1 /* Target-dependent code for Renesas Super-H, for GDB.
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
24 Contributed by Steve Chamberlain
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "dwarf2-frame.h"
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "arch-utils.h"
50 /* registers numbers shared with the simulator */
51 #include "gdb/sim-sh.h"
53 /* Information that is dependent on the processor variant. */
66 struct sh64_frame_cache
73 /* Flag showing that a frame has been created in the prologue code. */
78 /* Saved registers. */
79 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
83 /* Registers of SH5 */
87 DEFAULT_RETURN_REGNUM = 2,
88 STRUCT_RETURN_REGNUM = 2,
91 FLOAT_ARGLAST_REGNUM = 11,
97 /* FPP stands for Floating Point Pair, to avoid confusion with
98 GDB's FP0_REGNUM, which is the number of the first Floating
99 point register. Unfortunately on the sh5, the floating point
100 registers are called FR, and the floating point pairs are called FP. */
102 FPP_LAST_REGNUM = 204,
104 FV_LAST_REGNUM = 220,
106 R_LAST_C_REGNUM = 236,
113 FPSCR_C_REGNUM = 243,
116 FP_LAST_C_REGNUM = 260,
118 DR_LAST_C_REGNUM = 268,
120 FV_LAST_C_REGNUM = 272,
121 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
122 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
123 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
124 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
125 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
129 sh64_register_name (int reg_nr)
131 static char *register_names[] =
133 /* SH MEDIA MODE (ISA 32) */
134 /* general registers (64-bit) 0-63 */
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
138 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
139 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
141 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
142 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
147 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
150 /* target registers (64-bit) 68-75*/
151 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
153 /* floating point state control register (32-bit) 76 */
156 /* single precision floating point registers (32-bit) 77-140*/
157 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
158 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
159 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
160 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
161 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
162 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
163 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
164 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
166 /* double precision registers (pseudo) 141-172 */
167 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
168 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
169 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
170 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
172 /* floating point pairs (pseudo) 173-204*/
173 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
174 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
175 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
176 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
178 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
179 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
180 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
182 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
183 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
184 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
186 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
188 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
199 return register_names[reg_nr];
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
209 ELF_MAKE_MSYMBOL_SPECIAL
210 tests whether an ELF symbol is "special", i.e. refers
211 to a 32-bit function, and sets a "special" bit in a
212 minimal symbol to mark it as a 32-bit function
213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
215 #define MSYMBOL_IS_SPECIAL(msym) \
216 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
219 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
226 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
227 SYMBOL_VALUE_ADDRESS (msym) |= 1;
231 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
232 are some macros to test, set, or clear bit 0 of addresses. */
233 #define IS_ISA32_ADDR(addr) ((addr) & 1)
234 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
235 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
238 pc_is_isa32 (bfd_vma memaddr)
240 struct minimal_symbol *sym;
242 /* If bit 0 of the address is set, assume this is a
243 ISA32 (shmedia) address. */
244 if (IS_ISA32_ADDR (memaddr))
247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
248 the high bit of the info field. Use this to decide if the function is
250 sym = lookup_minimal_symbol_by_pc (memaddr);
252 return MSYMBOL_IS_SPECIAL (sym);
257 static const unsigned char *
258 sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
260 /* The BRK instruction for shmedia is
261 01101111 11110101 11111111 11110000
262 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
263 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
265 /* The BRK instruction for shcompact is
267 which translates in big endian mode to 0x0, 0x3b
268 and in little endian mode to 0x3b, 0x0*/
270 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
272 if (pc_is_isa32 (*pcptr))
274 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
275 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
276 *lenptr = sizeof (big_breakpoint_media);
277 return big_breakpoint_media;
281 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
282 *lenptr = sizeof (big_breakpoint_compact);
283 return big_breakpoint_compact;
288 if (pc_is_isa32 (*pcptr))
290 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
291 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
292 *lenptr = sizeof (little_breakpoint_media);
293 return little_breakpoint_media;
297 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
298 *lenptr = sizeof (little_breakpoint_compact);
299 return little_breakpoint_compact;
304 /* Prologue looks like
305 [mov.l <regs>,@-r15]...
310 Actually it can be more complicated than this. For instance, with
328 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
329 with l=1 and n = 18 0110101111110001010010100aaa0000 */
330 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
332 /* STS.L PR,@-r0 0100000000100010
333 r0-4-->r0, PR-->(r0) */
334 #define IS_STS_R0(x) ((x) == 0x4022)
336 /* STS PR, Rm 0000mmmm00101010
338 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
340 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
342 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
344 /* MOV.L R14,@(disp,r15) 000111111110dddd
345 R14-->(dispx4+r15) */
346 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
348 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
349 R18-->(dispx8+R14) */
350 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
352 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
353 R18-->(dispx8+R15) */
354 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
356 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
357 R18-->(dispx4+R15) */
358 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
360 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
361 R14-->(dispx8+R15) */
362 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
364 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
365 R14-->(dispx4+R15) */
366 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
368 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
370 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
372 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
374 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
376 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
378 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
380 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
382 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
384 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
386 /* MOV #imm, R0 1110 0000 ssss ssss
388 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
390 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
391 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
393 /* ADD r15,r0 0011 0000 1111 1100
395 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
397 /* MOV.L R14 @-R0 0010 0000 1110 0110
398 R14-->(R0-4), R0-4-->R0 */
399 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
401 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
402 where Rm is one of r2-r9 which are the argument registers. */
403 /* FIXME: Recognize the float and double register moves too! */
404 #define IS_MEDIA_IND_ARG_MOV(x) \
405 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
407 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
408 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
409 where Rm is one of r2-r9 which are the argument registers. */
410 #define IS_MEDIA_ARG_MOV(x) \
411 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
412 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
414 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
415 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
416 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
417 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
418 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
419 #define IS_MEDIA_MOV_TO_R14(x) \
420 ((((x) & 0xfffffc0f) == 0xa0e00000) \
421 || (((x) & 0xfffffc0f) == 0xa4e00000) \
422 || (((x) & 0xfffffc0f) == 0xa8e00000) \
423 || (((x) & 0xfffffc0f) == 0xb4e00000) \
424 || (((x) & 0xfffffc0f) == 0xbce00000))
426 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
428 #define IS_COMPACT_IND_ARG_MOV(x) \
429 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
431 /* compact direct arg move!
432 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
433 #define IS_COMPACT_ARG_MOV(x) \
434 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
436 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
437 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
438 #define IS_COMPACT_MOV_TO_R14(x) \
439 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
441 #define IS_JSR_R0(x) ((x) == 0x400b)
442 #define IS_NOP(x) ((x) == 0x0009)
445 /* MOV r15,r14 0110111011110011
447 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
449 /* ADD #imm,r15 01111111iiiiiiii
451 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
453 /* Skip any prologue before the guts of a function */
455 /* Skip the prologue using the debug information. If this fails we'll
456 fall back on the 'guess' method below. */
458 after_prologue (CORE_ADDR pc)
460 struct symtab_and_line sal;
461 CORE_ADDR func_addr, func_end;
463 /* If we can not find the symbol in the partial symbol table, then
464 there is no hope we can determine the function's start address
466 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
470 /* Get the line associated with FUNC_ADDR. */
471 sal = find_pc_line (func_addr, 0);
473 /* There are only two cases to consider. First, the end of the source line
474 is within the function bounds. In that case we return the end of the
475 source line. Second is the end of the source line extends beyond the
476 bounds of the current function. We need to use the slow code to
477 examine instructions in that case. */
478 if (sal.end < func_end)
485 look_for_args_moves (CORE_ADDR start_pc, int media_mode)
489 int insn_size = (media_mode ? 4 : 2);
491 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
495 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
497 if (IS_MEDIA_IND_ARG_MOV (w))
499 /* This must be followed by a store to r14, so the argument
500 is where the debug info says it is. This can happen after
501 the SP has been saved, unfortunately. */
503 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
506 if (IS_MEDIA_MOV_TO_R14 (next_insn))
509 else if (IS_MEDIA_ARG_MOV (w))
511 /* These instructions store directly the argument in r14. */
519 w = read_memory_integer (here, insn_size);
522 if (IS_COMPACT_IND_ARG_MOV (w))
524 /* This must be followed by a store to r14, so the argument
525 is where the debug info says it is. This can happen after
526 the SP has been saved, unfortunately. */
528 int next_insn = 0xffff & read_memory_integer (here, insn_size);
530 if (IS_COMPACT_MOV_TO_R14 (next_insn))
533 else if (IS_COMPACT_ARG_MOV (w))
535 /* These instructions store directly the argument in r14. */
538 else if (IS_MOVL_R0 (w))
540 /* There is a function that gcc calls to get the arguments
541 passed correctly to the function. Only after this
542 function call the arguments will be found at the place
543 where they are supposed to be. This happens in case the
544 argument has to be stored into a 64-bit register (for
545 instance doubles, long longs). SHcompact doesn't have
546 access to the full 64-bits, so we store the register in
547 stack slot and store the address of the stack slot in
548 the register, then do a call through a wrapper that
549 loads the memory value into the register. A SHcompact
550 callee calls an argument decoder
551 (GCC_shcompact_incoming_args) that stores the 64-bit
552 value in a stack slot and stores the address of the
553 stack slot in the register. GCC thinks the argument is
554 just passed by transparent reference, but this is only
555 true after the argument decoder is called. Such a call
556 needs to be considered part of the prologue. */
558 /* This must be followed by a JSR @r0 instruction and by
559 a NOP instruction. After these, the prologue is over! */
561 int next_insn = 0xffff & read_memory_integer (here, insn_size);
563 if (IS_JSR_R0 (next_insn))
565 next_insn = 0xffff & read_memory_integer (here, insn_size);
568 if (IS_NOP (next_insn))
581 sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
591 if (pc_is_isa32 (start_pc) == 0)
597 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
602 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
604 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
605 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
606 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
610 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
618 /* Don't bail out yet, we may have arguments stored in
619 registers here, according to the debug info, so that
620 gdb can print the frames correctly. */
621 start_pc = look_for_args_moves (here - insn_size, media_mode);
627 int w = 0xffff & read_memory_integer (here, insn_size);
630 if (IS_STS_R0 (w) || IS_STS_PR (w)
631 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
632 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
636 else if (IS_MOV_SP_FP (w))
644 /* Don't bail out yet, we may have arguments stored in
645 registers here, according to the debug info, so that
646 gdb can print the frames correctly. */
647 start_pc = look_for_args_moves (here - insn_size, media_mode);
657 sh64_skip_prologue (CORE_ADDR pc)
659 CORE_ADDR post_prologue_pc;
661 /* See if we can determine the end of the prologue via the symbol table.
662 If so, then return either PC, or the PC after the prologue, whichever
664 post_prologue_pc = after_prologue (pc);
666 /* If after_prologue returned a useful address, then use it. Else
667 fall back on the instruction skipping code. */
668 if (post_prologue_pc != 0)
669 return max (pc, post_prologue_pc);
671 return sh64_skip_prologue_hard_way (pc);
674 /* Should call_function allocate stack space for a struct return? */
676 sh64_use_struct_convention (struct type *type)
678 return (TYPE_LENGTH (type) > 8);
681 /* Disassemble an instruction. */
683 gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
685 info->endian = TARGET_BYTE_ORDER;
686 return print_insn_sh (memaddr, info);
689 /* For vectors of 4 floating point registers. */
691 sh64_fv_reg_base_num (int fv_regnum)
695 fp_regnum = FP0_REGNUM +
696 (fv_regnum - FV0_REGNUM) * 4;
700 /* For double precision floating point registers, i.e 2 fp regs.*/
702 sh64_dr_reg_base_num (int dr_regnum)
706 fp_regnum = FP0_REGNUM +
707 (dr_regnum - DR0_REGNUM) * 2;
711 /* For pairs of floating point registers */
713 sh64_fpp_reg_base_num (int fpp_regnum)
717 fp_regnum = FP0_REGNUM +
718 (fpp_regnum - FPP0_REGNUM) * 2;
724 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
725 GDB_REGNUM BASE_REGNUM
785 sh64_compact_reg_base_num (int reg_nr)
787 int base_regnum = reg_nr;
789 /* general register N maps to general register N */
790 if (reg_nr >= R0_C_REGNUM
791 && reg_nr <= R_LAST_C_REGNUM)
792 base_regnum = reg_nr - R0_C_REGNUM;
794 /* floating point register N maps to floating point register N */
795 else if (reg_nr >= FP0_C_REGNUM
796 && reg_nr <= FP_LAST_C_REGNUM)
797 base_regnum = reg_nr - FP0_C_REGNUM + FP0_REGNUM;
799 /* double prec register N maps to base regnum for double prec register N */
800 else if (reg_nr >= DR0_C_REGNUM
801 && reg_nr <= DR_LAST_C_REGNUM)
802 base_regnum = sh64_dr_reg_base_num (DR0_REGNUM + reg_nr - DR0_C_REGNUM);
804 /* vector N maps to base regnum for vector register N */
805 else if (reg_nr >= FV0_C_REGNUM
806 && reg_nr <= FV_LAST_C_REGNUM)
807 base_regnum = sh64_fv_reg_base_num (FV0_REGNUM + reg_nr - FV0_C_REGNUM);
809 else if (reg_nr == PC_C_REGNUM)
810 base_regnum = PC_REGNUM;
812 else if (reg_nr == GBR_C_REGNUM)
815 else if (reg_nr == MACH_C_REGNUM
816 || reg_nr == MACL_C_REGNUM)
819 else if (reg_nr == PR_C_REGNUM)
820 base_regnum = PR_REGNUM;
822 else if (reg_nr == T_C_REGNUM)
825 else if (reg_nr == FPSCR_C_REGNUM)
826 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
828 else if (reg_nr == FPUL_C_REGNUM)
829 base_regnum = FP0_REGNUM + 32;
835 sign_extend (int value, int bits)
837 value = value & ((1 << bits) - 1);
838 return (value & (1 << (bits - 1))
839 ? value | (~((1 << bits) - 1))
844 sh64_analyze_prologue (struct gdbarch *gdbarch,
845 struct sh64_frame_cache *cache,
847 CORE_ADDR current_pc)
855 int gdb_register_number;
857 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
859 cache->sp_offset = 0;
861 /* Loop around examining the prologue insns until we find something
862 that does not appear to be part of the prologue. But give up
863 after 20 of them, since we're getting silly then. */
867 if (cache->media_mode)
872 opc = pc + (insn_size * 28);
873 if (opc > current_pc)
875 for ( ; pc <= opc; pc += insn_size)
877 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
881 if (!cache->media_mode)
883 if (IS_STS_PR (insn))
885 int next_insn = read_memory_integer (pc + insn_size, insn_size);
886 if (IS_MOV_TO_R15 (next_insn))
888 cache->saved_regs[PR_REGNUM] =
889 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
894 else if (IS_MOV_R14 (insn))
895 cache->saved_regs[MEDIA_FP_REGNUM] =
896 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
898 else if (IS_MOV_R0 (insn))
900 /* Put in R0 the offset from SP at which to store some
901 registers. We are interested in this value, because it
902 will tell us where the given registers are stored within
904 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
907 else if (IS_ADD_SP_R0 (insn))
909 /* This instruction still prepares r0, but we don't care.
910 We already have the offset in r0_val. */
913 else if (IS_STS_R0 (insn))
915 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
916 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
920 else if (IS_MOV_R14_R0 (insn))
922 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
923 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
928 else if (IS_ADD_SP (insn))
929 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
931 else if (IS_MOV_SP_FP (insn))
936 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
938 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
940 else if (IS_STQ_R18_R15 (insn))
941 cache->saved_regs[PR_REGNUM] =
942 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
944 else if (IS_STL_R18_R15 (insn))
945 cache->saved_regs[PR_REGNUM] =
946 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
948 else if (IS_STQ_R14_R15 (insn))
949 cache->saved_regs[MEDIA_FP_REGNUM] =
950 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
952 else if (IS_STL_R14_R15 (insn))
953 cache->saved_regs[MEDIA_FP_REGNUM] =
954 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
956 else if (IS_MOV_SP_FP_MEDIA (insn))
961 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
966 sh64_extract_struct_value_address (struct regcache *regcache)
968 /* FIXME: cagney/2004-01-17: Does the ABI guarantee that the return
969 address regster is preserved across function calls? Probably
970 not, making this function wrong. */
972 regcache_raw_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &val);
977 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
982 /* Function: push_dummy_call
983 Setup the function arguments for calling a function in the inferior.
985 On the Renesas SH architecture, there are four registers (R4 to R7)
986 which are dedicated for passing function arguments. Up to the first
987 four arguments (depending on size) may go into these registers.
988 The rest go on the stack.
990 Arguments that are smaller than 4 bytes will still take up a whole
991 register or a whole 32-bit word on the stack, and will be
992 right-justified in the register or the stack word. This includes
993 chars, shorts, and small aggregate types.
995 Arguments that are larger than 4 bytes may be split between two or
996 more registers. If there are not enough registers free, an argument
997 may be passed partly in a register (or registers), and partly on the
998 stack. This includes doubles, long longs, and larger aggregates.
999 As far as I know, there is no upper limit to the size of aggregates
1000 that will be passed in this way; in other words, the convention of
1001 passing a pointer to a large aggregate instead of a copy is not used.
1003 An exceptional case exists for struct arguments (and possibly other
1004 aggregates such as arrays) if the size is larger than 4 bytes but
1005 not a multiple of 4 bytes. In this case the argument is never split
1006 between the registers and the stack, but instead is copied in its
1007 entirety onto the stack, AND also copied into as many registers as
1008 there is room for. In other words, space in registers permitting,
1009 two copies of the same argument are passed in. As far as I can tell,
1010 only the one on the stack is used, although that may be a function
1011 of the level of compiler optimization. I suspect this is a compiler
1012 bug. Arguments of these odd sizes are left-justified within the
1013 word (as opposed to arguments smaller than 4 bytes, which are
1016 If the function is to return an aggregate type such as a struct, it
1017 is either returned in the normal return value register R0 (if its
1018 size is no greater than one byte), or else the caller must allocate
1019 space into which the callee will copy the return value (if the size
1020 is greater than one byte). In this case, a pointer to the return
1021 value location is passed into the callee in register R2, which does
1022 not displace any of the other arguments passed in via registers R4
1025 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1026 non-scalar (struct, union) elements (even if the elements are
1028 FR0-FR11 for single precision floating point (float)
1029 DR0-DR10 for double precision floating point (double)
1031 If a float is argument number 3 (for instance) and arguments number
1032 1,2, and 4 are integer, the mapping will be:
1033 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1035 If a float is argument number 10 (for instance) and arguments number
1036 1 through 10 are integer, the mapping will be:
1037 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1038 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1039 I.e. there is hole in the stack.
1041 Different rules apply for variable arguments functions, and for functions
1042 for which the prototype is not known. */
1045 sh64_push_dummy_call (struct gdbarch *gdbarch,
1046 struct value *function,
1047 struct regcache *regcache,
1049 int nargs, struct value **args,
1050 CORE_ADDR sp, int struct_return,
1051 CORE_ADDR struct_addr)
1053 int stack_offset, stack_alloc;
1057 int float_arg_index = 0;
1058 int double_arg_index = 0;
1069 memset (fp_args, 0, sizeof (fp_args));
1071 /* first force sp to a 8-byte alignment */
1072 sp = sh64_frame_align (gdbarch, sp);
1074 /* The "struct return pointer" pseudo-argument has its own dedicated
1078 regcache_cooked_write_unsigned (regcache,
1079 STRUCT_RETURN_REGNUM, struct_addr);
1081 /* Now make sure there's space on the stack */
1082 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1083 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1084 sp -= stack_alloc; /* make room on stack for args */
1086 /* Now load as many as possible of the first arguments into
1087 registers, and push the rest onto the stack. There are 64 bytes
1088 in eight registers available. Loop thru args from first to last. */
1090 int_argreg = ARG0_REGNUM;
1091 float_argreg = FP0_REGNUM;
1092 double_argreg = DR0_REGNUM;
1094 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1096 type = value_type (args[argnum]);
1097 len = TYPE_LENGTH (type);
1098 memset (valbuf, 0, sizeof (valbuf));
1100 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1102 argreg_size = register_size (current_gdbarch, int_argreg);
1104 if (len < argreg_size)
1106 /* value gets right-justified in the register or stack word */
1107 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1108 memcpy (valbuf + argreg_size - len,
1109 (char *) value_contents (args[argnum]), len);
1111 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1116 val = (char *) value_contents (args[argnum]);
1120 if (int_argreg > ARGLAST_REGNUM)
1122 /* must go on the stack */
1123 write_memory (sp + stack_offset, (const bfd_byte *) val,
1125 stack_offset += 8;/*argreg_size;*/
1127 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1128 That's because some *&^%$ things get passed on the stack
1129 AND in the registers! */
1130 if (int_argreg <= ARGLAST_REGNUM)
1132 /* there's room in a register */
1133 regval = extract_unsigned_integer (val, argreg_size);
1134 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1136 /* Store the value 8 bytes at a time. This means that
1137 things larger than 8 bytes may go partly in registers
1138 and partly on the stack. FIXME: argreg is incremented
1139 before we use its size. */
1147 val = (char *) value_contents (args[argnum]);
1150 /* Where is it going to be stored? */
1151 while (fp_args[float_arg_index])
1154 /* Now float_argreg points to the register where it
1155 should be stored. Are we still within the allowed
1157 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1159 /* Goes in FR0...FR11 */
1160 regcache_cooked_write (regcache,
1161 FP0_REGNUM + float_arg_index,
1163 fp_args[float_arg_index] = 1;
1164 /* Skip the corresponding general argument register. */
1169 /* Store it as the integers, 8 bytes at the time, if
1170 necessary spilling on the stack. */
1175 /* Where is it going to be stored? */
1176 while (fp_args[double_arg_index])
1177 double_arg_index += 2;
1178 /* Now double_argreg points to the register
1179 where it should be stored.
1180 Are we still within the allowed register set? */
1181 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1183 /* Goes in DR0...DR10 */
1184 /* The numbering of the DRi registers is consecutive,
1185 i.e. includes odd numbers. */
1186 int double_register_offset = double_arg_index / 2;
1187 int regnum = DR0_REGNUM + double_register_offset;
1188 regcache_cooked_write (regcache, regnum, val);
1189 fp_args[double_arg_index] = 1;
1190 fp_args[double_arg_index + 1] = 1;
1191 /* Skip the corresponding general argument register. */
1196 /* Store it as the integers, 8 bytes at the time, if
1197 necessary spilling on the stack. */
1201 /* Store return address. */
1202 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1204 /* Update stack pointer. */
1205 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1210 /* Find a function's return value in the appropriate registers (in
1211 regbuf), and copy it into valbuf. Extract from an array REGBUF
1212 containing the (raw) register state a function return value of type
1213 TYPE, and copy that, in virtual format, into VALBUF. */
1215 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1218 int len = TYPE_LENGTH (type);
1220 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1224 /* Return value stored in FP0_REGNUM */
1225 regcache_raw_read (regcache, FP0_REGNUM, valbuf);
1229 /* return value stored in DR0_REGNUM */
1233 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1235 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1236 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1239 floatformat_to_doublest (&floatformat_ieee_double_big,
1241 store_typed_floating (valbuf, type, val);
1250 /* Result is in register 2. If smaller than 8 bytes, it is padded
1251 at the most significant end. */
1252 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1254 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1255 offset = register_size (current_gdbarch, DEFAULT_RETURN_REGNUM)
1259 memcpy (valbuf, buf + offset, len);
1262 error ("bad size for return value");
1266 /* Write into appropriate registers a function return value
1267 of type TYPE, given in virtual format.
1268 If the architecture is sh4 or sh3e, store a function's return value
1269 in the R0 general register or in the FP0 floating point register,
1270 depending on the type of the return value. In all the other cases
1271 the result is stored in r0, left-justified. */
1274 sh64_store_return_value (struct type *type, struct regcache *regcache,
1277 char buf[64]; /* more than enough... */
1278 int len = TYPE_LENGTH (type);
1280 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1282 int i, regnum = FP0_REGNUM;
1283 for (i = 0; i < len; i += 4)
1284 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1285 regcache_raw_write (regcache, regnum++,
1286 (char *) valbuf + len - 4 - i);
1288 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1292 int return_register = DEFAULT_RETURN_REGNUM;
1295 if (len <= register_size (current_gdbarch, return_register))
1297 /* Pad with zeros. */
1298 memset (buf, 0, register_size (current_gdbarch, return_register));
1299 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1300 offset = 0; /*register_size (current_gdbarch,
1301 return_register) - len;*/
1303 offset = register_size (current_gdbarch, return_register) - len;
1305 memcpy (buf + offset, valbuf, len);
1306 regcache_raw_write (regcache, return_register, buf);
1309 regcache_raw_write (regcache, return_register, valbuf);
1313 static enum return_value_convention
1314 sh64_return_value (struct gdbarch *gdbarch, struct type *type,
1315 struct regcache *regcache,
1316 gdb_byte *readbuf, const gdb_byte *writebuf)
1318 if (sh64_use_struct_convention (type))
1319 return RETURN_VALUE_STRUCT_CONVENTION;
1321 sh64_store_return_value (type, regcache, writebuf);
1323 sh64_extract_return_value (type, regcache, readbuf);
1324 return RETURN_VALUE_REGISTER_CONVENTION;
1328 sh64_show_media_regs (void)
1332 printf_filtered ("PC=%s SR=%016llx \n",
1333 paddr (read_register (PC_REGNUM)),
1334 (long long) read_register (SR_REGNUM));
1336 printf_filtered ("SSR=%016llx SPC=%016llx \n",
1337 (long long) read_register (SSR_REGNUM),
1338 (long long) read_register (SPC_REGNUM));
1339 printf_filtered ("FPSCR=%016lx\n ",
1340 (long) read_register (FPSCR_REGNUM));
1342 for (i = 0; i < 64; i = i + 4)
1343 printf_filtered ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1345 (long long) read_register (i + 0),
1346 (long long) read_register (i + 1),
1347 (long long) read_register (i + 2),
1348 (long long) read_register (i + 3));
1350 printf_filtered ("\n");
1352 for (i = 0; i < 64; i = i + 8)
1353 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1355 (long) read_register (FP0_REGNUM + i + 0),
1356 (long) read_register (FP0_REGNUM + i + 1),
1357 (long) read_register (FP0_REGNUM + i + 2),
1358 (long) read_register (FP0_REGNUM + i + 3),
1359 (long) read_register (FP0_REGNUM + i + 4),
1360 (long) read_register (FP0_REGNUM + i + 5),
1361 (long) read_register (FP0_REGNUM + i + 6),
1362 (long) read_register (FP0_REGNUM + i + 7));
1366 sh64_show_compact_regs (void)
1370 printf_filtered ("PC=%s \n",
1371 paddr (read_register (PC_C_REGNUM)));
1373 printf_filtered ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1374 (long) read_register (GBR_C_REGNUM),
1375 (long) read_register (MACH_C_REGNUM),
1376 (long) read_register (MACL_C_REGNUM),
1377 (long) read_register (PR_C_REGNUM),
1378 (long) read_register (T_C_REGNUM));
1379 printf_filtered ("FPSCR=%08lx FPUL=%08lx\n",
1380 (long) read_register (FPSCR_C_REGNUM),
1381 (long) read_register (FPUL_C_REGNUM));
1383 for (i = 0; i < 16; i = i + 4)
1384 printf_filtered ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1386 (long) read_register (i + 0),
1387 (long) read_register (i + 1),
1388 (long) read_register (i + 2),
1389 (long) read_register (i + 3));
1391 printf_filtered ("\n");
1393 for (i = 0; i < 16; i = i + 8)
1394 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1396 (long) read_register (FP0_REGNUM + i + 0),
1397 (long) read_register (FP0_REGNUM + i + 1),
1398 (long) read_register (FP0_REGNUM + i + 2),
1399 (long) read_register (FP0_REGNUM + i + 3),
1400 (long) read_register (FP0_REGNUM + i + 4),
1401 (long) read_register (FP0_REGNUM + i + 5),
1402 (long) read_register (FP0_REGNUM + i + 6),
1403 (long) read_register (FP0_REGNUM + i + 7));
1406 /* FIXME!!! This only shows the registers for shmedia, excluding the
1407 pseudo registers. */
1409 sh64_show_regs (void)
1411 if (pc_is_isa32 (get_frame_pc (get_selected_frame (NULL))))
1412 sh64_show_media_regs ();
1414 sh64_show_compact_regs ();
1419 SH MEDIA MODE (ISA 32)
1420 general registers (64-bit) 0-63
1421 0 r0, r1, r2, r3, r4, r5, r6, r7,
1422 64 r8, r9, r10, r11, r12, r13, r14, r15,
1423 128 r16, r17, r18, r19, r20, r21, r22, r23,
1424 192 r24, r25, r26, r27, r28, r29, r30, r31,
1425 256 r32, r33, r34, r35, r36, r37, r38, r39,
1426 320 r40, r41, r42, r43, r44, r45, r46, r47,
1427 384 r48, r49, r50, r51, r52, r53, r54, r55,
1428 448 r56, r57, r58, r59, r60, r61, r62, r63,
1433 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1436 target registers (64-bit) 68-75
1437 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1439 floating point state control register (32-bit) 76
1442 single precision floating point registers (32-bit) 77-140
1443 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1444 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1445 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1446 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1447 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1448 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1449 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1450 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1452 TOTAL SPACE FOR REGISTERS: 868 bytes
1454 From here on they are all pseudo registers: no memory allocated.
1455 REGISTER_BYTE returns the register byte for the base register.
1457 double precision registers (pseudo) 141-172
1458 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1459 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1460 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1461 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1463 floating point pairs (pseudo) 173-204
1464 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1465 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1466 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1467 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1469 floating point vectors (4 floating point regs) (pseudo) 205-220
1470 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1471 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1473 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1474 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1475 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1477 gbr_c, mach_c, macl_c, pr_c, t_c,
1479 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1480 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1481 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1482 fv0_c, fv4_c, fv8_c, fv12_c
1485 static struct type *
1486 sh64_build_float_register_type (int high)
1490 temp = create_range_type (NULL, builtin_type_int, 0, high);
1491 return create_array_type (NULL, builtin_type_float, temp);
1494 /* Return the GDB type object for the "standard" data type
1495 of data in register REG_NR. */
1496 static struct type *
1497 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1499 if ((reg_nr >= FP0_REGNUM
1500 && reg_nr <= FP_LAST_REGNUM)
1501 || (reg_nr >= FP0_C_REGNUM
1502 && reg_nr <= FP_LAST_C_REGNUM))
1503 return builtin_type_float;
1504 else if ((reg_nr >= DR0_REGNUM
1505 && reg_nr <= DR_LAST_REGNUM)
1506 || (reg_nr >= DR0_C_REGNUM
1507 && reg_nr <= DR_LAST_C_REGNUM))
1508 return builtin_type_double;
1509 else if (reg_nr >= FPP0_REGNUM
1510 && reg_nr <= FPP_LAST_REGNUM)
1511 return sh64_build_float_register_type (1);
1512 else if ((reg_nr >= FV0_REGNUM
1513 && reg_nr <= FV_LAST_REGNUM)
1514 ||(reg_nr >= FV0_C_REGNUM
1515 && reg_nr <= FV_LAST_C_REGNUM))
1516 return sh64_build_float_register_type (3);
1517 else if (reg_nr == FPSCR_REGNUM)
1518 return builtin_type_int;
1519 else if (reg_nr >= R0_C_REGNUM
1520 && reg_nr < FP0_C_REGNUM)
1521 return builtin_type_int;
1523 return builtin_type_long_long;
1527 sh64_register_convert_to_virtual (int regnum, struct type *type,
1528 char *from, char *to)
1530 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
1532 /* It is a no-op. */
1533 memcpy (to, from, register_size (current_gdbarch, regnum));
1537 if ((regnum >= DR0_REGNUM
1538 && regnum <= DR_LAST_REGNUM)
1539 || (regnum >= DR0_C_REGNUM
1540 && regnum <= DR_LAST_C_REGNUM))
1543 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1545 store_typed_floating (to, type, val);
1548 error ("sh64_register_convert_to_virtual called with non DR register number");
1552 sh64_register_convert_to_raw (struct type *type, int regnum,
1553 const void *from, void *to)
1555 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
1557 /* It is a no-op. */
1558 memcpy (to, from, register_size (current_gdbarch, regnum));
1562 if ((regnum >= DR0_REGNUM
1563 && regnum <= DR_LAST_REGNUM)
1564 || (regnum >= DR0_C_REGNUM
1565 && regnum <= DR_LAST_C_REGNUM))
1567 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
1568 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1572 error ("sh64_register_convert_to_raw called with non DR register number");
1576 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1577 int reg_nr, gdb_byte *buffer)
1582 char temp_buffer[MAX_REGISTER_SIZE];
1584 if (reg_nr >= DR0_REGNUM
1585 && reg_nr <= DR_LAST_REGNUM)
1587 base_regnum = sh64_dr_reg_base_num (reg_nr);
1589 /* Build the value in the provided buffer. */
1590 /* DR regs are double precision registers obtained by
1591 concatenating 2 single precision floating point registers. */
1592 for (portion = 0; portion < 2; portion++)
1593 regcache_raw_read (regcache, base_regnum + portion,
1595 + register_size (gdbarch, base_regnum) * portion));
1597 /* We must pay attention to the endianness. */
1598 sh64_register_convert_to_virtual (reg_nr,
1599 register_type (gdbarch, reg_nr),
1600 temp_buffer, buffer);
1604 else if (reg_nr >= FPP0_REGNUM
1605 && reg_nr <= FPP_LAST_REGNUM)
1607 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1609 /* Build the value in the provided buffer. */
1610 /* FPP regs are pairs of single precision registers obtained by
1611 concatenating 2 single precision floating point registers. */
1612 for (portion = 0; portion < 2; portion++)
1613 regcache_raw_read (regcache, base_regnum + portion,
1615 + register_size (gdbarch, base_regnum) * portion));
1618 else if (reg_nr >= FV0_REGNUM
1619 && reg_nr <= FV_LAST_REGNUM)
1621 base_regnum = sh64_fv_reg_base_num (reg_nr);
1623 /* Build the value in the provided buffer. */
1624 /* FV regs are vectors of single precision registers obtained by
1625 concatenating 4 single precision floating point registers. */
1626 for (portion = 0; portion < 4; portion++)
1627 regcache_raw_read (regcache, base_regnum + portion,
1629 + register_size (gdbarch, base_regnum) * portion));
1632 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1633 else if (reg_nr >= R0_C_REGNUM
1634 && reg_nr <= T_C_REGNUM)
1636 base_regnum = sh64_compact_reg_base_num (reg_nr);
1638 /* Build the value in the provided buffer. */
1639 regcache_raw_read (regcache, base_regnum, temp_buffer);
1640 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1642 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1645 else if (reg_nr >= FP0_C_REGNUM
1646 && reg_nr <= FP_LAST_C_REGNUM)
1648 base_regnum = sh64_compact_reg_base_num (reg_nr);
1650 /* Build the value in the provided buffer. */
1651 /* Floating point registers map 1-1 to the media fp regs,
1652 they have the same size and endianness. */
1653 regcache_raw_read (regcache, base_regnum, buffer);
1656 else if (reg_nr >= DR0_C_REGNUM
1657 && reg_nr <= DR_LAST_C_REGNUM)
1659 base_regnum = sh64_compact_reg_base_num (reg_nr);
1661 /* DR_C regs are double precision registers obtained by
1662 concatenating 2 single precision floating point registers. */
1663 for (portion = 0; portion < 2; portion++)
1664 regcache_raw_read (regcache, base_regnum + portion,
1666 + register_size (gdbarch, base_regnum) * portion));
1668 /* We must pay attention to the endianness. */
1669 sh64_register_convert_to_virtual (reg_nr,
1670 register_type (gdbarch, reg_nr),
1671 temp_buffer, buffer);
1674 else if (reg_nr >= FV0_C_REGNUM
1675 && reg_nr <= FV_LAST_C_REGNUM)
1677 base_regnum = sh64_compact_reg_base_num (reg_nr);
1679 /* Build the value in the provided buffer. */
1680 /* FV_C regs are vectors of single precision registers obtained by
1681 concatenating 4 single precision floating point registers. */
1682 for (portion = 0; portion < 4; portion++)
1683 regcache_raw_read (regcache, base_regnum + portion,
1685 + register_size (gdbarch, base_regnum) * portion));
1688 else if (reg_nr == FPSCR_C_REGNUM)
1690 int fpscr_base_regnum;
1692 unsigned int fpscr_value;
1693 unsigned int sr_value;
1694 unsigned int fpscr_c_value;
1695 unsigned int fpscr_c_part1_value;
1696 unsigned int fpscr_c_part2_value;
1698 fpscr_base_regnum = FPSCR_REGNUM;
1699 sr_base_regnum = SR_REGNUM;
1701 /* Build the value in the provided buffer. */
1702 /* FPSCR_C is a very weird register that contains sparse bits
1703 from the FPSCR and the SR architectural registers.
1710 2-17 Bit 2-18 of FPSCR
1711 18-20 Bits 12,13,14 of SR
1715 /* Get FPSCR into a local buffer */
1716 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1717 /* Get value as an int. */
1718 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1719 /* Get SR into a local buffer */
1720 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1721 /* Get value as an int. */
1722 sr_value = extract_unsigned_integer (temp_buffer, 4);
1723 /* Build the new value. */
1724 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1725 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1726 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1727 /* Store that in out buffer!!! */
1728 store_unsigned_integer (buffer, 4, fpscr_c_value);
1729 /* FIXME There is surely an endianness gotcha here. */
1732 else if (reg_nr == FPUL_C_REGNUM)
1734 base_regnum = sh64_compact_reg_base_num (reg_nr);
1736 /* FPUL_C register is floating point register 32,
1737 same size, same endianness. */
1738 regcache_raw_read (regcache, base_regnum, buffer);
1743 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1744 int reg_nr, const gdb_byte *buffer)
1746 int base_regnum, portion;
1748 char temp_buffer[MAX_REGISTER_SIZE];
1750 if (reg_nr >= DR0_REGNUM
1751 && reg_nr <= DR_LAST_REGNUM)
1753 base_regnum = sh64_dr_reg_base_num (reg_nr);
1754 /* We must pay attention to the endianness. */
1755 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
1757 buffer, temp_buffer);
1759 /* Write the real regs for which this one is an alias. */
1760 for (portion = 0; portion < 2; portion++)
1761 regcache_raw_write (regcache, base_regnum + portion,
1763 + register_size (gdbarch,
1764 base_regnum) * portion));
1767 else if (reg_nr >= FPP0_REGNUM
1768 && reg_nr <= FPP_LAST_REGNUM)
1770 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1772 /* Write the real regs for which this one is an alias. */
1773 for (portion = 0; portion < 2; portion++)
1774 regcache_raw_write (regcache, base_regnum + portion,
1776 + register_size (gdbarch,
1777 base_regnum) * portion));
1780 else if (reg_nr >= FV0_REGNUM
1781 && reg_nr <= FV_LAST_REGNUM)
1783 base_regnum = sh64_fv_reg_base_num (reg_nr);
1785 /* Write the real regs for which this one is an alias. */
1786 for (portion = 0; portion < 4; portion++)
1787 regcache_raw_write (regcache, base_regnum + portion,
1789 + register_size (gdbarch,
1790 base_regnum) * portion));
1793 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1794 register but only 4 bytes of it. */
1795 else if (reg_nr >= R0_C_REGNUM
1796 && reg_nr <= T_C_REGNUM)
1798 base_regnum = sh64_compact_reg_base_num (reg_nr);
1799 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1800 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1804 /* Let's read the value of the base register into a temporary
1805 buffer, so that overwriting the last four bytes with the new
1806 value of the pseudo will leave the upper 4 bytes unchanged. */
1807 regcache_raw_read (regcache, base_regnum, temp_buffer);
1808 /* Write as an 8 byte quantity */
1809 memcpy (temp_buffer + offset, buffer, 4);
1810 regcache_raw_write (regcache, base_regnum, temp_buffer);
1813 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1814 registers. Both are 4 bytes. */
1815 else if (reg_nr >= FP0_C_REGNUM
1816 && reg_nr <= FP_LAST_C_REGNUM)
1818 base_regnum = sh64_compact_reg_base_num (reg_nr);
1819 regcache_raw_write (regcache, base_regnum, buffer);
1822 else if (reg_nr >= DR0_C_REGNUM
1823 && reg_nr <= DR_LAST_C_REGNUM)
1825 base_regnum = sh64_compact_reg_base_num (reg_nr);
1826 for (portion = 0; portion < 2; portion++)
1828 /* We must pay attention to the endianness. */
1829 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
1831 buffer, temp_buffer);
1833 regcache_raw_write (regcache, base_regnum + portion,
1835 + register_size (gdbarch,
1836 base_regnum) * portion));
1840 else if (reg_nr >= FV0_C_REGNUM
1841 && reg_nr <= FV_LAST_C_REGNUM)
1843 base_regnum = sh64_compact_reg_base_num (reg_nr);
1845 for (portion = 0; portion < 4; portion++)
1847 regcache_raw_write (regcache, base_regnum + portion,
1849 + register_size (gdbarch,
1850 base_regnum) * portion));
1854 else if (reg_nr == FPSCR_C_REGNUM)
1856 int fpscr_base_regnum;
1858 unsigned int fpscr_value;
1859 unsigned int sr_value;
1860 unsigned int old_fpscr_value;
1861 unsigned int old_sr_value;
1862 unsigned int fpscr_c_value;
1863 unsigned int fpscr_mask;
1864 unsigned int sr_mask;
1866 fpscr_base_regnum = FPSCR_REGNUM;
1867 sr_base_regnum = SR_REGNUM;
1869 /* FPSCR_C is a very weird register that contains sparse bits
1870 from the FPSCR and the SR architectural registers.
1877 2-17 Bit 2-18 of FPSCR
1878 18-20 Bits 12,13,14 of SR
1882 /* Get value as an int. */
1883 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1885 /* Build the new values. */
1886 fpscr_mask = 0x0003fffd;
1887 sr_mask = 0x001c0000;
1889 fpscr_value = fpscr_c_value & fpscr_mask;
1890 sr_value = (fpscr_value & sr_mask) >> 6;
1892 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1893 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1894 old_fpscr_value &= 0xfffc0002;
1895 fpscr_value |= old_fpscr_value;
1896 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1897 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1899 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1900 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1901 old_sr_value &= 0xffff8fff;
1902 sr_value |= old_sr_value;
1903 store_unsigned_integer (temp_buffer, 4, sr_value);
1904 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1907 else if (reg_nr == FPUL_C_REGNUM)
1909 base_regnum = sh64_compact_reg_base_num (reg_nr);
1910 regcache_raw_write (regcache, base_regnum, buffer);
1914 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1915 shmedia REGISTERS. */
1916 /* Control registers, compact mode. */
1918 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1921 switch (cr_c_regnum)
1924 fprintf_filtered (file, "pc_c\t0x%08x\n",
1925 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1928 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1929 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1932 fprintf_filtered (file, "mach_c\t0x%08x\n",
1933 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1936 fprintf_filtered (file, "macl_c\t0x%08x\n",
1937 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1940 fprintf_filtered (file, "pr_c\t0x%08x\n",
1941 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1944 fprintf_filtered (file, "t_c\t0x%08x\n",
1945 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1947 case FPSCR_C_REGNUM:
1948 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1949 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1952 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1953 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1959 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1960 struct frame_info *frame, int regnum)
1961 { /* do values for FP (float) regs */
1962 unsigned char *raw_buffer;
1963 double flt; /* double extracted from raw hex data */
1967 /* Allocate space for the float. */
1968 raw_buffer = (unsigned char *) alloca (register_size (gdbarch, FP0_REGNUM));
1970 /* Get the data in raw format. */
1971 if (!frame_register_read (frame, regnum, raw_buffer))
1972 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
1974 /* Get the register as a number */
1975 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
1977 /* Print the name and some spaces. */
1978 fputs_filtered (REGISTER_NAME (regnum), file);
1979 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
1981 /* Print the value. */
1983 fprintf_filtered (file, "<invalid float>");
1985 fprintf_filtered (file, "%-10.9g", flt);
1987 /* Print the fp register as hex. */
1988 fprintf_filtered (file, "\t(raw 0x");
1989 for (j = 0; j < register_size (gdbarch, regnum); j++)
1991 int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1992 : register_size (gdbarch, regnum) - 1 - j;
1993 fprintf_filtered (file, "%02x", raw_buffer[idx]);
1995 fprintf_filtered (file, ")");
1996 fprintf_filtered (file, "\n");
2000 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2001 struct frame_info *frame, int regnum)
2003 /* All the sh64-compact mode registers are pseudo registers. */
2005 if (regnum < gdbarch_num_regs (current_gdbarch)
2006 || regnum >= gdbarch_num_regs (current_gdbarch)
2007 + NUM_PSEUDO_REGS_SH_MEDIA
2008 + NUM_PSEUDO_REGS_SH_COMPACT)
2009 internal_error (__FILE__, __LINE__,
2010 _("Invalid pseudo register number %d\n"), regnum);
2012 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2014 int fp_regnum = sh64_dr_reg_base_num (regnum);
2015 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2016 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2017 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2020 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2022 int fp_regnum = sh64_compact_reg_base_num (regnum);
2023 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2024 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2025 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2028 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2030 int fp_regnum = sh64_fv_reg_base_num (regnum);
2031 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2032 regnum - FV0_REGNUM,
2033 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2034 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2035 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2036 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2039 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2041 int fp_regnum = sh64_compact_reg_base_num (regnum);
2042 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2043 regnum - FV0_C_REGNUM,
2044 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2045 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2046 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2047 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2050 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2052 int fp_regnum = sh64_fpp_reg_base_num (regnum);
2053 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2054 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2055 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2058 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2060 int c_regnum = sh64_compact_reg_base_num (regnum);
2061 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2062 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2064 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2065 /* This should work also for pseudoregs. */
2066 sh64_do_fp_register (gdbarch, file, frame, regnum);
2067 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2068 sh64_do_cr_c_register_info (file, frame, regnum);
2072 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2073 struct frame_info *frame, int regnum)
2075 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2077 fputs_filtered (REGISTER_NAME (regnum), file);
2078 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
2080 /* Get the data in raw format. */
2081 if (!frame_register_read (frame, regnum, raw_buffer))
2082 fprintf_filtered (file, "*value not available*\n");
2084 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2085 file, 'x', 1, 0, Val_pretty_default);
2086 fprintf_filtered (file, "\t");
2087 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2088 file, 0, 1, 0, Val_pretty_default);
2089 fprintf_filtered (file, "\n");
2093 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2094 struct frame_info *frame, int regnum)
2096 if (regnum < 0 || regnum >= gdbarch_num_regs (current_gdbarch)
2097 + gdbarch_num_pseudo_regs (current_gdbarch))
2098 internal_error (__FILE__, __LINE__,
2099 _("Invalid register number %d\n"), regnum);
2101 else if (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch))
2103 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2104 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2106 sh64_do_register (gdbarch, file, frame, regnum);
2109 else if (regnum < gdbarch_num_regs (current_gdbarch)
2110 + gdbarch_num_pseudo_regs (current_gdbarch))
2111 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2115 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2116 struct frame_info *frame, int regnum,
2119 if (regnum != -1) /* do one specified register */
2121 if (*(REGISTER_NAME (regnum)) == '\0')
2122 error ("Not a valid register for the current processor type");
2124 sh64_print_register (gdbarch, file, frame, regnum);
2127 /* do all (or most) registers */
2130 while (regnum < gdbarch_num_regs (current_gdbarch))
2132 /* If the register name is empty, it is undefined for this
2133 processor, so don't display anything. */
2134 if (REGISTER_NAME (regnum) == NULL
2135 || *(REGISTER_NAME (regnum)) == '\0')
2141 if (TYPE_CODE (register_type (gdbarch, regnum))
2146 /* true for "INFO ALL-REGISTERS" command */
2147 sh64_do_fp_register (gdbarch, file, frame, regnum);
2151 regnum += FP_LAST_REGNUM - FP0_REGNUM; /* skip FP regs */
2155 sh64_do_register (gdbarch, file, frame, regnum);
2161 while (regnum < gdbarch_num_regs (current_gdbarch)
2162 + gdbarch_num_pseudo_regs (current_gdbarch))
2164 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2171 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2172 struct ui_file *file,
2173 struct frame_info *frame, int regnum,
2176 if (regnum != -1) /* do one specified register */
2178 if (*(REGISTER_NAME (regnum)) == '\0')
2179 error ("Not a valid register for the current processor type");
2181 if (regnum >= 0 && regnum < R0_C_REGNUM)
2182 error ("Not a valid register for the current processor mode.");
2184 sh64_print_register (gdbarch, file, frame, regnum);
2187 /* do all compact registers */
2189 regnum = R0_C_REGNUM;
2190 while (regnum < gdbarch_num_regs (current_gdbarch)
2191 + gdbarch_num_pseudo_regs (current_gdbarch))
2193 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2200 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2201 struct frame_info *frame, int regnum, int fpregs)
2203 if (pc_is_isa32 (get_frame_pc (frame)))
2204 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2206 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2209 static struct sh64_frame_cache *
2210 sh64_alloc_frame_cache (void)
2212 struct sh64_frame_cache *cache;
2215 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2219 cache->saved_sp = 0;
2220 cache->sp_offset = 0;
2223 /* Frameless until proven otherwise. */
2226 /* Saved registers. We initialize these to -1 since zero is a valid
2227 offset (that's where fp is supposed to be stored). */
2228 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2230 cache->saved_regs[i] = -1;
2236 static struct sh64_frame_cache *
2237 sh64_frame_cache (struct frame_info *next_frame, void **this_cache)
2239 struct sh64_frame_cache *cache;
2240 CORE_ADDR current_pc;
2246 cache = sh64_alloc_frame_cache ();
2247 *this_cache = cache;
2249 current_pc = frame_pc_unwind (next_frame);
2250 cache->media_mode = pc_is_isa32 (current_pc);
2252 /* In principle, for normal frames, fp holds the frame pointer,
2253 which holds the base address for the current stack frame.
2254 However, for functions that don't need it, the frame pointer is
2255 optional. For these "frameless" functions the frame pointer is
2256 actually the frame pointer of the calling frame. */
2257 cache->base = frame_unwind_register_unsigned (next_frame, MEDIA_FP_REGNUM);
2258 if (cache->base == 0)
2261 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2263 sh64_analyze_prologue (current_gdbarch, cache, cache->pc, current_pc);
2265 if (!cache->uses_fp)
2267 /* We didn't find a valid frame, which means that CACHE->base
2268 currently holds the frame pointer for our calling frame. If
2269 we're at the start of a function, or somewhere half-way its
2270 prologue, the function's frame probably hasn't been fully
2271 setup yet. Try to reconstruct the base address for the stack
2272 frame by looking at the stack pointer. For truly "frameless"
2273 functions this might work too. */
2274 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2277 /* Now that we have the base address for the stack frame we can
2278 calculate the value of sp in the calling frame. */
2279 cache->saved_sp = cache->base + cache->sp_offset;
2281 /* Adjust all the saved registers such that they contain addresses
2282 instead of offsets. */
2283 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2284 if (cache->saved_regs[i] != -1)
2285 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2291 sh64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2292 int regnum, int *optimizedp,
2293 enum lval_type *lvalp, CORE_ADDR *addrp,
2294 int *realnump, gdb_byte *valuep)
2296 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2298 gdb_assert (regnum >= 0);
2300 if (regnum == SP_REGNUM && cache->saved_sp)
2308 /* Store the value. */
2309 store_unsigned_integer (valuep,
2310 register_size (current_gdbarch, SP_REGNUM),
2316 /* The PC of the previous frame is stored in the PR register of
2317 the current frame. Frob regnum so that we pull the value from
2318 the correct place. */
2319 if (regnum == PC_REGNUM)
2322 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2324 int reg_size = register_size (current_gdbarch, regnum);
2328 *lvalp = lval_memory;
2329 *addrp = cache->saved_regs[regnum];
2331 if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32
2332 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2338 memset (valuep, 0, reg_size);
2339 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
2340 read_memory (*addrp, valuep, size);
2342 read_memory (*addrp, (char *) valuep + reg_size - size, size);
2348 *lvalp = lval_register;
2352 frame_unwind_register (next_frame, (*realnump), valuep);
2356 sh64_frame_this_id (struct frame_info *next_frame, void **this_cache,
2357 struct frame_id *this_id)
2359 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2361 /* This marks the outermost frame. */
2362 if (cache->base == 0)
2365 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2368 static const struct frame_unwind sh64_frame_unwind = {
2371 sh64_frame_prev_register
2374 static const struct frame_unwind *
2375 sh64_frame_sniffer (struct frame_info *next_frame)
2377 return &sh64_frame_unwind;
2381 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2383 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2387 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2389 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2392 static struct frame_id
2393 sh64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2395 return frame_id_build (sh64_unwind_sp (gdbarch, next_frame),
2396 frame_pc_unwind (next_frame));
2400 sh64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2402 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2407 static const struct frame_base sh64_frame_base = {
2409 sh64_frame_base_address,
2410 sh64_frame_base_address,
2411 sh64_frame_base_address
2416 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2418 struct gdbarch *gdbarch;
2419 struct gdbarch_tdep *tdep;
2421 /* If there is already a candidate, use it. */
2422 arches = gdbarch_list_lookup_by_info (arches, &info);
2424 return arches->gdbarch;
2426 /* None found, create a new architecture from the information
2428 tdep = XMALLOC (struct gdbarch_tdep);
2429 gdbarch = gdbarch_alloc (&info, tdep);
2431 /* Determine the ABI */
2432 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2434 /* If the ABI is the 64-bit one, it can only be sh-media. */
2435 tdep->sh_abi = SH_ABI_64;
2436 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2437 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2441 /* If the ABI is the 32-bit one it could be either media or
2443 tdep->sh_abi = SH_ABI_32;
2444 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2445 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2448 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2449 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2450 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2451 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2452 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2453 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2454 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2456 /* The number of real registers is the same whether we are in
2457 ISA16(compact) or ISA32(media). */
2458 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2459 set_gdbarch_sp_regnum (gdbarch, 15);
2460 set_gdbarch_pc_regnum (gdbarch, 64);
2461 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2462 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2463 + NUM_PSEUDO_REGS_SH_COMPACT);
2465 set_gdbarch_register_name (gdbarch, sh64_register_name);
2466 set_gdbarch_register_type (gdbarch, sh64_register_type);
2468 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2469 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2471 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2473 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
2474 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2476 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2478 set_gdbarch_return_value (gdbarch, sh64_return_value);
2479 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
2480 sh64_extract_struct_value_address);
2482 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2483 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2485 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2487 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2489 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2490 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2491 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2492 set_gdbarch_unwind_dummy_id (gdbarch, sh64_unwind_dummy_id);
2493 frame_base_set_default (gdbarch, &sh64_frame_base);
2495 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2497 set_gdbarch_elf_make_msymbol_special (gdbarch,
2498 sh64_elf_make_msymbol_special);
2500 /* Hook in ABI-specific overrides, if they have been registered. */
2501 gdbarch_init_osabi (info, gdbarch);
2503 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2504 frame_unwind_append_sniffer (gdbarch, sh64_frame_sniffer);