8392 type = dynamic_template_type (type0);
8394 return template_to_static_fixed_type (type);
8396 return template_to_static_fixed_type (type0);
8397 case TYPE_CODE_UNION:
8398 type = ada_find_parallel_type (type0, "___XVU");
8400 return template_to_static_fixed_type (type);
8402 return template_to_static_fixed_type (type0);
8406 /* A static approximation of TYPE with all type wrappers removed. */
8408 static struct type *
8409 static_unwrap_type (struct type *type)
8411 if (ada_is_aligner_type (type))
8413 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8414 if (ada_type_name (type1) == NULL)
8415 type1->set_name (ada_type_name (type));
8417 return static_unwrap_type (type1);
8421 struct type *raw_real_type = ada_get_base_type (type);
8423 if (raw_real_type == type)
8426 return to_static_fixed_type (raw_real_type);
8430 /* In some cases, incomplete and private types require
8431 cross-references that are not resolved as records (for example,
8433 type FooP is access Foo;
8435 type Foo is array ...;
8436 ). In these cases, since there is no mechanism for producing
8437 cross-references to such types, we instead substitute for FooP a
8438 stub enumeration type that is nowhere resolved, and whose tag is
8439 the name of the actual type. Call these types "non-record stubs". */
8441 /* A type equivalent to TYPE that is not a non-record stub, if one
8442 exists, otherwise TYPE. */
8445 ada_check_typedef (struct type *type)
8450 /* If our type is an access to an unconstrained array, which is encoded
8451 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8452 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8453 what allows us to distinguish between fat pointers that represent
8454 array types, and fat pointers that represent array access types
8455 (in both cases, the compiler implements them as fat pointers). */
8456 if (ada_is_access_to_unconstrained_array (type))
8459 type = check_typedef (type);
8460 if (type == NULL || type->code () != TYPE_CODE_ENUM
8461 || !type->is_stub ()
8462 || type->name () == NULL)
8466 const char *name = type->name ();
8467 struct type *type1 = ada_find_any_type (name);
8472 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8473 stubs pointing to arrays, as we don't create symbols for array
8474 types, only for the typedef-to-array types). If that's the case,
8475 strip the typedef layer. */
8476 if (type1->code () == TYPE_CODE_TYPEDEF)
8477 type1 = ada_check_typedef (type1);
8483 /* A value representing the data at VALADDR/ADDRESS as described by
8484 type TYPE0, but with a standard (static-sized) type that correctly
8485 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8486 type, then return VAL0 [this feature is simply to avoid redundant
8487 creation of struct values]. */
8489 static struct value *
8490 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8493 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8495 if (type == type0 && val0 != NULL)
8498 if (VALUE_LVAL (val0) != lval_memory)
8500 /* Our value does not live in memory; it could be a convenience
8501 variable, for instance. Create a not_lval value using val0's
8503 return value_from_contents (type, value_contents (val0));
8506 return value_from_contents_and_address (type, 0, address);
8509 /* A value representing VAL, but with a standard (static-sized) type
8510 that correctly describes it. Does not necessarily create a new
8514 ada_to_fixed_value (struct value *val)
8516 val = unwrap_value (val);
8517 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8524 /* Table mapping attribute numbers to names.
8525 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8527 static const char * const attribute_names[] = {
8545 ada_attribute_name (enum exp_opcode n)
8547 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8548 return attribute_names[n - OP_ATR_FIRST + 1];
8550 return attribute_names[0];
8553 /* Evaluate the 'POS attribute applied to ARG. */
8556 pos_atr (struct value *arg)
8558 struct value *val = coerce_ref (arg);
8559 struct type *type = value_type (val);
8561 if (!discrete_type_p (type))
8562 error (_("'POS only defined on discrete types"));
8564 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8565 if (!result.has_value ())
8566 error (_("enumeration value is invalid: can't find 'POS"));
8572 ada_pos_atr (struct type *expect_type,
8573 struct expression *exp,
8574 enum noside noside, enum exp_opcode op,
8577 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8578 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8579 return value_zero (type, not_lval);
8580 return value_from_longest (type, pos_atr (arg));
8583 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8585 static struct value *
8586 val_atr (struct type *type, LONGEST val)
8588 gdb_assert (discrete_type_p (type));
8589 if (type->code () == TYPE_CODE_RANGE)
8590 type = TYPE_TARGET_TYPE (type);
8591 if (type->code () == TYPE_CODE_ENUM)
8593 if (val < 0 || val >= type->num_fields ())
8594 error (_("argument to 'VAL out of range"));
8595 val = TYPE_FIELD_ENUMVAL (type, val);
8597 return value_from_longest (type, val);
8601 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8603 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8604 return value_zero (type, not_lval);
8606 if (!discrete_type_p (type))
8607 error (_("'VAL only defined on discrete types"));
8608 if (!integer_type_p (value_type (arg)))
8609 error (_("'VAL requires integral argument"));
8611 return val_atr (type, value_as_long (arg));
8617 /* True if TYPE appears to be an Ada character type.
8618 [At the moment, this is true only for Character and Wide_Character;
8619 It is a heuristic test that could stand improvement]. */
8622 ada_is_character_type (struct type *type)
8626 /* If the type code says it's a character, then assume it really is,
8627 and don't check any further. */
8628 if (type->code () == TYPE_CODE_CHAR)
8631 /* Otherwise, assume it's a character type iff it is a discrete type
8632 with a known character type name. */
8633 name = ada_type_name (type);
8634 return (name != NULL
8635 && (type->code () == TYPE_CODE_INT
8636 || type->code () == TYPE_CODE_RANGE)
8637 && (strcmp (name, "character") == 0
8638 || strcmp (name, "wide_character") == 0
8639 || strcmp (name, "wide_wide_character") == 0
8640 || strcmp (name, "unsigned char") == 0));
8643 /* True if TYPE appears to be an Ada string type. */
8646 ada_is_string_type (struct type *type)
8648 type = ada_check_typedef (type);
8650 && type->code () != TYPE_CODE_PTR
8651 && (ada_is_simple_array_type (type)
8652 || ada_is_array_descriptor_type (type))
8653 && ada_array_arity (type) == 1)
8655 struct type *elttype = ada_array_element_type (type, 1);
8657 return ada_is_character_type (elttype);
8663 /* The compiler sometimes provides a parallel XVS type for a given
8664 PAD type. Normally, it is safe to follow the PAD type directly,
8665 but older versions of the compiler have a bug that causes the offset
8666 of its "F" field to be wrong. Following that field in that case
8667 would lead to incorrect results, but this can be worked around
8668 by ignoring the PAD type and using the associated XVS type instead.
8670 Set to True if the debugger should trust the contents of PAD types.
8671 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8672 static bool trust_pad_over_xvs = true;
8674 /* True if TYPE is a struct type introduced by the compiler to force the
8675 alignment of a value. Such types have a single field with a
8676 distinctive name. */
8679 ada_is_aligner_type (struct type *type)
8681 type = ada_check_typedef (type);
8683 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8686 return (type->code () == TYPE_CODE_STRUCT
8687 && type->num_fields () == 1
8688 && strcmp (type->field (0).name (), "F") == 0);
8691 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8692 the parallel type. */
8695 ada_get_base_type (struct type *raw_type)
8697 struct type *real_type_namer;
8698 struct type *raw_real_type;
8700 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8703 if (ada_is_aligner_type (raw_type))
8704 /* The encoding specifies that we should always use the aligner type.
8705 So, even if this aligner type has an associated XVS type, we should
8708 According to the compiler gurus, an XVS type parallel to an aligner
8709 type may exist because of a stabs limitation. In stabs, aligner
8710 types are empty because the field has a variable-sized type, and
8711 thus cannot actually be used as an aligner type. As a result,
8712 we need the associated parallel XVS type to decode the type.
8713 Since the policy in the compiler is to not change the internal
8714 representation based on the debugging info format, we sometimes
8715 end up having a redundant XVS type parallel to the aligner type. */
8718 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8719 if (real_type_namer == NULL
8720 || real_type_namer->code () != TYPE_CODE_STRUCT
8721 || real_type_namer->num_fields () != 1)
8724 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8726 /* This is an older encoding form where the base type needs to be
8727 looked up by name. We prefer the newer encoding because it is
8729 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
8730 if (raw_real_type == NULL)
8733 return raw_real_type;
8736 /* The field in our XVS type is a reference to the base type. */
8737 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8740 /* The type of value designated by TYPE, with all aligners removed. */
8743 ada_aligned_type (struct type *type)
8745 if (ada_is_aligner_type (type))
8746 return ada_aligned_type (type->field (0).type ());
8748 return ada_get_base_type (type);
8752 /* The address of the aligned value in an object at address VALADDR
8753 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8756 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8758 if (ada_is_aligner_type (type))
8759 return ada_aligned_value_addr (type->field (0).type (),
8761 TYPE_FIELD_BITPOS (type,
8762 0) / TARGET_CHAR_BIT);
8769 /* The printed representation of an enumeration literal with encoded
8770 name NAME. The value is good to the next call of ada_enum_name. */
8772 ada_enum_name (const char *name)
8774 static std::string storage;
8777 /* First, unqualify the enumeration name:
8778 1. Search for the last '.' character. If we find one, then skip
8779 all the preceding characters, the unqualified name starts
8780 right after that dot.
8781 2. Otherwise, we may be debugging on a target where the compiler
8782 translates dots into "__". Search forward for double underscores,
8783 but stop searching when we hit an overloading suffix, which is
8784 of the form "__" followed by digits. */
8786 tmp = strrchr (name, '.');
8791 while ((tmp = strstr (name, "__")) != NULL)
8793 if (isdigit (tmp[2]))
8804 if (name[1] == 'U' || name[1] == 'W')
8806 if (sscanf (name + 2, "%x", &v) != 1)
8809 else if (((name[1] >= '0' && name[1] <= '9')
8810 || (name[1] >= 'a' && name[1] <= 'z'))
8813 storage = string_printf ("'%c'", name[1]);
8814 return storage.c_str ();
8819 if (isascii (v) && isprint (v))
8820 storage = string_printf ("'%c'", v);
8821 else if (name[1] == 'U')
8822 storage = string_printf ("[\"%02x\"]", v);
8824 storage = string_printf ("[\"%04x\"]", v);
8826 return storage.c_str ();
8830 tmp = strstr (name, "__");
8832 tmp = strstr (name, "$");
8835 storage = std::string (name, tmp - name);
8836 return storage.c_str ();
8843 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8846 static struct value *
8847 unwrap_value (struct value *val)
8849 struct type *type = ada_check_typedef (value_type (val));
8851 if (ada_is_aligner_type (type))
8853 struct value *v = ada_value_struct_elt (val, "F", 0);
8854 struct type *val_type = ada_check_typedef (value_type (v));
8856 if (ada_type_name (val_type) == NULL)
8857 val_type->set_name (ada_type_name (type));
8859 return unwrap_value (v);
8863 struct type *raw_real_type =
8864 ada_check_typedef (ada_get_base_type (type));
8866 /* If there is no parallel XVS or XVE type, then the value is
8867 already unwrapped. Return it without further modification. */
8868 if ((type == raw_real_type)
8869 && ada_find_parallel_type (type, "___XVE") == NULL)
8873 coerce_unspec_val_to_type
8874 (val, ada_to_fixed_type (raw_real_type, 0,
8875 value_address (val),
8880 /* Given two array types T1 and T2, return nonzero iff both arrays
8881 contain the same number of elements. */
8884 ada_same_array_size_p (struct type *t1, struct type *t2)
8886 LONGEST lo1, hi1, lo2, hi2;
8888 /* Get the array bounds in order to verify that the size of
8889 the two arrays match. */
8890 if (!get_array_bounds (t1, &lo1, &hi1)
8891 || !get_array_bounds (t2, &lo2, &hi2))
8892 error (_("unable to determine array bounds"));
8894 /* To make things easier for size comparison, normalize a bit
8895 the case of empty arrays by making sure that the difference
8896 between upper bound and lower bound is always -1. */
8902 return (hi1 - lo1 == hi2 - lo2);
8905 /* Assuming that VAL is an array of integrals, and TYPE represents
8906 an array with the same number of elements, but with wider integral
8907 elements, return an array "casted" to TYPE. In practice, this
8908 means that the returned array is built by casting each element
8909 of the original array into TYPE's (wider) element type. */
8911 static struct value *
8912 ada_promote_array_of_integrals (struct type *type, struct value *val)
8914 struct type *elt_type = TYPE_TARGET_TYPE (type);
8919 /* Verify that both val and type are arrays of scalars, and
8920 that the size of val's elements is smaller than the size
8921 of type's element. */
8922 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8923 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8924 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8925 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8926 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8927 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8929 if (!get_array_bounds (type, &lo, &hi))
8930 error (_("unable to determine array bounds"));
8932 res = allocate_value (type);
8934 /* Promote each array element. */
8935 for (i = 0; i < hi - lo + 1; i++)
8937 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8939 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8940 value_contents_all (elt), TYPE_LENGTH (elt_type));
8946 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8947 return the converted value. */
8949 static struct value *
8950 coerce_for_assign (struct type *type, struct value *val)
8952 struct type *type2 = value_type (val);
8957 type2 = ada_check_typedef (type2);
8958 type = ada_check_typedef (type);
8960 if (type2->code () == TYPE_CODE_PTR
8961 && type->code () == TYPE_CODE_ARRAY)
8963 val = ada_value_ind (val);
8964 type2 = value_type (val);
8967 if (type2->code () == TYPE_CODE_ARRAY
8968 && type->code () == TYPE_CODE_ARRAY)
8970 if (!ada_same_array_size_p (type, type2))
8971 error (_("cannot assign arrays of different length"));
8973 if (is_integral_type (TYPE_TARGET_TYPE (type))
8974 && is_integral_type (TYPE_TARGET_TYPE (type2))
8975 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8976 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8978 /* Allow implicit promotion of the array elements to
8980 return ada_promote_array_of_integrals (type, val);
8983 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8984 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8985 error (_("Incompatible types in assignment"));
8986 deprecated_set_value_type (val, type);
8991 static struct value *
8992 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8995 struct type *type1, *type2;
8998 arg1 = coerce_ref (arg1);
8999 arg2 = coerce_ref (arg2);
9000 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9001 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9003 if (type1->code () != TYPE_CODE_INT
9004 || type2->code () != TYPE_CODE_INT)
9005 return value_binop (arg1, arg2, op);
9014 return value_binop (arg1, arg2, op);
9017 v2 = value_as_long (arg2);
9021 if (op == BINOP_MOD)
9023 else if (op == BINOP_DIV)
9027 gdb_assert (op == BINOP_REM);
9031 error (_("second operand of %s must not be zero."), name);
9034 if (type1->is_unsigned () || op == BINOP_MOD)
9035 return value_binop (arg1, arg2, op);
9037 v1 = value_as_long (arg1);
9042 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9043 v += v > 0 ? -1 : 1;
9051 /* Should not reach this point. */
9055 val = allocate_value (type1);
9056 store_unsigned_integer (value_contents_raw (val),
9057 TYPE_LENGTH (value_type (val)),
9058 type_byte_order (type1), v);
9063 ada_value_equal (struct value *arg1, struct value *arg2)
9065 if (ada_is_direct_array_type (value_type (arg1))
9066 || ada_is_direct_array_type (value_type (arg2)))
9068 struct type *arg1_type, *arg2_type;
9070 /* Automatically dereference any array reference before
9071 we attempt to perform the comparison. */
9072 arg1 = ada_coerce_ref (arg1);
9073 arg2 = ada_coerce_ref (arg2);
9075 arg1 = ada_coerce_to_simple_array (arg1);
9076 arg2 = ada_coerce_to_simple_array (arg2);
9078 arg1_type = ada_check_typedef (value_type (arg1));
9079 arg2_type = ada_check_typedef (value_type (arg2));
9081 if (arg1_type->code () != TYPE_CODE_ARRAY
9082 || arg2_type->code () != TYPE_CODE_ARRAY)
9083 error (_("Attempt to compare array with non-array"));
9084 /* FIXME: The following works only for types whose
9085 representations use all bits (no padding or undefined bits)
9086 and do not have user-defined equality. */
9087 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9088 && memcmp (value_contents (arg1), value_contents (arg2),
9089 TYPE_LENGTH (arg1_type)) == 0);
9091 return value_equal (arg1, arg2);
9098 check_objfile (const std::unique_ptr<ada_component> &comp,
9099 struct objfile *objfile)
9101 return comp->uses_objfile (objfile);
9104 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9105 component of LHS (a simple array or a record). Does not modify the
9106 inferior's memory, nor does it modify LHS (unless LHS ==
9110 assign_component (struct value *container, struct value *lhs, LONGEST index,
9111 struct expression *exp, operation_up &arg)
9113 scoped_value_mark mark;
9116 struct type *lhs_type = check_typedef (value_type (lhs));
9118 if (lhs_type->code () == TYPE_CODE_ARRAY)
9120 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9121 struct value *index_val = value_from_longest (index_type, index);
9123 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9127 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9128 elt = ada_to_fixed_value (elt);
9131 ada_aggregate_operation *ag_op
9132 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9133 if (ag_op != nullptr)
9134 ag_op->assign_aggregate (container, elt, exp);
9136 value_assign_to_component (container, elt,
9137 arg->evaluate (nullptr, exp,
9142 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9144 for (const auto &item : m_components)
9145 if (item->uses_objfile (objfile))
9151 ada_aggregate_component::dump (ui_file *stream, int depth)
9153 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9154 for (const auto &item : m_components)
9155 item->dump (stream, depth + 1);
9159 ada_aggregate_component::assign (struct value *container,
9160 struct value *lhs, struct expression *exp,
9161 std::vector<LONGEST> &indices,
9162 LONGEST low, LONGEST high)
9164 for (auto &item : m_components)
9165 item->assign (container, lhs, exp, indices, low, high);
9168 /* See ada-exp.h. */
9171 ada_aggregate_operation::assign_aggregate (struct value *container,
9173 struct expression *exp)
9175 struct type *lhs_type;
9176 LONGEST low_index, high_index;
9178 container = ada_coerce_ref (container);
9179 if (ada_is_direct_array_type (value_type (container)))
9180 container = ada_coerce_to_simple_array (container);
9181 lhs = ada_coerce_ref (lhs);
9182 if (!deprecated_value_modifiable (lhs))
9183 error (_("Left operand of assignment is not a modifiable lvalue."));
9185 lhs_type = check_typedef (value_type (lhs));
9186 if (ada_is_direct_array_type (lhs_type))
9188 lhs = ada_coerce_to_simple_array (lhs);
9189 lhs_type = check_typedef (value_type (lhs));
9190 low_index = lhs_type->bounds ()->low.const_val ();
9191 high_index = lhs_type->bounds ()->high.const_val ();
9193 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9196 high_index = num_visible_fields (lhs_type) - 1;
9199 error (_("Left-hand side must be array or record."));
9201 std::vector<LONGEST> indices (4);
9202 indices[0] = indices[1] = low_index - 1;
9203 indices[2] = indices[3] = high_index + 1;
9205 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9206 low_index, high_index);
9212 ada_positional_component::uses_objfile (struct objfile *objfile)
9214 return m_op->uses_objfile (objfile);
9218 ada_positional_component::dump (ui_file *stream, int depth)
9220 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9221 depth, "", m_index);
9222 m_op->dump (stream, depth + 1);
9225 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9226 construct, given that the positions are relative to lower bound
9227 LOW, where HIGH is the upper bound. Record the position in
9228 INDICES. CONTAINER is as for assign_aggregate. */
9230 ada_positional_component::assign (struct value *container,
9231 struct value *lhs, struct expression *exp,
9232 std::vector<LONGEST> &indices,
9233 LONGEST low, LONGEST high)
9235 LONGEST ind = m_index + low;
9237 if (ind - 1 == high)
9238 warning (_("Extra components in aggregate ignored."));
9241 add_component_interval (ind, ind, indices);
9242 assign_component (container, lhs, ind, exp, m_op);
9247 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9249 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9253 ada_discrete_range_association::dump (ui_file *stream, int depth)
9255 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9256 m_low->dump (stream, depth + 1);
9257 m_high->dump (stream, depth + 1);
9261 ada_discrete_range_association::assign (struct value *container,
9263 struct expression *exp,
9264 std::vector<LONGEST> &indices,
9265 LONGEST low, LONGEST high,
9268 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9269 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9271 if (lower <= upper && (lower < low || upper > high))
9272 error (_("Index in component association out of bounds."));
9274 add_component_interval (lower, upper, indices);
9275 while (lower <= upper)
9277 assign_component (container, lhs, lower, exp, op);
9283 ada_name_association::uses_objfile (struct objfile *objfile)
9285 return m_val->uses_objfile (objfile);
9289 ada_name_association::dump (ui_file *stream, int depth)
9291 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9292 m_val->dump (stream, depth + 1);
9296 ada_name_association::assign (struct value *container,
9298 struct expression *exp,
9299 std::vector<LONGEST> &indices,
9300 LONGEST low, LONGEST high,
9305 if (ada_is_direct_array_type (value_type (lhs)))
9306 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9310 ada_string_operation *strop
9311 = dynamic_cast<ada_string_operation *> (m_val.get ());
9314 if (strop != nullptr)
9315 name = strop->get_name ();
9318 ada_var_value_operation *vvo
9319 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9321 error (_("Invalid record component association."));
9322 name = vvo->get_symbol ()->natural_name ();
9326 if (! find_struct_field (name, value_type (lhs), 0,
9327 NULL, NULL, NULL, NULL, &index))
9328 error (_("Unknown component name: %s."), name);
9331 add_component_interval (index, index, indices);
9332 assign_component (container, lhs, index, exp, op);
9336 ada_choices_component::uses_objfile (struct objfile *objfile)
9338 if (m_op->uses_objfile (objfile))
9340 for (const auto &item : m_assocs)
9341 if (item->uses_objfile (objfile))
9347 ada_choices_component::dump (ui_file *stream, int depth)
9349 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9350 m_op->dump (stream, depth + 1);
9351 for (const auto &item : m_assocs)
9352 item->dump (stream, depth + 1);
9355 /* Assign into the components of LHS indexed by the OP_CHOICES
9356 construct at *POS, updating *POS past the construct, given that
9357 the allowable indices are LOW..HIGH. Record the indices assigned
9358 to in INDICES. CONTAINER is as for assign_aggregate. */
9360 ada_choices_component::assign (struct value *container,
9361 struct value *lhs, struct expression *exp,
9362 std::vector<LONGEST> &indices,
9363 LONGEST low, LONGEST high)
9365 for (auto &item : m_assocs)
9366 item->assign (container, lhs, exp, indices, low, high, m_op);
9370 ada_others_component::uses_objfile (struct objfile *objfile)
9372 return m_op->uses_objfile (objfile);
9376 ada_others_component::dump (ui_file *stream, int depth)
9378 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9379 m_op->dump (stream, depth + 1);
9382 /* Assign the value of the expression in the OP_OTHERS construct in
9383 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9384 have not been previously assigned. The index intervals already assigned
9385 are in INDICES. CONTAINER is as for assign_aggregate. */
9387 ada_others_component::assign (struct value *container,
9388 struct value *lhs, struct expression *exp,
9389 std::vector<LONGEST> &indices,
9390 LONGEST low, LONGEST high)
9392 int num_indices = indices.size ();
9393 for (int i = 0; i < num_indices - 2; i += 2)
9395 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9396 assign_component (container, lhs, ind, exp, m_op);
9401 ada_assign_operation::evaluate (struct type *expect_type,
9402 struct expression *exp,
9405 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9407 ada_aggregate_operation *ag_op
9408 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9409 if (ag_op != nullptr)
9411 if (noside != EVAL_NORMAL)
9414 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9415 return ada_value_assign (arg1, arg1);
9417 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9418 except if the lhs of our assignment is a convenience variable.
9419 In the case of assigning to a convenience variable, the lhs
9420 should be exactly the result of the evaluation of the rhs. */
9421 struct type *type = value_type (arg1);
9422 if (VALUE_LVAL (arg1) == lval_internalvar)
9424 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9425 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9427 if (VALUE_LVAL (arg1) == lval_internalvar)
9432 arg2 = coerce_for_assign (value_type (arg1), arg2);
9433 return ada_value_assign (arg1, arg2);
9436 } /* namespace expr */
9438 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9439 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9442 add_component_interval (LONGEST low, LONGEST high,
9443 std::vector<LONGEST> &indices)
9447 int size = indices.size ();
9448 for (i = 0; i < size; i += 2) {
9449 if (high >= indices[i] && low <= indices[i + 1])
9453 for (kh = i + 2; kh < size; kh += 2)
9454 if (high < indices[kh])
9456 if (low < indices[i])
9458 indices[i + 1] = indices[kh - 1];
9459 if (high > indices[i + 1])
9460 indices[i + 1] = high;
9461 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9462 indices.resize (kh - i - 2);
9465 else if (high < indices[i])
9469 indices.resize (indices.size () + 2);
9470 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9471 indices[j] = indices[j - 2];
9473 indices[i + 1] = high;
9476 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9479 static struct value *
9480 ada_value_cast (struct type *type, struct value *arg2)
9482 if (type == ada_check_typedef (value_type (arg2)))
9485 return value_cast (type, arg2);
9488 /* Evaluating Ada expressions, and printing their result.
9489 ------------------------------------------------------
9494 We usually evaluate an Ada expression in order to print its value.
9495 We also evaluate an expression in order to print its type, which
9496 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9497 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9498 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9499 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9502 Evaluating expressions is a little more complicated for Ada entities
9503 than it is for entities in languages such as C. The main reason for
9504 this is that Ada provides types whose definition might be dynamic.
9505 One example of such types is variant records. Or another example
9506 would be an array whose bounds can only be known at run time.
9508 The following description is a general guide as to what should be
9509 done (and what should NOT be done) in order to evaluate an expression
9510 involving such types, and when. This does not cover how the semantic
9511 information is encoded by GNAT as this is covered separatly. For the
9512 document used as the reference for the GNAT encoding, see exp_dbug.ads
9513 in the GNAT sources.
9515 Ideally, we should embed each part of this description next to its
9516 associated code. Unfortunately, the amount of code is so vast right
9517 now that it's hard to see whether the code handling a particular
9518 situation might be duplicated or not. One day, when the code is
9519 cleaned up, this guide might become redundant with the comments
9520 inserted in the code, and we might want to remove it.
9522 2. ``Fixing'' an Entity, the Simple Case:
9523 -----------------------------------------
9525 When evaluating Ada expressions, the tricky issue is that they may
9526 reference entities whose type contents and size are not statically
9527 known. Consider for instance a variant record:
9529 type Rec (Empty : Boolean := True) is record
9532 when False => Value : Integer;
9535 Yes : Rec := (Empty => False, Value => 1);
9536 No : Rec := (empty => True);
9538 The size and contents of that record depends on the value of the
9539 descriminant (Rec.Empty). At this point, neither the debugging
9540 information nor the associated type structure in GDB are able to
9541 express such dynamic types. So what the debugger does is to create
9542 "fixed" versions of the type that applies to the specific object.
9543 We also informally refer to this operation as "fixing" an object,
9544 which means creating its associated fixed type.
9546 Example: when printing the value of variable "Yes" above, its fixed
9547 type would look like this:
9554 On the other hand, if we printed the value of "No", its fixed type
9561 Things become a little more complicated when trying to fix an entity
9562 with a dynamic type that directly contains another dynamic type,
9563 such as an array of variant records, for instance. There are
9564 two possible cases: Arrays, and records.
9566 3. ``Fixing'' Arrays:
9567 ---------------------
9569 The type structure in GDB describes an array in terms of its bounds,
9570 and the type of its elements. By design, all elements in the array
9571 have the same type and we cannot represent an array of variant elements
9572 using the current type structure in GDB. When fixing an array,
9573 we cannot fix the array element, as we would potentially need one
9574 fixed type per element of the array. As a result, the best we can do
9575 when fixing an array is to produce an array whose bounds and size
9576 are correct (allowing us to read it from memory), but without having
9577 touched its element type. Fixing each element will be done later,
9578 when (if) necessary.
9580 Arrays are a little simpler to handle than records, because the same
9581 amount of memory is allocated for each element of the array, even if
9582 the amount of space actually used by each element differs from element
9583 to element. Consider for instance the following array of type Rec:
9585 type Rec_Array is array (1 .. 2) of Rec;
9587 The actual amount of memory occupied by each element might be different
9588 from element to element, depending on the value of their discriminant.
9589 But the amount of space reserved for each element in the array remains
9590 fixed regardless. So we simply need to compute that size using
9591 the debugging information available, from which we can then determine
9592 the array size (we multiply the number of elements of the array by
9593 the size of each element).
9595 The simplest case is when we have an array of a constrained element
9596 type. For instance, consider the following type declarations:
9598 type Bounded_String (Max_Size : Integer) is
9600 Buffer : String (1 .. Max_Size);
9602 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9604 In this case, the compiler describes the array as an array of
9605 variable-size elements (identified by its XVS suffix) for which
9606 the size can be read in the parallel XVZ variable.
9608 In the case of an array of an unconstrained element type, the compiler
9609 wraps the array element inside a private PAD type. This type should not
9610 be shown to the user, and must be "unwrap"'ed before printing. Note
9611 that we also use the adjective "aligner" in our code to designate
9612 these wrapper types.
9614 In some cases, the size allocated for each element is statically
9615 known. In that case, the PAD type already has the correct size,
9616 and the array element should remain unfixed.
9618 But there are cases when this size is not statically known.
9619 For instance, assuming that "Five" is an integer variable:
9621 type Dynamic is array (1 .. Five) of Integer;
9622 type Wrapper (Has_Length : Boolean := False) is record
9625 when True => Length : Integer;
9629 type Wrapper_Array is array (1 .. 2) of Wrapper;
9631 Hello : Wrapper_Array := (others => (Has_Length => True,
9632 Data => (others => 17),
9636 The debugging info would describe variable Hello as being an
9637 array of a PAD type. The size of that PAD type is not statically
9638 known, but can be determined using a parallel XVZ variable.
9639 In that case, a copy of the PAD type with the correct size should
9640 be used for the fixed array.
9642 3. ``Fixing'' record type objects:
9643 ----------------------------------
9645 Things are slightly different from arrays in the case of dynamic
9646 record types. In this case, in order to compute the associated
9647 fixed type, we need to determine the size and offset of each of
9648 its components. This, in turn, requires us to compute the fixed
9649 type of each of these components.
9651 Consider for instance the example:
9653 type Bounded_String (Max_Size : Natural) is record
9654 Str : String (1 .. Max_Size);
9657 My_String : Bounded_String (Max_Size => 10);
9659 In that case, the position of field "Length" depends on the size
9660 of field Str, which itself depends on the value of the Max_Size
9661 discriminant. In order to fix the type of variable My_String,
9662 we need to fix the type of field Str. Therefore, fixing a variant
9663 record requires us to fix each of its components.
9665 However, if a component does not have a dynamic size, the component
9666 should not be fixed. In particular, fields that use a PAD type
9667 should not fixed. Here is an example where this might happen
9668 (assuming type Rec above):
9670 type Container (Big : Boolean) is record
9674 when True => Another : Integer;
9678 My_Container : Container := (Big => False,
9679 First => (Empty => True),
9682 In that example, the compiler creates a PAD type for component First,
9683 whose size is constant, and then positions the component After just
9684 right after it. The offset of component After is therefore constant
9687 The debugger computes the position of each field based on an algorithm
9688 that uses, among other things, the actual position and size of the field
9689 preceding it. Let's now imagine that the user is trying to print
9690 the value of My_Container. If the type fixing was recursive, we would
9691 end up computing the offset of field After based on the size of the
9692 fixed version of field First. And since in our example First has
9693 only one actual field, the size of the fixed type is actually smaller
9694 than the amount of space allocated to that field, and thus we would
9695 compute the wrong offset of field After.
9697 To make things more complicated, we need to watch out for dynamic
9698 components of variant records (identified by the ___XVL suffix in
9699 the component name). Even if the target type is a PAD type, the size
9700 of that type might not be statically known. So the PAD type needs
9701 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9702 we might end up with the wrong size for our component. This can be
9703 observed with the following type declarations:
9705 type Octal is new Integer range 0 .. 7;
9706 type Octal_Array is array (Positive range <>) of Octal;
9707 pragma Pack (Octal_Array);
9709 type Octal_Buffer (Size : Positive) is record
9710 Buffer : Octal_Array (1 .. Size);
9714 In that case, Buffer is a PAD type whose size is unset and needs
9715 to be computed by fixing the unwrapped type.
9717 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9718 ----------------------------------------------------------
9720 Lastly, when should the sub-elements of an entity that remained unfixed
9721 thus far, be actually fixed?
9723 The answer is: Only when referencing that element. For instance
9724 when selecting one component of a record, this specific component
9725 should be fixed at that point in time. Or when printing the value
9726 of a record, each component should be fixed before its value gets
9727 printed. Similarly for arrays, the element of the array should be
9728 fixed when printing each element of the array, or when extracting
9729 one element out of that array. On the other hand, fixing should
9730 not be performed on the elements when taking a slice of an array!
9732 Note that one of the side effects of miscomputing the offset and
9733 size of each field is that we end up also miscomputing the size
9734 of the containing type. This can have adverse results when computing
9735 the value of an entity. GDB fetches the value of an entity based
9736 on the size of its type, and thus a wrong size causes GDB to fetch
9737 the wrong amount of memory. In the case where the computed size is
9738 too small, GDB fetches too little data to print the value of our
9739 entity. Results in this case are unpredictable, as we usually read
9740 past the buffer containing the data =:-o. */
9742 /* A helper function for TERNOP_IN_RANGE. */
9745 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9747 value *arg1, value *arg2, value *arg3)
9749 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9750 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9751 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9753 value_from_longest (type,
9754 (value_less (arg1, arg3)
9755 || value_equal (arg1, arg3))
9756 && (value_less (arg2, arg1)
9757 || value_equal (arg2, arg1)));
9760 /* A helper function for UNOP_NEG. */
9763 ada_unop_neg (struct type *expect_type,
9764 struct expression *exp,
9765 enum noside noside, enum exp_opcode op,
9768 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9769 return value_neg (arg1);
9772 /* A helper function for UNOP_IN_RANGE. */
9775 ada_unop_in_range (struct type *expect_type,
9776 struct expression *exp,
9777 enum noside noside, enum exp_opcode op,
9778 struct value *arg1, struct type *type)
9780 struct value *arg2, *arg3;
9781 switch (type->code ())
9784 lim_warning (_("Membership test incompletely implemented; "
9785 "always returns true"));
9786 type = language_bool_type (exp->language_defn, exp->gdbarch);
9787 return value_from_longest (type, (LONGEST) 1);
9789 case TYPE_CODE_RANGE:
9790 arg2 = value_from_longest (type,
9791 type->bounds ()->low.const_val ());
9792 arg3 = value_from_longest (type,
9793 type->bounds ()->high.const_val ());
9794 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9795 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9796 type = language_bool_type (exp->language_defn, exp->gdbarch);
9798 value_from_longest (type,
9799 (value_less (arg1, arg3)
9800 || value_equal (arg1, arg3))
9801 && (value_less (arg2, arg1)
9802 || value_equal (arg2, arg1)));
9806 /* A helper function for OP_ATR_TAG. */
9809 ada_atr_tag (struct type *expect_type,
9810 struct expression *exp,
9811 enum noside noside, enum exp_opcode op,
9814 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9815 return value_zero (ada_tag_type (arg1), not_lval);
9817 return ada_value_tag (arg1);
9820 /* A helper function for OP_ATR_SIZE. */
9823 ada_atr_size (struct type *expect_type,
9824 struct expression *exp,
9825 enum noside noside, enum exp_opcode op,
9828 struct type *type = value_type (arg1);
9830 /* If the argument is a reference, then dereference its type, since
9831 the user is really asking for the size of the actual object,
9832 not the size of the pointer. */
9833 if (type->code () == TYPE_CODE_REF)
9834 type = TYPE_TARGET_TYPE (type);
9836 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9837 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9839 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9840 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9843 /* A helper function for UNOP_ABS. */
9846 ada_abs (struct type *expect_type,
9847 struct expression *exp,
9848 enum noside noside, enum exp_opcode op,
9851 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9852 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9853 return value_neg (arg1);
9858 /* A helper function for BINOP_MUL. */
9861 ada_mult_binop (struct type *expect_type,
9862 struct expression *exp,
9863 enum noside noside, enum exp_opcode op,
9864 struct value *arg1, struct value *arg2)
9866 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9868 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9869 return value_zero (value_type (arg1), not_lval);
9873 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9874 return ada_value_binop (arg1, arg2, op);
9878 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9881 ada_equal_binop (struct type *expect_type,
9882 struct expression *exp,
9883 enum noside noside, enum exp_opcode op,
9884 struct value *arg1, struct value *arg2)
9887 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9891 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9892 tem = ada_value_equal (arg1, arg2);
9894 if (op == BINOP_NOTEQUAL)
9896 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9897 return value_from_longest (type, (LONGEST) tem);
9900 /* A helper function for TERNOP_SLICE. */
9903 ada_ternop_slice (struct expression *exp,
9905 struct value *array, struct value *low_bound_val,
9906 struct value *high_bound_val)
9911 low_bound_val = coerce_ref (low_bound_val);
9912 high_bound_val = coerce_ref (high_bound_val);
9913 low_bound = value_as_long (low_bound_val);
9914 high_bound = value_as_long (high_bound_val);
9916 /* If this is a reference to an aligner type, then remove all
9918 if (value_type (array)->code () == TYPE_CODE_REF
9919 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9920 TYPE_TARGET_TYPE (value_type (array)) =
9921 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9923 if (ada_is_any_packed_array_type (value_type (array)))
9924 error (_("cannot slice a packed array"));
9926 /* If this is a reference to an array or an array lvalue,
9927 convert to a pointer. */
9928 if (value_type (array)->code () == TYPE_CODE_REF
9929 || (value_type (array)->code () == TYPE_CODE_ARRAY
9930 && VALUE_LVAL (array) == lval_memory))
9931 array = value_addr (array);
9933 if (noside == EVAL_AVOID_SIDE_EFFECTS
9934 && ada_is_array_descriptor_type (ada_check_typedef
9935 (value_type (array))))
9936 return empty_array (ada_type_of_array (array, 0), low_bound,
9939 array = ada_coerce_to_simple_array_ptr (array);
9941 /* If we have more than one level of pointer indirection,
9942 dereference the value until we get only one level. */
9943 while (value_type (array)->code () == TYPE_CODE_PTR
9944 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9946 array = value_ind (array);
9948 /* Make sure we really do have an array type before going further,
9949 to avoid a SEGV when trying to get the index type or the target
9950 type later down the road if the debug info generated by
9951 the compiler is incorrect or incomplete. */
9952 if (!ada_is_simple_array_type (value_type (array)))
9953 error (_("cannot take slice of non-array"));
9955 if (ada_check_typedef (value_type (array))->code ()
9958 struct type *type0 = ada_check_typedef (value_type (array));
9960 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9961 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9964 struct type *arr_type0 =
9965 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9967 return ada_value_slice_from_ptr (array, arr_type0,
9968 longest_to_int (low_bound),
9969 longest_to_int (high_bound));
9972 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9974 else if (high_bound < low_bound)
9975 return empty_array (value_type (array), low_bound, high_bound);
9977 return ada_value_slice (array, longest_to_int (low_bound),
9978 longest_to_int (high_bound));
9981 /* A helper function for BINOP_IN_BOUNDS. */
9984 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9985 struct value *arg1, struct value *arg2, int n)
9987 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9989 struct type *type = language_bool_type (exp->language_defn,
9991 return value_zero (type, not_lval);
9994 struct type *type = ada_index_type (value_type (arg2), n, "range");
9996 type = value_type (arg1);
9998 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9999 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
10001 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10002 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10003 type = language_bool_type (exp->language_defn, exp->gdbarch);
10004 return value_from_longest (type,
10005 (value_less (arg1, arg3)
10006 || value_equal (arg1, arg3))
10007 && (value_less (arg2, arg1)
10008 || value_equal (arg2, arg1)));
10011 /* A helper function for some attribute operations. */
10014 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10015 struct value *arg1, struct type *type_arg, int tem)
10017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10019 if (type_arg == NULL)
10020 type_arg = value_type (arg1);
10022 if (ada_is_constrained_packed_array_type (type_arg))
10023 type_arg = decode_constrained_packed_array_type (type_arg);
10025 if (!discrete_type_p (type_arg))
10029 default: /* Should never happen. */
10030 error (_("unexpected attribute encountered"));
10033 type_arg = ada_index_type (type_arg, tem,
10034 ada_attribute_name (op));
10036 case OP_ATR_LENGTH:
10037 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10042 return value_zero (type_arg, not_lval);
10044 else if (type_arg == NULL)
10046 arg1 = ada_coerce_ref (arg1);
10048 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10049 arg1 = ada_coerce_to_simple_array (arg1);
10052 if (op == OP_ATR_LENGTH)
10053 type = builtin_type (exp->gdbarch)->builtin_int;
10056 type = ada_index_type (value_type (arg1), tem,
10057 ada_attribute_name (op));
10059 type = builtin_type (exp->gdbarch)->builtin_int;
10064 default: /* Should never happen. */
10065 error (_("unexpected attribute encountered"));
10067 return value_from_longest
10068 (type, ada_array_bound (arg1, tem, 0));
10070 return value_from_longest
10071 (type, ada_array_bound (arg1, tem, 1));
10072 case OP_ATR_LENGTH:
10073 return value_from_longest
10074 (type, ada_array_length (arg1, tem));
10077 else if (discrete_type_p (type_arg))
10079 struct type *range_type;
10080 const char *name = ada_type_name (type_arg);
10083 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10084 range_type = to_fixed_range_type (type_arg, NULL);
10085 if (range_type == NULL)
10086 range_type = type_arg;
10090 error (_("unexpected attribute encountered"));
10092 return value_from_longest
10093 (range_type, ada_discrete_type_low_bound (range_type));
10095 return value_from_longest
10096 (range_type, ada_discrete_type_high_bound (range_type));
10097 case OP_ATR_LENGTH:
10098 error (_("the 'length attribute applies only to array types"));
10101 else if (type_arg->code () == TYPE_CODE_FLT)
10102 error (_("unimplemented type attribute"));
10107 if (ada_is_constrained_packed_array_type (type_arg))
10108 type_arg = decode_constrained_packed_array_type (type_arg);
10111 if (op == OP_ATR_LENGTH)
10112 type = builtin_type (exp->gdbarch)->builtin_int;
10115 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10117 type = builtin_type (exp->gdbarch)->builtin_int;
10123 error (_("unexpected attribute encountered"));
10125 low = ada_array_bound_from_type (type_arg, tem, 0);
10126 return value_from_longest (type, low);
10128 high = ada_array_bound_from_type (type_arg, tem, 1);
10129 return value_from_longest (type, high);
10130 case OP_ATR_LENGTH:
10131 low = ada_array_bound_from_type (type_arg, tem, 0);
10132 high = ada_array_bound_from_type (type_arg, tem, 1);
10133 return value_from_longest (type, high - low + 1);
10138 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10141 ada_binop_minmax (struct type *expect_type,
10142 struct expression *exp,
10143 enum noside noside, enum exp_opcode op,
10144 struct value *arg1, struct value *arg2)
10146 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10147 return value_zero (value_type (arg1), not_lval);
10150 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10151 return value_binop (arg1, arg2, op);
10155 /* A helper function for BINOP_EXP. */
10158 ada_binop_exp (struct type *expect_type,
10159 struct expression *exp,
10160 enum noside noside, enum exp_opcode op,
10161 struct value *arg1, struct value *arg2)
10163 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10164 return value_zero (value_type (arg1), not_lval);
10167 /* For integer exponentiation operations,
10168 only promote the first argument. */
10169 if (is_integral_type (value_type (arg2)))
10170 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10172 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10174 return value_binop (arg1, arg2, op);
10181 /* See ada-exp.h. */
10184 ada_resolvable::replace (operation_up &&owner,
10185 struct expression *exp,
10186 bool deprocedure_p,
10187 bool parse_completion,
10188 innermost_block_tracker *tracker,
10189 struct type *context_type)
10191 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10192 return (make_operation<ada_funcall_operation>
10193 (std::move (owner),
10194 std::vector<operation_up> ()));
10195 return std::move (owner);
10198 /* Convert the character literal whose ASCII value would be VAL to the
10199 appropriate value of type TYPE, if there is a translation.
10200 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10201 the literal 'A' (VAL == 65), returns 0. */
10204 convert_char_literal (struct type *type, LONGEST val)
10211 type = check_typedef (type);
10212 if (type->code () != TYPE_CODE_ENUM)
10215 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10216 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10218 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
10219 size_t len = strlen (name);
10220 for (f = 0; f < type->num_fields (); f += 1)
10222 /* Check the suffix because an enum constant in a package will
10223 have a name like "pkg__QUxx". This is safe enough because we
10224 already have the correct type, and because mangling means
10225 there can't be clashes. */
10226 const char *ename = type->field (f).name ();
10227 size_t elen = strlen (ename);
10229 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10230 return TYPE_FIELD_ENUMVAL (type, f);
10235 /* See ada-exp.h. */
10238 ada_char_operation::replace (operation_up &&owner,
10239 struct expression *exp,
10240 bool deprocedure_p,
10241 bool parse_completion,
10242 innermost_block_tracker *tracker,
10243 struct type *context_type)
10245 operation_up result = std::move (owner);
10247 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10249 gdb_assert (result.get () == this);
10250 std::get<0> (m_storage) = context_type;
10251 std::get<1> (m_storage)
10252 = convert_char_literal (context_type, std::get<1> (m_storage));
10255 return make_operation<ada_wrapped_operation> (std::move (result));
10259 ada_wrapped_operation::evaluate (struct type *expect_type,
10260 struct expression *exp,
10261 enum noside noside)
10263 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10264 if (noside == EVAL_NORMAL)
10265 result = unwrap_value (result);
10267 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10268 then we need to perform the conversion manually, because
10269 evaluate_subexp_standard doesn't do it. This conversion is
10270 necessary in Ada because the different kinds of float/fixed
10271 types in Ada have different representations.
10273 Similarly, we need to perform the conversion from OP_LONG
10275 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10276 result = ada_value_cast (expect_type, result);
10282 ada_string_operation::evaluate (struct type *expect_type,
10283 struct expression *exp,
10284 enum noside noside)
10286 value *result = string_operation::evaluate (expect_type, exp, noside);
10287 /* The result type will have code OP_STRING, bashed there from
10288 OP_ARRAY. Bash it back. */
10289 if (value_type (result)->code () == TYPE_CODE_STRING)
10290 value_type (result)->set_code (TYPE_CODE_ARRAY);
10295 ada_qual_operation::evaluate (struct type *expect_type,
10296 struct expression *exp,
10297 enum noside noside)
10299 struct type *type = std::get<1> (m_storage);
10300 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10304 ada_ternop_range_operation::evaluate (struct type *expect_type,
10305 struct expression *exp,
10306 enum noside noside)
10308 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10309 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10310 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10311 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10315 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10316 struct expression *exp,
10317 enum noside noside)
10319 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10320 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10322 auto do_op = [=] (LONGEST x, LONGEST y)
10324 if (std::get<0> (m_storage) == BINOP_ADD)
10329 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10330 return (value_from_longest
10331 (value_type (arg1),
10332 do_op (value_as_long (arg1), value_as_long (arg2))));
10333 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10334 return (value_from_longest
10335 (value_type (arg2),
10336 do_op (value_as_long (arg1), value_as_long (arg2))));
10337 /* Preserve the original type for use by the range case below.
10338 We cannot cast the result to a reference type, so if ARG1 is
10339 a reference type, find its underlying type. */
10340 struct type *type = value_type (arg1);
10341 while (type->code () == TYPE_CODE_REF)
10342 type = TYPE_TARGET_TYPE (type);
10343 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10344 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10345 /* We need to special-case the result with a range.
10346 This is done for the benefit of "ptype". gdb's Ada support
10347 historically used the LHS to set the result type here, so
10348 preserve this behavior. */
10349 if (type->code () == TYPE_CODE_RANGE)
10350 arg1 = value_cast (type, arg1);
10355 ada_unop_atr_operation::evaluate (struct type *expect_type,
10356 struct expression *exp,
10357 enum noside noside)
10359 struct type *type_arg = nullptr;
10360 value *val = nullptr;
10362 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10364 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10365 EVAL_AVOID_SIDE_EFFECTS);
10366 type_arg = value_type (tem);
10369 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10371 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10372 val, type_arg, std::get<2> (m_storage));
10376 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10377 struct expression *exp,
10378 enum noside noside)
10380 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10381 return value_zero (expect_type, not_lval);
10383 const bound_minimal_symbol &b = std::get<0> (m_storage);
10384 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10386 val = ada_value_cast (expect_type, val);
10388 /* Follow the Ada language semantics that do not allow taking
10389 an address of the result of a cast (view conversion in Ada). */
10390 if (VALUE_LVAL (val) == lval_memory)
10392 if (value_lazy (val))
10393 value_fetch_lazy (val);
10394 VALUE_LVAL (val) = not_lval;
10400 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10401 struct expression *exp,
10402 enum noside noside)
10404 value *val = evaluate_var_value (noside,
10405 std::get<0> (m_storage).block,
10406 std::get<0> (m_storage).symbol);
10408 val = ada_value_cast (expect_type, val);
10410 /* Follow the Ada language semantics that do not allow taking
10411 an address of the result of a cast (view conversion in Ada). */
10412 if (VALUE_LVAL (val) == lval_memory)
10414 if (value_lazy (val))
10415 value_fetch_lazy (val);
10416 VALUE_LVAL (val) = not_lval;
10422 ada_var_value_operation::evaluate (struct type *expect_type,
10423 struct expression *exp,
10424 enum noside noside)
10426 symbol *sym = std::get<0> (m_storage).symbol;
10428 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10429 /* Only encountered when an unresolved symbol occurs in a
10430 context other than a function call, in which case, it is
10432 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10433 sym->print_name ());
10435 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10437 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10438 /* Check to see if this is a tagged type. We also need to handle
10439 the case where the type is a reference to a tagged type, but
10440 we have to be careful to exclude pointers to tagged types.
10441 The latter should be shown as usual (as a pointer), whereas
10442 a reference should mostly be transparent to the user. */
10443 if (ada_is_tagged_type (type, 0)
10444 || (type->code () == TYPE_CODE_REF
10445 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10447 /* Tagged types are a little special in the fact that the real
10448 type is dynamic and can only be determined by inspecting the
10449 object's tag. This means that we need to get the object's
10450 value first (EVAL_NORMAL) and then extract the actual object
10453 Note that we cannot skip the final step where we extract
10454 the object type from its tag, because the EVAL_NORMAL phase
10455 results in dynamic components being resolved into fixed ones.
10456 This can cause problems when trying to print the type
10457 description of tagged types whose parent has a dynamic size:
10458 We use the type name of the "_parent" component in order
10459 to print the name of the ancestor type in the type description.
10460 If that component had a dynamic size, the resolution into
10461 a fixed type would result in the loss of that type name,
10462 thus preventing us from printing the name of the ancestor
10463 type in the type description. */
10464 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10466 if (type->code () != TYPE_CODE_REF)
10468 struct type *actual_type;
10470 actual_type = type_from_tag (ada_value_tag (arg1));
10471 if (actual_type == NULL)
10472 /* If, for some reason, we were unable to determine
10473 the actual type from the tag, then use the static
10474 approximation that we just computed as a fallback.
10475 This can happen if the debugging information is
10476 incomplete, for instance. */
10477 actual_type = type;
10478 return value_zero (actual_type, not_lval);
10482 /* In the case of a ref, ada_coerce_ref takes care
10483 of determining the actual type. But the evaluation
10484 should return a ref as it should be valid to ask
10485 for its address; so rebuild a ref after coerce. */
10486 arg1 = ada_coerce_ref (arg1);
10487 return value_ref (arg1, TYPE_CODE_REF);
10491 /* Records and unions for which GNAT encodings have been
10492 generated need to be statically fixed as well.
10493 Otherwise, non-static fixing produces a type where
10494 all dynamic properties are removed, which prevents "ptype"
10495 from being able to completely describe the type.
10496 For instance, a case statement in a variant record would be
10497 replaced by the relevant components based on the actual
10498 value of the discriminants. */
10499 if ((type->code () == TYPE_CODE_STRUCT
10500 && dynamic_template_type (type) != NULL)
10501 || (type->code () == TYPE_CODE_UNION
10502 && ada_find_parallel_type (type, "___XVU") != NULL))
10503 return value_zero (to_static_fixed_type (type), not_lval);
10506 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10507 return ada_to_fixed_value (arg1);
10511 ada_var_value_operation::resolve (struct expression *exp,
10512 bool deprocedure_p,
10513 bool parse_completion,
10514 innermost_block_tracker *tracker,
10515 struct type *context_type)
10517 symbol *sym = std::get<0> (m_storage).symbol;
10518 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10520 block_symbol resolved
10521 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10522 context_type, parse_completion,
10523 deprocedure_p, tracker);
10524 std::get<0> (m_storage) = resolved;
10528 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10529 == TYPE_CODE_FUNC))
10536 ada_atr_val_operation::evaluate (struct type *expect_type,
10537 struct expression *exp,
10538 enum noside noside)
10540 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10541 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10545 ada_unop_ind_operation::evaluate (struct type *expect_type,
10546 struct expression *exp,
10547 enum noside noside)
10549 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10551 struct type *type = ada_check_typedef (value_type (arg1));
10552 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10554 if (ada_is_array_descriptor_type (type))
10555 /* GDB allows dereferencing GNAT array descriptors. */
10557 struct type *arrType = ada_type_of_array (arg1, 0);
10559 if (arrType == NULL)
10560 error (_("Attempt to dereference null array pointer."));
10561 return value_at_lazy (arrType, 0);
10563 else if (type->code () == TYPE_CODE_PTR
10564 || type->code () == TYPE_CODE_REF
10565 /* In C you can dereference an array to get the 1st elt. */
10566 || type->code () == TYPE_CODE_ARRAY)
10568 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10569 only be determined by inspecting the object's tag.
10570 This means that we need to evaluate completely the
10571 expression in order to get its type. */
10573 if ((type->code () == TYPE_CODE_REF
10574 || type->code () == TYPE_CODE_PTR)
10575 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10577 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10579 type = value_type (ada_value_ind (arg1));
10583 type = to_static_fixed_type
10585 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10587 ada_ensure_varsize_limit (type);
10588 return value_zero (type, lval_memory);
10590 else if (type->code () == TYPE_CODE_INT)
10592 /* GDB allows dereferencing an int. */
10593 if (expect_type == NULL)
10594 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10599 to_static_fixed_type (ada_aligned_type (expect_type));
10600 return value_zero (expect_type, lval_memory);
10604 error (_("Attempt to take contents of a non-pointer value."));
10606 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10607 type = ada_check_typedef (value_type (arg1));
10609 if (type->code () == TYPE_CODE_INT)
10610 /* GDB allows dereferencing an int. If we were given
10611 the expect_type, then use that as the target type.
10612 Otherwise, assume that the target type is an int. */
10614 if (expect_type != NULL)
10615 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10618 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10619 (CORE_ADDR) value_as_address (arg1));
10622 struct type *target_type = (to_static_fixed_type
10624 (ada_check_typedef (TYPE_TARGET_TYPE (type)))));
10625 ada_ensure_varsize_limit (target_type);
10627 if (ada_is_array_descriptor_type (type))
10628 /* GDB allows dereferencing GNAT array descriptors. */
10629 return ada_coerce_to_simple_array (arg1);
10631 return ada_value_ind (arg1);
10635 ada_structop_operation::evaluate (struct type *expect_type,
10636 struct expression *exp,
10637 enum noside noside)
10639 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10640 const char *str = std::get<1> (m_storage).c_str ();
10641 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10644 struct type *type1 = value_type (arg1);
10646 if (ada_is_tagged_type (type1, 1))
10648 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10650 /* If the field is not found, check if it exists in the
10651 extension of this object's type. This means that we
10652 need to evaluate completely the expression. */
10656 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10658 arg1 = ada_value_struct_elt (arg1, str, 0);
10659 arg1 = unwrap_value (arg1);
10660 type = value_type (ada_to_fixed_value (arg1));
10664 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10666 return value_zero (ada_aligned_type (type), lval_memory);
10670 arg1 = ada_value_struct_elt (arg1, str, 0);
10671 arg1 = unwrap_value (arg1);
10672 return ada_to_fixed_value (arg1);
10677 ada_funcall_operation::evaluate (struct type *expect_type,
10678 struct expression *exp,
10679 enum noside noside)
10681 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10682 int nargs = args_up.size ();
10683 std::vector<value *> argvec (nargs);
10684 operation_up &callee_op = std::get<0> (m_storage);
10686 ada_var_value_operation *avv
10687 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10689 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10690 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10691 avv->get_symbol ()->print_name ());
10693 value *callee = callee_op->evaluate (nullptr, exp, noside);
10694 for (int i = 0; i < args_up.size (); ++i)
10695 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10697 if (ada_is_constrained_packed_array_type
10698 (desc_base_type (value_type (callee))))
10699 callee = ada_coerce_to_simple_array (callee);
10700 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10701 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10702 /* This is a packed array that has already been fixed, and
10703 therefore already coerced to a simple array. Nothing further
10706 else if (value_type (callee)->code () == TYPE_CODE_REF)
10708 /* Make sure we dereference references so that all the code below
10709 feels like it's really handling the referenced value. Wrapping
10710 types (for alignment) may be there, so make sure we strip them as
10712 callee = ada_to_fixed_value (coerce_ref (callee));
10714 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10715 && VALUE_LVAL (callee) == lval_memory)
10716 callee = value_addr (callee);
10718 struct type *type = ada_check_typedef (value_type (callee));
10720 /* Ada allows us to implicitly dereference arrays when subscripting
10721 them. So, if this is an array typedef (encoding use for array
10722 access types encoded as fat pointers), strip it now. */
10723 if (type->code () == TYPE_CODE_TYPEDEF)
10724 type = ada_typedef_target_type (type);
10726 if (type->code () == TYPE_CODE_PTR)
10728 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10730 case TYPE_CODE_FUNC:
10731 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10733 case TYPE_CODE_ARRAY:
10735 case TYPE_CODE_STRUCT:
10736 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10737 callee = ada_value_ind (callee);
10738 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10741 error (_("cannot subscript or call something of type `%s'"),
10742 ada_type_name (value_type (callee)));
10747 switch (type->code ())
10749 case TYPE_CODE_FUNC:
10750 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10752 if (TYPE_TARGET_TYPE (type) == NULL)
10753 error_call_unknown_return_type (NULL);
10754 return allocate_value (TYPE_TARGET_TYPE (type));
10756 return call_function_by_hand (callee, NULL, argvec);
10757 case TYPE_CODE_INTERNAL_FUNCTION:
10758 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10759 /* We don't know anything about what the internal
10760 function might return, but we have to return
10762 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10765 return call_internal_function (exp->gdbarch, exp->language_defn,
10769 case TYPE_CODE_STRUCT:
10773 arity = ada_array_arity (type);
10774 type = ada_array_element_type (type, nargs);
10776 error (_("cannot subscript or call a record"));
10777 if (arity != nargs)
10778 error (_("wrong number of subscripts; expecting %d"), arity);
10779 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10780 return value_zero (ada_aligned_type (type), lval_memory);
10782 unwrap_value (ada_value_subscript
10783 (callee, nargs, argvec.data ()));
10785 case TYPE_CODE_ARRAY:
10786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10788 type = ada_array_element_type (type, nargs);
10790 error (_("element type of array unknown"));
10792 return value_zero (ada_aligned_type (type), lval_memory);
10795 unwrap_value (ada_value_subscript
10796 (ada_coerce_to_simple_array (callee),
10797 nargs, argvec.data ()));
10798 case TYPE_CODE_PTR: /* Pointer to array */
10799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10801 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10802 type = ada_array_element_type (type, nargs);
10804 error (_("element type of array unknown"));
10806 return value_zero (ada_aligned_type (type), lval_memory);
10809 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10813 error (_("Attempt to index or call something other than an "
10814 "array or function"));
10819 ada_funcall_operation::resolve (struct expression *exp,
10820 bool deprocedure_p,
10821 bool parse_completion,
10822 innermost_block_tracker *tracker,
10823 struct type *context_type)
10825 operation_up &callee_op = std::get<0> (m_storage);
10827 ada_var_value_operation *avv
10828 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10829 if (avv == nullptr)
10832 symbol *sym = avv->get_symbol ();
10833 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10836 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10837 int nargs = args_up.size ();
10838 std::vector<value *> argvec (nargs);
10840 for (int i = 0; i < args_up.size (); ++i)
10841 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10843 const block *block = avv->get_block ();
10844 block_symbol resolved
10845 = ada_resolve_funcall (sym, block,
10846 context_type, parse_completion,
10847 nargs, argvec.data (),
10850 std::get<0> (m_storage)
10851 = make_operation<ada_var_value_operation> (resolved);
10856 ada_ternop_slice_operation::resolve (struct expression *exp,
10857 bool deprocedure_p,
10858 bool parse_completion,
10859 innermost_block_tracker *tracker,
10860 struct type *context_type)
10862 /* Historically this check was done during resolution, so we
10863 continue that here. */
10864 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10865 EVAL_AVOID_SIDE_EFFECTS);
10866 if (ada_is_any_packed_array_type (value_type (v)))
10867 error (_("cannot slice a packed array"));
10875 /* Return non-zero iff TYPE represents a System.Address type. */
10878 ada_is_system_address_type (struct type *type)
10880 return (type->name () && strcmp (type->name (), "system__address") == 0);
10887 /* Scan STR beginning at position K for a discriminant name, and
10888 return the value of that discriminant field of DVAL in *PX. If
10889 PNEW_K is not null, put the position of the character beyond the
10890 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10891 not alter *PX and *PNEW_K if unsuccessful. */
10894 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10897 static std::string storage;
10898 const char *pstart, *pend, *bound;
10899 struct value *bound_val;
10901 if (dval == NULL || str == NULL || str[k] == '\0')
10905 pend = strstr (pstart, "__");
10909 k += strlen (bound);
10913 int len = pend - pstart;
10915 /* Strip __ and beyond. */
10916 storage = std::string (pstart, len);
10917 bound = storage.c_str ();
10921 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10922 if (bound_val == NULL)
10925 *px = value_as_long (bound_val);
10926 if (pnew_k != NULL)
10931 /* Value of variable named NAME. Only exact matches are considered.
10932 If no such variable found, then if ERR_MSG is null, returns 0, and
10933 otherwise causes an error with message ERR_MSG. */
10935 static struct value *
10936 get_var_value (const char *name, const char *err_msg)
10938 std::string quoted_name = add_angle_brackets (name);
10940 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10942 std::vector<struct block_symbol> syms
10943 = ada_lookup_symbol_list_worker (lookup_name,
10944 get_selected_block (0),
10947 if (syms.size () != 1)
10949 if (err_msg == NULL)
10952 error (("%s"), err_msg);
10955 return value_of_variable (syms[0].symbol, syms[0].block);
10958 /* Value of integer variable named NAME in the current environment.
10959 If no such variable is found, returns false. Otherwise, sets VALUE
10960 to the variable's value and returns true. */
10963 get_int_var_value (const char *name, LONGEST &value)
10965 struct value *var_val = get_var_value (name, 0);
10970 value = value_as_long (var_val);
10975 /* Return a range type whose base type is that of the range type named
10976 NAME in the current environment, and whose bounds are calculated
10977 from NAME according to the GNAT range encoding conventions.
10978 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10979 corresponding range type from debug information; fall back to using it
10980 if symbol lookup fails. If a new type must be created, allocate it
10981 like ORIG_TYPE was. The bounds information, in general, is encoded
10982 in NAME, the base type given in the named range type. */
10984 static struct type *
10985 to_fixed_range_type (struct type *raw_type, struct value *dval)
10988 struct type *base_type;
10989 const char *subtype_info;
10991 gdb_assert (raw_type != NULL);
10992 gdb_assert (raw_type->name () != NULL);
10994 if (raw_type->code () == TYPE_CODE_RANGE)
10995 base_type = TYPE_TARGET_TYPE (raw_type);
10997 base_type = raw_type;
10999 name = raw_type->name ();
11000 subtype_info = strstr (name, "___XD");
11001 if (subtype_info == NULL)
11003 LONGEST L = ada_discrete_type_low_bound (raw_type);
11004 LONGEST U = ada_discrete_type_high_bound (raw_type);
11006 if (L < INT_MIN || U > INT_MAX)
11009 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11014 int prefix_len = subtype_info - name;
11017 const char *bounds_str;
11021 bounds_str = strchr (subtype_info, '_');
11024 if (*subtype_info == 'L')
11026 if (!ada_scan_number (bounds_str, n, &L, &n)
11027 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11029 if (bounds_str[n] == '_')
11031 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11037 std::string name_buf = std::string (name, prefix_len) + "___L";
11038 if (!get_int_var_value (name_buf.c_str (), L))
11040 lim_warning (_("Unknown lower bound, using 1."));
11045 if (*subtype_info == 'U')
11047 if (!ada_scan_number (bounds_str, n, &U, &n)
11048 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11053 std::string name_buf = std::string (name, prefix_len) + "___U";
11054 if (!get_int_var_value (name_buf.c_str (), U))
11056 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11061 type = create_static_range_type (alloc_type_copy (raw_type),
11063 /* create_static_range_type alters the resulting type's length
11064 to match the size of the base_type, which is not what we want.
11065 Set it back to the original range type's length. */
11066 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11067 type->set_name (name);
11072 /* True iff NAME is the name of a range type. */
11075 ada_is_range_type_name (const char *name)
11077 return (name != NULL && strstr (name, "___XD"));
11081 /* Modular types */
11083 /* True iff TYPE is an Ada modular type. */
11086 ada_is_modular_type (struct type *type)
11088 struct type *subranged_type = get_base_type (type);
11090 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11091 && subranged_type->code () == TYPE_CODE_INT
11092 && subranged_type->is_unsigned ());
11095 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11098 ada_modulus (struct type *type)
11100 const dynamic_prop &high = type->bounds ()->high;
11102 if (high.kind () == PROP_CONST)
11103 return (ULONGEST) high.const_val () + 1;
11105 /* If TYPE is unresolved, the high bound might be a location list. Return
11106 0, for lack of a better value to return. */
11111 /* Ada exception catchpoint support:
11112 ---------------------------------
11114 We support 3 kinds of exception catchpoints:
11115 . catchpoints on Ada exceptions
11116 . catchpoints on unhandled Ada exceptions
11117 . catchpoints on failed assertions
11119 Exceptions raised during failed assertions, or unhandled exceptions
11120 could perfectly be caught with the general catchpoint on Ada exceptions.
11121 However, we can easily differentiate these two special cases, and having
11122 the option to distinguish these two cases from the rest can be useful
11123 to zero-in on certain situations.
11125 Exception catchpoints are a specialized form of breakpoint,
11126 since they rely on inserting breakpoints inside known routines
11127 of the GNAT runtime. The implementation therefore uses a standard
11128 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11131 Support in the runtime for exception catchpoints have been changed
11132 a few times already, and these changes affect the implementation
11133 of these catchpoints. In order to be able to support several
11134 variants of the runtime, we use a sniffer that will determine
11135 the runtime variant used by the program being debugged. */
11137 /* Ada's standard exceptions.
11139 The Ada 83 standard also defined Numeric_Error. But there so many
11140 situations where it was unclear from the Ada 83 Reference Manual
11141 (RM) whether Constraint_Error or Numeric_Error should be raised,
11142 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11143 Interpretation saying that anytime the RM says that Numeric_Error
11144 should be raised, the implementation may raise Constraint_Error.
11145 Ada 95 went one step further and pretty much removed Numeric_Error
11146 from the list of standard exceptions (it made it a renaming of
11147 Constraint_Error, to help preserve compatibility when compiling
11148 an Ada83 compiler). As such, we do not include Numeric_Error from
11149 this list of standard exceptions. */
11151 static const char * const standard_exc[] = {
11152 "constraint_error",
11158 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11160 /* A structure that describes how to support exception catchpoints
11161 for a given executable. */
11163 struct exception_support_info
11165 /* The name of the symbol to break on in order to insert
11166 a catchpoint on exceptions. */
11167 const char *catch_exception_sym;
11169 /* The name of the symbol to break on in order to insert
11170 a catchpoint on unhandled exceptions. */
11171 const char *catch_exception_unhandled_sym;
11173 /* The name of the symbol to break on in order to insert
11174 a catchpoint on failed assertions. */
11175 const char *catch_assert_sym;
11177 /* The name of the symbol to break on in order to insert
11178 a catchpoint on exception handling. */
11179 const char *catch_handlers_sym;
11181 /* Assuming that the inferior just triggered an unhandled exception
11182 catchpoint, this function is responsible for returning the address
11183 in inferior memory where the name of that exception is stored.
11184 Return zero if the address could not be computed. */
11185 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11188 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11189 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11191 /* The following exception support info structure describes how to
11192 implement exception catchpoints with the latest version of the
11193 Ada runtime (as of 2019-08-??). */
11195 static const struct exception_support_info default_exception_support_info =
11197 "__gnat_debug_raise_exception", /* catch_exception_sym */
11198 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11199 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11200 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11201 ada_unhandled_exception_name_addr
11204 /* The following exception support info structure describes how to
11205 implement exception catchpoints with an earlier version of the
11206 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11208 static const struct exception_support_info exception_support_info_v0 =
11210 "__gnat_debug_raise_exception", /* catch_exception_sym */
11211 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11212 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11213 "__gnat_begin_handler", /* catch_handlers_sym */
11214 ada_unhandled_exception_name_addr
11217 /* The following exception support info structure describes how to
11218 implement exception catchpoints with a slightly older version
11219 of the Ada runtime. */
11221 static const struct exception_support_info exception_support_info_fallback =
11223 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11224 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11225 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11226 "__gnat_begin_handler", /* catch_handlers_sym */
11227 ada_unhandled_exception_name_addr_from_raise
11230 /* Return nonzero if we can detect the exception support routines
11231 described in EINFO.
11233 This function errors out if an abnormal situation is detected
11234 (for instance, if we find the exception support routines, but
11235 that support is found to be incomplete). */
11238 ada_has_this_exception_support (const struct exception_support_info *einfo)
11240 struct symbol *sym;
11242 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11243 that should be compiled with debugging information. As a result, we
11244 expect to find that symbol in the symtabs. */
11246 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11249 /* Perhaps we did not find our symbol because the Ada runtime was
11250 compiled without debugging info, or simply stripped of it.
11251 It happens on some GNU/Linux distributions for instance, where
11252 users have to install a separate debug package in order to get
11253 the runtime's debugging info. In that situation, let the user
11254 know why we cannot insert an Ada exception catchpoint.
11256 Note: Just for the purpose of inserting our Ada exception
11257 catchpoint, we could rely purely on the associated minimal symbol.
11258 But we would be operating in degraded mode anyway, since we are
11259 still lacking the debugging info needed later on to extract
11260 the name of the exception being raised (this name is printed in
11261 the catchpoint message, and is also used when trying to catch
11262 a specific exception). We do not handle this case for now. */
11263 struct bound_minimal_symbol msym
11264 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11266 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11267 error (_("Your Ada runtime appears to be missing some debugging "
11268 "information.\nCannot insert Ada exception catchpoint "
11269 "in this configuration."));
11274 /* Make sure that the symbol we found corresponds to a function. */
11276 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11278 error (_("Symbol \"%s\" is not a function (class = %d)"),
11279 sym->linkage_name (), SYMBOL_CLASS (sym));
11283 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11286 struct bound_minimal_symbol msym
11287 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11289 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11290 error (_("Your Ada runtime appears to be missing some debugging "
11291 "information.\nCannot insert Ada exception catchpoint "
11292 "in this configuration."));
11297 /* Make sure that the symbol we found corresponds to a function. */
11299 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11301 error (_("Symbol \"%s\" is not a function (class = %d)"),
11302 sym->linkage_name (), SYMBOL_CLASS (sym));
11309 /* Inspect the Ada runtime and determine which exception info structure
11310 should be used to provide support for exception catchpoints.
11312 This function will always set the per-inferior exception_info,
11313 or raise an error. */
11316 ada_exception_support_info_sniffer (void)
11318 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11320 /* If the exception info is already known, then no need to recompute it. */
11321 if (data->exception_info != NULL)
11324 /* Check the latest (default) exception support info. */
11325 if (ada_has_this_exception_support (&default_exception_support_info))
11327 data->exception_info = &default_exception_support_info;
11331 /* Try the v0 exception suport info. */
11332 if (ada_has_this_exception_support (&exception_support_info_v0))
11334 data->exception_info = &exception_support_info_v0;
11338 /* Try our fallback exception suport info. */
11339 if (ada_has_this_exception_support (&exception_support_info_fallback))
11341 data->exception_info = &exception_support_info_fallback;
11345 /* Sometimes, it is normal for us to not be able to find the routine
11346 we are looking for. This happens when the program is linked with
11347 the shared version of the GNAT runtime, and the program has not been
11348 started yet. Inform the user of these two possible causes if
11351 if (ada_update_initial_language (language_unknown) != language_ada)
11352 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11354 /* If the symbol does not exist, then check that the program is
11355 already started, to make sure that shared libraries have been
11356 loaded. If it is not started, this may mean that the symbol is
11357 in a shared library. */
11359 if (inferior_ptid.pid () == 0)
11360 error (_("Unable to insert catchpoint. Try to start the program first."));
11362 /* At this point, we know that we are debugging an Ada program and
11363 that the inferior has been started, but we still are not able to
11364 find the run-time symbols. That can mean that we are in
11365 configurable run time mode, or that a-except as been optimized
11366 out by the linker... In any case, at this point it is not worth
11367 supporting this feature. */
11369 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11372 /* True iff FRAME is very likely to be that of a function that is
11373 part of the runtime system. This is all very heuristic, but is
11374 intended to be used as advice as to what frames are uninteresting
11378 is_known_support_routine (struct frame_info *frame)
11380 enum language func_lang;
11382 const char *fullname;
11384 /* If this code does not have any debugging information (no symtab),
11385 This cannot be any user code. */
11387 symtab_and_line sal = find_frame_sal (frame);
11388 if (sal.symtab == NULL)
11391 /* If there is a symtab, but the associated source file cannot be
11392 located, then assume this is not user code: Selecting a frame
11393 for which we cannot display the code would not be very helpful
11394 for the user. This should also take care of case such as VxWorks
11395 where the kernel has some debugging info provided for a few units. */
11397 fullname = symtab_to_fullname (sal.symtab);
11398 if (access (fullname, R_OK) != 0)
11401 /* Check the unit filename against the Ada runtime file naming.
11402 We also check the name of the objfile against the name of some
11403 known system libraries that sometimes come with debugging info
11406 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11408 re_comp (known_runtime_file_name_patterns[i]);
11409 if (re_exec (lbasename (sal.symtab->filename)))
11411 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11412 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11416 /* Check whether the function is a GNAT-generated entity. */
11418 gdb::unique_xmalloc_ptr<char> func_name
11419 = find_frame_funname (frame, &func_lang, NULL);
11420 if (func_name == NULL)
11423 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11425 re_comp (known_auxiliary_function_name_patterns[i]);
11426 if (re_exec (func_name.get ()))
11433 /* Find the first frame that contains debugging information and that is not
11434 part of the Ada run-time, starting from FI and moving upward. */
11437 ada_find_printable_frame (struct frame_info *fi)
11439 for (; fi != NULL; fi = get_prev_frame (fi))
11441 if (!is_known_support_routine (fi))
11450 /* Assuming that the inferior just triggered an unhandled exception
11451 catchpoint, return the address in inferior memory where the name
11452 of the exception is stored.
11454 Return zero if the address could not be computed. */
11457 ada_unhandled_exception_name_addr (void)
11459 return parse_and_eval_address ("e.full_name");
11462 /* Same as ada_unhandled_exception_name_addr, except that this function
11463 should be used when the inferior uses an older version of the runtime,
11464 where the exception name needs to be extracted from a specific frame
11465 several frames up in the callstack. */
11468 ada_unhandled_exception_name_addr_from_raise (void)
11471 struct frame_info *fi;
11472 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11474 /* To determine the name of this exception, we need to select
11475 the frame corresponding to RAISE_SYM_NAME. This frame is
11476 at least 3 levels up, so we simply skip the first 3 frames
11477 without checking the name of their associated function. */
11478 fi = get_current_frame ();
11479 for (frame_level = 0; frame_level < 3; frame_level += 1)
11481 fi = get_prev_frame (fi);
11485 enum language func_lang;
11487 gdb::unique_xmalloc_ptr<char> func_name
11488 = find_frame_funname (fi, &func_lang, NULL);
11489 if (func_name != NULL)
11491 if (strcmp (func_name.get (),
11492 data->exception_info->catch_exception_sym) == 0)
11493 break; /* We found the frame we were looking for... */
11495 fi = get_prev_frame (fi);
11502 return parse_and_eval_address ("id.full_name");
11505 /* Assuming the inferior just triggered an Ada exception catchpoint
11506 (of any type), return the address in inferior memory where the name
11507 of the exception is stored, if applicable.
11509 Assumes the selected frame is the current frame.
11511 Return zero if the address could not be computed, or if not relevant. */
11514 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11515 struct breakpoint *b)
11517 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11521 case ada_catch_exception:
11522 return (parse_and_eval_address ("e.full_name"));
11525 case ada_catch_exception_unhandled:
11526 return data->exception_info->unhandled_exception_name_addr ();
11529 case ada_catch_handlers:
11530 return 0; /* The runtimes does not provide access to the exception
11534 case ada_catch_assert:
11535 return 0; /* Exception name is not relevant in this case. */
11539 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11543 return 0; /* Should never be reached. */
11546 /* Assuming the inferior is stopped at an exception catchpoint,
11547 return the message which was associated to the exception, if
11548 available. Return NULL if the message could not be retrieved.
11550 Note: The exception message can be associated to an exception
11551 either through the use of the Raise_Exception function, or
11552 more simply (Ada 2005 and later), via:
11554 raise Exception_Name with "exception message";
11558 static gdb::unique_xmalloc_ptr<char>
11559 ada_exception_message_1 (void)
11561 struct value *e_msg_val;
11564 /* For runtimes that support this feature, the exception message
11565 is passed as an unbounded string argument called "message". */
11566 e_msg_val = parse_and_eval ("message");
11567 if (e_msg_val == NULL)
11568 return NULL; /* Exception message not supported. */
11570 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11571 gdb_assert (e_msg_val != NULL);
11572 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11574 /* If the message string is empty, then treat it as if there was
11575 no exception message. */
11576 if (e_msg_len <= 0)
11579 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11580 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11582 e_msg.get ()[e_msg_len] = '\0';
11587 /* Same as ada_exception_message_1, except that all exceptions are
11588 contained here (returning NULL instead). */
11590 static gdb::unique_xmalloc_ptr<char>
11591 ada_exception_message (void)
11593 gdb::unique_xmalloc_ptr<char> e_msg;
11597 e_msg = ada_exception_message_1 ();
11599 catch (const gdb_exception_error &e)
11601 e_msg.reset (nullptr);
11607 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11608 any error that ada_exception_name_addr_1 might cause to be thrown.
11609 When an error is intercepted, a warning with the error message is printed,
11610 and zero is returned. */
11613 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11614 struct breakpoint *b)
11616 CORE_ADDR result = 0;
11620 result = ada_exception_name_addr_1 (ex, b);
11623 catch (const gdb_exception_error &e)
11625 warning (_("failed to get exception name: %s"), e.what ());
11632 static std::string ada_exception_catchpoint_cond_string
11633 (const char *excep_string,
11634 enum ada_exception_catchpoint_kind ex);
11636 /* Ada catchpoints.
11638 In the case of catchpoints on Ada exceptions, the catchpoint will
11639 stop the target on every exception the program throws. When a user
11640 specifies the name of a specific exception, we translate this
11641 request into a condition expression (in text form), and then parse
11642 it into an expression stored in each of the catchpoint's locations.
11643 We then use this condition to check whether the exception that was
11644 raised is the one the user is interested in. If not, then the
11645 target is resumed again. We store the name of the requested
11646 exception, in order to be able to re-set the condition expression
11647 when symbols change. */
11649 /* An instance of this type is used to represent an Ada catchpoint
11650 breakpoint location. */
11652 class ada_catchpoint_location : public bp_location
11655 ada_catchpoint_location (breakpoint *owner)
11656 : bp_location (owner, bp_loc_software_breakpoint)
11659 /* The condition that checks whether the exception that was raised
11660 is the specific exception the user specified on catchpoint
11662 expression_up excep_cond_expr;
11665 /* An instance of this type is used to represent an Ada catchpoint. */
11667 struct ada_catchpoint : public breakpoint
11669 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11674 /* The name of the specific exception the user specified. */
11675 std::string excep_string;
11677 /* What kind of catchpoint this is. */
11678 enum ada_exception_catchpoint_kind m_kind;
11681 /* Parse the exception condition string in the context of each of the
11682 catchpoint's locations, and store them for later evaluation. */
11685 create_excep_cond_exprs (struct ada_catchpoint *c,
11686 enum ada_exception_catchpoint_kind ex)
11688 /* Nothing to do if there's no specific exception to catch. */
11689 if (c->excep_string.empty ())
11692 /* Same if there are no locations... */
11693 if (c->loc == NULL)
11696 /* Compute the condition expression in text form, from the specific
11697 expection we want to catch. */
11698 std::string cond_string
11699 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11701 /* Iterate over all the catchpoint's locations, and parse an
11702 expression for each. */
11703 for (bp_location *bl : c->locations ())
11705 struct ada_catchpoint_location *ada_loc
11706 = (struct ada_catchpoint_location *) bl;
11709 if (!bl->shlib_disabled)
11713 s = cond_string.c_str ();
11716 exp = parse_exp_1 (&s, bl->address,
11717 block_for_pc (bl->address),
11720 catch (const gdb_exception_error &e)
11722 warning (_("failed to reevaluate internal exception condition "
11723 "for catchpoint %d: %s"),
11724 c->number, e.what ());
11728 ada_loc->excep_cond_expr = std::move (exp);
11732 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11733 structure for all exception catchpoint kinds. */
11735 static struct bp_location *
11736 allocate_location_exception (struct breakpoint *self)
11738 return new ada_catchpoint_location (self);
11741 /* Implement the RE_SET method in the breakpoint_ops structure for all
11742 exception catchpoint kinds. */
11745 re_set_exception (struct breakpoint *b)
11747 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11749 /* Call the base class's method. This updates the catchpoint's
11751 bkpt_breakpoint_ops.re_set (b);
11753 /* Reparse the exception conditional expressions. One for each
11755 create_excep_cond_exprs (c, c->m_kind);
11758 /* Returns true if we should stop for this breakpoint hit. If the
11759 user specified a specific exception, we only want to cause a stop
11760 if the program thrown that exception. */
11763 should_stop_exception (const struct bp_location *bl)
11765 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11766 const struct ada_catchpoint_location *ada_loc
11767 = (const struct ada_catchpoint_location *) bl;
11770 struct internalvar *var = lookup_internalvar ("_ada_exception");
11771 if (c->m_kind == ada_catch_assert)
11772 clear_internalvar (var);
11779 if (c->m_kind == ada_catch_handlers)
11780 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11781 ".all.occurrence.id");
11785 struct value *exc = parse_and_eval (expr);
11786 set_internalvar (var, exc);
11788 catch (const gdb_exception_error &ex)
11790 clear_internalvar (var);
11794 /* With no specific exception, should always stop. */
11795 if (c->excep_string.empty ())
11798 if (ada_loc->excep_cond_expr == NULL)
11800 /* We will have a NULL expression if back when we were creating
11801 the expressions, this location's had failed to parse. */
11808 struct value *mark;
11810 mark = value_mark ();
11811 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11812 value_free_to_mark (mark);
11814 catch (const gdb_exception &ex)
11816 exception_fprintf (gdb_stderr, ex,
11817 _("Error in testing exception condition:\n"));
11823 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11824 for all exception catchpoint kinds. */
11827 check_status_exception (bpstat bs)
11829 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11832 /* Implement the PRINT_IT method in the breakpoint_ops structure
11833 for all exception catchpoint kinds. */
11835 static enum print_stop_action
11836 print_it_exception (bpstat bs)
11838 struct ui_out *uiout = current_uiout;
11839 struct breakpoint *b = bs->breakpoint_at;
11841 annotate_catchpoint (b->number);
11843 if (uiout->is_mi_like_p ())
11845 uiout->field_string ("reason",
11846 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11847 uiout->field_string ("disp", bpdisp_text (b->disposition));
11850 uiout->text (b->disposition == disp_del
11851 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11852 uiout->field_signed ("bkptno", b->number);
11853 uiout->text (", ");
11855 /* ada_exception_name_addr relies on the selected frame being the
11856 current frame. Need to do this here because this function may be
11857 called more than once when printing a stop, and below, we'll
11858 select the first frame past the Ada run-time (see
11859 ada_find_printable_frame). */
11860 select_frame (get_current_frame ());
11862 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11865 case ada_catch_exception:
11866 case ada_catch_exception_unhandled:
11867 case ada_catch_handlers:
11869 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11870 char exception_name[256];
11874 read_memory (addr, (gdb_byte *) exception_name,
11875 sizeof (exception_name) - 1);
11876 exception_name [sizeof (exception_name) - 1] = '\0';
11880 /* For some reason, we were unable to read the exception
11881 name. This could happen if the Runtime was compiled
11882 without debugging info, for instance. In that case,
11883 just replace the exception name by the generic string
11884 "exception" - it will read as "an exception" in the
11885 notification we are about to print. */
11886 memcpy (exception_name, "exception", sizeof ("exception"));
11888 /* In the case of unhandled exception breakpoints, we print
11889 the exception name as "unhandled EXCEPTION_NAME", to make
11890 it clearer to the user which kind of catchpoint just got
11891 hit. We used ui_out_text to make sure that this extra
11892 info does not pollute the exception name in the MI case. */
11893 if (c->m_kind == ada_catch_exception_unhandled)
11894 uiout->text ("unhandled ");
11895 uiout->field_string ("exception-name", exception_name);
11898 case ada_catch_assert:
11899 /* In this case, the name of the exception is not really
11900 important. Just print "failed assertion" to make it clearer
11901 that his program just hit an assertion-failure catchpoint.
11902 We used ui_out_text because this info does not belong in
11904 uiout->text ("failed assertion");
11908 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11909 if (exception_message != NULL)
11911 uiout->text (" (");
11912 uiout->field_string ("exception-message", exception_message.get ());
11916 uiout->text (" at ");
11917 ada_find_printable_frame (get_current_frame ());
11919 return PRINT_SRC_AND_LOC;
11922 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11923 for all exception catchpoint kinds. */
11926 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11928 struct ui_out *uiout = current_uiout;
11929 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11930 struct value_print_options opts;
11932 get_user_print_options (&opts);
11934 if (opts.addressprint)
11935 uiout->field_skip ("addr");
11937 annotate_field (5);
11940 case ada_catch_exception:
11941 if (!c->excep_string.empty ())
11943 std::string msg = string_printf (_("`%s' Ada exception"),
11944 c->excep_string.c_str ());
11946 uiout->field_string ("what", msg);
11949 uiout->field_string ("what", "all Ada exceptions");
11953 case ada_catch_exception_unhandled:
11954 uiout->field_string ("what", "unhandled Ada exceptions");
11957 case ada_catch_handlers:
11958 if (!c->excep_string.empty ())
11960 uiout->field_fmt ("what",
11961 _("`%s' Ada exception handlers"),
11962 c->excep_string.c_str ());
11965 uiout->field_string ("what", "all Ada exceptions handlers");
11968 case ada_catch_assert:
11969 uiout->field_string ("what", "failed Ada assertions");
11973 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11978 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11979 for all exception catchpoint kinds. */
11982 print_mention_exception (struct breakpoint *b)
11984 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11985 struct ui_out *uiout = current_uiout;
11987 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11988 : _("Catchpoint "));
11989 uiout->field_signed ("bkptno", b->number);
11990 uiout->text (": ");
11994 case ada_catch_exception:
11995 if (!c->excep_string.empty ())
11997 std::string info = string_printf (_("`%s' Ada exception"),
11998 c->excep_string.c_str ());
11999 uiout->text (info);
12002 uiout->text (_("all Ada exceptions"));
12005 case ada_catch_exception_unhandled:
12006 uiout->text (_("unhandled Ada exceptions"));
12009 case ada_catch_handlers:
12010 if (!c->excep_string.empty ())
12013 = string_printf (_("`%s' Ada exception handlers"),
12014 c->excep_string.c_str ());
12015 uiout->text (info);
12018 uiout->text (_("all Ada exceptions handlers"));
12021 case ada_catch_assert:
12022 uiout->text (_("failed Ada assertions"));
12026 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12031 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12032 for all exception catchpoint kinds. */
12035 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12037 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12041 case ada_catch_exception:
12042 fprintf_filtered (fp, "catch exception");
12043 if (!c->excep_string.empty ())
12044 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12047 case ada_catch_exception_unhandled:
12048 fprintf_filtered (fp, "catch exception unhandled");
12051 case ada_catch_handlers:
12052 fprintf_filtered (fp, "catch handlers");
12055 case ada_catch_assert:
12056 fprintf_filtered (fp, "catch assert");
12060 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12062 print_recreate_thread (b, fp);
12065 /* Virtual tables for various breakpoint types. */
12066 static struct breakpoint_ops catch_exception_breakpoint_ops;
12067 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12068 static struct breakpoint_ops catch_assert_breakpoint_ops;
12069 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12071 /* See ada-lang.h. */
12074 is_ada_exception_catchpoint (breakpoint *bp)
12076 return (bp->ops == &catch_exception_breakpoint_ops
12077 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12078 || bp->ops == &catch_assert_breakpoint_ops
12079 || bp->ops == &catch_handlers_breakpoint_ops);
12082 /* Split the arguments specified in a "catch exception" command.
12083 Set EX to the appropriate catchpoint type.
12084 Set EXCEP_STRING to the name of the specific exception if
12085 specified by the user.
12086 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12087 "catch handlers" command. False otherwise.
12088 If a condition is found at the end of the arguments, the condition
12089 expression is stored in COND_STRING (memory must be deallocated
12090 after use). Otherwise COND_STRING is set to NULL. */
12093 catch_ada_exception_command_split (const char *args,
12094 bool is_catch_handlers_cmd,
12095 enum ada_exception_catchpoint_kind *ex,
12096 std::string *excep_string,
12097 std::string *cond_string)
12099 std::string exception_name;
12101 exception_name = extract_arg (&args);
12102 if (exception_name == "if")
12104 /* This is not an exception name; this is the start of a condition
12105 expression for a catchpoint on all exceptions. So, "un-get"
12106 this token, and set exception_name to NULL. */
12107 exception_name.clear ();
12111 /* Check to see if we have a condition. */
12113 args = skip_spaces (args);
12114 if (startswith (args, "if")
12115 && (isspace (args[2]) || args[2] == '\0'))
12118 args = skip_spaces (args);
12120 if (args[0] == '\0')
12121 error (_("Condition missing after `if' keyword"));
12122 *cond_string = args;
12124 args += strlen (args);
12127 /* Check that we do not have any more arguments. Anything else
12130 if (args[0] != '\0')
12131 error (_("Junk at end of expression"));
12133 if (is_catch_handlers_cmd)
12135 /* Catch handling of exceptions. */
12136 *ex = ada_catch_handlers;
12137 *excep_string = exception_name;
12139 else if (exception_name.empty ())
12141 /* Catch all exceptions. */
12142 *ex = ada_catch_exception;
12143 excep_string->clear ();
12145 else if (exception_name == "unhandled")
12147 /* Catch unhandled exceptions. */
12148 *ex = ada_catch_exception_unhandled;
12149 excep_string->clear ();
12153 /* Catch a specific exception. */
12154 *ex = ada_catch_exception;
12155 *excep_string = exception_name;
12159 /* Return the name of the symbol on which we should break in order to
12160 implement a catchpoint of the EX kind. */
12162 static const char *
12163 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12165 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12167 gdb_assert (data->exception_info != NULL);
12171 case ada_catch_exception:
12172 return (data->exception_info->catch_exception_sym);
12174 case ada_catch_exception_unhandled:
12175 return (data->exception_info->catch_exception_unhandled_sym);
12177 case ada_catch_assert:
12178 return (data->exception_info->catch_assert_sym);
12180 case ada_catch_handlers:
12181 return (data->exception_info->catch_handlers_sym);
12184 internal_error (__FILE__, __LINE__,
12185 _("unexpected catchpoint kind (%d)"), ex);
12189 /* Return the breakpoint ops "virtual table" used for catchpoints
12192 static const struct breakpoint_ops *
12193 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12197 case ada_catch_exception:
12198 return (&catch_exception_breakpoint_ops);
12200 case ada_catch_exception_unhandled:
12201 return (&catch_exception_unhandled_breakpoint_ops);
12203 case ada_catch_assert:
12204 return (&catch_assert_breakpoint_ops);
12206 case ada_catch_handlers:
12207 return (&catch_handlers_breakpoint_ops);
12210 internal_error (__FILE__, __LINE__,
12211 _("unexpected catchpoint kind (%d)"), ex);
12215 /* Return the condition that will be used to match the current exception
12216 being raised with the exception that the user wants to catch. This
12217 assumes that this condition is used when the inferior just triggered
12218 an exception catchpoint.
12219 EX: the type of catchpoints used for catching Ada exceptions. */
12222 ada_exception_catchpoint_cond_string (const char *excep_string,
12223 enum ada_exception_catchpoint_kind ex)
12226 bool is_standard_exc = false;
12227 std::string result;
12229 if (ex == ada_catch_handlers)
12231 /* For exception handlers catchpoints, the condition string does
12232 not use the same parameter as for the other exceptions. */
12233 result = ("long_integer (GNAT_GCC_exception_Access"
12234 "(gcc_exception).all.occurrence.id)");
12237 result = "long_integer (e)";
12239 /* The standard exceptions are a special case. They are defined in
12240 runtime units that have been compiled without debugging info; if
12241 EXCEP_STRING is the not-fully-qualified name of a standard
12242 exception (e.g. "constraint_error") then, during the evaluation
12243 of the condition expression, the symbol lookup on this name would
12244 *not* return this standard exception. The catchpoint condition
12245 may then be set only on user-defined exceptions which have the
12246 same not-fully-qualified name (e.g. my_package.constraint_error).
12248 To avoid this unexcepted behavior, these standard exceptions are
12249 systematically prefixed by "standard". This means that "catch
12250 exception constraint_error" is rewritten into "catch exception
12251 standard.constraint_error".
12253 If an exception named constraint_error is defined in another package of
12254 the inferior program, then the only way to specify this exception as a
12255 breakpoint condition is to use its fully-qualified named:
12256 e.g. my_package.constraint_error. */
12258 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12260 if (strcmp (standard_exc [i], excep_string) == 0)
12262 is_standard_exc = true;
12269 if (is_standard_exc)
12270 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12272 string_appendf (result, "long_integer (&%s)", excep_string);
12277 /* Return the symtab_and_line that should be used to insert an exception
12278 catchpoint of the TYPE kind.
12280 ADDR_STRING returns the name of the function where the real
12281 breakpoint that implements the catchpoints is set, depending on the
12282 type of catchpoint we need to create. */
12284 static struct symtab_and_line
12285 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12286 std::string *addr_string, const struct breakpoint_ops **ops)
12288 const char *sym_name;
12289 struct symbol *sym;
12291 /* First, find out which exception support info to use. */
12292 ada_exception_support_info_sniffer ();
12294 /* Then lookup the function on which we will break in order to catch
12295 the Ada exceptions requested by the user. */
12296 sym_name = ada_exception_sym_name (ex);
12297 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12300 error (_("Catchpoint symbol not found: %s"), sym_name);
12302 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12303 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12305 /* Set ADDR_STRING. */
12306 *addr_string = sym_name;
12309 *ops = ada_exception_breakpoint_ops (ex);
12311 return find_function_start_sal (sym, 1);
12314 /* Create an Ada exception catchpoint.
12316 EX_KIND is the kind of exception catchpoint to be created.
12318 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12319 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12320 of the exception to which this catchpoint applies.
12322 COND_STRING, if not empty, is the catchpoint condition.
12324 TEMPFLAG, if nonzero, means that the underlying breakpoint
12325 should be temporary.
12327 FROM_TTY is the usual argument passed to all commands implementations. */
12330 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12331 enum ada_exception_catchpoint_kind ex_kind,
12332 const std::string &excep_string,
12333 const std::string &cond_string,
12338 std::string addr_string;
12339 const struct breakpoint_ops *ops = NULL;
12340 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12342 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12343 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12344 ops, tempflag, disabled, from_tty);
12345 c->excep_string = excep_string;
12346 create_excep_cond_exprs (c.get (), ex_kind);
12347 if (!cond_string.empty ())
12348 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12349 install_breakpoint (0, std::move (c), 1);
12352 /* Implement the "catch exception" command. */
12355 catch_ada_exception_command (const char *arg_entry, int from_tty,
12356 struct cmd_list_element *command)
12358 const char *arg = arg_entry;
12359 struct gdbarch *gdbarch = get_current_arch ();
12361 enum ada_exception_catchpoint_kind ex_kind;
12362 std::string excep_string;
12363 std::string cond_string;
12365 tempflag = command->context () == CATCH_TEMPORARY;
12369 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12371 create_ada_exception_catchpoint (gdbarch, ex_kind,
12372 excep_string, cond_string,
12373 tempflag, 1 /* enabled */,
12377 /* Implement the "catch handlers" command. */
12380 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12381 struct cmd_list_element *command)
12383 const char *arg = arg_entry;
12384 struct gdbarch *gdbarch = get_current_arch ();
12386 enum ada_exception_catchpoint_kind ex_kind;
12387 std::string excep_string;
12388 std::string cond_string;
12390 tempflag = command->context () == CATCH_TEMPORARY;
12394 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12396 create_ada_exception_catchpoint (gdbarch, ex_kind,
12397 excep_string, cond_string,
12398 tempflag, 1 /* enabled */,
12402 /* Completion function for the Ada "catch" commands. */
12405 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12406 const char *text, const char *word)
12408 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12410 for (const ada_exc_info &info : exceptions)
12412 if (startswith (info.name, word))
12413 tracker.add_completion (make_unique_xstrdup (info.name));
12417 /* Split the arguments specified in a "catch assert" command.
12419 ARGS contains the command's arguments (or the empty string if
12420 no arguments were passed).
12422 If ARGS contains a condition, set COND_STRING to that condition
12423 (the memory needs to be deallocated after use). */
12426 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12428 args = skip_spaces (args);
12430 /* Check whether a condition was provided. */
12431 if (startswith (args, "if")
12432 && (isspace (args[2]) || args[2] == '\0'))
12435 args = skip_spaces (args);
12436 if (args[0] == '\0')
12437 error (_("condition missing after `if' keyword"));
12438 cond_string.assign (args);
12441 /* Otherwise, there should be no other argument at the end of
12443 else if (args[0] != '\0')
12444 error (_("Junk at end of arguments."));
12447 /* Implement the "catch assert" command. */
12450 catch_assert_command (const char *arg_entry, int from_tty,
12451 struct cmd_list_element *command)
12453 const char *arg = arg_entry;
12454 struct gdbarch *gdbarch = get_current_arch ();
12456 std::string cond_string;
12458 tempflag = command->context () == CATCH_TEMPORARY;
12462 catch_ada_assert_command_split (arg, cond_string);
12463 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12465 tempflag, 1 /* enabled */,
12469 /* Return non-zero if the symbol SYM is an Ada exception object. */
12472 ada_is_exception_sym (struct symbol *sym)
12474 const char *type_name = SYMBOL_TYPE (sym)->name ();
12476 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12477 && SYMBOL_CLASS (sym) != LOC_BLOCK
12478 && SYMBOL_CLASS (sym) != LOC_CONST
12479 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12480 && type_name != NULL && strcmp (type_name, "exception") == 0);
12483 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12484 Ada exception object. This matches all exceptions except the ones
12485 defined by the Ada language. */
12488 ada_is_non_standard_exception_sym (struct symbol *sym)
12492 if (!ada_is_exception_sym (sym))
12495 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12496 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12497 return 0; /* A standard exception. */
12499 /* Numeric_Error is also a standard exception, so exclude it.
12500 See the STANDARD_EXC description for more details as to why
12501 this exception is not listed in that array. */
12502 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12508 /* A helper function for std::sort, comparing two struct ada_exc_info
12511 The comparison is determined first by exception name, and then
12512 by exception address. */
12515 ada_exc_info::operator< (const ada_exc_info &other) const
12519 result = strcmp (name, other.name);
12522 if (result == 0 && addr < other.addr)
12528 ada_exc_info::operator== (const ada_exc_info &other) const
12530 return addr == other.addr && strcmp (name, other.name) == 0;
12533 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12534 routine, but keeping the first SKIP elements untouched.
12536 All duplicates are also removed. */
12539 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12542 std::sort (exceptions->begin () + skip, exceptions->end ());
12543 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12544 exceptions->end ());
12547 /* Add all exceptions defined by the Ada standard whose name match
12548 a regular expression.
12550 If PREG is not NULL, then this regexp_t object is used to
12551 perform the symbol name matching. Otherwise, no name-based
12552 filtering is performed.
12554 EXCEPTIONS is a vector of exceptions to which matching exceptions
12558 ada_add_standard_exceptions (compiled_regex *preg,
12559 std::vector<ada_exc_info> *exceptions)
12563 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12566 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12568 struct bound_minimal_symbol msymbol
12569 = ada_lookup_simple_minsym (standard_exc[i]);
12571 if (msymbol.minsym != NULL)
12573 struct ada_exc_info info
12574 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12576 exceptions->push_back (info);
12582 /* Add all Ada exceptions defined locally and accessible from the given
12585 If PREG is not NULL, then this regexp_t object is used to
12586 perform the symbol name matching. Otherwise, no name-based
12587 filtering is performed.
12589 EXCEPTIONS is a vector of exceptions to which matching exceptions
12593 ada_add_exceptions_from_frame (compiled_regex *preg,
12594 struct frame_info *frame,
12595 std::vector<ada_exc_info> *exceptions)
12597 const struct block *block = get_frame_block (frame, 0);
12601 struct block_iterator iter;
12602 struct symbol *sym;
12604 ALL_BLOCK_SYMBOLS (block, iter, sym)
12606 switch (SYMBOL_CLASS (sym))
12613 if (ada_is_exception_sym (sym))
12615 struct ada_exc_info info = {sym->print_name (),
12616 SYMBOL_VALUE_ADDRESS (sym)};
12618 exceptions->push_back (info);
12622 if (BLOCK_FUNCTION (block) != NULL)
12624 block = BLOCK_SUPERBLOCK (block);
12628 /* Return true if NAME matches PREG or if PREG is NULL. */
12631 name_matches_regex (const char *name, compiled_regex *preg)
12633 return (preg == NULL
12634 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12637 /* Add all exceptions defined globally whose name name match
12638 a regular expression, excluding standard exceptions.
12640 The reason we exclude standard exceptions is that they need
12641 to be handled separately: Standard exceptions are defined inside
12642 a runtime unit which is normally not compiled with debugging info,
12643 and thus usually do not show up in our symbol search. However,
12644 if the unit was in fact built with debugging info, we need to
12645 exclude them because they would duplicate the entry we found
12646 during the special loop that specifically searches for those
12647 standard exceptions.
12649 If PREG is not NULL, then this regexp_t object is used to
12650 perform the symbol name matching. Otherwise, no name-based
12651 filtering is performed.
12653 EXCEPTIONS is a vector of exceptions to which matching exceptions
12657 ada_add_global_exceptions (compiled_regex *preg,
12658 std::vector<ada_exc_info> *exceptions)
12660 /* In Ada, the symbol "search name" is a linkage name, whereas the
12661 regular expression used to do the matching refers to the natural
12662 name. So match against the decoded name. */
12663 expand_symtabs_matching (NULL,
12664 lookup_name_info::match_any (),
12665 [&] (const char *search_name)
12667 std::string decoded = ada_decode (search_name);
12668 return name_matches_regex (decoded.c_str (), preg);
12671 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12674 for (objfile *objfile : current_program_space->objfiles ())
12676 for (compunit_symtab *s : objfile->compunits ())
12678 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12681 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12683 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12684 struct block_iterator iter;
12685 struct symbol *sym;
12687 ALL_BLOCK_SYMBOLS (b, iter, sym)
12688 if (ada_is_non_standard_exception_sym (sym)
12689 && name_matches_regex (sym->natural_name (), preg))
12691 struct ada_exc_info info
12692 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12694 exceptions->push_back (info);
12701 /* Implements ada_exceptions_list with the regular expression passed
12702 as a regex_t, rather than a string.
12704 If not NULL, PREG is used to filter out exceptions whose names
12705 do not match. Otherwise, all exceptions are listed. */
12707 static std::vector<ada_exc_info>
12708 ada_exceptions_list_1 (compiled_regex *preg)
12710 std::vector<ada_exc_info> result;
12713 /* First, list the known standard exceptions. These exceptions
12714 need to be handled separately, as they are usually defined in
12715 runtime units that have been compiled without debugging info. */
12717 ada_add_standard_exceptions (preg, &result);
12719 /* Next, find all exceptions whose scope is local and accessible
12720 from the currently selected frame. */
12722 if (has_stack_frames ())
12724 prev_len = result.size ();
12725 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12727 if (result.size () > prev_len)
12728 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12731 /* Add all exceptions whose scope is global. */
12733 prev_len = result.size ();
12734 ada_add_global_exceptions (preg, &result);
12735 if (result.size () > prev_len)
12736 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12741 /* Return a vector of ada_exc_info.
12743 If REGEXP is NULL, all exceptions are included in the result.
12744 Otherwise, it should contain a valid regular expression,
12745 and only the exceptions whose names match that regular expression
12746 are included in the result.
12748 The exceptions are sorted in the following order:
12749 - Standard exceptions (defined by the Ada language), in
12750 alphabetical order;
12751 - Exceptions only visible from the current frame, in
12752 alphabetical order;
12753 - Exceptions whose scope is global, in alphabetical order. */
12755 std::vector<ada_exc_info>
12756 ada_exceptions_list (const char *regexp)
12758 if (regexp == NULL)
12759 return ada_exceptions_list_1 (NULL);
12761 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12762 return ada_exceptions_list_1 (®);
12765 /* Implement the "info exceptions" command. */
12768 info_exceptions_command (const char *regexp, int from_tty)
12770 struct gdbarch *gdbarch = get_current_arch ();
12772 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12774 if (regexp != NULL)
12776 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12778 printf_filtered (_("All defined Ada exceptions:\n"));
12780 for (const ada_exc_info &info : exceptions)
12781 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12785 /* Language vector */
12787 /* symbol_name_matcher_ftype adapter for wild_match. */
12790 do_wild_match (const char *symbol_search_name,
12791 const lookup_name_info &lookup_name,
12792 completion_match_result *comp_match_res)
12794 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12797 /* symbol_name_matcher_ftype adapter for full_match. */
12800 do_full_match (const char *symbol_search_name,
12801 const lookup_name_info &lookup_name,
12802 completion_match_result *comp_match_res)
12804 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12806 /* If both symbols start with "_ada_", just let the loop below
12807 handle the comparison. However, if only the symbol name starts
12808 with "_ada_", skip the prefix and let the match proceed as
12810 if (startswith (symbol_search_name, "_ada_")
12811 && !startswith (lname, "_ada"))
12812 symbol_search_name += 5;
12814 int uscore_count = 0;
12815 while (*lname != '\0')
12817 if (*symbol_search_name != *lname)
12819 if (*symbol_search_name == 'B' && uscore_count == 2
12820 && symbol_search_name[1] == '_')
12822 symbol_search_name += 2;
12823 while (isdigit (*symbol_search_name))
12824 ++symbol_search_name;
12825 if (symbol_search_name[0] == '_'
12826 && symbol_search_name[1] == '_')
12828 symbol_search_name += 2;
12835 if (*symbol_search_name == '_')
12840 ++symbol_search_name;
12844 return is_name_suffix (symbol_search_name);
12847 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12850 do_exact_match (const char *symbol_search_name,
12851 const lookup_name_info &lookup_name,
12852 completion_match_result *comp_match_res)
12854 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12857 /* Build the Ada lookup name for LOOKUP_NAME. */
12859 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12861 gdb::string_view user_name = lookup_name.name ();
12863 if (!user_name.empty () && user_name[0] == '<')
12865 if (user_name.back () == '>')
12867 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12870 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12871 m_encoded_p = true;
12872 m_verbatim_p = true;
12873 m_wild_match_p = false;
12874 m_standard_p = false;
12878 m_verbatim_p = false;
12880 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12884 const char *folded = ada_fold_name (user_name);
12885 m_encoded_name = ada_encode_1 (folded, false);
12886 if (m_encoded_name.empty ())
12887 m_encoded_name = gdb::to_string (user_name);
12890 m_encoded_name = gdb::to_string (user_name);
12892 /* Handle the 'package Standard' special case. See description
12893 of m_standard_p. */
12894 if (startswith (m_encoded_name.c_str (), "standard__"))
12896 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12897 m_standard_p = true;
12900 m_standard_p = false;
12902 /* If the name contains a ".", then the user is entering a fully
12903 qualified entity name, and the match must not be done in wild
12904 mode. Similarly, if the user wants to complete what looks
12905 like an encoded name, the match must not be done in wild
12906 mode. Also, in the standard__ special case always do
12907 non-wild matching. */
12909 = (lookup_name.match_type () != symbol_name_match_type::FULL
12912 && user_name.find ('.') == std::string::npos);
12916 /* symbol_name_matcher_ftype method for Ada. This only handles
12917 completion mode. */
12920 ada_symbol_name_matches (const char *symbol_search_name,
12921 const lookup_name_info &lookup_name,
12922 completion_match_result *comp_match_res)
12924 return lookup_name.ada ().matches (symbol_search_name,
12925 lookup_name.match_type (),
12929 /* A name matcher that matches the symbol name exactly, with
12933 literal_symbol_name_matcher (const char *symbol_search_name,
12934 const lookup_name_info &lookup_name,
12935 completion_match_result *comp_match_res)
12937 gdb::string_view name_view = lookup_name.name ();
12939 if (lookup_name.completion_mode ()
12940 ? (strncmp (symbol_search_name, name_view.data (),
12941 name_view.size ()) == 0)
12942 : symbol_search_name == name_view)
12944 if (comp_match_res != NULL)
12945 comp_match_res->set_match (symbol_search_name);
12952 /* Implement the "get_symbol_name_matcher" language_defn method for
12955 static symbol_name_matcher_ftype *
12956 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12958 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12959 return literal_symbol_name_matcher;
12961 if (lookup_name.completion_mode ())
12962 return ada_symbol_name_matches;
12965 if (lookup_name.ada ().wild_match_p ())
12966 return do_wild_match;
12967 else if (lookup_name.ada ().verbatim_p ())
12968 return do_exact_match;
12970 return do_full_match;
12974 /* Class representing the Ada language. */
12976 class ada_language : public language_defn
12980 : language_defn (language_ada)
12983 /* See language.h. */
12985 const char *name () const override
12988 /* See language.h. */
12990 const char *natural_name () const override
12993 /* See language.h. */
12995 const std::vector<const char *> &filename_extensions () const override
12997 static const std::vector<const char *> extensions
12998 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13002 /* Print an array element index using the Ada syntax. */
13004 void print_array_index (struct type *index_type,
13006 struct ui_file *stream,
13007 const value_print_options *options) const override
13009 struct value *index_value = val_atr (index_type, index);
13011 value_print (index_value, stream, options);
13012 fprintf_filtered (stream, " => ");
13015 /* Implement the "read_var_value" language_defn method for Ada. */
13017 struct value *read_var_value (struct symbol *var,
13018 const struct block *var_block,
13019 struct frame_info *frame) const override
13021 /* The only case where default_read_var_value is not sufficient
13022 is when VAR is a renaming... */
13023 if (frame != nullptr)
13025 const struct block *frame_block = get_frame_block (frame, NULL);
13026 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13027 return ada_read_renaming_var_value (var, frame_block);
13030 /* This is a typical case where we expect the default_read_var_value
13031 function to work. */
13032 return language_defn::read_var_value (var, var_block, frame);
13035 /* See language.h. */
13036 virtual bool symbol_printing_suppressed (struct symbol *symbol) const override
13038 return symbol->artificial;
13041 /* See language.h. */
13042 void language_arch_info (struct gdbarch *gdbarch,
13043 struct language_arch_info *lai) const override
13045 const struct builtin_type *builtin = builtin_type (gdbarch);
13047 /* Helper function to allow shorter lines below. */
13048 auto add = [&] (struct type *t)
13050 lai->add_primitive_type (t);
13053 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13055 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13056 0, "long_integer"));
13057 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13058 0, "short_integer"));
13059 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13061 lai->set_string_char_type (char_type);
13063 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13064 "float", gdbarch_float_format (gdbarch)));
13065 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13066 "long_float", gdbarch_double_format (gdbarch)));
13067 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13068 0, "long_long_integer"));
13069 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13071 gdbarch_long_double_format (gdbarch)));
13072 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13074 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13076 add (builtin->builtin_void);
13078 struct type *system_addr_ptr
13079 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13081 system_addr_ptr->set_name ("system__address");
13082 add (system_addr_ptr);
13084 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13085 type. This is a signed integral type whose size is the same as
13086 the size of addresses. */
13087 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13088 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13089 "storage_offset"));
13091 lai->set_bool_type (builtin->builtin_bool);
13094 /* See language.h. */
13096 bool iterate_over_symbols
13097 (const struct block *block, const lookup_name_info &name,
13098 domain_enum domain,
13099 gdb::function_view<symbol_found_callback_ftype> callback) const override
13101 std::vector<struct block_symbol> results
13102 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13103 for (block_symbol &sym : results)
13105 if (!callback (&sym))
13112 /* See language.h. */
13113 bool sniff_from_mangled_name
13114 (const char *mangled,
13115 gdb::unique_xmalloc_ptr<char> *out) const override
13117 std::string demangled = ada_decode (mangled);
13121 if (demangled != mangled && demangled[0] != '<')
13123 /* Set the gsymbol language to Ada, but still return 0.
13124 Two reasons for that:
13126 1. For Ada, we prefer computing the symbol's decoded name
13127 on the fly rather than pre-compute it, in order to save
13128 memory (Ada projects are typically very large).
13130 2. There are some areas in the definition of the GNAT
13131 encoding where, with a bit of bad luck, we might be able
13132 to decode a non-Ada symbol, generating an incorrect
13133 demangled name (Eg: names ending with "TB" for instance
13134 are identified as task bodies and so stripped from
13135 the decoded name returned).
13137 Returning true, here, but not setting *DEMANGLED, helps us get
13138 a little bit of the best of both worlds. Because we're last,
13139 we should not affect any of the other languages that were
13140 able to demangle the symbol before us; we get to correctly
13141 tag Ada symbols as such; and even if we incorrectly tagged a
13142 non-Ada symbol, which should be rare, any routing through the
13143 Ada language should be transparent (Ada tries to behave much
13144 like C/C++ with non-Ada symbols). */
13151 /* See language.h. */
13153 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13154 int options) const override
13156 return make_unique_xstrdup (ada_decode (mangled).c_str ());
13159 /* See language.h. */
13161 void print_type (struct type *type, const char *varstring,
13162 struct ui_file *stream, int show, int level,
13163 const struct type_print_options *flags) const override
13165 ada_print_type (type, varstring, stream, show, level, flags);
13168 /* See language.h. */
13170 const char *word_break_characters (void) const override
13172 return ada_completer_word_break_characters;
13175 /* See language.h. */
13177 void collect_symbol_completion_matches (completion_tracker &tracker,
13178 complete_symbol_mode mode,
13179 symbol_name_match_type name_match_type,
13180 const char *text, const char *word,
13181 enum type_code code) const override
13183 struct symbol *sym;
13184 const struct block *b, *surrounding_static_block = 0;
13185 struct block_iterator iter;
13187 gdb_assert (code == TYPE_CODE_UNDEF);
13189 lookup_name_info lookup_name (text, name_match_type, true);
13191 /* First, look at the partial symtab symbols. */
13192 expand_symtabs_matching (NULL,
13196 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13199 /* At this point scan through the misc symbol vectors and add each
13200 symbol you find to the list. Eventually we want to ignore
13201 anything that isn't a text symbol (everything else will be
13202 handled by the psymtab code above). */
13204 for (objfile *objfile : current_program_space->objfiles ())
13206 for (minimal_symbol *msymbol : objfile->msymbols ())
13210 if (completion_skip_symbol (mode, msymbol))
13213 language symbol_language = msymbol->language ();
13215 /* Ada minimal symbols won't have their language set to Ada. If
13216 we let completion_list_add_name compare using the
13217 default/C-like matcher, then when completing e.g., symbols in a
13218 package named "pck", we'd match internal Ada symbols like
13219 "pckS", which are invalid in an Ada expression, unless you wrap
13220 them in '<' '>' to request a verbatim match.
13222 Unfortunately, some Ada encoded names successfully demangle as
13223 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13224 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13225 with the wrong language set. Paper over that issue here. */
13226 if (symbol_language == language_auto
13227 || symbol_language == language_cplus)
13228 symbol_language = language_ada;
13230 completion_list_add_name (tracker,
13232 msymbol->linkage_name (),
13233 lookup_name, text, word);
13237 /* Search upwards from currently selected frame (so that we can
13238 complete on local vars. */
13240 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13242 if (!BLOCK_SUPERBLOCK (b))
13243 surrounding_static_block = b; /* For elmin of dups */
13245 ALL_BLOCK_SYMBOLS (b, iter, sym)
13247 if (completion_skip_symbol (mode, sym))
13250 completion_list_add_name (tracker,
13252 sym->linkage_name (),
13253 lookup_name, text, word);
13257 /* Go through the symtabs and check the externs and statics for
13258 symbols which match. */
13260 for (objfile *objfile : current_program_space->objfiles ())
13262 for (compunit_symtab *s : objfile->compunits ())
13265 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13266 ALL_BLOCK_SYMBOLS (b, iter, sym)
13268 if (completion_skip_symbol (mode, sym))
13271 completion_list_add_name (tracker,
13273 sym->linkage_name (),
13274 lookup_name, text, word);
13279 for (objfile *objfile : current_program_space->objfiles ())
13281 for (compunit_symtab *s : objfile->compunits ())
13284 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13285 /* Don't do this block twice. */
13286 if (b == surrounding_static_block)
13288 ALL_BLOCK_SYMBOLS (b, iter, sym)
13290 if (completion_skip_symbol (mode, sym))
13293 completion_list_add_name (tracker,
13295 sym->linkage_name (),
13296 lookup_name, text, word);
13302 /* See language.h. */
13304 gdb::unique_xmalloc_ptr<char> watch_location_expression
13305 (struct type *type, CORE_ADDR addr) const override
13307 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13308 std::string name = type_to_string (type);
13309 return gdb::unique_xmalloc_ptr<char>
13310 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13313 /* See language.h. */
13315 void value_print (struct value *val, struct ui_file *stream,
13316 const struct value_print_options *options) const override
13318 return ada_value_print (val, stream, options);
13321 /* See language.h. */
13323 void value_print_inner
13324 (struct value *val, struct ui_file *stream, int recurse,
13325 const struct value_print_options *options) const override
13327 return ada_value_print_inner (val, stream, recurse, options);
13330 /* See language.h. */
13332 struct block_symbol lookup_symbol_nonlocal
13333 (const char *name, const struct block *block,
13334 const domain_enum domain) const override
13336 struct block_symbol sym;
13338 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13339 if (sym.symbol != NULL)
13342 /* If we haven't found a match at this point, try the primitive
13343 types. In other languages, this search is performed before
13344 searching for global symbols in order to short-circuit that
13345 global-symbol search if it happens that the name corresponds
13346 to a primitive type. But we cannot do the same in Ada, because
13347 it is perfectly legitimate for a program to declare a type which
13348 has the same name as a standard type. If looking up a type in
13349 that situation, we have traditionally ignored the primitive type
13350 in favor of user-defined types. This is why, unlike most other
13351 languages, we search the primitive types this late and only after
13352 having searched the global symbols without success. */
13354 if (domain == VAR_DOMAIN)
13356 struct gdbarch *gdbarch;
13359 gdbarch = target_gdbarch ();
13361 gdbarch = block_gdbarch (block);
13363 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13364 if (sym.symbol != NULL)
13371 /* See language.h. */
13373 int parser (struct parser_state *ps) const override
13375 warnings_issued = 0;
13376 return ada_parse (ps);
13379 /* See language.h. */
13381 void emitchar (int ch, struct type *chtype,
13382 struct ui_file *stream, int quoter) const override
13384 ada_emit_char (ch, chtype, stream, quoter, 1);
13387 /* See language.h. */
13389 void printchar (int ch, struct type *chtype,
13390 struct ui_file *stream) const override
13392 ada_printchar (ch, chtype, stream);
13395 /* See language.h. */
13397 void printstr (struct ui_file *stream, struct type *elttype,
13398 const gdb_byte *string, unsigned int length,
13399 const char *encoding, int force_ellipses,
13400 const struct value_print_options *options) const override
13402 ada_printstr (stream, elttype, string, length, encoding,
13403 force_ellipses, options);
13406 /* See language.h. */
13408 void print_typedef (struct type *type, struct symbol *new_symbol,
13409 struct ui_file *stream) const override
13411 ada_print_typedef (type, new_symbol, stream);
13414 /* See language.h. */
13416 bool is_string_type_p (struct type *type) const override
13418 return ada_is_string_type (type);
13421 /* See language.h. */
13423 const char *struct_too_deep_ellipsis () const override
13424 { return "(...)"; }
13426 /* See language.h. */
13428 bool c_style_arrays_p () const override
13431 /* See language.h. */
13433 bool store_sym_names_in_linkage_form_p () const override
13436 /* See language.h. */
13438 const struct lang_varobj_ops *varobj_ops () const override
13439 { return &ada_varobj_ops; }
13442 /* See language.h. */
13444 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13445 (const lookup_name_info &lookup_name) const override
13447 return ada_get_symbol_name_matcher (lookup_name);
13451 /* Single instance of the Ada language class. */
13453 static ada_language ada_language_defn;
13455 /* Command-list for the "set/show ada" prefix command. */
13456 static struct cmd_list_element *set_ada_list;
13457 static struct cmd_list_element *show_ada_list;
13460 initialize_ada_catchpoint_ops (void)
13462 struct breakpoint_ops *ops;
13464 initialize_breakpoint_ops ();
13466 ops = &catch_exception_breakpoint_ops;
13467 *ops = bkpt_breakpoint_ops;
13468 ops->allocate_location = allocate_location_exception;
13469 ops->re_set = re_set_exception;
13470 ops->check_status = check_status_exception;
13471 ops->print_it = print_it_exception;
13472 ops->print_one = print_one_exception;
13473 ops->print_mention = print_mention_exception;
13474 ops->print_recreate = print_recreate_exception;
13476 ops = &catch_exception_unhandled_breakpoint_ops;
13477 *ops = bkpt_breakpoint_ops;
13478 ops->allocate_location = allocate_location_exception;
13479 ops->re_set = re_set_exception;
13480 ops->check_status = check_status_exception;
13481 ops->print_it = print_it_exception;
13482 ops->print_one = print_one_exception;
13483 ops->print_mention = print_mention_exception;
13484 ops->print_recreate = print_recreate_exception;
13486 ops = &catch_assert_breakpoint_ops;
13487 *ops = bkpt_breakpoint_ops;
13488 ops->allocate_location = allocate_location_exception;
13489 ops->re_set = re_set_exception;
13490 ops->check_status = check_status_exception;
13491 ops->print_it = print_it_exception;
13492 ops->print_one = print_one_exception;
13493 ops->print_mention = print_mention_exception;
13494 ops->print_recreate = print_recreate_exception;
13496 ops = &catch_handlers_breakpoint_ops;
13497 *ops = bkpt_breakpoint_ops;
13498 ops->allocate_location = allocate_location_exception;
13499 ops->re_set = re_set_exception;
13500 ops->check_status = check_status_exception;
13501 ops->print_it = print_it_exception;
13502 ops->print_one = print_one_exception;
13503 ops->print_mention = print_mention_exception;
13504 ops->print_recreate = print_recreate_exception;
13507 /* This module's 'new_objfile' observer. */
13510 ada_new_objfile_observer (struct objfile *objfile)
13512 ada_clear_symbol_cache ();
13515 /* This module's 'free_objfile' observer. */
13518 ada_free_objfile_observer (struct objfile *objfile)
13520 ada_clear_symbol_cache ();
13523 void _initialize_ada_language ();
13525 _initialize_ada_language ()
13527 initialize_ada_catchpoint_ops ();
13529 add_basic_prefix_cmd ("ada", no_class,
13530 _("Prefix command for changing Ada-specific settings."),
13531 &set_ada_list, 0, &setlist);
13533 add_show_prefix_cmd ("ada", no_class,
13534 _("Generic command for showing Ada-specific settings."),
13535 &show_ada_list, 0, &showlist);
13537 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13538 &trust_pad_over_xvs, _("\
13539 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13540 Show whether an optimization trusting PAD types over XVS types is activated."),
13542 This is related to the encoding used by the GNAT compiler. The debugger\n\
13543 should normally trust the contents of PAD types, but certain older versions\n\
13544 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13545 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13546 work around this bug. It is always safe to turn this option \"off\", but\n\
13547 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13548 this option to \"off\" unless necessary."),
13549 NULL, NULL, &set_ada_list, &show_ada_list);
13551 add_setshow_boolean_cmd ("print-signatures", class_vars,
13552 &print_signatures, _("\
13553 Enable or disable the output of formal and return types for functions in the \
13554 overloads selection menu."), _("\
13555 Show whether the output of formal and return types for functions in the \
13556 overloads selection menu is activated."),
13557 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13559 add_catch_command ("exception", _("\
13560 Catch Ada exceptions, when raised.\n\
13561 Usage: catch exception [ARG] [if CONDITION]\n\
13562 Without any argument, stop when any Ada exception is raised.\n\
13563 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13564 being raised does not have a handler (and will therefore lead to the task's\n\
13566 Otherwise, the catchpoint only stops when the name of the exception being\n\
13567 raised is the same as ARG.\n\
13568 CONDITION is a boolean expression that is evaluated to see whether the\n\
13569 exception should cause a stop."),
13570 catch_ada_exception_command,
13571 catch_ada_completer,
13575 add_catch_command ("handlers", _("\
13576 Catch Ada exceptions, when handled.\n\
13577 Usage: catch handlers [ARG] [if CONDITION]\n\
13578 Without any argument, stop when any Ada exception is handled.\n\
13579 With an argument, catch only exceptions with the given name.\n\
13580 CONDITION is a boolean expression that is evaluated to see whether the\n\
13581 exception should cause a stop."),
13582 catch_ada_handlers_command,
13583 catch_ada_completer,
13586 add_catch_command ("assert", _("\
13587 Catch failed Ada assertions, when raised.\n\
13588 Usage: catch assert [if CONDITION]\n\
13589 CONDITION is a boolean expression that is evaluated to see whether the\n\
13590 exception should cause a stop."),
13591 catch_assert_command,
13596 varsize_limit = 65536;
13597 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13598 &varsize_limit, _("\
13599 Set the maximum number of bytes allowed in a variable-size object."), _("\
13600 Show the maximum number of bytes allowed in a variable-size object."), _("\
13601 Attempts to access an object whose size is not a compile-time constant\n\
13602 and exceeds this limit will cause an error."),
13603 NULL, NULL, &setlist, &showlist);
13605 add_info ("exceptions", info_exceptions_command,
13607 List all Ada exception names.\n\
13608 Usage: info exceptions [REGEXP]\n\
13609 If a regular expression is passed as an argument, only those matching\n\
13610 the regular expression are listed."));
13612 add_basic_prefix_cmd ("ada", class_maintenance,
13613 _("Set Ada maintenance-related variables."),
13614 &maint_set_ada_cmdlist,
13615 0/*allow-unknown*/, &maintenance_set_cmdlist);
13617 add_show_prefix_cmd ("ada", class_maintenance,
13618 _("Show Ada maintenance-related variables."),
13619 &maint_show_ada_cmdlist,
13620 0/*allow-unknown*/, &maintenance_show_cmdlist);
13622 add_setshow_boolean_cmd
13623 ("ignore-descriptive-types", class_maintenance,
13624 &ada_ignore_descriptive_types_p,
13625 _("Set whether descriptive types generated by GNAT should be ignored."),
13626 _("Show whether descriptive types generated by GNAT should be ignored."),
13628 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13629 DWARF attribute."),
13630 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13632 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13634 NULL, xcalloc, xfree);
13636 /* The ada-lang observers. */
13637 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13638 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13639 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");