]>
Commit | Line | Data |
---|---|---|
1 | /* Generic symbol-table support for the BFD library. | |
2 | Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 1997 | |
3 | Free Software Foundation, Inc. | |
4 | Written by Cygnus Support. | |
5 | ||
6 | This file is part of BFD, the Binary File Descriptor library. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | /* | |
23 | SECTION | |
24 | Symbols | |
25 | ||
26 | BFD tries to maintain as much symbol information as it can when | |
27 | it moves information from file to file. BFD passes information | |
28 | to applications though the <<asymbol>> structure. When the | |
29 | application requests the symbol table, BFD reads the table in | |
30 | the native form and translates parts of it into the internal | |
31 | format. To maintain more than the information passed to | |
32 | applications, some targets keep some information ``behind the | |
33 | scenes'' in a structure only the particular back end knows | |
34 | about. For example, the coff back end keeps the original | |
35 | symbol table structure as well as the canonical structure when | |
36 | a BFD is read in. On output, the coff back end can reconstruct | |
37 | the output symbol table so that no information is lost, even | |
38 | information unique to coff which BFD doesn't know or | |
39 | understand. If a coff symbol table were read, but were written | |
40 | through an a.out back end, all the coff specific information | |
41 | would be lost. The symbol table of a BFD | |
42 | is not necessarily read in until a canonicalize request is | |
43 | made. Then the BFD back end fills in a table provided by the | |
44 | application with pointers to the canonical information. To | |
45 | output symbols, the application provides BFD with a table of | |
46 | pointers to pointers to <<asymbol>>s. This allows applications | |
47 | like the linker to output a symbol as it was read, since the ``behind | |
48 | the scenes'' information will be still available. | |
49 | @menu | |
50 | @* Reading Symbols:: | |
51 | @* Writing Symbols:: | |
52 | @* Mini Symbols:: | |
53 | @* typedef asymbol:: | |
54 | @* symbol handling functions:: | |
55 | @end menu | |
56 | ||
57 | INODE | |
58 | Reading Symbols, Writing Symbols, Symbols, Symbols | |
59 | SUBSECTION | |
60 | Reading symbols | |
61 | ||
62 | There are two stages to reading a symbol table from a BFD: | |
63 | allocating storage, and the actual reading process. This is an | |
64 | excerpt from an application which reads the symbol table: | |
65 | ||
66 | | long storage_needed; | |
67 | | asymbol **symbol_table; | |
68 | | long number_of_symbols; | |
69 | | long i; | |
70 | | | |
71 | | storage_needed = bfd_get_symtab_upper_bound (abfd); | |
72 | | | |
73 | | if (storage_needed < 0) | |
74 | | FAIL | |
75 | | | |
76 | | if (storage_needed == 0) { | |
77 | | return ; | |
78 | | } | |
79 | | symbol_table = (asymbol **) xmalloc (storage_needed); | |
80 | | ... | |
81 | | number_of_symbols = | |
82 | | bfd_canonicalize_symtab (abfd, symbol_table); | |
83 | | | |
84 | | if (number_of_symbols < 0) | |
85 | | FAIL | |
86 | | | |
87 | | for (i = 0; i < number_of_symbols; i++) { | |
88 | | process_symbol (symbol_table[i]); | |
89 | | } | |
90 | ||
91 | All storage for the symbols themselves is in an objalloc | |
92 | connected to the BFD; it is freed when the BFD is closed. | |
93 | ||
94 | ||
95 | INODE | |
96 | Writing Symbols, Mini Symbols, Reading Symbols, Symbols | |
97 | SUBSECTION | |
98 | Writing symbols | |
99 | ||
100 | Writing of a symbol table is automatic when a BFD open for | |
101 | writing is closed. The application attaches a vector of | |
102 | pointers to pointers to symbols to the BFD being written, and | |
103 | fills in the symbol count. The close and cleanup code reads | |
104 | through the table provided and performs all the necessary | |
105 | operations. The BFD output code must always be provided with an | |
106 | ``owned'' symbol: one which has come from another BFD, or one | |
107 | which has been created using <<bfd_make_empty_symbol>>. Here is an | |
108 | example showing the creation of a symbol table with only one element: | |
109 | ||
110 | | #include "bfd.h" | |
111 | | main() | |
112 | | { | |
113 | | bfd *abfd; | |
114 | | asymbol *ptrs[2]; | |
115 | | asymbol *new; | |
116 | | | |
117 | | abfd = bfd_openw("foo","a.out-sunos-big"); | |
118 | | bfd_set_format(abfd, bfd_object); | |
119 | | new = bfd_make_empty_symbol(abfd); | |
120 | | new->name = "dummy_symbol"; | |
121 | | new->section = bfd_make_section_old_way(abfd, ".text"); | |
122 | | new->flags = BSF_GLOBAL; | |
123 | | new->value = 0x12345; | |
124 | | | |
125 | | ptrs[0] = new; | |
126 | | ptrs[1] = (asymbol *)0; | |
127 | | | |
128 | | bfd_set_symtab(abfd, ptrs, 1); | |
129 | | bfd_close(abfd); | |
130 | | } | |
131 | | | |
132 | | ./makesym | |
133 | | nm foo | |
134 | | 00012345 A dummy_symbol | |
135 | ||
136 | Many formats cannot represent arbitary symbol information; for | |
137 | instance, the <<a.out>> object format does not allow an | |
138 | arbitary number of sections. A symbol pointing to a section | |
139 | which is not one of <<.text>>, <<.data>> or <<.bss>> cannot | |
140 | be described. | |
141 | ||
142 | INODE | |
143 | Mini Symbols, typedef asymbol, Writing Symbols, Symbols | |
144 | SUBSECTION | |
145 | Mini Symbols | |
146 | ||
147 | Mini symbols provide read-only access to the symbol table. | |
148 | They use less memory space, but require more time to access. | |
149 | They can be useful for tools like nm or objdump, which may | |
150 | have to handle symbol tables of extremely large executables. | |
151 | ||
152 | The <<bfd_read_minisymbols>> function will read the symbols | |
153 | into memory in an internal form. It will return a <<void *>> | |
154 | pointer to a block of memory, a symbol count, and the size of | |
155 | each symbol. The pointer is allocated using <<malloc>>, and | |
156 | should be freed by the caller when it is no longer needed. | |
157 | ||
158 | The function <<bfd_minisymbol_to_symbol>> will take a pointer | |
159 | to a minisymbol, and a pointer to a structure returned by | |
160 | <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure. | |
161 | The return value may or may not be the same as the value from | |
162 | <<bfd_make_empty_symbol>> which was passed in. | |
163 | ||
164 | */ | |
165 | ||
166 | ||
167 | ||
168 | /* | |
169 | DOCDD | |
170 | INODE | |
171 | typedef asymbol, symbol handling functions, Mini Symbols, Symbols | |
172 | ||
173 | */ | |
174 | /* | |
175 | SUBSECTION | |
176 | typedef asymbol | |
177 | ||
178 | An <<asymbol>> has the form: | |
179 | ||
180 | */ | |
181 | ||
182 | /* | |
183 | CODE_FRAGMENT | |
184 | ||
185 | . | |
186 | .typedef struct symbol_cache_entry | |
187 | .{ | |
188 | . {* A pointer to the BFD which owns the symbol. This information | |
189 | . is necessary so that a back end can work out what additional | |
190 | . information (invisible to the application writer) is carried | |
191 | . with the symbol. | |
192 | . | |
193 | . This field is *almost* redundant, since you can use section->owner | |
194 | . instead, except that some symbols point to the global sections | |
195 | . bfd_{abs,com,und}_section. This could be fixed by making | |
196 | . these globals be per-bfd (or per-target-flavor). FIXME. *} | |
197 | . | |
198 | . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *} | |
199 | . | |
200 | . {* The text of the symbol. The name is left alone, and not copied; the | |
201 | . application may not alter it. *} | |
202 | . CONST char *name; | |
203 | . | |
204 | . {* The value of the symbol. This really should be a union of a | |
205 | . numeric value with a pointer, since some flags indicate that | |
206 | . a pointer to another symbol is stored here. *} | |
207 | . symvalue value; | |
208 | . | |
209 | . {* Attributes of a symbol: *} | |
210 | . | |
211 | .#define BSF_NO_FLAGS 0x00 | |
212 | . | |
213 | . {* The symbol has local scope; <<static>> in <<C>>. The value | |
214 | . is the offset into the section of the data. *} | |
215 | .#define BSF_LOCAL 0x01 | |
216 | . | |
217 | . {* The symbol has global scope; initialized data in <<C>>. The | |
218 | . value is the offset into the section of the data. *} | |
219 | .#define BSF_GLOBAL 0x02 | |
220 | . | |
221 | . {* The symbol has global scope and is exported. The value is | |
222 | . the offset into the section of the data. *} | |
223 | .#define BSF_EXPORT BSF_GLOBAL {* no real difference *} | |
224 | . | |
225 | . {* A normal C symbol would be one of: | |
226 | . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or | |
227 | . <<BSF_GLOBAL>> *} | |
228 | . | |
229 | . {* The symbol is a debugging record. The value has an arbitary | |
230 | . meaning. *} | |
231 | .#define BSF_DEBUGGING 0x08 | |
232 | . | |
233 | . {* The symbol denotes a function entry point. Used in ELF, | |
234 | . perhaps others someday. *} | |
235 | .#define BSF_FUNCTION 0x10 | |
236 | . | |
237 | . {* Used by the linker. *} | |
238 | .#define BSF_KEEP 0x20 | |
239 | .#define BSF_KEEP_G 0x40 | |
240 | . | |
241 | . {* A weak global symbol, overridable without warnings by | |
242 | . a regular global symbol of the same name. *} | |
243 | .#define BSF_WEAK 0x80 | |
244 | . | |
245 | . {* This symbol was created to point to a section, e.g. ELF's | |
246 | . STT_SECTION symbols. *} | |
247 | .#define BSF_SECTION_SYM 0x100 | |
248 | . | |
249 | . {* The symbol used to be a common symbol, but now it is | |
250 | . allocated. *} | |
251 | .#define BSF_OLD_COMMON 0x200 | |
252 | . | |
253 | . {* The default value for common data. *} | |
254 | .#define BFD_FORT_COMM_DEFAULT_VALUE 0 | |
255 | . | |
256 | . {* In some files the type of a symbol sometimes alters its | |
257 | . location in an output file - ie in coff a <<ISFCN>> symbol | |
258 | . which is also <<C_EXT>> symbol appears where it was | |
259 | . declared and not at the end of a section. This bit is set | |
260 | . by the target BFD part to convey this information. *} | |
261 | . | |
262 | .#define BSF_NOT_AT_END 0x400 | |
263 | . | |
264 | . {* Signal that the symbol is the label of constructor section. *} | |
265 | .#define BSF_CONSTRUCTOR 0x800 | |
266 | . | |
267 | . {* Signal that the symbol is a warning symbol. The name is a | |
268 | . warning. The name of the next symbol is the one to warn about; | |
269 | . if a reference is made to a symbol with the same name as the next | |
270 | . symbol, a warning is issued by the linker. *} | |
271 | .#define BSF_WARNING 0x1000 | |
272 | . | |
273 | . {* Signal that the symbol is indirect. This symbol is an indirect | |
274 | . pointer to the symbol with the same name as the next symbol. *} | |
275 | .#define BSF_INDIRECT 0x2000 | |
276 | . | |
277 | . {* BSF_FILE marks symbols that contain a file name. This is used | |
278 | . for ELF STT_FILE symbols. *} | |
279 | .#define BSF_FILE 0x4000 | |
280 | . | |
281 | . {* Symbol is from dynamic linking information. *} | |
282 | .#define BSF_DYNAMIC 0x8000 | |
283 | . | |
284 | . {* The symbol denotes a data object. Used in ELF, and perhaps | |
285 | . others someday. *} | |
286 | .#define BSF_OBJECT 0x10000 | |
287 | . | |
288 | . flagword flags; | |
289 | . | |
290 | . {* A pointer to the section to which this symbol is | |
291 | . relative. This will always be non NULL, there are special | |
292 | . sections for undefined and absolute symbols. *} | |
293 | . struct sec *section; | |
294 | . | |
295 | . {* Back end special data. *} | |
296 | . union | |
297 | . { | |
298 | . PTR p; | |
299 | . bfd_vma i; | |
300 | . } udata; | |
301 | . | |
302 | .} asymbol; | |
303 | */ | |
304 | ||
305 | #include "bfd.h" | |
306 | #include "sysdep.h" | |
307 | #include "libbfd.h" | |
308 | #include "bfdlink.h" | |
309 | #include "aout/stab_gnu.h" | |
310 | ||
311 | static char coff_section_type PARAMS ((const char *)); | |
312 | ||
313 | /* | |
314 | DOCDD | |
315 | INODE | |
316 | symbol handling functions, , typedef asymbol, Symbols | |
317 | SUBSECTION | |
318 | Symbol handling functions | |
319 | */ | |
320 | ||
321 | /* | |
322 | FUNCTION | |
323 | bfd_get_symtab_upper_bound | |
324 | ||
325 | DESCRIPTION | |
326 | Return the number of bytes required to store a vector of pointers | |
327 | to <<asymbols>> for all the symbols in the BFD @var{abfd}, | |
328 | including a terminal NULL pointer. If there are no symbols in | |
329 | the BFD, then return 0. If an error occurs, return -1. | |
330 | ||
331 | .#define bfd_get_symtab_upper_bound(abfd) \ | |
332 | . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd)) | |
333 | ||
334 | */ | |
335 | ||
336 | /* | |
337 | FUNCTION | |
338 | bfd_is_local_label | |
339 | ||
340 | SYNOPSIS | |
341 | boolean bfd_is_local_label(bfd *abfd, asymbol *sym); | |
342 | ||
343 | DESCRIPTION | |
344 | Return true if the given symbol @var{sym} in the BFD @var{abfd} is | |
345 | a compiler generated local label, else return false. | |
346 | */ | |
347 | ||
348 | boolean | |
349 | bfd_is_local_label (abfd, sym) | |
350 | bfd *abfd; | |
351 | asymbol *sym; | |
352 | { | |
353 | if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0) | |
354 | return false; | |
355 | if (sym->name == NULL) | |
356 | return false; | |
357 | return bfd_is_local_label_name (abfd, sym->name); | |
358 | } | |
359 | ||
360 | /* | |
361 | FUNCTION | |
362 | bfd_is_local_label_name | |
363 | ||
364 | SYNOPSIS | |
365 | boolean bfd_is_local_label_name(bfd *abfd, const char *name); | |
366 | ||
367 | DESCRIPTION | |
368 | Return true if a symbol with the name @var{name} in the BFD | |
369 | @var{abfd} is a compiler generated local label, else return | |
370 | false. This just checks whether the name has the form of a | |
371 | local label. | |
372 | ||
373 | .#define bfd_is_local_label_name(abfd, name) \ | |
374 | . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name)) | |
375 | */ | |
376 | ||
377 | /* | |
378 | FUNCTION | |
379 | bfd_canonicalize_symtab | |
380 | ||
381 | DESCRIPTION | |
382 | Read the symbols from the BFD @var{abfd}, and fills in | |
383 | the vector @var{location} with pointers to the symbols and | |
384 | a trailing NULL. | |
385 | Return the actual number of symbol pointers, not | |
386 | including the NULL. | |
387 | ||
388 | ||
389 | .#define bfd_canonicalize_symtab(abfd, location) \ | |
390 | . BFD_SEND (abfd, _bfd_canonicalize_symtab,\ | |
391 | . (abfd, location)) | |
392 | ||
393 | */ | |
394 | ||
395 | ||
396 | /* | |
397 | FUNCTION | |
398 | bfd_set_symtab | |
399 | ||
400 | SYNOPSIS | |
401 | boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count); | |
402 | ||
403 | DESCRIPTION | |
404 | Arrange that when the output BFD @var{abfd} is closed, | |
405 | the table @var{location} of @var{count} pointers to symbols | |
406 | will be written. | |
407 | */ | |
408 | ||
409 | boolean | |
410 | bfd_set_symtab (abfd, location, symcount) | |
411 | bfd *abfd; | |
412 | asymbol **location; | |
413 | unsigned int symcount; | |
414 | { | |
415 | if ((abfd->format != bfd_object) || (bfd_read_p (abfd))) | |
416 | { | |
417 | bfd_set_error (bfd_error_invalid_operation); | |
418 | return false; | |
419 | } | |
420 | ||
421 | bfd_get_outsymbols (abfd) = location; | |
422 | bfd_get_symcount (abfd) = symcount; | |
423 | return true; | |
424 | } | |
425 | ||
426 | /* | |
427 | FUNCTION | |
428 | bfd_print_symbol_vandf | |
429 | ||
430 | SYNOPSIS | |
431 | void bfd_print_symbol_vandf(PTR file, asymbol *symbol); | |
432 | ||
433 | DESCRIPTION | |
434 | Print the value and flags of the @var{symbol} supplied to the | |
435 | stream @var{file}. | |
436 | */ | |
437 | void | |
438 | bfd_print_symbol_vandf (arg, symbol) | |
439 | PTR arg; | |
440 | asymbol *symbol; | |
441 | { | |
442 | FILE *file = (FILE *) arg; | |
443 | flagword type = symbol->flags; | |
444 | if (symbol->section != (asection *) NULL) | |
445 | { | |
446 | fprintf_vma (file, symbol->value + symbol->section->vma); | |
447 | } | |
448 | else | |
449 | { | |
450 | fprintf_vma (file, symbol->value); | |
451 | } | |
452 | ||
453 | /* This presumes that a symbol can not be both BSF_DEBUGGING and | |
454 | BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and | |
455 | BSF_OBJECT. */ | |
456 | fprintf (file, " %c%c%c%c%c%c%c", | |
457 | ((type & BSF_LOCAL) | |
458 | ? (type & BSF_GLOBAL) ? '!' : 'l' | |
459 | : (type & BSF_GLOBAL) ? 'g' : ' '), | |
460 | (type & BSF_WEAK) ? 'w' : ' ', | |
461 | (type & BSF_CONSTRUCTOR) ? 'C' : ' ', | |
462 | (type & BSF_WARNING) ? 'W' : ' ', | |
463 | (type & BSF_INDIRECT) ? 'I' : ' ', | |
464 | (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ', | |
465 | ((type & BSF_FUNCTION) | |
466 | ? 'F' | |
467 | : ((type & BSF_FILE) | |
468 | ? 'f' | |
469 | : ((type & BSF_OBJECT) ? 'O' : ' ')))); | |
470 | } | |
471 | ||
472 | ||
473 | /* | |
474 | FUNCTION | |
475 | bfd_make_empty_symbol | |
476 | ||
477 | DESCRIPTION | |
478 | Create a new <<asymbol>> structure for the BFD @var{abfd} | |
479 | and return a pointer to it. | |
480 | ||
481 | This routine is necessary because each back end has private | |
482 | information surrounding the <<asymbol>>. Building your own | |
483 | <<asymbol>> and pointing to it will not create the private | |
484 | information, and will cause problems later on. | |
485 | ||
486 | .#define bfd_make_empty_symbol(abfd) \ | |
487 | . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd)) | |
488 | */ | |
489 | ||
490 | /* | |
491 | FUNCTION | |
492 | bfd_make_debug_symbol | |
493 | ||
494 | DESCRIPTION | |
495 | Create a new <<asymbol>> structure for the BFD @var{abfd}, | |
496 | to be used as a debugging symbol. Further details of its use have | |
497 | yet to be worked out. | |
498 | ||
499 | .#define bfd_make_debug_symbol(abfd,ptr,size) \ | |
500 | . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size)) | |
501 | */ | |
502 | ||
503 | struct section_to_type | |
504 | { | |
505 | CONST char *section; | |
506 | char type; | |
507 | }; | |
508 | ||
509 | /* Map section names to POSIX/BSD single-character symbol types. | |
510 | This table is probably incomplete. It is sorted for convenience of | |
511 | adding entries. Since it is so short, a linear search is used. */ | |
512 | static CONST struct section_to_type stt[] = | |
513 | { | |
514 | {"*DEBUG*", 'N'}, | |
515 | {".bss", 'b'}, | |
516 | {"zerovars", 'b'}, /* MRI .bss */ | |
517 | {".data", 'd'}, | |
518 | {"vars", 'd'}, /* MRI .data */ | |
519 | {".rdata", 'r'}, /* Read only data. */ | |
520 | {".rodata", 'r'}, /* Read only data. */ | |
521 | {".sbss", 's'}, /* Small BSS (uninitialized data). */ | |
522 | {".scommon", 'c'}, /* Small common. */ | |
523 | {".sdata", 'g'}, /* Small initialized data. */ | |
524 | {".text", 't'}, | |
525 | {"code", 't'}, /* MRI .text */ | |
526 | {0, 0} | |
527 | }; | |
528 | ||
529 | /* Return the single-character symbol type corresponding to | |
530 | section S, or '?' for an unknown COFF section. | |
531 | ||
532 | Check for any leading string which matches, so .text5 returns | |
533 | 't' as well as .text */ | |
534 | ||
535 | static char | |
536 | coff_section_type (s) | |
537 | const char *s; | |
538 | { | |
539 | CONST struct section_to_type *t; | |
540 | ||
541 | for (t = &stt[0]; t->section; t++) | |
542 | if (!strncmp (s, t->section, strlen (t->section))) | |
543 | return t->type; | |
544 | ||
545 | return '?'; | |
546 | } | |
547 | ||
548 | #ifndef islower | |
549 | #define islower(c) ((c) >= 'a' && (c) <= 'z') | |
550 | #endif | |
551 | #ifndef toupper | |
552 | #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c)) | |
553 | #endif | |
554 | ||
555 | /* | |
556 | FUNCTION | |
557 | bfd_decode_symclass | |
558 | ||
559 | DESCRIPTION | |
560 | Return a character corresponding to the symbol | |
561 | class of @var{symbol}, or '?' for an unknown class. | |
562 | ||
563 | SYNOPSIS | |
564 | int bfd_decode_symclass(asymbol *symbol); | |
565 | */ | |
566 | int | |
567 | bfd_decode_symclass (symbol) | |
568 | asymbol *symbol; | |
569 | { | |
570 | char c; | |
571 | ||
572 | if (bfd_is_com_section (symbol->section)) | |
573 | return 'C'; | |
574 | if (bfd_is_und_section (symbol->section)) | |
575 | return 'U'; | |
576 | if (bfd_is_ind_section (symbol->section)) | |
577 | return 'I'; | |
578 | if (symbol->flags & BSF_WEAK) | |
579 | return 'W'; | |
580 | if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL))) | |
581 | return '?'; | |
582 | ||
583 | if (bfd_is_abs_section (symbol->section)) | |
584 | c = 'a'; | |
585 | else if (symbol->section) | |
586 | c = coff_section_type (symbol->section->name); | |
587 | else | |
588 | return '?'; | |
589 | if (symbol->flags & BSF_GLOBAL) | |
590 | c = toupper (c); | |
591 | return c; | |
592 | ||
593 | /* We don't have to handle these cases just yet, but we will soon: | |
594 | N_SETV: 'v'; | |
595 | N_SETA: 'l'; | |
596 | N_SETT: 'x'; | |
597 | N_SETD: 'z'; | |
598 | N_SETB: 's'; | |
599 | N_INDR: 'i'; | |
600 | */ | |
601 | } | |
602 | ||
603 | /* | |
604 | FUNCTION | |
605 | bfd_symbol_info | |
606 | ||
607 | DESCRIPTION | |
608 | Fill in the basic info about symbol that nm needs. | |
609 | Additional info may be added by the back-ends after | |
610 | calling this function. | |
611 | ||
612 | SYNOPSIS | |
613 | void bfd_symbol_info(asymbol *symbol, symbol_info *ret); | |
614 | */ | |
615 | ||
616 | void | |
617 | bfd_symbol_info (symbol, ret) | |
618 | asymbol *symbol; | |
619 | symbol_info *ret; | |
620 | { | |
621 | ret->type = bfd_decode_symclass (symbol); | |
622 | if (ret->type != 'U') | |
623 | ret->value = symbol->value + symbol->section->vma; | |
624 | else | |
625 | ret->value = 0; | |
626 | ret->name = symbol->name; | |
627 | } | |
628 | ||
629 | void | |
630 | bfd_symbol_is_absolute () | |
631 | { | |
632 | abort (); | |
633 | } | |
634 | ||
635 | /* | |
636 | FUNCTION | |
637 | bfd_copy_private_symbol_data | |
638 | ||
639 | SYNOPSIS | |
640 | boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym); | |
641 | ||
642 | DESCRIPTION | |
643 | Copy private symbol information from @var{isym} in the BFD | |
644 | @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}. | |
645 | Return <<true>> on success, <<false>> on error. Possible error | |
646 | returns are: | |
647 | ||
648 | o <<bfd_error_no_memory>> - | |
649 | Not enough memory exists to create private data for @var{osec}. | |
650 | ||
651 | .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \ | |
652 | . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \ | |
653 | . (ibfd, isymbol, obfd, osymbol)) | |
654 | ||
655 | */ | |
656 | ||
657 | /* The generic version of the function which returns mini symbols. | |
658 | This is used when the backend does not provide a more efficient | |
659 | version. It just uses BFD asymbol structures as mini symbols. */ | |
660 | ||
661 | long | |
662 | _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep) | |
663 | bfd *abfd; | |
664 | boolean dynamic; | |
665 | PTR *minisymsp; | |
666 | unsigned int *sizep; | |
667 | { | |
668 | long storage; | |
669 | asymbol **syms = NULL; | |
670 | long symcount; | |
671 | ||
672 | if (dynamic) | |
673 | storage = bfd_get_dynamic_symtab_upper_bound (abfd); | |
674 | else | |
675 | storage = bfd_get_symtab_upper_bound (abfd); | |
676 | if (storage < 0) | |
677 | goto error_return; | |
678 | ||
679 | syms = (asymbol **) bfd_malloc ((size_t) storage); | |
680 | if (syms == NULL) | |
681 | goto error_return; | |
682 | ||
683 | if (dynamic) | |
684 | symcount = bfd_canonicalize_dynamic_symtab (abfd, syms); | |
685 | else | |
686 | symcount = bfd_canonicalize_symtab (abfd, syms); | |
687 | if (symcount < 0) | |
688 | goto error_return; | |
689 | ||
690 | *minisymsp = (PTR) syms; | |
691 | *sizep = sizeof (asymbol *); | |
692 | return symcount; | |
693 | ||
694 | error_return: | |
695 | if (syms != NULL) | |
696 | free (syms); | |
697 | return -1; | |
698 | } | |
699 | ||
700 | /* The generic version of the function which converts a minisymbol to | |
701 | an asymbol. We don't worry about the sym argument we are passed; | |
702 | we just return the asymbol the minisymbol points to. */ | |
703 | ||
704 | /*ARGSUSED*/ | |
705 | asymbol * | |
706 | _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym) | |
707 | bfd *abfd; | |
708 | boolean dynamic; | |
709 | const PTR minisym; | |
710 | asymbol *sym; | |
711 | { | |
712 | return *(asymbol **) minisym; | |
713 | } | |
714 | ||
715 | /* Look through stabs debugging information in .stab and .stabstr | |
716 | sections to find the source file and line closest to a desired | |
717 | location. This is used by COFF and ELF targets. It sets *pfound | |
718 | to true if it finds some information. The *pinfo field is used to | |
719 | pass cached information in and out of this routine; this first time | |
720 | the routine is called for a BFD, *pinfo should be NULL. The value | |
721 | placed in *pinfo should be saved with the BFD, and passed back each | |
722 | time this function is called. */ | |
723 | ||
724 | /* A pointer to this structure is stored in *pinfo. */ | |
725 | ||
726 | struct stab_find_info | |
727 | { | |
728 | /* The .stab section. */ | |
729 | asection *stabsec; | |
730 | /* The .stabstr section. */ | |
731 | asection *strsec; | |
732 | /* The contents of the .stab section. */ | |
733 | bfd_byte *stabs; | |
734 | /* The contents of the .stabstr section. */ | |
735 | bfd_byte *strs; | |
736 | /* An malloc buffer to hold the file name. */ | |
737 | char *filename; | |
738 | /* Cached values to restart quickly. */ | |
739 | bfd_vma cached_offset; | |
740 | bfd_byte *cached_stab; | |
741 | bfd_byte *cached_str; | |
742 | bfd_size_type cached_stroff; | |
743 | }; | |
744 | ||
745 | boolean | |
746 | _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound, | |
747 | pfilename, pfnname, pline, pinfo) | |
748 | bfd *abfd; | |
749 | asymbol **symbols; | |
750 | asection *section; | |
751 | bfd_vma offset; | |
752 | boolean *pfound; | |
753 | const char **pfilename; | |
754 | const char **pfnname; | |
755 | unsigned int *pline; | |
756 | PTR *pinfo; | |
757 | { | |
758 | struct stab_find_info *info; | |
759 | bfd_size_type stabsize, strsize; | |
760 | bfd_byte *stab, *stabend, *str; | |
761 | bfd_size_type stroff; | |
762 | bfd_vma fnaddr; | |
763 | char *directory_name, *main_file_name, *current_file_name, *line_file_name; | |
764 | char *fnname; | |
765 | bfd_vma low_func_vma, low_line_vma; | |
766 | ||
767 | *pfound = false; | |
768 | *pfilename = bfd_get_filename (abfd); | |
769 | *pfnname = NULL; | |
770 | *pline = 0; | |
771 | ||
772 | info = (struct stab_find_info *) *pinfo; | |
773 | if (info != NULL) | |
774 | { | |
775 | if (info->stabsec == NULL || info->strsec == NULL) | |
776 | { | |
777 | /* No stabs debugging information. */ | |
778 | return true; | |
779 | } | |
780 | ||
781 | stabsize = info->stabsec->_raw_size; | |
782 | strsize = info->strsec->_raw_size; | |
783 | } | |
784 | else | |
785 | { | |
786 | long reloc_size, reloc_count; | |
787 | arelent **reloc_vector; | |
788 | ||
789 | info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info); | |
790 | if (info == NULL) | |
791 | return false; | |
792 | ||
793 | /* FIXME: When using the linker --split-by-file or | |
794 | --split-by-reloc options, it is possible for the .stab and | |
795 | .stabstr sections to be split. We should handle that. */ | |
796 | ||
797 | info->stabsec = bfd_get_section_by_name (abfd, ".stab"); | |
798 | info->strsec = bfd_get_section_by_name (abfd, ".stabstr"); | |
799 | ||
800 | if (info->stabsec == NULL || info->strsec == NULL) | |
801 | { | |
802 | /* No stabs debugging information. Set *pinfo so that we | |
803 | can return quickly in the info != NULL case above. */ | |
804 | *pinfo = (PTR) info; | |
805 | return true; | |
806 | } | |
807 | ||
808 | stabsize = info->stabsec->_raw_size; | |
809 | strsize = info->strsec->_raw_size; | |
810 | ||
811 | info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize); | |
812 | info->strs = (bfd_byte *) bfd_alloc (abfd, strsize); | |
813 | if (info->stabs == NULL || info->strs == NULL) | |
814 | return false; | |
815 | ||
816 | if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0, | |
817 | stabsize) | |
818 | || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0, | |
819 | strsize)) | |
820 | return false; | |
821 | ||
822 | /* If this is a relocateable object file, we have to relocate | |
823 | the entries in .stab. This should always be simple 32 bit | |
824 | relocations against symbols defined in this object file, so | |
825 | this should be no big deal. */ | |
826 | reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec); | |
827 | if (reloc_size < 0) | |
828 | return false; | |
829 | reloc_vector = (arelent **) bfd_malloc (reloc_size); | |
830 | if (reloc_vector == NULL && reloc_size != 0) | |
831 | return false; | |
832 | reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector, | |
833 | symbols); | |
834 | if (reloc_count < 0) | |
835 | { | |
836 | if (reloc_vector != NULL) | |
837 | free (reloc_vector); | |
838 | return false; | |
839 | } | |
840 | if (reloc_count > 0) | |
841 | { | |
842 | arelent **pr; | |
843 | ||
844 | for (pr = reloc_vector; *pr != NULL; pr++) | |
845 | { | |
846 | arelent *r; | |
847 | unsigned long val; | |
848 | asymbol *sym; | |
849 | ||
850 | r = *pr; | |
851 | if (r->howto->rightshift != 0 | |
852 | || r->howto->size != 2 | |
853 | || r->howto->bitsize != 32 | |
854 | || r->howto->pc_relative | |
855 | || r->howto->bitpos != 0 | |
856 | || r->howto->dst_mask != 0xffffffff) | |
857 | { | |
858 | (*_bfd_error_handler) | |
859 | ("Unsupported .stab relocation"); | |
860 | bfd_set_error (bfd_error_invalid_operation); | |
861 | if (reloc_vector != NULL) | |
862 | free (reloc_vector); | |
863 | return false; | |
864 | } | |
865 | ||
866 | val = bfd_get_32 (abfd, info->stabs + r->address); | |
867 | val &= r->howto->src_mask; | |
868 | sym = *r->sym_ptr_ptr; | |
869 | val += sym->value + sym->section->vma + r->addend; | |
870 | bfd_put_32 (abfd, val, info->stabs + r->address); | |
871 | } | |
872 | } | |
873 | ||
874 | if (reloc_vector != NULL) | |
875 | free (reloc_vector); | |
876 | ||
877 | *pinfo = (PTR) info; | |
878 | } | |
879 | ||
880 | /* We are passed a section relative offset. The offsets in the | |
881 | stabs information are absolute. */ | |
882 | offset += bfd_get_section_vma (abfd, section); | |
883 | ||
884 | /* Stabs entries use a 12 byte format: | |
885 | 4 byte string table index | |
886 | 1 byte stab type | |
887 | 1 byte stab other field | |
888 | 2 byte stab desc field | |
889 | 4 byte stab value | |
890 | FIXME: This will have to change for a 64 bit object format. | |
891 | ||
892 | The stabs symbols are divided into compilation units. For the | |
893 | first entry in each unit, the type of 0, the value is the length | |
894 | of the string table for this unit, and the desc field is the | |
895 | number of stabs symbols for this unit. */ | |
896 | ||
897 | #define STRDXOFF (0) | |
898 | #define TYPEOFF (4) | |
899 | #define OTHEROFF (5) | |
900 | #define DESCOFF (6) | |
901 | #define VALOFF (8) | |
902 | #define STABSIZE (12) | |
903 | ||
904 | /* It would be nice if we could skip ahead to the stabs symbols for | |
905 | the next compilation unit to quickly scan through the compilation | |
906 | units. Unfortunately, since each line number gets a separate | |
907 | stabs entry, it is entirely plausible that a large source file | |
908 | will overflow the 16 bit count of stabs entries. */ | |
909 | fnaddr = 0; | |
910 | directory_name = NULL; | |
911 | main_file_name = NULL; | |
912 | current_file_name = NULL; | |
913 | line_file_name = NULL; | |
914 | fnname = NULL; | |
915 | low_func_vma = 0; | |
916 | low_line_vma = 0; | |
917 | ||
918 | stabend = info->stabs + stabsize; | |
919 | ||
920 | if (info->cached_stab == NULL || offset < info->cached_offset) | |
921 | { | |
922 | stab = info->stabs; | |
923 | str = info->strs; | |
924 | stroff = 0; | |
925 | } | |
926 | else | |
927 | { | |
928 | stab = info->cached_stab; | |
929 | str = info->cached_str; | |
930 | stroff = info->cached_stroff; | |
931 | } | |
932 | ||
933 | info->cached_offset = offset; | |
934 | ||
935 | for (; stab < stabend; stab += STABSIZE) | |
936 | { | |
937 | boolean done; | |
938 | bfd_vma val; | |
939 | char *name; | |
940 | ||
941 | done = false; | |
942 | ||
943 | switch (stab[TYPEOFF]) | |
944 | { | |
945 | case 0: | |
946 | /* This is the first entry in a compilation unit. */ | |
947 | if ((bfd_size_type) ((info->strs + strsize) - str) < stroff) | |
948 | { | |
949 | done = true; | |
950 | break; | |
951 | } | |
952 | str += stroff; | |
953 | stroff = bfd_get_32 (abfd, stab + VALOFF); | |
954 | break; | |
955 | ||
956 | case N_SO: | |
957 | /* The main file name. */ | |
958 | ||
959 | val = bfd_get_32 (abfd, stab + VALOFF); | |
960 | if (val > offset) | |
961 | { | |
962 | done = true; | |
963 | break; | |
964 | } | |
965 | ||
966 | name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); | |
967 | ||
968 | /* An empty string indicates the end of the compilation | |
969 | unit. */ | |
970 | if (*name == '\0') | |
971 | { | |
972 | /* If there are functions in different sections, they | |
973 | may have addresses larger than val, but we don't want | |
974 | to forget the file name. When there are functions in | |
975 | different cases, there is supposed to be an N_FUN at | |
976 | the end of the function indicating where it ends. */ | |
977 | if (low_func_vma < val || fnname == NULL) | |
978 | main_file_name = NULL; | |
979 | break; | |
980 | } | |
981 | ||
982 | /* We know that we have to get to at least this point in the | |
983 | stabs entries for this offset. */ | |
984 | info->cached_stab = stab; | |
985 | info->cached_str = str; | |
986 | info->cached_stroff = stroff; | |
987 | ||
988 | current_file_name = name; | |
989 | ||
990 | /* Look ahead to the next symbol. Two consecutive N_SO | |
991 | symbols are a directory and a file name. */ | |
992 | if (stab + STABSIZE >= stabend | |
993 | || *(stab + STABSIZE + TYPEOFF) != N_SO) | |
994 | directory_name = NULL; | |
995 | else | |
996 | { | |
997 | stab += STABSIZE; | |
998 | directory_name = current_file_name; | |
999 | current_file_name = ((char *) str | |
1000 | + bfd_get_32 (abfd, stab + STRDXOFF)); | |
1001 | } | |
1002 | ||
1003 | main_file_name = current_file_name; | |
1004 | ||
1005 | break; | |
1006 | ||
1007 | case N_SOL: | |
1008 | /* The name of an include file. */ | |
1009 | current_file_name = ((char *) str | |
1010 | + bfd_get_32 (abfd, stab + STRDXOFF)); | |
1011 | break; | |
1012 | ||
1013 | case N_SLINE: | |
1014 | case N_DSLINE: | |
1015 | case N_BSLINE: | |
1016 | /* A line number. The value is relative to the start of the | |
1017 | current function. */ | |
1018 | val = fnaddr + bfd_get_32 (abfd, stab + VALOFF); | |
1019 | if (val >= low_line_vma && val <= offset) | |
1020 | { | |
1021 | *pline = bfd_get_16 (abfd, stab + DESCOFF); | |
1022 | low_line_vma = val; | |
1023 | line_file_name = current_file_name; | |
1024 | } | |
1025 | break; | |
1026 | ||
1027 | case N_FUN: | |
1028 | /* A function name. */ | |
1029 | val = bfd_get_32 (abfd, stab + VALOFF); | |
1030 | name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); | |
1031 | ||
1032 | /* An empty string here indicates the end of a function, and | |
1033 | the value is relative to fnaddr. */ | |
1034 | ||
1035 | if (*name == '\0') | |
1036 | { | |
1037 | val += fnaddr; | |
1038 | if (val >= low_func_vma && val < offset) | |
1039 | fnname = NULL; | |
1040 | } | |
1041 | else | |
1042 | { | |
1043 | if (val >= low_func_vma && val <= offset) | |
1044 | { | |
1045 | fnname = name; | |
1046 | low_func_vma = val; | |
1047 | } | |
1048 | ||
1049 | fnaddr = val; | |
1050 | } | |
1051 | ||
1052 | break; | |
1053 | } | |
1054 | ||
1055 | if (done) | |
1056 | break; | |
1057 | } | |
1058 | ||
1059 | if (main_file_name == NULL) | |
1060 | { | |
1061 | /* No information found. */ | |
1062 | return true; | |
1063 | } | |
1064 | ||
1065 | *pfound = true; | |
1066 | ||
1067 | if (*pline != 0) | |
1068 | main_file_name = line_file_name; | |
1069 | ||
1070 | if (main_file_name != NULL) | |
1071 | { | |
1072 | if (main_file_name[0] == '/' || directory_name == NULL) | |
1073 | *pfilename = main_file_name; | |
1074 | else | |
1075 | { | |
1076 | size_t dirlen; | |
1077 | ||
1078 | dirlen = strlen (directory_name); | |
1079 | if (info->filename == NULL | |
1080 | || strncmp (info->filename, directory_name, dirlen) != 0 | |
1081 | || strcmp (info->filename + dirlen, main_file_name) != 0) | |
1082 | { | |
1083 | if (info->filename != NULL) | |
1084 | free (info->filename); | |
1085 | info->filename = (char *) bfd_malloc (dirlen + | |
1086 | strlen (main_file_name) | |
1087 | + 1); | |
1088 | if (info->filename == NULL) | |
1089 | return false; | |
1090 | strcpy (info->filename, directory_name); | |
1091 | strcpy (info->filename + dirlen, main_file_name); | |
1092 | } | |
1093 | ||
1094 | *pfilename = info->filename; | |
1095 | } | |
1096 | } | |
1097 | ||
1098 | if (fnname != NULL) | |
1099 | { | |
1100 | char *s; | |
1101 | ||
1102 | /* This will typically be something like main:F(0,1), so we want | |
1103 | to clobber the colon. It's OK to change the name, since the | |
1104 | string is in our own local storage anyhow. */ | |
1105 | ||
1106 | s = strchr (fnname, ':'); | |
1107 | if (s != NULL) | |
1108 | *s = '\0'; | |
1109 | ||
1110 | *pfnname = fnname; | |
1111 | } | |
1112 | ||
1113 | return true; | |
1114 | } |