]>
Commit | Line | Data |
---|---|---|
1 | /* Perform non-arithmetic operations on values, for GDB. | |
2 | ||
3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, | |
4 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 | |
5 | Free Software Foundation, Inc. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 51 Franklin Street, Fifth Floor, | |
22 | Boston, MA 02110-1301, USA. */ | |
23 | ||
24 | #include "defs.h" | |
25 | #include "symtab.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "value.h" | |
28 | #include "frame.h" | |
29 | #include "inferior.h" | |
30 | #include "gdbcore.h" | |
31 | #include "target.h" | |
32 | #include "demangle.h" | |
33 | #include "language.h" | |
34 | #include "gdbcmd.h" | |
35 | #include "regcache.h" | |
36 | #include "cp-abi.h" | |
37 | #include "block.h" | |
38 | #include "infcall.h" | |
39 | #include "dictionary.h" | |
40 | #include "cp-support.h" | |
41 | ||
42 | #include <errno.h> | |
43 | #include "gdb_string.h" | |
44 | #include "gdb_assert.h" | |
45 | #include "cp-support.h" | |
46 | #include "observer.h" | |
47 | ||
48 | extern int overload_debug; | |
49 | /* Local functions. */ | |
50 | ||
51 | static int typecmp (int staticp, int varargs, int nargs, | |
52 | struct field t1[], struct value *t2[]); | |
53 | ||
54 | static struct value *search_struct_field (char *, struct value *, int, | |
55 | struct type *, int); | |
56 | ||
57 | static struct value *search_struct_method (char *, struct value **, | |
58 | struct value **, | |
59 | int, int *, struct type *); | |
60 | ||
61 | static int find_oload_champ_namespace (struct type **arg_types, int nargs, | |
62 | const char *func_name, | |
63 | const char *qualified_name, | |
64 | struct symbol ***oload_syms, | |
65 | struct badness_vector **oload_champ_bv); | |
66 | ||
67 | static | |
68 | int find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
69 | const char *func_name, | |
70 | const char *qualified_name, | |
71 | int namespace_len, | |
72 | struct symbol ***oload_syms, | |
73 | struct badness_vector **oload_champ_bv, | |
74 | int *oload_champ); | |
75 | ||
76 | static int find_oload_champ (struct type **arg_types, int nargs, int method, | |
77 | int num_fns, | |
78 | struct fn_field *fns_ptr, | |
79 | struct symbol **oload_syms, | |
80 | struct badness_vector **oload_champ_bv); | |
81 | ||
82 | static int oload_method_static (int method, struct fn_field *fns_ptr, | |
83 | int index); | |
84 | ||
85 | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | |
86 | ||
87 | static enum | |
88 | oload_classification classify_oload_match (struct badness_vector | |
89 | * oload_champ_bv, | |
90 | int nargs, | |
91 | int static_offset); | |
92 | ||
93 | static int check_field_in (struct type *, const char *); | |
94 | ||
95 | static struct value *value_struct_elt_for_reference (struct type *domain, | |
96 | int offset, | |
97 | struct type *curtype, | |
98 | char *name, | |
99 | struct type *intype, | |
100 | enum noside noside); | |
101 | ||
102 | static struct value *value_namespace_elt (const struct type *curtype, | |
103 | char *name, | |
104 | enum noside noside); | |
105 | ||
106 | static struct value *value_maybe_namespace_elt (const struct type *curtype, | |
107 | char *name, | |
108 | enum noside noside); | |
109 | ||
110 | static CORE_ADDR allocate_space_in_inferior (int); | |
111 | ||
112 | static struct value *cast_into_complex (struct type *, struct value *); | |
113 | ||
114 | static struct fn_field *find_method_list (struct value ** argp, char *method, | |
115 | int offset, | |
116 | struct type *type, int *num_fns, | |
117 | struct type **basetype, | |
118 | int *boffset); | |
119 | ||
120 | void _initialize_valops (void); | |
121 | ||
122 | /* Flag for whether we want to abandon failed expression evals by default. */ | |
123 | ||
124 | #if 0 | |
125 | static int auto_abandon = 0; | |
126 | #endif | |
127 | ||
128 | int overload_resolution = 0; | |
129 | static void | |
130 | show_overload_resolution (struct ui_file *file, int from_tty, | |
131 | struct cmd_list_element *c, const char *value) | |
132 | { | |
133 | fprintf_filtered (file, _("\ | |
134 | Overload resolution in evaluating C++ functions is %s.\n"), | |
135 | value); | |
136 | } | |
137 | ||
138 | /* Find the address of function name NAME in the inferior. */ | |
139 | ||
140 | struct value * | |
141 | find_function_in_inferior (const char *name) | |
142 | { | |
143 | struct symbol *sym; | |
144 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL); | |
145 | if (sym != NULL) | |
146 | { | |
147 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
148 | { | |
149 | error (_("\"%s\" exists in this program but is not a function."), | |
150 | name); | |
151 | } | |
152 | return value_of_variable (sym, NULL); | |
153 | } | |
154 | else | |
155 | { | |
156 | struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL); | |
157 | if (msymbol != NULL) | |
158 | { | |
159 | struct type *type; | |
160 | CORE_ADDR maddr; | |
161 | type = lookup_pointer_type (builtin_type_char); | |
162 | type = lookup_function_type (type); | |
163 | type = lookup_pointer_type (type); | |
164 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); | |
165 | return value_from_pointer (type, maddr); | |
166 | } | |
167 | else | |
168 | { | |
169 | if (!target_has_execution) | |
170 | error (_("evaluation of this expression requires the target program to be active")); | |
171 | else | |
172 | error (_("evaluation of this expression requires the program to have a function \"%s\"."), name); | |
173 | } | |
174 | } | |
175 | } | |
176 | ||
177 | /* Allocate NBYTES of space in the inferior using the inferior's malloc | |
178 | and return a value that is a pointer to the allocated space. */ | |
179 | ||
180 | struct value * | |
181 | value_allocate_space_in_inferior (int len) | |
182 | { | |
183 | struct value *blocklen; | |
184 | struct value *val = find_function_in_inferior (NAME_OF_MALLOC); | |
185 | ||
186 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
187 | val = call_function_by_hand (val, 1, &blocklen); | |
188 | if (value_logical_not (val)) | |
189 | { | |
190 | if (!target_has_execution) | |
191 | error (_("No memory available to program now: you need to start the target first")); | |
192 | else | |
193 | error (_("No memory available to program: call to malloc failed")); | |
194 | } | |
195 | return val; | |
196 | } | |
197 | ||
198 | static CORE_ADDR | |
199 | allocate_space_in_inferior (int len) | |
200 | { | |
201 | return value_as_long (value_allocate_space_in_inferior (len)); | |
202 | } | |
203 | ||
204 | /* Cast one pointer or reference type to another. Both TYPE and | |
205 | the type of ARG2 should be pointer types, or else both should be | |
206 | reference types. Returns the new pointer or reference. */ | |
207 | ||
208 | struct value * | |
209 | value_cast_pointers (struct type *type, struct value *arg2) | |
210 | { | |
211 | struct type *type2 = check_typedef (value_type (arg2)); | |
212 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
213 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
214 | ||
215 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
216 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
217 | && !value_logical_not (arg2)) | |
218 | { | |
219 | struct value *v; | |
220 | ||
221 | /* Look in the type of the source to see if it contains the | |
222 | type of the target as a superclass. If so, we'll need to | |
223 | offset the pointer rather than just change its type. */ | |
224 | if (TYPE_NAME (t1) != NULL) | |
225 | { | |
226 | struct value *v2; | |
227 | ||
228 | if (TYPE_CODE (type2) == TYPE_CODE_REF) | |
229 | v2 = coerce_ref (arg2); | |
230 | else | |
231 | v2 = value_ind (arg2); | |
232 | v = search_struct_field (type_name_no_tag (t1), | |
233 | v2, 0, t2, 1); | |
234 | if (v) | |
235 | { | |
236 | v = value_addr (v); | |
237 | deprecated_set_value_type (v, type); | |
238 | return v; | |
239 | } | |
240 | } | |
241 | ||
242 | /* Look in the type of the target to see if it contains the | |
243 | type of the source as a superclass. If so, we'll need to | |
244 | offset the pointer rather than just change its type. | |
245 | FIXME: This fails silently with virtual inheritance. */ | |
246 | if (TYPE_NAME (t2) != NULL) | |
247 | { | |
248 | v = search_struct_field (type_name_no_tag (t2), | |
249 | value_zero (t1, not_lval), 0, t1, 1); | |
250 | if (v) | |
251 | { | |
252 | CORE_ADDR addr2 = value_as_address (arg2); | |
253 | addr2 -= (VALUE_ADDRESS (v) | |
254 | + value_offset (v) | |
255 | + value_embedded_offset (v)); | |
256 | return value_from_pointer (type, addr2); | |
257 | } | |
258 | } | |
259 | } | |
260 | ||
261 | /* No superclass found, just change the pointer type. */ | |
262 | deprecated_set_value_type (arg2, type); | |
263 | arg2 = value_change_enclosing_type (arg2, type); | |
264 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ | |
265 | return arg2; | |
266 | } | |
267 | ||
268 | /* Cast value ARG2 to type TYPE and return as a value. | |
269 | More general than a C cast: accepts any two types of the same length, | |
270 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
271 | /* In C++, casts may change pointer or object representations. */ | |
272 | ||
273 | struct value * | |
274 | value_cast (struct type *type, struct value *arg2) | |
275 | { | |
276 | enum type_code code1; | |
277 | enum type_code code2; | |
278 | int scalar; | |
279 | struct type *type2; | |
280 | ||
281 | int convert_to_boolean = 0; | |
282 | ||
283 | if (value_type (arg2) == type) | |
284 | return arg2; | |
285 | ||
286 | CHECK_TYPEDEF (type); | |
287 | code1 = TYPE_CODE (type); | |
288 | arg2 = coerce_ref (arg2); | |
289 | type2 = check_typedef (value_type (arg2)); | |
290 | ||
291 | /* You can't cast to a reference type. See value_cast_pointers | |
292 | instead. */ | |
293 | gdb_assert (code1 != TYPE_CODE_REF); | |
294 | ||
295 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, | |
296 | is treated like a cast to (TYPE [N])OBJECT, | |
297 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
298 | if (code1 == TYPE_CODE_ARRAY) | |
299 | { | |
300 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
301 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
302 | if (element_length > 0 | |
303 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) | |
304 | { | |
305 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
306 | int val_length = TYPE_LENGTH (type2); | |
307 | LONGEST low_bound, high_bound, new_length; | |
308 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
309 | low_bound = 0, high_bound = 0; | |
310 | new_length = val_length / element_length; | |
311 | if (val_length % element_length != 0) | |
312 | warning (_("array element type size does not divide object size in cast")); | |
313 | /* FIXME-type-allocation: need a way to free this type when we are | |
314 | done with it. */ | |
315 | range_type = create_range_type ((struct type *) NULL, | |
316 | TYPE_TARGET_TYPE (range_type), | |
317 | low_bound, | |
318 | new_length + low_bound - 1); | |
319 | deprecated_set_value_type (arg2, create_array_type ((struct type *) NULL, | |
320 | element_type, range_type)); | |
321 | return arg2; | |
322 | } | |
323 | } | |
324 | ||
325 | if (current_language->c_style_arrays | |
326 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
327 | arg2 = value_coerce_array (arg2); | |
328 | ||
329 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
330 | arg2 = value_coerce_function (arg2); | |
331 | ||
332 | type2 = check_typedef (value_type (arg2)); | |
333 | code2 = TYPE_CODE (type2); | |
334 | ||
335 | if (code1 == TYPE_CODE_COMPLEX) | |
336 | return cast_into_complex (type, arg2); | |
337 | if (code1 == TYPE_CODE_BOOL) | |
338 | { | |
339 | code1 = TYPE_CODE_INT; | |
340 | convert_to_boolean = 1; | |
341 | } | |
342 | if (code1 == TYPE_CODE_CHAR) | |
343 | code1 = TYPE_CODE_INT; | |
344 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
345 | code2 = TYPE_CODE_INT; | |
346 | ||
347 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
348 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); | |
349 | ||
350 | if (code1 == TYPE_CODE_STRUCT | |
351 | && code2 == TYPE_CODE_STRUCT | |
352 | && TYPE_NAME (type) != 0) | |
353 | { | |
354 | /* Look in the type of the source to see if it contains the | |
355 | type of the target as a superclass. If so, we'll need to | |
356 | offset the object in addition to changing its type. */ | |
357 | struct value *v = search_struct_field (type_name_no_tag (type), | |
358 | arg2, 0, type2, 1); | |
359 | if (v) | |
360 | { | |
361 | deprecated_set_value_type (v, type); | |
362 | return v; | |
363 | } | |
364 | } | |
365 | if (code1 == TYPE_CODE_FLT && scalar) | |
366 | return value_from_double (type, value_as_double (arg2)); | |
367 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | |
368 | || code1 == TYPE_CODE_RANGE) | |
369 | && (scalar || code2 == TYPE_CODE_PTR)) | |
370 | { | |
371 | LONGEST longest; | |
372 | ||
373 | if (deprecated_hp_som_som_object_present /* if target compiled by HP aCC */ | |
374 | && (code2 == TYPE_CODE_PTR)) | |
375 | { | |
376 | unsigned int *ptr; | |
377 | struct value *retvalp; | |
378 | ||
379 | switch (TYPE_CODE (TYPE_TARGET_TYPE (type2))) | |
380 | { | |
381 | /* With HP aCC, pointers to data members have a bias */ | |
382 | case TYPE_CODE_MEMBER: | |
383 | retvalp = value_from_longest (type, value_as_long (arg2)); | |
384 | /* force evaluation */ | |
385 | ptr = (unsigned int *) value_contents (retvalp); | |
386 | *ptr &= ~0x20000000; /* zap 29th bit to remove bias */ | |
387 | return retvalp; | |
388 | ||
389 | /* While pointers to methods don't really point to a function */ | |
390 | case TYPE_CODE_METHOD: | |
391 | error (_("Pointers to methods not supported with HP aCC")); | |
392 | ||
393 | default: | |
394 | break; /* fall out and go to normal handling */ | |
395 | } | |
396 | } | |
397 | ||
398 | /* When we cast pointers to integers, we mustn't use | |
399 | POINTER_TO_ADDRESS to find the address the pointer | |
400 | represents, as value_as_long would. GDB should evaluate | |
401 | expressions just as the compiler would --- and the compiler | |
402 | sees a cast as a simple reinterpretation of the pointer's | |
403 | bits. */ | |
404 | if (code2 == TYPE_CODE_PTR) | |
405 | longest = extract_unsigned_integer (value_contents (arg2), | |
406 | TYPE_LENGTH (type2)); | |
407 | else | |
408 | longest = value_as_long (arg2); | |
409 | return value_from_longest (type, convert_to_boolean ? | |
410 | (LONGEST) (longest ? 1 : 0) : longest); | |
411 | } | |
412 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || | |
413 | code2 == TYPE_CODE_ENUM || | |
414 | code2 == TYPE_CODE_RANGE)) | |
415 | { | |
416 | /* TYPE_LENGTH (type) is the length of a pointer, but we really | |
417 | want the length of an address! -- we are really dealing with | |
418 | addresses (i.e., gdb representations) not pointers (i.e., | |
419 | target representations) here. | |
420 | ||
421 | This allows things like "print *(int *)0x01000234" to work | |
422 | without printing a misleading message -- which would | |
423 | otherwise occur when dealing with a target having two byte | |
424 | pointers and four byte addresses. */ | |
425 | ||
426 | int addr_bit = TARGET_ADDR_BIT; | |
427 | ||
428 | LONGEST longest = value_as_long (arg2); | |
429 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) | |
430 | { | |
431 | if (longest >= ((LONGEST) 1 << addr_bit) | |
432 | || longest <= -((LONGEST) 1 << addr_bit)) | |
433 | warning (_("value truncated")); | |
434 | } | |
435 | return value_from_longest (type, longest); | |
436 | } | |
437 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) | |
438 | { | |
439 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
440 | return value_cast_pointers (type, arg2); | |
441 | ||
442 | deprecated_set_value_type (arg2, type); | |
443 | arg2 = value_change_enclosing_type (arg2, type); | |
444 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ | |
445 | return arg2; | |
446 | } | |
447 | else if (VALUE_LVAL (arg2) == lval_memory) | |
448 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + value_offset (arg2)); | |
449 | else if (code1 == TYPE_CODE_VOID) | |
450 | { | |
451 | return value_zero (builtin_type_void, not_lval); | |
452 | } | |
453 | else | |
454 | { | |
455 | error (_("Invalid cast.")); | |
456 | return 0; | |
457 | } | |
458 | } | |
459 | ||
460 | /* Create a value of type TYPE that is zero, and return it. */ | |
461 | ||
462 | struct value * | |
463 | value_zero (struct type *type, enum lval_type lv) | |
464 | { | |
465 | struct value *val = allocate_value (type); | |
466 | VALUE_LVAL (val) = lv; | |
467 | ||
468 | return val; | |
469 | } | |
470 | ||
471 | /* Return a value with type TYPE located at ADDR. | |
472 | ||
473 | Call value_at only if the data needs to be fetched immediately; | |
474 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
475 | value_at_lazy instead. value_at_lazy simply records the address of | |
476 | the data and sets the lazy-evaluation-required flag. The lazy flag | |
477 | is tested in the value_contents macro, which is used if and when | |
478 | the contents are actually required. | |
479 | ||
480 | Note: value_at does *NOT* handle embedded offsets; perform such | |
481 | adjustments before or after calling it. */ | |
482 | ||
483 | struct value * | |
484 | value_at (struct type *type, CORE_ADDR addr) | |
485 | { | |
486 | struct value *val; | |
487 | ||
488 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
489 | error (_("Attempt to dereference a generic pointer.")); | |
490 | ||
491 | val = allocate_value (type); | |
492 | ||
493 | read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type)); | |
494 | ||
495 | VALUE_LVAL (val) = lval_memory; | |
496 | VALUE_ADDRESS (val) = addr; | |
497 | ||
498 | return val; | |
499 | } | |
500 | ||
501 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
502 | ||
503 | struct value * | |
504 | value_at_lazy (struct type *type, CORE_ADDR addr) | |
505 | { | |
506 | struct value *val; | |
507 | ||
508 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
509 | error (_("Attempt to dereference a generic pointer.")); | |
510 | ||
511 | val = allocate_value (type); | |
512 | ||
513 | VALUE_LVAL (val) = lval_memory; | |
514 | VALUE_ADDRESS (val) = addr; | |
515 | set_value_lazy (val, 1); | |
516 | ||
517 | return val; | |
518 | } | |
519 | ||
520 | /* Called only from the value_contents and value_contents_all() | |
521 | macros, if the current data for a variable needs to be loaded into | |
522 | value_contents(VAL). Fetches the data from the user's process, and | |
523 | clears the lazy flag to indicate that the data in the buffer is | |
524 | valid. | |
525 | ||
526 | If the value is zero-length, we avoid calling read_memory, which would | |
527 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
528 | ||
529 | This function returns a value because it is used in the value_contents | |
530 | macro as part of an expression, where a void would not work. The | |
531 | value is ignored. */ | |
532 | ||
533 | int | |
534 | value_fetch_lazy (struct value *val) | |
535 | { | |
536 | CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val); | |
537 | int length = TYPE_LENGTH (value_enclosing_type (val)); | |
538 | ||
539 | struct type *type = value_type (val); | |
540 | if (length) | |
541 | read_memory (addr, value_contents_all_raw (val), length); | |
542 | ||
543 | set_value_lazy (val, 0); | |
544 | return 0; | |
545 | } | |
546 | ||
547 | ||
548 | /* Store the contents of FROMVAL into the location of TOVAL. | |
549 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
550 | ||
551 | struct value * | |
552 | value_assign (struct value *toval, struct value *fromval) | |
553 | { | |
554 | struct type *type; | |
555 | struct value *val; | |
556 | struct frame_id old_frame; | |
557 | ||
558 | if (!deprecated_value_modifiable (toval)) | |
559 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
560 | ||
561 | toval = coerce_ref (toval); | |
562 | ||
563 | type = value_type (toval); | |
564 | if (VALUE_LVAL (toval) != lval_internalvar) | |
565 | fromval = value_cast (type, fromval); | |
566 | else | |
567 | fromval = coerce_array (fromval); | |
568 | CHECK_TYPEDEF (type); | |
569 | ||
570 | /* Since modifying a register can trash the frame chain, and modifying memory | |
571 | can trash the frame cache, we save the old frame and then restore the new | |
572 | frame afterwards. */ | |
573 | old_frame = get_frame_id (deprecated_selected_frame); | |
574 | ||
575 | switch (VALUE_LVAL (toval)) | |
576 | { | |
577 | case lval_internalvar: | |
578 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
579 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
580 | val = value_change_enclosing_type (val, value_enclosing_type (fromval)); | |
581 | set_value_embedded_offset (val, value_embedded_offset (fromval)); | |
582 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); | |
583 | return val; | |
584 | ||
585 | case lval_internalvar_component: | |
586 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
587 | value_offset (toval), | |
588 | value_bitpos (toval), | |
589 | value_bitsize (toval), | |
590 | fromval); | |
591 | break; | |
592 | ||
593 | case lval_memory: | |
594 | { | |
595 | const gdb_byte *dest_buffer; | |
596 | CORE_ADDR changed_addr; | |
597 | int changed_len; | |
598 | gdb_byte buffer[sizeof (LONGEST)]; | |
599 | ||
600 | if (value_bitsize (toval)) | |
601 | { | |
602 | /* We assume that the argument to read_memory is in units of | |
603 | host chars. FIXME: Is that correct? */ | |
604 | changed_len = (value_bitpos (toval) | |
605 | + value_bitsize (toval) | |
606 | + HOST_CHAR_BIT - 1) | |
607 | / HOST_CHAR_BIT; | |
608 | ||
609 | if (changed_len > (int) sizeof (LONGEST)) | |
610 | error (_("Can't handle bitfields which don't fit in a %d bit word."), | |
611 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); | |
612 | ||
613 | read_memory (VALUE_ADDRESS (toval) + value_offset (toval), | |
614 | buffer, changed_len); | |
615 | modify_field (buffer, value_as_long (fromval), | |
616 | value_bitpos (toval), value_bitsize (toval)); | |
617 | changed_addr = VALUE_ADDRESS (toval) + value_offset (toval); | |
618 | dest_buffer = buffer; | |
619 | } | |
620 | else | |
621 | { | |
622 | changed_addr = VALUE_ADDRESS (toval) + value_offset (toval); | |
623 | changed_len = TYPE_LENGTH (type); | |
624 | dest_buffer = value_contents (fromval); | |
625 | } | |
626 | ||
627 | write_memory (changed_addr, dest_buffer, changed_len); | |
628 | if (deprecated_memory_changed_hook) | |
629 | deprecated_memory_changed_hook (changed_addr, changed_len); | |
630 | } | |
631 | break; | |
632 | ||
633 | case lval_register: | |
634 | { | |
635 | struct frame_info *frame; | |
636 | int value_reg; | |
637 | ||
638 | /* Figure out which frame this is in currently. */ | |
639 | frame = frame_find_by_id (VALUE_FRAME_ID (toval)); | |
640 | value_reg = VALUE_REGNUM (toval); | |
641 | ||
642 | if (!frame) | |
643 | error (_("Value being assigned to is no longer active.")); | |
644 | ||
645 | if (VALUE_LVAL (toval) == lval_register | |
646 | && CONVERT_REGISTER_P (VALUE_REGNUM (toval), type)) | |
647 | { | |
648 | /* If TOVAL is a special machine register requiring | |
649 | conversion of program values to a special raw format. */ | |
650 | VALUE_TO_REGISTER (frame, VALUE_REGNUM (toval), | |
651 | type, value_contents (fromval)); | |
652 | } | |
653 | else | |
654 | { | |
655 | /* TOVAL is stored in a series of registers in the frame | |
656 | specified by the structure. Copy that value out, | |
657 | modify it, and copy it back in. */ | |
658 | int amount_copied; | |
659 | int amount_to_copy; | |
660 | gdb_byte *buffer; | |
661 | int reg_offset; | |
662 | int byte_offset; | |
663 | int regno; | |
664 | ||
665 | /* Locate the first register that falls in the value that | |
666 | needs to be transfered. Compute the offset of the | |
667 | value in that register. */ | |
668 | { | |
669 | int offset; | |
670 | for (reg_offset = value_reg, offset = 0; | |
671 | offset + register_size (current_gdbarch, reg_offset) <= value_offset (toval); | |
672 | reg_offset++); | |
673 | byte_offset = value_offset (toval) - offset; | |
674 | } | |
675 | ||
676 | /* Compute the number of register aligned values that need | |
677 | to be copied. */ | |
678 | if (value_bitsize (toval)) | |
679 | amount_to_copy = byte_offset + 1; | |
680 | else | |
681 | amount_to_copy = byte_offset + TYPE_LENGTH (type); | |
682 | ||
683 | /* And a bounce buffer. Be slightly over generous. */ | |
684 | buffer = alloca (amount_to_copy + MAX_REGISTER_SIZE); | |
685 | ||
686 | /* Copy it in. */ | |
687 | for (regno = reg_offset, amount_copied = 0; | |
688 | amount_copied < amount_to_copy; | |
689 | amount_copied += register_size (current_gdbarch, regno), regno++) | |
690 | frame_register_read (frame, regno, buffer + amount_copied); | |
691 | ||
692 | /* Modify what needs to be modified. */ | |
693 | if (value_bitsize (toval)) | |
694 | modify_field (buffer + byte_offset, | |
695 | value_as_long (fromval), | |
696 | value_bitpos (toval), value_bitsize (toval)); | |
697 | else | |
698 | memcpy (buffer + byte_offset, value_contents (fromval), | |
699 | TYPE_LENGTH (type)); | |
700 | ||
701 | /* Copy it out. */ | |
702 | for (regno = reg_offset, amount_copied = 0; | |
703 | amount_copied < amount_to_copy; | |
704 | amount_copied += register_size (current_gdbarch, regno), regno++) | |
705 | put_frame_register (frame, regno, buffer + amount_copied); | |
706 | ||
707 | } | |
708 | if (deprecated_register_changed_hook) | |
709 | deprecated_register_changed_hook (-1); | |
710 | observer_notify_target_changed (¤t_target); | |
711 | break; | |
712 | } | |
713 | ||
714 | default: | |
715 | error (_("Left operand of assignment is not an lvalue.")); | |
716 | } | |
717 | ||
718 | /* Assigning to the stack pointer, frame pointer, and other | |
719 | (architecture and calling convention specific) registers may | |
720 | cause the frame cache to be out of date. Assigning to memory | |
721 | also can. We just do this on all assignments to registers or | |
722 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
723 | switch (VALUE_LVAL (toval)) | |
724 | { | |
725 | case lval_memory: | |
726 | case lval_register: | |
727 | ||
728 | reinit_frame_cache (); | |
729 | ||
730 | /* Having destoroyed the frame cache, restore the selected frame. */ | |
731 | ||
732 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
733 | doing this. Instead of constantly saving/restoring the | |
734 | frame. Why not create a get_selected_frame() function that, | |
735 | having saved the selected frame's ID can automatically | |
736 | re-find the previously selected frame automatically. */ | |
737 | ||
738 | { | |
739 | struct frame_info *fi = frame_find_by_id (old_frame); | |
740 | if (fi != NULL) | |
741 | select_frame (fi); | |
742 | } | |
743 | ||
744 | break; | |
745 | default: | |
746 | break; | |
747 | } | |
748 | ||
749 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
750 | If the field is signed, and is negative, then sign extend. */ | |
751 | if ((value_bitsize (toval) > 0) | |
752 | && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) | |
753 | { | |
754 | LONGEST fieldval = value_as_long (fromval); | |
755 | LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; | |
756 | ||
757 | fieldval &= valmask; | |
758 | if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1)))) | |
759 | fieldval |= ~valmask; | |
760 | ||
761 | fromval = value_from_longest (type, fieldval); | |
762 | } | |
763 | ||
764 | val = value_copy (toval); | |
765 | memcpy (value_contents_raw (val), value_contents (fromval), | |
766 | TYPE_LENGTH (type)); | |
767 | deprecated_set_value_type (val, type); | |
768 | val = value_change_enclosing_type (val, value_enclosing_type (fromval)); | |
769 | set_value_embedded_offset (val, value_embedded_offset (fromval)); | |
770 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); | |
771 | ||
772 | return val; | |
773 | } | |
774 | ||
775 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
776 | ||
777 | struct value * | |
778 | value_repeat (struct value *arg1, int count) | |
779 | { | |
780 | struct value *val; | |
781 | ||
782 | if (VALUE_LVAL (arg1) != lval_memory) | |
783 | error (_("Only values in memory can be extended with '@'.")); | |
784 | if (count < 1) | |
785 | error (_("Invalid number %d of repetitions."), count); | |
786 | ||
787 | val = allocate_repeat_value (value_enclosing_type (arg1), count); | |
788 | ||
789 | read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1), | |
790 | value_contents_all_raw (val), | |
791 | TYPE_LENGTH (value_enclosing_type (val))); | |
792 | VALUE_LVAL (val) = lval_memory; | |
793 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1); | |
794 | ||
795 | return val; | |
796 | } | |
797 | ||
798 | struct value * | |
799 | value_of_variable (struct symbol *var, struct block *b) | |
800 | { | |
801 | struct value *val; | |
802 | struct frame_info *frame = NULL; | |
803 | ||
804 | if (!b) | |
805 | frame = NULL; /* Use selected frame. */ | |
806 | else if (symbol_read_needs_frame (var)) | |
807 | { | |
808 | frame = block_innermost_frame (b); | |
809 | if (!frame) | |
810 | { | |
811 | if (BLOCK_FUNCTION (b) | |
812 | && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) | |
813 | error (_("No frame is currently executing in block %s."), | |
814 | SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); | |
815 | else | |
816 | error (_("No frame is currently executing in specified block")); | |
817 | } | |
818 | } | |
819 | ||
820 | val = read_var_value (var, frame); | |
821 | if (!val) | |
822 | error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var)); | |
823 | ||
824 | return val; | |
825 | } | |
826 | ||
827 | /* Given a value which is an array, return a value which is a pointer to its | |
828 | first element, regardless of whether or not the array has a nonzero lower | |
829 | bound. | |
830 | ||
831 | FIXME: A previous comment here indicated that this routine should be | |
832 | substracting the array's lower bound. It's not clear to me that this | |
833 | is correct. Given an array subscripting operation, it would certainly | |
834 | work to do the adjustment here, essentially computing: | |
835 | ||
836 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
837 | ||
838 | However I believe a more appropriate and logical place to account for | |
839 | the lower bound is to do so in value_subscript, essentially computing: | |
840 | ||
841 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
842 | ||
843 | As further evidence consider what would happen with operations other | |
844 | than array subscripting, where the caller would get back a value that | |
845 | had an address somewhere before the actual first element of the array, | |
846 | and the information about the lower bound would be lost because of | |
847 | the coercion to pointer type. | |
848 | */ | |
849 | ||
850 | struct value * | |
851 | value_coerce_array (struct value *arg1) | |
852 | { | |
853 | struct type *type = check_typedef (value_type (arg1)); | |
854 | ||
855 | if (VALUE_LVAL (arg1) != lval_memory) | |
856 | error (_("Attempt to take address of value not located in memory.")); | |
857 | ||
858 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), | |
859 | (VALUE_ADDRESS (arg1) + value_offset (arg1))); | |
860 | } | |
861 | ||
862 | /* Given a value which is a function, return a value which is a pointer | |
863 | to it. */ | |
864 | ||
865 | struct value * | |
866 | value_coerce_function (struct value *arg1) | |
867 | { | |
868 | struct value *retval; | |
869 | ||
870 | if (VALUE_LVAL (arg1) != lval_memory) | |
871 | error (_("Attempt to take address of value not located in memory.")); | |
872 | ||
873 | retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), | |
874 | (VALUE_ADDRESS (arg1) + value_offset (arg1))); | |
875 | return retval; | |
876 | } | |
877 | ||
878 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
879 | ||
880 | struct value * | |
881 | value_addr (struct value *arg1) | |
882 | { | |
883 | struct value *arg2; | |
884 | ||
885 | struct type *type = check_typedef (value_type (arg1)); | |
886 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
887 | { | |
888 | /* Copy the value, but change the type from (T&) to (T*). | |
889 | We keep the same location information, which is efficient, | |
890 | and allows &(&X) to get the location containing the reference. */ | |
891 | arg2 = value_copy (arg1); | |
892 | deprecated_set_value_type (arg2, lookup_pointer_type (TYPE_TARGET_TYPE (type))); | |
893 | return arg2; | |
894 | } | |
895 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
896 | return value_coerce_function (arg1); | |
897 | ||
898 | if (VALUE_LVAL (arg1) != lval_memory) | |
899 | error (_("Attempt to take address of value not located in memory.")); | |
900 | ||
901 | /* Get target memory address */ | |
902 | arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), | |
903 | (VALUE_ADDRESS (arg1) | |
904 | + value_offset (arg1) | |
905 | + value_embedded_offset (arg1))); | |
906 | ||
907 | /* This may be a pointer to a base subobject; so remember the | |
908 | full derived object's type ... */ | |
909 | arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1))); | |
910 | /* ... and also the relative position of the subobject in the full object */ | |
911 | set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); | |
912 | return arg2; | |
913 | } | |
914 | ||
915 | /* Return a reference value for the object for which ARG1 is the contents. */ | |
916 | ||
917 | struct value * | |
918 | value_ref (struct value *arg1) | |
919 | { | |
920 | struct value *arg2; | |
921 | ||
922 | struct type *type = check_typedef (value_type (arg1)); | |
923 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
924 | return arg1; | |
925 | ||
926 | arg2 = value_addr (arg1); | |
927 | deprecated_set_value_type (arg2, lookup_reference_type (type)); | |
928 | return arg2; | |
929 | } | |
930 | ||
931 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
932 | ||
933 | struct value * | |
934 | value_ind (struct value *arg1) | |
935 | { | |
936 | struct type *base_type; | |
937 | struct value *arg2; | |
938 | ||
939 | arg1 = coerce_array (arg1); | |
940 | ||
941 | base_type = check_typedef (value_type (arg1)); | |
942 | ||
943 | if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER) | |
944 | error (_("not implemented: member types in value_ind")); | |
945 | ||
946 | /* Allow * on an integer so we can cast it to whatever we want. | |
947 | This returns an int, which seems like the most C-like thing | |
948 | to do. "long long" variables are rare enough that | |
949 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
950 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
951 | return value_at_lazy (builtin_type_int, | |
952 | (CORE_ADDR) value_as_long (arg1)); | |
953 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) | |
954 | { | |
955 | struct type *enc_type; | |
956 | /* We may be pointing to something embedded in a larger object */ | |
957 | /* Get the real type of the enclosing object */ | |
958 | enc_type = check_typedef (value_enclosing_type (arg1)); | |
959 | enc_type = TYPE_TARGET_TYPE (enc_type); | |
960 | /* Retrieve the enclosing object pointed to */ | |
961 | arg2 = value_at_lazy (enc_type, (value_as_address (arg1) | |
962 | - value_pointed_to_offset (arg1))); | |
963 | /* Re-adjust type */ | |
964 | deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type)); | |
965 | /* Add embedding info */ | |
966 | arg2 = value_change_enclosing_type (arg2, enc_type); | |
967 | set_value_embedded_offset (arg2, value_pointed_to_offset (arg1)); | |
968 | ||
969 | /* We may be pointing to an object of some derived type */ | |
970 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); | |
971 | return arg2; | |
972 | } | |
973 | ||
974 | error (_("Attempt to take contents of a non-pointer value.")); | |
975 | return 0; /* For lint -- never reached */ | |
976 | } | |
977 | \f | |
978 | /* Create a value for an array by allocating space in the inferior, copying | |
979 | the data into that space, and then setting up an array value. | |
980 | ||
981 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
982 | populated from the values passed in ELEMVEC. | |
983 | ||
984 | The element type of the array is inherited from the type of the | |
985 | first element, and all elements must have the same size (though we | |
986 | don't currently enforce any restriction on their types). */ | |
987 | ||
988 | struct value * | |
989 | value_array (int lowbound, int highbound, struct value **elemvec) | |
990 | { | |
991 | int nelem; | |
992 | int idx; | |
993 | unsigned int typelength; | |
994 | struct value *val; | |
995 | struct type *rangetype; | |
996 | struct type *arraytype; | |
997 | CORE_ADDR addr; | |
998 | ||
999 | /* Validate that the bounds are reasonable and that each of the elements | |
1000 | have the same size. */ | |
1001 | ||
1002 | nelem = highbound - lowbound + 1; | |
1003 | if (nelem <= 0) | |
1004 | { | |
1005 | error (_("bad array bounds (%d, %d)"), lowbound, highbound); | |
1006 | } | |
1007 | typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0])); | |
1008 | for (idx = 1; idx < nelem; idx++) | |
1009 | { | |
1010 | if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength) | |
1011 | { | |
1012 | error (_("array elements must all be the same size")); | |
1013 | } | |
1014 | } | |
1015 | ||
1016 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1017 | lowbound, highbound); | |
1018 | arraytype = create_array_type ((struct type *) NULL, | |
1019 | value_enclosing_type (elemvec[0]), rangetype); | |
1020 | ||
1021 | if (!current_language->c_style_arrays) | |
1022 | { | |
1023 | val = allocate_value (arraytype); | |
1024 | for (idx = 0; idx < nelem; idx++) | |
1025 | { | |
1026 | memcpy (value_contents_all_raw (val) + (idx * typelength), | |
1027 | value_contents_all (elemvec[idx]), | |
1028 | typelength); | |
1029 | } | |
1030 | return val; | |
1031 | } | |
1032 | ||
1033 | /* Allocate space to store the array in the inferior, and then initialize | |
1034 | it by copying in each element. FIXME: Is it worth it to create a | |
1035 | local buffer in which to collect each value and then write all the | |
1036 | bytes in one operation? */ | |
1037 | ||
1038 | addr = allocate_space_in_inferior (nelem * typelength); | |
1039 | for (idx = 0; idx < nelem; idx++) | |
1040 | { | |
1041 | write_memory (addr + (idx * typelength), | |
1042 | value_contents_all (elemvec[idx]), | |
1043 | typelength); | |
1044 | } | |
1045 | ||
1046 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1047 | ||
1048 | val = value_at_lazy (arraytype, addr); | |
1049 | return (val); | |
1050 | } | |
1051 | ||
1052 | /* Create a value for a string constant by allocating space in the inferior, | |
1053 | copying the data into that space, and returning the address with type | |
1054 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1055 | of characters. | |
1056 | Note that string types are like array of char types with a lower bound of | |
1057 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1058 | embedded null bytes. */ | |
1059 | ||
1060 | struct value * | |
1061 | value_string (char *ptr, int len) | |
1062 | { | |
1063 | struct value *val; | |
1064 | int lowbound = current_language->string_lower_bound; | |
1065 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1066 | builtin_type_int, | |
1067 | lowbound, len + lowbound - 1); | |
1068 | struct type *stringtype | |
1069 | = create_string_type ((struct type *) NULL, rangetype); | |
1070 | CORE_ADDR addr; | |
1071 | ||
1072 | if (current_language->c_style_arrays == 0) | |
1073 | { | |
1074 | val = allocate_value (stringtype); | |
1075 | memcpy (value_contents_raw (val), ptr, len); | |
1076 | return val; | |
1077 | } | |
1078 | ||
1079 | ||
1080 | /* Allocate space to store the string in the inferior, and then | |
1081 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1082 | ||
1083 | addr = allocate_space_in_inferior (len); | |
1084 | write_memory (addr, (gdb_byte *) ptr, len); | |
1085 | ||
1086 | val = value_at_lazy (stringtype, addr); | |
1087 | return (val); | |
1088 | } | |
1089 | ||
1090 | struct value * | |
1091 | value_bitstring (char *ptr, int len) | |
1092 | { | |
1093 | struct value *val; | |
1094 | struct type *domain_type = create_range_type (NULL, builtin_type_int, | |
1095 | 0, len - 1); | |
1096 | struct type *type = create_set_type ((struct type *) NULL, domain_type); | |
1097 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; | |
1098 | val = allocate_value (type); | |
1099 | memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type)); | |
1100 | return val; | |
1101 | } | |
1102 | \f | |
1103 | /* See if we can pass arguments in T2 to a function which takes arguments | |
1104 | of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated | |
1105 | vector. If some arguments need coercion of some sort, then the coerced | |
1106 | values are written into T2. Return value is 0 if the arguments could be | |
1107 | matched, or the position at which they differ if not. | |
1108 | ||
1109 | STATICP is nonzero if the T1 argument list came from a | |
1110 | static member function. T2 will still include the ``this'' pointer, | |
1111 | but it will be skipped. | |
1112 | ||
1113 | For non-static member functions, we ignore the first argument, | |
1114 | which is the type of the instance variable. This is because we want | |
1115 | to handle calls with objects from derived classes. This is not | |
1116 | entirely correct: we should actually check to make sure that a | |
1117 | requested operation is type secure, shouldn't we? FIXME. */ | |
1118 | ||
1119 | static int | |
1120 | typecmp (int staticp, int varargs, int nargs, | |
1121 | struct field t1[], struct value *t2[]) | |
1122 | { | |
1123 | int i; | |
1124 | ||
1125 | if (t2 == 0) | |
1126 | internal_error (__FILE__, __LINE__, _("typecmp: no argument list")); | |
1127 | ||
1128 | /* Skip ``this'' argument if applicable. T2 will always include THIS. */ | |
1129 | if (staticp) | |
1130 | t2 ++; | |
1131 | ||
1132 | for (i = 0; | |
1133 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1134 | i++) | |
1135 | { | |
1136 | struct type *tt1, *tt2; | |
1137 | ||
1138 | if (!t2[i]) | |
1139 | return i + 1; | |
1140 | ||
1141 | tt1 = check_typedef (t1[i].type); | |
1142 | tt2 = check_typedef (value_type (t2[i])); | |
1143 | ||
1144 | if (TYPE_CODE (tt1) == TYPE_CODE_REF | |
1145 | /* We should be doing hairy argument matching, as below. */ | |
1146 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) | |
1147 | { | |
1148 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1149 | t2[i] = value_coerce_array (t2[i]); | |
1150 | else | |
1151 | t2[i] = value_ref (t2[i]); | |
1152 | continue; | |
1153 | } | |
1154 | ||
1155 | /* djb - 20000715 - Until the new type structure is in the | |
1156 | place, and we can attempt things like implicit conversions, | |
1157 | we need to do this so you can take something like a map<const | |
1158 | char *>, and properly access map["hello"], because the | |
1159 | argument to [] will be a reference to a pointer to a char, | |
1160 | and the argument will be a pointer to a char. */ | |
1161 | while ( TYPE_CODE(tt1) == TYPE_CODE_REF || | |
1162 | TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
1163 | { | |
1164 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1165 | } | |
1166 | while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY || | |
1167 | TYPE_CODE(tt2) == TYPE_CODE_PTR || | |
1168 | TYPE_CODE(tt2) == TYPE_CODE_REF) | |
1169 | { | |
1170 | tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) ); | |
1171 | } | |
1172 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) | |
1173 | continue; | |
1174 | /* Array to pointer is a `trivial conversion' according to the ARM. */ | |
1175 | ||
1176 | /* We should be doing much hairier argument matching (see section 13.2 | |
1177 | of the ARM), but as a quick kludge, just check for the same type | |
1178 | code. */ | |
1179 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) | |
1180 | return i + 1; | |
1181 | } | |
1182 | if (varargs || t2[i] == NULL) | |
1183 | return 0; | |
1184 | return i + 1; | |
1185 | } | |
1186 | ||
1187 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1188 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
1189 | and search in it assuming it has (class) type TYPE. | |
1190 | If found, return value, else return NULL. | |
1191 | ||
1192 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
1193 | look for a baseclass named NAME. */ | |
1194 | ||
1195 | static struct value * | |
1196 | search_struct_field (char *name, struct value *arg1, int offset, | |
1197 | struct type *type, int looking_for_baseclass) | |
1198 | { | |
1199 | int i; | |
1200 | int nbases = TYPE_N_BASECLASSES (type); | |
1201 | ||
1202 | CHECK_TYPEDEF (type); | |
1203 | ||
1204 | if (!looking_for_baseclass) | |
1205 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) | |
1206 | { | |
1207 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1208 | ||
1209 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) | |
1210 | { | |
1211 | struct value *v; | |
1212 | if (TYPE_FIELD_STATIC (type, i)) | |
1213 | { | |
1214 | v = value_static_field (type, i); | |
1215 | if (v == 0) | |
1216 | error (_("field %s is nonexistent or has been optimised out"), | |
1217 | name); | |
1218 | } | |
1219 | else | |
1220 | { | |
1221 | v = value_primitive_field (arg1, offset, i, type); | |
1222 | if (v == 0) | |
1223 | error (_("there is no field named %s"), name); | |
1224 | } | |
1225 | return v; | |
1226 | } | |
1227 | ||
1228 | if (t_field_name | |
1229 | && (t_field_name[0] == '\0' | |
1230 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
1231 | && (strcmp_iw (t_field_name, "else") == 0)))) | |
1232 | { | |
1233 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
1234 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
1235 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
1236 | { | |
1237 | /* Look for a match through the fields of an anonymous union, | |
1238 | or anonymous struct. C++ provides anonymous unions. | |
1239 | ||
1240 | In the GNU Chill (now deleted from GDB) | |
1241 | implementation of variant record types, each | |
1242 | <alternative field> has an (anonymous) union type, | |
1243 | each member of the union represents a <variant | |
1244 | alternative>. Each <variant alternative> is | |
1245 | represented as a struct, with a member for each | |
1246 | <variant field>. */ | |
1247 | ||
1248 | struct value *v; | |
1249 | int new_offset = offset; | |
1250 | ||
1251 | /* This is pretty gross. In G++, the offset in an | |
1252 | anonymous union is relative to the beginning of the | |
1253 | enclosing struct. In the GNU Chill (now deleted | |
1254 | from GDB) implementation of variant records, the | |
1255 | bitpos is zero in an anonymous union field, so we | |
1256 | have to add the offset of the union here. */ | |
1257 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT | |
1258 | || (TYPE_NFIELDS (field_type) > 0 | |
1259 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
1260 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
1261 | ||
1262 | v = search_struct_field (name, arg1, new_offset, field_type, | |
1263 | looking_for_baseclass); | |
1264 | if (v) | |
1265 | return v; | |
1266 | } | |
1267 | } | |
1268 | } | |
1269 | ||
1270 | for (i = 0; i < nbases; i++) | |
1271 | { | |
1272 | struct value *v; | |
1273 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); | |
1274 | /* If we are looking for baseclasses, this is what we get when we | |
1275 | hit them. But it could happen that the base part's member name | |
1276 | is not yet filled in. */ | |
1277 | int found_baseclass = (looking_for_baseclass | |
1278 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
1279 | && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0)); | |
1280 | ||
1281 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1282 | { | |
1283 | int boffset; | |
1284 | struct value *v2 = allocate_value (basetype); | |
1285 | ||
1286 | boffset = baseclass_offset (type, i, | |
1287 | value_contents (arg1) + offset, | |
1288 | VALUE_ADDRESS (arg1) | |
1289 | + value_offset (arg1) + offset); | |
1290 | if (boffset == -1) | |
1291 | error (_("virtual baseclass botch")); | |
1292 | ||
1293 | /* The virtual base class pointer might have been clobbered by the | |
1294 | user program. Make sure that it still points to a valid memory | |
1295 | location. */ | |
1296 | ||
1297 | boffset += offset; | |
1298 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
1299 | { | |
1300 | CORE_ADDR base_addr; | |
1301 | ||
1302 | base_addr = VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset; | |
1303 | if (target_read_memory (base_addr, value_contents_raw (v2), | |
1304 | TYPE_LENGTH (basetype)) != 0) | |
1305 | error (_("virtual baseclass botch")); | |
1306 | VALUE_LVAL (v2) = lval_memory; | |
1307 | VALUE_ADDRESS (v2) = base_addr; | |
1308 | } | |
1309 | else | |
1310 | { | |
1311 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
1312 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
1313 | VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1); | |
1314 | set_value_offset (v2, value_offset (arg1) + boffset); | |
1315 | if (value_lazy (arg1)) | |
1316 | set_value_lazy (v2, 1); | |
1317 | else | |
1318 | memcpy (value_contents_raw (v2), | |
1319 | value_contents_raw (arg1) + boffset, | |
1320 | TYPE_LENGTH (basetype)); | |
1321 | } | |
1322 | ||
1323 | if (found_baseclass) | |
1324 | return v2; | |
1325 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), | |
1326 | looking_for_baseclass); | |
1327 | } | |
1328 | else if (found_baseclass) | |
1329 | v = value_primitive_field (arg1, offset, i, type); | |
1330 | else | |
1331 | v = search_struct_field (name, arg1, | |
1332 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, | |
1333 | basetype, looking_for_baseclass); | |
1334 | if (v) | |
1335 | return v; | |
1336 | } | |
1337 | return NULL; | |
1338 | } | |
1339 | ||
1340 | ||
1341 | /* Return the offset (in bytes) of the virtual base of type BASETYPE | |
1342 | * in an object pointed to by VALADDR (on the host), assumed to be of | |
1343 | * type TYPE. OFFSET is number of bytes beyond start of ARG to start | |
1344 | * looking (in case VALADDR is the contents of an enclosing object). | |
1345 | * | |
1346 | * This routine recurses on the primary base of the derived class because | |
1347 | * the virtual base entries of the primary base appear before the other | |
1348 | * virtual base entries. | |
1349 | * | |
1350 | * If the virtual base is not found, a negative integer is returned. | |
1351 | * The magnitude of the negative integer is the number of entries in | |
1352 | * the virtual table to skip over (entries corresponding to various | |
1353 | * ancestral classes in the chain of primary bases). | |
1354 | * | |
1355 | * Important: This assumes the HP / Taligent C++ runtime | |
1356 | * conventions. Use baseclass_offset() instead to deal with g++ | |
1357 | * conventions. */ | |
1358 | ||
1359 | void | |
1360 | find_rt_vbase_offset (struct type *type, struct type *basetype, | |
1361 | const gdb_byte *valaddr, int offset, int *boffset_p, | |
1362 | int *skip_p) | |
1363 | { | |
1364 | int boffset; /* offset of virtual base */ | |
1365 | int index; /* displacement to use in virtual table */ | |
1366 | int skip; | |
1367 | ||
1368 | struct value *vp; | |
1369 | CORE_ADDR vtbl; /* the virtual table pointer */ | |
1370 | struct type *pbc; /* the primary base class */ | |
1371 | ||
1372 | /* Look for the virtual base recursively in the primary base, first. | |
1373 | * This is because the derived class object and its primary base | |
1374 | * subobject share the primary virtual table. */ | |
1375 | ||
1376 | boffset = 0; | |
1377 | pbc = TYPE_PRIMARY_BASE (type); | |
1378 | if (pbc) | |
1379 | { | |
1380 | find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip); | |
1381 | if (skip < 0) | |
1382 | { | |
1383 | *boffset_p = boffset; | |
1384 | *skip_p = -1; | |
1385 | return; | |
1386 | } | |
1387 | } | |
1388 | else | |
1389 | skip = 0; | |
1390 | ||
1391 | ||
1392 | /* Find the index of the virtual base according to HP/Taligent | |
1393 | runtime spec. (Depth-first, left-to-right.) */ | |
1394 | index = virtual_base_index_skip_primaries (basetype, type); | |
1395 | ||
1396 | if (index < 0) | |
1397 | { | |
1398 | *skip_p = skip + virtual_base_list_length_skip_primaries (type); | |
1399 | *boffset_p = 0; | |
1400 | return; | |
1401 | } | |
1402 | ||
1403 | /* pai: FIXME -- 32x64 possible problem */ | |
1404 | /* First word (4 bytes) in object layout is the vtable pointer */ | |
1405 | vtbl = *(CORE_ADDR *) (valaddr + offset); | |
1406 | ||
1407 | /* Before the constructor is invoked, things are usually zero'd out. */ | |
1408 | if (vtbl == 0) | |
1409 | error (_("Couldn't find virtual table -- object may not be constructed yet.")); | |
1410 | ||
1411 | ||
1412 | /* Find virtual base's offset -- jump over entries for primary base | |
1413 | * ancestors, then use the index computed above. But also adjust by | |
1414 | * HP_ACC_VBASE_START for the vtable slots before the start of the | |
1415 | * virtual base entries. Offset is negative -- virtual base entries | |
1416 | * appear _before_ the address point of the virtual table. */ | |
1417 | ||
1418 | /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier | |
1419 | & use long type */ | |
1420 | ||
1421 | /* epstein : FIXME -- added param for overlay section. May not be correct */ | |
1422 | vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START)); | |
1423 | boffset = value_as_long (vp); | |
1424 | *skip_p = -1; | |
1425 | *boffset_p = boffset; | |
1426 | return; | |
1427 | } | |
1428 | ||
1429 | ||
1430 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1431 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
1432 | and search in it assuming it has (class) type TYPE. | |
1433 | If found, return value, else if name matched and args not return (value)-1, | |
1434 | else return NULL. */ | |
1435 | ||
1436 | static struct value * | |
1437 | search_struct_method (char *name, struct value **arg1p, | |
1438 | struct value **args, int offset, | |
1439 | int *static_memfuncp, struct type *type) | |
1440 | { | |
1441 | int i; | |
1442 | struct value *v; | |
1443 | int name_matched = 0; | |
1444 | char dem_opname[64]; | |
1445 | ||
1446 | CHECK_TYPEDEF (type); | |
1447 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1448 | { | |
1449 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
1450 | /* FIXME! May need to check for ARM demangling here */ | |
1451 | if (strncmp (t_field_name, "__", 2) == 0 || | |
1452 | strncmp (t_field_name, "op", 2) == 0 || | |
1453 | strncmp (t_field_name, "type", 4) == 0) | |
1454 | { | |
1455 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) | |
1456 | t_field_name = dem_opname; | |
1457 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
1458 | t_field_name = dem_opname; | |
1459 | } | |
1460 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) | |
1461 | { | |
1462 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
1463 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
1464 | name_matched = 1; | |
1465 | ||
1466 | check_stub_method_group (type, i); | |
1467 | if (j > 0 && args == 0) | |
1468 | error (_("cannot resolve overloaded method `%s': no arguments supplied"), name); | |
1469 | else if (j == 0 && args == 0) | |
1470 | { | |
1471 | v = value_fn_field (arg1p, f, j, type, offset); | |
1472 | if (v != NULL) | |
1473 | return v; | |
1474 | } | |
1475 | else | |
1476 | while (j >= 0) | |
1477 | { | |
1478 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), | |
1479 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), | |
1480 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
1481 | TYPE_FN_FIELD_ARGS (f, j), args)) | |
1482 | { | |
1483 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
1484 | return value_virtual_fn_field (arg1p, f, j, type, offset); | |
1485 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) | |
1486 | *static_memfuncp = 1; | |
1487 | v = value_fn_field (arg1p, f, j, type, offset); | |
1488 | if (v != NULL) | |
1489 | return v; | |
1490 | } | |
1491 | j--; | |
1492 | } | |
1493 | } | |
1494 | } | |
1495 | ||
1496 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1497 | { | |
1498 | int base_offset; | |
1499 | ||
1500 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1501 | { | |
1502 | if (TYPE_HAS_VTABLE (type)) | |
1503 | { | |
1504 | /* HP aCC compiled type, search for virtual base offset | |
1505 | according to HP/Taligent runtime spec. */ | |
1506 | int skip; | |
1507 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
1508 | value_contents_all (*arg1p), | |
1509 | offset + value_embedded_offset (*arg1p), | |
1510 | &base_offset, &skip); | |
1511 | if (skip >= 0) | |
1512 | error (_("Virtual base class offset not found in vtable")); | |
1513 | } | |
1514 | else | |
1515 | { | |
1516 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | |
1517 | const gdb_byte *base_valaddr; | |
1518 | ||
1519 | /* The virtual base class pointer might have been clobbered by the | |
1520 | user program. Make sure that it still points to a valid memory | |
1521 | location. */ | |
1522 | ||
1523 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
1524 | { | |
1525 | gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass)); | |
1526 | if (target_read_memory (VALUE_ADDRESS (*arg1p) | |
1527 | + value_offset (*arg1p) + offset, | |
1528 | tmp, TYPE_LENGTH (baseclass)) != 0) | |
1529 | error (_("virtual baseclass botch")); | |
1530 | base_valaddr = tmp; | |
1531 | } | |
1532 | else | |
1533 | base_valaddr = value_contents (*arg1p) + offset; | |
1534 | ||
1535 | base_offset = | |
1536 | baseclass_offset (type, i, base_valaddr, | |
1537 | VALUE_ADDRESS (*arg1p) | |
1538 | + value_offset (*arg1p) + offset); | |
1539 | if (base_offset == -1) | |
1540 | error (_("virtual baseclass botch")); | |
1541 | } | |
1542 | } | |
1543 | else | |
1544 | { | |
1545 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
1546 | } | |
1547 | v = search_struct_method (name, arg1p, args, base_offset + offset, | |
1548 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
1549 | if (v == (struct value *) - 1) | |
1550 | { | |
1551 | name_matched = 1; | |
1552 | } | |
1553 | else if (v) | |
1554 | { | |
1555 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
1556 | /* *arg1p = arg1_tmp; */ | |
1557 | return v; | |
1558 | } | |
1559 | } | |
1560 | if (name_matched) | |
1561 | return (struct value *) - 1; | |
1562 | else | |
1563 | return NULL; | |
1564 | } | |
1565 | ||
1566 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
1567 | extract the component named NAME from the ultimate target structure/union | |
1568 | and return it as a value with its appropriate type. | |
1569 | ERR is used in the error message if *ARGP's type is wrong. | |
1570 | ||
1571 | C++: ARGS is a list of argument types to aid in the selection of | |
1572 | an appropriate method. Also, handle derived types. | |
1573 | ||
1574 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
1575 | where the truthvalue of whether the function that was resolved was | |
1576 | a static member function or not is stored. | |
1577 | ||
1578 | ERR is an error message to be printed in case the field is not found. */ | |
1579 | ||
1580 | struct value * | |
1581 | value_struct_elt (struct value **argp, struct value **args, | |
1582 | char *name, int *static_memfuncp, char *err) | |
1583 | { | |
1584 | struct type *t; | |
1585 | struct value *v; | |
1586 | ||
1587 | *argp = coerce_array (*argp); | |
1588 | ||
1589 | t = check_typedef (value_type (*argp)); | |
1590 | ||
1591 | /* Follow pointers until we get to a non-pointer. */ | |
1592 | ||
1593 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1594 | { | |
1595 | *argp = value_ind (*argp); | |
1596 | /* Don't coerce fn pointer to fn and then back again! */ | |
1597 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) | |
1598 | *argp = coerce_array (*argp); | |
1599 | t = check_typedef (value_type (*argp)); | |
1600 | } | |
1601 | ||
1602 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
1603 | error (_("not implemented: member type in value_struct_elt")); | |
1604 | ||
1605 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
1606 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
1607 | error (_("Attempt to extract a component of a value that is not a %s."), err); | |
1608 | ||
1609 | /* Assume it's not, unless we see that it is. */ | |
1610 | if (static_memfuncp) | |
1611 | *static_memfuncp = 0; | |
1612 | ||
1613 | if (!args) | |
1614 | { | |
1615 | /* if there are no arguments ...do this... */ | |
1616 | ||
1617 | /* Try as a field first, because if we succeed, there | |
1618 | is less work to be done. */ | |
1619 | v = search_struct_field (name, *argp, 0, t, 0); | |
1620 | if (v) | |
1621 | return v; | |
1622 | ||
1623 | /* C++: If it was not found as a data field, then try to | |
1624 | return it as a pointer to a method. */ | |
1625 | ||
1626 | if (destructor_name_p (name, t)) | |
1627 | error (_("Cannot get value of destructor")); | |
1628 | ||
1629 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
1630 | ||
1631 | if (v == (struct value *) - 1) | |
1632 | error (_("Cannot take address of method %s."), name); | |
1633 | else if (v == 0) | |
1634 | { | |
1635 | if (TYPE_NFN_FIELDS (t)) | |
1636 | error (_("There is no member or method named %s."), name); | |
1637 | else | |
1638 | error (_("There is no member named %s."), name); | |
1639 | } | |
1640 | return v; | |
1641 | } | |
1642 | ||
1643 | if (destructor_name_p (name, t)) | |
1644 | { | |
1645 | if (!args[1]) | |
1646 | { | |
1647 | /* Destructors are a special case. */ | |
1648 | int m_index, f_index; | |
1649 | ||
1650 | v = NULL; | |
1651 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
1652 | { | |
1653 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index), | |
1654 | f_index, NULL, 0); | |
1655 | } | |
1656 | if (v == NULL) | |
1657 | error (_("could not find destructor function named %s."), name); | |
1658 | else | |
1659 | return v; | |
1660 | } | |
1661 | else | |
1662 | { | |
1663 | error (_("destructor should not have any argument")); | |
1664 | } | |
1665 | } | |
1666 | else | |
1667 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
1668 | ||
1669 | if (v == (struct value *) - 1) | |
1670 | { | |
1671 | error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name); | |
1672 | } | |
1673 | else if (v == 0) | |
1674 | { | |
1675 | /* See if user tried to invoke data as function. If so, | |
1676 | hand it back. If it's not callable (i.e., a pointer to function), | |
1677 | gdb should give an error. */ | |
1678 | v = search_struct_field (name, *argp, 0, t, 0); | |
1679 | } | |
1680 | ||
1681 | if (!v) | |
1682 | error (_("Structure has no component named %s."), name); | |
1683 | return v; | |
1684 | } | |
1685 | ||
1686 | /* Search through the methods of an object (and its bases) | |
1687 | * to find a specified method. Return the pointer to the | |
1688 | * fn_field list of overloaded instances. | |
1689 | * Helper function for value_find_oload_list. | |
1690 | * ARGP is a pointer to a pointer to a value (the object) | |
1691 | * METHOD is a string containing the method name | |
1692 | * OFFSET is the offset within the value | |
1693 | * TYPE is the assumed type of the object | |
1694 | * NUM_FNS is the number of overloaded instances | |
1695 | * BASETYPE is set to the actual type of the subobject where the method is found | |
1696 | * BOFFSET is the offset of the base subobject where the method is found */ | |
1697 | ||
1698 | static struct fn_field * | |
1699 | find_method_list (struct value **argp, char *method, int offset, | |
1700 | struct type *type, int *num_fns, | |
1701 | struct type **basetype, int *boffset) | |
1702 | { | |
1703 | int i; | |
1704 | struct fn_field *f; | |
1705 | CHECK_TYPEDEF (type); | |
1706 | ||
1707 | *num_fns = 0; | |
1708 | ||
1709 | /* First check in object itself */ | |
1710 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1711 | { | |
1712 | /* pai: FIXME What about operators and type conversions? */ | |
1713 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
1714 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) | |
1715 | { | |
1716 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); | |
1717 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
1718 | ||
1719 | *num_fns = len; | |
1720 | *basetype = type; | |
1721 | *boffset = offset; | |
1722 | ||
1723 | /* Resolve any stub methods. */ | |
1724 | check_stub_method_group (type, i); | |
1725 | ||
1726 | return f; | |
1727 | } | |
1728 | } | |
1729 | ||
1730 | /* Not found in object, check in base subobjects */ | |
1731 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1732 | { | |
1733 | int base_offset; | |
1734 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1735 | { | |
1736 | if (TYPE_HAS_VTABLE (type)) | |
1737 | { | |
1738 | /* HP aCC compiled type, search for virtual base offset | |
1739 | * according to HP/Taligent runtime spec. */ | |
1740 | int skip; | |
1741 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
1742 | value_contents_all (*argp), | |
1743 | offset + value_embedded_offset (*argp), | |
1744 | &base_offset, &skip); | |
1745 | if (skip >= 0) | |
1746 | error (_("Virtual base class offset not found in vtable")); | |
1747 | } | |
1748 | else | |
1749 | { | |
1750 | /* probably g++ runtime model */ | |
1751 | base_offset = value_offset (*argp) + offset; | |
1752 | base_offset = | |
1753 | baseclass_offset (type, i, | |
1754 | value_contents (*argp) + base_offset, | |
1755 | VALUE_ADDRESS (*argp) + base_offset); | |
1756 | if (base_offset == -1) | |
1757 | error (_("virtual baseclass botch")); | |
1758 | } | |
1759 | } | |
1760 | else | |
1761 | /* non-virtual base, simply use bit position from debug info */ | |
1762 | { | |
1763 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
1764 | } | |
1765 | f = find_method_list (argp, method, base_offset + offset, | |
1766 | TYPE_BASECLASS (type, i), num_fns, basetype, | |
1767 | boffset); | |
1768 | if (f) | |
1769 | return f; | |
1770 | } | |
1771 | return NULL; | |
1772 | } | |
1773 | ||
1774 | /* Return the list of overloaded methods of a specified name. | |
1775 | * ARGP is a pointer to a pointer to a value (the object) | |
1776 | * METHOD is the method name | |
1777 | * OFFSET is the offset within the value contents | |
1778 | * NUM_FNS is the number of overloaded instances | |
1779 | * BASETYPE is set to the type of the base subobject that defines the method | |
1780 | * BOFFSET is the offset of the base subobject which defines the method */ | |
1781 | ||
1782 | struct fn_field * | |
1783 | value_find_oload_method_list (struct value **argp, char *method, int offset, | |
1784 | int *num_fns, struct type **basetype, | |
1785 | int *boffset) | |
1786 | { | |
1787 | struct type *t; | |
1788 | ||
1789 | t = check_typedef (value_type (*argp)); | |
1790 | ||
1791 | /* code snarfed from value_struct_elt */ | |
1792 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1793 | { | |
1794 | *argp = value_ind (*argp); | |
1795 | /* Don't coerce fn pointer to fn and then back again! */ | |
1796 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) | |
1797 | *argp = coerce_array (*argp); | |
1798 | t = check_typedef (value_type (*argp)); | |
1799 | } | |
1800 | ||
1801 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
1802 | error (_("Not implemented: member type in value_find_oload_lis")); | |
1803 | ||
1804 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
1805 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
1806 | error (_("Attempt to extract a component of a value that is not a struct or union")); | |
1807 | ||
1808 | return find_method_list (argp, method, 0, t, num_fns, basetype, boffset); | |
1809 | } | |
1810 | ||
1811 | /* Given an array of argument types (ARGTYPES) (which includes an | |
1812 | entry for "this" in the case of C++ methods), the number of | |
1813 | arguments NARGS, the NAME of a function whether it's a method or | |
1814 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
1815 | overload resolution rules in ANSI C++, find the best function that | |
1816 | matches on the argument types according to the overload resolution | |
1817 | rules. | |
1818 | ||
1819 | In the case of class methods, the parameter OBJ is an object value | |
1820 | in which to search for overloaded methods. | |
1821 | ||
1822 | In the case of non-method functions, the parameter FSYM is a symbol | |
1823 | corresponding to one of the overloaded functions. | |
1824 | ||
1825 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
1826 | non-standard coercions, 100 -> incompatible. | |
1827 | ||
1828 | If a method is being searched for, VALP will hold the value. | |
1829 | If a non-method is being searched for, SYMP will hold the symbol for it. | |
1830 | ||
1831 | If a method is being searched for, and it is a static method, | |
1832 | then STATICP will point to a non-zero value. | |
1833 | ||
1834 | Note: This function does *not* check the value of | |
1835 | overload_resolution. Caller must check it to see whether overload | |
1836 | resolution is permitted. | |
1837 | */ | |
1838 | ||
1839 | int | |
1840 | find_overload_match (struct type **arg_types, int nargs, char *name, int method, | |
1841 | int lax, struct value **objp, struct symbol *fsym, | |
1842 | struct value **valp, struct symbol **symp, int *staticp) | |
1843 | { | |
1844 | struct value *obj = (objp ? *objp : NULL); | |
1845 | ||
1846 | int oload_champ; /* Index of best overloaded function */ | |
1847 | ||
1848 | struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */ | |
1849 | ||
1850 | struct value *temp = obj; | |
1851 | struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */ | |
1852 | struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */ | |
1853 | int num_fns = 0; /* Number of overloaded instances being considered */ | |
1854 | struct type *basetype = NULL; | |
1855 | int boffset; | |
1856 | int ix; | |
1857 | int static_offset; | |
1858 | struct cleanup *old_cleanups = NULL; | |
1859 | ||
1860 | const char *obj_type_name = NULL; | |
1861 | char *func_name = NULL; | |
1862 | enum oload_classification match_quality; | |
1863 | ||
1864 | /* Get the list of overloaded methods or functions */ | |
1865 | if (method) | |
1866 | { | |
1867 | obj_type_name = TYPE_NAME (value_type (obj)); | |
1868 | /* Hack: evaluate_subexp_standard often passes in a pointer | |
1869 | value rather than the object itself, so try again */ | |
1870 | if ((!obj_type_name || !*obj_type_name) && | |
1871 | (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR)) | |
1872 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj))); | |
1873 | ||
1874 | fns_ptr = value_find_oload_method_list (&temp, name, 0, | |
1875 | &num_fns, | |
1876 | &basetype, &boffset); | |
1877 | if (!fns_ptr || !num_fns) | |
1878 | error (_("Couldn't find method %s%s%s"), | |
1879 | obj_type_name, | |
1880 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1881 | name); | |
1882 | /* If we are dealing with stub method types, they should have | |
1883 | been resolved by find_method_list via value_find_oload_method_list | |
1884 | above. */ | |
1885 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); | |
1886 | oload_champ = find_oload_champ (arg_types, nargs, method, num_fns, | |
1887 | fns_ptr, oload_syms, &oload_champ_bv); | |
1888 | } | |
1889 | else | |
1890 | { | |
1891 | const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym); | |
1892 | func_name = cp_func_name (qualified_name); | |
1893 | ||
1894 | /* If the name is NULL this must be a C-style function. | |
1895 | Just return the same symbol. */ | |
1896 | if (func_name == NULL) | |
1897 | { | |
1898 | *symp = fsym; | |
1899 | return 0; | |
1900 | } | |
1901 | ||
1902 | old_cleanups = make_cleanup (xfree, func_name); | |
1903 | make_cleanup (xfree, oload_syms); | |
1904 | make_cleanup (xfree, oload_champ_bv); | |
1905 | ||
1906 | oload_champ = find_oload_champ_namespace (arg_types, nargs, | |
1907 | func_name, | |
1908 | qualified_name, | |
1909 | &oload_syms, | |
1910 | &oload_champ_bv); | |
1911 | } | |
1912 | ||
1913 | /* Check how bad the best match is. */ | |
1914 | ||
1915 | match_quality | |
1916 | = classify_oload_match (oload_champ_bv, nargs, | |
1917 | oload_method_static (method, fns_ptr, | |
1918 | oload_champ)); | |
1919 | ||
1920 | if (match_quality == INCOMPATIBLE) | |
1921 | { | |
1922 | if (method) | |
1923 | error (_("Cannot resolve method %s%s%s to any overloaded instance"), | |
1924 | obj_type_name, | |
1925 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1926 | name); | |
1927 | else | |
1928 | error (_("Cannot resolve function %s to any overloaded instance"), | |
1929 | func_name); | |
1930 | } | |
1931 | else if (match_quality == NON_STANDARD) | |
1932 | { | |
1933 | if (method) | |
1934 | warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"), | |
1935 | obj_type_name, | |
1936 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1937 | name); | |
1938 | else | |
1939 | warning (_("Using non-standard conversion to match function %s to supplied arguments"), | |
1940 | func_name); | |
1941 | } | |
1942 | ||
1943 | if (method) | |
1944 | { | |
1945 | if (staticp != NULL) | |
1946 | *staticp = oload_method_static (method, fns_ptr, oload_champ); | |
1947 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) | |
1948 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); | |
1949 | else | |
1950 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); | |
1951 | } | |
1952 | else | |
1953 | { | |
1954 | *symp = oload_syms[oload_champ]; | |
1955 | } | |
1956 | ||
1957 | if (objp) | |
1958 | { | |
1959 | if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR | |
1960 | && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR) | |
1961 | { | |
1962 | temp = value_addr (temp); | |
1963 | } | |
1964 | *objp = temp; | |
1965 | } | |
1966 | if (old_cleanups != NULL) | |
1967 | do_cleanups (old_cleanups); | |
1968 | ||
1969 | switch (match_quality) | |
1970 | { | |
1971 | case INCOMPATIBLE: | |
1972 | return 100; | |
1973 | case NON_STANDARD: | |
1974 | return 10; | |
1975 | default: /* STANDARD */ | |
1976 | return 0; | |
1977 | } | |
1978 | } | |
1979 | ||
1980 | /* Find the best overload match, searching for FUNC_NAME in namespaces | |
1981 | contained in QUALIFIED_NAME until it either finds a good match or | |
1982 | runs out of namespaces. It stores the overloaded functions in | |
1983 | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The | |
1984 | calling function is responsible for freeing *OLOAD_SYMS and | |
1985 | *OLOAD_CHAMP_BV. */ | |
1986 | ||
1987 | static int | |
1988 | find_oload_champ_namespace (struct type **arg_types, int nargs, | |
1989 | const char *func_name, | |
1990 | const char *qualified_name, | |
1991 | struct symbol ***oload_syms, | |
1992 | struct badness_vector **oload_champ_bv) | |
1993 | { | |
1994 | int oload_champ; | |
1995 | ||
1996 | find_oload_champ_namespace_loop (arg_types, nargs, | |
1997 | func_name, | |
1998 | qualified_name, 0, | |
1999 | oload_syms, oload_champ_bv, | |
2000 | &oload_champ); | |
2001 | ||
2002 | return oload_champ; | |
2003 | } | |
2004 | ||
2005 | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | |
2006 | how deep we've looked for namespaces, and the champ is stored in | |
2007 | OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 | |
2008 | if it isn't. | |
2009 | ||
2010 | It is the caller's responsibility to free *OLOAD_SYMS and | |
2011 | *OLOAD_CHAMP_BV. */ | |
2012 | ||
2013 | static int | |
2014 | find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
2015 | const char *func_name, | |
2016 | const char *qualified_name, | |
2017 | int namespace_len, | |
2018 | struct symbol ***oload_syms, | |
2019 | struct badness_vector **oload_champ_bv, | |
2020 | int *oload_champ) | |
2021 | { | |
2022 | int next_namespace_len = namespace_len; | |
2023 | int searched_deeper = 0; | |
2024 | int num_fns = 0; | |
2025 | struct cleanup *old_cleanups; | |
2026 | int new_oload_champ; | |
2027 | struct symbol **new_oload_syms; | |
2028 | struct badness_vector *new_oload_champ_bv; | |
2029 | char *new_namespace; | |
2030 | ||
2031 | if (next_namespace_len != 0) | |
2032 | { | |
2033 | gdb_assert (qualified_name[next_namespace_len] == ':'); | |
2034 | next_namespace_len += 2; | |
2035 | } | |
2036 | next_namespace_len | |
2037 | += cp_find_first_component (qualified_name + next_namespace_len); | |
2038 | ||
2039 | /* Initialize these to values that can safely be xfree'd. */ | |
2040 | *oload_syms = NULL; | |
2041 | *oload_champ_bv = NULL; | |
2042 | ||
2043 | /* First, see if we have a deeper namespace we can search in. If we | |
2044 | get a good match there, use it. */ | |
2045 | ||
2046 | if (qualified_name[next_namespace_len] == ':') | |
2047 | { | |
2048 | searched_deeper = 1; | |
2049 | ||
2050 | if (find_oload_champ_namespace_loop (arg_types, nargs, | |
2051 | func_name, qualified_name, | |
2052 | next_namespace_len, | |
2053 | oload_syms, oload_champ_bv, | |
2054 | oload_champ)) | |
2055 | { | |
2056 | return 1; | |
2057 | } | |
2058 | }; | |
2059 | ||
2060 | /* If we reach here, either we're in the deepest namespace or we | |
2061 | didn't find a good match in a deeper namespace. But, in the | |
2062 | latter case, we still have a bad match in a deeper namespace; | |
2063 | note that we might not find any match at all in the current | |
2064 | namespace. (There's always a match in the deepest namespace, | |
2065 | because this overload mechanism only gets called if there's a | |
2066 | function symbol to start off with.) */ | |
2067 | ||
2068 | old_cleanups = make_cleanup (xfree, *oload_syms); | |
2069 | old_cleanups = make_cleanup (xfree, *oload_champ_bv); | |
2070 | new_namespace = alloca (namespace_len + 1); | |
2071 | strncpy (new_namespace, qualified_name, namespace_len); | |
2072 | new_namespace[namespace_len] = '\0'; | |
2073 | new_oload_syms = make_symbol_overload_list (func_name, | |
2074 | new_namespace); | |
2075 | while (new_oload_syms[num_fns]) | |
2076 | ++num_fns; | |
2077 | ||
2078 | new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns, | |
2079 | NULL, new_oload_syms, | |
2080 | &new_oload_champ_bv); | |
2081 | ||
2082 | /* Case 1: We found a good match. Free earlier matches (if any), | |
2083 | and return it. Case 2: We didn't find a good match, but we're | |
2084 | not the deepest function. Then go with the bad match that the | |
2085 | deeper function found. Case 3: We found a bad match, and we're | |
2086 | the deepest function. Then return what we found, even though | |
2087 | it's a bad match. */ | |
2088 | ||
2089 | if (new_oload_champ != -1 | |
2090 | && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) | |
2091 | { | |
2092 | *oload_syms = new_oload_syms; | |
2093 | *oload_champ = new_oload_champ; | |
2094 | *oload_champ_bv = new_oload_champ_bv; | |
2095 | do_cleanups (old_cleanups); | |
2096 | return 1; | |
2097 | } | |
2098 | else if (searched_deeper) | |
2099 | { | |
2100 | xfree (new_oload_syms); | |
2101 | xfree (new_oload_champ_bv); | |
2102 | discard_cleanups (old_cleanups); | |
2103 | return 0; | |
2104 | } | |
2105 | else | |
2106 | { | |
2107 | gdb_assert (new_oload_champ != -1); | |
2108 | *oload_syms = new_oload_syms; | |
2109 | *oload_champ = new_oload_champ; | |
2110 | *oload_champ_bv = new_oload_champ_bv; | |
2111 | discard_cleanups (old_cleanups); | |
2112 | return 0; | |
2113 | } | |
2114 | } | |
2115 | ||
2116 | /* Look for a function to take NARGS args of types ARG_TYPES. Find | |
2117 | the best match from among the overloaded methods or functions | |
2118 | (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively. | |
2119 | The number of methods/functions in the list is given by NUM_FNS. | |
2120 | Return the index of the best match; store an indication of the | |
2121 | quality of the match in OLOAD_CHAMP_BV. | |
2122 | ||
2123 | It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ | |
2124 | ||
2125 | static int | |
2126 | find_oload_champ (struct type **arg_types, int nargs, int method, | |
2127 | int num_fns, struct fn_field *fns_ptr, | |
2128 | struct symbol **oload_syms, | |
2129 | struct badness_vector **oload_champ_bv) | |
2130 | { | |
2131 | int ix; | |
2132 | struct badness_vector *bv; /* A measure of how good an overloaded instance is */ | |
2133 | int oload_champ = -1; /* Index of best overloaded function */ | |
2134 | int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */ | |
2135 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */ | |
2136 | ||
2137 | *oload_champ_bv = NULL; | |
2138 | ||
2139 | /* Consider each candidate in turn */ | |
2140 | for (ix = 0; ix < num_fns; ix++) | |
2141 | { | |
2142 | int jj; | |
2143 | int static_offset = oload_method_static (method, fns_ptr, ix); | |
2144 | int nparms; | |
2145 | struct type **parm_types; | |
2146 | ||
2147 | if (method) | |
2148 | { | |
2149 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); | |
2150 | } | |
2151 | else | |
2152 | { | |
2153 | /* If it's not a method, this is the proper place */ | |
2154 | nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix])); | |
2155 | } | |
2156 | ||
2157 | /* Prepare array of parameter types */ | |
2158 | parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *))); | |
2159 | for (jj = 0; jj < nparms; jj++) | |
2160 | parm_types[jj] = (method | |
2161 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) | |
2162 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj)); | |
2163 | ||
2164 | /* Compare parameter types to supplied argument types. Skip THIS for | |
2165 | static methods. */ | |
2166 | bv = rank_function (parm_types, nparms, arg_types + static_offset, | |
2167 | nargs - static_offset); | |
2168 | ||
2169 | if (!*oload_champ_bv) | |
2170 | { | |
2171 | *oload_champ_bv = bv; | |
2172 | oload_champ = 0; | |
2173 | } | |
2174 | else | |
2175 | /* See whether current candidate is better or worse than previous best */ | |
2176 | switch (compare_badness (bv, *oload_champ_bv)) | |
2177 | { | |
2178 | case 0: | |
2179 | oload_ambiguous = 1; /* top two contenders are equally good */ | |
2180 | break; | |
2181 | case 1: | |
2182 | oload_ambiguous = 2; /* incomparable top contenders */ | |
2183 | break; | |
2184 | case 2: | |
2185 | *oload_champ_bv = bv; /* new champion, record details */ | |
2186 | oload_ambiguous = 0; | |
2187 | oload_champ = ix; | |
2188 | break; | |
2189 | case 3: | |
2190 | default: | |
2191 | break; | |
2192 | } | |
2193 | xfree (parm_types); | |
2194 | if (overload_debug) | |
2195 | { | |
2196 | if (method) | |
2197 | fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms); | |
2198 | else | |
2199 | fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms); | |
2200 | for (jj = 0; jj < nargs - static_offset; jj++) | |
2201 | fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]); | |
2202 | fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous); | |
2203 | } | |
2204 | } | |
2205 | ||
2206 | return oload_champ; | |
2207 | } | |
2208 | ||
2209 | /* Return 1 if we're looking at a static method, 0 if we're looking at | |
2210 | a non-static method or a function that isn't a method. */ | |
2211 | ||
2212 | static int | |
2213 | oload_method_static (int method, struct fn_field *fns_ptr, int index) | |
2214 | { | |
2215 | if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) | |
2216 | return 1; | |
2217 | else | |
2218 | return 0; | |
2219 | } | |
2220 | ||
2221 | /* Check how good an overload match OLOAD_CHAMP_BV represents. */ | |
2222 | ||
2223 | static enum oload_classification | |
2224 | classify_oload_match (struct badness_vector *oload_champ_bv, | |
2225 | int nargs, | |
2226 | int static_offset) | |
2227 | { | |
2228 | int ix; | |
2229 | ||
2230 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
2231 | { | |
2232 | if (oload_champ_bv->rank[ix] >= 100) | |
2233 | return INCOMPATIBLE; /* truly mismatched types */ | |
2234 | else if (oload_champ_bv->rank[ix] >= 10) | |
2235 | return NON_STANDARD; /* non-standard type conversions needed */ | |
2236 | } | |
2237 | ||
2238 | return STANDARD; /* Only standard conversions needed. */ | |
2239 | } | |
2240 | ||
2241 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
2242 | of type TYPE. If TYPE does not have a destructor, or | |
2243 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
2244 | int | |
2245 | destructor_name_p (const char *name, const struct type *type) | |
2246 | { | |
2247 | /* destructors are a special case. */ | |
2248 | ||
2249 | if (name[0] == '~') | |
2250 | { | |
2251 | char *dname = type_name_no_tag (type); | |
2252 | char *cp = strchr (dname, '<'); | |
2253 | unsigned int len; | |
2254 | ||
2255 | /* Do not compare the template part for template classes. */ | |
2256 | if (cp == NULL) | |
2257 | len = strlen (dname); | |
2258 | else | |
2259 | len = cp - dname; | |
2260 | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) | |
2261 | error (_("name of destructor must equal name of class")); | |
2262 | else | |
2263 | return 1; | |
2264 | } | |
2265 | return 0; | |
2266 | } | |
2267 | ||
2268 | /* Helper function for check_field: Given TYPE, a structure/union, | |
2269 | return 1 if the component named NAME from the ultimate | |
2270 | target structure/union is defined, otherwise, return 0. */ | |
2271 | ||
2272 | static int | |
2273 | check_field_in (struct type *type, const char *name) | |
2274 | { | |
2275 | int i; | |
2276 | ||
2277 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2278 | { | |
2279 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2280 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) | |
2281 | return 1; | |
2282 | } | |
2283 | ||
2284 | /* C++: If it was not found as a data field, then try to | |
2285 | return it as a pointer to a method. */ | |
2286 | ||
2287 | /* Destructors are a special case. */ | |
2288 | if (destructor_name_p (name, type)) | |
2289 | { | |
2290 | int m_index, f_index; | |
2291 | ||
2292 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2293 | } | |
2294 | ||
2295 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2296 | { | |
2297 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) | |
2298 | return 1; | |
2299 | } | |
2300 | ||
2301 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2302 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
2303 | return 1; | |
2304 | ||
2305 | return 0; | |
2306 | } | |
2307 | ||
2308 | ||
2309 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
2310 | return 1 if the component named NAME from the ultimate | |
2311 | target structure/union is defined, otherwise, return 0. */ | |
2312 | ||
2313 | int | |
2314 | check_field (struct value *arg1, const char *name) | |
2315 | { | |
2316 | struct type *t; | |
2317 | ||
2318 | arg1 = coerce_array (arg1); | |
2319 | ||
2320 | t = value_type (arg1); | |
2321 | ||
2322 | /* Follow pointers until we get to a non-pointer. */ | |
2323 | ||
2324 | for (;;) | |
2325 | { | |
2326 | CHECK_TYPEDEF (t); | |
2327 | if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF) | |
2328 | break; | |
2329 | t = TYPE_TARGET_TYPE (t); | |
2330 | } | |
2331 | ||
2332 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2333 | error (_("not implemented: member type in check_field")); | |
2334 | ||
2335 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
2336 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
2337 | error (_("Internal error: `this' is not an aggregate")); | |
2338 | ||
2339 | return check_field_in (t, name); | |
2340 | } | |
2341 | ||
2342 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, | |
2343 | return the appropriate member. This function is used to resolve | |
2344 | user expressions of the form "DOMAIN::NAME". For more details on | |
2345 | what happens, see the comment before | |
2346 | value_struct_elt_for_reference. */ | |
2347 | ||
2348 | struct value * | |
2349 | value_aggregate_elt (struct type *curtype, | |
2350 | char *name, | |
2351 | enum noside noside) | |
2352 | { | |
2353 | switch (TYPE_CODE (curtype)) | |
2354 | { | |
2355 | case TYPE_CODE_STRUCT: | |
2356 | case TYPE_CODE_UNION: | |
2357 | return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL, | |
2358 | noside); | |
2359 | case TYPE_CODE_NAMESPACE: | |
2360 | return value_namespace_elt (curtype, name, noside); | |
2361 | default: | |
2362 | internal_error (__FILE__, __LINE__, | |
2363 | _("non-aggregate type in value_aggregate_elt")); | |
2364 | } | |
2365 | } | |
2366 | ||
2367 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, | |
2368 | return the address of this member as a "pointer to member" | |
2369 | type. If INTYPE is non-null, then it will be the type | |
2370 | of the member we are looking for. This will help us resolve | |
2371 | "pointers to member functions". This function is used | |
2372 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
2373 | ||
2374 | static struct value * | |
2375 | value_struct_elt_for_reference (struct type *domain, int offset, | |
2376 | struct type *curtype, char *name, | |
2377 | struct type *intype, | |
2378 | enum noside noside) | |
2379 | { | |
2380 | struct type *t = curtype; | |
2381 | int i; | |
2382 | struct value *v; | |
2383 | ||
2384 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
2385 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
2386 | error (_("Internal error: non-aggregate type to value_struct_elt_for_reference")); | |
2387 | ||
2388 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
2389 | { | |
2390 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
2391 | ||
2392 | if (t_field_name && strcmp (t_field_name, name) == 0) | |
2393 | { | |
2394 | if (TYPE_FIELD_STATIC (t, i)) | |
2395 | { | |
2396 | v = value_static_field (t, i); | |
2397 | if (v == NULL) | |
2398 | error (_("static field %s has been optimized out"), | |
2399 | name); | |
2400 | return v; | |
2401 | } | |
2402 | if (TYPE_FIELD_PACKED (t, i)) | |
2403 | error (_("pointers to bitfield members not allowed")); | |
2404 | ||
2405 | return value_from_longest | |
2406 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
2407 | domain)), | |
2408 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
2409 | } | |
2410 | } | |
2411 | ||
2412 | /* C++: If it was not found as a data field, then try to | |
2413 | return it as a pointer to a method. */ | |
2414 | ||
2415 | /* Destructors are a special case. */ | |
2416 | if (destructor_name_p (name, t)) | |
2417 | { | |
2418 | error (_("member pointers to destructors not implemented yet")); | |
2419 | } | |
2420 | ||
2421 | /* Perform all necessary dereferencing. */ | |
2422 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
2423 | intype = TYPE_TARGET_TYPE (intype); | |
2424 | ||
2425 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
2426 | { | |
2427 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
2428 | char dem_opname[64]; | |
2429 | ||
2430 | if (strncmp (t_field_name, "__", 2) == 0 || | |
2431 | strncmp (t_field_name, "op", 2) == 0 || | |
2432 | strncmp (t_field_name, "type", 4) == 0) | |
2433 | { | |
2434 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) | |
2435 | t_field_name = dem_opname; | |
2436 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
2437 | t_field_name = dem_opname; | |
2438 | } | |
2439 | if (t_field_name && strcmp (t_field_name, name) == 0) | |
2440 | { | |
2441 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
2442 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
2443 | ||
2444 | check_stub_method_group (t, i); | |
2445 | ||
2446 | if (intype == 0 && j > 1) | |
2447 | error (_("non-unique member `%s' requires type instantiation"), name); | |
2448 | if (intype) | |
2449 | { | |
2450 | while (j--) | |
2451 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
2452 | break; | |
2453 | if (j < 0) | |
2454 | error (_("no member function matches that type instantiation")); | |
2455 | } | |
2456 | else | |
2457 | j = 0; | |
2458 | ||
2459 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
2460 | { | |
2461 | return value_from_longest | |
2462 | (lookup_reference_type | |
2463 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
2464 | domain)), | |
2465 | (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j))); | |
2466 | } | |
2467 | else | |
2468 | { | |
2469 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2470 | 0, VAR_DOMAIN, 0, NULL); | |
2471 | if (s == NULL) | |
2472 | { | |
2473 | v = 0; | |
2474 | } | |
2475 | else | |
2476 | { | |
2477 | v = read_var_value (s, 0); | |
2478 | #if 0 | |
2479 | VALUE_TYPE (v) = lookup_reference_type | |
2480 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
2481 | domain)); | |
2482 | #endif | |
2483 | } | |
2484 | return v; | |
2485 | } | |
2486 | } | |
2487 | } | |
2488 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
2489 | { | |
2490 | struct value *v; | |
2491 | int base_offset; | |
2492 | ||
2493 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
2494 | base_offset = 0; | |
2495 | else | |
2496 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
2497 | v = value_struct_elt_for_reference (domain, | |
2498 | offset + base_offset, | |
2499 | TYPE_BASECLASS (t, i), | |
2500 | name, | |
2501 | intype, | |
2502 | noside); | |
2503 | if (v) | |
2504 | return v; | |
2505 | } | |
2506 | ||
2507 | /* As a last chance, pretend that CURTYPE is a namespace, and look | |
2508 | it up that way; this (frequently) works for types nested inside | |
2509 | classes. */ | |
2510 | ||
2511 | return value_maybe_namespace_elt (curtype, name, noside); | |
2512 | } | |
2513 | ||
2514 | /* C++: Return the member NAME of the namespace given by the type | |
2515 | CURTYPE. */ | |
2516 | ||
2517 | static struct value * | |
2518 | value_namespace_elt (const struct type *curtype, | |
2519 | char *name, | |
2520 | enum noside noside) | |
2521 | { | |
2522 | struct value *retval = value_maybe_namespace_elt (curtype, name, | |
2523 | noside); | |
2524 | ||
2525 | if (retval == NULL) | |
2526 | error (_("No symbol \"%s\" in namespace \"%s\"."), name, | |
2527 | TYPE_TAG_NAME (curtype)); | |
2528 | ||
2529 | return retval; | |
2530 | } | |
2531 | ||
2532 | /* A helper function used by value_namespace_elt and | |
2533 | value_struct_elt_for_reference. It looks up NAME inside the | |
2534 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
2535 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
2536 | to, say, some base class of CURTYPE). */ | |
2537 | ||
2538 | static struct value * | |
2539 | value_maybe_namespace_elt (const struct type *curtype, | |
2540 | char *name, | |
2541 | enum noside noside) | |
2542 | { | |
2543 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
2544 | struct symbol *sym; | |
2545 | ||
2546 | sym = cp_lookup_symbol_namespace (namespace_name, name, NULL, | |
2547 | get_selected_block (0), VAR_DOMAIN, | |
2548 | NULL); | |
2549 | ||
2550 | if (sym == NULL) | |
2551 | return NULL; | |
2552 | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) | |
2553 | && (SYMBOL_CLASS (sym) == LOC_TYPEDEF)) | |
2554 | return allocate_value (SYMBOL_TYPE (sym)); | |
2555 | else | |
2556 | return value_of_variable (sym, get_selected_block (0)); | |
2557 | } | |
2558 | ||
2559 | /* Given a pointer value V, find the real (RTTI) type | |
2560 | of the object it points to. | |
2561 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | |
2562 | and refer to the values computed for the object pointed to. */ | |
2563 | ||
2564 | struct type * | |
2565 | value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc) | |
2566 | { | |
2567 | struct value *target; | |
2568 | ||
2569 | target = value_ind (v); | |
2570 | ||
2571 | return value_rtti_type (target, full, top, using_enc); | |
2572 | } | |
2573 | ||
2574 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
2575 | if that is different from the enclosing type, create a new value | |
2576 | using the real run-time type as the enclosing type (and of the same | |
2577 | type as ARGP) and return it, with the embedded offset adjusted to | |
2578 | be the correct offset to the enclosed object | |
2579 | RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other | |
2580 | parameters, computed by value_rtti_type(). If these are available, | |
2581 | they can be supplied and a second call to value_rtti_type() is avoided. | |
2582 | (Pass RTYPE == NULL if they're not available */ | |
2583 | ||
2584 | struct value * | |
2585 | value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop, | |
2586 | int xusing_enc) | |
2587 | { | |
2588 | struct type *real_type; | |
2589 | int full = 0; | |
2590 | int top = -1; | |
2591 | int using_enc = 0; | |
2592 | struct value *new_val; | |
2593 | ||
2594 | if (rtype) | |
2595 | { | |
2596 | real_type = rtype; | |
2597 | full = xfull; | |
2598 | top = xtop; | |
2599 | using_enc = xusing_enc; | |
2600 | } | |
2601 | else | |
2602 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
2603 | ||
2604 | /* If no RTTI data, or if object is already complete, do nothing */ | |
2605 | if (!real_type || real_type == value_enclosing_type (argp)) | |
2606 | return argp; | |
2607 | ||
2608 | /* If we have the full object, but for some reason the enclosing | |
2609 | type is wrong, set it *//* pai: FIXME -- sounds iffy */ | |
2610 | if (full) | |
2611 | { | |
2612 | argp = value_change_enclosing_type (argp, real_type); | |
2613 | return argp; | |
2614 | } | |
2615 | ||
2616 | /* Check if object is in memory */ | |
2617 | if (VALUE_LVAL (argp) != lval_memory) | |
2618 | { | |
2619 | warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."), TYPE_NAME (real_type)); | |
2620 | ||
2621 | return argp; | |
2622 | } | |
2623 | ||
2624 | /* All other cases -- retrieve the complete object */ | |
2625 | /* Go back by the computed top_offset from the beginning of the object, | |
2626 | adjusting for the embedded offset of argp if that's what value_rtti_type | |
2627 | used for its computation. */ | |
2628 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + | |
2629 | (using_enc ? 0 : value_embedded_offset (argp))); | |
2630 | deprecated_set_value_type (new_val, value_type (argp)); | |
2631 | set_value_embedded_offset (new_val, (using_enc | |
2632 | ? top + value_embedded_offset (argp) | |
2633 | : top)); | |
2634 | return new_val; | |
2635 | } | |
2636 | ||
2637 | ||
2638 | ||
2639 | ||
2640 | /* Return the value of the local variable, if one exists. | |
2641 | Flag COMPLAIN signals an error if the request is made in an | |
2642 | inappropriate context. */ | |
2643 | ||
2644 | struct value * | |
2645 | value_of_local (const char *name, int complain) | |
2646 | { | |
2647 | struct symbol *func, *sym; | |
2648 | struct block *b; | |
2649 | struct value * ret; | |
2650 | ||
2651 | if (deprecated_selected_frame == 0) | |
2652 | { | |
2653 | if (complain) | |
2654 | error (_("no frame selected")); | |
2655 | else | |
2656 | return 0; | |
2657 | } | |
2658 | ||
2659 | func = get_frame_function (deprecated_selected_frame); | |
2660 | if (!func) | |
2661 | { | |
2662 | if (complain) | |
2663 | error (_("no `%s' in nameless context"), name); | |
2664 | else | |
2665 | return 0; | |
2666 | } | |
2667 | ||
2668 | b = SYMBOL_BLOCK_VALUE (func); | |
2669 | if (dict_empty (BLOCK_DICT (b))) | |
2670 | { | |
2671 | if (complain) | |
2672 | error (_("no args, no `%s'"), name); | |
2673 | else | |
2674 | return 0; | |
2675 | } | |
2676 | ||
2677 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
2678 | symbol instead of the LOC_ARG one (if both exist). */ | |
2679 | sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN); | |
2680 | if (sym == NULL) | |
2681 | { | |
2682 | if (complain) | |
2683 | error (_("current stack frame does not contain a variable named `%s'"), name); | |
2684 | else | |
2685 | return NULL; | |
2686 | } | |
2687 | ||
2688 | ret = read_var_value (sym, deprecated_selected_frame); | |
2689 | if (ret == 0 && complain) | |
2690 | error (_("`%s' argument unreadable"), name); | |
2691 | return ret; | |
2692 | } | |
2693 | ||
2694 | /* C++/Objective-C: return the value of the class instance variable, | |
2695 | if one exists. Flag COMPLAIN signals an error if the request is | |
2696 | made in an inappropriate context. */ | |
2697 | ||
2698 | struct value * | |
2699 | value_of_this (int complain) | |
2700 | { | |
2701 | if (current_language->la_language == language_objc) | |
2702 | return value_of_local ("self", complain); | |
2703 | else | |
2704 | return value_of_local ("this", complain); | |
2705 | } | |
2706 | ||
2707 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements | |
2708 | long, starting at LOWBOUND. The result has the same lower bound as | |
2709 | the original ARRAY. */ | |
2710 | ||
2711 | struct value * | |
2712 | value_slice (struct value *array, int lowbound, int length) | |
2713 | { | |
2714 | struct type *slice_range_type, *slice_type, *range_type; | |
2715 | LONGEST lowerbound, upperbound; | |
2716 | struct value *slice; | |
2717 | struct type *array_type; | |
2718 | array_type = check_typedef (value_type (array)); | |
2719 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY | |
2720 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
2721 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
2722 | error (_("cannot take slice of non-array")); | |
2723 | range_type = TYPE_INDEX_TYPE (array_type); | |
2724 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2725 | error (_("slice from bad array or bitstring")); | |
2726 | if (lowbound < lowerbound || length < 0 | |
2727 | || lowbound + length - 1 > upperbound) | |
2728 | error (_("slice out of range")); | |
2729 | /* FIXME-type-allocation: need a way to free this type when we are | |
2730 | done with it. */ | |
2731 | slice_range_type = create_range_type ((struct type *) NULL, | |
2732 | TYPE_TARGET_TYPE (range_type), | |
2733 | lowbound, lowbound + length - 1); | |
2734 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) | |
2735 | { | |
2736 | int i; | |
2737 | slice_type = create_set_type ((struct type *) NULL, slice_range_type); | |
2738 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; | |
2739 | slice = value_zero (slice_type, not_lval); | |
2740 | for (i = 0; i < length; i++) | |
2741 | { | |
2742 | int element = value_bit_index (array_type, | |
2743 | value_contents (array), | |
2744 | lowbound + i); | |
2745 | if (element < 0) | |
2746 | error (_("internal error accessing bitstring")); | |
2747 | else if (element > 0) | |
2748 | { | |
2749 | int j = i % TARGET_CHAR_BIT; | |
2750 | if (BITS_BIG_ENDIAN) | |
2751 | j = TARGET_CHAR_BIT - 1 - j; | |
2752 | value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j); | |
2753 | } | |
2754 | } | |
2755 | /* We should set the address, bitssize, and bitspos, so the clice | |
2756 | can be used on the LHS, but that may require extensions to | |
2757 | value_assign. For now, just leave as a non_lval. FIXME. */ | |
2758 | } | |
2759 | else | |
2760 | { | |
2761 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
2762 | LONGEST offset | |
2763 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
2764 | slice_type = create_array_type ((struct type *) NULL, element_type, | |
2765 | slice_range_type); | |
2766 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
2767 | slice = allocate_value (slice_type); | |
2768 | if (value_lazy (array)) | |
2769 | set_value_lazy (slice, 1); | |
2770 | else | |
2771 | memcpy (value_contents_writeable (slice), | |
2772 | value_contents (array) + offset, | |
2773 | TYPE_LENGTH (slice_type)); | |
2774 | if (VALUE_LVAL (array) == lval_internalvar) | |
2775 | VALUE_LVAL (slice) = lval_internalvar_component; | |
2776 | else | |
2777 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
2778 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
2779 | VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array); | |
2780 | set_value_offset (slice, value_offset (array) + offset); | |
2781 | } | |
2782 | return slice; | |
2783 | } | |
2784 | ||
2785 | /* Create a value for a FORTRAN complex number. Currently most of | |
2786 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
2787 | composed of 2 doubles. This really should be a smarter routine | |
2788 | that figures out precision inteligently as opposed to assuming | |
2789 | doubles. FIXME: fmb */ | |
2790 | ||
2791 | struct value * | |
2792 | value_literal_complex (struct value *arg1, struct value *arg2, struct type *type) | |
2793 | { | |
2794 | struct value *val; | |
2795 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
2796 | ||
2797 | val = allocate_value (type); | |
2798 | arg1 = value_cast (real_type, arg1); | |
2799 | arg2 = value_cast (real_type, arg2); | |
2800 | ||
2801 | memcpy (value_contents_raw (val), | |
2802 | value_contents (arg1), TYPE_LENGTH (real_type)); | |
2803 | memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type), | |
2804 | value_contents (arg2), TYPE_LENGTH (real_type)); | |
2805 | return val; | |
2806 | } | |
2807 | ||
2808 | /* Cast a value into the appropriate complex data type. */ | |
2809 | ||
2810 | static struct value * | |
2811 | cast_into_complex (struct type *type, struct value *val) | |
2812 | { | |
2813 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
2814 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX) | |
2815 | { | |
2816 | struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val)); | |
2817 | struct value *re_val = allocate_value (val_real_type); | |
2818 | struct value *im_val = allocate_value (val_real_type); | |
2819 | ||
2820 | memcpy (value_contents_raw (re_val), | |
2821 | value_contents (val), TYPE_LENGTH (val_real_type)); | |
2822 | memcpy (value_contents_raw (im_val), | |
2823 | value_contents (val) + TYPE_LENGTH (val_real_type), | |
2824 | TYPE_LENGTH (val_real_type)); | |
2825 | ||
2826 | return value_literal_complex (re_val, im_val, type); | |
2827 | } | |
2828 | else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT | |
2829 | || TYPE_CODE (value_type (val)) == TYPE_CODE_INT) | |
2830 | return value_literal_complex (val, value_zero (real_type, not_lval), type); | |
2831 | else | |
2832 | error (_("cannot cast non-number to complex")); | |
2833 | } | |
2834 | ||
2835 | void | |
2836 | _initialize_valops (void) | |
2837 | { | |
2838 | add_setshow_boolean_cmd ("overload-resolution", class_support, | |
2839 | &overload_resolution, _("\ | |
2840 | Set overload resolution in evaluating C++ functions."), _("\ | |
2841 | Show overload resolution in evaluating C++ functions."), NULL, | |
2842 | NULL, | |
2843 | show_overload_resolution, | |
2844 | &setlist, &showlist); | |
2845 | overload_resolution = 1; | |
2846 | } |