]>
Commit | Line | Data |
---|---|---|
1 | /* YACC parser for C expressions, for GDB. | |
2 | Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GDB. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
20 | /* Parse a C expression from text in a string, | |
21 | and return the result as a struct expression pointer. | |
22 | That structure contains arithmetic operations in reverse polish, | |
23 | with constants represented by operations that are followed by special data. | |
24 | See expression.h for the details of the format. | |
25 | What is important here is that it can be built up sequentially | |
26 | during the process of parsing; the lower levels of the tree always | |
27 | come first in the result. | |
28 | ||
29 | Note that malloc's and realloc's in this file are transformed to | |
30 | xmalloc and xrealloc respectively by the same sed command in the | |
31 | makefile that remaps any other malloc/realloc inserted by the parser | |
32 | generator. Doing this with #defines and trying to control the interaction | |
33 | with include files (<malloc.h> and <stdlib.h> for example) just became | |
34 | too messy, particularly when such includes can be inserted at random | |
35 | times by the parser generator. */ | |
36 | ||
37 | %{ | |
38 | ||
39 | #include "defs.h" | |
40 | #include "expression.h" | |
41 | #include "parser-defs.h" | |
42 | #include "value.h" | |
43 | #include "language.h" | |
44 | #include "c-lang.h" | |
45 | ||
46 | /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc), | |
47 | as well as gratuitiously global symbol names, so we can have multiple | |
48 | yacc generated parsers in gdb. Note that these are only the variables | |
49 | produced by yacc. If other parser generators (bison, byacc, etc) produce | |
50 | additional global names that conflict at link time, then those parser | |
51 | generators need to be fixed instead of adding those names to this list. */ | |
52 | ||
53 | #define yymaxdepth c_maxdepth | |
54 | #define yyparse c_parse | |
55 | #define yylex c_lex | |
56 | #define yyerror c_error | |
57 | #define yylval c_lval | |
58 | #define yychar c_char | |
59 | #define yydebug c_debug | |
60 | #define yypact c_pact | |
61 | #define yyr1 c_r1 | |
62 | #define yyr2 c_r2 | |
63 | #define yydef c_def | |
64 | #define yychk c_chk | |
65 | #define yypgo c_pgo | |
66 | #define yyact c_act | |
67 | #define yyexca c_exca | |
68 | #define yyerrflag c_errflag | |
69 | #define yynerrs c_nerrs | |
70 | #define yyps c_ps | |
71 | #define yypv c_pv | |
72 | #define yys c_s | |
73 | #define yy_yys c_yys | |
74 | #define yystate c_state | |
75 | #define yytmp c_tmp | |
76 | #define yyv c_v | |
77 | #define yy_yyv c_yyv | |
78 | #define yyval c_val | |
79 | #define yylloc c_lloc | |
80 | #define yyreds c_reds /* With YYDEBUG defined */ | |
81 | #define yytoks c_toks /* With YYDEBUG defined */ | |
82 | ||
83 | #ifndef YYDEBUG | |
84 | #define YYDEBUG 0 /* Default to no yydebug support */ | |
85 | #endif | |
86 | ||
87 | int | |
88 | yyparse PARAMS ((void)); | |
89 | ||
90 | static int | |
91 | yylex PARAMS ((void)); | |
92 | ||
93 | void | |
94 | yyerror PARAMS ((char *)); | |
95 | ||
96 | %} | |
97 | ||
98 | /* Although the yacc "value" of an expression is not used, | |
99 | since the result is stored in the structure being created, | |
100 | other node types do have values. */ | |
101 | ||
102 | %union | |
103 | { | |
104 | LONGEST lval; | |
105 | struct { | |
106 | LONGEST val; | |
107 | struct type *type; | |
108 | } typed_val; | |
109 | double dval; | |
110 | struct symbol *sym; | |
111 | struct type *tval; | |
112 | struct stoken sval; | |
113 | struct ttype tsym; | |
114 | struct symtoken ssym; | |
115 | int voidval; | |
116 | struct block *bval; | |
117 | enum exp_opcode opcode; | |
118 | struct internalvar *ivar; | |
119 | ||
120 | struct type **tvec; | |
121 | int *ivec; | |
122 | } | |
123 | ||
124 | %{ | |
125 | /* YYSTYPE gets defined by %union */ | |
126 | static int | |
127 | parse_number PARAMS ((char *, int, int, YYSTYPE *)); | |
128 | %} | |
129 | ||
130 | %type <voidval> exp exp1 type_exp start variable qualified_name lcurly | |
131 | %type <lval> rcurly | |
132 | %type <tval> type typebase | |
133 | %type <tvec> nonempty_typelist | |
134 | /* %type <bval> block */ | |
135 | ||
136 | /* Fancy type parsing. */ | |
137 | %type <voidval> func_mod direct_abs_decl abs_decl | |
138 | %type <tval> ptype | |
139 | %type <lval> array_mod | |
140 | ||
141 | %token <typed_val> INT | |
142 | %token <dval> FLOAT | |
143 | ||
144 | /* Both NAME and TYPENAME tokens represent symbols in the input, | |
145 | and both convey their data as strings. | |
146 | But a TYPENAME is a string that happens to be defined as a typedef | |
147 | or builtin type name (such as int or char) | |
148 | and a NAME is any other symbol. | |
149 | Contexts where this distinction is not important can use the | |
150 | nonterminal "name", which matches either NAME or TYPENAME. */ | |
151 | ||
152 | %token <sval> STRING | |
153 | %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */ | |
154 | %token <tsym> TYPENAME | |
155 | %type <sval> name | |
156 | %type <ssym> name_not_typename | |
157 | %type <tsym> typename | |
158 | ||
159 | /* A NAME_OR_INT is a symbol which is not known in the symbol table, | |
160 | but which would parse as a valid number in the current input radix. | |
161 | E.g. "c" when input_radix==16. Depending on the parse, it will be | |
162 | turned into a name or into a number. */ | |
163 | ||
164 | %token <ssym> NAME_OR_INT | |
165 | ||
166 | %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON | |
167 | %token TEMPLATE | |
168 | %token ERROR | |
169 | ||
170 | /* Special type cases, put in to allow the parser to distinguish different | |
171 | legal basetypes. */ | |
172 | %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD | |
173 | %token <lval> LAST REGNAME | |
174 | ||
175 | %token <ivar> VARIABLE | |
176 | ||
177 | %token <opcode> ASSIGN_MODIFY | |
178 | ||
179 | /* C++ */ | |
180 | %token THIS | |
181 | ||
182 | %left ',' | |
183 | %left ABOVE_COMMA | |
184 | %right '=' ASSIGN_MODIFY | |
185 | %right '?' | |
186 | %left OROR | |
187 | %left ANDAND | |
188 | %left '|' | |
189 | %left '^' | |
190 | %left '&' | |
191 | %left EQUAL NOTEQUAL | |
192 | %left '<' '>' LEQ GEQ | |
193 | %left LSH RSH | |
194 | %left '@' | |
195 | %left '+' '-' | |
196 | %left '*' '/' '%' | |
197 | %right UNARY INCREMENT DECREMENT | |
198 | %right ARROW '.' '[' '(' | |
199 | %token <ssym> BLOCKNAME | |
200 | %type <bval> block | |
201 | %left COLONCOLON | |
202 | ||
203 | \f | |
204 | %% | |
205 | ||
206 | start : exp1 | |
207 | | type_exp | |
208 | ; | |
209 | ||
210 | type_exp: type | |
211 | { write_exp_elt_opcode(OP_TYPE); | |
212 | write_exp_elt_type($1); | |
213 | write_exp_elt_opcode(OP_TYPE);} | |
214 | ; | |
215 | ||
216 | /* Expressions, including the comma operator. */ | |
217 | exp1 : exp | |
218 | | exp1 ',' exp | |
219 | { write_exp_elt_opcode (BINOP_COMMA); } | |
220 | ; | |
221 | ||
222 | /* Expressions, not including the comma operator. */ | |
223 | exp : '*' exp %prec UNARY | |
224 | { write_exp_elt_opcode (UNOP_IND); } | |
225 | ||
226 | exp : '&' exp %prec UNARY | |
227 | { write_exp_elt_opcode (UNOP_ADDR); } | |
228 | ||
229 | exp : '-' exp %prec UNARY | |
230 | { write_exp_elt_opcode (UNOP_NEG); } | |
231 | ; | |
232 | ||
233 | exp : '!' exp %prec UNARY | |
234 | { write_exp_elt_opcode (UNOP_LOGICAL_NOT); } | |
235 | ; | |
236 | ||
237 | exp : '~' exp %prec UNARY | |
238 | { write_exp_elt_opcode (UNOP_COMPLEMENT); } | |
239 | ; | |
240 | ||
241 | exp : INCREMENT exp %prec UNARY | |
242 | { write_exp_elt_opcode (UNOP_PREINCREMENT); } | |
243 | ; | |
244 | ||
245 | exp : DECREMENT exp %prec UNARY | |
246 | { write_exp_elt_opcode (UNOP_PREDECREMENT); } | |
247 | ; | |
248 | ||
249 | exp : exp INCREMENT %prec UNARY | |
250 | { write_exp_elt_opcode (UNOP_POSTINCREMENT); } | |
251 | ; | |
252 | ||
253 | exp : exp DECREMENT %prec UNARY | |
254 | { write_exp_elt_opcode (UNOP_POSTDECREMENT); } | |
255 | ; | |
256 | ||
257 | exp : SIZEOF exp %prec UNARY | |
258 | { write_exp_elt_opcode (UNOP_SIZEOF); } | |
259 | ; | |
260 | ||
261 | exp : exp ARROW name | |
262 | { write_exp_elt_opcode (STRUCTOP_PTR); | |
263 | write_exp_string ($3); | |
264 | write_exp_elt_opcode (STRUCTOP_PTR); } | |
265 | ; | |
266 | ||
267 | exp : exp ARROW qualified_name | |
268 | { /* exp->type::name becomes exp->*(&type::name) */ | |
269 | /* Note: this doesn't work if name is a | |
270 | static member! FIXME */ | |
271 | write_exp_elt_opcode (UNOP_ADDR); | |
272 | write_exp_elt_opcode (STRUCTOP_MPTR); } | |
273 | ; | |
274 | exp : exp ARROW '*' exp | |
275 | { write_exp_elt_opcode (STRUCTOP_MPTR); } | |
276 | ; | |
277 | ||
278 | exp : exp '.' name | |
279 | { write_exp_elt_opcode (STRUCTOP_STRUCT); | |
280 | write_exp_string ($3); | |
281 | write_exp_elt_opcode (STRUCTOP_STRUCT); } | |
282 | ; | |
283 | ||
284 | exp : exp '.' qualified_name | |
285 | { /* exp.type::name becomes exp.*(&type::name) */ | |
286 | /* Note: this doesn't work if name is a | |
287 | static member! FIXME */ | |
288 | write_exp_elt_opcode (UNOP_ADDR); | |
289 | write_exp_elt_opcode (STRUCTOP_MEMBER); } | |
290 | ; | |
291 | ||
292 | exp : exp '.' '*' exp | |
293 | { write_exp_elt_opcode (STRUCTOP_MEMBER); } | |
294 | ; | |
295 | ||
296 | exp : exp '[' exp1 ']' | |
297 | { write_exp_elt_opcode (BINOP_SUBSCRIPT); } | |
298 | ; | |
299 | ||
300 | exp : exp '(' | |
301 | /* This is to save the value of arglist_len | |
302 | being accumulated by an outer function call. */ | |
303 | { start_arglist (); } | |
304 | arglist ')' %prec ARROW | |
305 | { write_exp_elt_opcode (OP_FUNCALL); | |
306 | write_exp_elt_longcst ((LONGEST) end_arglist ()); | |
307 | write_exp_elt_opcode (OP_FUNCALL); } | |
308 | ; | |
309 | ||
310 | lcurly : '{' | |
311 | { start_arglist (); } | |
312 | ; | |
313 | ||
314 | arglist : | |
315 | ; | |
316 | ||
317 | arglist : exp | |
318 | { arglist_len = 1; } | |
319 | ; | |
320 | ||
321 | arglist : arglist ',' exp %prec ABOVE_COMMA | |
322 | { arglist_len++; } | |
323 | ; | |
324 | ||
325 | rcurly : '}' | |
326 | { $$ = end_arglist () - 1; } | |
327 | ; | |
328 | exp : lcurly arglist rcurly %prec ARROW | |
329 | { write_exp_elt_opcode (OP_ARRAY); | |
330 | write_exp_elt_longcst ((LONGEST) 0); | |
331 | write_exp_elt_longcst ((LONGEST) $3); | |
332 | write_exp_elt_opcode (OP_ARRAY); } | |
333 | ; | |
334 | ||
335 | exp : lcurly type rcurly exp %prec UNARY | |
336 | { write_exp_elt_opcode (UNOP_MEMVAL); | |
337 | write_exp_elt_type ($2); | |
338 | write_exp_elt_opcode (UNOP_MEMVAL); } | |
339 | ; | |
340 | ||
341 | exp : '(' type ')' exp %prec UNARY | |
342 | { write_exp_elt_opcode (UNOP_CAST); | |
343 | write_exp_elt_type ($2); | |
344 | write_exp_elt_opcode (UNOP_CAST); } | |
345 | ; | |
346 | ||
347 | exp : '(' exp1 ')' | |
348 | { } | |
349 | ; | |
350 | ||
351 | /* Binary operators in order of decreasing precedence. */ | |
352 | ||
353 | exp : exp '@' exp | |
354 | { write_exp_elt_opcode (BINOP_REPEAT); } | |
355 | ; | |
356 | ||
357 | exp : exp '*' exp | |
358 | { write_exp_elt_opcode (BINOP_MUL); } | |
359 | ; | |
360 | ||
361 | exp : exp '/' exp | |
362 | { write_exp_elt_opcode (BINOP_DIV); } | |
363 | ; | |
364 | ||
365 | exp : exp '%' exp | |
366 | { write_exp_elt_opcode (BINOP_REM); } | |
367 | ; | |
368 | ||
369 | exp : exp '+' exp | |
370 | { write_exp_elt_opcode (BINOP_ADD); } | |
371 | ; | |
372 | ||
373 | exp : exp '-' exp | |
374 | { write_exp_elt_opcode (BINOP_SUB); } | |
375 | ; | |
376 | ||
377 | exp : exp LSH exp | |
378 | { write_exp_elt_opcode (BINOP_LSH); } | |
379 | ; | |
380 | ||
381 | exp : exp RSH exp | |
382 | { write_exp_elt_opcode (BINOP_RSH); } | |
383 | ; | |
384 | ||
385 | exp : exp EQUAL exp | |
386 | { write_exp_elt_opcode (BINOP_EQUAL); } | |
387 | ; | |
388 | ||
389 | exp : exp NOTEQUAL exp | |
390 | { write_exp_elt_opcode (BINOP_NOTEQUAL); } | |
391 | ; | |
392 | ||
393 | exp : exp LEQ exp | |
394 | { write_exp_elt_opcode (BINOP_LEQ); } | |
395 | ; | |
396 | ||
397 | exp : exp GEQ exp | |
398 | { write_exp_elt_opcode (BINOP_GEQ); } | |
399 | ; | |
400 | ||
401 | exp : exp '<' exp | |
402 | { write_exp_elt_opcode (BINOP_LESS); } | |
403 | ; | |
404 | ||
405 | exp : exp '>' exp | |
406 | { write_exp_elt_opcode (BINOP_GTR); } | |
407 | ; | |
408 | ||
409 | exp : exp '&' exp | |
410 | { write_exp_elt_opcode (BINOP_BITWISE_AND); } | |
411 | ; | |
412 | ||
413 | exp : exp '^' exp | |
414 | { write_exp_elt_opcode (BINOP_BITWISE_XOR); } | |
415 | ; | |
416 | ||
417 | exp : exp '|' exp | |
418 | { write_exp_elt_opcode (BINOP_BITWISE_IOR); } | |
419 | ; | |
420 | ||
421 | exp : exp ANDAND exp | |
422 | { write_exp_elt_opcode (BINOP_LOGICAL_AND); } | |
423 | ; | |
424 | ||
425 | exp : exp OROR exp | |
426 | { write_exp_elt_opcode (BINOP_LOGICAL_OR); } | |
427 | ; | |
428 | ||
429 | exp : exp '?' exp ':' exp %prec '?' | |
430 | { write_exp_elt_opcode (TERNOP_COND); } | |
431 | ; | |
432 | ||
433 | exp : exp '=' exp | |
434 | { write_exp_elt_opcode (BINOP_ASSIGN); } | |
435 | ; | |
436 | ||
437 | exp : exp ASSIGN_MODIFY exp | |
438 | { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); | |
439 | write_exp_elt_opcode ($2); | |
440 | write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); } | |
441 | ; | |
442 | ||
443 | exp : INT | |
444 | { write_exp_elt_opcode (OP_LONG); | |
445 | write_exp_elt_type ($1.type); | |
446 | write_exp_elt_longcst ((LONGEST)($1.val)); | |
447 | write_exp_elt_opcode (OP_LONG); } | |
448 | ; | |
449 | ||
450 | exp : NAME_OR_INT | |
451 | { YYSTYPE val; | |
452 | parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val); | |
453 | write_exp_elt_opcode (OP_LONG); | |
454 | write_exp_elt_type (val.typed_val.type); | |
455 | write_exp_elt_longcst ((LONGEST)val.typed_val.val); | |
456 | write_exp_elt_opcode (OP_LONG); | |
457 | } | |
458 | ; | |
459 | ||
460 | ||
461 | exp : FLOAT | |
462 | { write_exp_elt_opcode (OP_DOUBLE); | |
463 | write_exp_elt_type (builtin_type_double); | |
464 | write_exp_elt_dblcst ($1); | |
465 | write_exp_elt_opcode (OP_DOUBLE); } | |
466 | ; | |
467 | ||
468 | exp : variable | |
469 | ; | |
470 | ||
471 | exp : LAST | |
472 | { write_exp_elt_opcode (OP_LAST); | |
473 | write_exp_elt_longcst ((LONGEST) $1); | |
474 | write_exp_elt_opcode (OP_LAST); } | |
475 | ; | |
476 | ||
477 | exp : REGNAME | |
478 | { write_exp_elt_opcode (OP_REGISTER); | |
479 | write_exp_elt_longcst ((LONGEST) $1); | |
480 | write_exp_elt_opcode (OP_REGISTER); } | |
481 | ; | |
482 | ||
483 | exp : VARIABLE | |
484 | { write_exp_elt_opcode (OP_INTERNALVAR); | |
485 | write_exp_elt_intern ($1); | |
486 | write_exp_elt_opcode (OP_INTERNALVAR); } | |
487 | ; | |
488 | ||
489 | exp : SIZEOF '(' type ')' %prec UNARY | |
490 | { write_exp_elt_opcode (OP_LONG); | |
491 | write_exp_elt_type (builtin_type_int); | |
492 | write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3)); | |
493 | write_exp_elt_opcode (OP_LONG); } | |
494 | ; | |
495 | ||
496 | exp : STRING | |
497 | { /* C strings are converted into array constants with | |
498 | an explicit null byte added at the end. Thus | |
499 | the array upper bound is the string length. | |
500 | There is no such thing in C as a completely empty | |
501 | string. */ | |
502 | char *sp = $1.ptr; int count = $1.length; | |
503 | while (count-- > 0) | |
504 | { | |
505 | write_exp_elt_opcode (OP_LONG); | |
506 | write_exp_elt_type (builtin_type_char); | |
507 | write_exp_elt_longcst ((LONGEST)(*sp++)); | |
508 | write_exp_elt_opcode (OP_LONG); | |
509 | } | |
510 | write_exp_elt_opcode (OP_LONG); | |
511 | write_exp_elt_type (builtin_type_char); | |
512 | write_exp_elt_longcst ((LONGEST)'\0'); | |
513 | write_exp_elt_opcode (OP_LONG); | |
514 | write_exp_elt_opcode (OP_ARRAY); | |
515 | write_exp_elt_longcst ((LONGEST) 0); | |
516 | write_exp_elt_longcst ((LONGEST) ($1.length)); | |
517 | write_exp_elt_opcode (OP_ARRAY); } | |
518 | ; | |
519 | ||
520 | /* C++. */ | |
521 | exp : THIS | |
522 | { write_exp_elt_opcode (OP_THIS); | |
523 | write_exp_elt_opcode (OP_THIS); } | |
524 | ; | |
525 | ||
526 | /* end of C++. */ | |
527 | ||
528 | block : BLOCKNAME | |
529 | { | |
530 | if ($1.sym != 0) | |
531 | $$ = SYMBOL_BLOCK_VALUE ($1.sym); | |
532 | else | |
533 | { | |
534 | struct symtab *tem = | |
535 | lookup_symtab (copy_name ($1.stoken)); | |
536 | if (tem) | |
537 | $$ = BLOCKVECTOR_BLOCK | |
538 | (BLOCKVECTOR (tem), STATIC_BLOCK); | |
539 | else | |
540 | error ("No file or function \"%s\".", | |
541 | copy_name ($1.stoken)); | |
542 | } | |
543 | } | |
544 | ; | |
545 | ||
546 | block : block COLONCOLON name | |
547 | { struct symbol *tem | |
548 | = lookup_symbol (copy_name ($3), $1, | |
549 | VAR_NAMESPACE, (int *) NULL, | |
550 | (struct symtab **) NULL); | |
551 | if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK) | |
552 | error ("No function \"%s\" in specified context.", | |
553 | copy_name ($3)); | |
554 | $$ = SYMBOL_BLOCK_VALUE (tem); } | |
555 | ; | |
556 | ||
557 | variable: block COLONCOLON name | |
558 | { struct symbol *sym; | |
559 | sym = lookup_symbol (copy_name ($3), $1, | |
560 | VAR_NAMESPACE, (int *) NULL, | |
561 | (struct symtab **) NULL); | |
562 | if (sym == 0) | |
563 | error ("No symbol \"%s\" in specified context.", | |
564 | copy_name ($3)); | |
565 | ||
566 | write_exp_elt_opcode (OP_VAR_VALUE); | |
567 | /* block_found is set by lookup_symbol. */ | |
568 | write_exp_elt_block (block_found); | |
569 | write_exp_elt_sym (sym); | |
570 | write_exp_elt_opcode (OP_VAR_VALUE); } | |
571 | ; | |
572 | ||
573 | qualified_name: typebase COLONCOLON name | |
574 | { | |
575 | struct type *type = $1; | |
576 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT | |
577 | && TYPE_CODE (type) != TYPE_CODE_UNION) | |
578 | error ("`%s' is not defined as an aggregate type.", | |
579 | TYPE_NAME (type)); | |
580 | ||
581 | write_exp_elt_opcode (OP_SCOPE); | |
582 | write_exp_elt_type (type); | |
583 | write_exp_string ($3); | |
584 | write_exp_elt_opcode (OP_SCOPE); | |
585 | } | |
586 | | typebase COLONCOLON '~' name | |
587 | { | |
588 | struct type *type = $1; | |
589 | struct stoken tmp_token; | |
590 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT | |
591 | && TYPE_CODE (type) != TYPE_CODE_UNION) | |
592 | error ("`%s' is not defined as an aggregate type.", | |
593 | TYPE_NAME (type)); | |
594 | ||
595 | if (!STREQ (type_name_no_tag (type), $4.ptr)) | |
596 | error ("invalid destructor `%s::~%s'", | |
597 | type_name_no_tag (type), $4.ptr); | |
598 | ||
599 | tmp_token.ptr = (char*) alloca ($4.length + 2); | |
600 | tmp_token.length = $4.length + 1; | |
601 | tmp_token.ptr[0] = '~'; | |
602 | memcpy (tmp_token.ptr+1, $4.ptr, $4.length); | |
603 | tmp_token.ptr[tmp_token.length] = 0; | |
604 | write_exp_elt_opcode (OP_SCOPE); | |
605 | write_exp_elt_type (type); | |
606 | write_exp_string (tmp_token); | |
607 | write_exp_elt_opcode (OP_SCOPE); | |
608 | } | |
609 | ; | |
610 | ||
611 | variable: qualified_name | |
612 | | COLONCOLON name | |
613 | { | |
614 | char *name = copy_name ($2); | |
615 | struct symbol *sym; | |
616 | struct minimal_symbol *msymbol; | |
617 | ||
618 | sym = | |
619 | lookup_symbol (name, (const struct block *) NULL, | |
620 | VAR_NAMESPACE, (int *) NULL, | |
621 | (struct symtab **) NULL); | |
622 | if (sym) | |
623 | { | |
624 | write_exp_elt_opcode (OP_VAR_VALUE); | |
625 | write_exp_elt_block (NULL); | |
626 | write_exp_elt_sym (sym); | |
627 | write_exp_elt_opcode (OP_VAR_VALUE); | |
628 | break; | |
629 | } | |
630 | ||
631 | msymbol = lookup_minimal_symbol (name, | |
632 | (struct objfile *) NULL); | |
633 | if (msymbol != NULL) | |
634 | { | |
635 | write_exp_elt_opcode (OP_LONG); | |
636 | write_exp_elt_type (builtin_type_long); | |
637 | write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol)); | |
638 | write_exp_elt_opcode (OP_LONG); | |
639 | write_exp_elt_opcode (UNOP_MEMVAL); | |
640 | if (msymbol -> type == mst_data || | |
641 | msymbol -> type == mst_bss) | |
642 | write_exp_elt_type (builtin_type_int); | |
643 | else if (msymbol -> type == mst_text) | |
644 | write_exp_elt_type (lookup_function_type (builtin_type_int)); | |
645 | else | |
646 | write_exp_elt_type (builtin_type_char); | |
647 | write_exp_elt_opcode (UNOP_MEMVAL); | |
648 | } | |
649 | else | |
650 | if (!have_full_symbols () && !have_partial_symbols ()) | |
651 | error ("No symbol table is loaded. Use the \"file\" command."); | |
652 | else | |
653 | error ("No symbol \"%s\" in current context.", name); | |
654 | } | |
655 | ; | |
656 | ||
657 | variable: name_not_typename | |
658 | { struct symbol *sym = $1.sym; | |
659 | ||
660 | if (sym) | |
661 | { | |
662 | if (symbol_read_needs_frame (sym)) | |
663 | { | |
664 | if (innermost_block == 0 || | |
665 | contained_in (block_found, | |
666 | innermost_block)) | |
667 | innermost_block = block_found; | |
668 | } | |
669 | ||
670 | write_exp_elt_opcode (OP_VAR_VALUE); | |
671 | /* We want to use the selected frame, not | |
672 | another more inner frame which happens to | |
673 | be in the same block. */ | |
674 | write_exp_elt_block (NULL); | |
675 | write_exp_elt_sym (sym); | |
676 | write_exp_elt_opcode (OP_VAR_VALUE); | |
677 | } | |
678 | else if ($1.is_a_field_of_this) | |
679 | { | |
680 | /* C++: it hangs off of `this'. Must | |
681 | not inadvertently convert from a method call | |
682 | to data ref. */ | |
683 | if (innermost_block == 0 || | |
684 | contained_in (block_found, innermost_block)) | |
685 | innermost_block = block_found; | |
686 | write_exp_elt_opcode (OP_THIS); | |
687 | write_exp_elt_opcode (OP_THIS); | |
688 | write_exp_elt_opcode (STRUCTOP_PTR); | |
689 | write_exp_string ($1.stoken); | |
690 | write_exp_elt_opcode (STRUCTOP_PTR); | |
691 | } | |
692 | else | |
693 | { | |
694 | struct minimal_symbol *msymbol; | |
695 | register char *arg = copy_name ($1.stoken); | |
696 | ||
697 | msymbol = lookup_minimal_symbol (arg, | |
698 | (struct objfile *) NULL); | |
699 | if (msymbol != NULL) | |
700 | { | |
701 | write_exp_elt_opcode (OP_LONG); | |
702 | write_exp_elt_type (builtin_type_long); | |
703 | write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol)); | |
704 | write_exp_elt_opcode (OP_LONG); | |
705 | write_exp_elt_opcode (UNOP_MEMVAL); | |
706 | if (msymbol -> type == mst_data || | |
707 | msymbol -> type == mst_bss) | |
708 | write_exp_elt_type (builtin_type_int); | |
709 | else if (msymbol -> type == mst_text) | |
710 | write_exp_elt_type (lookup_function_type (builtin_type_int)); | |
711 | else | |
712 | write_exp_elt_type (builtin_type_char); | |
713 | write_exp_elt_opcode (UNOP_MEMVAL); | |
714 | } | |
715 | else if (!have_full_symbols () && !have_partial_symbols ()) | |
716 | error ("No symbol table is loaded. Use the \"file\" command."); | |
717 | else | |
718 | error ("No symbol \"%s\" in current context.", | |
719 | copy_name ($1.stoken)); | |
720 | } | |
721 | } | |
722 | ; | |
723 | ||
724 | ||
725 | ptype : typebase | |
726 | /* "const" and "volatile" are curently ignored. A type qualifier | |
727 | before the type is currently handled in the typebase rule. | |
728 | The reason for recognizing these here (shift/reduce conflicts) | |
729 | might be obsolete now that some pointer to member rules have | |
730 | been deleted. */ | |
731 | | typebase CONST_KEYWORD | |
732 | | typebase VOLATILE_KEYWORD | |
733 | | typebase abs_decl | |
734 | { $$ = follow_types ($1); } | |
735 | | typebase CONST_KEYWORD abs_decl | |
736 | { $$ = follow_types ($1); } | |
737 | | typebase VOLATILE_KEYWORD abs_decl | |
738 | { $$ = follow_types ($1); } | |
739 | ; | |
740 | ||
741 | abs_decl: '*' | |
742 | { push_type (tp_pointer); $$ = 0; } | |
743 | | '*' abs_decl | |
744 | { push_type (tp_pointer); $$ = $2; } | |
745 | | '&' | |
746 | { push_type (tp_reference); $$ = 0; } | |
747 | | '&' abs_decl | |
748 | { push_type (tp_reference); $$ = $2; } | |
749 | | direct_abs_decl | |
750 | ; | |
751 | ||
752 | direct_abs_decl: '(' abs_decl ')' | |
753 | { $$ = $2; } | |
754 | | direct_abs_decl array_mod | |
755 | { | |
756 | push_type_int ($2); | |
757 | push_type (tp_array); | |
758 | } | |
759 | | array_mod | |
760 | { | |
761 | push_type_int ($1); | |
762 | push_type (tp_array); | |
763 | $$ = 0; | |
764 | } | |
765 | ||
766 | | direct_abs_decl func_mod | |
767 | { push_type (tp_function); } | |
768 | | func_mod | |
769 | { push_type (tp_function); } | |
770 | ; | |
771 | ||
772 | array_mod: '[' ']' | |
773 | { $$ = -1; } | |
774 | | '[' INT ']' | |
775 | { $$ = $2.val; } | |
776 | ; | |
777 | ||
778 | func_mod: '(' ')' | |
779 | { $$ = 0; } | |
780 | | '(' nonempty_typelist ')' | |
781 | { free ((PTR)$2); $$ = 0; } | |
782 | ; | |
783 | ||
784 | /* We used to try to recognize more pointer to member types here, but | |
785 | that didn't work (shift/reduce conflicts meant that these rules never | |
786 | got executed). The problem is that | |
787 | int (foo::bar::baz::bizzle) | |
788 | is a function type but | |
789 | int (foo::bar::baz::bizzle::*) | |
790 | is a pointer to member type. Stroustrup loses again! */ | |
791 | ||
792 | type : ptype | |
793 | | typebase COLONCOLON '*' | |
794 | { $$ = lookup_member_type (builtin_type_int, $1); } | |
795 | ; | |
796 | ||
797 | typebase /* Implements (approximately): (type-qualifier)* type-specifier */ | |
798 | : TYPENAME | |
799 | { $$ = $1.type; } | |
800 | | INT_KEYWORD | |
801 | { $$ = builtin_type_int; } | |
802 | | LONG | |
803 | { $$ = builtin_type_long; } | |
804 | | SHORT | |
805 | { $$ = builtin_type_short; } | |
806 | | LONG INT_KEYWORD | |
807 | { $$ = builtin_type_long; } | |
808 | | UNSIGNED LONG INT_KEYWORD | |
809 | { $$ = builtin_type_unsigned_long; } | |
810 | | LONG LONG | |
811 | { $$ = builtin_type_long_long; } | |
812 | | LONG LONG INT_KEYWORD | |
813 | { $$ = builtin_type_long_long; } | |
814 | | UNSIGNED LONG LONG | |
815 | { $$ = builtin_type_unsigned_long_long; } | |
816 | | UNSIGNED LONG LONG INT_KEYWORD | |
817 | { $$ = builtin_type_unsigned_long_long; } | |
818 | | SHORT INT_KEYWORD | |
819 | { $$ = builtin_type_short; } | |
820 | | UNSIGNED SHORT INT_KEYWORD | |
821 | { $$ = builtin_type_unsigned_short; } | |
822 | | STRUCT name | |
823 | { $$ = lookup_struct (copy_name ($2), | |
824 | expression_context_block); } | |
825 | | CLASS name | |
826 | { $$ = lookup_struct (copy_name ($2), | |
827 | expression_context_block); } | |
828 | | UNION name | |
829 | { $$ = lookup_union (copy_name ($2), | |
830 | expression_context_block); } | |
831 | | ENUM name | |
832 | { $$ = lookup_enum (copy_name ($2), | |
833 | expression_context_block); } | |
834 | | UNSIGNED typename | |
835 | { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); } | |
836 | | UNSIGNED | |
837 | { $$ = builtin_type_unsigned_int; } | |
838 | | SIGNED_KEYWORD typename | |
839 | { $$ = lookup_signed_typename (TYPE_NAME($2.type)); } | |
840 | | SIGNED_KEYWORD | |
841 | { $$ = builtin_type_int; } | |
842 | | TEMPLATE name '<' type '>' | |
843 | { $$ = lookup_template_type(copy_name($2), $4, | |
844 | expression_context_block); | |
845 | } | |
846 | /* "const" and "volatile" are curently ignored. A type qualifier | |
847 | after the type is handled in the ptype rule. I think these could | |
848 | be too. */ | |
849 | | CONST_KEYWORD typebase { $$ = $2; } | |
850 | | VOLATILE_KEYWORD typebase { $$ = $2; } | |
851 | ; | |
852 | ||
853 | typename: TYPENAME | |
854 | | INT_KEYWORD | |
855 | { | |
856 | $$.stoken.ptr = "int"; | |
857 | $$.stoken.length = 3; | |
858 | $$.type = builtin_type_int; | |
859 | } | |
860 | | LONG | |
861 | { | |
862 | $$.stoken.ptr = "long"; | |
863 | $$.stoken.length = 4; | |
864 | $$.type = builtin_type_long; | |
865 | } | |
866 | | SHORT | |
867 | { | |
868 | $$.stoken.ptr = "short"; | |
869 | $$.stoken.length = 5; | |
870 | $$.type = builtin_type_short; | |
871 | } | |
872 | ; | |
873 | ||
874 | nonempty_typelist | |
875 | : type | |
876 | { $$ = (struct type **) malloc (sizeof (struct type *) * 2); | |
877 | $<ivec>$[0] = 1; /* Number of types in vector */ | |
878 | $$[1] = $1; | |
879 | } | |
880 | | nonempty_typelist ',' type | |
881 | { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1); | |
882 | $$ = (struct type **) realloc ((char *) $1, len); | |
883 | $$[$<ivec>$[0]] = $3; | |
884 | } | |
885 | ; | |
886 | ||
887 | name : NAME { $$ = $1.stoken; } | |
888 | | BLOCKNAME { $$ = $1.stoken; } | |
889 | | TYPENAME { $$ = $1.stoken; } | |
890 | | NAME_OR_INT { $$ = $1.stoken; } | |
891 | ; | |
892 | ||
893 | name_not_typename : NAME | |
894 | | BLOCKNAME | |
895 | /* These would be useful if name_not_typename was useful, but it is just | |
896 | a fake for "variable", so these cause reduce/reduce conflicts because | |
897 | the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable, | |
898 | =exp) or just an exp. If name_not_typename was ever used in an lvalue | |
899 | context where only a name could occur, this might be useful. | |
900 | | NAME_OR_INT | |
901 | */ | |
902 | ; | |
903 | ||
904 | %% | |
905 | ||
906 | /* Take care of parsing a number (anything that starts with a digit). | |
907 | Set yylval and return the token type; update lexptr. | |
908 | LEN is the number of characters in it. */ | |
909 | ||
910 | /*** Needs some error checking for the float case ***/ | |
911 | ||
912 | static int | |
913 | parse_number (p, len, parsed_float, putithere) | |
914 | register char *p; | |
915 | register int len; | |
916 | int parsed_float; | |
917 | YYSTYPE *putithere; | |
918 | { | |
919 | register LONGEST n = 0; | |
920 | register LONGEST prevn = 0; | |
921 | register int i = 0; | |
922 | register int c; | |
923 | register int base = input_radix; | |
924 | int unsigned_p = 0; | |
925 | int long_p = 0; | |
926 | unsigned LONGEST high_bit; | |
927 | struct type *signed_type; | |
928 | struct type *unsigned_type; | |
929 | ||
930 | if (parsed_float) | |
931 | { | |
932 | /* It's a float since it contains a point or an exponent. */ | |
933 | putithere->dval = atof (p); | |
934 | return FLOAT; | |
935 | } | |
936 | ||
937 | /* Handle base-switching prefixes 0x, 0t, 0d, 0 */ | |
938 | if (p[0] == '0') | |
939 | switch (p[1]) | |
940 | { | |
941 | case 'x': | |
942 | case 'X': | |
943 | if (len >= 3) | |
944 | { | |
945 | p += 2; | |
946 | base = 16; | |
947 | len -= 2; | |
948 | } | |
949 | break; | |
950 | ||
951 | case 't': | |
952 | case 'T': | |
953 | case 'd': | |
954 | case 'D': | |
955 | if (len >= 3) | |
956 | { | |
957 | p += 2; | |
958 | base = 10; | |
959 | len -= 2; | |
960 | } | |
961 | break; | |
962 | ||
963 | default: | |
964 | base = 8; | |
965 | break; | |
966 | } | |
967 | ||
968 | while (len-- > 0) | |
969 | { | |
970 | c = *p++; | |
971 | if (c >= 'A' && c <= 'Z') | |
972 | c += 'a' - 'A'; | |
973 | if (c != 'l' && c != 'u') | |
974 | n *= base; | |
975 | if (c >= '0' && c <= '9') | |
976 | n += i = c - '0'; | |
977 | else | |
978 | { | |
979 | if (base > 10 && c >= 'a' && c <= 'f') | |
980 | n += i = c - 'a' + 10; | |
981 | else if (len == 0 && c == 'l') | |
982 | long_p = 1; | |
983 | else if (len == 0 && c == 'u') | |
984 | unsigned_p = 1; | |
985 | else | |
986 | return ERROR; /* Char not a digit */ | |
987 | } | |
988 | if (i >= base) | |
989 | return ERROR; /* Invalid digit in this base */ | |
990 | ||
991 | /* Portably test for overflow (only works for nonzero values, so make | |
992 | a second check for zero). */ | |
993 | if((prevn >= n) && n != 0) | |
994 | unsigned_p=1; /* Try something unsigned */ | |
995 | /* If range checking enabled, portably test for unsigned overflow. */ | |
996 | if(RANGE_CHECK && n!=0) | |
997 | { | |
998 | if((unsigned_p && (unsigned)prevn >= (unsigned)n)) | |
999 | range_error("Overflow on numeric constant."); | |
1000 | } | |
1001 | prevn=n; | |
1002 | } | |
1003 | ||
1004 | /* If the number is too big to be an int, or it's got an l suffix | |
1005 | then it's a long. Work out if this has to be a long by | |
1006 | shifting right and and seeing if anything remains, and the | |
1007 | target int size is different to the target long size. | |
1008 | ||
1009 | In the expression below, we could have tested | |
1010 | (n >> TARGET_INT_BIT) | |
1011 | to see if it was zero, | |
1012 | but too many compilers warn about that, when ints and longs | |
1013 | are the same size. So we shift it twice, with fewer bits | |
1014 | each time, for the same result. */ | |
1015 | ||
1016 | if ( (TARGET_INT_BIT != TARGET_LONG_BIT | |
1017 | && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */ | |
1018 | || long_p) | |
1019 | { | |
1020 | high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1); | |
1021 | unsigned_type = builtin_type_unsigned_long; | |
1022 | signed_type = builtin_type_long; | |
1023 | } | |
1024 | else | |
1025 | { | |
1026 | high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1); | |
1027 | unsigned_type = builtin_type_unsigned_int; | |
1028 | signed_type = builtin_type_int; | |
1029 | } | |
1030 | ||
1031 | putithere->typed_val.val = n; | |
1032 | ||
1033 | /* If the high bit of the worked out type is set then this number | |
1034 | has to be unsigned. */ | |
1035 | ||
1036 | if (unsigned_p || (n & high_bit)) | |
1037 | { | |
1038 | putithere->typed_val.type = unsigned_type; | |
1039 | } | |
1040 | else | |
1041 | { | |
1042 | putithere->typed_val.type = signed_type; | |
1043 | } | |
1044 | ||
1045 | return INT; | |
1046 | } | |
1047 | ||
1048 | struct token | |
1049 | { | |
1050 | char *operator; | |
1051 | int token; | |
1052 | enum exp_opcode opcode; | |
1053 | }; | |
1054 | ||
1055 | static const struct token tokentab3[] = | |
1056 | { | |
1057 | {">>=", ASSIGN_MODIFY, BINOP_RSH}, | |
1058 | {"<<=", ASSIGN_MODIFY, BINOP_LSH} | |
1059 | }; | |
1060 | ||
1061 | static const struct token tokentab2[] = | |
1062 | { | |
1063 | {"+=", ASSIGN_MODIFY, BINOP_ADD}, | |
1064 | {"-=", ASSIGN_MODIFY, BINOP_SUB}, | |
1065 | {"*=", ASSIGN_MODIFY, BINOP_MUL}, | |
1066 | {"/=", ASSIGN_MODIFY, BINOP_DIV}, | |
1067 | {"%=", ASSIGN_MODIFY, BINOP_REM}, | |
1068 | {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR}, | |
1069 | {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND}, | |
1070 | {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR}, | |
1071 | {"++", INCREMENT, BINOP_END}, | |
1072 | {"--", DECREMENT, BINOP_END}, | |
1073 | {"->", ARROW, BINOP_END}, | |
1074 | {"&&", ANDAND, BINOP_END}, | |
1075 | {"||", OROR, BINOP_END}, | |
1076 | {"::", COLONCOLON, BINOP_END}, | |
1077 | {"<<", LSH, BINOP_END}, | |
1078 | {">>", RSH, BINOP_END}, | |
1079 | {"==", EQUAL, BINOP_END}, | |
1080 | {"!=", NOTEQUAL, BINOP_END}, | |
1081 | {"<=", LEQ, BINOP_END}, | |
1082 | {">=", GEQ, BINOP_END} | |
1083 | }; | |
1084 | ||
1085 | /* Read one token, getting characters through lexptr. */ | |
1086 | ||
1087 | static int | |
1088 | yylex () | |
1089 | { | |
1090 | int c; | |
1091 | int namelen; | |
1092 | unsigned int i; | |
1093 | char *tokstart; | |
1094 | char *tokptr; | |
1095 | int tempbufindex; | |
1096 | static char *tempbuf; | |
1097 | static int tempbufsize; | |
1098 | ||
1099 | retry: | |
1100 | ||
1101 | tokstart = lexptr; | |
1102 | /* See if it is a special token of length 3. */ | |
1103 | for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++) | |
1104 | if (STREQN (tokstart, tokentab3[i].operator, 3)) | |
1105 | { | |
1106 | lexptr += 3; | |
1107 | yylval.opcode = tokentab3[i].opcode; | |
1108 | return tokentab3[i].token; | |
1109 | } | |
1110 | ||
1111 | /* See if it is a special token of length 2. */ | |
1112 | for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++) | |
1113 | if (STREQN (tokstart, tokentab2[i].operator, 2)) | |
1114 | { | |
1115 | lexptr += 2; | |
1116 | yylval.opcode = tokentab2[i].opcode; | |
1117 | return tokentab2[i].token; | |
1118 | } | |
1119 | ||
1120 | switch (c = *tokstart) | |
1121 | { | |
1122 | case 0: | |
1123 | return 0; | |
1124 | ||
1125 | case ' ': | |
1126 | case '\t': | |
1127 | case '\n': | |
1128 | lexptr++; | |
1129 | goto retry; | |
1130 | ||
1131 | case '\'': | |
1132 | /* We either have a character constant ('0' or '\177' for example) | |
1133 | or we have a quoted symbol reference ('foo(int,int)' in C++ | |
1134 | for example). */ | |
1135 | lexptr++; | |
1136 | c = *lexptr++; | |
1137 | if (c == '\\') | |
1138 | c = parse_escape (&lexptr); | |
1139 | ||
1140 | yylval.typed_val.val = c; | |
1141 | yylval.typed_val.type = builtin_type_char; | |
1142 | ||
1143 | c = *lexptr++; | |
1144 | if (c != '\'') | |
1145 | { | |
1146 | namelen = skip_quoted (tokstart) - tokstart; | |
1147 | if (namelen > 2) | |
1148 | { | |
1149 | lexptr = tokstart + namelen; | |
1150 | if (lexptr[-1] != '\'') | |
1151 | error ("Unmatched single quote."); | |
1152 | namelen -= 2; | |
1153 | tokstart++; | |
1154 | goto tryname; | |
1155 | } | |
1156 | error ("Invalid character constant."); | |
1157 | } | |
1158 | return INT; | |
1159 | ||
1160 | case '(': | |
1161 | paren_depth++; | |
1162 | lexptr++; | |
1163 | return c; | |
1164 | ||
1165 | case ')': | |
1166 | if (paren_depth == 0) | |
1167 | return 0; | |
1168 | paren_depth--; | |
1169 | lexptr++; | |
1170 | return c; | |
1171 | ||
1172 | case ',': | |
1173 | if (comma_terminates && paren_depth == 0) | |
1174 | return 0; | |
1175 | lexptr++; | |
1176 | return c; | |
1177 | ||
1178 | case '.': | |
1179 | /* Might be a floating point number. */ | |
1180 | if (lexptr[1] < '0' || lexptr[1] > '9') | |
1181 | goto symbol; /* Nope, must be a symbol. */ | |
1182 | /* FALL THRU into number case. */ | |
1183 | ||
1184 | case '0': | |
1185 | case '1': | |
1186 | case '2': | |
1187 | case '3': | |
1188 | case '4': | |
1189 | case '5': | |
1190 | case '6': | |
1191 | case '7': | |
1192 | case '8': | |
1193 | case '9': | |
1194 | { | |
1195 | /* It's a number. */ | |
1196 | int got_dot = 0, got_e = 0, toktype; | |
1197 | register char *p = tokstart; | |
1198 | int hex = input_radix > 10; | |
1199 | ||
1200 | if (c == '0' && (p[1] == 'x' || p[1] == 'X')) | |
1201 | { | |
1202 | p += 2; | |
1203 | hex = 1; | |
1204 | } | |
1205 | else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D')) | |
1206 | { | |
1207 | p += 2; | |
1208 | hex = 0; | |
1209 | } | |
1210 | ||
1211 | for (;; ++p) | |
1212 | { | |
1213 | /* This test includes !hex because 'e' is a valid hex digit | |
1214 | and thus does not indicate a floating point number when | |
1215 | the radix is hex. */ | |
1216 | if (!hex && !got_e && (*p == 'e' || *p == 'E')) | |
1217 | got_dot = got_e = 1; | |
1218 | /* This test does not include !hex, because a '.' always indicates | |
1219 | a decimal floating point number regardless of the radix. */ | |
1220 | else if (!got_dot && *p == '.') | |
1221 | got_dot = 1; | |
1222 | else if (got_e && (p[-1] == 'e' || p[-1] == 'E') | |
1223 | && (*p == '-' || *p == '+')) | |
1224 | /* This is the sign of the exponent, not the end of the | |
1225 | number. */ | |
1226 | continue; | |
1227 | /* We will take any letters or digits. parse_number will | |
1228 | complain if past the radix, or if L or U are not final. */ | |
1229 | else if ((*p < '0' || *p > '9') | |
1230 | && ((*p < 'a' || *p > 'z') | |
1231 | && (*p < 'A' || *p > 'Z'))) | |
1232 | break; | |
1233 | } | |
1234 | toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval); | |
1235 | if (toktype == ERROR) | |
1236 | { | |
1237 | char *err_copy = (char *) alloca (p - tokstart + 1); | |
1238 | ||
1239 | memcpy (err_copy, tokstart, p - tokstart); | |
1240 | err_copy[p - tokstart] = 0; | |
1241 | error ("Invalid number \"%s\".", err_copy); | |
1242 | } | |
1243 | lexptr = p; | |
1244 | return toktype; | |
1245 | } | |
1246 | ||
1247 | case '+': | |
1248 | case '-': | |
1249 | case '*': | |
1250 | case '/': | |
1251 | case '%': | |
1252 | case '|': | |
1253 | case '&': | |
1254 | case '^': | |
1255 | case '~': | |
1256 | case '!': | |
1257 | case '@': | |
1258 | case '<': | |
1259 | case '>': | |
1260 | case '[': | |
1261 | case ']': | |
1262 | case '?': | |
1263 | case ':': | |
1264 | case '=': | |
1265 | case '{': | |
1266 | case '}': | |
1267 | symbol: | |
1268 | lexptr++; | |
1269 | return c; | |
1270 | ||
1271 | case '"': | |
1272 | ||
1273 | /* Build the gdb internal form of the input string in tempbuf, | |
1274 | translating any standard C escape forms seen. Note that the | |
1275 | buffer is null byte terminated *only* for the convenience of | |
1276 | debugging gdb itself and printing the buffer contents when | |
1277 | the buffer contains no embedded nulls. Gdb does not depend | |
1278 | upon the buffer being null byte terminated, it uses the length | |
1279 | string instead. This allows gdb to handle C strings (as well | |
1280 | as strings in other languages) with embedded null bytes */ | |
1281 | ||
1282 | tokptr = ++tokstart; | |
1283 | tempbufindex = 0; | |
1284 | ||
1285 | do { | |
1286 | /* Grow the static temp buffer if necessary, including allocating | |
1287 | the first one on demand. */ | |
1288 | if (tempbufindex + 1 >= tempbufsize) | |
1289 | { | |
1290 | tempbuf = (char *) realloc (tempbuf, tempbufsize += 64); | |
1291 | } | |
1292 | switch (*tokptr) | |
1293 | { | |
1294 | case '\0': | |
1295 | case '"': | |
1296 | /* Do nothing, loop will terminate. */ | |
1297 | break; | |
1298 | case '\\': | |
1299 | tokptr++; | |
1300 | c = parse_escape (&tokptr); | |
1301 | if (c == -1) | |
1302 | { | |
1303 | continue; | |
1304 | } | |
1305 | tempbuf[tempbufindex++] = c; | |
1306 | break; | |
1307 | default: | |
1308 | tempbuf[tempbufindex++] = *tokptr++; | |
1309 | break; | |
1310 | } | |
1311 | } while ((*tokptr != '"') && (*tokptr != '\0')); | |
1312 | if (*tokptr++ != '"') | |
1313 | { | |
1314 | error ("Unterminated string in expression."); | |
1315 | } | |
1316 | tempbuf[tempbufindex] = '\0'; /* See note above */ | |
1317 | yylval.sval.ptr = tempbuf; | |
1318 | yylval.sval.length = tempbufindex; | |
1319 | lexptr = tokptr; | |
1320 | return (STRING); | |
1321 | } | |
1322 | ||
1323 | if (!(c == '_' || c == '$' | |
1324 | || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))) | |
1325 | /* We must have come across a bad character (e.g. ';'). */ | |
1326 | error ("Invalid character '%c' in expression.", c); | |
1327 | ||
1328 | /* It's a name. See how long it is. */ | |
1329 | namelen = 0; | |
1330 | for (c = tokstart[namelen]; | |
1331 | (c == '_' || c == '$' || (c >= '0' && c <= '9') | |
1332 | || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')); | |
1333 | c = tokstart[++namelen]) | |
1334 | ; | |
1335 | ||
1336 | /* The token "if" terminates the expression and is NOT | |
1337 | removed from the input stream. */ | |
1338 | if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f') | |
1339 | { | |
1340 | return 0; | |
1341 | } | |
1342 | ||
1343 | lexptr += namelen; | |
1344 | ||
1345 | /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) | |
1346 | and $$digits (equivalent to $<-digits> if you could type that). | |
1347 | Make token type LAST, and put the number (the digits) in yylval. */ | |
1348 | ||
1349 | tryname: | |
1350 | if (*tokstart == '$') | |
1351 | { | |
1352 | register int negate = 0; | |
1353 | c = 1; | |
1354 | /* Double dollar means negate the number and add -1 as well. | |
1355 | Thus $$ alone means -1. */ | |
1356 | if (namelen >= 2 && tokstart[1] == '$') | |
1357 | { | |
1358 | negate = 1; | |
1359 | c = 2; | |
1360 | } | |
1361 | if (c == namelen) | |
1362 | { | |
1363 | /* Just dollars (one or two) */ | |
1364 | yylval.lval = - negate; | |
1365 | return LAST; | |
1366 | } | |
1367 | /* Is the rest of the token digits? */ | |
1368 | for (; c < namelen; c++) | |
1369 | if (!(tokstart[c] >= '0' && tokstart[c] <= '9')) | |
1370 | break; | |
1371 | if (c == namelen) | |
1372 | { | |
1373 | yylval.lval = atoi (tokstart + 1 + negate); | |
1374 | if (negate) | |
1375 | yylval.lval = - yylval.lval; | |
1376 | return LAST; | |
1377 | } | |
1378 | } | |
1379 | ||
1380 | /* Handle tokens that refer to machine registers: | |
1381 | $ followed by a register name. */ | |
1382 | ||
1383 | if (*tokstart == '$') { | |
1384 | for (c = 0; c < NUM_REGS; c++) | |
1385 | if (namelen - 1 == strlen (reg_names[c]) | |
1386 | && STREQN (tokstart + 1, reg_names[c], namelen - 1)) | |
1387 | { | |
1388 | yylval.lval = c; | |
1389 | return REGNAME; | |
1390 | } | |
1391 | for (c = 0; c < num_std_regs; c++) | |
1392 | if (namelen - 1 == strlen (std_regs[c].name) | |
1393 | && STREQN (tokstart + 1, std_regs[c].name, namelen - 1)) | |
1394 | { | |
1395 | yylval.lval = std_regs[c].regnum; | |
1396 | return REGNAME; | |
1397 | } | |
1398 | } | |
1399 | /* Catch specific keywords. Should be done with a data structure. */ | |
1400 | switch (namelen) | |
1401 | { | |
1402 | case 8: | |
1403 | if (STREQN (tokstart, "unsigned", 8)) | |
1404 | return UNSIGNED; | |
1405 | if (current_language->la_language == language_cplus | |
1406 | && STREQN (tokstart, "template", 8)) | |
1407 | return TEMPLATE; | |
1408 | if (STREQN (tokstart, "volatile", 8)) | |
1409 | return VOLATILE_KEYWORD; | |
1410 | break; | |
1411 | case 6: | |
1412 | if (STREQN (tokstart, "struct", 6)) | |
1413 | return STRUCT; | |
1414 | if (STREQN (tokstart, "signed", 6)) | |
1415 | return SIGNED_KEYWORD; | |
1416 | if (STREQN (tokstart, "sizeof", 6)) | |
1417 | return SIZEOF; | |
1418 | break; | |
1419 | case 5: | |
1420 | if (current_language->la_language == language_cplus | |
1421 | && STREQN (tokstart, "class", 5)) | |
1422 | return CLASS; | |
1423 | if (STREQN (tokstart, "union", 5)) | |
1424 | return UNION; | |
1425 | if (STREQN (tokstart, "short", 5)) | |
1426 | return SHORT; | |
1427 | if (STREQN (tokstart, "const", 5)) | |
1428 | return CONST_KEYWORD; | |
1429 | break; | |
1430 | case 4: | |
1431 | if (STREQN (tokstart, "enum", 4)) | |
1432 | return ENUM; | |
1433 | if (STREQN (tokstart, "long", 4)) | |
1434 | return LONG; | |
1435 | if (current_language->la_language == language_cplus | |
1436 | && STREQN (tokstart, "this", 4)) | |
1437 | { | |
1438 | static const char this_name[] = | |
1439 | { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' }; | |
1440 | ||
1441 | if (lookup_symbol (this_name, expression_context_block, | |
1442 | VAR_NAMESPACE, (int *) NULL, | |
1443 | (struct symtab **) NULL)) | |
1444 | return THIS; | |
1445 | } | |
1446 | break; | |
1447 | case 3: | |
1448 | if (STREQN (tokstart, "int", 3)) | |
1449 | return INT_KEYWORD; | |
1450 | break; | |
1451 | default: | |
1452 | break; | |
1453 | } | |
1454 | ||
1455 | yylval.sval.ptr = tokstart; | |
1456 | yylval.sval.length = namelen; | |
1457 | ||
1458 | /* Any other names starting in $ are debugger internal variables. */ | |
1459 | ||
1460 | if (*tokstart == '$') | |
1461 | { | |
1462 | yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1); | |
1463 | return VARIABLE; | |
1464 | } | |
1465 | ||
1466 | /* Use token-type BLOCKNAME for symbols that happen to be defined as | |
1467 | functions or symtabs. If this is not so, then ... | |
1468 | Use token-type TYPENAME for symbols that happen to be defined | |
1469 | currently as names of types; NAME for other symbols. | |
1470 | The caller is not constrained to care about the distinction. */ | |
1471 | { | |
1472 | char *tmp = copy_name (yylval.sval); | |
1473 | struct symbol *sym; | |
1474 | int is_a_field_of_this = 0; | |
1475 | int hextype; | |
1476 | ||
1477 | sym = lookup_symbol (tmp, expression_context_block, | |
1478 | VAR_NAMESPACE, | |
1479 | current_language->la_language == language_cplus | |
1480 | ? &is_a_field_of_this : (int *) NULL, | |
1481 | (struct symtab **) NULL); | |
1482 | if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) || | |
1483 | lookup_partial_symtab (tmp)) | |
1484 | { | |
1485 | yylval.ssym.sym = sym; | |
1486 | yylval.ssym.is_a_field_of_this = is_a_field_of_this; | |
1487 | return BLOCKNAME; | |
1488 | } | |
1489 | if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
1490 | { | |
1491 | char *p; | |
1492 | char *namestart; | |
1493 | struct symbol *best_sym; | |
1494 | ||
1495 | /* Look ahead to detect nested types. This probably should be | |
1496 | done in the grammar, but trying seemed to introduce a lot | |
1497 | of shift/reduce and reduce/reduce conflicts. It's possible | |
1498 | that it could be done, though. Or perhaps a non-grammar, but | |
1499 | less ad hoc, approach would work well. */ | |
1500 | ||
1501 | /* Since we do not currently have any way of distinguishing | |
1502 | a nested type from a non-nested one (the stabs don't tell | |
1503 | us whether a type is nested), we just ignore the | |
1504 | containing type. */ | |
1505 | ||
1506 | p = lexptr; | |
1507 | best_sym = sym; | |
1508 | while (1) | |
1509 | { | |
1510 | /* Skip whitespace. */ | |
1511 | while (*p == ' ' || *p == '\t' || *p == '\n') | |
1512 | ++p; | |
1513 | if (*p == ':' && p[1] == ':') | |
1514 | { | |
1515 | /* Skip the `::'. */ | |
1516 | p += 2; | |
1517 | /* Skip whitespace. */ | |
1518 | while (*p == ' ' || *p == '\t' || *p == '\n') | |
1519 | ++p; | |
1520 | namestart = p; | |
1521 | while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9') | |
1522 | || (*p >= 'a' && *p <= 'z') | |
1523 | || (*p >= 'A' && *p <= 'Z')) | |
1524 | ++p; | |
1525 | if (p != namestart) | |
1526 | { | |
1527 | struct symbol *cur_sym; | |
1528 | /* As big as the whole rest of the expression, which is | |
1529 | at least big enough. */ | |
1530 | char *tmp = alloca (strlen (namestart)); | |
1531 | ||
1532 | memcpy (tmp, namestart, p - namestart); | |
1533 | tmp[p - namestart] = '\0'; | |
1534 | cur_sym = lookup_symbol (tmp, expression_context_block, | |
1535 | VAR_NAMESPACE, (int *) NULL, | |
1536 | (struct symtab **) NULL); | |
1537 | if (cur_sym) | |
1538 | { | |
1539 | if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF) | |
1540 | { | |
1541 | best_sym = cur_sym; | |
1542 | lexptr = p; | |
1543 | } | |
1544 | else | |
1545 | break; | |
1546 | } | |
1547 | else | |
1548 | break; | |
1549 | } | |
1550 | else | |
1551 | break; | |
1552 | } | |
1553 | else | |
1554 | break; | |
1555 | } | |
1556 | ||
1557 | yylval.tsym.type = SYMBOL_TYPE (best_sym); | |
1558 | return TYPENAME; | |
1559 | } | |
1560 | if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0) | |
1561 | return TYPENAME; | |
1562 | ||
1563 | /* Input names that aren't symbols but ARE valid hex numbers, | |
1564 | when the input radix permits them, can be names or numbers | |
1565 | depending on the parse. Note we support radixes > 16 here. */ | |
1566 | if (!sym && | |
1567 | ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) || | |
1568 | (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))) | |
1569 | { | |
1570 | YYSTYPE newlval; /* Its value is ignored. */ | |
1571 | hextype = parse_number (tokstart, namelen, 0, &newlval); | |
1572 | if (hextype == INT) | |
1573 | { | |
1574 | yylval.ssym.sym = sym; | |
1575 | yylval.ssym.is_a_field_of_this = is_a_field_of_this; | |
1576 | return NAME_OR_INT; | |
1577 | } | |
1578 | } | |
1579 | ||
1580 | /* Any other kind of symbol */ | |
1581 | yylval.ssym.sym = sym; | |
1582 | yylval.ssym.is_a_field_of_this = is_a_field_of_this; | |
1583 | return NAME; | |
1584 | } | |
1585 | } | |
1586 | ||
1587 | void | |
1588 | yyerror (msg) | |
1589 | char *msg; | |
1590 | { | |
1591 | error (msg ? msg : "Invalid syntax in expression."); | |
1592 | } |