]> Git Repo - binutils.git/blame_incremental - gdb/valarith.c
Automatic date update in version.in
[binutils.git] / gdb / valarith.c
... / ...
CommitLineData
1/* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "value.h"
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "expression.h"
25#include "target.h"
26#include "language.h"
27#include "target-float.h"
28#include "infcall.h"
29#include "gdbsupport/byte-vector.h"
30#include "gdbarch.h"
31
32/* Forward declarations. */
33static struct value *value_subscripted_rvalue (struct value *array,
34 LONGEST index,
35 LONGEST lowerbound);
36
37/* Define whether or not the C operator '/' truncates towards zero for
38 differently signed operands (truncation direction is undefined in C). */
39
40#ifndef TRUNCATION_TOWARDS_ZERO
41#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
42#endif
43
44/* Given a pointer, return the size of its target.
45 If the pointer type is void *, then return 1.
46 If the target type is incomplete, then error out.
47 This isn't a general purpose function, but just a
48 helper for value_ptradd. */
49
50static LONGEST
51find_size_for_pointer_math (struct type *ptr_type)
52{
53 LONGEST sz = -1;
54 struct type *ptr_target;
55
56 gdb_assert (ptr_type->code () == TYPE_CODE_PTR);
57 ptr_target = check_typedef (ptr_type->target_type ());
58
59 sz = type_length_units (ptr_target);
60 if (sz == 0)
61 {
62 if (ptr_type->code () == TYPE_CODE_VOID)
63 sz = 1;
64 else
65 {
66 const char *name;
67
68 name = ptr_target->name ();
69 if (name == NULL)
70 error (_("Cannot perform pointer math on incomplete types, "
71 "try casting to a known type, or void *."));
72 else
73 error (_("Cannot perform pointer math on incomplete type \"%s\", "
74 "try casting to a known type, or void *."), name);
75 }
76 }
77 return sz;
78}
79
80/* Given a pointer ARG1 and an integral value ARG2, return the
81 result of C-style pointer arithmetic ARG1 + ARG2. */
82
83struct value *
84value_ptradd (struct value *arg1, LONGEST arg2)
85{
86 struct type *valptrtype;
87 LONGEST sz;
88 struct value *result;
89
90 arg1 = coerce_array (arg1);
91 valptrtype = check_typedef (value_type (arg1));
92 sz = find_size_for_pointer_math (valptrtype);
93
94 result = value_from_pointer (valptrtype,
95 value_as_address (arg1) + sz * arg2);
96 if (VALUE_LVAL (result) != lval_internalvar)
97 set_value_component_location (result, arg1);
98 return result;
99}
100
101/* Given two compatible pointer values ARG1 and ARG2, return the
102 result of C-style pointer arithmetic ARG1 - ARG2. */
103
104LONGEST
105value_ptrdiff (struct value *arg1, struct value *arg2)
106{
107 struct type *type1, *type2;
108 LONGEST sz;
109
110 arg1 = coerce_array (arg1);
111 arg2 = coerce_array (arg2);
112 type1 = check_typedef (value_type (arg1));
113 type2 = check_typedef (value_type (arg2));
114
115 gdb_assert (type1->code () == TYPE_CODE_PTR);
116 gdb_assert (type2->code () == TYPE_CODE_PTR);
117
118 if (check_typedef (type1->target_type ())->length ()
119 != check_typedef (type2->target_type ())->length ())
120 error (_("First argument of `-' is a pointer and "
121 "second argument is neither\n"
122 "an integer nor a pointer of the same type."));
123
124 sz = type_length_units (check_typedef (type1->target_type ()));
125 if (sz == 0)
126 {
127 warning (_("Type size unknown, assuming 1. "
128 "Try casting to a known type, or void *."));
129 sz = 1;
130 }
131
132 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
133}
134
135/* Return the value of ARRAY[IDX].
136
137 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
138 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
139
140 See comments in value_coerce_array() for rationale for reason for
141 doing lower bounds adjustment here rather than there.
142 FIXME: Perhaps we should validate that the index is valid and if
143 verbosity is set, warn about invalid indices (but still use them). */
144
145struct value *
146value_subscript (struct value *array, LONGEST index)
147{
148 bool c_style = current_language->c_style_arrays_p ();
149 struct type *tarray;
150
151 array = coerce_ref (array);
152 tarray = check_typedef (value_type (array));
153
154 if (tarray->code () == TYPE_CODE_ARRAY
155 || tarray->code () == TYPE_CODE_STRING)
156 {
157 struct type *range_type = tarray->index_type ();
158 gdb::optional<LONGEST> lowerbound = get_discrete_low_bound (range_type);
159 if (!lowerbound.has_value ())
160 lowerbound = 0;
161
162 if (VALUE_LVAL (array) != lval_memory)
163 return value_subscripted_rvalue (array, index, *lowerbound);
164
165 gdb::optional<LONGEST> upperbound
166 = get_discrete_high_bound (range_type);
167
168 if (!upperbound.has_value ())
169 upperbound = -1;
170
171 if (index >= *lowerbound && index <= *upperbound)
172 return value_subscripted_rvalue (array, index, *lowerbound);
173
174 if (!c_style)
175 {
176 /* Emit warning unless we have an array of unknown size.
177 An array of unknown size has lowerbound 0 and upperbound -1. */
178 if (*upperbound > -1)
179 warning (_("array or string index out of range"));
180 /* fall doing C stuff */
181 c_style = true;
182 }
183
184 index -= *lowerbound;
185 array = value_coerce_array (array);
186 }
187
188 if (c_style)
189 return value_ind (value_ptradd (array, index));
190 else
191 error (_("not an array or string"));
192}
193
194/* Return the value of EXPR[IDX], expr an aggregate rvalue
195 (eg, a vector register). This routine used to promote floats
196 to doubles, but no longer does. */
197
198static struct value *
199value_subscripted_rvalue (struct value *array, LONGEST index,
200 LONGEST lowerbound)
201{
202 struct type *array_type = check_typedef (value_type (array));
203 struct type *elt_type = array_type->target_type ();
204 LONGEST elt_size = type_length_units (elt_type);
205
206 /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
207 in a byte. */
208 LONGEST stride = array_type->bit_stride ();
209 if (stride != 0)
210 {
211 struct gdbarch *arch = elt_type->arch ();
212 int unit_size = gdbarch_addressable_memory_unit_size (arch);
213 elt_size = stride / (unit_size * 8);
214 }
215
216 LONGEST elt_offs = elt_size * (index - lowerbound);
217 bool array_upper_bound_undefined
218 = array_type->bounds ()->high.kind () == PROP_UNDEFINED;
219
220 if (index < lowerbound
221 || (!array_upper_bound_undefined
222 && elt_offs >= type_length_units (array_type))
223 || (VALUE_LVAL (array) != lval_memory && array_upper_bound_undefined))
224 {
225 if (type_not_associated (array_type))
226 error (_("no such vector element (vector not associated)"));
227 else if (type_not_allocated (array_type))
228 error (_("no such vector element (vector not allocated)"));
229 else
230 error (_("no such vector element"));
231 }
232
233 if (is_dynamic_type (elt_type))
234 {
235 CORE_ADDR address;
236
237 address = value_address (array) + elt_offs;
238 elt_type = resolve_dynamic_type (elt_type, {}, address);
239 }
240
241 return value_from_component (array, elt_type, elt_offs);
242}
243
244\f
245/* Check to see if either argument is a structure, or a reference to
246 one. This is called so we know whether to go ahead with the normal
247 binop or look for a user defined function instead.
248
249 For now, we do not overload the `=' operator. */
250
251int
252binop_types_user_defined_p (enum exp_opcode op,
253 struct type *type1, struct type *type2)
254{
255 if (op == BINOP_ASSIGN)
256 return 0;
257
258 type1 = check_typedef (type1);
259 if (TYPE_IS_REFERENCE (type1))
260 type1 = check_typedef (type1->target_type ());
261
262 type2 = check_typedef (type2);
263 if (TYPE_IS_REFERENCE (type2))
264 type2 = check_typedef (type2->target_type ());
265
266 return (type1->code () == TYPE_CODE_STRUCT
267 || type2->code () == TYPE_CODE_STRUCT);
268}
269
270/* Check to see if either argument is a structure, or a reference to
271 one. This is called so we know whether to go ahead with the normal
272 binop or look for a user defined function instead.
273
274 For now, we do not overload the `=' operator. */
275
276int
277binop_user_defined_p (enum exp_opcode op,
278 struct value *arg1, struct value *arg2)
279{
280 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
281}
282
283/* Check to see if argument is a structure. This is called so
284 we know whether to go ahead with the normal unop or look for a
285 user defined function instead.
286
287 For now, we do not overload the `&' operator. */
288
289int
290unop_user_defined_p (enum exp_opcode op, struct value *arg1)
291{
292 struct type *type1;
293
294 if (op == UNOP_ADDR)
295 return 0;
296 type1 = check_typedef (value_type (arg1));
297 if (TYPE_IS_REFERENCE (type1))
298 type1 = check_typedef (type1->target_type ());
299 return type1->code () == TYPE_CODE_STRUCT;
300}
301
302/* Try to find an operator named OPERATOR which takes NARGS arguments
303 specified in ARGS. If the operator found is a static member operator
304 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
305 The search if performed through find_overload_match which will handle
306 member operators, non member operators, operators imported implicitly or
307 explicitly, and perform correct overload resolution in all of the above
308 situations or combinations thereof. */
309
310static struct value *
311value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
312 int *static_memfuncp, enum noside noside)
313{
314
315 struct symbol *symp = NULL;
316 struct value *valp = NULL;
317
318 find_overload_match (args, oper, BOTH /* could be method */,
319 &args[0] /* objp */,
320 NULL /* pass NULL symbol since symbol is unknown */,
321 &valp, &symp, static_memfuncp, 0, noside);
322
323 if (valp)
324 return valp;
325
326 if (symp)
327 {
328 /* This is a non member function and does not
329 expect a reference as its first argument
330 rather the explicit structure. */
331 args[0] = value_ind (args[0]);
332 return value_of_variable (symp, 0);
333 }
334
335 error (_("Could not find %s."), oper);
336}
337
338/* Lookup user defined operator NAME. Return a value representing the
339 function, otherwise return NULL. */
340
341static struct value *
342value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
343 char *name, int *static_memfuncp, enum noside noside)
344{
345 struct value *result = NULL;
346
347 if (current_language->la_language == language_cplus)
348 {
349 result = value_user_defined_cpp_op (args, name, static_memfuncp,
350 noside);
351 }
352 else
353 result = value_struct_elt (argp, args, name, static_memfuncp,
354 "structure");
355
356 return result;
357}
358
359/* We know either arg1 or arg2 is a structure, so try to find the right
360 user defined function. Create an argument vector that calls
361 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
362 binary operator which is legal for GNU C++).
363
364 OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
365 is the opcode saying how to modify it. Otherwise, OTHEROP is
366 unused. */
367
368struct value *
369value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
370 enum exp_opcode otherop, enum noside noside)
371{
372 char *ptr;
373 char tstr[13];
374 int static_memfuncp;
375
376 arg1 = coerce_ref (arg1);
377 arg2 = coerce_ref (arg2);
378
379 /* now we know that what we have to do is construct our
380 arg vector and find the right function to call it with. */
381
382 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
383 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
384
385 value *argvec_storage[3];
386 gdb::array_view<value *> argvec = argvec_storage;
387
388 argvec[1] = value_addr (arg1);
389 argvec[2] = arg2;
390
391 /* Make the right function name up. */
392 strcpy (tstr, "operator__");
393 ptr = tstr + 8;
394 switch (op)
395 {
396 case BINOP_ADD:
397 strcpy (ptr, "+");
398 break;
399 case BINOP_SUB:
400 strcpy (ptr, "-");
401 break;
402 case BINOP_MUL:
403 strcpy (ptr, "*");
404 break;
405 case BINOP_DIV:
406 strcpy (ptr, "/");
407 break;
408 case BINOP_REM:
409 strcpy (ptr, "%");
410 break;
411 case BINOP_LSH:
412 strcpy (ptr, "<<");
413 break;
414 case BINOP_RSH:
415 strcpy (ptr, ">>");
416 break;
417 case BINOP_BITWISE_AND:
418 strcpy (ptr, "&");
419 break;
420 case BINOP_BITWISE_IOR:
421 strcpy (ptr, "|");
422 break;
423 case BINOP_BITWISE_XOR:
424 strcpy (ptr, "^");
425 break;
426 case BINOP_LOGICAL_AND:
427 strcpy (ptr, "&&");
428 break;
429 case BINOP_LOGICAL_OR:
430 strcpy (ptr, "||");
431 break;
432 case BINOP_MIN:
433 strcpy (ptr, "<?");
434 break;
435 case BINOP_MAX:
436 strcpy (ptr, ">?");
437 break;
438 case BINOP_ASSIGN:
439 strcpy (ptr, "=");
440 break;
441 case BINOP_ASSIGN_MODIFY:
442 switch (otherop)
443 {
444 case BINOP_ADD:
445 strcpy (ptr, "+=");
446 break;
447 case BINOP_SUB:
448 strcpy (ptr, "-=");
449 break;
450 case BINOP_MUL:
451 strcpy (ptr, "*=");
452 break;
453 case BINOP_DIV:
454 strcpy (ptr, "/=");
455 break;
456 case BINOP_REM:
457 strcpy (ptr, "%=");
458 break;
459 case BINOP_BITWISE_AND:
460 strcpy (ptr, "&=");
461 break;
462 case BINOP_BITWISE_IOR:
463 strcpy (ptr, "|=");
464 break;
465 case BINOP_BITWISE_XOR:
466 strcpy (ptr, "^=");
467 break;
468 case BINOP_MOD: /* invalid */
469 default:
470 error (_("Invalid binary operation specified."));
471 }
472 break;
473 case BINOP_SUBSCRIPT:
474 strcpy (ptr, "[]");
475 break;
476 case BINOP_EQUAL:
477 strcpy (ptr, "==");
478 break;
479 case BINOP_NOTEQUAL:
480 strcpy (ptr, "!=");
481 break;
482 case BINOP_LESS:
483 strcpy (ptr, "<");
484 break;
485 case BINOP_GTR:
486 strcpy (ptr, ">");
487 break;
488 case BINOP_GEQ:
489 strcpy (ptr, ">=");
490 break;
491 case BINOP_LEQ:
492 strcpy (ptr, "<=");
493 break;
494 case BINOP_MOD: /* invalid */
495 default:
496 error (_("Invalid binary operation specified."));
497 }
498
499 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
500 &static_memfuncp, noside);
501
502 if (argvec[0])
503 {
504 if (static_memfuncp)
505 {
506 argvec[1] = argvec[0];
507 argvec = argvec.slice (1);
508 }
509 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
510 {
511 /* Static xmethods are not supported yet. */
512 gdb_assert (static_memfuncp == 0);
513 if (noside == EVAL_AVOID_SIDE_EFFECTS)
514 {
515 struct type *return_type
516 = result_type_of_xmethod (argvec[0], argvec.slice (1));
517
518 if (return_type == NULL)
519 error (_("Xmethod is missing return type."));
520 return value_zero (return_type, VALUE_LVAL (arg1));
521 }
522 return call_xmethod (argvec[0], argvec.slice (1));
523 }
524 if (noside == EVAL_AVOID_SIDE_EFFECTS)
525 {
526 struct type *return_type;
527
528 return_type = check_typedef (value_type (argvec[0]))->target_type ();
529 return value_zero (return_type, VALUE_LVAL (arg1));
530 }
531 return call_function_by_hand (argvec[0], NULL,
532 argvec.slice (1, 2 - static_memfuncp));
533 }
534 throw_error (NOT_FOUND_ERROR,
535 _("member function %s not found"), tstr);
536}
537
538/* We know that arg1 is a structure, so try to find a unary user
539 defined operator that matches the operator in question.
540 Create an argument vector that calls arg1.operator @ (arg1)
541 and return that value (where '@' is (almost) any unary operator which
542 is legal for GNU C++). */
543
544struct value *
545value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
546{
547 struct gdbarch *gdbarch = value_type (arg1)->arch ();
548 char *ptr;
549 char tstr[13], mangle_tstr[13];
550 int static_memfuncp, nargs;
551
552 arg1 = coerce_ref (arg1);
553
554 /* now we know that what we have to do is construct our
555 arg vector and find the right function to call it with. */
556
557 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
558 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
559
560 value *argvec_storage[3];
561 gdb::array_view<value *> argvec = argvec_storage;
562
563 argvec[1] = value_addr (arg1);
564 argvec[2] = 0;
565
566 nargs = 1;
567
568 /* Make the right function name up. */
569 strcpy (tstr, "operator__");
570 ptr = tstr + 8;
571 strcpy (mangle_tstr, "__");
572 switch (op)
573 {
574 case UNOP_PREINCREMENT:
575 strcpy (ptr, "++");
576 break;
577 case UNOP_PREDECREMENT:
578 strcpy (ptr, "--");
579 break;
580 case UNOP_POSTINCREMENT:
581 strcpy (ptr, "++");
582 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
583 nargs ++;
584 break;
585 case UNOP_POSTDECREMENT:
586 strcpy (ptr, "--");
587 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
588 nargs ++;
589 break;
590 case UNOP_LOGICAL_NOT:
591 strcpy (ptr, "!");
592 break;
593 case UNOP_COMPLEMENT:
594 strcpy (ptr, "~");
595 break;
596 case UNOP_NEG:
597 strcpy (ptr, "-");
598 break;
599 case UNOP_PLUS:
600 strcpy (ptr, "+");
601 break;
602 case UNOP_IND:
603 strcpy (ptr, "*");
604 break;
605 case STRUCTOP_PTR:
606 strcpy (ptr, "->");
607 break;
608 default:
609 error (_("Invalid unary operation specified."));
610 }
611
612 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
613 &static_memfuncp, noside);
614
615 if (argvec[0])
616 {
617 if (static_memfuncp)
618 {
619 argvec[1] = argvec[0];
620 argvec = argvec.slice (1);
621 }
622 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
623 {
624 /* Static xmethods are not supported yet. */
625 gdb_assert (static_memfuncp == 0);
626 if (noside == EVAL_AVOID_SIDE_EFFECTS)
627 {
628 struct type *return_type
629 = result_type_of_xmethod (argvec[0], argvec[1]);
630
631 if (return_type == NULL)
632 error (_("Xmethod is missing return type."));
633 return value_zero (return_type, VALUE_LVAL (arg1));
634 }
635 return call_xmethod (argvec[0], argvec[1]);
636 }
637 if (noside == EVAL_AVOID_SIDE_EFFECTS)
638 {
639 struct type *return_type;
640
641 return_type = check_typedef (value_type (argvec[0]))->target_type ();
642 return value_zero (return_type, VALUE_LVAL (arg1));
643 }
644 return call_function_by_hand (argvec[0], NULL,
645 argvec.slice (1, nargs));
646 }
647 throw_error (NOT_FOUND_ERROR,
648 _("member function %s not found"), tstr);
649}
650\f
651
652/* Concatenate two values. One value must be an array; and the other
653 value must either be an array with the same element type, or be of
654 the array's element type. */
655
656struct value *
657value_concat (struct value *arg1, struct value *arg2)
658{
659 struct type *type1 = check_typedef (value_type (arg1));
660 struct type *type2 = check_typedef (value_type (arg2));
661
662 if (type1->code () != TYPE_CODE_ARRAY && type2->code () != TYPE_CODE_ARRAY)
663 error ("no array provided to concatenation");
664
665 LONGEST low1, high1;
666 struct type *elttype1 = type1;
667 if (elttype1->code () == TYPE_CODE_ARRAY)
668 {
669 elttype1 = elttype1->target_type ();
670 if (!get_array_bounds (type1, &low1, &high1))
671 error (_("could not determine array bounds on left-hand-side of "
672 "array concatenation"));
673 }
674 else
675 {
676 low1 = 0;
677 high1 = 0;
678 }
679
680 LONGEST low2, high2;
681 struct type *elttype2 = type2;
682 if (elttype2->code () == TYPE_CODE_ARRAY)
683 {
684 elttype2 = elttype2->target_type ();
685 if (!get_array_bounds (type2, &low2, &high2))
686 error (_("could not determine array bounds on right-hand-side of "
687 "array concatenation"));
688 }
689 else
690 {
691 low2 = 0;
692 high2 = 0;
693 }
694
695 if (!types_equal (elttype1, elttype2))
696 error (_("concatenation with different element types"));
697
698 LONGEST lowbound = current_language->c_style_arrays_p () ? 0 : 1;
699 LONGEST n_elts = (high1 - low1 + 1) + (high2 - low2 + 1);
700 struct type *atype = lookup_array_range_type (elttype1,
701 lowbound,
702 lowbound + n_elts - 1);
703
704 struct value *result = allocate_value (atype);
705 gdb::array_view<gdb_byte> contents = value_contents_raw (result);
706 gdb::array_view<const gdb_byte> lhs_contents = value_contents (arg1);
707 gdb::array_view<const gdb_byte> rhs_contents = value_contents (arg2);
708 gdb::copy (lhs_contents, contents.slice (0, lhs_contents.size ()));
709 gdb::copy (rhs_contents, contents.slice (lhs_contents.size ()));
710
711 return result;
712}
713\f
714/* Integer exponentiation: V1**V2, where both arguments are
715 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
716
717static LONGEST
718integer_pow (LONGEST v1, LONGEST v2)
719{
720 if (v2 < 0)
721 {
722 if (v1 == 0)
723 error (_("Attempt to raise 0 to negative power."));
724 else
725 return 0;
726 }
727 else
728 {
729 /* The Russian Peasant's Algorithm. */
730 LONGEST v;
731
732 v = 1;
733 for (;;)
734 {
735 if (v2 & 1L)
736 v *= v1;
737 v2 >>= 1;
738 if (v2 == 0)
739 return v;
740 v1 *= v1;
741 }
742 }
743}
744
745/* Obtain argument values for binary operation, converting from
746 other types if one of them is not floating point. */
747static void
748value_args_as_target_float (struct value *arg1, struct value *arg2,
749 gdb_byte *x, struct type **eff_type_x,
750 gdb_byte *y, struct type **eff_type_y)
751{
752 struct type *type1, *type2;
753
754 type1 = check_typedef (value_type (arg1));
755 type2 = check_typedef (value_type (arg2));
756
757 /* At least one of the arguments must be of floating-point type. */
758 gdb_assert (is_floating_type (type1) || is_floating_type (type2));
759
760 if (is_floating_type (type1) && is_floating_type (type2)
761 && type1->code () != type2->code ())
762 /* The DFP extension to the C language does not allow mixing of
763 * decimal float types with other float types in expressions
764 * (see WDTR 24732, page 12). */
765 error (_("Mixing decimal floating types with "
766 "other floating types is not allowed."));
767
768 /* Obtain value of arg1, converting from other types if necessary. */
769
770 if (is_floating_type (type1))
771 {
772 *eff_type_x = type1;
773 memcpy (x, value_contents (arg1).data (), type1->length ());
774 }
775 else if (is_integral_type (type1))
776 {
777 *eff_type_x = type2;
778 if (type1->is_unsigned ())
779 target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
780 else
781 target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
782 }
783 else
784 error (_("Don't know how to convert from %s to %s."), type1->name (),
785 type2->name ());
786
787 /* Obtain value of arg2, converting from other types if necessary. */
788
789 if (is_floating_type (type2))
790 {
791 *eff_type_y = type2;
792 memcpy (y, value_contents (arg2).data (), type2->length ());
793 }
794 else if (is_integral_type (type2))
795 {
796 *eff_type_y = type1;
797 if (type2->is_unsigned ())
798 target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
799 else
800 target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
801 }
802 else
803 error (_("Don't know how to convert from %s to %s."), type1->name (),
804 type2->name ());
805}
806
807/* Assuming at last one of ARG1 or ARG2 is a fixed point value,
808 perform the binary operation OP on these two operands, and return
809 the resulting value (also as a fixed point). */
810
811static struct value *
812fixed_point_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
813{
814 struct type *type1 = check_typedef (value_type (arg1));
815 struct type *type2 = check_typedef (value_type (arg2));
816 const struct language_defn *language = current_language;
817
818 struct gdbarch *gdbarch = type1->arch ();
819 struct value *val;
820
821 gdb_mpq v1, v2, res;
822
823 gdb_assert (is_fixed_point_type (type1) || is_fixed_point_type (type2));
824 if (op == BINOP_MUL || op == BINOP_DIV)
825 {
826 v1 = value_to_gdb_mpq (arg1);
827 v2 = value_to_gdb_mpq (arg2);
828
829 /* The code below uses TYPE1 for the result type, so make sure
830 it is set properly. */
831 if (!is_fixed_point_type (type1))
832 type1 = type2;
833 }
834 else
835 {
836 if (!is_fixed_point_type (type1))
837 {
838 arg1 = value_cast (type2, arg1);
839 type1 = type2;
840 }
841 if (!is_fixed_point_type (type2))
842 {
843 arg2 = value_cast (type1, arg2);
844 type2 = type1;
845 }
846
847 v1.read_fixed_point (value_contents (arg1),
848 type_byte_order (type1), type1->is_unsigned (),
849 type1->fixed_point_scaling_factor ());
850 v2.read_fixed_point (value_contents (arg2),
851 type_byte_order (type2), type2->is_unsigned (),
852 type2->fixed_point_scaling_factor ());
853 }
854
855 auto fixed_point_to_value = [type1] (const gdb_mpq &fp)
856 {
857 value *fp_val = allocate_value (type1);
858
859 fp.write_fixed_point
860 (value_contents_raw (fp_val),
861 type_byte_order (type1),
862 type1->is_unsigned (),
863 type1->fixed_point_scaling_factor ());
864
865 return fp_val;
866 };
867
868 switch (op)
869 {
870 case BINOP_ADD:
871 mpq_add (res.val, v1.val, v2.val);
872 val = fixed_point_to_value (res);
873 break;
874
875 case BINOP_SUB:
876 mpq_sub (res.val, v1.val, v2.val);
877 val = fixed_point_to_value (res);
878 break;
879
880 case BINOP_MIN:
881 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) < 0 ? v1 : v2);
882 break;
883
884 case BINOP_MAX:
885 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) > 0 ? v1 : v2);
886 break;
887
888 case BINOP_MUL:
889 mpq_mul (res.val, v1.val, v2.val);
890 val = fixed_point_to_value (res);
891 break;
892
893 case BINOP_DIV:
894 if (mpq_sgn (v2.val) == 0)
895 error (_("Division by zero"));
896 mpq_div (res.val, v1.val, v2.val);
897 val = fixed_point_to_value (res);
898 break;
899
900 case BINOP_EQUAL:
901 val = value_from_ulongest (language_bool_type (language, gdbarch),
902 mpq_cmp (v1.val, v2.val) == 0 ? 1 : 0);
903 break;
904
905 case BINOP_LESS:
906 val = value_from_ulongest (language_bool_type (language, gdbarch),
907 mpq_cmp (v1.val, v2.val) < 0 ? 1 : 0);
908 break;
909
910 default:
911 error (_("Integer-only operation on fixed point number."));
912 }
913
914 return val;
915}
916
917/* A helper function that finds the type to use for a binary operation
918 involving TYPE1 and TYPE2. */
919
920static struct type *
921promotion_type (struct type *type1, struct type *type2)
922{
923 struct type *result_type;
924
925 if (is_floating_type (type1) || is_floating_type (type2))
926 {
927 /* If only one type is floating-point, use its type.
928 Otherwise use the bigger type. */
929 if (!is_floating_type (type1))
930 result_type = type2;
931 else if (!is_floating_type (type2))
932 result_type = type1;
933 else if (type2->length () > type1->length ())
934 result_type = type2;
935 else
936 result_type = type1;
937 }
938 else
939 {
940 /* Integer types. */
941 if (type1->length () > type2->length ())
942 result_type = type1;
943 else if (type2->length () > type1->length ())
944 result_type = type2;
945 else if (type1->is_unsigned ())
946 result_type = type1;
947 else if (type2->is_unsigned ())
948 result_type = type2;
949 else
950 result_type = type1;
951 }
952
953 return result_type;
954}
955
956static struct value *scalar_binop (struct value *arg1, struct value *arg2,
957 enum exp_opcode op);
958
959/* Perform a binary operation on complex operands. */
960
961static struct value *
962complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
963{
964 struct type *arg1_type = check_typedef (value_type (arg1));
965 struct type *arg2_type = check_typedef (value_type (arg2));
966
967 struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
968 if (arg1_type->code () == TYPE_CODE_COMPLEX)
969 {
970 arg1_real = value_real_part (arg1);
971 arg1_imag = value_imaginary_part (arg1);
972 }
973 else
974 {
975 arg1_real = arg1;
976 arg1_imag = value_zero (arg1_type, not_lval);
977 }
978 if (arg2_type->code () == TYPE_CODE_COMPLEX)
979 {
980 arg2_real = value_real_part (arg2);
981 arg2_imag = value_imaginary_part (arg2);
982 }
983 else
984 {
985 arg2_real = arg2;
986 arg2_imag = value_zero (arg2_type, not_lval);
987 }
988
989 struct type *comp_type = promotion_type (value_type (arg1_real),
990 value_type (arg2_real));
991 if (!can_create_complex_type (comp_type))
992 error (_("Argument to complex arithmetic operation not supported."));
993
994 arg1_real = value_cast (comp_type, arg1_real);
995 arg1_imag = value_cast (comp_type, arg1_imag);
996 arg2_real = value_cast (comp_type, arg2_real);
997 arg2_imag = value_cast (comp_type, arg2_imag);
998
999 struct type *result_type = init_complex_type (nullptr, comp_type);
1000
1001 struct value *result_real, *result_imag;
1002 switch (op)
1003 {
1004 case BINOP_ADD:
1005 case BINOP_SUB:
1006 result_real = scalar_binop (arg1_real, arg2_real, op);
1007 result_imag = scalar_binop (arg1_imag, arg2_imag, op);
1008 break;
1009
1010 case BINOP_MUL:
1011 {
1012 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1013 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1014 result_real = scalar_binop (x1, x2, BINOP_SUB);
1015
1016 x1 = scalar_binop (arg1_real, arg2_imag, op);
1017 x2 = scalar_binop (arg1_imag, arg2_real, op);
1018 result_imag = scalar_binop (x1, x2, BINOP_ADD);
1019 }
1020 break;
1021
1022 case BINOP_DIV:
1023 {
1024 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1025 {
1026 struct value *conjugate = value_complement (arg2);
1027 /* We have to reconstruct ARG1, in case the type was
1028 promoted. */
1029 arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
1030
1031 struct value *numerator = scalar_binop (arg1, conjugate,
1032 BINOP_MUL);
1033 arg1_real = value_real_part (numerator);
1034 arg1_imag = value_imaginary_part (numerator);
1035
1036 struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
1037 struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
1038 arg2_real = scalar_binop (x1, x2, BINOP_ADD);
1039 }
1040
1041 result_real = scalar_binop (arg1_real, arg2_real, op);
1042 result_imag = scalar_binop (arg1_imag, arg2_real, op);
1043 }
1044 break;
1045
1046 case BINOP_EQUAL:
1047 case BINOP_NOTEQUAL:
1048 {
1049 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1050 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1051
1052 LONGEST v1 = value_as_long (x1);
1053 LONGEST v2 = value_as_long (x2);
1054
1055 if (op == BINOP_EQUAL)
1056 v1 = v1 && v2;
1057 else
1058 v1 = v1 || v2;
1059
1060 return value_from_longest (value_type (x1), v1);
1061 }
1062 break;
1063
1064 default:
1065 error (_("Invalid binary operation on numbers."));
1066 }
1067
1068 return value_literal_complex (result_real, result_imag, result_type);
1069}
1070
1071/* Return the type's length in bits. */
1072
1073static int
1074type_length_bits (type *type)
1075{
1076 int unit_size = gdbarch_addressable_memory_unit_size (type->arch ());
1077 return unit_size * 8 * type->length ();
1078}
1079
1080/* Check whether the RHS value of a shift is valid in C/C++ semantics.
1081 SHIFT_COUNT is the shift amount, SHIFT_COUNT_TYPE is the type of
1082 the shift count value, used to determine whether the type is
1083 signed, and RESULT_TYPE is the result type. This is used to avoid
1084 both negative and too-large shift amounts, which are undefined, and
1085 would crash a GDB built with UBSan. Depending on the current
1086 language, if the shift is not valid, this either warns and returns
1087 false, or errors out. Returns true if valid. */
1088
1089static bool
1090check_valid_shift_count (int op, type *result_type,
1091 type *shift_count_type, ULONGEST shift_count)
1092{
1093 if (!shift_count_type->is_unsigned () && (LONGEST) shift_count < 0)
1094 {
1095 auto error_or_warning = [] (const char *msg)
1096 {
1097 /* Shifts by a negative amount are always an error in Go. Other
1098 languages are more permissive and their compilers just warn or
1099 have modes to disable the errors. */
1100 if (current_language->la_language == language_go)
1101 error (("%s"), msg);
1102 else
1103 warning (("%s"), msg);
1104 };
1105
1106 if (op == BINOP_RSH)
1107 error_or_warning (_("right shift count is negative"));
1108 else
1109 error_or_warning (_("left shift count is negative"));
1110 return false;
1111 }
1112
1113 if (shift_count >= type_length_bits (result_type))
1114 {
1115 /* In Go, shifting by large amounts is defined. Be silent and
1116 still return false, as the caller's error path does the right
1117 thing for Go. */
1118 if (current_language->la_language != language_go)
1119 {
1120 if (op == BINOP_RSH)
1121 warning (_("right shift count >= width of type"));
1122 else
1123 warning (_("left shift count >= width of type"));
1124 }
1125 return false;
1126 }
1127
1128 return true;
1129}
1130
1131/* Perform a binary operation on two operands which have reasonable
1132 representations as integers or floats. This includes booleans,
1133 characters, integers, or floats.
1134 Does not support addition and subtraction on pointers;
1135 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
1136
1137static struct value *
1138scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1139{
1140 struct value *val;
1141 struct type *type1, *type2, *result_type;
1142
1143 arg1 = coerce_ref (arg1);
1144 arg2 = coerce_ref (arg2);
1145
1146 type1 = check_typedef (value_type (arg1));
1147 type2 = check_typedef (value_type (arg2));
1148
1149 if (type1->code () == TYPE_CODE_COMPLEX
1150 || type2->code () == TYPE_CODE_COMPLEX)
1151 return complex_binop (arg1, arg2, op);
1152
1153 if ((!is_floating_value (arg1)
1154 && !is_integral_type (type1)
1155 && !is_fixed_point_type (type1))
1156 || (!is_floating_value (arg2)
1157 && !is_integral_type (type2)
1158 && !is_fixed_point_type (type2)))
1159 error (_("Argument to arithmetic operation not a number or boolean."));
1160
1161 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
1162 return fixed_point_binop (arg1, arg2, op);
1163
1164 if (is_floating_type (type1) || is_floating_type (type2))
1165 {
1166 result_type = promotion_type (type1, type2);
1167 val = allocate_value (result_type);
1168
1169 struct type *eff_type_v1, *eff_type_v2;
1170 gdb::byte_vector v1, v2;
1171 v1.resize (result_type->length ());
1172 v2.resize (result_type->length ());
1173
1174 value_args_as_target_float (arg1, arg2,
1175 v1.data (), &eff_type_v1,
1176 v2.data (), &eff_type_v2);
1177 target_float_binop (op, v1.data (), eff_type_v1,
1178 v2.data (), eff_type_v2,
1179 value_contents_raw (val).data (), result_type);
1180 }
1181 else if (type1->code () == TYPE_CODE_BOOL
1182 || type2->code () == TYPE_CODE_BOOL)
1183 {
1184 LONGEST v1, v2, v = 0;
1185
1186 v1 = value_as_long (arg1);
1187 v2 = value_as_long (arg2);
1188
1189 switch (op)
1190 {
1191 case BINOP_BITWISE_AND:
1192 v = v1 & v2;
1193 break;
1194
1195 case BINOP_BITWISE_IOR:
1196 v = v1 | v2;
1197 break;
1198
1199 case BINOP_BITWISE_XOR:
1200 v = v1 ^ v2;
1201 break;
1202
1203 case BINOP_EQUAL:
1204 v = v1 == v2;
1205 break;
1206
1207 case BINOP_NOTEQUAL:
1208 v = v1 != v2;
1209 break;
1210
1211 default:
1212 error (_("Invalid operation on booleans."));
1213 }
1214
1215 result_type = type1;
1216
1217 val = allocate_value (result_type);
1218 store_signed_integer (value_contents_raw (val).data (),
1219 result_type->length (),
1220 type_byte_order (result_type),
1221 v);
1222 }
1223 else
1224 /* Integral operations here. */
1225 {
1226 /* Determine type length of the result, and if the operation should
1227 be done unsigned. For exponentiation and shift operators,
1228 use the length and type of the left operand. Otherwise,
1229 use the signedness of the operand with the greater length.
1230 If both operands are of equal length, use unsigned operation
1231 if one of the operands is unsigned. */
1232 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1233 result_type = type1;
1234 else
1235 result_type = promotion_type (type1, type2);
1236
1237 if (result_type->is_unsigned ())
1238 {
1239 LONGEST v2_signed = value_as_long (arg2);
1240 ULONGEST v1, v2, v = 0;
1241
1242 v1 = (ULONGEST) value_as_long (arg1);
1243 v2 = (ULONGEST) v2_signed;
1244
1245 switch (op)
1246 {
1247 case BINOP_ADD:
1248 v = v1 + v2;
1249 break;
1250
1251 case BINOP_SUB:
1252 v = v1 - v2;
1253 break;
1254
1255 case BINOP_MUL:
1256 v = v1 * v2;
1257 break;
1258
1259 case BINOP_DIV:
1260 case BINOP_INTDIV:
1261 if (v2 != 0)
1262 v = v1 / v2;
1263 else
1264 error (_("Division by zero"));
1265 break;
1266
1267 case BINOP_EXP:
1268 v = uinteger_pow (v1, v2_signed);
1269 break;
1270
1271 case BINOP_REM:
1272 if (v2 != 0)
1273 v = v1 % v2;
1274 else
1275 error (_("Division by zero"));
1276 break;
1277
1278 case BINOP_MOD:
1279 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1280 v1 mod 0 has a defined value, v1. */
1281 if (v2 == 0)
1282 {
1283 v = v1;
1284 }
1285 else
1286 {
1287 v = v1 / v2;
1288 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1289 v = v1 - (v2 * v);
1290 }
1291 break;
1292
1293 case BINOP_LSH:
1294 if (!check_valid_shift_count (op, result_type, type2, v2))
1295 v = 0;
1296 else
1297 v = v1 << v2;
1298 break;
1299
1300 case BINOP_RSH:
1301 if (!check_valid_shift_count (op, result_type, type2, v2))
1302 v = 0;
1303 else
1304 v = v1 >> v2;
1305 break;
1306
1307 case BINOP_BITWISE_AND:
1308 v = v1 & v2;
1309 break;
1310
1311 case BINOP_BITWISE_IOR:
1312 v = v1 | v2;
1313 break;
1314
1315 case BINOP_BITWISE_XOR:
1316 v = v1 ^ v2;
1317 break;
1318
1319 case BINOP_LOGICAL_AND:
1320 v = v1 && v2;
1321 break;
1322
1323 case BINOP_LOGICAL_OR:
1324 v = v1 || v2;
1325 break;
1326
1327 case BINOP_MIN:
1328 v = v1 < v2 ? v1 : v2;
1329 break;
1330
1331 case BINOP_MAX:
1332 v = v1 > v2 ? v1 : v2;
1333 break;
1334
1335 case BINOP_EQUAL:
1336 v = v1 == v2;
1337 break;
1338
1339 case BINOP_NOTEQUAL:
1340 v = v1 != v2;
1341 break;
1342
1343 case BINOP_LESS:
1344 v = v1 < v2;
1345 break;
1346
1347 case BINOP_GTR:
1348 v = v1 > v2;
1349 break;
1350
1351 case BINOP_LEQ:
1352 v = v1 <= v2;
1353 break;
1354
1355 case BINOP_GEQ:
1356 v = v1 >= v2;
1357 break;
1358
1359 default:
1360 error (_("Invalid binary operation on numbers."));
1361 }
1362
1363 val = allocate_value (result_type);
1364 store_unsigned_integer (value_contents_raw (val).data (),
1365 value_type (val)->length (),
1366 type_byte_order (result_type),
1367 v);
1368 }
1369 else
1370 {
1371 LONGEST v1, v2, v = 0;
1372
1373 v1 = value_as_long (arg1);
1374 v2 = value_as_long (arg2);
1375
1376 switch (op)
1377 {
1378 case BINOP_ADD:
1379 v = v1 + v2;
1380 break;
1381
1382 case BINOP_SUB:
1383 /* Avoid runtime error: signed integer overflow: \
1384 0 - -9223372036854775808 cannot be represented in type
1385 'long int'. */
1386 v = (ULONGEST)v1 - (ULONGEST)v2;
1387 break;
1388
1389 case BINOP_MUL:
1390 v = v1 * v2;
1391 break;
1392
1393 case BINOP_DIV:
1394 case BINOP_INTDIV:
1395 if (v2 != 0)
1396 v = v1 / v2;
1397 else
1398 error (_("Division by zero"));
1399 break;
1400
1401 case BINOP_EXP:
1402 v = integer_pow (v1, v2);
1403 break;
1404
1405 case BINOP_REM:
1406 if (v2 != 0)
1407 v = v1 % v2;
1408 else
1409 error (_("Division by zero"));
1410 break;
1411
1412 case BINOP_MOD:
1413 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1414 X mod 0 has a defined value, X. */
1415 if (v2 == 0)
1416 {
1417 v = v1;
1418 }
1419 else
1420 {
1421 v = v1 / v2;
1422 /* Compute floor. */
1423 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1424 {
1425 v--;
1426 }
1427 v = v1 - (v2 * v);
1428 }
1429 break;
1430
1431 case BINOP_LSH:
1432 if (!check_valid_shift_count (op, result_type, type2, v2))
1433 v = 0;
1434 else
1435 {
1436 /* Cast to unsigned to avoid undefined behavior on
1437 signed shift overflow (unless C++20 or later),
1438 which would crash GDB when built with UBSan.
1439 Note we don't warn on left signed shift overflow,
1440 because starting with C++20, that is actually
1441 defined behavior. Also, note GDB assumes 2's
1442 complement throughout. */
1443 v = (ULONGEST) v1 << v2;
1444 }
1445 break;
1446
1447 case BINOP_RSH:
1448 if (!check_valid_shift_count (op, result_type, type2, v2))
1449 {
1450 /* Pretend the too-large shift was decomposed in a
1451 number of smaller shifts. An arithmetic signed
1452 right shift of a negative number always yields -1
1453 with such semantics. This is the right thing to
1454 do for Go, and we might as well do it for
1455 languages where it is undefined. Also, pretend a
1456 shift by a negative number was a shift by the
1457 negative number cast to unsigned, which is the
1458 same as shifting by a too-large number. */
1459 if (v1 < 0)
1460 v = -1;
1461 else
1462 v = 0;
1463 }
1464 else
1465 v = v1 >> v2;
1466 break;
1467
1468 case BINOP_BITWISE_AND:
1469 v = v1 & v2;
1470 break;
1471
1472 case BINOP_BITWISE_IOR:
1473 v = v1 | v2;
1474 break;
1475
1476 case BINOP_BITWISE_XOR:
1477 v = v1 ^ v2;
1478 break;
1479
1480 case BINOP_LOGICAL_AND:
1481 v = v1 && v2;
1482 break;
1483
1484 case BINOP_LOGICAL_OR:
1485 v = v1 || v2;
1486 break;
1487
1488 case BINOP_MIN:
1489 v = v1 < v2 ? v1 : v2;
1490 break;
1491
1492 case BINOP_MAX:
1493 v = v1 > v2 ? v1 : v2;
1494 break;
1495
1496 case BINOP_EQUAL:
1497 v = v1 == v2;
1498 break;
1499
1500 case BINOP_NOTEQUAL:
1501 v = v1 != v2;
1502 break;
1503
1504 case BINOP_LESS:
1505 v = v1 < v2;
1506 break;
1507
1508 case BINOP_GTR:
1509 v = v1 > v2;
1510 break;
1511
1512 case BINOP_LEQ:
1513 v = v1 <= v2;
1514 break;
1515
1516 case BINOP_GEQ:
1517 v = v1 >= v2;
1518 break;
1519
1520 default:
1521 error (_("Invalid binary operation on numbers."));
1522 }
1523
1524 val = allocate_value (result_type);
1525 store_signed_integer (value_contents_raw (val).data (),
1526 value_type (val)->length (),
1527 type_byte_order (result_type),
1528 v);
1529 }
1530 }
1531
1532 return val;
1533}
1534
1535/* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1536 replicating SCALAR_VALUE for each element of the vector. Only scalar
1537 types that can be cast to the type of one element of the vector are
1538 acceptable. The newly created vector value is returned upon success,
1539 otherwise an error is thrown. */
1540
1541struct value *
1542value_vector_widen (struct value *scalar_value, struct type *vector_type)
1543{
1544 /* Widen the scalar to a vector. */
1545 struct type *eltype, *scalar_type;
1546 struct value *elval;
1547 LONGEST low_bound, high_bound;
1548 int i;
1549
1550 vector_type = check_typedef (vector_type);
1551
1552 gdb_assert (vector_type->code () == TYPE_CODE_ARRAY
1553 && vector_type->is_vector ());
1554
1555 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1556 error (_("Could not determine the vector bounds"));
1557
1558 eltype = check_typedef (vector_type->target_type ());
1559 elval = value_cast (eltype, scalar_value);
1560
1561 scalar_type = check_typedef (value_type (scalar_value));
1562
1563 /* If we reduced the length of the scalar then check we didn't loose any
1564 important bits. */
1565 if (eltype->length () < scalar_type->length ()
1566 && !value_equal (elval, scalar_value))
1567 error (_("conversion of scalar to vector involves truncation"));
1568
1569 value *val = allocate_value (vector_type);
1570 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
1571 int elt_len = eltype->length ();
1572
1573 for (i = 0; i < high_bound - low_bound + 1; i++)
1574 /* Duplicate the contents of elval into the destination vector. */
1575 copy (value_contents_all (elval),
1576 val_contents.slice (i * elt_len, elt_len));
1577
1578 return val;
1579}
1580
1581/* Performs a binary operation on two vector operands by calling scalar_binop
1582 for each pair of vector components. */
1583
1584static struct value *
1585vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1586{
1587 struct type *type1, *type2, *eltype1, *eltype2;
1588 int t1_is_vec, t2_is_vec, elsize, i;
1589 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1590
1591 type1 = check_typedef (value_type (val1));
1592 type2 = check_typedef (value_type (val2));
1593
1594 t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1595 && type1->is_vector ()) ? 1 : 0;
1596 t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1597 && type2->is_vector ()) ? 1 : 0;
1598
1599 if (!t1_is_vec || !t2_is_vec)
1600 error (_("Vector operations are only supported among vectors"));
1601
1602 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1603 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1604 error (_("Could not determine the vector bounds"));
1605
1606 eltype1 = check_typedef (type1->target_type ());
1607 eltype2 = check_typedef (type2->target_type ());
1608 elsize = eltype1->length ();
1609
1610 if (eltype1->code () != eltype2->code ()
1611 || elsize != eltype2->length ()
1612 || eltype1->is_unsigned () != eltype2->is_unsigned ()
1613 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1614 error (_("Cannot perform operation on vectors with different types"));
1615
1616 value *val = allocate_value (type1);
1617 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
1618 scoped_value_mark mark;
1619 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1620 {
1621 value *tmp = value_binop (value_subscript (val1, i),
1622 value_subscript (val2, i), op);
1623 copy (value_contents_all (tmp),
1624 val_contents.slice (i * elsize, elsize));
1625 }
1626
1627 return val;
1628}
1629
1630/* Perform a binary operation on two operands. */
1631
1632struct value *
1633value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1634{
1635 struct value *val;
1636 struct type *type1 = check_typedef (value_type (arg1));
1637 struct type *type2 = check_typedef (value_type (arg2));
1638 int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1639 && type1->is_vector ());
1640 int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1641 && type2->is_vector ());
1642
1643 if (!t1_is_vec && !t2_is_vec)
1644 val = scalar_binop (arg1, arg2, op);
1645 else if (t1_is_vec && t2_is_vec)
1646 val = vector_binop (arg1, arg2, op);
1647 else
1648 {
1649 /* Widen the scalar operand to a vector. */
1650 struct value **v = t1_is_vec ? &arg2 : &arg1;
1651 struct type *t = t1_is_vec ? type2 : type1;
1652
1653 if (t->code () != TYPE_CODE_FLT
1654 && t->code () != TYPE_CODE_DECFLOAT
1655 && !is_integral_type (t))
1656 error (_("Argument to operation not a number or boolean."));
1657
1658 /* Replicate the scalar value to make a vector value. */
1659 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1660
1661 val = vector_binop (arg1, arg2, op);
1662 }
1663
1664 return val;
1665}
1666\f
1667/* See value.h. */
1668
1669bool
1670value_logical_not (struct value *arg1)
1671{
1672 int len;
1673 const gdb_byte *p;
1674 struct type *type1;
1675
1676 arg1 = coerce_array (arg1);
1677 type1 = check_typedef (value_type (arg1));
1678
1679 if (is_floating_value (arg1))
1680 return target_float_is_zero (value_contents (arg1).data (), type1);
1681
1682 len = type1->length ();
1683 p = value_contents (arg1).data ();
1684
1685 while (--len >= 0)
1686 {
1687 if (*p++)
1688 break;
1689 }
1690
1691 return len < 0;
1692}
1693
1694/* Perform a comparison on two string values (whose content are not
1695 necessarily null terminated) based on their length. */
1696
1697static int
1698value_strcmp (struct value *arg1, struct value *arg2)
1699{
1700 int len1 = value_type (arg1)->length ();
1701 int len2 = value_type (arg2)->length ();
1702 const gdb_byte *s1 = value_contents (arg1).data ();
1703 const gdb_byte *s2 = value_contents (arg2).data ();
1704 int i, len = len1 < len2 ? len1 : len2;
1705
1706 for (i = 0; i < len; i++)
1707 {
1708 if (s1[i] < s2[i])
1709 return -1;
1710 else if (s1[i] > s2[i])
1711 return 1;
1712 else
1713 continue;
1714 }
1715
1716 if (len1 < len2)
1717 return -1;
1718 else if (len1 > len2)
1719 return 1;
1720 else
1721 return 0;
1722}
1723
1724/* Simulate the C operator == by returning a 1
1725 iff ARG1 and ARG2 have equal contents. */
1726
1727int
1728value_equal (struct value *arg1, struct value *arg2)
1729{
1730 int len;
1731 const gdb_byte *p1;
1732 const gdb_byte *p2;
1733 struct type *type1, *type2;
1734 enum type_code code1;
1735 enum type_code code2;
1736 int is_int1, is_int2;
1737
1738 arg1 = coerce_array (arg1);
1739 arg2 = coerce_array (arg2);
1740
1741 type1 = check_typedef (value_type (arg1));
1742 type2 = check_typedef (value_type (arg2));
1743 code1 = type1->code ();
1744 code2 = type2->code ();
1745 is_int1 = is_integral_type (type1);
1746 is_int2 = is_integral_type (type2);
1747
1748 if (is_int1 && is_int2)
1749 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1750 BINOP_EQUAL)));
1751 else if ((is_floating_value (arg1) || is_int1)
1752 && (is_floating_value (arg2) || is_int2))
1753 {
1754 struct type *eff_type_v1, *eff_type_v2;
1755 gdb::byte_vector v1, v2;
1756 v1.resize (std::max (type1->length (), type2->length ()));
1757 v2.resize (std::max (type1->length (), type2->length ()));
1758
1759 value_args_as_target_float (arg1, arg2,
1760 v1.data (), &eff_type_v1,
1761 v2.data (), &eff_type_v2);
1762
1763 return target_float_compare (v1.data (), eff_type_v1,
1764 v2.data (), eff_type_v2) == 0;
1765 }
1766
1767 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1768 is bigger. */
1769 else if (code1 == TYPE_CODE_PTR && is_int2)
1770 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1771 else if (code2 == TYPE_CODE_PTR && is_int1)
1772 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1773
1774 else if (code1 == code2
1775 && ((len = (int) type1->length ())
1776 == (int) type2->length ()))
1777 {
1778 p1 = value_contents (arg1).data ();
1779 p2 = value_contents (arg2).data ();
1780 while (--len >= 0)
1781 {
1782 if (*p1++ != *p2++)
1783 break;
1784 }
1785 return len < 0;
1786 }
1787 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1788 {
1789 return value_strcmp (arg1, arg2) == 0;
1790 }
1791 else
1792 error (_("Invalid type combination in equality test."));
1793}
1794
1795/* Compare values based on their raw contents. Useful for arrays since
1796 value_equal coerces them to pointers, thus comparing just the address
1797 of the array instead of its contents. */
1798
1799int
1800value_equal_contents (struct value *arg1, struct value *arg2)
1801{
1802 struct type *type1, *type2;
1803
1804 type1 = check_typedef (value_type (arg1));
1805 type2 = check_typedef (value_type (arg2));
1806
1807 return (type1->code () == type2->code ()
1808 && type1->length () == type2->length ()
1809 && memcmp (value_contents (arg1).data (),
1810 value_contents (arg2).data (),
1811 type1->length ()) == 0);
1812}
1813
1814/* Simulate the C operator < by returning 1
1815 iff ARG1's contents are less than ARG2's. */
1816
1817int
1818value_less (struct value *arg1, struct value *arg2)
1819{
1820 enum type_code code1;
1821 enum type_code code2;
1822 struct type *type1, *type2;
1823 int is_int1, is_int2;
1824
1825 arg1 = coerce_array (arg1);
1826 arg2 = coerce_array (arg2);
1827
1828 type1 = check_typedef (value_type (arg1));
1829 type2 = check_typedef (value_type (arg2));
1830 code1 = type1->code ();
1831 code2 = type2->code ();
1832 is_int1 = is_integral_type (type1);
1833 is_int2 = is_integral_type (type2);
1834
1835 if ((is_int1 && is_int2)
1836 || (is_fixed_point_type (type1) && is_fixed_point_type (type2)))
1837 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1838 BINOP_LESS)));
1839 else if ((is_floating_value (arg1) || is_int1)
1840 && (is_floating_value (arg2) || is_int2))
1841 {
1842 struct type *eff_type_v1, *eff_type_v2;
1843 gdb::byte_vector v1, v2;
1844 v1.resize (std::max (type1->length (), type2->length ()));
1845 v2.resize (std::max (type1->length (), type2->length ()));
1846
1847 value_args_as_target_float (arg1, arg2,
1848 v1.data (), &eff_type_v1,
1849 v2.data (), &eff_type_v2);
1850
1851 return target_float_compare (v1.data (), eff_type_v1,
1852 v2.data (), eff_type_v2) == -1;
1853 }
1854 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1855 return value_as_address (arg1) < value_as_address (arg2);
1856
1857 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1858 is bigger. */
1859 else if (code1 == TYPE_CODE_PTR && is_int2)
1860 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1861 else if (code2 == TYPE_CODE_PTR && is_int1)
1862 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1863 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1864 return value_strcmp (arg1, arg2) < 0;
1865 else
1866 {
1867 error (_("Invalid type combination in ordering comparison."));
1868 return 0;
1869 }
1870}
1871\f
1872/* The unary operators +, - and ~. They free the argument ARG1. */
1873
1874struct value *
1875value_pos (struct value *arg1)
1876{
1877 struct type *type;
1878
1879 arg1 = coerce_ref (arg1);
1880 type = check_typedef (value_type (arg1));
1881
1882 if (is_integral_type (type) || is_floating_value (arg1)
1883 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1884 || type->code () == TYPE_CODE_COMPLEX)
1885 return value_from_contents (type, value_contents (arg1).data ());
1886 else
1887 error (_("Argument to positive operation not a number."));
1888}
1889
1890struct value *
1891value_neg (struct value *arg1)
1892{
1893 struct type *type;
1894
1895 arg1 = coerce_ref (arg1);
1896 type = check_typedef (value_type (arg1));
1897
1898 if (is_integral_type (type) || is_floating_type (type))
1899 return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
1900 else if (is_fixed_point_type (type))
1901 return value_binop (value_zero (type, not_lval), arg1, BINOP_SUB);
1902 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1903 {
1904 struct value *val = allocate_value (type);
1905 struct type *eltype = check_typedef (type->target_type ());
1906 int i;
1907 LONGEST low_bound, high_bound;
1908
1909 if (!get_array_bounds (type, &low_bound, &high_bound))
1910 error (_("Could not determine the vector bounds"));
1911
1912 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
1913 int elt_len = eltype->length ();
1914
1915 for (i = 0; i < high_bound - low_bound + 1; i++)
1916 {
1917 value *tmp = value_neg (value_subscript (arg1, i));
1918 copy (value_contents_all (tmp),
1919 val_contents.slice (i * elt_len, elt_len));
1920 }
1921 return val;
1922 }
1923 else if (type->code () == TYPE_CODE_COMPLEX)
1924 {
1925 struct value *real = value_real_part (arg1);
1926 struct value *imag = value_imaginary_part (arg1);
1927
1928 real = value_neg (real);
1929 imag = value_neg (imag);
1930 return value_literal_complex (real, imag, type);
1931 }
1932 else
1933 error (_("Argument to negate operation not a number."));
1934}
1935
1936struct value *
1937value_complement (struct value *arg1)
1938{
1939 struct type *type;
1940 struct value *val;
1941
1942 arg1 = coerce_ref (arg1);
1943 type = check_typedef (value_type (arg1));
1944
1945 if (is_integral_type (type))
1946 val = value_from_longest (type, ~value_as_long (arg1));
1947 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1948 {
1949 struct type *eltype = check_typedef (type->target_type ());
1950 int i;
1951 LONGEST low_bound, high_bound;
1952
1953 if (!get_array_bounds (type, &low_bound, &high_bound))
1954 error (_("Could not determine the vector bounds"));
1955
1956 val = allocate_value (type);
1957 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
1958 int elt_len = eltype->length ();
1959
1960 for (i = 0; i < high_bound - low_bound + 1; i++)
1961 {
1962 value *tmp = value_complement (value_subscript (arg1, i));
1963 copy (value_contents_all (tmp),
1964 val_contents.slice (i * elt_len, elt_len));
1965 }
1966 }
1967 else if (type->code () == TYPE_CODE_COMPLEX)
1968 {
1969 /* GCC has an extension that treats ~complex as the complex
1970 conjugate. */
1971 struct value *real = value_real_part (arg1);
1972 struct value *imag = value_imaginary_part (arg1);
1973
1974 imag = value_neg (imag);
1975 return value_literal_complex (real, imag, type);
1976 }
1977 else
1978 error (_("Argument to complement operation not an integer, boolean."));
1979
1980 return val;
1981}
1982\f
1983/* The INDEX'th bit of SET value whose value_type is TYPE,
1984 and whose value_contents is valaddr.
1985 Return -1 if out of range, -2 other error. */
1986
1987int
1988value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1989{
1990 struct gdbarch *gdbarch = type->arch ();
1991 LONGEST low_bound, high_bound;
1992 LONGEST word;
1993 unsigned rel_index;
1994 struct type *range = type->index_type ();
1995
1996 if (!get_discrete_bounds (range, &low_bound, &high_bound))
1997 return -2;
1998 if (index < low_bound || index > high_bound)
1999 return -1;
2000 rel_index = index - low_bound;
2001 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
2002 type_byte_order (type));
2003 rel_index %= TARGET_CHAR_BIT;
2004 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2005 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
2006 return (word >> rel_index) & 1;
2007}
2008
2009int
2010value_in (struct value *element, struct value *set)
2011{
2012 int member;
2013 struct type *settype = check_typedef (value_type (set));
2014 struct type *eltype = check_typedef (value_type (element));
2015
2016 if (eltype->code () == TYPE_CODE_RANGE)
2017 eltype = eltype->target_type ();
2018 if (settype->code () != TYPE_CODE_SET)
2019 error (_("Second argument of 'IN' has wrong type"));
2020 if (eltype->code () != TYPE_CODE_INT
2021 && eltype->code () != TYPE_CODE_CHAR
2022 && eltype->code () != TYPE_CODE_ENUM
2023 && eltype->code () != TYPE_CODE_BOOL)
2024 error (_("First argument of 'IN' has wrong type"));
2025 member = value_bit_index (settype, value_contents (set).data (),
2026 value_as_long (element));
2027 if (member < 0)
2028 error (_("First argument of 'IN' not in range"));
2029 return member;
2030}
This page took 0.04899 seconds and 5 git commands to generate.