]>
Commit | Line | Data |
---|---|---|
1 | /* Generic symbol-table support for the BFD library. | |
2 | Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, | |
3 | 2000, 2001, 2002, 2003, 2004 | |
4 | Free Software Foundation, Inc. | |
5 | Written by Cygnus Support. | |
6 | ||
7 | This file is part of BFD, the Binary File Descriptor library. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ | |
22 | ||
23 | /* | |
24 | SECTION | |
25 | Symbols | |
26 | ||
27 | BFD tries to maintain as much symbol information as it can when | |
28 | it moves information from file to file. BFD passes information | |
29 | to applications though the <<asymbol>> structure. When the | |
30 | application requests the symbol table, BFD reads the table in | |
31 | the native form and translates parts of it into the internal | |
32 | format. To maintain more than the information passed to | |
33 | applications, some targets keep some information ``behind the | |
34 | scenes'' in a structure only the particular back end knows | |
35 | about. For example, the coff back end keeps the original | |
36 | symbol table structure as well as the canonical structure when | |
37 | a BFD is read in. On output, the coff back end can reconstruct | |
38 | the output symbol table so that no information is lost, even | |
39 | information unique to coff which BFD doesn't know or | |
40 | understand. If a coff symbol table were read, but were written | |
41 | through an a.out back end, all the coff specific information | |
42 | would be lost. The symbol table of a BFD | |
43 | is not necessarily read in until a canonicalize request is | |
44 | made. Then the BFD back end fills in a table provided by the | |
45 | application with pointers to the canonical information. To | |
46 | output symbols, the application provides BFD with a table of | |
47 | pointers to pointers to <<asymbol>>s. This allows applications | |
48 | like the linker to output a symbol as it was read, since the ``behind | |
49 | the scenes'' information will be still available. | |
50 | @menu | |
51 | @* Reading Symbols:: | |
52 | @* Writing Symbols:: | |
53 | @* Mini Symbols:: | |
54 | @* typedef asymbol:: | |
55 | @* symbol handling functions:: | |
56 | @end menu | |
57 | ||
58 | INODE | |
59 | Reading Symbols, Writing Symbols, Symbols, Symbols | |
60 | SUBSECTION | |
61 | Reading symbols | |
62 | ||
63 | There are two stages to reading a symbol table from a BFD: | |
64 | allocating storage, and the actual reading process. This is an | |
65 | excerpt from an application which reads the symbol table: | |
66 | ||
67 | | long storage_needed; | |
68 | | asymbol **symbol_table; | |
69 | | long number_of_symbols; | |
70 | | long i; | |
71 | | | |
72 | | storage_needed = bfd_get_symtab_upper_bound (abfd); | |
73 | | | |
74 | | if (storage_needed < 0) | |
75 | | FAIL | |
76 | | | |
77 | | if (storage_needed == 0) | |
78 | | return; | |
79 | | | |
80 | | symbol_table = xmalloc (storage_needed); | |
81 | | ... | |
82 | | number_of_symbols = | |
83 | | bfd_canonicalize_symtab (abfd, symbol_table); | |
84 | | | |
85 | | if (number_of_symbols < 0) | |
86 | | FAIL | |
87 | | | |
88 | | for (i = 0; i < number_of_symbols; i++) | |
89 | | process_symbol (symbol_table[i]); | |
90 | ||
91 | All storage for the symbols themselves is in an objalloc | |
92 | connected to the BFD; it is freed when the BFD is closed. | |
93 | ||
94 | INODE | |
95 | Writing Symbols, Mini Symbols, Reading Symbols, Symbols | |
96 | SUBSECTION | |
97 | Writing symbols | |
98 | ||
99 | Writing of a symbol table is automatic when a BFD open for | |
100 | writing is closed. The application attaches a vector of | |
101 | pointers to pointers to symbols to the BFD being written, and | |
102 | fills in the symbol count. The close and cleanup code reads | |
103 | through the table provided and performs all the necessary | |
104 | operations. The BFD output code must always be provided with an | |
105 | ``owned'' symbol: one which has come from another BFD, or one | |
106 | which has been created using <<bfd_make_empty_symbol>>. Here is an | |
107 | example showing the creation of a symbol table with only one element: | |
108 | ||
109 | | #include "bfd.h" | |
110 | | int main (void) | |
111 | | { | |
112 | | bfd *abfd; | |
113 | | asymbol *ptrs[2]; | |
114 | | asymbol *new; | |
115 | | | |
116 | | abfd = bfd_openw ("foo","a.out-sunos-big"); | |
117 | | bfd_set_format (abfd, bfd_object); | |
118 | | new = bfd_make_empty_symbol (abfd); | |
119 | | new->name = "dummy_symbol"; | |
120 | | new->section = bfd_make_section_old_way (abfd, ".text"); | |
121 | | new->flags = BSF_GLOBAL; | |
122 | | new->value = 0x12345; | |
123 | | | |
124 | | ptrs[0] = new; | |
125 | | ptrs[1] = 0; | |
126 | | | |
127 | | bfd_set_symtab (abfd, ptrs, 1); | |
128 | | bfd_close (abfd); | |
129 | | return 0; | |
130 | | } | |
131 | | | |
132 | | ./makesym | |
133 | | nm foo | |
134 | | 00012345 A dummy_symbol | |
135 | ||
136 | Many formats cannot represent arbitrary symbol information; for | |
137 | instance, the <<a.out>> object format does not allow an | |
138 | arbitrary number of sections. A symbol pointing to a section | |
139 | which is not one of <<.text>>, <<.data>> or <<.bss>> cannot | |
140 | be described. | |
141 | ||
142 | INODE | |
143 | Mini Symbols, typedef asymbol, Writing Symbols, Symbols | |
144 | SUBSECTION | |
145 | Mini Symbols | |
146 | ||
147 | Mini symbols provide read-only access to the symbol table. | |
148 | They use less memory space, but require more time to access. | |
149 | They can be useful for tools like nm or objdump, which may | |
150 | have to handle symbol tables of extremely large executables. | |
151 | ||
152 | The <<bfd_read_minisymbols>> function will read the symbols | |
153 | into memory in an internal form. It will return a <<void *>> | |
154 | pointer to a block of memory, a symbol count, and the size of | |
155 | each symbol. The pointer is allocated using <<malloc>>, and | |
156 | should be freed by the caller when it is no longer needed. | |
157 | ||
158 | The function <<bfd_minisymbol_to_symbol>> will take a pointer | |
159 | to a minisymbol, and a pointer to a structure returned by | |
160 | <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure. | |
161 | The return value may or may not be the same as the value from | |
162 | <<bfd_make_empty_symbol>> which was passed in. | |
163 | ||
164 | */ | |
165 | ||
166 | /* | |
167 | DOCDD | |
168 | INODE | |
169 | typedef asymbol, symbol handling functions, Mini Symbols, Symbols | |
170 | ||
171 | */ | |
172 | /* | |
173 | SUBSECTION | |
174 | typedef asymbol | |
175 | ||
176 | An <<asymbol>> has the form: | |
177 | ||
178 | */ | |
179 | ||
180 | /* | |
181 | CODE_FRAGMENT | |
182 | ||
183 | . | |
184 | .typedef struct bfd_symbol | |
185 | .{ | |
186 | . {* A pointer to the BFD which owns the symbol. This information | |
187 | . is necessary so that a back end can work out what additional | |
188 | . information (invisible to the application writer) is carried | |
189 | . with the symbol. | |
190 | . | |
191 | . This field is *almost* redundant, since you can use section->owner | |
192 | . instead, except that some symbols point to the global sections | |
193 | . bfd_{abs,com,und}_section. This could be fixed by making | |
194 | . these globals be per-bfd (or per-target-flavor). FIXME. *} | |
195 | . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *} | |
196 | . | |
197 | . {* The text of the symbol. The name is left alone, and not copied; the | |
198 | . application may not alter it. *} | |
199 | . const char *name; | |
200 | . | |
201 | . {* The value of the symbol. This really should be a union of a | |
202 | . numeric value with a pointer, since some flags indicate that | |
203 | . a pointer to another symbol is stored here. *} | |
204 | . symvalue value; | |
205 | . | |
206 | . {* Attributes of a symbol. *} | |
207 | .#define BSF_NO_FLAGS 0x00 | |
208 | . | |
209 | . {* The symbol has local scope; <<static>> in <<C>>. The value | |
210 | . is the offset into the section of the data. *} | |
211 | .#define BSF_LOCAL 0x01 | |
212 | . | |
213 | . {* The symbol has global scope; initialized data in <<C>>. The | |
214 | . value is the offset into the section of the data. *} | |
215 | .#define BSF_GLOBAL 0x02 | |
216 | . | |
217 | . {* The symbol has global scope and is exported. The value is | |
218 | . the offset into the section of the data. *} | |
219 | .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *} | |
220 | . | |
221 | . {* A normal C symbol would be one of: | |
222 | . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or | |
223 | . <<BSF_GLOBAL>>. *} | |
224 | . | |
225 | . {* The symbol is a debugging record. The value has an arbitrary | |
226 | . meaning, unless BSF_DEBUGGING_RELOC is also set. *} | |
227 | .#define BSF_DEBUGGING 0x08 | |
228 | . | |
229 | . {* The symbol denotes a function entry point. Used in ELF, | |
230 | . perhaps others someday. *} | |
231 | .#define BSF_FUNCTION 0x10 | |
232 | . | |
233 | . {* Used by the linker. *} | |
234 | .#define BSF_KEEP 0x20 | |
235 | .#define BSF_KEEP_G 0x40 | |
236 | . | |
237 | . {* A weak global symbol, overridable without warnings by | |
238 | . a regular global symbol of the same name. *} | |
239 | .#define BSF_WEAK 0x80 | |
240 | . | |
241 | . {* This symbol was created to point to a section, e.g. ELF's | |
242 | . STT_SECTION symbols. *} | |
243 | .#define BSF_SECTION_SYM 0x100 | |
244 | . | |
245 | . {* The symbol used to be a common symbol, but now it is | |
246 | . allocated. *} | |
247 | .#define BSF_OLD_COMMON 0x200 | |
248 | . | |
249 | . {* The default value for common data. *} | |
250 | .#define BFD_FORT_COMM_DEFAULT_VALUE 0 | |
251 | . | |
252 | . {* In some files the type of a symbol sometimes alters its | |
253 | . location in an output file - ie in coff a <<ISFCN>> symbol | |
254 | . which is also <<C_EXT>> symbol appears where it was | |
255 | . declared and not at the end of a section. This bit is set | |
256 | . by the target BFD part to convey this information. *} | |
257 | .#define BSF_NOT_AT_END 0x400 | |
258 | . | |
259 | . {* Signal that the symbol is the label of constructor section. *} | |
260 | .#define BSF_CONSTRUCTOR 0x800 | |
261 | . | |
262 | . {* Signal that the symbol is a warning symbol. The name is a | |
263 | . warning. The name of the next symbol is the one to warn about; | |
264 | . if a reference is made to a symbol with the same name as the next | |
265 | . symbol, a warning is issued by the linker. *} | |
266 | .#define BSF_WARNING 0x1000 | |
267 | . | |
268 | . {* Signal that the symbol is indirect. This symbol is an indirect | |
269 | . pointer to the symbol with the same name as the next symbol. *} | |
270 | .#define BSF_INDIRECT 0x2000 | |
271 | . | |
272 | . {* BSF_FILE marks symbols that contain a file name. This is used | |
273 | . for ELF STT_FILE symbols. *} | |
274 | .#define BSF_FILE 0x4000 | |
275 | . | |
276 | . {* Symbol is from dynamic linking information. *} | |
277 | .#define BSF_DYNAMIC 0x8000 | |
278 | . | |
279 | . {* The symbol denotes a data object. Used in ELF, and perhaps | |
280 | . others someday. *} | |
281 | .#define BSF_OBJECT 0x10000 | |
282 | . | |
283 | . {* This symbol is a debugging symbol. The value is the offset | |
284 | . into the section of the data. BSF_DEBUGGING should be set | |
285 | . as well. *} | |
286 | .#define BSF_DEBUGGING_RELOC 0x20000 | |
287 | . | |
288 | . {* This symbol is thread local. Used in ELF. *} | |
289 | .#define BSF_THREAD_LOCAL 0x40000 | |
290 | . | |
291 | . flagword flags; | |
292 | . | |
293 | . {* A pointer to the section to which this symbol is | |
294 | . relative. This will always be non NULL, there are special | |
295 | . sections for undefined and absolute symbols. *} | |
296 | . struct bfd_section *section; | |
297 | . | |
298 | . {* Back end special data. *} | |
299 | . union | |
300 | . { | |
301 | . void *p; | |
302 | . bfd_vma i; | |
303 | . } | |
304 | . udata; | |
305 | .} | |
306 | .asymbol; | |
307 | . | |
308 | */ | |
309 | ||
310 | #include "bfd.h" | |
311 | #include "sysdep.h" | |
312 | #include "libbfd.h" | |
313 | #include "safe-ctype.h" | |
314 | #include "bfdlink.h" | |
315 | #include "aout/stab_gnu.h" | |
316 | ||
317 | /* | |
318 | DOCDD | |
319 | INODE | |
320 | symbol handling functions, , typedef asymbol, Symbols | |
321 | SUBSECTION | |
322 | Symbol handling functions | |
323 | */ | |
324 | ||
325 | /* | |
326 | FUNCTION | |
327 | bfd_get_symtab_upper_bound | |
328 | ||
329 | DESCRIPTION | |
330 | Return the number of bytes required to store a vector of pointers | |
331 | to <<asymbols>> for all the symbols in the BFD @var{abfd}, | |
332 | including a terminal NULL pointer. If there are no symbols in | |
333 | the BFD, then return 0. If an error occurs, return -1. | |
334 | ||
335 | .#define bfd_get_symtab_upper_bound(abfd) \ | |
336 | . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd)) | |
337 | . | |
338 | */ | |
339 | ||
340 | /* | |
341 | FUNCTION | |
342 | bfd_is_local_label | |
343 | ||
344 | SYNOPSIS | |
345 | bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym); | |
346 | ||
347 | DESCRIPTION | |
348 | Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is | |
349 | a compiler generated local label, else return FALSE. | |
350 | */ | |
351 | ||
352 | bfd_boolean | |
353 | bfd_is_local_label (bfd *abfd, asymbol *sym) | |
354 | { | |
355 | /* The BSF_SECTION_SYM check is needed for IA-64, where every label that | |
356 | starts with '.' is local. This would accidentally catch section names | |
357 | if we didn't reject them here. */ | |
358 | if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0) | |
359 | return FALSE; | |
360 | if (sym->name == NULL) | |
361 | return FALSE; | |
362 | return bfd_is_local_label_name (abfd, sym->name); | |
363 | } | |
364 | ||
365 | /* | |
366 | FUNCTION | |
367 | bfd_is_local_label_name | |
368 | ||
369 | SYNOPSIS | |
370 | bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name); | |
371 | ||
372 | DESCRIPTION | |
373 | Return TRUE if a symbol with the name @var{name} in the BFD | |
374 | @var{abfd} is a compiler generated local label, else return | |
375 | FALSE. This just checks whether the name has the form of a | |
376 | local label. | |
377 | ||
378 | .#define bfd_is_local_label_name(abfd, name) \ | |
379 | . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name)) | |
380 | . | |
381 | */ | |
382 | ||
383 | /* | |
384 | FUNCTION | |
385 | bfd_is_target_special_symbol | |
386 | ||
387 | SYNOPSIS | |
388 | bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym); | |
389 | ||
390 | DESCRIPTION | |
391 | Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something | |
392 | special to the particular target represented by the BFD. Such symbols | |
393 | should normally not be mentioned to the user. | |
394 | ||
395 | .#define bfd_is_target_special_symbol(abfd, sym) \ | |
396 | . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym)) | |
397 | . | |
398 | */ | |
399 | ||
400 | /* | |
401 | FUNCTION | |
402 | bfd_canonicalize_symtab | |
403 | ||
404 | DESCRIPTION | |
405 | Read the symbols from the BFD @var{abfd}, and fills in | |
406 | the vector @var{location} with pointers to the symbols and | |
407 | a trailing NULL. | |
408 | Return the actual number of symbol pointers, not | |
409 | including the NULL. | |
410 | ||
411 | .#define bfd_canonicalize_symtab(abfd, location) \ | |
412 | . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location)) | |
413 | . | |
414 | */ | |
415 | ||
416 | /* | |
417 | FUNCTION | |
418 | bfd_set_symtab | |
419 | ||
420 | SYNOPSIS | |
421 | bfd_boolean bfd_set_symtab | |
422 | (bfd *abfd, asymbol **location, unsigned int count); | |
423 | ||
424 | DESCRIPTION | |
425 | Arrange that when the output BFD @var{abfd} is closed, | |
426 | the table @var{location} of @var{count} pointers to symbols | |
427 | will be written. | |
428 | */ | |
429 | ||
430 | bfd_boolean | |
431 | bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount) | |
432 | { | |
433 | if (abfd->format != bfd_object || bfd_read_p (abfd)) | |
434 | { | |
435 | bfd_set_error (bfd_error_invalid_operation); | |
436 | return FALSE; | |
437 | } | |
438 | ||
439 | bfd_get_outsymbols (abfd) = location; | |
440 | bfd_get_symcount (abfd) = symcount; | |
441 | return TRUE; | |
442 | } | |
443 | ||
444 | /* | |
445 | FUNCTION | |
446 | bfd_print_symbol_vandf | |
447 | ||
448 | SYNOPSIS | |
449 | void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol); | |
450 | ||
451 | DESCRIPTION | |
452 | Print the value and flags of the @var{symbol} supplied to the | |
453 | stream @var{file}. | |
454 | */ | |
455 | void | |
456 | bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol) | |
457 | { | |
458 | FILE *file = arg; | |
459 | ||
460 | flagword type = symbol->flags; | |
461 | ||
462 | if (symbol->section != NULL) | |
463 | bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma); | |
464 | else | |
465 | bfd_fprintf_vma (abfd, file, symbol->value); | |
466 | ||
467 | /* This presumes that a symbol can not be both BSF_DEBUGGING and | |
468 | BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and | |
469 | BSF_OBJECT. */ | |
470 | fprintf (file, " %c%c%c%c%c%c%c", | |
471 | ((type & BSF_LOCAL) | |
472 | ? (type & BSF_GLOBAL) ? '!' : 'l' | |
473 | : (type & BSF_GLOBAL) ? 'g' : ' '), | |
474 | (type & BSF_WEAK) ? 'w' : ' ', | |
475 | (type & BSF_CONSTRUCTOR) ? 'C' : ' ', | |
476 | (type & BSF_WARNING) ? 'W' : ' ', | |
477 | (type & BSF_INDIRECT) ? 'I' : ' ', | |
478 | (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ', | |
479 | ((type & BSF_FUNCTION) | |
480 | ? 'F' | |
481 | : ((type & BSF_FILE) | |
482 | ? 'f' | |
483 | : ((type & BSF_OBJECT) ? 'O' : ' ')))); | |
484 | } | |
485 | ||
486 | /* | |
487 | FUNCTION | |
488 | bfd_make_empty_symbol | |
489 | ||
490 | DESCRIPTION | |
491 | Create a new <<asymbol>> structure for the BFD @var{abfd} | |
492 | and return a pointer to it. | |
493 | ||
494 | This routine is necessary because each back end has private | |
495 | information surrounding the <<asymbol>>. Building your own | |
496 | <<asymbol>> and pointing to it will not create the private | |
497 | information, and will cause problems later on. | |
498 | ||
499 | .#define bfd_make_empty_symbol(abfd) \ | |
500 | . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd)) | |
501 | . | |
502 | */ | |
503 | ||
504 | /* | |
505 | FUNCTION | |
506 | _bfd_generic_make_empty_symbol | |
507 | ||
508 | SYNOPSIS | |
509 | asymbol *_bfd_generic_make_empty_symbol (bfd *); | |
510 | ||
511 | DESCRIPTION | |
512 | Create a new <<asymbol>> structure for the BFD @var{abfd} | |
513 | and return a pointer to it. Used by core file routines, | |
514 | binary back-end and anywhere else where no private info | |
515 | is needed. | |
516 | */ | |
517 | ||
518 | asymbol * | |
519 | _bfd_generic_make_empty_symbol (bfd *abfd) | |
520 | { | |
521 | bfd_size_type amt = sizeof (asymbol); | |
522 | asymbol *new = bfd_zalloc (abfd, amt); | |
523 | if (new) | |
524 | new->the_bfd = abfd; | |
525 | return new; | |
526 | } | |
527 | ||
528 | /* | |
529 | FUNCTION | |
530 | bfd_make_debug_symbol | |
531 | ||
532 | DESCRIPTION | |
533 | Create a new <<asymbol>> structure for the BFD @var{abfd}, | |
534 | to be used as a debugging symbol. Further details of its use have | |
535 | yet to be worked out. | |
536 | ||
537 | .#define bfd_make_debug_symbol(abfd,ptr,size) \ | |
538 | . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size)) | |
539 | . | |
540 | */ | |
541 | ||
542 | struct section_to_type | |
543 | { | |
544 | const char *section; | |
545 | char type; | |
546 | }; | |
547 | ||
548 | /* Map section names to POSIX/BSD single-character symbol types. | |
549 | This table is probably incomplete. It is sorted for convenience of | |
550 | adding entries. Since it is so short, a linear search is used. */ | |
551 | static const struct section_to_type stt[] = | |
552 | { | |
553 | {".bss", 'b'}, | |
554 | {"code", 't'}, /* MRI .text */ | |
555 | {".data", 'd'}, | |
556 | {"*DEBUG*", 'N'}, | |
557 | {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */ | |
558 | {".drectve", 'i'}, /* MSVC's .drective section */ | |
559 | {".edata", 'e'}, /* MSVC's .edata (export) section */ | |
560 | {".fini", 't'}, /* ELF fini section */ | |
561 | {".idata", 'i'}, /* MSVC's .idata (import) section */ | |
562 | {".init", 't'}, /* ELF init section */ | |
563 | {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */ | |
564 | {".rdata", 'r'}, /* Read only data. */ | |
565 | {".rodata", 'r'}, /* Read only data. */ | |
566 | {".sbss", 's'}, /* Small BSS (uninitialized data). */ | |
567 | {".scommon", 'c'}, /* Small common. */ | |
568 | {".sdata", 'g'}, /* Small initialized data. */ | |
569 | {".text", 't'}, | |
570 | {"vars", 'd'}, /* MRI .data */ | |
571 | {"zerovars", 'b'}, /* MRI .bss */ | |
572 | {0, 0} | |
573 | }; | |
574 | ||
575 | /* Return the single-character symbol type corresponding to | |
576 | section S, or '?' for an unknown COFF section. | |
577 | ||
578 | Check for any leading string which matches, so .text5 returns | |
579 | 't' as well as .text */ | |
580 | ||
581 | static char | |
582 | coff_section_type (const char *s) | |
583 | { | |
584 | const struct section_to_type *t; | |
585 | ||
586 | for (t = &stt[0]; t->section; t++) | |
587 | if (!strncmp (s, t->section, strlen (t->section))) | |
588 | return t->type; | |
589 | ||
590 | return '?'; | |
591 | } | |
592 | ||
593 | /* Return the single-character symbol type corresponding to section | |
594 | SECTION, or '?' for an unknown section. This uses section flags to | |
595 | identify sections. | |
596 | ||
597 | FIXME These types are unhandled: c, i, e, p. If we handled these also, | |
598 | we could perhaps obsolete coff_section_type. */ | |
599 | ||
600 | static char | |
601 | decode_section_type (const struct bfd_section *section) | |
602 | { | |
603 | if (section->flags & SEC_CODE) | |
604 | return 't'; | |
605 | if (section->flags & SEC_DATA) | |
606 | { | |
607 | if (section->flags & SEC_READONLY) | |
608 | return 'r'; | |
609 | else if (section->flags & SEC_SMALL_DATA) | |
610 | return 'g'; | |
611 | else | |
612 | return 'd'; | |
613 | } | |
614 | if ((section->flags & SEC_HAS_CONTENTS) == 0) | |
615 | { | |
616 | if (section->flags & SEC_SMALL_DATA) | |
617 | return 's'; | |
618 | else | |
619 | return 'b'; | |
620 | } | |
621 | if (section->flags & SEC_DEBUGGING) | |
622 | return 'N'; | |
623 | if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY)) | |
624 | return 'n'; | |
625 | ||
626 | return '?'; | |
627 | } | |
628 | ||
629 | /* | |
630 | FUNCTION | |
631 | bfd_decode_symclass | |
632 | ||
633 | DESCRIPTION | |
634 | Return a character corresponding to the symbol | |
635 | class of @var{symbol}, or '?' for an unknown class. | |
636 | ||
637 | SYNOPSIS | |
638 | int bfd_decode_symclass (asymbol *symbol); | |
639 | */ | |
640 | int | |
641 | bfd_decode_symclass (asymbol *symbol) | |
642 | { | |
643 | char c; | |
644 | ||
645 | if (bfd_is_com_section (symbol->section)) | |
646 | return 'C'; | |
647 | if (bfd_is_und_section (symbol->section)) | |
648 | { | |
649 | if (symbol->flags & BSF_WEAK) | |
650 | { | |
651 | /* If weak, determine if it's specifically an object | |
652 | or non-object weak. */ | |
653 | if (symbol->flags & BSF_OBJECT) | |
654 | return 'v'; | |
655 | else | |
656 | return 'w'; | |
657 | } | |
658 | else | |
659 | return 'U'; | |
660 | } | |
661 | if (bfd_is_ind_section (symbol->section)) | |
662 | return 'I'; | |
663 | if (symbol->flags & BSF_WEAK) | |
664 | { | |
665 | /* If weak, determine if it's specifically an object | |
666 | or non-object weak. */ | |
667 | if (symbol->flags & BSF_OBJECT) | |
668 | return 'V'; | |
669 | else | |
670 | return 'W'; | |
671 | } | |
672 | if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL))) | |
673 | return '?'; | |
674 | ||
675 | if (bfd_is_abs_section (symbol->section)) | |
676 | c = 'a'; | |
677 | else if (symbol->section) | |
678 | { | |
679 | c = coff_section_type (symbol->section->name); | |
680 | if (c == '?') | |
681 | c = decode_section_type (symbol->section); | |
682 | } | |
683 | else | |
684 | return '?'; | |
685 | if (symbol->flags & BSF_GLOBAL) | |
686 | c = TOUPPER (c); | |
687 | return c; | |
688 | ||
689 | /* We don't have to handle these cases just yet, but we will soon: | |
690 | N_SETV: 'v'; | |
691 | N_SETA: 'l'; | |
692 | N_SETT: 'x'; | |
693 | N_SETD: 'z'; | |
694 | N_SETB: 's'; | |
695 | N_INDR: 'i'; | |
696 | */ | |
697 | } | |
698 | ||
699 | /* | |
700 | FUNCTION | |
701 | bfd_is_undefined_symclass | |
702 | ||
703 | DESCRIPTION | |
704 | Returns non-zero if the class symbol returned by | |
705 | bfd_decode_symclass represents an undefined symbol. | |
706 | Returns zero otherwise. | |
707 | ||
708 | SYNOPSIS | |
709 | bfd_boolean bfd_is_undefined_symclass (int symclass); | |
710 | */ | |
711 | ||
712 | bfd_boolean | |
713 | bfd_is_undefined_symclass (int symclass) | |
714 | { | |
715 | return symclass == 'U' || symclass == 'w' || symclass == 'v'; | |
716 | } | |
717 | ||
718 | /* | |
719 | FUNCTION | |
720 | bfd_symbol_info | |
721 | ||
722 | DESCRIPTION | |
723 | Fill in the basic info about symbol that nm needs. | |
724 | Additional info may be added by the back-ends after | |
725 | calling this function. | |
726 | ||
727 | SYNOPSIS | |
728 | void bfd_symbol_info (asymbol *symbol, symbol_info *ret); | |
729 | */ | |
730 | ||
731 | void | |
732 | bfd_symbol_info (asymbol *symbol, symbol_info *ret) | |
733 | { | |
734 | ret->type = bfd_decode_symclass (symbol); | |
735 | ||
736 | if (bfd_is_undefined_symclass (ret->type)) | |
737 | ret->value = 0; | |
738 | else | |
739 | ret->value = symbol->value + symbol->section->vma; | |
740 | ||
741 | ret->name = symbol->name; | |
742 | } | |
743 | ||
744 | /* | |
745 | FUNCTION | |
746 | bfd_copy_private_symbol_data | |
747 | ||
748 | SYNOPSIS | |
749 | bfd_boolean bfd_copy_private_symbol_data | |
750 | (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym); | |
751 | ||
752 | DESCRIPTION | |
753 | Copy private symbol information from @var{isym} in the BFD | |
754 | @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}. | |
755 | Return <<TRUE>> on success, <<FALSE>> on error. Possible error | |
756 | returns are: | |
757 | ||
758 | o <<bfd_error_no_memory>> - | |
759 | Not enough memory exists to create private data for @var{osec}. | |
760 | ||
761 | .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \ | |
762 | . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \ | |
763 | . (ibfd, isymbol, obfd, osymbol)) | |
764 | . | |
765 | */ | |
766 | ||
767 | /* The generic version of the function which returns mini symbols. | |
768 | This is used when the backend does not provide a more efficient | |
769 | version. It just uses BFD asymbol structures as mini symbols. */ | |
770 | ||
771 | long | |
772 | _bfd_generic_read_minisymbols (bfd *abfd, | |
773 | bfd_boolean dynamic, | |
774 | void **minisymsp, | |
775 | unsigned int *sizep) | |
776 | { | |
777 | long storage; | |
778 | asymbol **syms = NULL; | |
779 | long symcount; | |
780 | ||
781 | if (dynamic) | |
782 | storage = bfd_get_dynamic_symtab_upper_bound (abfd); | |
783 | else | |
784 | storage = bfd_get_symtab_upper_bound (abfd); | |
785 | if (storage < 0) | |
786 | goto error_return; | |
787 | if (storage == 0) | |
788 | return 0; | |
789 | ||
790 | syms = bfd_malloc (storage); | |
791 | if (syms == NULL) | |
792 | goto error_return; | |
793 | ||
794 | if (dynamic) | |
795 | symcount = bfd_canonicalize_dynamic_symtab (abfd, syms); | |
796 | else | |
797 | symcount = bfd_canonicalize_symtab (abfd, syms); | |
798 | if (symcount < 0) | |
799 | goto error_return; | |
800 | ||
801 | *minisymsp = syms; | |
802 | *sizep = sizeof (asymbol *); | |
803 | return symcount; | |
804 | ||
805 | error_return: | |
806 | bfd_set_error (bfd_error_no_symbols); | |
807 | if (syms != NULL) | |
808 | free (syms); | |
809 | return -1; | |
810 | } | |
811 | ||
812 | /* The generic version of the function which converts a minisymbol to | |
813 | an asymbol. We don't worry about the sym argument we are passed; | |
814 | we just return the asymbol the minisymbol points to. */ | |
815 | ||
816 | asymbol * | |
817 | _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED, | |
818 | bfd_boolean dynamic ATTRIBUTE_UNUSED, | |
819 | const void *minisym, | |
820 | asymbol *sym ATTRIBUTE_UNUSED) | |
821 | { | |
822 | return *(asymbol **) minisym; | |
823 | } | |
824 | ||
825 | /* Look through stabs debugging information in .stab and .stabstr | |
826 | sections to find the source file and line closest to a desired | |
827 | location. This is used by COFF and ELF targets. It sets *pfound | |
828 | to TRUE if it finds some information. The *pinfo field is used to | |
829 | pass cached information in and out of this routine; this first time | |
830 | the routine is called for a BFD, *pinfo should be NULL. The value | |
831 | placed in *pinfo should be saved with the BFD, and passed back each | |
832 | time this function is called. */ | |
833 | ||
834 | /* We use a cache by default. */ | |
835 | ||
836 | #define ENABLE_CACHING | |
837 | ||
838 | /* We keep an array of indexentry structures to record where in the | |
839 | stabs section we should look to find line number information for a | |
840 | particular address. */ | |
841 | ||
842 | struct indexentry | |
843 | { | |
844 | bfd_vma val; | |
845 | bfd_byte *stab; | |
846 | bfd_byte *str; | |
847 | char *directory_name; | |
848 | char *file_name; | |
849 | char *function_name; | |
850 | }; | |
851 | ||
852 | /* Compare two indexentry structures. This is called via qsort. */ | |
853 | ||
854 | static int | |
855 | cmpindexentry (const void *a, const void *b) | |
856 | { | |
857 | const struct indexentry *contestantA = a; | |
858 | const struct indexentry *contestantB = b; | |
859 | ||
860 | if (contestantA->val < contestantB->val) | |
861 | return -1; | |
862 | else if (contestantA->val > contestantB->val) | |
863 | return 1; | |
864 | else | |
865 | return 0; | |
866 | } | |
867 | ||
868 | /* A pointer to this structure is stored in *pinfo. */ | |
869 | ||
870 | struct stab_find_info | |
871 | { | |
872 | /* The .stab section. */ | |
873 | asection *stabsec; | |
874 | /* The .stabstr section. */ | |
875 | asection *strsec; | |
876 | /* The contents of the .stab section. */ | |
877 | bfd_byte *stabs; | |
878 | /* The contents of the .stabstr section. */ | |
879 | bfd_byte *strs; | |
880 | ||
881 | /* A table that indexes stabs by memory address. */ | |
882 | struct indexentry *indextable; | |
883 | /* The number of entries in indextable. */ | |
884 | int indextablesize; | |
885 | ||
886 | #ifdef ENABLE_CACHING | |
887 | /* Cached values to restart quickly. */ | |
888 | struct indexentry *cached_indexentry; | |
889 | bfd_vma cached_offset; | |
890 | bfd_byte *cached_stab; | |
891 | char *cached_file_name; | |
892 | #endif | |
893 | ||
894 | /* Saved ptr to malloc'ed filename. */ | |
895 | char *filename; | |
896 | }; | |
897 | ||
898 | bfd_boolean | |
899 | _bfd_stab_section_find_nearest_line (bfd *abfd, | |
900 | asymbol **symbols, | |
901 | asection *section, | |
902 | bfd_vma offset, | |
903 | bfd_boolean *pfound, | |
904 | const char **pfilename, | |
905 | const char **pfnname, | |
906 | unsigned int *pline, | |
907 | void **pinfo) | |
908 | { | |
909 | struct stab_find_info *info; | |
910 | bfd_size_type stabsize, strsize; | |
911 | bfd_byte *stab, *str; | |
912 | bfd_byte *last_stab = NULL; | |
913 | bfd_size_type stroff; | |
914 | struct indexentry *indexentry; | |
915 | char *file_name; | |
916 | char *directory_name; | |
917 | int saw_fun; | |
918 | bfd_boolean saw_line, saw_func; | |
919 | ||
920 | *pfound = FALSE; | |
921 | *pfilename = bfd_get_filename (abfd); | |
922 | *pfnname = NULL; | |
923 | *pline = 0; | |
924 | ||
925 | /* Stabs entries use a 12 byte format: | |
926 | 4 byte string table index | |
927 | 1 byte stab type | |
928 | 1 byte stab other field | |
929 | 2 byte stab desc field | |
930 | 4 byte stab value | |
931 | FIXME: This will have to change for a 64 bit object format. | |
932 | ||
933 | The stabs symbols are divided into compilation units. For the | |
934 | first entry in each unit, the type of 0, the value is the length | |
935 | of the string table for this unit, and the desc field is the | |
936 | number of stabs symbols for this unit. */ | |
937 | ||
938 | #define STRDXOFF (0) | |
939 | #define TYPEOFF (4) | |
940 | #define OTHEROFF (5) | |
941 | #define DESCOFF (6) | |
942 | #define VALOFF (8) | |
943 | #define STABSIZE (12) | |
944 | ||
945 | info = *pinfo; | |
946 | if (info != NULL) | |
947 | { | |
948 | if (info->stabsec == NULL || info->strsec == NULL) | |
949 | { | |
950 | /* No stabs debugging information. */ | |
951 | return TRUE; | |
952 | } | |
953 | ||
954 | stabsize = (info->stabsec->rawsize | |
955 | ? info->stabsec->rawsize | |
956 | : info->stabsec->size); | |
957 | strsize = (info->strsec->rawsize | |
958 | ? info->strsec->rawsize | |
959 | : info->strsec->size); | |
960 | } | |
961 | else | |
962 | { | |
963 | long reloc_size, reloc_count; | |
964 | arelent **reloc_vector; | |
965 | int i; | |
966 | char *name; | |
967 | char *function_name; | |
968 | bfd_size_type amt = sizeof *info; | |
969 | ||
970 | info = bfd_zalloc (abfd, amt); | |
971 | if (info == NULL) | |
972 | return FALSE; | |
973 | ||
974 | /* FIXME: When using the linker --split-by-file or | |
975 | --split-by-reloc options, it is possible for the .stab and | |
976 | .stabstr sections to be split. We should handle that. */ | |
977 | ||
978 | info->stabsec = bfd_get_section_by_name (abfd, ".stab"); | |
979 | info->strsec = bfd_get_section_by_name (abfd, ".stabstr"); | |
980 | ||
981 | if (info->stabsec == NULL || info->strsec == NULL) | |
982 | { | |
983 | /* No stabs debugging information. Set *pinfo so that we | |
984 | can return quickly in the info != NULL case above. */ | |
985 | *pinfo = info; | |
986 | return TRUE; | |
987 | } | |
988 | ||
989 | stabsize = (info->stabsec->rawsize | |
990 | ? info->stabsec->rawsize | |
991 | : info->stabsec->size); | |
992 | strsize = (info->strsec->rawsize | |
993 | ? info->strsec->rawsize | |
994 | : info->strsec->size); | |
995 | ||
996 | info->stabs = bfd_alloc (abfd, stabsize); | |
997 | info->strs = bfd_alloc (abfd, strsize); | |
998 | if (info->stabs == NULL || info->strs == NULL) | |
999 | return FALSE; | |
1000 | ||
1001 | if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, | |
1002 | 0, stabsize) | |
1003 | || ! bfd_get_section_contents (abfd, info->strsec, info->strs, | |
1004 | 0, strsize)) | |
1005 | return FALSE; | |
1006 | ||
1007 | /* If this is a relocatable object file, we have to relocate | |
1008 | the entries in .stab. This should always be simple 32 bit | |
1009 | relocations against symbols defined in this object file, so | |
1010 | this should be no big deal. */ | |
1011 | reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec); | |
1012 | if (reloc_size < 0) | |
1013 | return FALSE; | |
1014 | reloc_vector = bfd_malloc (reloc_size); | |
1015 | if (reloc_vector == NULL && reloc_size != 0) | |
1016 | return FALSE; | |
1017 | reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector, | |
1018 | symbols); | |
1019 | if (reloc_count < 0) | |
1020 | { | |
1021 | if (reloc_vector != NULL) | |
1022 | free (reloc_vector); | |
1023 | return FALSE; | |
1024 | } | |
1025 | if (reloc_count > 0) | |
1026 | { | |
1027 | arelent **pr; | |
1028 | ||
1029 | for (pr = reloc_vector; *pr != NULL; pr++) | |
1030 | { | |
1031 | arelent *r; | |
1032 | unsigned long val; | |
1033 | asymbol *sym; | |
1034 | ||
1035 | r = *pr; | |
1036 | /* Ignore R_*_NONE relocs. */ | |
1037 | if (r->howto->dst_mask == 0) | |
1038 | continue; | |
1039 | ||
1040 | if (r->howto->rightshift != 0 | |
1041 | || r->howto->size != 2 | |
1042 | || r->howto->bitsize != 32 | |
1043 | || r->howto->pc_relative | |
1044 | || r->howto->bitpos != 0 | |
1045 | || r->howto->dst_mask != 0xffffffff) | |
1046 | { | |
1047 | (*_bfd_error_handler) | |
1048 | (_("Unsupported .stab relocation")); | |
1049 | bfd_set_error (bfd_error_invalid_operation); | |
1050 | if (reloc_vector != NULL) | |
1051 | free (reloc_vector); | |
1052 | return FALSE; | |
1053 | } | |
1054 | ||
1055 | val = bfd_get_32 (abfd, info->stabs + r->address); | |
1056 | val &= r->howto->src_mask; | |
1057 | sym = *r->sym_ptr_ptr; | |
1058 | val += sym->value + sym->section->vma + r->addend; | |
1059 | bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address); | |
1060 | } | |
1061 | } | |
1062 | ||
1063 | if (reloc_vector != NULL) | |
1064 | free (reloc_vector); | |
1065 | ||
1066 | /* First time through this function, build a table matching | |
1067 | function VM addresses to stabs, then sort based on starting | |
1068 | VM address. Do this in two passes: once to count how many | |
1069 | table entries we'll need, and a second to actually build the | |
1070 | table. */ | |
1071 | ||
1072 | info->indextablesize = 0; | |
1073 | saw_fun = 1; | |
1074 | for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE) | |
1075 | { | |
1076 | if (stab[TYPEOFF] == (bfd_byte) N_SO) | |
1077 | { | |
1078 | /* N_SO with null name indicates EOF */ | |
1079 | if (bfd_get_32 (abfd, stab + STRDXOFF) == 0) | |
1080 | continue; | |
1081 | ||
1082 | /* if we did not see a function def, leave space for one. */ | |
1083 | if (saw_fun == 0) | |
1084 | ++info->indextablesize; | |
1085 | ||
1086 | saw_fun = 0; | |
1087 | ||
1088 | /* two N_SO's in a row is a filename and directory. Skip */ | |
1089 | if (stab + STABSIZE < info->stabs + stabsize | |
1090 | && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO) | |
1091 | { | |
1092 | stab += STABSIZE; | |
1093 | } | |
1094 | } | |
1095 | else if (stab[TYPEOFF] == (bfd_byte) N_FUN) | |
1096 | { | |
1097 | saw_fun = 1; | |
1098 | ++info->indextablesize; | |
1099 | } | |
1100 | } | |
1101 | ||
1102 | if (saw_fun == 0) | |
1103 | ++info->indextablesize; | |
1104 | ||
1105 | if (info->indextablesize == 0) | |
1106 | return TRUE; | |
1107 | ++info->indextablesize; | |
1108 | ||
1109 | amt = info->indextablesize; | |
1110 | amt *= sizeof (struct indexentry); | |
1111 | info->indextable = bfd_alloc (abfd, amt); | |
1112 | if (info->indextable == NULL) | |
1113 | return FALSE; | |
1114 | ||
1115 | file_name = NULL; | |
1116 | directory_name = NULL; | |
1117 | saw_fun = 1; | |
1118 | ||
1119 | for (i = 0, stroff = 0, stab = info->stabs, str = info->strs; | |
1120 | i < info->indextablesize && stab < info->stabs + stabsize; | |
1121 | stab += STABSIZE) | |
1122 | { | |
1123 | switch (stab[TYPEOFF]) | |
1124 | { | |
1125 | case 0: | |
1126 | /* This is the first entry in a compilation unit. */ | |
1127 | if ((bfd_size_type) ((info->strs + strsize) - str) < stroff) | |
1128 | break; | |
1129 | str += stroff; | |
1130 | stroff = bfd_get_32 (abfd, stab + VALOFF); | |
1131 | break; | |
1132 | ||
1133 | case N_SO: | |
1134 | /* The main file name. */ | |
1135 | ||
1136 | /* The following code creates a new indextable entry with | |
1137 | a NULL function name if there were no N_FUNs in a file. | |
1138 | Note that a N_SO without a file name is an EOF and | |
1139 | there could be 2 N_SO following it with the new filename | |
1140 | and directory. */ | |
1141 | if (saw_fun == 0) | |
1142 | { | |
1143 | info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF); | |
1144 | info->indextable[i].stab = last_stab; | |
1145 | info->indextable[i].str = str; | |
1146 | info->indextable[i].directory_name = directory_name; | |
1147 | info->indextable[i].file_name = file_name; | |
1148 | info->indextable[i].function_name = NULL; | |
1149 | ++i; | |
1150 | } | |
1151 | saw_fun = 0; | |
1152 | ||
1153 | file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); | |
1154 | if (*file_name == '\0') | |
1155 | { | |
1156 | directory_name = NULL; | |
1157 | file_name = NULL; | |
1158 | saw_fun = 1; | |
1159 | } | |
1160 | else | |
1161 | { | |
1162 | last_stab = stab; | |
1163 | if (stab + STABSIZE >= info->stabs + stabsize | |
1164 | || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO) | |
1165 | { | |
1166 | directory_name = NULL; | |
1167 | } | |
1168 | else | |
1169 | { | |
1170 | /* Two consecutive N_SOs are a directory and a | |
1171 | file name. */ | |
1172 | stab += STABSIZE; | |
1173 | directory_name = file_name; | |
1174 | file_name = ((char *) str | |
1175 | + bfd_get_32 (abfd, stab + STRDXOFF)); | |
1176 | } | |
1177 | } | |
1178 | break; | |
1179 | ||
1180 | case N_SOL: | |
1181 | /* The name of an include file. */ | |
1182 | file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); | |
1183 | break; | |
1184 | ||
1185 | case N_FUN: | |
1186 | /* A function name. */ | |
1187 | saw_fun = 1; | |
1188 | name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); | |
1189 | ||
1190 | if (*name == '\0') | |
1191 | name = NULL; | |
1192 | ||
1193 | function_name = name; | |
1194 | ||
1195 | if (name == NULL) | |
1196 | continue; | |
1197 | ||
1198 | info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF); | |
1199 | info->indextable[i].stab = stab; | |
1200 | info->indextable[i].str = str; | |
1201 | info->indextable[i].directory_name = directory_name; | |
1202 | info->indextable[i].file_name = file_name; | |
1203 | info->indextable[i].function_name = function_name; | |
1204 | ++i; | |
1205 | break; | |
1206 | } | |
1207 | } | |
1208 | ||
1209 | if (saw_fun == 0) | |
1210 | { | |
1211 | info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF); | |
1212 | info->indextable[i].stab = last_stab; | |
1213 | info->indextable[i].str = str; | |
1214 | info->indextable[i].directory_name = directory_name; | |
1215 | info->indextable[i].file_name = file_name; | |
1216 | info->indextable[i].function_name = NULL; | |
1217 | ++i; | |
1218 | } | |
1219 | ||
1220 | info->indextable[i].val = (bfd_vma) -1; | |
1221 | info->indextable[i].stab = info->stabs + stabsize; | |
1222 | info->indextable[i].str = str; | |
1223 | info->indextable[i].directory_name = NULL; | |
1224 | info->indextable[i].file_name = NULL; | |
1225 | info->indextable[i].function_name = NULL; | |
1226 | ++i; | |
1227 | ||
1228 | info->indextablesize = i; | |
1229 | qsort (info->indextable, (size_t) i, sizeof (struct indexentry), | |
1230 | cmpindexentry); | |
1231 | ||
1232 | *pinfo = info; | |
1233 | } | |
1234 | ||
1235 | /* We are passed a section relative offset. The offsets in the | |
1236 | stabs information are absolute. */ | |
1237 | offset += bfd_get_section_vma (abfd, section); | |
1238 | ||
1239 | #ifdef ENABLE_CACHING | |
1240 | if (info->cached_indexentry != NULL | |
1241 | && offset >= info->cached_offset | |
1242 | && offset < (info->cached_indexentry + 1)->val) | |
1243 | { | |
1244 | stab = info->cached_stab; | |
1245 | indexentry = info->cached_indexentry; | |
1246 | file_name = info->cached_file_name; | |
1247 | } | |
1248 | else | |
1249 | #endif | |
1250 | { | |
1251 | long low, high; | |
1252 | long mid = -1; | |
1253 | ||
1254 | /* Cache non-existent or invalid. Do binary search on | |
1255 | indextable. */ | |
1256 | indexentry = NULL; | |
1257 | ||
1258 | low = 0; | |
1259 | high = info->indextablesize - 1; | |
1260 | while (low != high) | |
1261 | { | |
1262 | mid = (high + low) / 2; | |
1263 | if (offset >= info->indextable[mid].val | |
1264 | && offset < info->indextable[mid + 1].val) | |
1265 | { | |
1266 | indexentry = &info->indextable[mid]; | |
1267 | break; | |
1268 | } | |
1269 | ||
1270 | if (info->indextable[mid].val > offset) | |
1271 | high = mid; | |
1272 | else | |
1273 | low = mid + 1; | |
1274 | } | |
1275 | ||
1276 | if (indexentry == NULL) | |
1277 | return TRUE; | |
1278 | ||
1279 | stab = indexentry->stab + STABSIZE; | |
1280 | file_name = indexentry->file_name; | |
1281 | } | |
1282 | ||
1283 | directory_name = indexentry->directory_name; | |
1284 | str = indexentry->str; | |
1285 | ||
1286 | saw_line = FALSE; | |
1287 | saw_func = FALSE; | |
1288 | for (; stab < (indexentry+1)->stab; stab += STABSIZE) | |
1289 | { | |
1290 | bfd_boolean done; | |
1291 | bfd_vma val; | |
1292 | ||
1293 | done = FALSE; | |
1294 | ||
1295 | switch (stab[TYPEOFF]) | |
1296 | { | |
1297 | case N_SOL: | |
1298 | /* The name of an include file. */ | |
1299 | val = bfd_get_32 (abfd, stab + VALOFF); | |
1300 | if (val <= offset) | |
1301 | { | |
1302 | file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); | |
1303 | *pline = 0; | |
1304 | } | |
1305 | break; | |
1306 | ||
1307 | case N_SLINE: | |
1308 | case N_DSLINE: | |
1309 | case N_BSLINE: | |
1310 | /* A line number. If the function was specified, then the value | |
1311 | is relative to the start of the function. Otherwise, the | |
1312 | value is an absolute address. */ | |
1313 | val = ((indexentry->function_name ? indexentry->val : 0) | |
1314 | + bfd_get_32 (abfd, stab + VALOFF)); | |
1315 | /* If this line starts before our desired offset, or if it's | |
1316 | the first line we've been able to find, use it. The | |
1317 | !saw_line check works around a bug in GCC 2.95.3, which emits | |
1318 | the first N_SLINE late. */ | |
1319 | if (!saw_line || val <= offset) | |
1320 | { | |
1321 | *pline = bfd_get_16 (abfd, stab + DESCOFF); | |
1322 | ||
1323 | #ifdef ENABLE_CACHING | |
1324 | info->cached_stab = stab; | |
1325 | info->cached_offset = val; | |
1326 | info->cached_file_name = file_name; | |
1327 | info->cached_indexentry = indexentry; | |
1328 | #endif | |
1329 | } | |
1330 | if (val > offset) | |
1331 | done = TRUE; | |
1332 | saw_line = TRUE; | |
1333 | break; | |
1334 | ||
1335 | case N_FUN: | |
1336 | case N_SO: | |
1337 | if (saw_func || saw_line) | |
1338 | done = TRUE; | |
1339 | saw_func = TRUE; | |
1340 | break; | |
1341 | } | |
1342 | ||
1343 | if (done) | |
1344 | break; | |
1345 | } | |
1346 | ||
1347 | *pfound = TRUE; | |
1348 | ||
1349 | if (file_name == NULL || IS_ABSOLUTE_PATH (file_name) | |
1350 | || directory_name == NULL) | |
1351 | *pfilename = file_name; | |
1352 | else | |
1353 | { | |
1354 | size_t dirlen; | |
1355 | ||
1356 | dirlen = strlen (directory_name); | |
1357 | if (info->filename == NULL | |
1358 | || strncmp (info->filename, directory_name, dirlen) != 0 | |
1359 | || strcmp (info->filename + dirlen, file_name) != 0) | |
1360 | { | |
1361 | size_t len; | |
1362 | ||
1363 | if (info->filename != NULL) | |
1364 | free (info->filename); | |
1365 | len = strlen (file_name) + 1; | |
1366 | info->filename = bfd_malloc (dirlen + len); | |
1367 | if (info->filename == NULL) | |
1368 | return FALSE; | |
1369 | memcpy (info->filename, directory_name, dirlen); | |
1370 | memcpy (info->filename + dirlen, file_name, len); | |
1371 | } | |
1372 | ||
1373 | *pfilename = info->filename; | |
1374 | } | |
1375 | ||
1376 | if (indexentry->function_name != NULL) | |
1377 | { | |
1378 | char *s; | |
1379 | ||
1380 | /* This will typically be something like main:F(0,1), so we want | |
1381 | to clobber the colon. It's OK to change the name, since the | |
1382 | string is in our own local storage anyhow. */ | |
1383 | s = strchr (indexentry->function_name, ':'); | |
1384 | if (s != NULL) | |
1385 | *s = '\0'; | |
1386 | ||
1387 | *pfnname = indexentry->function_name; | |
1388 | } | |
1389 | ||
1390 | return TRUE; | |
1391 | } |