]>
Commit | Line | Data |
---|---|---|
1 | /* Implement a cached obstack. | |
2 | Written by Fred Fish <[email protected]> | |
3 | Rewritten by Jim Blandy <[email protected]> | |
4 | ||
5 | Copyright (C) 1999-2022 Free Software Foundation, Inc. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 3 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "gdbsupport/gdb_obstack.h" | |
24 | #include "bcache.h" | |
25 | ||
26 | #include <algorithm> | |
27 | ||
28 | namespace gdb { | |
29 | ||
30 | /* The type used to hold a single bcache string. The user data is | |
31 | stored in d.data. Since it can be any type, it needs to have the | |
32 | same alignment as the most strict alignment of any type on the host | |
33 | machine. I don't know of any really correct way to do this in | |
34 | stock ANSI C, so just do it the same way obstack.h does. */ | |
35 | ||
36 | struct bstring | |
37 | { | |
38 | /* Hash chain. */ | |
39 | struct bstring *next; | |
40 | /* Assume the data length is no more than 64k. */ | |
41 | unsigned short length; | |
42 | /* The half hash hack. This contains the upper 16 bits of the hash | |
43 | value and is used as a pre-check when comparing two strings and | |
44 | avoids the need to do length or memcmp calls. It proves to be | |
45 | roughly 100% effective. */ | |
46 | unsigned short half_hash; | |
47 | ||
48 | union | |
49 | { | |
50 | char data[1]; | |
51 | double dummy; | |
52 | } | |
53 | d; | |
54 | }; | |
55 | ||
56 | \f | |
57 | /* Growing the bcache's hash table. */ | |
58 | ||
59 | /* If the average chain length grows beyond this, then we want to | |
60 | resize our hash table. */ | |
61 | #define CHAIN_LENGTH_THRESHOLD (5) | |
62 | ||
63 | void | |
64 | bcache::expand_hash_table () | |
65 | { | |
66 | /* A table of good hash table sizes. Whenever we grow, we pick the | |
67 | next larger size from this table. sizes[i] is close to 1 << (i+10), | |
68 | so we roughly double the table size each time. After we fall off | |
69 | the end of this table, we just double. Don't laugh --- there have | |
70 | been executables sighted with a gigabyte of debug info. */ | |
71 | static const unsigned long sizes[] = { | |
72 | 1021, 2053, 4099, 8191, 16381, 32771, | |
73 | 65537, 131071, 262144, 524287, 1048573, 2097143, | |
74 | 4194301, 8388617, 16777213, 33554467, 67108859, 134217757, | |
75 | 268435459, 536870923, 1073741827, 2147483659UL | |
76 | }; | |
77 | unsigned int new_num_buckets; | |
78 | struct bstring **new_buckets; | |
79 | unsigned int i; | |
80 | ||
81 | /* Count the stats. Every unique item needs to be re-hashed and | |
82 | re-entered. */ | |
83 | m_expand_count++; | |
84 | m_expand_hash_count += m_unique_count; | |
85 | ||
86 | /* Find the next size. */ | |
87 | new_num_buckets = m_num_buckets * 2; | |
88 | for (unsigned long a_size : sizes) | |
89 | if (a_size > m_num_buckets) | |
90 | { | |
91 | new_num_buckets = a_size; | |
92 | break; | |
93 | } | |
94 | ||
95 | /* Allocate the new table. */ | |
96 | { | |
97 | size_t new_size = new_num_buckets * sizeof (new_buckets[0]); | |
98 | ||
99 | new_buckets = (struct bstring **) xmalloc (new_size); | |
100 | memset (new_buckets, 0, new_size); | |
101 | ||
102 | m_structure_size -= m_num_buckets * sizeof (m_bucket[0]); | |
103 | m_structure_size += new_size; | |
104 | } | |
105 | ||
106 | /* Rehash all existing strings. */ | |
107 | for (i = 0; i < m_num_buckets; i++) | |
108 | { | |
109 | struct bstring *s, *next; | |
110 | ||
111 | for (s = m_bucket[i]; s; s = next) | |
112 | { | |
113 | struct bstring **new_bucket; | |
114 | next = s->next; | |
115 | ||
116 | new_bucket = &new_buckets[(this->hash (&s->d.data, s->length) | |
117 | % new_num_buckets)]; | |
118 | s->next = *new_bucket; | |
119 | *new_bucket = s; | |
120 | } | |
121 | } | |
122 | ||
123 | /* Plug in the new table. */ | |
124 | xfree (m_bucket); | |
125 | m_bucket = new_buckets; | |
126 | m_num_buckets = new_num_buckets; | |
127 | } | |
128 | ||
129 | \f | |
130 | /* Looking up things in the bcache. */ | |
131 | ||
132 | /* The number of bytes needed to allocate a struct bstring whose data | |
133 | is N bytes long. */ | |
134 | #define BSTRING_SIZE(n) (offsetof (struct bstring, d.data) + (n)) | |
135 | ||
136 | /* Find a copy of the LENGTH bytes at ADDR in BCACHE. If BCACHE has | |
137 | never seen those bytes before, add a copy of them to BCACHE. In | |
138 | either case, return a pointer to BCACHE's copy of that string. If | |
139 | optional ADDED is not NULL, return 1 in case of new entry or 0 if | |
140 | returning an old entry. */ | |
141 | ||
142 | const void * | |
143 | bcache::insert (const void *addr, int length, bool *added) | |
144 | { | |
145 | unsigned long full_hash; | |
146 | unsigned short half_hash; | |
147 | int hash_index; | |
148 | struct bstring *s; | |
149 | ||
150 | if (added != nullptr) | |
151 | *added = false; | |
152 | ||
153 | /* Lazily initialize the obstack. This can save quite a bit of | |
154 | memory in some cases. */ | |
155 | if (m_total_count == 0) | |
156 | { | |
157 | /* We could use obstack_specify_allocation here instead, but | |
158 | gdb_obstack.h specifies the allocation/deallocation | |
159 | functions. */ | |
160 | obstack_init (&m_cache); | |
161 | } | |
162 | ||
163 | /* If our average chain length is too high, expand the hash table. */ | |
164 | if (m_unique_count >= m_num_buckets * CHAIN_LENGTH_THRESHOLD) | |
165 | expand_hash_table (); | |
166 | ||
167 | m_total_count++; | |
168 | m_total_size += length; | |
169 | ||
170 | full_hash = this->hash (addr, length); | |
171 | ||
172 | half_hash = (full_hash >> 16); | |
173 | hash_index = full_hash % m_num_buckets; | |
174 | ||
175 | /* Search the hash m_bucket for a string identical to the caller's. | |
176 | As a short-circuit first compare the upper part of each hash | |
177 | values. */ | |
178 | for (s = m_bucket[hash_index]; s; s = s->next) | |
179 | { | |
180 | if (s->half_hash == half_hash) | |
181 | { | |
182 | if (s->length == length | |
183 | && this->compare (&s->d.data, addr, length)) | |
184 | return &s->d.data; | |
185 | else | |
186 | m_half_hash_miss_count++; | |
187 | } | |
188 | } | |
189 | ||
190 | /* The user's string isn't in the list. Insert it after *ps. */ | |
191 | { | |
192 | struct bstring *newobj | |
193 | = (struct bstring *) obstack_alloc (&m_cache, | |
194 | BSTRING_SIZE (length)); | |
195 | ||
196 | memcpy (&newobj->d.data, addr, length); | |
197 | newobj->length = length; | |
198 | newobj->next = m_bucket[hash_index]; | |
199 | newobj->half_hash = half_hash; | |
200 | m_bucket[hash_index] = newobj; | |
201 | ||
202 | m_unique_count++; | |
203 | m_unique_size += length; | |
204 | m_structure_size += BSTRING_SIZE (length); | |
205 | ||
206 | if (added != nullptr) | |
207 | *added = true; | |
208 | ||
209 | return &newobj->d.data; | |
210 | } | |
211 | } | |
212 | \f | |
213 | ||
214 | /* See bcache.h. */ | |
215 | ||
216 | unsigned long | |
217 | bcache::hash (const void *addr, int length) | |
218 | { | |
219 | return fast_hash (addr, length, 0); | |
220 | } | |
221 | ||
222 | /* See bcache.h. */ | |
223 | ||
224 | int | |
225 | bcache::compare (const void *left, const void *right, int length) | |
226 | { | |
227 | return memcmp (left, right, length) == 0; | |
228 | } | |
229 | ||
230 | /* Free all the storage associated with BCACHE. */ | |
231 | bcache::~bcache () | |
232 | { | |
233 | /* Only free the obstack if we actually initialized it. */ | |
234 | if (m_total_count > 0) | |
235 | obstack_free (&m_cache, 0); | |
236 | xfree (m_bucket); | |
237 | } | |
238 | ||
239 | ||
240 | \f | |
241 | /* Printing statistics. */ | |
242 | ||
243 | static void | |
244 | print_percentage (int portion, int total) | |
245 | { | |
246 | if (total == 0) | |
247 | /* i18n: Like "Percentage of duplicates, by count: (not applicable)". */ | |
248 | gdb_printf (_("(not applicable)\n")); | |
249 | else | |
250 | gdb_printf ("%3d%%\n", (int) (portion * 100.0 / total)); | |
251 | } | |
252 | ||
253 | ||
254 | /* Print statistics on BCACHE's memory usage and efficacity at | |
255 | eliminating duplication. NAME should describe the kind of data | |
256 | BCACHE holds. Statistics are printed using `gdb_printf' and | |
257 | its ilk. */ | |
258 | void | |
259 | bcache::print_statistics (const char *type) | |
260 | { | |
261 | int occupied_buckets; | |
262 | int max_chain_length; | |
263 | int median_chain_length; | |
264 | int max_entry_size; | |
265 | int median_entry_size; | |
266 | ||
267 | /* Count the number of occupied buckets, tally the various string | |
268 | lengths, and measure chain lengths. */ | |
269 | { | |
270 | unsigned int b; | |
271 | int *chain_length = XCNEWVEC (int, m_num_buckets + 1); | |
272 | int *entry_size = XCNEWVEC (int, m_unique_count + 1); | |
273 | int stringi = 0; | |
274 | ||
275 | occupied_buckets = 0; | |
276 | ||
277 | for (b = 0; b < m_num_buckets; b++) | |
278 | { | |
279 | struct bstring *s = m_bucket[b]; | |
280 | ||
281 | chain_length[b] = 0; | |
282 | ||
283 | if (s) | |
284 | { | |
285 | occupied_buckets++; | |
286 | ||
287 | while (s) | |
288 | { | |
289 | gdb_assert (b < m_num_buckets); | |
290 | chain_length[b]++; | |
291 | gdb_assert (stringi < m_unique_count); | |
292 | entry_size[stringi++] = s->length; | |
293 | s = s->next; | |
294 | } | |
295 | } | |
296 | } | |
297 | ||
298 | /* To compute the median, we need the set of chain lengths | |
299 | sorted. */ | |
300 | std::sort (chain_length, chain_length + m_num_buckets); | |
301 | std::sort (entry_size, entry_size + m_unique_count); | |
302 | ||
303 | if (m_num_buckets > 0) | |
304 | { | |
305 | max_chain_length = chain_length[m_num_buckets - 1]; | |
306 | median_chain_length = chain_length[m_num_buckets / 2]; | |
307 | } | |
308 | else | |
309 | { | |
310 | max_chain_length = 0; | |
311 | median_chain_length = 0; | |
312 | } | |
313 | if (m_unique_count > 0) | |
314 | { | |
315 | max_entry_size = entry_size[m_unique_count - 1]; | |
316 | median_entry_size = entry_size[m_unique_count / 2]; | |
317 | } | |
318 | else | |
319 | { | |
320 | max_entry_size = 0; | |
321 | median_entry_size = 0; | |
322 | } | |
323 | ||
324 | xfree (chain_length); | |
325 | xfree (entry_size); | |
326 | } | |
327 | ||
328 | gdb_printf (_(" M_Cached '%s' statistics:\n"), type); | |
329 | gdb_printf (_(" Total object count: %ld\n"), m_total_count); | |
330 | gdb_printf (_(" Unique object count: %lu\n"), m_unique_count); | |
331 | gdb_printf (_(" Percentage of duplicates, by count: ")); | |
332 | print_percentage (m_total_count - m_unique_count, m_total_count); | |
333 | gdb_printf ("\n"); | |
334 | ||
335 | gdb_printf (_(" Total object size: %ld\n"), m_total_size); | |
336 | gdb_printf (_(" Unique object size: %ld\n"), m_unique_size); | |
337 | gdb_printf (_(" Percentage of duplicates, by size: ")); | |
338 | print_percentage (m_total_size - m_unique_size, m_total_size); | |
339 | gdb_printf ("\n"); | |
340 | ||
341 | gdb_printf (_(" Max entry size: %d\n"), max_entry_size); | |
342 | gdb_printf (_(" Average entry size: ")); | |
343 | if (m_unique_count > 0) | |
344 | gdb_printf ("%ld\n", m_unique_size / m_unique_count); | |
345 | else | |
346 | /* i18n: "Average entry size: (not applicable)". */ | |
347 | gdb_printf (_("(not applicable)\n")); | |
348 | gdb_printf (_(" Median entry size: %d\n"), median_entry_size); | |
349 | gdb_printf ("\n"); | |
350 | ||
351 | gdb_printf (_(" \ | |
352 | Total memory used by bcache, including overhead: %ld\n"), | |
353 | m_structure_size); | |
354 | gdb_printf (_(" Percentage memory overhead: ")); | |
355 | print_percentage (m_structure_size - m_unique_size, m_unique_size); | |
356 | gdb_printf (_(" Net memory savings: ")); | |
357 | print_percentage (m_total_size - m_structure_size, m_total_size); | |
358 | gdb_printf ("\n"); | |
359 | ||
360 | gdb_printf (_(" Hash table size: %3d\n"), | |
361 | m_num_buckets); | |
362 | gdb_printf (_(" Hash table expands: %lu\n"), | |
363 | m_expand_count); | |
364 | gdb_printf (_(" Hash table hashes: %lu\n"), | |
365 | m_total_count + m_expand_hash_count); | |
366 | gdb_printf (_(" Half hash misses: %lu\n"), | |
367 | m_half_hash_miss_count); | |
368 | gdb_printf (_(" Hash table population: ")); | |
369 | print_percentage (occupied_buckets, m_num_buckets); | |
370 | gdb_printf (_(" Median hash chain length: %3d\n"), | |
371 | median_chain_length); | |
372 | gdb_printf (_(" Average hash chain length: ")); | |
373 | if (m_num_buckets > 0) | |
374 | gdb_printf ("%3lu\n", m_unique_count / m_num_buckets); | |
375 | else | |
376 | /* i18n: "Average hash chain length: (not applicable)". */ | |
377 | gdb_printf (_("(not applicable)\n")); | |
378 | gdb_printf (_(" Maximum hash chain length: %3d\n"), | |
379 | max_chain_length); | |
380 | gdb_printf ("\n"); | |
381 | } | |
382 | ||
383 | int | |
384 | bcache::memory_used () | |
385 | { | |
386 | if (m_total_count == 0) | |
387 | return 0; | |
388 | return obstack_memory_used (&m_cache); | |
389 | } | |
390 | ||
391 | } /* namespace gdb */ |