]>
Commit | Line | Data |
---|---|---|
1 | /* DWARF debugging format support for GDB. | |
2 | Copyright (C) 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. | |
3 | Written by Fred Fish at Cygnus Support. Portions based on dbxread.c, | |
4 | mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
21 | ||
22 | /* | |
23 | ||
24 | FIXME: Do we need to generate dependencies in partial symtabs? | |
25 | (Perhaps we don't need to). | |
26 | ||
27 | FIXME: Resolve minor differences between what information we put in the | |
28 | partial symbol table and what dbxread puts in. For example, we don't yet | |
29 | put enum constants there. And dbxread seems to invent a lot of typedefs | |
30 | we never see. Use the new printpsym command to see the partial symbol table | |
31 | contents. | |
32 | ||
33 | FIXME: Figure out a better way to tell gdb about the name of the function | |
34 | contain the user's entry point (I.E. main()) | |
35 | ||
36 | FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for | |
37 | other things to work on, if you get bored. :-) | |
38 | ||
39 | */ | |
40 | ||
41 | #include "defs.h" | |
42 | #include "symtab.h" | |
43 | #include "gdbtypes.h" | |
44 | #include "symfile.h" | |
45 | #include "objfiles.h" | |
46 | #include "elf/dwarf.h" | |
47 | #include "buildsym.h" | |
48 | #include "demangle.h" | |
49 | #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */ | |
50 | #include "language.h" | |
51 | #include "complaints.h" | |
52 | ||
53 | #include <fcntl.h> | |
54 | #include "gdb_string.h" | |
55 | ||
56 | #ifndef NO_SYS_FILE | |
57 | #include <sys/file.h> | |
58 | #endif | |
59 | ||
60 | /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */ | |
61 | #ifndef L_SET | |
62 | #define L_SET 0 | |
63 | #endif | |
64 | ||
65 | /* Some macros to provide DIE info for complaints. */ | |
66 | ||
67 | #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0) | |
68 | #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : "" | |
69 | ||
70 | /* Complaints that can be issued during DWARF debug info reading. */ | |
71 | ||
72 | struct complaint no_bfd_get_N = | |
73 | { | |
74 | "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0 | |
75 | }; | |
76 | ||
77 | struct complaint malformed_die = | |
78 | { | |
79 | "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0 | |
80 | }; | |
81 | ||
82 | struct complaint bad_die_ref = | |
83 | { | |
84 | "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0 | |
85 | }; | |
86 | ||
87 | struct complaint unknown_attribute_form = | |
88 | { | |
89 | "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0 | |
90 | }; | |
91 | ||
92 | struct complaint unknown_attribute_length = | |
93 | { | |
94 | "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0 | |
95 | }; | |
96 | ||
97 | struct complaint unexpected_fund_type = | |
98 | { | |
99 | "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0 | |
100 | }; | |
101 | ||
102 | struct complaint unknown_type_modifier = | |
103 | { | |
104 | "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0 | |
105 | }; | |
106 | ||
107 | struct complaint volatile_ignored = | |
108 | { | |
109 | "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0 | |
110 | }; | |
111 | ||
112 | struct complaint const_ignored = | |
113 | { | |
114 | "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0 | |
115 | }; | |
116 | ||
117 | struct complaint botched_modified_type = | |
118 | { | |
119 | "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0 | |
120 | }; | |
121 | ||
122 | struct complaint op_deref2 = | |
123 | { | |
124 | "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0 | |
125 | }; | |
126 | ||
127 | struct complaint op_deref4 = | |
128 | { | |
129 | "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0 | |
130 | }; | |
131 | ||
132 | struct complaint basereg_not_handled = | |
133 | { | |
134 | "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0 | |
135 | }; | |
136 | ||
137 | struct complaint dup_user_type_allocation = | |
138 | { | |
139 | "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0 | |
140 | }; | |
141 | ||
142 | struct complaint dup_user_type_definition = | |
143 | { | |
144 | "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0 | |
145 | }; | |
146 | ||
147 | struct complaint missing_tag = | |
148 | { | |
149 | "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0 | |
150 | }; | |
151 | ||
152 | struct complaint bad_array_element_type = | |
153 | { | |
154 | "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0 | |
155 | }; | |
156 | ||
157 | struct complaint subscript_data_items = | |
158 | { | |
159 | "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0 | |
160 | }; | |
161 | ||
162 | struct complaint unhandled_array_subscript_format = | |
163 | { | |
164 | "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0 | |
165 | }; | |
166 | ||
167 | struct complaint unknown_array_subscript_format = | |
168 | { | |
169 | "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0 | |
170 | }; | |
171 | ||
172 | struct complaint not_row_major = | |
173 | { | |
174 | "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0 | |
175 | }; | |
176 | ||
177 | typedef unsigned int DIE_REF; /* Reference to a DIE */ | |
178 | ||
179 | #ifndef GCC_PRODUCER | |
180 | #define GCC_PRODUCER "GNU C " | |
181 | #endif | |
182 | ||
183 | #ifndef GPLUS_PRODUCER | |
184 | #define GPLUS_PRODUCER "GNU C++ " | |
185 | #endif | |
186 | ||
187 | #ifndef LCC_PRODUCER | |
188 | #define LCC_PRODUCER "NCR C/C++" | |
189 | #endif | |
190 | ||
191 | #ifndef CHILL_PRODUCER | |
192 | #define CHILL_PRODUCER "GNU Chill " | |
193 | #endif | |
194 | ||
195 | /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */ | |
196 | #ifndef DWARF_REG_TO_REGNUM | |
197 | #define DWARF_REG_TO_REGNUM(num) (num) | |
198 | #endif | |
199 | ||
200 | /* Flags to target_to_host() that tell whether or not the data object is | |
201 | expected to be signed. Used, for example, when fetching a signed | |
202 | integer in the target environment which is used as a signed integer | |
203 | in the host environment, and the two environments have different sized | |
204 | ints. In this case, *somebody* has to sign extend the smaller sized | |
205 | int. */ | |
206 | ||
207 | #define GET_UNSIGNED 0 /* No sign extension required */ | |
208 | #define GET_SIGNED 1 /* Sign extension required */ | |
209 | ||
210 | /* Defines for things which are specified in the document "DWARF Debugging | |
211 | Information Format" published by UNIX International, Programming Languages | |
212 | SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */ | |
213 | ||
214 | #define SIZEOF_DIE_LENGTH 4 | |
215 | #define SIZEOF_DIE_TAG 2 | |
216 | #define SIZEOF_ATTRIBUTE 2 | |
217 | #define SIZEOF_FORMAT_SPECIFIER 1 | |
218 | #define SIZEOF_FMT_FT 2 | |
219 | #define SIZEOF_LINETBL_LENGTH 4 | |
220 | #define SIZEOF_LINETBL_LINENO 4 | |
221 | #define SIZEOF_LINETBL_STMT 2 | |
222 | #define SIZEOF_LINETBL_DELTA 4 | |
223 | #define SIZEOF_LOC_ATOM_CODE 1 | |
224 | ||
225 | #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */ | |
226 | ||
227 | /* Macros that return the sizes of various types of data in the target | |
228 | environment. | |
229 | ||
230 | FIXME: Currently these are just compile time constants (as they are in | |
231 | other parts of gdb as well). They need to be able to get the right size | |
232 | either from the bfd or possibly from the DWARF info. It would be nice if | |
233 | the DWARF producer inserted DIES that describe the fundamental types in | |
234 | the target environment into the DWARF info, similar to the way dbx stabs | |
235 | producers produce information about their fundamental types. */ | |
236 | ||
237 | #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT) | |
238 | #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT) | |
239 | ||
240 | /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a | |
241 | FORM_BLOCK2, and this is the value emitted by the AT&T compiler. | |
242 | However, the Issue 2 DWARF specification from AT&T defines it as | |
243 | a FORM_BLOCK4, as does the latest specification from UI/PLSIG. | |
244 | For backwards compatibility with the AT&T compiler produced executables | |
245 | we define AT_short_element_list for this variant. */ | |
246 | ||
247 | #define AT_short_element_list (0x00f0|FORM_BLOCK2) | |
248 | ||
249 | /* External variables referenced. */ | |
250 | ||
251 | extern int info_verbose; /* From main.c; nonzero => verbose */ | |
252 | extern char *warning_pre_print; /* From utils.c */ | |
253 | ||
254 | /* The DWARF debugging information consists of two major pieces, | |
255 | one is a block of DWARF Information Entries (DIE's) and the other | |
256 | is a line number table. The "struct dieinfo" structure contains | |
257 | the information for a single DIE, the one currently being processed. | |
258 | ||
259 | In order to make it easier to randomly access the attribute fields | |
260 | of the current DIE, which are specifically unordered within the DIE, | |
261 | each DIE is scanned and an instance of the "struct dieinfo" | |
262 | structure is initialized. | |
263 | ||
264 | Initialization is done in two levels. The first, done by basicdieinfo(), | |
265 | just initializes those fields that are vital to deciding whether or not | |
266 | to use this DIE, how to skip past it, etc. The second, done by the | |
267 | function completedieinfo(), fills in the rest of the information. | |
268 | ||
269 | Attributes which have block forms are not interpreted at the time | |
270 | the DIE is scanned, instead we just save pointers to the start | |
271 | of their value fields. | |
272 | ||
273 | Some fields have a flag <name>_p that is set when the value of the | |
274 | field is valid (I.E. we found a matching attribute in the DIE). Since | |
275 | we may want to test for the presence of some attributes in the DIE, | |
276 | such as AT_low_pc, without restricting the values of the field, | |
277 | we need someway to note that we found such an attribute. | |
278 | ||
279 | */ | |
280 | ||
281 | typedef char BLOCK; | |
282 | ||
283 | struct dieinfo { | |
284 | char * die; /* Pointer to the raw DIE data */ | |
285 | unsigned long die_length; /* Length of the raw DIE data */ | |
286 | DIE_REF die_ref; /* Offset of this DIE */ | |
287 | unsigned short die_tag; /* Tag for this DIE */ | |
288 | unsigned long at_padding; | |
289 | unsigned long at_sibling; | |
290 | BLOCK * at_location; | |
291 | char * at_name; | |
292 | unsigned short at_fund_type; | |
293 | BLOCK * at_mod_fund_type; | |
294 | unsigned long at_user_def_type; | |
295 | BLOCK * at_mod_u_d_type; | |
296 | unsigned short at_ordering; | |
297 | BLOCK * at_subscr_data; | |
298 | unsigned long at_byte_size; | |
299 | unsigned short at_bit_offset; | |
300 | unsigned long at_bit_size; | |
301 | BLOCK * at_element_list; | |
302 | unsigned long at_stmt_list; | |
303 | CORE_ADDR at_low_pc; | |
304 | CORE_ADDR at_high_pc; | |
305 | unsigned long at_language; | |
306 | unsigned long at_member; | |
307 | unsigned long at_discr; | |
308 | BLOCK * at_discr_value; | |
309 | BLOCK * at_string_length; | |
310 | char * at_comp_dir; | |
311 | char * at_producer; | |
312 | unsigned long at_start_scope; | |
313 | unsigned long at_stride_size; | |
314 | unsigned long at_src_info; | |
315 | char * at_prototyped; | |
316 | unsigned int has_at_low_pc:1; | |
317 | unsigned int has_at_stmt_list:1; | |
318 | unsigned int has_at_byte_size:1; | |
319 | unsigned int short_element_list:1; | |
320 | }; | |
321 | ||
322 | static int diecount; /* Approximate count of dies for compilation unit */ | |
323 | static struct dieinfo *curdie; /* For warnings and such */ | |
324 | ||
325 | static char *dbbase; /* Base pointer to dwarf info */ | |
326 | static int dbsize; /* Size of dwarf info in bytes */ | |
327 | static int dbroff; /* Relative offset from start of .debug section */ | |
328 | static char *lnbase; /* Base pointer to line section */ | |
329 | static int isreg; /* Kludge to identify register variables */ | |
330 | static int optimized_out; /* Kludge to identify optimized out variables */ | |
331 | /* Kludge to identify basereg references. Nonzero if we have an offset | |
332 | relative to a basereg. */ | |
333 | static int offreg; | |
334 | /* Which base register is it relative to? */ | |
335 | static int basereg; | |
336 | ||
337 | /* This value is added to each symbol value. FIXME: Generalize to | |
338 | the section_offsets structure used by dbxread (once this is done, | |
339 | pass the appropriate section number to end_symtab). */ | |
340 | static CORE_ADDR baseaddr; /* Add to each symbol value */ | |
341 | ||
342 | /* The section offsets used in the current psymtab or symtab. FIXME, | |
343 | only used to pass one value (baseaddr) at the moment. */ | |
344 | static struct section_offsets *base_section_offsets; | |
345 | ||
346 | /* We put a pointer to this structure in the read_symtab_private field | |
347 | of the psymtab. */ | |
348 | ||
349 | struct dwfinfo { | |
350 | /* Always the absolute file offset to the start of the ".debug" | |
351 | section for the file containing the DIE's being accessed. */ | |
352 | file_ptr dbfoff; | |
353 | /* Relative offset from the start of the ".debug" section to the | |
354 | first DIE to be accessed. When building the partial symbol | |
355 | table, this value will be zero since we are accessing the | |
356 | entire ".debug" section. When expanding a partial symbol | |
357 | table entry, this value will be the offset to the first | |
358 | DIE for the compilation unit containing the symbol that | |
359 | triggers the expansion. */ | |
360 | int dbroff; | |
361 | /* The size of the chunk of DIE's being examined, in bytes. */ | |
362 | int dblength; | |
363 | /* The absolute file offset to the line table fragment. Ignored | |
364 | when building partial symbol tables, but used when expanding | |
365 | them, and contains the absolute file offset to the fragment | |
366 | of the ".line" section containing the line numbers for the | |
367 | current compilation unit. */ | |
368 | file_ptr lnfoff; | |
369 | }; | |
370 | ||
371 | #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) | |
372 | #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) | |
373 | #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) | |
374 | #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) | |
375 | ||
376 | /* The generic symbol table building routines have separate lists for | |
377 | file scope symbols and all all other scopes (local scopes). So | |
378 | we need to select the right one to pass to add_symbol_to_list(). | |
379 | We do it by keeping a pointer to the correct list in list_in_scope. | |
380 | ||
381 | FIXME: The original dwarf code just treated the file scope as the first | |
382 | local scope, and all other local scopes as nested local scopes, and worked | |
383 | fine. Check to see if we really need to distinguish these in buildsym.c */ | |
384 | ||
385 | struct pending **list_in_scope = &file_symbols; | |
386 | ||
387 | /* DIES which have user defined types or modified user defined types refer to | |
388 | other DIES for the type information. Thus we need to associate the offset | |
389 | of a DIE for a user defined type with a pointer to the type information. | |
390 | ||
391 | Originally this was done using a simple but expensive algorithm, with an | |
392 | array of unsorted structures, each containing an offset/type-pointer pair. | |
393 | This array was scanned linearly each time a lookup was done. The result | |
394 | was that gdb was spending over half it's startup time munging through this | |
395 | array of pointers looking for a structure that had the right offset member. | |
396 | ||
397 | The second attempt used the same array of structures, but the array was | |
398 | sorted using qsort each time a new offset/type was recorded, and a binary | |
399 | search was used to find the type pointer for a given DIE offset. This was | |
400 | even slower, due to the overhead of sorting the array each time a new | |
401 | offset/type pair was entered. | |
402 | ||
403 | The third attempt uses a fixed size array of type pointers, indexed by a | |
404 | value derived from the DIE offset. Since the minimum DIE size is 4 bytes, | |
405 | we can divide any DIE offset by 4 to obtain a unique index into this fixed | |
406 | size array. Since each element is a 4 byte pointer, it takes exactly as | |
407 | much memory to hold this array as to hold the DWARF info for a given | |
408 | compilation unit. But it gets freed as soon as we are done with it. | |
409 | This has worked well in practice, as a reasonable tradeoff between memory | |
410 | consumption and speed, without having to resort to much more complicated | |
411 | algorithms. */ | |
412 | ||
413 | static struct type **utypes; /* Pointer to array of user type pointers */ | |
414 | static int numutypes; /* Max number of user type pointers */ | |
415 | ||
416 | /* Maintain an array of referenced fundamental types for the current | |
417 | compilation unit being read. For DWARF version 1, we have to construct | |
418 | the fundamental types on the fly, since no information about the | |
419 | fundamental types is supplied. Each such fundamental type is created by | |
420 | calling a language dependent routine to create the type, and then a | |
421 | pointer to that type is then placed in the array at the index specified | |
422 | by it's FT_<TYPENAME> value. The array has a fixed size set by the | |
423 | FT_NUM_MEMBERS compile time constant, which is the number of predefined | |
424 | fundamental types gdb knows how to construct. */ | |
425 | ||
426 | static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */ | |
427 | ||
428 | /* Record the language for the compilation unit which is currently being | |
429 | processed. We know it once we have seen the TAG_compile_unit DIE, | |
430 | and we need it while processing the DIE's for that compilation unit. | |
431 | It is eventually saved in the symtab structure, but we don't finalize | |
432 | the symtab struct until we have processed all the DIE's for the | |
433 | compilation unit. We also need to get and save a pointer to the | |
434 | language struct for this language, so we can call the language | |
435 | dependent routines for doing things such as creating fundamental | |
436 | types. */ | |
437 | ||
438 | static enum language cu_language; | |
439 | static const struct language_defn *cu_language_defn; | |
440 | ||
441 | /* Forward declarations of static functions so we don't have to worry | |
442 | about ordering within this file. */ | |
443 | ||
444 | static int | |
445 | attribute_size PARAMS ((unsigned int)); | |
446 | ||
447 | static CORE_ADDR | |
448 | target_to_host PARAMS ((char *, int, int, struct objfile *)); | |
449 | ||
450 | static void | |
451 | add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *)); | |
452 | ||
453 | static void | |
454 | handle_producer PARAMS ((char *)); | |
455 | ||
456 | static void | |
457 | read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); | |
458 | ||
459 | static void | |
460 | read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); | |
461 | ||
462 | static void | |
463 | read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *, | |
464 | struct objfile *)); | |
465 | ||
466 | static void | |
467 | scan_partial_symbols PARAMS ((char *, char *, struct objfile *)); | |
468 | ||
469 | static void | |
470 | scan_compilation_units PARAMS ((char *, char *, file_ptr, | |
471 | file_ptr, struct objfile *)); | |
472 | ||
473 | static void | |
474 | add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *)); | |
475 | ||
476 | static void | |
477 | basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *)); | |
478 | ||
479 | static void | |
480 | completedieinfo PARAMS ((struct dieinfo *, struct objfile *)); | |
481 | ||
482 | static void | |
483 | dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *)); | |
484 | ||
485 | static void | |
486 | psymtab_to_symtab_1 PARAMS ((struct partial_symtab *)); | |
487 | ||
488 | static void | |
489 | read_ofile_symtab PARAMS ((struct partial_symtab *)); | |
490 | ||
491 | static void | |
492 | process_dies PARAMS ((char *, char *, struct objfile *)); | |
493 | ||
494 | static void | |
495 | read_structure_scope PARAMS ((struct dieinfo *, char *, char *, | |
496 | struct objfile *)); | |
497 | ||
498 | static struct type * | |
499 | decode_array_element_type PARAMS ((char *)); | |
500 | ||
501 | static struct type * | |
502 | decode_subscript_data_item PARAMS ((char *, char *)); | |
503 | ||
504 | static void | |
505 | dwarf_read_array_type PARAMS ((struct dieinfo *)); | |
506 | ||
507 | static void | |
508 | read_tag_pointer_type PARAMS ((struct dieinfo *dip)); | |
509 | ||
510 | static void | |
511 | read_tag_string_type PARAMS ((struct dieinfo *dip)); | |
512 | ||
513 | static void | |
514 | read_subroutine_type PARAMS ((struct dieinfo *, char *, char *)); | |
515 | ||
516 | static void | |
517 | read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); | |
518 | ||
519 | static struct type * | |
520 | struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); | |
521 | ||
522 | static struct type * | |
523 | enum_type PARAMS ((struct dieinfo *, struct objfile *)); | |
524 | ||
525 | static void | |
526 | decode_line_numbers PARAMS ((char *)); | |
527 | ||
528 | static struct type * | |
529 | decode_die_type PARAMS ((struct dieinfo *)); | |
530 | ||
531 | static struct type * | |
532 | decode_mod_fund_type PARAMS ((char *)); | |
533 | ||
534 | static struct type * | |
535 | decode_mod_u_d_type PARAMS ((char *)); | |
536 | ||
537 | static struct type * | |
538 | decode_modified_type PARAMS ((char *, unsigned int, int)); | |
539 | ||
540 | static struct type * | |
541 | decode_fund_type PARAMS ((unsigned int)); | |
542 | ||
543 | static char * | |
544 | create_name PARAMS ((char *, struct obstack *)); | |
545 | ||
546 | static struct type * | |
547 | lookup_utype PARAMS ((DIE_REF)); | |
548 | ||
549 | static struct type * | |
550 | alloc_utype PARAMS ((DIE_REF, struct type *)); | |
551 | ||
552 | static struct symbol * | |
553 | new_symbol PARAMS ((struct dieinfo *, struct objfile *)); | |
554 | ||
555 | static void | |
556 | synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *, | |
557 | struct type *)); | |
558 | ||
559 | static int | |
560 | locval PARAMS ((char *)); | |
561 | ||
562 | static void | |
563 | set_cu_language PARAMS ((struct dieinfo *)); | |
564 | ||
565 | static struct type * | |
566 | dwarf_fundamental_type PARAMS ((struct objfile *, int)); | |
567 | ||
568 | ||
569 | /* | |
570 | ||
571 | LOCAL FUNCTION | |
572 | ||
573 | dwarf_fundamental_type -- lookup or create a fundamental type | |
574 | ||
575 | SYNOPSIS | |
576 | ||
577 | struct type * | |
578 | dwarf_fundamental_type (struct objfile *objfile, int typeid) | |
579 | ||
580 | DESCRIPTION | |
581 | ||
582 | DWARF version 1 doesn't supply any fundamental type information, | |
583 | so gdb has to construct such types. It has a fixed number of | |
584 | fundamental types that it knows how to construct, which is the | |
585 | union of all types that it knows how to construct for all languages | |
586 | that it knows about. These are enumerated in gdbtypes.h. | |
587 | ||
588 | As an example, assume we find a DIE that references a DWARF | |
589 | fundamental type of FT_integer. We first look in the ftypes | |
590 | array to see if we already have such a type, indexed by the | |
591 | gdb internal value of FT_INTEGER. If so, we simply return a | |
592 | pointer to that type. If not, then we ask an appropriate | |
593 | language dependent routine to create a type FT_INTEGER, using | |
594 | defaults reasonable for the current target machine, and install | |
595 | that type in ftypes for future reference. | |
596 | ||
597 | RETURNS | |
598 | ||
599 | Pointer to a fundamental type. | |
600 | ||
601 | */ | |
602 | ||
603 | static struct type * | |
604 | dwarf_fundamental_type (objfile, typeid) | |
605 | struct objfile *objfile; | |
606 | int typeid; | |
607 | { | |
608 | if (typeid < 0 || typeid >= FT_NUM_MEMBERS) | |
609 | { | |
610 | error ("internal error - invalid fundamental type id %d", typeid); | |
611 | } | |
612 | ||
613 | /* Look for this particular type in the fundamental type vector. If one is | |
614 | not found, create and install one appropriate for the current language | |
615 | and the current target machine. */ | |
616 | ||
617 | if (ftypes[typeid] == NULL) | |
618 | { | |
619 | ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid); | |
620 | } | |
621 | ||
622 | return (ftypes[typeid]); | |
623 | } | |
624 | ||
625 | /* | |
626 | ||
627 | LOCAL FUNCTION | |
628 | ||
629 | set_cu_language -- set local copy of language for compilation unit | |
630 | ||
631 | SYNOPSIS | |
632 | ||
633 | void | |
634 | set_cu_language (struct dieinfo *dip) | |
635 | ||
636 | DESCRIPTION | |
637 | ||
638 | Decode the language attribute for a compilation unit DIE and | |
639 | remember what the language was. We use this at various times | |
640 | when processing DIE's for a given compilation unit. | |
641 | ||
642 | RETURNS | |
643 | ||
644 | No return value. | |
645 | ||
646 | */ | |
647 | ||
648 | static void | |
649 | set_cu_language (dip) | |
650 | struct dieinfo *dip; | |
651 | { | |
652 | switch (dip -> at_language) | |
653 | { | |
654 | case LANG_C89: | |
655 | case LANG_C: | |
656 | cu_language = language_c; | |
657 | break; | |
658 | case LANG_C_PLUS_PLUS: | |
659 | cu_language = language_cplus; | |
660 | break; | |
661 | case LANG_CHILL: | |
662 | cu_language = language_chill; | |
663 | break; | |
664 | case LANG_MODULA2: | |
665 | cu_language = language_m2; | |
666 | break; | |
667 | case LANG_ADA83: | |
668 | case LANG_COBOL74: | |
669 | case LANG_COBOL85: | |
670 | case LANG_FORTRAN77: | |
671 | case LANG_FORTRAN90: | |
672 | case LANG_PASCAL83: | |
673 | /* We don't know anything special about these yet. */ | |
674 | cu_language = language_unknown; | |
675 | break; | |
676 | default: | |
677 | /* If no at_language, try to deduce one from the filename */ | |
678 | cu_language = deduce_language_from_filename (dip -> at_name); | |
679 | break; | |
680 | } | |
681 | cu_language_defn = language_def (cu_language); | |
682 | } | |
683 | ||
684 | /* | |
685 | ||
686 | GLOBAL FUNCTION | |
687 | ||
688 | dwarf_build_psymtabs -- build partial symtabs from DWARF debug info | |
689 | ||
690 | SYNOPSIS | |
691 | ||
692 | void dwarf_build_psymtabs (struct objfile *objfile, | |
693 | struct section_offsets *section_offsets, | |
694 | int mainline, file_ptr dbfoff, unsigned int dbfsize, | |
695 | file_ptr lnoffset, unsigned int lnsize) | |
696 | ||
697 | DESCRIPTION | |
698 | ||
699 | This function is called upon to build partial symtabs from files | |
700 | containing DIE's (Dwarf Information Entries) and DWARF line numbers. | |
701 | ||
702 | It is passed a bfd* containing the DIES | |
703 | and line number information, the corresponding filename for that | |
704 | file, a base address for relocating the symbols, a flag indicating | |
705 | whether or not this debugging information is from a "main symbol | |
706 | table" rather than a shared library or dynamically linked file, | |
707 | and file offset/size pairs for the DIE information and line number | |
708 | information. | |
709 | ||
710 | RETURNS | |
711 | ||
712 | No return value. | |
713 | ||
714 | */ | |
715 | ||
716 | void | |
717 | dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize, | |
718 | lnoffset, lnsize) | |
719 | struct objfile *objfile; | |
720 | struct section_offsets *section_offsets; | |
721 | int mainline; | |
722 | file_ptr dbfoff; | |
723 | unsigned int dbfsize; | |
724 | file_ptr lnoffset; | |
725 | unsigned int lnsize; | |
726 | { | |
727 | bfd *abfd = objfile->obfd; | |
728 | struct cleanup *back_to; | |
729 | ||
730 | current_objfile = objfile; | |
731 | dbsize = dbfsize; | |
732 | dbbase = xmalloc (dbsize); | |
733 | dbroff = 0; | |
734 | if ((bfd_seek (abfd, dbfoff, L_SET) != 0) || | |
735 | (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) | |
736 | { | |
737 | free (dbbase); | |
738 | error ("can't read DWARF data from '%s'", bfd_get_filename (abfd)); | |
739 | } | |
740 | back_to = make_cleanup (free, dbbase); | |
741 | ||
742 | /* If we are reinitializing, or if we have never loaded syms yet, init. | |
743 | Since we have no idea how many DIES we are looking at, we just guess | |
744 | some arbitrary value. */ | |
745 | ||
746 | if (mainline || objfile -> global_psymbols.size == 0 || | |
747 | objfile -> static_psymbols.size == 0) | |
748 | { | |
749 | init_psymbol_list (objfile, 1024); | |
750 | } | |
751 | ||
752 | /* Save the relocation factor where everybody can see it. */ | |
753 | ||
754 | base_section_offsets = section_offsets; | |
755 | baseaddr = ANOFFSET (section_offsets, 0); | |
756 | ||
757 | /* Follow the compilation unit sibling chain, building a partial symbol | |
758 | table entry for each one. Save enough information about each compilation | |
759 | unit to locate the full DWARF information later. */ | |
760 | ||
761 | scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile); | |
762 | ||
763 | do_cleanups (back_to); | |
764 | current_objfile = NULL; | |
765 | } | |
766 | ||
767 | /* | |
768 | ||
769 | LOCAL FUNCTION | |
770 | ||
771 | read_lexical_block_scope -- process all dies in a lexical block | |
772 | ||
773 | SYNOPSIS | |
774 | ||
775 | static void read_lexical_block_scope (struct dieinfo *dip, | |
776 | char *thisdie, char *enddie) | |
777 | ||
778 | DESCRIPTION | |
779 | ||
780 | Process all the DIES contained within a lexical block scope. | |
781 | Start a new scope, process the dies, and then close the scope. | |
782 | ||
783 | */ | |
784 | ||
785 | static void | |
786 | read_lexical_block_scope (dip, thisdie, enddie, objfile) | |
787 | struct dieinfo *dip; | |
788 | char *thisdie; | |
789 | char *enddie; | |
790 | struct objfile *objfile; | |
791 | { | |
792 | register struct context_stack *new; | |
793 | ||
794 | push_context (0, dip -> at_low_pc); | |
795 | process_dies (thisdie + dip -> die_length, enddie, objfile); | |
796 | new = pop_context (); | |
797 | if (local_symbols != NULL) | |
798 | { | |
799 | finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr, | |
800 | dip -> at_high_pc, objfile); | |
801 | } | |
802 | local_symbols = new -> locals; | |
803 | } | |
804 | ||
805 | /* | |
806 | ||
807 | LOCAL FUNCTION | |
808 | ||
809 | lookup_utype -- look up a user defined type from die reference | |
810 | ||
811 | SYNOPSIS | |
812 | ||
813 | static type *lookup_utype (DIE_REF die_ref) | |
814 | ||
815 | DESCRIPTION | |
816 | ||
817 | Given a DIE reference, lookup the user defined type associated with | |
818 | that DIE, if it has been registered already. If not registered, then | |
819 | return NULL. Alloc_utype() can be called to register an empty | |
820 | type for this reference, which will be filled in later when the | |
821 | actual referenced DIE is processed. | |
822 | */ | |
823 | ||
824 | static struct type * | |
825 | lookup_utype (die_ref) | |
826 | DIE_REF die_ref; | |
827 | { | |
828 | struct type *type = NULL; | |
829 | int utypeidx; | |
830 | ||
831 | utypeidx = (die_ref - dbroff) / 4; | |
832 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
833 | { | |
834 | complain (&bad_die_ref, DIE_ID, DIE_NAME); | |
835 | } | |
836 | else | |
837 | { | |
838 | type = *(utypes + utypeidx); | |
839 | } | |
840 | return (type); | |
841 | } | |
842 | ||
843 | ||
844 | /* | |
845 | ||
846 | LOCAL FUNCTION | |
847 | ||
848 | alloc_utype -- add a user defined type for die reference | |
849 | ||
850 | SYNOPSIS | |
851 | ||
852 | static type *alloc_utype (DIE_REF die_ref, struct type *utypep) | |
853 | ||
854 | DESCRIPTION | |
855 | ||
856 | Given a die reference DIE_REF, and a possible pointer to a user | |
857 | defined type UTYPEP, register that this reference has a user | |
858 | defined type and either use the specified type in UTYPEP or | |
859 | make a new empty type that will be filled in later. | |
860 | ||
861 | We should only be called after calling lookup_utype() to verify that | |
862 | there is not currently a type registered for DIE_REF. | |
863 | */ | |
864 | ||
865 | static struct type * | |
866 | alloc_utype (die_ref, utypep) | |
867 | DIE_REF die_ref; | |
868 | struct type *utypep; | |
869 | { | |
870 | struct type **typep; | |
871 | int utypeidx; | |
872 | ||
873 | utypeidx = (die_ref - dbroff) / 4; | |
874 | typep = utypes + utypeidx; | |
875 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
876 | { | |
877 | utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
878 | complain (&bad_die_ref, DIE_ID, DIE_NAME); | |
879 | } | |
880 | else if (*typep != NULL) | |
881 | { | |
882 | utypep = *typep; | |
883 | complain (&dup_user_type_allocation, DIE_ID, DIE_NAME); | |
884 | } | |
885 | else | |
886 | { | |
887 | if (utypep == NULL) | |
888 | { | |
889 | utypep = alloc_type (current_objfile); | |
890 | } | |
891 | *typep = utypep; | |
892 | } | |
893 | return (utypep); | |
894 | } | |
895 | ||
896 | /* | |
897 | ||
898 | LOCAL FUNCTION | |
899 | ||
900 | decode_die_type -- return a type for a specified die | |
901 | ||
902 | SYNOPSIS | |
903 | ||
904 | static struct type *decode_die_type (struct dieinfo *dip) | |
905 | ||
906 | DESCRIPTION | |
907 | ||
908 | Given a pointer to a die information structure DIP, decode the | |
909 | type of the die and return a pointer to the decoded type. All | |
910 | dies without specific types default to type int. | |
911 | */ | |
912 | ||
913 | static struct type * | |
914 | decode_die_type (dip) | |
915 | struct dieinfo *dip; | |
916 | { | |
917 | struct type *type = NULL; | |
918 | ||
919 | if (dip -> at_fund_type != 0) | |
920 | { | |
921 | type = decode_fund_type (dip -> at_fund_type); | |
922 | } | |
923 | else if (dip -> at_mod_fund_type != NULL) | |
924 | { | |
925 | type = decode_mod_fund_type (dip -> at_mod_fund_type); | |
926 | } | |
927 | else if (dip -> at_user_def_type) | |
928 | { | |
929 | if ((type = lookup_utype (dip -> at_user_def_type)) == NULL) | |
930 | { | |
931 | type = alloc_utype (dip -> at_user_def_type, NULL); | |
932 | } | |
933 | } | |
934 | else if (dip -> at_mod_u_d_type) | |
935 | { | |
936 | type = decode_mod_u_d_type (dip -> at_mod_u_d_type); | |
937 | } | |
938 | else | |
939 | { | |
940 | type = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
941 | } | |
942 | return (type); | |
943 | } | |
944 | ||
945 | /* | |
946 | ||
947 | LOCAL FUNCTION | |
948 | ||
949 | struct_type -- compute and return the type for a struct or union | |
950 | ||
951 | SYNOPSIS | |
952 | ||
953 | static struct type *struct_type (struct dieinfo *dip, char *thisdie, | |
954 | char *enddie, struct objfile *objfile) | |
955 | ||
956 | DESCRIPTION | |
957 | ||
958 | Given pointer to a die information structure for a die which | |
959 | defines a union or structure (and MUST define one or the other), | |
960 | and pointers to the raw die data that define the range of dies which | |
961 | define the members, compute and return the user defined type for the | |
962 | structure or union. | |
963 | */ | |
964 | ||
965 | static struct type * | |
966 | struct_type (dip, thisdie, enddie, objfile) | |
967 | struct dieinfo *dip; | |
968 | char *thisdie; | |
969 | char *enddie; | |
970 | struct objfile *objfile; | |
971 | { | |
972 | struct type *type; | |
973 | struct nextfield { | |
974 | struct nextfield *next; | |
975 | struct field field; | |
976 | }; | |
977 | struct nextfield *list = NULL; | |
978 | struct nextfield *new; | |
979 | int nfields = 0; | |
980 | int n; | |
981 | struct dieinfo mbr; | |
982 | char *nextdie; | |
983 | int anonymous_size; | |
984 | ||
985 | if ((type = lookup_utype (dip -> die_ref)) == NULL) | |
986 | { | |
987 | /* No forward references created an empty type, so install one now */ | |
988 | type = alloc_utype (dip -> die_ref, NULL); | |
989 | } | |
990 | INIT_CPLUS_SPECIFIC(type); | |
991 | switch (dip -> die_tag) | |
992 | { | |
993 | case TAG_class_type: | |
994 | TYPE_CODE (type) = TYPE_CODE_CLASS; | |
995 | break; | |
996 | case TAG_structure_type: | |
997 | TYPE_CODE (type) = TYPE_CODE_STRUCT; | |
998 | break; | |
999 | case TAG_union_type: | |
1000 | TYPE_CODE (type) = TYPE_CODE_UNION; | |
1001 | break; | |
1002 | default: | |
1003 | /* Should never happen */ | |
1004 | TYPE_CODE (type) = TYPE_CODE_UNDEF; | |
1005 | complain (&missing_tag, DIE_ID, DIE_NAME); | |
1006 | break; | |
1007 | } | |
1008 | /* Some compilers try to be helpful by inventing "fake" names for | |
1009 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |
1010 | Thanks, but no thanks... */ | |
1011 | if (dip -> at_name != NULL | |
1012 | && *dip -> at_name != '~' | |
1013 | && *dip -> at_name != '.') | |
1014 | { | |
1015 | TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack, | |
1016 | "", "", dip -> at_name); | |
1017 | } | |
1018 | /* Use whatever size is known. Zero is a valid size. We might however | |
1019 | wish to check has_at_byte_size to make sure that some byte size was | |
1020 | given explicitly, but DWARF doesn't specify that explicit sizes of | |
1021 | zero have to present, so complaining about missing sizes should | |
1022 | probably not be the default. */ | |
1023 | TYPE_LENGTH (type) = dip -> at_byte_size; | |
1024 | thisdie += dip -> die_length; | |
1025 | while (thisdie < enddie) | |
1026 | { | |
1027 | basicdieinfo (&mbr, thisdie, objfile); | |
1028 | completedieinfo (&mbr, objfile); | |
1029 | if (mbr.die_length <= SIZEOF_DIE_LENGTH) | |
1030 | { | |
1031 | break; | |
1032 | } | |
1033 | else if (mbr.at_sibling != 0) | |
1034 | { | |
1035 | nextdie = dbbase + mbr.at_sibling - dbroff; | |
1036 | } | |
1037 | else | |
1038 | { | |
1039 | nextdie = thisdie + mbr.die_length; | |
1040 | } | |
1041 | switch (mbr.die_tag) | |
1042 | { | |
1043 | case TAG_member: | |
1044 | /* Get space to record the next field's data. */ | |
1045 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
1046 | new -> next = list; | |
1047 | list = new; | |
1048 | /* Save the data. */ | |
1049 | list -> field.name = | |
1050 | obsavestring (mbr.at_name, strlen (mbr.at_name), | |
1051 | &objfile -> type_obstack); | |
1052 | list -> field.type = decode_die_type (&mbr); | |
1053 | list -> field.bitpos = 8 * locval (mbr.at_location); | |
1054 | /* Handle bit fields. */ | |
1055 | list -> field.bitsize = mbr.at_bit_size; | |
1056 | if (BITS_BIG_ENDIAN) | |
1057 | { | |
1058 | /* For big endian bits, the at_bit_offset gives the | |
1059 | additional bit offset from the MSB of the containing | |
1060 | anonymous object to the MSB of the field. We don't | |
1061 | have to do anything special since we don't need to | |
1062 | know the size of the anonymous object. */ | |
1063 | list -> field.bitpos += mbr.at_bit_offset; | |
1064 | } | |
1065 | else | |
1066 | { | |
1067 | /* For little endian bits, we need to have a non-zero | |
1068 | at_bit_size, so that we know we are in fact dealing | |
1069 | with a bitfield. Compute the bit offset to the MSB | |
1070 | of the anonymous object, subtract off the number of | |
1071 | bits from the MSB of the field to the MSB of the | |
1072 | object, and then subtract off the number of bits of | |
1073 | the field itself. The result is the bit offset of | |
1074 | the LSB of the field. */ | |
1075 | if (mbr.at_bit_size > 0) | |
1076 | { | |
1077 | if (mbr.has_at_byte_size) | |
1078 | { | |
1079 | /* The size of the anonymous object containing | |
1080 | the bit field is explicit, so use the | |
1081 | indicated size (in bytes). */ | |
1082 | anonymous_size = mbr.at_byte_size; | |
1083 | } | |
1084 | else | |
1085 | { | |
1086 | /* The size of the anonymous object containing | |
1087 | the bit field matches the size of an object | |
1088 | of the bit field's type. DWARF allows | |
1089 | at_byte_size to be left out in such cases, as | |
1090 | a debug information size optimization. */ | |
1091 | anonymous_size = TYPE_LENGTH (list -> field.type); | |
1092 | } | |
1093 | list -> field.bitpos += | |
1094 | anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size; | |
1095 | } | |
1096 | } | |
1097 | nfields++; | |
1098 | break; | |
1099 | default: | |
1100 | process_dies (thisdie, nextdie, objfile); | |
1101 | break; | |
1102 | } | |
1103 | thisdie = nextdie; | |
1104 | } | |
1105 | /* Now create the vector of fields, and record how big it is. We may | |
1106 | not even have any fields, if this DIE was generated due to a reference | |
1107 | to an anonymous structure or union. In this case, TYPE_FLAG_STUB is | |
1108 | set, which clues gdb in to the fact that it needs to search elsewhere | |
1109 | for the full structure definition. */ | |
1110 | if (nfields == 0) | |
1111 | { | |
1112 | TYPE_FLAGS (type) |= TYPE_FLAG_STUB; | |
1113 | } | |
1114 | else | |
1115 | { | |
1116 | TYPE_NFIELDS (type) = nfields; | |
1117 | TYPE_FIELDS (type) = (struct field *) | |
1118 | TYPE_ALLOC (type, sizeof (struct field) * nfields); | |
1119 | /* Copy the saved-up fields into the field vector. */ | |
1120 | for (n = nfields; list; list = list -> next) | |
1121 | { | |
1122 | TYPE_FIELD (type, --n) = list -> field; | |
1123 | } | |
1124 | } | |
1125 | return (type); | |
1126 | } | |
1127 | ||
1128 | /* | |
1129 | ||
1130 | LOCAL FUNCTION | |
1131 | ||
1132 | read_structure_scope -- process all dies within struct or union | |
1133 | ||
1134 | SYNOPSIS | |
1135 | ||
1136 | static void read_structure_scope (struct dieinfo *dip, | |
1137 | char *thisdie, char *enddie, struct objfile *objfile) | |
1138 | ||
1139 | DESCRIPTION | |
1140 | ||
1141 | Called when we find the DIE that starts a structure or union | |
1142 | scope (definition) to process all dies that define the members | |
1143 | of the structure or union. DIP is a pointer to the die info | |
1144 | struct for the DIE that names the structure or union. | |
1145 | ||
1146 | NOTES | |
1147 | ||
1148 | Note that we need to call struct_type regardless of whether or not | |
1149 | the DIE has an at_name attribute, since it might be an anonymous | |
1150 | structure or union. This gets the type entered into our set of | |
1151 | user defined types. | |
1152 | ||
1153 | However, if the structure is incomplete (an opaque struct/union) | |
1154 | then suppress creating a symbol table entry for it since gdb only | |
1155 | wants to find the one with the complete definition. Note that if | |
1156 | it is complete, we just call new_symbol, which does it's own | |
1157 | checking about whether the struct/union is anonymous or not (and | |
1158 | suppresses creating a symbol table entry itself). | |
1159 | ||
1160 | */ | |
1161 | ||
1162 | static void | |
1163 | read_structure_scope (dip, thisdie, enddie, objfile) | |
1164 | struct dieinfo *dip; | |
1165 | char *thisdie; | |
1166 | char *enddie; | |
1167 | struct objfile *objfile; | |
1168 | { | |
1169 | struct type *type; | |
1170 | struct symbol *sym; | |
1171 | ||
1172 | type = struct_type (dip, thisdie, enddie, objfile); | |
1173 | if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB)) | |
1174 | { | |
1175 | sym = new_symbol (dip, objfile); | |
1176 | if (sym != NULL) | |
1177 | { | |
1178 | SYMBOL_TYPE (sym) = type; | |
1179 | if (cu_language == language_cplus) | |
1180 | { | |
1181 | synthesize_typedef (dip, objfile, type); | |
1182 | } | |
1183 | } | |
1184 | } | |
1185 | } | |
1186 | ||
1187 | /* | |
1188 | ||
1189 | LOCAL FUNCTION | |
1190 | ||
1191 | decode_array_element_type -- decode type of the array elements | |
1192 | ||
1193 | SYNOPSIS | |
1194 | ||
1195 | static struct type *decode_array_element_type (char *scan, char *end) | |
1196 | ||
1197 | DESCRIPTION | |
1198 | ||
1199 | As the last step in decoding the array subscript information for an | |
1200 | array DIE, we need to decode the type of the array elements. We are | |
1201 | passed a pointer to this last part of the subscript information and | |
1202 | must return the appropriate type. If the type attribute is not | |
1203 | recognized, just warn about the problem and return type int. | |
1204 | */ | |
1205 | ||
1206 | static struct type * | |
1207 | decode_array_element_type (scan) | |
1208 | char *scan; | |
1209 | { | |
1210 | struct type *typep; | |
1211 | DIE_REF die_ref; | |
1212 | unsigned short attribute; | |
1213 | unsigned short fundtype; | |
1214 | int nbytes; | |
1215 | ||
1216 | attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED, | |
1217 | current_objfile); | |
1218 | scan += SIZEOF_ATTRIBUTE; | |
1219 | if ((nbytes = attribute_size (attribute)) == -1) | |
1220 | { | |
1221 | complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); | |
1222 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1223 | } | |
1224 | else | |
1225 | { | |
1226 | switch (attribute) | |
1227 | { | |
1228 | case AT_fund_type: | |
1229 | fundtype = target_to_host (scan, nbytes, GET_UNSIGNED, | |
1230 | current_objfile); | |
1231 | typep = decode_fund_type (fundtype); | |
1232 | break; | |
1233 | case AT_mod_fund_type: | |
1234 | typep = decode_mod_fund_type (scan); | |
1235 | break; | |
1236 | case AT_user_def_type: | |
1237 | die_ref = target_to_host (scan, nbytes, GET_UNSIGNED, | |
1238 | current_objfile); | |
1239 | if ((typep = lookup_utype (die_ref)) == NULL) | |
1240 | { | |
1241 | typep = alloc_utype (die_ref, NULL); | |
1242 | } | |
1243 | break; | |
1244 | case AT_mod_u_d_type: | |
1245 | typep = decode_mod_u_d_type (scan); | |
1246 | break; | |
1247 | default: | |
1248 | complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); | |
1249 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1250 | break; | |
1251 | } | |
1252 | } | |
1253 | return (typep); | |
1254 | } | |
1255 | ||
1256 | /* | |
1257 | ||
1258 | LOCAL FUNCTION | |
1259 | ||
1260 | decode_subscript_data_item -- decode array subscript item | |
1261 | ||
1262 | SYNOPSIS | |
1263 | ||
1264 | static struct type * | |
1265 | decode_subscript_data_item (char *scan, char *end) | |
1266 | ||
1267 | DESCRIPTION | |
1268 | ||
1269 | The array subscripts and the data type of the elements of an | |
1270 | array are described by a list of data items, stored as a block | |
1271 | of contiguous bytes. There is a data item describing each array | |
1272 | dimension, and a final data item describing the element type. | |
1273 | The data items are ordered the same as their appearance in the | |
1274 | source (I.E. leftmost dimension first, next to leftmost second, | |
1275 | etc). | |
1276 | ||
1277 | The data items describing each array dimension consist of four | |
1278 | parts: (1) a format specifier, (2) type type of the subscript | |
1279 | index, (3) a description of the low bound of the array dimension, | |
1280 | and (4) a description of the high bound of the array dimension. | |
1281 | ||
1282 | The last data item is the description of the type of each of | |
1283 | the array elements. | |
1284 | ||
1285 | We are passed a pointer to the start of the block of bytes | |
1286 | containing the remaining data items, and a pointer to the first | |
1287 | byte past the data. This function recursively decodes the | |
1288 | remaining data items and returns a type. | |
1289 | ||
1290 | If we somehow fail to decode some data, we complain about it | |
1291 | and return a type "array of int". | |
1292 | ||
1293 | BUGS | |
1294 | FIXME: This code only implements the forms currently used | |
1295 | by the AT&T and GNU C compilers. | |
1296 | ||
1297 | The end pointer is supplied for error checking, maybe we should | |
1298 | use it for that... | |
1299 | */ | |
1300 | ||
1301 | static struct type * | |
1302 | decode_subscript_data_item (scan, end) | |
1303 | char *scan; | |
1304 | char *end; | |
1305 | { | |
1306 | struct type *typep = NULL; /* Array type we are building */ | |
1307 | struct type *nexttype; /* Type of each element (may be array) */ | |
1308 | struct type *indextype; /* Type of this index */ | |
1309 | struct type *rangetype; | |
1310 | unsigned int format; | |
1311 | unsigned short fundtype; | |
1312 | unsigned long lowbound; | |
1313 | unsigned long highbound; | |
1314 | int nbytes; | |
1315 | ||
1316 | format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED, | |
1317 | current_objfile); | |
1318 | scan += SIZEOF_FORMAT_SPECIFIER; | |
1319 | switch (format) | |
1320 | { | |
1321 | case FMT_ET: | |
1322 | typep = decode_array_element_type (scan); | |
1323 | break; | |
1324 | case FMT_FT_C_C: | |
1325 | fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED, | |
1326 | current_objfile); | |
1327 | indextype = decode_fund_type (fundtype); | |
1328 | scan += SIZEOF_FMT_FT; | |
1329 | nbytes = TARGET_FT_LONG_SIZE (current_objfile); | |
1330 | lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); | |
1331 | scan += nbytes; | |
1332 | highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); | |
1333 | scan += nbytes; | |
1334 | nexttype = decode_subscript_data_item (scan, end); | |
1335 | if (nexttype == NULL) | |
1336 | { | |
1337 | /* Munged subscript data or other problem, fake it. */ | |
1338 | complain (&subscript_data_items, DIE_ID, DIE_NAME); | |
1339 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1340 | } | |
1341 | rangetype = create_range_type ((struct type *) NULL, indextype, | |
1342 | lowbound, highbound); | |
1343 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1344 | break; | |
1345 | case FMT_FT_C_X: | |
1346 | case FMT_FT_X_C: | |
1347 | case FMT_FT_X_X: | |
1348 | case FMT_UT_C_C: | |
1349 | case FMT_UT_C_X: | |
1350 | case FMT_UT_X_C: | |
1351 | case FMT_UT_X_X: | |
1352 | complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format); | |
1353 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1354 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); | |
1355 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1356 | break; | |
1357 | default: | |
1358 | complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format); | |
1359 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1360 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); | |
1361 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1362 | break; | |
1363 | } | |
1364 | return (typep); | |
1365 | } | |
1366 | ||
1367 | /* | |
1368 | ||
1369 | LOCAL FUNCTION | |
1370 | ||
1371 | dwarf_read_array_type -- read TAG_array_type DIE | |
1372 | ||
1373 | SYNOPSIS | |
1374 | ||
1375 | static void dwarf_read_array_type (struct dieinfo *dip) | |
1376 | ||
1377 | DESCRIPTION | |
1378 | ||
1379 | Extract all information from a TAG_array_type DIE and add to | |
1380 | the user defined type vector. | |
1381 | */ | |
1382 | ||
1383 | static void | |
1384 | dwarf_read_array_type (dip) | |
1385 | struct dieinfo *dip; | |
1386 | { | |
1387 | struct type *type; | |
1388 | struct type *utype; | |
1389 | char *sub; | |
1390 | char *subend; | |
1391 | unsigned short blocksz; | |
1392 | int nbytes; | |
1393 | ||
1394 | if (dip -> at_ordering != ORD_row_major) | |
1395 | { | |
1396 | /* FIXME: Can gdb even handle column major arrays? */ | |
1397 | complain (¬_row_major, DIE_ID, DIE_NAME); | |
1398 | } | |
1399 | if ((sub = dip -> at_subscr_data) != NULL) | |
1400 | { | |
1401 | nbytes = attribute_size (AT_subscr_data); | |
1402 | blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile); | |
1403 | subend = sub + nbytes + blocksz; | |
1404 | sub += nbytes; | |
1405 | type = decode_subscript_data_item (sub, subend); | |
1406 | if ((utype = lookup_utype (dip -> die_ref)) == NULL) | |
1407 | { | |
1408 | /* Install user defined type that has not been referenced yet. */ | |
1409 | alloc_utype (dip -> die_ref, type); | |
1410 | } | |
1411 | else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF) | |
1412 | { | |
1413 | /* Ick! A forward ref has already generated a blank type in our | |
1414 | slot, and this type probably already has things pointing to it | |
1415 | (which is what caused it to be created in the first place). | |
1416 | If it's just a place holder we can plop our fully defined type | |
1417 | on top of it. We can't recover the space allocated for our | |
1418 | new type since it might be on an obstack, but we could reuse | |
1419 | it if we kept a list of them, but it might not be worth it | |
1420 | (FIXME). */ | |
1421 | *utype = *type; | |
1422 | } | |
1423 | else | |
1424 | { | |
1425 | /* Double ick! Not only is a type already in our slot, but | |
1426 | someone has decorated it. Complain and leave it alone. */ | |
1427 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); | |
1428 | } | |
1429 | } | |
1430 | } | |
1431 | ||
1432 | /* | |
1433 | ||
1434 | LOCAL FUNCTION | |
1435 | ||
1436 | read_tag_pointer_type -- read TAG_pointer_type DIE | |
1437 | ||
1438 | SYNOPSIS | |
1439 | ||
1440 | static void read_tag_pointer_type (struct dieinfo *dip) | |
1441 | ||
1442 | DESCRIPTION | |
1443 | ||
1444 | Extract all information from a TAG_pointer_type DIE and add to | |
1445 | the user defined type vector. | |
1446 | */ | |
1447 | ||
1448 | static void | |
1449 | read_tag_pointer_type (dip) | |
1450 | struct dieinfo *dip; | |
1451 | { | |
1452 | struct type *type; | |
1453 | struct type *utype; | |
1454 | ||
1455 | type = decode_die_type (dip); | |
1456 | if ((utype = lookup_utype (dip -> die_ref)) == NULL) | |
1457 | { | |
1458 | utype = lookup_pointer_type (type); | |
1459 | alloc_utype (dip -> die_ref, utype); | |
1460 | } | |
1461 | else | |
1462 | { | |
1463 | TYPE_TARGET_TYPE (utype) = type; | |
1464 | TYPE_POINTER_TYPE (type) = utype; | |
1465 | ||
1466 | /* We assume the machine has only one representation for pointers! */ | |
1467 | /* FIXME: This confuses host<->target data representations, and is a | |
1468 | poor assumption besides. */ | |
1469 | ||
1470 | TYPE_LENGTH (utype) = sizeof (char *); | |
1471 | TYPE_CODE (utype) = TYPE_CODE_PTR; | |
1472 | } | |
1473 | } | |
1474 | ||
1475 | /* | |
1476 | ||
1477 | LOCAL FUNCTION | |
1478 | ||
1479 | read_tag_string_type -- read TAG_string_type DIE | |
1480 | ||
1481 | SYNOPSIS | |
1482 | ||
1483 | static void read_tag_string_type (struct dieinfo *dip) | |
1484 | ||
1485 | DESCRIPTION | |
1486 | ||
1487 | Extract all information from a TAG_string_type DIE and add to | |
1488 | the user defined type vector. It isn't really a user defined | |
1489 | type, but it behaves like one, with other DIE's using an | |
1490 | AT_user_def_type attribute to reference it. | |
1491 | */ | |
1492 | ||
1493 | static void | |
1494 | read_tag_string_type (dip) | |
1495 | struct dieinfo *dip; | |
1496 | { | |
1497 | struct type *utype; | |
1498 | struct type *indextype; | |
1499 | struct type *rangetype; | |
1500 | unsigned long lowbound = 0; | |
1501 | unsigned long highbound; | |
1502 | ||
1503 | if (dip -> has_at_byte_size) | |
1504 | { | |
1505 | /* A fixed bounds string */ | |
1506 | highbound = dip -> at_byte_size - 1; | |
1507 | } | |
1508 | else | |
1509 | { | |
1510 | /* A varying length string. Stub for now. (FIXME) */ | |
1511 | highbound = 1; | |
1512 | } | |
1513 | indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1514 | rangetype = create_range_type ((struct type *) NULL, indextype, lowbound, | |
1515 | highbound); | |
1516 | ||
1517 | utype = lookup_utype (dip -> die_ref); | |
1518 | if (utype == NULL) | |
1519 | { | |
1520 | /* No type defined, go ahead and create a blank one to use. */ | |
1521 | utype = alloc_utype (dip -> die_ref, (struct type *) NULL); | |
1522 | } | |
1523 | else | |
1524 | { | |
1525 | /* Already a type in our slot due to a forward reference. Make sure it | |
1526 | is a blank one. If not, complain and leave it alone. */ | |
1527 | if (TYPE_CODE (utype) != TYPE_CODE_UNDEF) | |
1528 | { | |
1529 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); | |
1530 | return; | |
1531 | } | |
1532 | } | |
1533 | ||
1534 | /* Create the string type using the blank type we either found or created. */ | |
1535 | utype = create_string_type (utype, rangetype); | |
1536 | } | |
1537 | ||
1538 | /* | |
1539 | ||
1540 | LOCAL FUNCTION | |
1541 | ||
1542 | read_subroutine_type -- process TAG_subroutine_type dies | |
1543 | ||
1544 | SYNOPSIS | |
1545 | ||
1546 | static void read_subroutine_type (struct dieinfo *dip, char thisdie, | |
1547 | char *enddie) | |
1548 | ||
1549 | DESCRIPTION | |
1550 | ||
1551 | Handle DIES due to C code like: | |
1552 | ||
1553 | struct foo { | |
1554 | int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) | |
1555 | int b; | |
1556 | }; | |
1557 | ||
1558 | NOTES | |
1559 | ||
1560 | The parameter DIES are currently ignored. See if gdb has a way to | |
1561 | include this info in it's type system, and decode them if so. Is | |
1562 | this what the type structure's "arg_types" field is for? (FIXME) | |
1563 | */ | |
1564 | ||
1565 | static void | |
1566 | read_subroutine_type (dip, thisdie, enddie) | |
1567 | struct dieinfo *dip; | |
1568 | char *thisdie; | |
1569 | char *enddie; | |
1570 | { | |
1571 | struct type *type; /* Type that this function returns */ | |
1572 | struct type *ftype; /* Function that returns above type */ | |
1573 | ||
1574 | /* Decode the type that this subroutine returns */ | |
1575 | ||
1576 | type = decode_die_type (dip); | |
1577 | ||
1578 | /* Check to see if we already have a partially constructed user | |
1579 | defined type for this DIE, from a forward reference. */ | |
1580 | ||
1581 | if ((ftype = lookup_utype (dip -> die_ref)) == NULL) | |
1582 | { | |
1583 | /* This is the first reference to one of these types. Make | |
1584 | a new one and place it in the user defined types. */ | |
1585 | ftype = lookup_function_type (type); | |
1586 | alloc_utype (dip -> die_ref, ftype); | |
1587 | } | |
1588 | else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF) | |
1589 | { | |
1590 | /* We have an existing partially constructed type, so bash it | |
1591 | into the correct type. */ | |
1592 | TYPE_TARGET_TYPE (ftype) = type; | |
1593 | TYPE_LENGTH (ftype) = 1; | |
1594 | TYPE_CODE (ftype) = TYPE_CODE_FUNC; | |
1595 | } | |
1596 | else | |
1597 | { | |
1598 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); | |
1599 | } | |
1600 | } | |
1601 | ||
1602 | /* | |
1603 | ||
1604 | LOCAL FUNCTION | |
1605 | ||
1606 | read_enumeration -- process dies which define an enumeration | |
1607 | ||
1608 | SYNOPSIS | |
1609 | ||
1610 | static void read_enumeration (struct dieinfo *dip, char *thisdie, | |
1611 | char *enddie, struct objfile *objfile) | |
1612 | ||
1613 | DESCRIPTION | |
1614 | ||
1615 | Given a pointer to a die which begins an enumeration, process all | |
1616 | the dies that define the members of the enumeration. | |
1617 | ||
1618 | NOTES | |
1619 | ||
1620 | Note that we need to call enum_type regardless of whether or not we | |
1621 | have a symbol, since we might have an enum without a tag name (thus | |
1622 | no symbol for the tagname). | |
1623 | */ | |
1624 | ||
1625 | static void | |
1626 | read_enumeration (dip, thisdie, enddie, objfile) | |
1627 | struct dieinfo *dip; | |
1628 | char *thisdie; | |
1629 | char *enddie; | |
1630 | struct objfile *objfile; | |
1631 | { | |
1632 | struct type *type; | |
1633 | struct symbol *sym; | |
1634 | ||
1635 | type = enum_type (dip, objfile); | |
1636 | sym = new_symbol (dip, objfile); | |
1637 | if (sym != NULL) | |
1638 | { | |
1639 | SYMBOL_TYPE (sym) = type; | |
1640 | if (cu_language == language_cplus) | |
1641 | { | |
1642 | synthesize_typedef (dip, objfile, type); | |
1643 | } | |
1644 | } | |
1645 | } | |
1646 | ||
1647 | /* | |
1648 | ||
1649 | LOCAL FUNCTION | |
1650 | ||
1651 | enum_type -- decode and return a type for an enumeration | |
1652 | ||
1653 | SYNOPSIS | |
1654 | ||
1655 | static type *enum_type (struct dieinfo *dip, struct objfile *objfile) | |
1656 | ||
1657 | DESCRIPTION | |
1658 | ||
1659 | Given a pointer to a die information structure for the die which | |
1660 | starts an enumeration, process all the dies that define the members | |
1661 | of the enumeration and return a type pointer for the enumeration. | |
1662 | ||
1663 | At the same time, for each member of the enumeration, create a | |
1664 | symbol for it with namespace VAR_NAMESPACE and class LOC_CONST, | |
1665 | and give it the type of the enumeration itself. | |
1666 | ||
1667 | NOTES | |
1668 | ||
1669 | Note that the DWARF specification explicitly mandates that enum | |
1670 | constants occur in reverse order from the source program order, | |
1671 | for "consistency" and because this ordering is easier for many | |
1672 | compilers to generate. (Draft 6, sec 3.8.5, Enumeration type | |
1673 | Entries). Because gdb wants to see the enum members in program | |
1674 | source order, we have to ensure that the order gets reversed while | |
1675 | we are processing them. | |
1676 | */ | |
1677 | ||
1678 | static struct type * | |
1679 | enum_type (dip, objfile) | |
1680 | struct dieinfo *dip; | |
1681 | struct objfile *objfile; | |
1682 | { | |
1683 | struct type *type; | |
1684 | struct nextfield { | |
1685 | struct nextfield *next; | |
1686 | struct field field; | |
1687 | }; | |
1688 | struct nextfield *list = NULL; | |
1689 | struct nextfield *new; | |
1690 | int nfields = 0; | |
1691 | int n; | |
1692 | char *scan; | |
1693 | char *listend; | |
1694 | unsigned short blocksz; | |
1695 | struct symbol *sym; | |
1696 | int nbytes; | |
1697 | ||
1698 | if ((type = lookup_utype (dip -> die_ref)) == NULL) | |
1699 | { | |
1700 | /* No forward references created an empty type, so install one now */ | |
1701 | type = alloc_utype (dip -> die_ref, NULL); | |
1702 | } | |
1703 | TYPE_CODE (type) = TYPE_CODE_ENUM; | |
1704 | /* Some compilers try to be helpful by inventing "fake" names for | |
1705 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |
1706 | Thanks, but no thanks... */ | |
1707 | if (dip -> at_name != NULL | |
1708 | && *dip -> at_name != '~' | |
1709 | && *dip -> at_name != '.') | |
1710 | { | |
1711 | TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack, | |
1712 | "", "", dip -> at_name); | |
1713 | } | |
1714 | if (dip -> at_byte_size != 0) | |
1715 | { | |
1716 | TYPE_LENGTH (type) = dip -> at_byte_size; | |
1717 | } | |
1718 | if ((scan = dip -> at_element_list) != NULL) | |
1719 | { | |
1720 | if (dip -> short_element_list) | |
1721 | { | |
1722 | nbytes = attribute_size (AT_short_element_list); | |
1723 | } | |
1724 | else | |
1725 | { | |
1726 | nbytes = attribute_size (AT_element_list); | |
1727 | } | |
1728 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); | |
1729 | listend = scan + nbytes + blocksz; | |
1730 | scan += nbytes; | |
1731 | while (scan < listend) | |
1732 | { | |
1733 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
1734 | new -> next = list; | |
1735 | list = new; | |
1736 | list -> field.type = NULL; | |
1737 | list -> field.bitsize = 0; | |
1738 | list -> field.bitpos = | |
1739 | target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED, | |
1740 | objfile); | |
1741 | scan += TARGET_FT_LONG_SIZE (objfile); | |
1742 | list -> field.name = obsavestring (scan, strlen (scan), | |
1743 | &objfile -> type_obstack); | |
1744 | scan += strlen (scan) + 1; | |
1745 | nfields++; | |
1746 | /* Handcraft a new symbol for this enum member. */ | |
1747 | sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack, | |
1748 | sizeof (struct symbol)); | |
1749 | memset (sym, 0, sizeof (struct symbol)); | |
1750 | SYMBOL_NAME (sym) = create_name (list -> field.name, | |
1751 | &objfile->symbol_obstack); | |
1752 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); | |
1753 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1754 | SYMBOL_CLASS (sym) = LOC_CONST; | |
1755 | SYMBOL_TYPE (sym) = type; | |
1756 | SYMBOL_VALUE (sym) = list -> field.bitpos; | |
1757 | add_symbol_to_list (sym, list_in_scope); | |
1758 | } | |
1759 | /* Now create the vector of fields, and record how big it is. This is | |
1760 | where we reverse the order, by pulling the members off the list in | |
1761 | reverse order from how they were inserted. If we have no fields | |
1762 | (this is apparently possible in C++) then skip building a field | |
1763 | vector. */ | |
1764 | if (nfields > 0) | |
1765 | { | |
1766 | TYPE_NFIELDS (type) = nfields; | |
1767 | TYPE_FIELDS (type) = (struct field *) | |
1768 | obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields); | |
1769 | /* Copy the saved-up fields into the field vector. */ | |
1770 | for (n = 0; (n < nfields) && (list != NULL); list = list -> next) | |
1771 | { | |
1772 | TYPE_FIELD (type, n++) = list -> field; | |
1773 | } | |
1774 | } | |
1775 | } | |
1776 | return (type); | |
1777 | } | |
1778 | ||
1779 | /* | |
1780 | ||
1781 | LOCAL FUNCTION | |
1782 | ||
1783 | read_func_scope -- process all dies within a function scope | |
1784 | ||
1785 | DESCRIPTION | |
1786 | ||
1787 | Process all dies within a given function scope. We are passed | |
1788 | a die information structure pointer DIP for the die which | |
1789 | starts the function scope, and pointers into the raw die data | |
1790 | that define the dies within the function scope. | |
1791 | ||
1792 | For now, we ignore lexical block scopes within the function. | |
1793 | The problem is that AT&T cc does not define a DWARF lexical | |
1794 | block scope for the function itself, while gcc defines a | |
1795 | lexical block scope for the function. We need to think about | |
1796 | how to handle this difference, or if it is even a problem. | |
1797 | (FIXME) | |
1798 | */ | |
1799 | ||
1800 | static void | |
1801 | read_func_scope (dip, thisdie, enddie, objfile) | |
1802 | struct dieinfo *dip; | |
1803 | char *thisdie; | |
1804 | char *enddie; | |
1805 | struct objfile *objfile; | |
1806 | { | |
1807 | register struct context_stack *new; | |
1808 | ||
1809 | if (objfile -> ei.entry_point >= dip -> at_low_pc && | |
1810 | objfile -> ei.entry_point < dip -> at_high_pc) | |
1811 | { | |
1812 | objfile -> ei.entry_func_lowpc = dip -> at_low_pc; | |
1813 | objfile -> ei.entry_func_highpc = dip -> at_high_pc; | |
1814 | } | |
1815 | if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */ | |
1816 | { | |
1817 | objfile -> ei.main_func_lowpc = dip -> at_low_pc; | |
1818 | objfile -> ei.main_func_highpc = dip -> at_high_pc; | |
1819 | } | |
1820 | new = push_context (0, dip -> at_low_pc); | |
1821 | new -> name = new_symbol (dip, objfile); | |
1822 | list_in_scope = &local_symbols; | |
1823 | process_dies (thisdie + dip -> die_length, enddie, objfile); | |
1824 | new = pop_context (); | |
1825 | /* Make a block for the local symbols within. */ | |
1826 | finish_block (new -> name, &local_symbols, new -> old_blocks, | |
1827 | new -> start_addr, dip -> at_high_pc, objfile); | |
1828 | list_in_scope = &file_symbols; | |
1829 | } | |
1830 | ||
1831 | ||
1832 | /* | |
1833 | ||
1834 | LOCAL FUNCTION | |
1835 | ||
1836 | handle_producer -- process the AT_producer attribute | |
1837 | ||
1838 | DESCRIPTION | |
1839 | ||
1840 | Perform any operations that depend on finding a particular | |
1841 | AT_producer attribute. | |
1842 | ||
1843 | */ | |
1844 | ||
1845 | static void | |
1846 | handle_producer (producer) | |
1847 | char *producer; | |
1848 | { | |
1849 | ||
1850 | /* If this compilation unit was compiled with g++ or gcc, then set the | |
1851 | processing_gcc_compilation flag. */ | |
1852 | ||
1853 | processing_gcc_compilation = | |
1854 | STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) | |
1855 | || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER)) | |
1856 | || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)); | |
1857 | ||
1858 | /* Select a demangling style if we can identify the producer and if | |
1859 | the current style is auto. We leave the current style alone if it | |
1860 | is not auto. We also leave the demangling style alone if we find a | |
1861 | gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */ | |
1862 | ||
1863 | if (AUTO_DEMANGLING) | |
1864 | { | |
1865 | if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))) | |
1866 | { | |
1867 | set_demangling_style (GNU_DEMANGLING_STYLE_STRING); | |
1868 | } | |
1869 | else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER))) | |
1870 | { | |
1871 | set_demangling_style (LUCID_DEMANGLING_STYLE_STRING); | |
1872 | } | |
1873 | } | |
1874 | } | |
1875 | ||
1876 | ||
1877 | /* | |
1878 | ||
1879 | LOCAL FUNCTION | |
1880 | ||
1881 | read_file_scope -- process all dies within a file scope | |
1882 | ||
1883 | DESCRIPTION | |
1884 | ||
1885 | Process all dies within a given file scope. We are passed a | |
1886 | pointer to the die information structure for the die which | |
1887 | starts the file scope, and pointers into the raw die data which | |
1888 | mark the range of dies within the file scope. | |
1889 | ||
1890 | When the partial symbol table is built, the file offset for the line | |
1891 | number table for each compilation unit is saved in the partial symbol | |
1892 | table entry for that compilation unit. As the symbols for each | |
1893 | compilation unit are read, the line number table is read into memory | |
1894 | and the variable lnbase is set to point to it. Thus all we have to | |
1895 | do is use lnbase to access the line number table for the current | |
1896 | compilation unit. | |
1897 | */ | |
1898 | ||
1899 | static void | |
1900 | read_file_scope (dip, thisdie, enddie, objfile) | |
1901 | struct dieinfo *dip; | |
1902 | char *thisdie; | |
1903 | char *enddie; | |
1904 | struct objfile *objfile; | |
1905 | { | |
1906 | struct cleanup *back_to; | |
1907 | struct symtab *symtab; | |
1908 | ||
1909 | if (objfile -> ei.entry_point >= dip -> at_low_pc && | |
1910 | objfile -> ei.entry_point < dip -> at_high_pc) | |
1911 | { | |
1912 | objfile -> ei.entry_file_lowpc = dip -> at_low_pc; | |
1913 | objfile -> ei.entry_file_highpc = dip -> at_high_pc; | |
1914 | } | |
1915 | set_cu_language (dip); | |
1916 | if (dip -> at_producer != NULL) | |
1917 | { | |
1918 | handle_producer (dip -> at_producer); | |
1919 | } | |
1920 | numutypes = (enddie - thisdie) / 4; | |
1921 | utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); | |
1922 | back_to = make_cleanup (free, utypes); | |
1923 | memset (utypes, 0, numutypes * sizeof (struct type *)); | |
1924 | memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *)); | |
1925 | start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc); | |
1926 | decode_line_numbers (lnbase); | |
1927 | process_dies (thisdie + dip -> die_length, enddie, objfile); | |
1928 | ||
1929 | symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0); | |
1930 | if (symtab != NULL) | |
1931 | { | |
1932 | symtab -> language = cu_language; | |
1933 | } | |
1934 | do_cleanups (back_to); | |
1935 | utypes = NULL; | |
1936 | numutypes = 0; | |
1937 | } | |
1938 | ||
1939 | /* | |
1940 | ||
1941 | LOCAL FUNCTION | |
1942 | ||
1943 | process_dies -- process a range of DWARF Information Entries | |
1944 | ||
1945 | SYNOPSIS | |
1946 | ||
1947 | static void process_dies (char *thisdie, char *enddie, | |
1948 | struct objfile *objfile) | |
1949 | ||
1950 | DESCRIPTION | |
1951 | ||
1952 | Process all DIE's in a specified range. May be (and almost | |
1953 | certainly will be) called recursively. | |
1954 | */ | |
1955 | ||
1956 | static void | |
1957 | process_dies (thisdie, enddie, objfile) | |
1958 | char *thisdie; | |
1959 | char *enddie; | |
1960 | struct objfile *objfile; | |
1961 | { | |
1962 | char *nextdie; | |
1963 | struct dieinfo di; | |
1964 | ||
1965 | while (thisdie < enddie) | |
1966 | { | |
1967 | basicdieinfo (&di, thisdie, objfile); | |
1968 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
1969 | { | |
1970 | break; | |
1971 | } | |
1972 | else if (di.die_tag == TAG_padding) | |
1973 | { | |
1974 | nextdie = thisdie + di.die_length; | |
1975 | } | |
1976 | else | |
1977 | { | |
1978 | completedieinfo (&di, objfile); | |
1979 | if (di.at_sibling != 0) | |
1980 | { | |
1981 | nextdie = dbbase + di.at_sibling - dbroff; | |
1982 | } | |
1983 | else | |
1984 | { | |
1985 | nextdie = thisdie + di.die_length; | |
1986 | } | |
1987 | #ifdef SMASH_TEXT_ADDRESS | |
1988 | /* I think that these are always text, not data, addresses. */ | |
1989 | SMASH_TEXT_ADDRESS (di.at_low_pc); | |
1990 | SMASH_TEXT_ADDRESS (di.at_high_pc); | |
1991 | #endif | |
1992 | switch (di.die_tag) | |
1993 | { | |
1994 | case TAG_compile_unit: | |
1995 | /* Skip Tag_compile_unit if we are already inside a compilation | |
1996 | unit, we are unable to handle nested compilation units | |
1997 | properly (FIXME). */ | |
1998 | if (current_subfile == NULL) | |
1999 | read_file_scope (&di, thisdie, nextdie, objfile); | |
2000 | else | |
2001 | nextdie = thisdie + di.die_length; | |
2002 | break; | |
2003 | case TAG_global_subroutine: | |
2004 | case TAG_subroutine: | |
2005 | if (di.has_at_low_pc) | |
2006 | { | |
2007 | read_func_scope (&di, thisdie, nextdie, objfile); | |
2008 | } | |
2009 | break; | |
2010 | case TAG_lexical_block: | |
2011 | read_lexical_block_scope (&di, thisdie, nextdie, objfile); | |
2012 | break; | |
2013 | case TAG_class_type: | |
2014 | case TAG_structure_type: | |
2015 | case TAG_union_type: | |
2016 | read_structure_scope (&di, thisdie, nextdie, objfile); | |
2017 | break; | |
2018 | case TAG_enumeration_type: | |
2019 | read_enumeration (&di, thisdie, nextdie, objfile); | |
2020 | break; | |
2021 | case TAG_subroutine_type: | |
2022 | read_subroutine_type (&di, thisdie, nextdie); | |
2023 | break; | |
2024 | case TAG_array_type: | |
2025 | dwarf_read_array_type (&di); | |
2026 | break; | |
2027 | case TAG_pointer_type: | |
2028 | read_tag_pointer_type (&di); | |
2029 | break; | |
2030 | case TAG_string_type: | |
2031 | read_tag_string_type (&di); | |
2032 | break; | |
2033 | default: | |
2034 | new_symbol (&di, objfile); | |
2035 | break; | |
2036 | } | |
2037 | } | |
2038 | thisdie = nextdie; | |
2039 | } | |
2040 | } | |
2041 | ||
2042 | /* | |
2043 | ||
2044 | LOCAL FUNCTION | |
2045 | ||
2046 | decode_line_numbers -- decode a line number table fragment | |
2047 | ||
2048 | SYNOPSIS | |
2049 | ||
2050 | static void decode_line_numbers (char *tblscan, char *tblend, | |
2051 | long length, long base, long line, long pc) | |
2052 | ||
2053 | DESCRIPTION | |
2054 | ||
2055 | Translate the DWARF line number information to gdb form. | |
2056 | ||
2057 | The ".line" section contains one or more line number tables, one for | |
2058 | each ".line" section from the objects that were linked. | |
2059 | ||
2060 | The AT_stmt_list attribute for each TAG_source_file entry in the | |
2061 | ".debug" section contains the offset into the ".line" section for the | |
2062 | start of the table for that file. | |
2063 | ||
2064 | The table itself has the following structure: | |
2065 | ||
2066 | <table length><base address><source statement entry> | |
2067 | 4 bytes 4 bytes 10 bytes | |
2068 | ||
2069 | The table length is the total size of the table, including the 4 bytes | |
2070 | for the length information. | |
2071 | ||
2072 | The base address is the address of the first instruction generated | |
2073 | for the source file. | |
2074 | ||
2075 | Each source statement entry has the following structure: | |
2076 | ||
2077 | <line number><statement position><address delta> | |
2078 | 4 bytes 2 bytes 4 bytes | |
2079 | ||
2080 | The line number is relative to the start of the file, starting with | |
2081 | line 1. | |
2082 | ||
2083 | The statement position either -1 (0xFFFF) or the number of characters | |
2084 | from the beginning of the line to the beginning of the statement. | |
2085 | ||
2086 | The address delta is the difference between the base address and | |
2087 | the address of the first instruction for the statement. | |
2088 | ||
2089 | Note that we must copy the bytes from the packed table to our local | |
2090 | variables before attempting to use them, to avoid alignment problems | |
2091 | on some machines, particularly RISC processors. | |
2092 | ||
2093 | BUGS | |
2094 | ||
2095 | Does gdb expect the line numbers to be sorted? They are now by | |
2096 | chance/luck, but are not required to be. (FIXME) | |
2097 | ||
2098 | The line with number 0 is unused, gdb apparently can discover the | |
2099 | span of the last line some other way. How? (FIXME) | |
2100 | */ | |
2101 | ||
2102 | static void | |
2103 | decode_line_numbers (linetable) | |
2104 | char *linetable; | |
2105 | { | |
2106 | char *tblscan; | |
2107 | char *tblend; | |
2108 | unsigned long length; | |
2109 | unsigned long base; | |
2110 | unsigned long line; | |
2111 | unsigned long pc; | |
2112 | ||
2113 | if (linetable != NULL) | |
2114 | { | |
2115 | tblscan = tblend = linetable; | |
2116 | length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED, | |
2117 | current_objfile); | |
2118 | tblscan += SIZEOF_LINETBL_LENGTH; | |
2119 | tblend += length; | |
2120 | base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile), | |
2121 | GET_UNSIGNED, current_objfile); | |
2122 | tblscan += TARGET_FT_POINTER_SIZE (objfile); | |
2123 | base += baseaddr; | |
2124 | while (tblscan < tblend) | |
2125 | { | |
2126 | line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED, | |
2127 | current_objfile); | |
2128 | tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT; | |
2129 | pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED, | |
2130 | current_objfile); | |
2131 | tblscan += SIZEOF_LINETBL_DELTA; | |
2132 | pc += base; | |
2133 | if (line != 0) | |
2134 | { | |
2135 | record_line (current_subfile, line, pc); | |
2136 | } | |
2137 | } | |
2138 | } | |
2139 | } | |
2140 | ||
2141 | /* | |
2142 | ||
2143 | LOCAL FUNCTION | |
2144 | ||
2145 | locval -- compute the value of a location attribute | |
2146 | ||
2147 | SYNOPSIS | |
2148 | ||
2149 | static int locval (char *loc) | |
2150 | ||
2151 | DESCRIPTION | |
2152 | ||
2153 | Given pointer to a string of bytes that define a location, compute | |
2154 | the location and return the value. | |
2155 | A location description containing no atoms indicates that the | |
2156 | object is optimized out. The global optimized_out flag is set for | |
2157 | those, the return value is meaningless. | |
2158 | ||
2159 | When computing values involving the current value of the frame pointer, | |
2160 | the value zero is used, which results in a value relative to the frame | |
2161 | pointer, rather than the absolute value. This is what GDB wants | |
2162 | anyway. | |
2163 | ||
2164 | When the result is a register number, the global isreg flag is set, | |
2165 | otherwise it is cleared. This is a kludge until we figure out a better | |
2166 | way to handle the problem. Gdb's design does not mesh well with the | |
2167 | DWARF notion of a location computing interpreter, which is a shame | |
2168 | because the flexibility goes unused. | |
2169 | ||
2170 | NOTES | |
2171 | ||
2172 | Note that stack[0] is unused except as a default error return. | |
2173 | Note that stack overflow is not yet handled. | |
2174 | */ | |
2175 | ||
2176 | static int | |
2177 | locval (loc) | |
2178 | char *loc; | |
2179 | { | |
2180 | unsigned short nbytes; | |
2181 | unsigned short locsize; | |
2182 | auto long stack[64]; | |
2183 | int stacki; | |
2184 | char *end; | |
2185 | int loc_atom_code; | |
2186 | int loc_value_size; | |
2187 | ||
2188 | nbytes = attribute_size (AT_location); | |
2189 | locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile); | |
2190 | loc += nbytes; | |
2191 | end = loc + locsize; | |
2192 | stacki = 0; | |
2193 | stack[stacki] = 0; | |
2194 | isreg = 0; | |
2195 | offreg = 0; | |
2196 | optimized_out = 1; | |
2197 | loc_value_size = TARGET_FT_LONG_SIZE (current_objfile); | |
2198 | while (loc < end) | |
2199 | { | |
2200 | optimized_out = 0; | |
2201 | loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED, | |
2202 | current_objfile); | |
2203 | loc += SIZEOF_LOC_ATOM_CODE; | |
2204 | switch (loc_atom_code) | |
2205 | { | |
2206 | case 0: | |
2207 | /* error */ | |
2208 | loc = end; | |
2209 | break; | |
2210 | case OP_REG: | |
2211 | /* push register (number) */ | |
2212 | stack[++stacki] | |
2213 | = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size, | |
2214 | GET_UNSIGNED, | |
2215 | current_objfile)); | |
2216 | loc += loc_value_size; | |
2217 | isreg = 1; | |
2218 | break; | |
2219 | case OP_BASEREG: | |
2220 | /* push value of register (number) */ | |
2221 | /* Actually, we compute the value as if register has 0, so the | |
2222 | value ends up being the offset from that register. */ | |
2223 | offreg = 1; | |
2224 | basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED, | |
2225 | current_objfile); | |
2226 | loc += loc_value_size; | |
2227 | stack[++stacki] = 0; | |
2228 | break; | |
2229 | case OP_ADDR: | |
2230 | /* push address (relocated address) */ | |
2231 | stack[++stacki] = target_to_host (loc, loc_value_size, | |
2232 | GET_UNSIGNED, current_objfile); | |
2233 | loc += loc_value_size; | |
2234 | break; | |
2235 | case OP_CONST: | |
2236 | /* push constant (number) FIXME: signed or unsigned! */ | |
2237 | stack[++stacki] = target_to_host (loc, loc_value_size, | |
2238 | GET_SIGNED, current_objfile); | |
2239 | loc += loc_value_size; | |
2240 | break; | |
2241 | case OP_DEREF2: | |
2242 | /* pop, deref and push 2 bytes (as a long) */ | |
2243 | complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]); | |
2244 | break; | |
2245 | case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ | |
2246 | complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]); | |
2247 | break; | |
2248 | case OP_ADD: /* pop top 2 items, add, push result */ | |
2249 | stack[stacki - 1] += stack[stacki]; | |
2250 | stacki--; | |
2251 | break; | |
2252 | } | |
2253 | } | |
2254 | return (stack[stacki]); | |
2255 | } | |
2256 | ||
2257 | /* | |
2258 | ||
2259 | LOCAL FUNCTION | |
2260 | ||
2261 | read_ofile_symtab -- build a full symtab entry from chunk of DIE's | |
2262 | ||
2263 | SYNOPSIS | |
2264 | ||
2265 | static void read_ofile_symtab (struct partial_symtab *pst) | |
2266 | ||
2267 | DESCRIPTION | |
2268 | ||
2269 | When expanding a partial symbol table entry to a full symbol table | |
2270 | entry, this is the function that gets called to read in the symbols | |
2271 | for the compilation unit. A pointer to the newly constructed symtab, | |
2272 | which is now the new first one on the objfile's symtab list, is | |
2273 | stashed in the partial symbol table entry. | |
2274 | */ | |
2275 | ||
2276 | static void | |
2277 | read_ofile_symtab (pst) | |
2278 | struct partial_symtab *pst; | |
2279 | { | |
2280 | struct cleanup *back_to; | |
2281 | unsigned long lnsize; | |
2282 | file_ptr foffset; | |
2283 | bfd *abfd; | |
2284 | char lnsizedata[SIZEOF_LINETBL_LENGTH]; | |
2285 | ||
2286 | abfd = pst -> objfile -> obfd; | |
2287 | current_objfile = pst -> objfile; | |
2288 | ||
2289 | /* Allocate a buffer for the entire chunk of DIE's for this compilation | |
2290 | unit, seek to the location in the file, and read in all the DIE's. */ | |
2291 | ||
2292 | diecount = 0; | |
2293 | dbsize = DBLENGTH (pst); | |
2294 | dbbase = xmalloc (dbsize); | |
2295 | dbroff = DBROFF(pst); | |
2296 | foffset = DBFOFF(pst) + dbroff; | |
2297 | base_section_offsets = pst->section_offsets; | |
2298 | baseaddr = ANOFFSET (pst->section_offsets, 0); | |
2299 | if (bfd_seek (abfd, foffset, L_SET) || | |
2300 | (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) | |
2301 | { | |
2302 | free (dbbase); | |
2303 | error ("can't read DWARF data"); | |
2304 | } | |
2305 | back_to = make_cleanup (free, dbbase); | |
2306 | ||
2307 | /* If there is a line number table associated with this compilation unit | |
2308 | then read the size of this fragment in bytes, from the fragment itself. | |
2309 | Allocate a buffer for the fragment and read it in for future | |
2310 | processing. */ | |
2311 | ||
2312 | lnbase = NULL; | |
2313 | if (LNFOFF (pst)) | |
2314 | { | |
2315 | if (bfd_seek (abfd, LNFOFF (pst), L_SET) || | |
2316 | (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) != | |
2317 | sizeof (lnsizedata))) | |
2318 | { | |
2319 | error ("can't read DWARF line number table size"); | |
2320 | } | |
2321 | lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH, | |
2322 | GET_UNSIGNED, pst -> objfile); | |
2323 | lnbase = xmalloc (lnsize); | |
2324 | if (bfd_seek (abfd, LNFOFF (pst), L_SET) || | |
2325 | (bfd_read (lnbase, lnsize, 1, abfd) != lnsize)) | |
2326 | { | |
2327 | free (lnbase); | |
2328 | error ("can't read DWARF line numbers"); | |
2329 | } | |
2330 | make_cleanup (free, lnbase); | |
2331 | } | |
2332 | ||
2333 | process_dies (dbbase, dbbase + dbsize, pst -> objfile); | |
2334 | do_cleanups (back_to); | |
2335 | current_objfile = NULL; | |
2336 | pst -> symtab = pst -> objfile -> symtabs; | |
2337 | } | |
2338 | ||
2339 | /* | |
2340 | ||
2341 | LOCAL FUNCTION | |
2342 | ||
2343 | psymtab_to_symtab_1 -- do grunt work for building a full symtab entry | |
2344 | ||
2345 | SYNOPSIS | |
2346 | ||
2347 | static void psymtab_to_symtab_1 (struct partial_symtab *pst) | |
2348 | ||
2349 | DESCRIPTION | |
2350 | ||
2351 | Called once for each partial symbol table entry that needs to be | |
2352 | expanded into a full symbol table entry. | |
2353 | ||
2354 | */ | |
2355 | ||
2356 | static void | |
2357 | psymtab_to_symtab_1 (pst) | |
2358 | struct partial_symtab *pst; | |
2359 | { | |
2360 | int i; | |
2361 | struct cleanup *old_chain; | |
2362 | ||
2363 | if (pst != NULL) | |
2364 | { | |
2365 | if (pst->readin) | |
2366 | { | |
2367 | warning ("psymtab for %s already read in. Shouldn't happen.", | |
2368 | pst -> filename); | |
2369 | } | |
2370 | else | |
2371 | { | |
2372 | /* Read in all partial symtabs on which this one is dependent */ | |
2373 | for (i = 0; i < pst -> number_of_dependencies; i++) | |
2374 | { | |
2375 | if (!pst -> dependencies[i] -> readin) | |
2376 | { | |
2377 | /* Inform about additional files that need to be read in. */ | |
2378 | if (info_verbose) | |
2379 | { | |
2380 | fputs_filtered (" ", gdb_stdout); | |
2381 | wrap_here (""); | |
2382 | fputs_filtered ("and ", gdb_stdout); | |
2383 | wrap_here (""); | |
2384 | printf_filtered ("%s...", | |
2385 | pst -> dependencies[i] -> filename); | |
2386 | wrap_here (""); | |
2387 | gdb_flush (gdb_stdout); /* Flush output */ | |
2388 | } | |
2389 | psymtab_to_symtab_1 (pst -> dependencies[i]); | |
2390 | } | |
2391 | } | |
2392 | if (DBLENGTH (pst)) /* Otherwise it's a dummy */ | |
2393 | { | |
2394 | buildsym_init (); | |
2395 | old_chain = make_cleanup (really_free_pendings, 0); | |
2396 | read_ofile_symtab (pst); | |
2397 | if (info_verbose) | |
2398 | { | |
2399 | printf_filtered ("%d DIE's, sorting...", diecount); | |
2400 | wrap_here (""); | |
2401 | gdb_flush (gdb_stdout); | |
2402 | } | |
2403 | sort_symtab_syms (pst -> symtab); | |
2404 | do_cleanups (old_chain); | |
2405 | } | |
2406 | pst -> readin = 1; | |
2407 | } | |
2408 | } | |
2409 | } | |
2410 | ||
2411 | /* | |
2412 | ||
2413 | LOCAL FUNCTION | |
2414 | ||
2415 | dwarf_psymtab_to_symtab -- build a full symtab entry from partial one | |
2416 | ||
2417 | SYNOPSIS | |
2418 | ||
2419 | static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) | |
2420 | ||
2421 | DESCRIPTION | |
2422 | ||
2423 | This is the DWARF support entry point for building a full symbol | |
2424 | table entry from a partial symbol table entry. We are passed a | |
2425 | pointer to the partial symbol table entry that needs to be expanded. | |
2426 | ||
2427 | */ | |
2428 | ||
2429 | static void | |
2430 | dwarf_psymtab_to_symtab (pst) | |
2431 | struct partial_symtab *pst; | |
2432 | { | |
2433 | ||
2434 | if (pst != NULL) | |
2435 | { | |
2436 | if (pst -> readin) | |
2437 | { | |
2438 | warning ("psymtab for %s already read in. Shouldn't happen.", | |
2439 | pst -> filename); | |
2440 | } | |
2441 | else | |
2442 | { | |
2443 | if (DBLENGTH (pst) || pst -> number_of_dependencies) | |
2444 | { | |
2445 | /* Print the message now, before starting serious work, to avoid | |
2446 | disconcerting pauses. */ | |
2447 | if (info_verbose) | |
2448 | { | |
2449 | printf_filtered ("Reading in symbols for %s...", | |
2450 | pst -> filename); | |
2451 | gdb_flush (gdb_stdout); | |
2452 | } | |
2453 | ||
2454 | psymtab_to_symtab_1 (pst); | |
2455 | ||
2456 | #if 0 /* FIXME: Check to see what dbxread is doing here and see if | |
2457 | we need to do an equivalent or is this something peculiar to | |
2458 | stabs/a.out format. | |
2459 | Match with global symbols. This only needs to be done once, | |
2460 | after all of the symtabs and dependencies have been read in. | |
2461 | */ | |
2462 | scan_file_globals (pst -> objfile); | |
2463 | #endif | |
2464 | ||
2465 | /* Finish up the verbose info message. */ | |
2466 | if (info_verbose) | |
2467 | { | |
2468 | printf_filtered ("done.\n"); | |
2469 | gdb_flush (gdb_stdout); | |
2470 | } | |
2471 | } | |
2472 | } | |
2473 | } | |
2474 | } | |
2475 | ||
2476 | /* | |
2477 | ||
2478 | LOCAL FUNCTION | |
2479 | ||
2480 | add_enum_psymbol -- add enumeration members to partial symbol table | |
2481 | ||
2482 | DESCRIPTION | |
2483 | ||
2484 | Given pointer to a DIE that is known to be for an enumeration, | |
2485 | extract the symbolic names of the enumeration members and add | |
2486 | partial symbols for them. | |
2487 | */ | |
2488 | ||
2489 | static void | |
2490 | add_enum_psymbol (dip, objfile) | |
2491 | struct dieinfo *dip; | |
2492 | struct objfile *objfile; | |
2493 | { | |
2494 | char *scan; | |
2495 | char *listend; | |
2496 | unsigned short blocksz; | |
2497 | int nbytes; | |
2498 | ||
2499 | if ((scan = dip -> at_element_list) != NULL) | |
2500 | { | |
2501 | if (dip -> short_element_list) | |
2502 | { | |
2503 | nbytes = attribute_size (AT_short_element_list); | |
2504 | } | |
2505 | else | |
2506 | { | |
2507 | nbytes = attribute_size (AT_element_list); | |
2508 | } | |
2509 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); | |
2510 | scan += nbytes; | |
2511 | listend = scan + blocksz; | |
2512 | while (scan < listend) | |
2513 | { | |
2514 | scan += TARGET_FT_LONG_SIZE (objfile); | |
2515 | ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST, | |
2516 | objfile -> static_psymbols, 0, cu_language, | |
2517 | objfile); | |
2518 | scan += strlen (scan) + 1; | |
2519 | } | |
2520 | } | |
2521 | } | |
2522 | ||
2523 | /* | |
2524 | ||
2525 | LOCAL FUNCTION | |
2526 | ||
2527 | add_partial_symbol -- add symbol to partial symbol table | |
2528 | ||
2529 | DESCRIPTION | |
2530 | ||
2531 | Given a DIE, if it is one of the types that we want to | |
2532 | add to a partial symbol table, finish filling in the die info | |
2533 | and then add a partial symbol table entry for it. | |
2534 | ||
2535 | NOTES | |
2536 | ||
2537 | The caller must ensure that the DIE has a valid name attribute. | |
2538 | */ | |
2539 | ||
2540 | static void | |
2541 | add_partial_symbol (dip, objfile) | |
2542 | struct dieinfo *dip; | |
2543 | struct objfile *objfile; | |
2544 | { | |
2545 | switch (dip -> die_tag) | |
2546 | { | |
2547 | case TAG_global_subroutine: | |
2548 | ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name), | |
2549 | VAR_NAMESPACE, LOC_BLOCK, | |
2550 | objfile -> global_psymbols, | |
2551 | dip -> at_low_pc, cu_language, objfile); | |
2552 | break; | |
2553 | case TAG_global_variable: | |
2554 | ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name), | |
2555 | VAR_NAMESPACE, LOC_STATIC, | |
2556 | objfile -> global_psymbols, | |
2557 | 0, cu_language, objfile); | |
2558 | break; | |
2559 | case TAG_subroutine: | |
2560 | ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name), | |
2561 | VAR_NAMESPACE, LOC_BLOCK, | |
2562 | objfile -> static_psymbols, | |
2563 | dip -> at_low_pc, cu_language, objfile); | |
2564 | break; | |
2565 | case TAG_local_variable: | |
2566 | ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name), | |
2567 | VAR_NAMESPACE, LOC_STATIC, | |
2568 | objfile -> static_psymbols, | |
2569 | 0, cu_language, objfile); | |
2570 | break; | |
2571 | case TAG_typedef: | |
2572 | ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name), | |
2573 | VAR_NAMESPACE, LOC_TYPEDEF, | |
2574 | objfile -> static_psymbols, | |
2575 | 0, cu_language, objfile); | |
2576 | break; | |
2577 | case TAG_class_type: | |
2578 | case TAG_structure_type: | |
2579 | case TAG_union_type: | |
2580 | case TAG_enumeration_type: | |
2581 | /* Do not add opaque aggregate definitions to the psymtab. */ | |
2582 | if (!dip -> has_at_byte_size) | |
2583 | break; | |
2584 | ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name), | |
2585 | STRUCT_NAMESPACE, LOC_TYPEDEF, | |
2586 | objfile -> static_psymbols, | |
2587 | 0, cu_language, objfile); | |
2588 | if (cu_language == language_cplus) | |
2589 | { | |
2590 | /* For C++, these implicitly act as typedefs as well. */ | |
2591 | ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name), | |
2592 | VAR_NAMESPACE, LOC_TYPEDEF, | |
2593 | objfile -> static_psymbols, | |
2594 | 0, cu_language, objfile); | |
2595 | } | |
2596 | break; | |
2597 | } | |
2598 | } | |
2599 | ||
2600 | /* | |
2601 | ||
2602 | LOCAL FUNCTION | |
2603 | ||
2604 | scan_partial_symbols -- scan DIE's within a single compilation unit | |
2605 | ||
2606 | DESCRIPTION | |
2607 | ||
2608 | Process the DIE's within a single compilation unit, looking for | |
2609 | interesting DIE's that contribute to the partial symbol table entry | |
2610 | for this compilation unit. | |
2611 | ||
2612 | NOTES | |
2613 | ||
2614 | There are some DIE's that may appear both at file scope and within | |
2615 | the scope of a function. We are only interested in the ones at file | |
2616 | scope, and the only way to tell them apart is to keep track of the | |
2617 | scope. For example, consider the test case: | |
2618 | ||
2619 | static int i; | |
2620 | main () { int j; } | |
2621 | ||
2622 | for which the relevant DWARF segment has the structure: | |
2623 | ||
2624 | 0x51: | |
2625 | 0x23 global subrtn sibling 0x9b | |
2626 | name main | |
2627 | fund_type FT_integer | |
2628 | low_pc 0x800004cc | |
2629 | high_pc 0x800004d4 | |
2630 | ||
2631 | 0x74: | |
2632 | 0x23 local var sibling 0x97 | |
2633 | name j | |
2634 | fund_type FT_integer | |
2635 | location OP_BASEREG 0xe | |
2636 | OP_CONST 0xfffffffc | |
2637 | OP_ADD | |
2638 | 0x97: | |
2639 | 0x4 | |
2640 | ||
2641 | 0x9b: | |
2642 | 0x1d local var sibling 0xb8 | |
2643 | name i | |
2644 | fund_type FT_integer | |
2645 | location OP_ADDR 0x800025dc | |
2646 | ||
2647 | 0xb8: | |
2648 | 0x4 | |
2649 | ||
2650 | We want to include the symbol 'i' in the partial symbol table, but | |
2651 | not the symbol 'j'. In essence, we want to skip all the dies within | |
2652 | the scope of a TAG_global_subroutine DIE. | |
2653 | ||
2654 | Don't attempt to add anonymous structures or unions since they have | |
2655 | no name. Anonymous enumerations however are processed, because we | |
2656 | want to extract their member names (the check for a tag name is | |
2657 | done later). | |
2658 | ||
2659 | Also, for variables and subroutines, check that this is the place | |
2660 | where the actual definition occurs, rather than just a reference | |
2661 | to an external. | |
2662 | */ | |
2663 | ||
2664 | static void | |
2665 | scan_partial_symbols (thisdie, enddie, objfile) | |
2666 | char *thisdie; | |
2667 | char *enddie; | |
2668 | struct objfile *objfile; | |
2669 | { | |
2670 | char *nextdie; | |
2671 | char *temp; | |
2672 | struct dieinfo di; | |
2673 | ||
2674 | while (thisdie < enddie) | |
2675 | { | |
2676 | basicdieinfo (&di, thisdie, objfile); | |
2677 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2678 | { | |
2679 | break; | |
2680 | } | |
2681 | else | |
2682 | { | |
2683 | nextdie = thisdie + di.die_length; | |
2684 | /* To avoid getting complete die information for every die, we | |
2685 | only do it (below) for the cases we are interested in. */ | |
2686 | switch (di.die_tag) | |
2687 | { | |
2688 | case TAG_global_subroutine: | |
2689 | case TAG_subroutine: | |
2690 | completedieinfo (&di, objfile); | |
2691 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |
2692 | { | |
2693 | add_partial_symbol (&di, objfile); | |
2694 | /* If there is a sibling attribute, adjust the nextdie | |
2695 | pointer to skip the entire scope of the subroutine. | |
2696 | Apply some sanity checking to make sure we don't | |
2697 | overrun or underrun the range of remaining DIE's */ | |
2698 | if (di.at_sibling != 0) | |
2699 | { | |
2700 | temp = dbbase + di.at_sibling - dbroff; | |
2701 | if ((temp < thisdie) || (temp >= enddie)) | |
2702 | { | |
2703 | complain (&bad_die_ref, DIE_ID, DIE_NAME, | |
2704 | di.at_sibling); | |
2705 | } | |
2706 | else | |
2707 | { | |
2708 | nextdie = temp; | |
2709 | } | |
2710 | } | |
2711 | } | |
2712 | break; | |
2713 | case TAG_global_variable: | |
2714 | case TAG_local_variable: | |
2715 | completedieinfo (&di, objfile); | |
2716 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |
2717 | { | |
2718 | add_partial_symbol (&di, objfile); | |
2719 | } | |
2720 | break; | |
2721 | case TAG_typedef: | |
2722 | case TAG_class_type: | |
2723 | case TAG_structure_type: | |
2724 | case TAG_union_type: | |
2725 | completedieinfo (&di, objfile); | |
2726 | if (di.at_name) | |
2727 | { | |
2728 | add_partial_symbol (&di, objfile); | |
2729 | } | |
2730 | break; | |
2731 | case TAG_enumeration_type: | |
2732 | completedieinfo (&di, objfile); | |
2733 | if (di.at_name) | |
2734 | { | |
2735 | add_partial_symbol (&di, objfile); | |
2736 | } | |
2737 | add_enum_psymbol (&di, objfile); | |
2738 | break; | |
2739 | } | |
2740 | } | |
2741 | thisdie = nextdie; | |
2742 | } | |
2743 | } | |
2744 | ||
2745 | /* | |
2746 | ||
2747 | LOCAL FUNCTION | |
2748 | ||
2749 | scan_compilation_units -- build a psymtab entry for each compilation | |
2750 | ||
2751 | DESCRIPTION | |
2752 | ||
2753 | This is the top level dwarf parsing routine for building partial | |
2754 | symbol tables. | |
2755 | ||
2756 | It scans from the beginning of the DWARF table looking for the first | |
2757 | TAG_compile_unit DIE, and then follows the sibling chain to locate | |
2758 | each additional TAG_compile_unit DIE. | |
2759 | ||
2760 | For each TAG_compile_unit DIE it creates a partial symtab structure, | |
2761 | calls a subordinate routine to collect all the compilation unit's | |
2762 | global DIE's, file scope DIEs, typedef DIEs, etc, and then links the | |
2763 | new partial symtab structure into the partial symbol table. It also | |
2764 | records the appropriate information in the partial symbol table entry | |
2765 | to allow the chunk of DIE's and line number table for this compilation | |
2766 | unit to be located and re-read later, to generate a complete symbol | |
2767 | table entry for the compilation unit. | |
2768 | ||
2769 | Thus it effectively partitions up a chunk of DIE's for multiple | |
2770 | compilation units into smaller DIE chunks and line number tables, | |
2771 | and associates them with a partial symbol table entry. | |
2772 | ||
2773 | NOTES | |
2774 | ||
2775 | If any compilation unit has no line number table associated with | |
2776 | it for some reason (a missing at_stmt_list attribute, rather than | |
2777 | just one with a value of zero, which is valid) then we ensure that | |
2778 | the recorded file offset is zero so that the routine which later | |
2779 | reads line number table fragments knows that there is no fragment | |
2780 | to read. | |
2781 | ||
2782 | RETURNS | |
2783 | ||
2784 | Returns no value. | |
2785 | ||
2786 | */ | |
2787 | ||
2788 | static void | |
2789 | scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile) | |
2790 | char *thisdie; | |
2791 | char *enddie; | |
2792 | file_ptr dbfoff; | |
2793 | file_ptr lnoffset; | |
2794 | struct objfile *objfile; | |
2795 | { | |
2796 | char *nextdie; | |
2797 | struct dieinfo di; | |
2798 | struct partial_symtab *pst; | |
2799 | int culength; | |
2800 | int curoff; | |
2801 | file_ptr curlnoffset; | |
2802 | ||
2803 | while (thisdie < enddie) | |
2804 | { | |
2805 | basicdieinfo (&di, thisdie, objfile); | |
2806 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2807 | { | |
2808 | break; | |
2809 | } | |
2810 | else if (di.die_tag != TAG_compile_unit) | |
2811 | { | |
2812 | nextdie = thisdie + di.die_length; | |
2813 | } | |
2814 | else | |
2815 | { | |
2816 | completedieinfo (&di, objfile); | |
2817 | set_cu_language (&di); | |
2818 | if (di.at_sibling != 0) | |
2819 | { | |
2820 | nextdie = dbbase + di.at_sibling - dbroff; | |
2821 | } | |
2822 | else | |
2823 | { | |
2824 | nextdie = thisdie + di.die_length; | |
2825 | } | |
2826 | curoff = thisdie - dbbase; | |
2827 | culength = nextdie - thisdie; | |
2828 | curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0; | |
2829 | ||
2830 | /* First allocate a new partial symbol table structure */ | |
2831 | ||
2832 | pst = start_psymtab_common (objfile, base_section_offsets, | |
2833 | di.at_name, di.at_low_pc, | |
2834 | objfile -> global_psymbols.next, | |
2835 | objfile -> static_psymbols.next); | |
2836 | ||
2837 | pst -> texthigh = di.at_high_pc; | |
2838 | pst -> read_symtab_private = (char *) | |
2839 | obstack_alloc (&objfile -> psymbol_obstack, | |
2840 | sizeof (struct dwfinfo)); | |
2841 | DBFOFF (pst) = dbfoff; | |
2842 | DBROFF (pst) = curoff; | |
2843 | DBLENGTH (pst) = culength; | |
2844 | LNFOFF (pst) = curlnoffset; | |
2845 | pst -> read_symtab = dwarf_psymtab_to_symtab; | |
2846 | ||
2847 | /* Now look for partial symbols */ | |
2848 | ||
2849 | scan_partial_symbols (thisdie + di.die_length, nextdie, objfile); | |
2850 | ||
2851 | pst -> n_global_syms = objfile -> global_psymbols.next - | |
2852 | (objfile -> global_psymbols.list + pst -> globals_offset); | |
2853 | pst -> n_static_syms = objfile -> static_psymbols.next - | |
2854 | (objfile -> static_psymbols.list + pst -> statics_offset); | |
2855 | sort_pst_symbols (pst); | |
2856 | /* If there is already a psymtab or symtab for a file of this name, | |
2857 | remove it. (If there is a symtab, more drastic things also | |
2858 | happen.) This happens in VxWorks. */ | |
2859 | free_named_symtabs (pst -> filename); | |
2860 | } | |
2861 | thisdie = nextdie; | |
2862 | } | |
2863 | } | |
2864 | ||
2865 | /* | |
2866 | ||
2867 | LOCAL FUNCTION | |
2868 | ||
2869 | new_symbol -- make a symbol table entry for a new symbol | |
2870 | ||
2871 | SYNOPSIS | |
2872 | ||
2873 | static struct symbol *new_symbol (struct dieinfo *dip, | |
2874 | struct objfile *objfile) | |
2875 | ||
2876 | DESCRIPTION | |
2877 | ||
2878 | Given a pointer to a DWARF information entry, figure out if we need | |
2879 | to make a symbol table entry for it, and if so, create a new entry | |
2880 | and return a pointer to it. | |
2881 | */ | |
2882 | ||
2883 | static struct symbol * | |
2884 | new_symbol (dip, objfile) | |
2885 | struct dieinfo *dip; | |
2886 | struct objfile *objfile; | |
2887 | { | |
2888 | struct symbol *sym = NULL; | |
2889 | ||
2890 | if (dip -> at_name != NULL) | |
2891 | { | |
2892 | sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack, | |
2893 | sizeof (struct symbol)); | |
2894 | memset (sym, 0, sizeof (struct symbol)); | |
2895 | SYMBOL_NAME (sym) = create_name (dip -> at_name, | |
2896 | &objfile->symbol_obstack); | |
2897 | /* default assumptions */ | |
2898 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
2899 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2900 | SYMBOL_TYPE (sym) = decode_die_type (dip); | |
2901 | ||
2902 | /* If this symbol is from a C++ compilation, then attempt to cache the | |
2903 | demangled form for future reference. This is a typical time versus | |
2904 | space tradeoff, that was decided in favor of time because it sped up | |
2905 | C++ symbol lookups by a factor of about 20. */ | |
2906 | ||
2907 | SYMBOL_LANGUAGE (sym) = cu_language; | |
2908 | SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack); | |
2909 | switch (dip -> die_tag) | |
2910 | { | |
2911 | case TAG_label: | |
2912 | SYMBOL_VALUE (sym) = dip -> at_low_pc; | |
2913 | SYMBOL_CLASS (sym) = LOC_LABEL; | |
2914 | break; | |
2915 | case TAG_global_subroutine: | |
2916 | case TAG_subroutine: | |
2917 | SYMBOL_VALUE (sym) = dip -> at_low_pc; | |
2918 | SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym)); | |
2919 | SYMBOL_CLASS (sym) = LOC_BLOCK; | |
2920 | if (dip -> die_tag == TAG_global_subroutine) | |
2921 | { | |
2922 | add_symbol_to_list (sym, &global_symbols); | |
2923 | } | |
2924 | else | |
2925 | { | |
2926 | add_symbol_to_list (sym, list_in_scope); | |
2927 | } | |
2928 | break; | |
2929 | case TAG_global_variable: | |
2930 | if (dip -> at_location != NULL) | |
2931 | { | |
2932 | SYMBOL_VALUE (sym) = locval (dip -> at_location); | |
2933 | add_symbol_to_list (sym, &global_symbols); | |
2934 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2935 | SYMBOL_VALUE (sym) += baseaddr; | |
2936 | } | |
2937 | break; | |
2938 | case TAG_local_variable: | |
2939 | if (dip -> at_location != NULL) | |
2940 | { | |
2941 | SYMBOL_VALUE (sym) = locval (dip -> at_location); | |
2942 | add_symbol_to_list (sym, list_in_scope); | |
2943 | if (optimized_out) | |
2944 | { | |
2945 | SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; | |
2946 | } | |
2947 | else if (isreg) | |
2948 | { | |
2949 | SYMBOL_CLASS (sym) = LOC_REGISTER; | |
2950 | } | |
2951 | else if (offreg) | |
2952 | { | |
2953 | SYMBOL_CLASS (sym) = LOC_BASEREG; | |
2954 | SYMBOL_BASEREG (sym) = basereg; | |
2955 | } | |
2956 | else | |
2957 | { | |
2958 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2959 | SYMBOL_VALUE (sym) += baseaddr; | |
2960 | } | |
2961 | } | |
2962 | break; | |
2963 | case TAG_formal_parameter: | |
2964 | if (dip -> at_location != NULL) | |
2965 | { | |
2966 | SYMBOL_VALUE (sym) = locval (dip -> at_location); | |
2967 | } | |
2968 | add_symbol_to_list (sym, list_in_scope); | |
2969 | if (isreg) | |
2970 | { | |
2971 | SYMBOL_CLASS (sym) = LOC_REGPARM; | |
2972 | } | |
2973 | else if (offreg) | |
2974 | { | |
2975 | SYMBOL_CLASS (sym) = LOC_BASEREG_ARG; | |
2976 | SYMBOL_BASEREG (sym) = basereg; | |
2977 | } | |
2978 | else | |
2979 | { | |
2980 | SYMBOL_CLASS (sym) = LOC_ARG; | |
2981 | } | |
2982 | break; | |
2983 | case TAG_unspecified_parameters: | |
2984 | /* From varargs functions; gdb doesn't seem to have any interest in | |
2985 | this information, so just ignore it for now. (FIXME?) */ | |
2986 | break; | |
2987 | case TAG_class_type: | |
2988 | case TAG_structure_type: | |
2989 | case TAG_union_type: | |
2990 | case TAG_enumeration_type: | |
2991 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
2992 | SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE; | |
2993 | add_symbol_to_list (sym, list_in_scope); | |
2994 | break; | |
2995 | case TAG_typedef: | |
2996 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
2997 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
2998 | add_symbol_to_list (sym, list_in_scope); | |
2999 | break; | |
3000 | default: | |
3001 | /* Not a tag we recognize. Hopefully we aren't processing trash | |
3002 | data, but since we must specifically ignore things we don't | |
3003 | recognize, there is nothing else we should do at this point. */ | |
3004 | break; | |
3005 | } | |
3006 | } | |
3007 | return (sym); | |
3008 | } | |
3009 | ||
3010 | /* | |
3011 | ||
3012 | LOCAL FUNCTION | |
3013 | ||
3014 | synthesize_typedef -- make a symbol table entry for a "fake" typedef | |
3015 | ||
3016 | SYNOPSIS | |
3017 | ||
3018 | static void synthesize_typedef (struct dieinfo *dip, | |
3019 | struct objfile *objfile, | |
3020 | struct type *type); | |
3021 | ||
3022 | DESCRIPTION | |
3023 | ||
3024 | Given a pointer to a DWARF information entry, synthesize a typedef | |
3025 | for the name in the DIE, using the specified type. | |
3026 | ||
3027 | This is used for C++ class, structs, unions, and enumerations to | |
3028 | set up the tag name as a type. | |
3029 | ||
3030 | */ | |
3031 | ||
3032 | static void | |
3033 | synthesize_typedef (dip, objfile, type) | |
3034 | struct dieinfo *dip; | |
3035 | struct objfile *objfile; | |
3036 | struct type *type; | |
3037 | { | |
3038 | struct symbol *sym = NULL; | |
3039 | ||
3040 | if (dip -> at_name != NULL) | |
3041 | { | |
3042 | sym = (struct symbol *) | |
3043 | obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol)); | |
3044 | memset (sym, 0, sizeof (struct symbol)); | |
3045 | SYMBOL_NAME (sym) = create_name (dip -> at_name, | |
3046 | &objfile->symbol_obstack); | |
3047 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); | |
3048 | SYMBOL_TYPE (sym) = type; | |
3049 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
3050 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
3051 | add_symbol_to_list (sym, list_in_scope); | |
3052 | } | |
3053 | } | |
3054 | ||
3055 | /* | |
3056 | ||
3057 | LOCAL FUNCTION | |
3058 | ||
3059 | decode_mod_fund_type -- decode a modified fundamental type | |
3060 | ||
3061 | SYNOPSIS | |
3062 | ||
3063 | static struct type *decode_mod_fund_type (char *typedata) | |
3064 | ||
3065 | DESCRIPTION | |
3066 | ||
3067 | Decode a block of data containing a modified fundamental | |
3068 | type specification. TYPEDATA is a pointer to the block, | |
3069 | which starts with a length containing the size of the rest | |
3070 | of the block. At the end of the block is a fundmental type | |
3071 | code value that gives the fundamental type. Everything | |
3072 | in between are type modifiers. | |
3073 | ||
3074 | We simply compute the number of modifiers and call the general | |
3075 | function decode_modified_type to do the actual work. | |
3076 | */ | |
3077 | ||
3078 | static struct type * | |
3079 | decode_mod_fund_type (typedata) | |
3080 | char *typedata; | |
3081 | { | |
3082 | struct type *typep = NULL; | |
3083 | unsigned short modcount; | |
3084 | int nbytes; | |
3085 | ||
3086 | /* Get the total size of the block, exclusive of the size itself */ | |
3087 | ||
3088 | nbytes = attribute_size (AT_mod_fund_type); | |
3089 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); | |
3090 | typedata += nbytes; | |
3091 | ||
3092 | /* Deduct the size of the fundamental type bytes at the end of the block. */ | |
3093 | ||
3094 | modcount -= attribute_size (AT_fund_type); | |
3095 | ||
3096 | /* Now do the actual decoding */ | |
3097 | ||
3098 | typep = decode_modified_type (typedata, modcount, AT_mod_fund_type); | |
3099 | return (typep); | |
3100 | } | |
3101 | ||
3102 | /* | |
3103 | ||
3104 | LOCAL FUNCTION | |
3105 | ||
3106 | decode_mod_u_d_type -- decode a modified user defined type | |
3107 | ||
3108 | SYNOPSIS | |
3109 | ||
3110 | static struct type *decode_mod_u_d_type (char *typedata) | |
3111 | ||
3112 | DESCRIPTION | |
3113 | ||
3114 | Decode a block of data containing a modified user defined | |
3115 | type specification. TYPEDATA is a pointer to the block, | |
3116 | which consists of a two byte length, containing the size | |
3117 | of the rest of the block. At the end of the block is a | |
3118 | four byte value that gives a reference to a user defined type. | |
3119 | Everything in between are type modifiers. | |
3120 | ||
3121 | We simply compute the number of modifiers and call the general | |
3122 | function decode_modified_type to do the actual work. | |
3123 | */ | |
3124 | ||
3125 | static struct type * | |
3126 | decode_mod_u_d_type (typedata) | |
3127 | char *typedata; | |
3128 | { | |
3129 | struct type *typep = NULL; | |
3130 | unsigned short modcount; | |
3131 | int nbytes; | |
3132 | ||
3133 | /* Get the total size of the block, exclusive of the size itself */ | |
3134 | ||
3135 | nbytes = attribute_size (AT_mod_u_d_type); | |
3136 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); | |
3137 | typedata += nbytes; | |
3138 | ||
3139 | /* Deduct the size of the reference type bytes at the end of the block. */ | |
3140 | ||
3141 | modcount -= attribute_size (AT_user_def_type); | |
3142 | ||
3143 | /* Now do the actual decoding */ | |
3144 | ||
3145 | typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type); | |
3146 | return (typep); | |
3147 | } | |
3148 | ||
3149 | /* | |
3150 | ||
3151 | LOCAL FUNCTION | |
3152 | ||
3153 | decode_modified_type -- decode modified user or fundamental type | |
3154 | ||
3155 | SYNOPSIS | |
3156 | ||
3157 | static struct type *decode_modified_type (char *modifiers, | |
3158 | unsigned short modcount, int mtype) | |
3159 | ||
3160 | DESCRIPTION | |
3161 | ||
3162 | Decode a modified type, either a modified fundamental type or | |
3163 | a modified user defined type. MODIFIERS is a pointer to the | |
3164 | block of bytes that define MODCOUNT modifiers. Immediately | |
3165 | following the last modifier is a short containing the fundamental | |
3166 | type or a long containing the reference to the user defined | |
3167 | type. Which one is determined by MTYPE, which is either | |
3168 | AT_mod_fund_type or AT_mod_u_d_type to indicate what modified | |
3169 | type we are generating. | |
3170 | ||
3171 | We call ourself recursively to generate each modified type,` | |
3172 | until MODCOUNT reaches zero, at which point we have consumed | |
3173 | all the modifiers and generate either the fundamental type or | |
3174 | user defined type. When the recursion unwinds, each modifier | |
3175 | is applied in turn to generate the full modified type. | |
3176 | ||
3177 | NOTES | |
3178 | ||
3179 | If we find a modifier that we don't recognize, and it is not one | |
3180 | of those reserved for application specific use, then we issue a | |
3181 | warning and simply ignore the modifier. | |
3182 | ||
3183 | BUGS | |
3184 | ||
3185 | We currently ignore MOD_const and MOD_volatile. (FIXME) | |
3186 | ||
3187 | */ | |
3188 | ||
3189 | static struct type * | |
3190 | decode_modified_type (modifiers, modcount, mtype) | |
3191 | char *modifiers; | |
3192 | unsigned int modcount; | |
3193 | int mtype; | |
3194 | { | |
3195 | struct type *typep = NULL; | |
3196 | unsigned short fundtype; | |
3197 | DIE_REF die_ref; | |
3198 | char modifier; | |
3199 | int nbytes; | |
3200 | ||
3201 | if (modcount == 0) | |
3202 | { | |
3203 | switch (mtype) | |
3204 | { | |
3205 | case AT_mod_fund_type: | |
3206 | nbytes = attribute_size (AT_fund_type); | |
3207 | fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED, | |
3208 | current_objfile); | |
3209 | typep = decode_fund_type (fundtype); | |
3210 | break; | |
3211 | case AT_mod_u_d_type: | |
3212 | nbytes = attribute_size (AT_user_def_type); | |
3213 | die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED, | |
3214 | current_objfile); | |
3215 | if ((typep = lookup_utype (die_ref)) == NULL) | |
3216 | { | |
3217 | typep = alloc_utype (die_ref, NULL); | |
3218 | } | |
3219 | break; | |
3220 | default: | |
3221 | complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype); | |
3222 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3223 | break; | |
3224 | } | |
3225 | } | |
3226 | else | |
3227 | { | |
3228 | modifier = *modifiers++; | |
3229 | typep = decode_modified_type (modifiers, --modcount, mtype); | |
3230 | switch (modifier) | |
3231 | { | |
3232 | case MOD_pointer_to: | |
3233 | typep = lookup_pointer_type (typep); | |
3234 | break; | |
3235 | case MOD_reference_to: | |
3236 | typep = lookup_reference_type (typep); | |
3237 | break; | |
3238 | case MOD_const: | |
3239 | complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */ | |
3240 | break; | |
3241 | case MOD_volatile: | |
3242 | complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */ | |
3243 | break; | |
3244 | default: | |
3245 | if (!(MOD_lo_user <= (unsigned char) modifier | |
3246 | && (unsigned char) modifier <= MOD_hi_user)) | |
3247 | { | |
3248 | complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier); | |
3249 | } | |
3250 | break; | |
3251 | } | |
3252 | } | |
3253 | return (typep); | |
3254 | } | |
3255 | ||
3256 | /* | |
3257 | ||
3258 | LOCAL FUNCTION | |
3259 | ||
3260 | decode_fund_type -- translate basic DWARF type to gdb base type | |
3261 | ||
3262 | DESCRIPTION | |
3263 | ||
3264 | Given an integer that is one of the fundamental DWARF types, | |
3265 | translate it to one of the basic internal gdb types and return | |
3266 | a pointer to the appropriate gdb type (a "struct type *"). | |
3267 | ||
3268 | NOTES | |
3269 | ||
3270 | For robustness, if we are asked to translate a fundamental | |
3271 | type that we are unprepared to deal with, we return int so | |
3272 | callers can always depend upon a valid type being returned, | |
3273 | and so gdb may at least do something reasonable by default. | |
3274 | If the type is not in the range of those types defined as | |
3275 | application specific types, we also issue a warning. | |
3276 | */ | |
3277 | ||
3278 | static struct type * | |
3279 | decode_fund_type (fundtype) | |
3280 | unsigned int fundtype; | |
3281 | { | |
3282 | struct type *typep = NULL; | |
3283 | ||
3284 | switch (fundtype) | |
3285 | { | |
3286 | ||
3287 | case FT_void: | |
3288 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); | |
3289 | break; | |
3290 | ||
3291 | case FT_boolean: /* Was FT_set in AT&T version */ | |
3292 | typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN); | |
3293 | break; | |
3294 | ||
3295 | case FT_pointer: /* (void *) */ | |
3296 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); | |
3297 | typep = lookup_pointer_type (typep); | |
3298 | break; | |
3299 | ||
3300 | case FT_char: | |
3301 | typep = dwarf_fundamental_type (current_objfile, FT_CHAR); | |
3302 | break; | |
3303 | ||
3304 | case FT_signed_char: | |
3305 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR); | |
3306 | break; | |
3307 | ||
3308 | case FT_unsigned_char: | |
3309 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR); | |
3310 | break; | |
3311 | ||
3312 | case FT_short: | |
3313 | typep = dwarf_fundamental_type (current_objfile, FT_SHORT); | |
3314 | break; | |
3315 | ||
3316 | case FT_signed_short: | |
3317 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT); | |
3318 | break; | |
3319 | ||
3320 | case FT_unsigned_short: | |
3321 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT); | |
3322 | break; | |
3323 | ||
3324 | case FT_integer: | |
3325 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3326 | break; | |
3327 | ||
3328 | case FT_signed_integer: | |
3329 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER); | |
3330 | break; | |
3331 | ||
3332 | case FT_unsigned_integer: | |
3333 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER); | |
3334 | break; | |
3335 | ||
3336 | case FT_long: | |
3337 | typep = dwarf_fundamental_type (current_objfile, FT_LONG); | |
3338 | break; | |
3339 | ||
3340 | case FT_signed_long: | |
3341 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG); | |
3342 | break; | |
3343 | ||
3344 | case FT_unsigned_long: | |
3345 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG); | |
3346 | break; | |
3347 | ||
3348 | case FT_long_long: | |
3349 | typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG); | |
3350 | break; | |
3351 | ||
3352 | case FT_signed_long_long: | |
3353 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG); | |
3354 | break; | |
3355 | ||
3356 | case FT_unsigned_long_long: | |
3357 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG); | |
3358 | break; | |
3359 | ||
3360 | case FT_float: | |
3361 | typep = dwarf_fundamental_type (current_objfile, FT_FLOAT); | |
3362 | break; | |
3363 | ||
3364 | case FT_dbl_prec_float: | |
3365 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT); | |
3366 | break; | |
3367 | ||
3368 | case FT_ext_prec_float: | |
3369 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT); | |
3370 | break; | |
3371 | ||
3372 | case FT_complex: | |
3373 | typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX); | |
3374 | break; | |
3375 | ||
3376 | case FT_dbl_prec_complex: | |
3377 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX); | |
3378 | break; | |
3379 | ||
3380 | case FT_ext_prec_complex: | |
3381 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX); | |
3382 | break; | |
3383 | ||
3384 | } | |
3385 | ||
3386 | if (typep == NULL) | |
3387 | { | |
3388 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3389 | if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user)) | |
3390 | { | |
3391 | complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype); | |
3392 | } | |
3393 | } | |
3394 | ||
3395 | return (typep); | |
3396 | } | |
3397 | ||
3398 | /* | |
3399 | ||
3400 | LOCAL FUNCTION | |
3401 | ||
3402 | create_name -- allocate a fresh copy of a string on an obstack | |
3403 | ||
3404 | DESCRIPTION | |
3405 | ||
3406 | Given a pointer to a string and a pointer to an obstack, allocates | |
3407 | a fresh copy of the string on the specified obstack. | |
3408 | ||
3409 | */ | |
3410 | ||
3411 | static char * | |
3412 | create_name (name, obstackp) | |
3413 | char *name; | |
3414 | struct obstack *obstackp; | |
3415 | { | |
3416 | int length; | |
3417 | char *newname; | |
3418 | ||
3419 | length = strlen (name) + 1; | |
3420 | newname = (char *) obstack_alloc (obstackp, length); | |
3421 | strcpy (newname, name); | |
3422 | return (newname); | |
3423 | } | |
3424 | ||
3425 | /* | |
3426 | ||
3427 | LOCAL FUNCTION | |
3428 | ||
3429 | basicdieinfo -- extract the minimal die info from raw die data | |
3430 | ||
3431 | SYNOPSIS | |
3432 | ||
3433 | void basicdieinfo (char *diep, struct dieinfo *dip, | |
3434 | struct objfile *objfile) | |
3435 | ||
3436 | DESCRIPTION | |
3437 | ||
3438 | Given a pointer to raw DIE data, and a pointer to an instance of a | |
3439 | die info structure, this function extracts the basic information | |
3440 | from the DIE data required to continue processing this DIE, along | |
3441 | with some bookkeeping information about the DIE. | |
3442 | ||
3443 | The information we absolutely must have includes the DIE tag, | |
3444 | and the DIE length. If we need the sibling reference, then we | |
3445 | will have to call completedieinfo() to process all the remaining | |
3446 | DIE information. | |
3447 | ||
3448 | Note that since there is no guarantee that the data is properly | |
3449 | aligned in memory for the type of access required (indirection | |
3450 | through anything other than a char pointer), and there is no | |
3451 | guarantee that it is in the same byte order as the gdb host, | |
3452 | we call a function which deals with both alignment and byte | |
3453 | swapping issues. Possibly inefficient, but quite portable. | |
3454 | ||
3455 | We also take care of some other basic things at this point, such | |
3456 | as ensuring that the instance of the die info structure starts | |
3457 | out completely zero'd and that curdie is initialized for use | |
3458 | in error reporting if we have a problem with the current die. | |
3459 | ||
3460 | NOTES | |
3461 | ||
3462 | All DIE's must have at least a valid length, thus the minimum | |
3463 | DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the | |
3464 | DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they | |
3465 | are forced to be TAG_padding DIES. | |
3466 | ||
3467 | Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying | |
3468 | that if a padding DIE is used for alignment and the amount needed is | |
3469 | less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big | |
3470 | enough to align to the next alignment boundry. | |
3471 | ||
3472 | We do some basic sanity checking here, such as verifying that the | |
3473 | length of the die would not cause it to overrun the recorded end of | |
3474 | the buffer holding the DIE info. If we find a DIE that is either | |
3475 | too small or too large, we force it's length to zero which should | |
3476 | cause the caller to take appropriate action. | |
3477 | */ | |
3478 | ||
3479 | static void | |
3480 | basicdieinfo (dip, diep, objfile) | |
3481 | struct dieinfo *dip; | |
3482 | char *diep; | |
3483 | struct objfile *objfile; | |
3484 | { | |
3485 | curdie = dip; | |
3486 | memset (dip, 0, sizeof (struct dieinfo)); | |
3487 | dip -> die = diep; | |
3488 | dip -> die_ref = dbroff + (diep - dbbase); | |
3489 | dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED, | |
3490 | objfile); | |
3491 | if ((dip -> die_length < SIZEOF_DIE_LENGTH) || | |
3492 | ((diep + dip -> die_length) > (dbbase + dbsize))) | |
3493 | { | |
3494 | complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length); | |
3495 | dip -> die_length = 0; | |
3496 | } | |
3497 | else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG)) | |
3498 | { | |
3499 | dip -> die_tag = TAG_padding; | |
3500 | } | |
3501 | else | |
3502 | { | |
3503 | diep += SIZEOF_DIE_LENGTH; | |
3504 | dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED, | |
3505 | objfile); | |
3506 | } | |
3507 | } | |
3508 | ||
3509 | /* | |
3510 | ||
3511 | LOCAL FUNCTION | |
3512 | ||
3513 | completedieinfo -- finish reading the information for a given DIE | |
3514 | ||
3515 | SYNOPSIS | |
3516 | ||
3517 | void completedieinfo (struct dieinfo *dip, struct objfile *objfile) | |
3518 | ||
3519 | DESCRIPTION | |
3520 | ||
3521 | Given a pointer to an already partially initialized die info structure, | |
3522 | scan the raw DIE data and finish filling in the die info structure | |
3523 | from the various attributes found. | |
3524 | ||
3525 | Note that since there is no guarantee that the data is properly | |
3526 | aligned in memory for the type of access required (indirection | |
3527 | through anything other than a char pointer), and there is no | |
3528 | guarantee that it is in the same byte order as the gdb host, | |
3529 | we call a function which deals with both alignment and byte | |
3530 | swapping issues. Possibly inefficient, but quite portable. | |
3531 | ||
3532 | NOTES | |
3533 | ||
3534 | Each time we are called, we increment the diecount variable, which | |
3535 | keeps an approximate count of the number of dies processed for | |
3536 | each compilation unit. This information is presented to the user | |
3537 | if the info_verbose flag is set. | |
3538 | ||
3539 | */ | |
3540 | ||
3541 | static void | |
3542 | completedieinfo (dip, objfile) | |
3543 | struct dieinfo *dip; | |
3544 | struct objfile *objfile; | |
3545 | { | |
3546 | char *diep; /* Current pointer into raw DIE data */ | |
3547 | char *end; /* Terminate DIE scan here */ | |
3548 | unsigned short attr; /* Current attribute being scanned */ | |
3549 | unsigned short form; /* Form of the attribute */ | |
3550 | int nbytes; /* Size of next field to read */ | |
3551 | ||
3552 | diecount++; | |
3553 | diep = dip -> die; | |
3554 | end = diep + dip -> die_length; | |
3555 | diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG; | |
3556 | while (diep < end) | |
3557 | { | |
3558 | attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile); | |
3559 | diep += SIZEOF_ATTRIBUTE; | |
3560 | if ((nbytes = attribute_size (attr)) == -1) | |
3561 | { | |
3562 | complain (&unknown_attribute_length, DIE_ID, DIE_NAME); | |
3563 | diep = end; | |
3564 | continue; | |
3565 | } | |
3566 | switch (attr) | |
3567 | { | |
3568 | case AT_fund_type: | |
3569 | dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3570 | objfile); | |
3571 | break; | |
3572 | case AT_ordering: | |
3573 | dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3574 | objfile); | |
3575 | break; | |
3576 | case AT_bit_offset: | |
3577 | dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3578 | objfile); | |
3579 | break; | |
3580 | case AT_sibling: | |
3581 | dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3582 | objfile); | |
3583 | break; | |
3584 | case AT_stmt_list: | |
3585 | dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3586 | objfile); | |
3587 | dip -> has_at_stmt_list = 1; | |
3588 | break; | |
3589 | case AT_low_pc: | |
3590 | dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3591 | objfile); | |
3592 | dip -> at_low_pc += baseaddr; | |
3593 | dip -> has_at_low_pc = 1; | |
3594 | break; | |
3595 | case AT_high_pc: | |
3596 | dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3597 | objfile); | |
3598 | dip -> at_high_pc += baseaddr; | |
3599 | break; | |
3600 | case AT_language: | |
3601 | dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3602 | objfile); | |
3603 | break; | |
3604 | case AT_user_def_type: | |
3605 | dip -> at_user_def_type = target_to_host (diep, nbytes, | |
3606 | GET_UNSIGNED, objfile); | |
3607 | break; | |
3608 | case AT_byte_size: | |
3609 | dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3610 | objfile); | |
3611 | dip -> has_at_byte_size = 1; | |
3612 | break; | |
3613 | case AT_bit_size: | |
3614 | dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3615 | objfile); | |
3616 | break; | |
3617 | case AT_member: | |
3618 | dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3619 | objfile); | |
3620 | break; | |
3621 | case AT_discr: | |
3622 | dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3623 | objfile); | |
3624 | break; | |
3625 | case AT_location: | |
3626 | dip -> at_location = diep; | |
3627 | break; | |
3628 | case AT_mod_fund_type: | |
3629 | dip -> at_mod_fund_type = diep; | |
3630 | break; | |
3631 | case AT_subscr_data: | |
3632 | dip -> at_subscr_data = diep; | |
3633 | break; | |
3634 | case AT_mod_u_d_type: | |
3635 | dip -> at_mod_u_d_type = diep; | |
3636 | break; | |
3637 | case AT_element_list: | |
3638 | dip -> at_element_list = diep; | |
3639 | dip -> short_element_list = 0; | |
3640 | break; | |
3641 | case AT_short_element_list: | |
3642 | dip -> at_element_list = diep; | |
3643 | dip -> short_element_list = 1; | |
3644 | break; | |
3645 | case AT_discr_value: | |
3646 | dip -> at_discr_value = diep; | |
3647 | break; | |
3648 | case AT_string_length: | |
3649 | dip -> at_string_length = diep; | |
3650 | break; | |
3651 | case AT_name: | |
3652 | dip -> at_name = diep; | |
3653 | break; | |
3654 | case AT_comp_dir: | |
3655 | /* For now, ignore any "hostname:" portion, since gdb doesn't | |
3656 | know how to deal with it. (FIXME). */ | |
3657 | dip -> at_comp_dir = strrchr (diep, ':'); | |
3658 | if (dip -> at_comp_dir != NULL) | |
3659 | { | |
3660 | dip -> at_comp_dir++; | |
3661 | } | |
3662 | else | |
3663 | { | |
3664 | dip -> at_comp_dir = diep; | |
3665 | } | |
3666 | break; | |
3667 | case AT_producer: | |
3668 | dip -> at_producer = diep; | |
3669 | break; | |
3670 | case AT_start_scope: | |
3671 | dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3672 | objfile); | |
3673 | break; | |
3674 | case AT_stride_size: | |
3675 | dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3676 | objfile); | |
3677 | break; | |
3678 | case AT_src_info: | |
3679 | dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED, | |
3680 | objfile); | |
3681 | break; | |
3682 | case AT_prototyped: | |
3683 | dip -> at_prototyped = diep; | |
3684 | break; | |
3685 | default: | |
3686 | /* Found an attribute that we are unprepared to handle. However | |
3687 | it is specifically one of the design goals of DWARF that | |
3688 | consumers should ignore unknown attributes. As long as the | |
3689 | form is one that we recognize (so we know how to skip it), | |
3690 | we can just ignore the unknown attribute. */ | |
3691 | break; | |
3692 | } | |
3693 | form = FORM_FROM_ATTR (attr); | |
3694 | switch (form) | |
3695 | { | |
3696 | case FORM_DATA2: | |
3697 | diep += 2; | |
3698 | break; | |
3699 | case FORM_DATA4: | |
3700 | case FORM_REF: | |
3701 | diep += 4; | |
3702 | break; | |
3703 | case FORM_DATA8: | |
3704 | diep += 8; | |
3705 | break; | |
3706 | case FORM_ADDR: | |
3707 | diep += TARGET_FT_POINTER_SIZE (objfile); | |
3708 | break; | |
3709 | case FORM_BLOCK2: | |
3710 | diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); | |
3711 | break; | |
3712 | case FORM_BLOCK4: | |
3713 | diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); | |
3714 | break; | |
3715 | case FORM_STRING: | |
3716 | diep += strlen (diep) + 1; | |
3717 | break; | |
3718 | default: | |
3719 | complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); | |
3720 | diep = end; | |
3721 | break; | |
3722 | } | |
3723 | } | |
3724 | } | |
3725 | ||
3726 | /* | |
3727 | ||
3728 | LOCAL FUNCTION | |
3729 | ||
3730 | target_to_host -- swap in target data to host | |
3731 | ||
3732 | SYNOPSIS | |
3733 | ||
3734 | target_to_host (char *from, int nbytes, int signextend, | |
3735 | struct objfile *objfile) | |
3736 | ||
3737 | DESCRIPTION | |
3738 | ||
3739 | Given pointer to data in target format in FROM, a byte count for | |
3740 | the size of the data in NBYTES, a flag indicating whether or not | |
3741 | the data is signed in SIGNEXTEND, and a pointer to the current | |
3742 | objfile in OBJFILE, convert the data to host format and return | |
3743 | the converted value. | |
3744 | ||
3745 | NOTES | |
3746 | ||
3747 | FIXME: If we read data that is known to be signed, and expect to | |
3748 | use it as signed data, then we need to explicitly sign extend the | |
3749 | result until the bfd library is able to do this for us. | |
3750 | ||
3751 | FIXME: Would a 32 bit target ever need an 8 byte result? | |
3752 | ||
3753 | */ | |
3754 | ||
3755 | static CORE_ADDR | |
3756 | target_to_host (from, nbytes, signextend, objfile) | |
3757 | char *from; | |
3758 | int nbytes; | |
3759 | int signextend; /* FIXME: Unused */ | |
3760 | struct objfile *objfile; | |
3761 | { | |
3762 | CORE_ADDR rtnval; | |
3763 | ||
3764 | switch (nbytes) | |
3765 | { | |
3766 | case 8: | |
3767 | rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from); | |
3768 | break; | |
3769 | case 4: | |
3770 | rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from); | |
3771 | break; | |
3772 | case 2: | |
3773 | rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from); | |
3774 | break; | |
3775 | case 1: | |
3776 | rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from); | |
3777 | break; | |
3778 | default: | |
3779 | complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes); | |
3780 | rtnval = 0; | |
3781 | break; | |
3782 | } | |
3783 | return (rtnval); | |
3784 | } | |
3785 | ||
3786 | /* | |
3787 | ||
3788 | LOCAL FUNCTION | |
3789 | ||
3790 | attribute_size -- compute size of data for a DWARF attribute | |
3791 | ||
3792 | SYNOPSIS | |
3793 | ||
3794 | static int attribute_size (unsigned int attr) | |
3795 | ||
3796 | DESCRIPTION | |
3797 | ||
3798 | Given a DWARF attribute in ATTR, compute the size of the first | |
3799 | piece of data associated with this attribute and return that | |
3800 | size. | |
3801 | ||
3802 | Returns -1 for unrecognized attributes. | |
3803 | ||
3804 | */ | |
3805 | ||
3806 | static int | |
3807 | attribute_size (attr) | |
3808 | unsigned int attr; | |
3809 | { | |
3810 | int nbytes; /* Size of next data for this attribute */ | |
3811 | unsigned short form; /* Form of the attribute */ | |
3812 | ||
3813 | form = FORM_FROM_ATTR (attr); | |
3814 | switch (form) | |
3815 | { | |
3816 | case FORM_STRING: /* A variable length field is next */ | |
3817 | nbytes = 0; | |
3818 | break; | |
3819 | case FORM_DATA2: /* Next 2 byte field is the data itself */ | |
3820 | case FORM_BLOCK2: /* Next 2 byte field is a block length */ | |
3821 | nbytes = 2; | |
3822 | break; | |
3823 | case FORM_DATA4: /* Next 4 byte field is the data itself */ | |
3824 | case FORM_BLOCK4: /* Next 4 byte field is a block length */ | |
3825 | case FORM_REF: /* Next 4 byte field is a DIE offset */ | |
3826 | nbytes = 4; | |
3827 | break; | |
3828 | case FORM_DATA8: /* Next 8 byte field is the data itself */ | |
3829 | nbytes = 8; | |
3830 | break; | |
3831 | case FORM_ADDR: /* Next field size is target sizeof(void *) */ | |
3832 | nbytes = TARGET_FT_POINTER_SIZE (objfile); | |
3833 | break; | |
3834 | default: | |
3835 | complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); | |
3836 | nbytes = -1; | |
3837 | break; | |
3838 | } | |
3839 | return (nbytes); | |
3840 | } |