]>
Commit | Line | Data |
---|---|---|
1 | /* Target-dependent code for the HP PA architecture, for GDB. | |
2 | ||
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
4 | 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. | |
5 | ||
6 | Contributed by the Center for Software Science at the | |
7 | University of Utah ([email protected]). | |
8 | ||
9 | This file is part of GDB. | |
10 | ||
11 | This program is free software; you can redistribute it and/or modify | |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 2 of the License, or | |
14 | (at your option) any later version. | |
15 | ||
16 | This program is distributed in the hope that it will be useful, | |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
20 | ||
21 | You should have received a copy of the GNU General Public License | |
22 | along with this program; if not, write to the Free Software | |
23 | Foundation, Inc., 59 Temple Place - Suite 330, | |
24 | Boston, MA 02111-1307, USA. */ | |
25 | ||
26 | #include "defs.h" | |
27 | #include "frame.h" | |
28 | #include "bfd.h" | |
29 | #include "inferior.h" | |
30 | #include "value.h" | |
31 | #include "regcache.h" | |
32 | #include "completer.h" | |
33 | #include "language.h" | |
34 | #include "osabi.h" | |
35 | ||
36 | /* For argument passing to the inferior */ | |
37 | #include "symtab.h" | |
38 | ||
39 | #ifdef USG | |
40 | #include <sys/types.h> | |
41 | #endif | |
42 | ||
43 | #include <dl.h> | |
44 | #include <sys/param.h> | |
45 | #include <signal.h> | |
46 | ||
47 | #include <sys/ptrace.h> | |
48 | #include <machine/save_state.h> | |
49 | ||
50 | #ifdef COFF_ENCAPSULATE | |
51 | #include "a.out.encap.h" | |
52 | #else | |
53 | #endif | |
54 | ||
55 | /*#include <sys/user.h> After a.out.h */ | |
56 | #include <sys/file.h> | |
57 | #include "gdb_stat.h" | |
58 | #include "gdb_wait.h" | |
59 | ||
60 | #include "gdbcore.h" | |
61 | #include "gdbcmd.h" | |
62 | #include "target.h" | |
63 | #include "symfile.h" | |
64 | #include "objfiles.h" | |
65 | ||
66 | /* Some local constants. */ | |
67 | static const int hppa_num_regs = 128; | |
68 | ||
69 | /* To support detection of the pseudo-initial frame | |
70 | that threads have. */ | |
71 | #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit" | |
72 | #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL) | |
73 | ||
74 | static int extract_5_load (unsigned int); | |
75 | ||
76 | static unsigned extract_5R_store (unsigned int); | |
77 | ||
78 | static unsigned extract_5r_store (unsigned int); | |
79 | ||
80 | static void find_dummy_frame_regs (struct frame_info *, | |
81 | struct frame_saved_regs *); | |
82 | ||
83 | static int find_proc_framesize (CORE_ADDR); | |
84 | ||
85 | static int find_return_regnum (CORE_ADDR); | |
86 | ||
87 | struct unwind_table_entry *find_unwind_entry (CORE_ADDR); | |
88 | ||
89 | static int extract_17 (unsigned int); | |
90 | ||
91 | static unsigned deposit_21 (unsigned int, unsigned int); | |
92 | ||
93 | static int extract_21 (unsigned); | |
94 | ||
95 | static unsigned deposit_14 (int, unsigned int); | |
96 | ||
97 | static int extract_14 (unsigned); | |
98 | ||
99 | static void unwind_command (char *, int); | |
100 | ||
101 | static int low_sign_extend (unsigned int, unsigned int); | |
102 | ||
103 | static int sign_extend (unsigned int, unsigned int); | |
104 | ||
105 | static int restore_pc_queue (struct frame_saved_regs *); | |
106 | ||
107 | static int hppa_alignof (struct type *); | |
108 | ||
109 | /* To support multi-threading and stepping. */ | |
110 | int hppa_prepare_to_proceed (); | |
111 | ||
112 | static int prologue_inst_adjust_sp (unsigned long); | |
113 | ||
114 | static int is_branch (unsigned long); | |
115 | ||
116 | static int inst_saves_gr (unsigned long); | |
117 | ||
118 | static int inst_saves_fr (unsigned long); | |
119 | ||
120 | static int pc_in_interrupt_handler (CORE_ADDR); | |
121 | ||
122 | static int pc_in_linker_stub (CORE_ADDR); | |
123 | ||
124 | static int compare_unwind_entries (const void *, const void *); | |
125 | ||
126 | static void read_unwind_info (struct objfile *); | |
127 | ||
128 | static void internalize_unwinds (struct objfile *, | |
129 | struct unwind_table_entry *, | |
130 | asection *, unsigned int, | |
131 | unsigned int, CORE_ADDR); | |
132 | static void pa_print_registers (char *, int, int); | |
133 | static void pa_strcat_registers (char *, int, int, struct ui_file *); | |
134 | static void pa_register_look_aside (char *, int, long *); | |
135 | static void pa_print_fp_reg (int); | |
136 | static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type); | |
137 | static void record_text_segment_lowaddr (bfd *, asection *, void *); | |
138 | /* FIXME: brobecker 2002-11-07: We will likely be able to make the | |
139 | following functions static, once we hppa is partially multiarched. */ | |
140 | int hppa_reg_struct_has_addr (int gcc_p, struct type *type); | |
141 | CORE_ADDR hppa_skip_prologue (CORE_ADDR pc); | |
142 | CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc); | |
143 | int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name); | |
144 | int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name); | |
145 | CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame); | |
146 | int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs); | |
147 | CORE_ADDR hppa_stack_align (CORE_ADDR sp); | |
148 | int hppa_pc_requires_run_before_use (CORE_ADDR pc); | |
149 | int hppa_instruction_nullified (void); | |
150 | int hppa_register_raw_size (int reg_nr); | |
151 | int hppa_register_byte (int reg_nr); | |
152 | struct type * hppa_register_virtual_type (int reg_nr); | |
153 | void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp); | |
154 | void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf); | |
155 | int hppa_use_struct_convention (int gcc_p, struct type *type); | |
156 | void hppa_store_return_value (struct type *type, char *valbuf); | |
157 | CORE_ADDR hppa_extract_struct_value_address (char *regbuf); | |
158 | int hppa_cannot_store_register (int regnum); | |
159 | void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame); | |
160 | CORE_ADDR hppa_frame_chain (struct frame_info *frame); | |
161 | int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe); | |
162 | int hppa_frameless_function_invocation (struct frame_info *frame); | |
163 | CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame); | |
164 | CORE_ADDR hppa_frame_args_address (struct frame_info *fi); | |
165 | CORE_ADDR hppa_frame_locals_address (struct frame_info *fi); | |
166 | int hppa_frame_num_args (struct frame_info *frame); | |
167 | void hppa_push_dummy_frame (struct inferior_status *inf_status); | |
168 | void hppa_pop_frame (void); | |
169 | CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, | |
170 | int nargs, struct value **args, | |
171 | struct type *type, int gcc_p); | |
172 | CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, | |
173 | int struct_return, CORE_ADDR struct_addr); | |
174 | CORE_ADDR hppa_smash_text_address (CORE_ADDR addr); | |
175 | CORE_ADDR hppa_target_read_pc (ptid_t ptid); | |
176 | void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid); | |
177 | CORE_ADDR hppa_target_read_fp (void); | |
178 | ||
179 | typedef struct | |
180 | { | |
181 | struct minimal_symbol *msym; | |
182 | CORE_ADDR solib_handle; | |
183 | CORE_ADDR return_val; | |
184 | } | |
185 | args_for_find_stub; | |
186 | ||
187 | static int cover_find_stub_with_shl_get (void *); | |
188 | ||
189 | static int is_pa_2 = 0; /* False */ | |
190 | ||
191 | /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */ | |
192 | extern int hp_som_som_object_present; | |
193 | ||
194 | /* In breakpoint.c */ | |
195 | extern int exception_catchpoints_are_fragile; | |
196 | ||
197 | /* Should call_function allocate stack space for a struct return? */ | |
198 | ||
199 | int | |
200 | hppa_use_struct_convention (int gcc_p, struct type *type) | |
201 | { | |
202 | return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE); | |
203 | } | |
204 | \f | |
205 | ||
206 | /* Routines to extract various sized constants out of hppa | |
207 | instructions. */ | |
208 | ||
209 | /* This assumes that no garbage lies outside of the lower bits of | |
210 | value. */ | |
211 | ||
212 | static int | |
213 | sign_extend (unsigned val, unsigned bits) | |
214 | { | |
215 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); | |
216 | } | |
217 | ||
218 | /* For many immediate values the sign bit is the low bit! */ | |
219 | ||
220 | static int | |
221 | low_sign_extend (unsigned val, unsigned bits) | |
222 | { | |
223 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); | |
224 | } | |
225 | ||
226 | /* extract the immediate field from a ld{bhw}s instruction */ | |
227 | ||
228 | static int | |
229 | extract_5_load (unsigned word) | |
230 | { | |
231 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
232 | } | |
233 | ||
234 | /* extract the immediate field from a break instruction */ | |
235 | ||
236 | static unsigned | |
237 | extract_5r_store (unsigned word) | |
238 | { | |
239 | return (word & MASK_5); | |
240 | } | |
241 | ||
242 | /* extract the immediate field from a {sr}sm instruction */ | |
243 | ||
244 | static unsigned | |
245 | extract_5R_store (unsigned word) | |
246 | { | |
247 | return (word >> 16 & MASK_5); | |
248 | } | |
249 | ||
250 | /* extract a 14 bit immediate field */ | |
251 | ||
252 | static int | |
253 | extract_14 (unsigned word) | |
254 | { | |
255 | return low_sign_extend (word & MASK_14, 14); | |
256 | } | |
257 | ||
258 | /* deposit a 14 bit constant in a word */ | |
259 | ||
260 | static unsigned | |
261 | deposit_14 (int opnd, unsigned word) | |
262 | { | |
263 | unsigned sign = (opnd < 0 ? 1 : 0); | |
264 | ||
265 | return word | ((unsigned) opnd << 1 & MASK_14) | sign; | |
266 | } | |
267 | ||
268 | /* extract a 21 bit constant */ | |
269 | ||
270 | static int | |
271 | extract_21 (unsigned word) | |
272 | { | |
273 | int val; | |
274 | ||
275 | word &= MASK_21; | |
276 | word <<= 11; | |
277 | val = GET_FIELD (word, 20, 20); | |
278 | val <<= 11; | |
279 | val |= GET_FIELD (word, 9, 19); | |
280 | val <<= 2; | |
281 | val |= GET_FIELD (word, 5, 6); | |
282 | val <<= 5; | |
283 | val |= GET_FIELD (word, 0, 4); | |
284 | val <<= 2; | |
285 | val |= GET_FIELD (word, 7, 8); | |
286 | return sign_extend (val, 21) << 11; | |
287 | } | |
288 | ||
289 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
290 | usually the top 21 bits of a 32 bit constant, we assume that only | |
291 | the low 21 bits of opnd are relevant */ | |
292 | ||
293 | static unsigned | |
294 | deposit_21 (unsigned opnd, unsigned word) | |
295 | { | |
296 | unsigned val = 0; | |
297 | ||
298 | val |= GET_FIELD (opnd, 11 + 14, 11 + 18); | |
299 | val <<= 2; | |
300 | val |= GET_FIELD (opnd, 11 + 12, 11 + 13); | |
301 | val <<= 2; | |
302 | val |= GET_FIELD (opnd, 11 + 19, 11 + 20); | |
303 | val <<= 11; | |
304 | val |= GET_FIELD (opnd, 11 + 1, 11 + 11); | |
305 | val <<= 1; | |
306 | val |= GET_FIELD (opnd, 11 + 0, 11 + 0); | |
307 | return word | val; | |
308 | } | |
309 | ||
310 | /* extract a 17 bit constant from branch instructions, returning the | |
311 | 19 bit signed value. */ | |
312 | ||
313 | static int | |
314 | extract_17 (unsigned word) | |
315 | { | |
316 | return sign_extend (GET_FIELD (word, 19, 28) | | |
317 | GET_FIELD (word, 29, 29) << 10 | | |
318 | GET_FIELD (word, 11, 15) << 11 | | |
319 | (word & 0x1) << 16, 17) << 2; | |
320 | } | |
321 | \f | |
322 | ||
323 | /* Compare the start address for two unwind entries returning 1 if | |
324 | the first address is larger than the second, -1 if the second is | |
325 | larger than the first, and zero if they are equal. */ | |
326 | ||
327 | static int | |
328 | compare_unwind_entries (const void *arg1, const void *arg2) | |
329 | { | |
330 | const struct unwind_table_entry *a = arg1; | |
331 | const struct unwind_table_entry *b = arg2; | |
332 | ||
333 | if (a->region_start > b->region_start) | |
334 | return 1; | |
335 | else if (a->region_start < b->region_start) | |
336 | return -1; | |
337 | else | |
338 | return 0; | |
339 | } | |
340 | ||
341 | static CORE_ADDR low_text_segment_address; | |
342 | ||
343 | static void | |
344 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored) | |
345 | { | |
346 | if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) | |
347 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) | |
348 | && section->vma < low_text_segment_address) | |
349 | low_text_segment_address = section->vma; | |
350 | } | |
351 | ||
352 | static void | |
353 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, | |
354 | asection *section, unsigned int entries, unsigned int size, | |
355 | CORE_ADDR text_offset) | |
356 | { | |
357 | /* We will read the unwind entries into temporary memory, then | |
358 | fill in the actual unwind table. */ | |
359 | if (size > 0) | |
360 | { | |
361 | unsigned long tmp; | |
362 | unsigned i; | |
363 | char *buf = alloca (size); | |
364 | ||
365 | low_text_segment_address = -1; | |
366 | ||
367 | /* If addresses are 64 bits wide, then unwinds are supposed to | |
368 | be segment relative offsets instead of absolute addresses. | |
369 | ||
370 | Note that when loading a shared library (text_offset != 0) the | |
371 | unwinds are already relative to the text_offset that will be | |
372 | passed in. */ | |
373 | if (TARGET_PTR_BIT == 64 && text_offset == 0) | |
374 | { | |
375 | bfd_map_over_sections (objfile->obfd, | |
376 | record_text_segment_lowaddr, NULL); | |
377 | ||
378 | /* ?!? Mask off some low bits. Should this instead subtract | |
379 | out the lowest section's filepos or something like that? | |
380 | This looks very hokey to me. */ | |
381 | low_text_segment_address &= ~0xfff; | |
382 | text_offset += low_text_segment_address; | |
383 | } | |
384 | ||
385 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); | |
386 | ||
387 | /* Now internalize the information being careful to handle host/target | |
388 | endian issues. */ | |
389 | for (i = 0; i < entries; i++) | |
390 | { | |
391 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
392 | (bfd_byte *) buf); | |
393 | table[i].region_start += text_offset; | |
394 | buf += 4; | |
395 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); | |
396 | table[i].region_end += text_offset; | |
397 | buf += 4; | |
398 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); | |
399 | buf += 4; | |
400 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
401 | table[i].Millicode = (tmp >> 30) & 0x1; | |
402 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
403 | table[i].Region_description = (tmp >> 27) & 0x3; | |
404 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
405 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
406 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
407 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
408 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
409 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
410 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
411 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
412 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
413 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
414 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
415 | table[i].cxx_info = (tmp >> 8) & 0x1; | |
416 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
417 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
418 | table[i].reserved2 = (tmp >> 5) & 0x1; | |
419 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
420 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
421 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
422 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
423 | table[i].Cleanup_defined = tmp & 0x1; | |
424 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); | |
425 | buf += 4; | |
426 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
427 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
428 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
429 | table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1; | |
430 | table[i].reserved4 = (tmp >> 27) & 0x1; | |
431 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
432 | ||
433 | /* Stub unwinds are handled elsewhere. */ | |
434 | table[i].stub_unwind.stub_type = 0; | |
435 | table[i].stub_unwind.padding = 0; | |
436 | } | |
437 | } | |
438 | } | |
439 | ||
440 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
441 | the object file. This info is used mainly by find_unwind_entry() to find | |
442 | out the stack frame size and frame pointer used by procedures. We put | |
443 | everything on the psymbol obstack in the objfile so that it automatically | |
444 | gets freed when the objfile is destroyed. */ | |
445 | ||
446 | static void | |
447 | read_unwind_info (struct objfile *objfile) | |
448 | { | |
449 | asection *unwind_sec, *stub_unwind_sec; | |
450 | unsigned unwind_size, stub_unwind_size, total_size; | |
451 | unsigned index, unwind_entries; | |
452 | unsigned stub_entries, total_entries; | |
453 | CORE_ADDR text_offset; | |
454 | struct obj_unwind_info *ui; | |
455 | obj_private_data_t *obj_private; | |
456 | ||
457 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
458 | ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack, | |
459 | sizeof (struct obj_unwind_info)); | |
460 | ||
461 | ui->table = NULL; | |
462 | ui->cache = NULL; | |
463 | ui->last = -1; | |
464 | ||
465 | /* For reasons unknown the HP PA64 tools generate multiple unwinder | |
466 | sections in a single executable. So we just iterate over every | |
467 | section in the BFD looking for unwinder sections intead of trying | |
468 | to do a lookup with bfd_get_section_by_name. | |
469 | ||
470 | First determine the total size of the unwind tables so that we | |
471 | can allocate memory in a nice big hunk. */ | |
472 | total_entries = 0; | |
473 | for (unwind_sec = objfile->obfd->sections; | |
474 | unwind_sec; | |
475 | unwind_sec = unwind_sec->next) | |
476 | { | |
477 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
478 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
479 | { | |
480 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
481 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
482 | ||
483 | total_entries += unwind_entries; | |
484 | } | |
485 | } | |
486 | ||
487 | /* Now compute the size of the stub unwinds. Note the ELF tools do not | |
488 | use stub unwinds at the curren time. */ | |
489 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); | |
490 | ||
491 | if (stub_unwind_sec) | |
492 | { | |
493 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
494 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
495 | } | |
496 | else | |
497 | { | |
498 | stub_unwind_size = 0; | |
499 | stub_entries = 0; | |
500 | } | |
501 | ||
502 | /* Compute total number of unwind entries and their total size. */ | |
503 | total_entries += stub_entries; | |
504 | total_size = total_entries * sizeof (struct unwind_table_entry); | |
505 | ||
506 | /* Allocate memory for the unwind table. */ | |
507 | ui->table = (struct unwind_table_entry *) | |
508 | obstack_alloc (&objfile->psymbol_obstack, total_size); | |
509 | ui->last = total_entries - 1; | |
510 | ||
511 | /* Now read in each unwind section and internalize the standard unwind | |
512 | entries. */ | |
513 | index = 0; | |
514 | for (unwind_sec = objfile->obfd->sections; | |
515 | unwind_sec; | |
516 | unwind_sec = unwind_sec->next) | |
517 | { | |
518 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
519 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
520 | { | |
521 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
522 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
523 | ||
524 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
525 | unwind_entries, unwind_size, text_offset); | |
526 | index += unwind_entries; | |
527 | } | |
528 | } | |
529 | ||
530 | /* Now read in and internalize the stub unwind entries. */ | |
531 | if (stub_unwind_size > 0) | |
532 | { | |
533 | unsigned int i; | |
534 | char *buf = alloca (stub_unwind_size); | |
535 | ||
536 | /* Read in the stub unwind entries. */ | |
537 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
538 | 0, stub_unwind_size); | |
539 | ||
540 | /* Now convert them into regular unwind entries. */ | |
541 | for (i = 0; i < stub_entries; i++, index++) | |
542 | { | |
543 | /* Clear out the next unwind entry. */ | |
544 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
545 | ||
546 | /* Convert offset & size into region_start and region_end. | |
547 | Stuff away the stub type into "reserved" fields. */ | |
548 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
549 | (bfd_byte *) buf); | |
550 | ui->table[index].region_start += text_offset; | |
551 | buf += 4; | |
552 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
553 | (bfd_byte *) buf); | |
554 | buf += 2; | |
555 | ui->table[index].region_end | |
556 | = ui->table[index].region_start + 4 * | |
557 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
558 | buf += 2; | |
559 | } | |
560 | ||
561 | } | |
562 | ||
563 | /* Unwind table needs to be kept sorted. */ | |
564 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
565 | compare_unwind_entries); | |
566 | ||
567 | /* Keep a pointer to the unwind information. */ | |
568 | if (objfile->obj_private == NULL) | |
569 | { | |
570 | obj_private = (obj_private_data_t *) | |
571 | obstack_alloc (&objfile->psymbol_obstack, | |
572 | sizeof (obj_private_data_t)); | |
573 | obj_private->unwind_info = NULL; | |
574 | obj_private->so_info = NULL; | |
575 | obj_private->dp = 0; | |
576 | ||
577 | objfile->obj_private = obj_private; | |
578 | } | |
579 | obj_private = (obj_private_data_t *) objfile->obj_private; | |
580 | obj_private->unwind_info = ui; | |
581 | } | |
582 | ||
583 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
584 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
585 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
586 | search of the unwind tables, we depend upon them to be sorted. */ | |
587 | ||
588 | struct unwind_table_entry * | |
589 | find_unwind_entry (CORE_ADDR pc) | |
590 | { | |
591 | int first, middle, last; | |
592 | struct objfile *objfile; | |
593 | ||
594 | /* A function at address 0? Not in HP-UX! */ | |
595 | if (pc == (CORE_ADDR) 0) | |
596 | return NULL; | |
597 | ||
598 | ALL_OBJFILES (objfile) | |
599 | { | |
600 | struct obj_unwind_info *ui; | |
601 | ui = NULL; | |
602 | if (objfile->obj_private) | |
603 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; | |
604 | ||
605 | if (!ui) | |
606 | { | |
607 | read_unwind_info (objfile); | |
608 | if (objfile->obj_private == NULL) | |
609 | error ("Internal error reading unwind information."); | |
610 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; | |
611 | } | |
612 | ||
613 | /* First, check the cache */ | |
614 | ||
615 | if (ui->cache | |
616 | && pc >= ui->cache->region_start | |
617 | && pc <= ui->cache->region_end) | |
618 | return ui->cache; | |
619 | ||
620 | /* Not in the cache, do a binary search */ | |
621 | ||
622 | first = 0; | |
623 | last = ui->last; | |
624 | ||
625 | while (first <= last) | |
626 | { | |
627 | middle = (first + last) / 2; | |
628 | if (pc >= ui->table[middle].region_start | |
629 | && pc <= ui->table[middle].region_end) | |
630 | { | |
631 | ui->cache = &ui->table[middle]; | |
632 | return &ui->table[middle]; | |
633 | } | |
634 | ||
635 | if (pc < ui->table[middle].region_start) | |
636 | last = middle - 1; | |
637 | else | |
638 | first = middle + 1; | |
639 | } | |
640 | } /* ALL_OBJFILES() */ | |
641 | return NULL; | |
642 | } | |
643 | ||
644 | /* Return the adjustment necessary to make for addresses on the stack | |
645 | as presented by hpread.c. | |
646 | ||
647 | This is necessary because of the stack direction on the PA and the | |
648 | bizarre way in which someone (?) decided they wanted to handle | |
649 | frame pointerless code in GDB. */ | |
650 | int | |
651 | hpread_adjust_stack_address (CORE_ADDR func_addr) | |
652 | { | |
653 | struct unwind_table_entry *u; | |
654 | ||
655 | u = find_unwind_entry (func_addr); | |
656 | if (!u) | |
657 | return 0; | |
658 | else | |
659 | return u->Total_frame_size << 3; | |
660 | } | |
661 | ||
662 | /* Called to determine if PC is in an interrupt handler of some | |
663 | kind. */ | |
664 | ||
665 | static int | |
666 | pc_in_interrupt_handler (CORE_ADDR pc) | |
667 | { | |
668 | struct unwind_table_entry *u; | |
669 | struct minimal_symbol *msym_us; | |
670 | ||
671 | u = find_unwind_entry (pc); | |
672 | if (!u) | |
673 | return 0; | |
674 | ||
675 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
676 | its frame isn't a pure interrupt frame. Deal with this. */ | |
677 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
678 | ||
679 | return (u->HP_UX_interrupt_marker | |
680 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))); | |
681 | } | |
682 | ||
683 | /* Called when no unwind descriptor was found for PC. Returns 1 if it | |
684 | appears that PC is in a linker stub. | |
685 | ||
686 | ?!? Need to handle stubs which appear in PA64 code. */ | |
687 | ||
688 | static int | |
689 | pc_in_linker_stub (CORE_ADDR pc) | |
690 | { | |
691 | int found_magic_instruction = 0; | |
692 | int i; | |
693 | char buf[4]; | |
694 | ||
695 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
696 | if (target_read_memory (pc, buf, 4) != 0) | |
697 | return 0; | |
698 | ||
699 | /* We are looking for something like | |
700 | ||
701 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
702 | ; before calling the "call stub" | |
703 | ldw -18(sp),rp | |
704 | ||
705 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
706 | mtsp r1,sp ; Move it into space register 0 | |
707 | be,n 0(sr0),rp) ; back to your regularly scheduled program */ | |
708 | ||
709 | /* Maximum known linker stub size is 4 instructions. Search forward | |
710 | from the given PC, then backward. */ | |
711 | for (i = 0; i < 4; i++) | |
712 | { | |
713 | /* If we hit something with an unwind, stop searching this direction. */ | |
714 | ||
715 | if (find_unwind_entry (pc + i * 4) != 0) | |
716 | break; | |
717 | ||
718 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
719 | return from a cross-space function call. */ | |
720 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) | |
721 | { | |
722 | found_magic_instruction = 1; | |
723 | break; | |
724 | } | |
725 | /* Add code to handle long call/branch and argument relocation stubs | |
726 | here. */ | |
727 | } | |
728 | ||
729 | if (found_magic_instruction != 0) | |
730 | return 1; | |
731 | ||
732 | /* Now look backward. */ | |
733 | for (i = 0; i < 4; i++) | |
734 | { | |
735 | /* If we hit something with an unwind, stop searching this direction. */ | |
736 | ||
737 | if (find_unwind_entry (pc - i * 4) != 0) | |
738 | break; | |
739 | ||
740 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
741 | return from a cross-space function call. */ | |
742 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) | |
743 | { | |
744 | found_magic_instruction = 1; | |
745 | break; | |
746 | } | |
747 | /* Add code to handle long call/branch and argument relocation stubs | |
748 | here. */ | |
749 | } | |
750 | return found_magic_instruction; | |
751 | } | |
752 | ||
753 | static int | |
754 | find_return_regnum (CORE_ADDR pc) | |
755 | { | |
756 | struct unwind_table_entry *u; | |
757 | ||
758 | u = find_unwind_entry (pc); | |
759 | ||
760 | if (!u) | |
761 | return RP_REGNUM; | |
762 | ||
763 | if (u->Millicode) | |
764 | return 31; | |
765 | ||
766 | return RP_REGNUM; | |
767 | } | |
768 | ||
769 | /* Return size of frame, or -1 if we should use a frame pointer. */ | |
770 | static int | |
771 | find_proc_framesize (CORE_ADDR pc) | |
772 | { | |
773 | struct unwind_table_entry *u; | |
774 | struct minimal_symbol *msym_us; | |
775 | ||
776 | /* This may indicate a bug in our callers... */ | |
777 | if (pc == (CORE_ADDR) 0) | |
778 | return -1; | |
779 | ||
780 | u = find_unwind_entry (pc); | |
781 | ||
782 | if (!u) | |
783 | { | |
784 | if (pc_in_linker_stub (pc)) | |
785 | /* Linker stubs have a zero size frame. */ | |
786 | return 0; | |
787 | else | |
788 | return -1; | |
789 | } | |
790 | ||
791 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
792 | ||
793 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
794 | then we have a frame pointer. Use it. */ | |
795 | if (u->Save_SP | |
796 | && !pc_in_interrupt_handler (pc) | |
797 | && msym_us | |
798 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))) | |
799 | return -1; | |
800 | ||
801 | return u->Total_frame_size << 3; | |
802 | } | |
803 | ||
804 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ | |
805 | static int rp_saved (CORE_ADDR); | |
806 | ||
807 | static int | |
808 | rp_saved (CORE_ADDR pc) | |
809 | { | |
810 | struct unwind_table_entry *u; | |
811 | ||
812 | /* A function at, and thus a return PC from, address 0? Not in HP-UX! */ | |
813 | if (pc == (CORE_ADDR) 0) | |
814 | return 0; | |
815 | ||
816 | u = find_unwind_entry (pc); | |
817 | ||
818 | if (!u) | |
819 | { | |
820 | if (pc_in_linker_stub (pc)) | |
821 | /* This is the so-called RP'. */ | |
822 | return -24; | |
823 | else | |
824 | return 0; | |
825 | } | |
826 | ||
827 | if (u->Save_RP) | |
828 | return (TARGET_PTR_BIT == 64 ? -16 : -20); | |
829 | else if (u->stub_unwind.stub_type != 0) | |
830 | { | |
831 | switch (u->stub_unwind.stub_type) | |
832 | { | |
833 | case EXPORT: | |
834 | case IMPORT: | |
835 | return -24; | |
836 | case PARAMETER_RELOCATION: | |
837 | return -8; | |
838 | default: | |
839 | return 0; | |
840 | } | |
841 | } | |
842 | else | |
843 | return 0; | |
844 | } | |
845 | \f | |
846 | int | |
847 | hppa_frameless_function_invocation (struct frame_info *frame) | |
848 | { | |
849 | struct unwind_table_entry *u; | |
850 | ||
851 | u = find_unwind_entry (frame->pc); | |
852 | ||
853 | if (u == 0) | |
854 | return 0; | |
855 | ||
856 | return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0); | |
857 | } | |
858 | ||
859 | /* Immediately after a function call, return the saved pc. | |
860 | Can't go through the frames for this because on some machines | |
861 | the new frame is not set up until the new function executes | |
862 | some instructions. */ | |
863 | ||
864 | CORE_ADDR | |
865 | hppa_saved_pc_after_call (struct frame_info *frame) | |
866 | { | |
867 | int ret_regnum; | |
868 | CORE_ADDR pc; | |
869 | struct unwind_table_entry *u; | |
870 | ||
871 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
872 | pc = read_register (ret_regnum) & ~0x3; | |
873 | ||
874 | /* If PC is in a linker stub, then we need to dig the address | |
875 | the stub will return to out of the stack. */ | |
876 | u = find_unwind_entry (pc); | |
877 | if (u && u->stub_unwind.stub_type != 0) | |
878 | return DEPRECATED_FRAME_SAVED_PC (frame); | |
879 | else | |
880 | return pc; | |
881 | } | |
882 | \f | |
883 | CORE_ADDR | |
884 | hppa_frame_saved_pc (struct frame_info *frame) | |
885 | { | |
886 | CORE_ADDR pc = get_frame_pc (frame); | |
887 | struct unwind_table_entry *u; | |
888 | CORE_ADDR old_pc; | |
889 | int spun_around_loop = 0; | |
890 | int rp_offset = 0; | |
891 | ||
892 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner | |
893 | at the base of the frame in an interrupt handler. Registers within | |
894 | are saved in the exact same order as GDB numbers registers. How | |
895 | convienent. */ | |
896 | if (pc_in_interrupt_handler (pc)) | |
897 | return read_memory_integer (frame->frame + PC_REGNUM * 4, | |
898 | TARGET_PTR_BIT / 8) & ~0x3; | |
899 | ||
900 | if ((frame->pc >= frame->frame | |
901 | && frame->pc <= (frame->frame | |
902 | /* A call dummy is sized in words, but it is | |
903 | actually a series of instructions. Account | |
904 | for that scaling factor. */ | |
905 | + ((REGISTER_SIZE / INSTRUCTION_SIZE) | |
906 | * CALL_DUMMY_LENGTH) | |
907 | /* Similarly we have to account for 64bit | |
908 | wide register saves. */ | |
909 | + (32 * REGISTER_SIZE) | |
910 | /* We always consider FP regs 8 bytes long. */ | |
911 | + (NUM_REGS - FP0_REGNUM) * 8 | |
912 | /* Similarly we have to account for 64bit | |
913 | wide register saves. */ | |
914 | + (6 * REGISTER_SIZE)))) | |
915 | { | |
916 | return read_memory_integer ((frame->frame | |
917 | + (TARGET_PTR_BIT == 64 ? -16 : -20)), | |
918 | TARGET_PTR_BIT / 8) & ~0x3; | |
919 | } | |
920 | ||
921 | #ifdef FRAME_SAVED_PC_IN_SIGTRAMP | |
922 | /* Deal with signal handler caller frames too. */ | |
923 | if ((get_frame_type (frame) == SIGTRAMP_FRAME)) | |
924 | { | |
925 | CORE_ADDR rp; | |
926 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
927 | return rp & ~0x3; | |
928 | } | |
929 | #endif | |
930 | ||
931 | if (hppa_frameless_function_invocation (frame)) | |
932 | { | |
933 | int ret_regnum; | |
934 | ||
935 | ret_regnum = find_return_regnum (pc); | |
936 | ||
937 | /* If the next frame is an interrupt frame or a signal | |
938 | handler caller, then we need to look in the saved | |
939 | register area to get the return pointer (the values | |
940 | in the registers may not correspond to anything useful). */ | |
941 | if (frame->next | |
942 | && ((get_frame_type (frame->next) == SIGTRAMP_FRAME) | |
943 | || pc_in_interrupt_handler (frame->next->pc))) | |
944 | { | |
945 | struct frame_saved_regs saved_regs; | |
946 | ||
947 | deprecated_get_frame_saved_regs (frame->next, &saved_regs); | |
948 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], | |
949 | TARGET_PTR_BIT / 8) & 0x2) | |
950 | { | |
951 | pc = read_memory_integer (saved_regs.regs[31], | |
952 | TARGET_PTR_BIT / 8) & ~0x3; | |
953 | ||
954 | /* Syscalls are really two frames. The syscall stub itself | |
955 | with a return pointer in %rp and the kernel call with | |
956 | a return pointer in %r31. We return the %rp variant | |
957 | if %r31 is the same as frame->pc. */ | |
958 | if (pc == frame->pc) | |
959 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], | |
960 | TARGET_PTR_BIT / 8) & ~0x3; | |
961 | } | |
962 | else | |
963 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], | |
964 | TARGET_PTR_BIT / 8) & ~0x3; | |
965 | } | |
966 | else | |
967 | pc = read_register (ret_regnum) & ~0x3; | |
968 | } | |
969 | else | |
970 | { | |
971 | spun_around_loop = 0; | |
972 | old_pc = pc; | |
973 | ||
974 | restart: | |
975 | rp_offset = rp_saved (pc); | |
976 | ||
977 | /* Similar to code in frameless function case. If the next | |
978 | frame is a signal or interrupt handler, then dig the right | |
979 | information out of the saved register info. */ | |
980 | if (rp_offset == 0 | |
981 | && frame->next | |
982 | && ((get_frame_type (frame->next) == SIGTRAMP_FRAME) | |
983 | || pc_in_interrupt_handler (frame->next->pc))) | |
984 | { | |
985 | struct frame_saved_regs saved_regs; | |
986 | ||
987 | deprecated_get_frame_saved_regs (frame->next, &saved_regs); | |
988 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], | |
989 | TARGET_PTR_BIT / 8) & 0x2) | |
990 | { | |
991 | pc = read_memory_integer (saved_regs.regs[31], | |
992 | TARGET_PTR_BIT / 8) & ~0x3; | |
993 | ||
994 | /* Syscalls are really two frames. The syscall stub itself | |
995 | with a return pointer in %rp and the kernel call with | |
996 | a return pointer in %r31. We return the %rp variant | |
997 | if %r31 is the same as frame->pc. */ | |
998 | if (pc == frame->pc) | |
999 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], | |
1000 | TARGET_PTR_BIT / 8) & ~0x3; | |
1001 | } | |
1002 | else | |
1003 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], | |
1004 | TARGET_PTR_BIT / 8) & ~0x3; | |
1005 | } | |
1006 | else if (rp_offset == 0) | |
1007 | { | |
1008 | old_pc = pc; | |
1009 | pc = read_register (RP_REGNUM) & ~0x3; | |
1010 | } | |
1011 | else | |
1012 | { | |
1013 | old_pc = pc; | |
1014 | pc = read_memory_integer (frame->frame + rp_offset, | |
1015 | TARGET_PTR_BIT / 8) & ~0x3; | |
1016 | } | |
1017 | } | |
1018 | ||
1019 | /* If PC is inside a linker stub, then dig out the address the stub | |
1020 | will return to. | |
1021 | ||
1022 | Don't do this for long branch stubs. Why? For some unknown reason | |
1023 | _start is marked as a long branch stub in hpux10. */ | |
1024 | u = find_unwind_entry (pc); | |
1025 | if (u && u->stub_unwind.stub_type != 0 | |
1026 | && u->stub_unwind.stub_type != LONG_BRANCH) | |
1027 | { | |
1028 | unsigned int insn; | |
1029 | ||
1030 | /* If this is a dynamic executable, and we're in a signal handler, | |
1031 | then the call chain will eventually point us into the stub for | |
1032 | _sigreturn. Unlike most cases, we'll be pointed to the branch | |
1033 | to the real sigreturn rather than the code after the real branch!. | |
1034 | ||
1035 | Else, try to dig the address the stub will return to in the normal | |
1036 | fashion. */ | |
1037 | insn = read_memory_integer (pc, 4); | |
1038 | if ((insn & 0xfc00e000) == 0xe8000000) | |
1039 | return (pc + extract_17 (insn) + 8) & ~0x3; | |
1040 | else | |
1041 | { | |
1042 | if (old_pc == pc) | |
1043 | spun_around_loop++; | |
1044 | ||
1045 | if (spun_around_loop > 1) | |
1046 | { | |
1047 | /* We're just about to go around the loop again with | |
1048 | no more hope of success. Die. */ | |
1049 | error ("Unable to find return pc for this frame"); | |
1050 | } | |
1051 | else | |
1052 | goto restart; | |
1053 | } | |
1054 | } | |
1055 | ||
1056 | return pc; | |
1057 | } | |
1058 | \f | |
1059 | /* We need to correct the PC and the FP for the outermost frame when we are | |
1060 | in a system call. */ | |
1061 | ||
1062 | void | |
1063 | hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame) | |
1064 | { | |
1065 | int flags; | |
1066 | int framesize; | |
1067 | ||
1068 | if (frame->next && !fromleaf) | |
1069 | return; | |
1070 | ||
1071 | /* If the next frame represents a frameless function invocation | |
1072 | then we have to do some adjustments that are normally done by | |
1073 | FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ | |
1074 | if (fromleaf) | |
1075 | { | |
1076 | /* Find the framesize of *this* frame without peeking at the PC | |
1077 | in the current frame structure (it isn't set yet). */ | |
1078 | framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame))); | |
1079 | ||
1080 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
1081 | use it, else subtract the size of this frame from the current | |
1082 | frame. (we always want frame->frame to point at the lowest address | |
1083 | in the frame). */ | |
1084 | if (framesize == -1) | |
1085 | frame->frame = TARGET_READ_FP (); | |
1086 | else | |
1087 | frame->frame -= framesize; | |
1088 | return; | |
1089 | } | |
1090 | ||
1091 | flags = read_register (FLAGS_REGNUM); | |
1092 | if (flags & 2) /* In system call? */ | |
1093 | frame->pc = read_register (31) & ~0x3; | |
1094 | ||
1095 | /* The outermost frame is always derived from PC-framesize | |
1096 | ||
1097 | One might think frameless innermost frames should have | |
1098 | a frame->frame that is the same as the parent's frame->frame. | |
1099 | That is wrong; frame->frame in that case should be the *high* | |
1100 | address of the parent's frame. It's complicated as hell to | |
1101 | explain, but the parent *always* creates some stack space for | |
1102 | the child. So the child actually does have a frame of some | |
1103 | sorts, and its base is the high address in its parent's frame. */ | |
1104 | framesize = find_proc_framesize (frame->pc); | |
1105 | if (framesize == -1) | |
1106 | frame->frame = TARGET_READ_FP (); | |
1107 | else | |
1108 | frame->frame = read_register (SP_REGNUM) - framesize; | |
1109 | } | |
1110 | \f | |
1111 | /* Given a GDB frame, determine the address of the calling function's | |
1112 | frame. This will be used to create a new GDB frame struct, and | |
1113 | then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC | |
1114 | will be called for the new frame. | |
1115 | ||
1116 | This may involve searching through prologues for several functions | |
1117 | at boundaries where GCC calls HP C code, or where code which has | |
1118 | a frame pointer calls code without a frame pointer. */ | |
1119 | ||
1120 | CORE_ADDR | |
1121 | hppa_frame_chain (struct frame_info *frame) | |
1122 | { | |
1123 | int my_framesize, caller_framesize; | |
1124 | struct unwind_table_entry *u; | |
1125 | CORE_ADDR frame_base; | |
1126 | struct frame_info *tmp_frame; | |
1127 | ||
1128 | /* A frame in the current frame list, or zero. */ | |
1129 | struct frame_info *saved_regs_frame = 0; | |
1130 | /* Where the registers were saved in saved_regs_frame. | |
1131 | If saved_regs_frame is zero, this is garbage. */ | |
1132 | struct frame_saved_regs saved_regs; | |
1133 | ||
1134 | CORE_ADDR caller_pc; | |
1135 | ||
1136 | struct minimal_symbol *min_frame_symbol; | |
1137 | struct symbol *frame_symbol; | |
1138 | char *frame_symbol_name; | |
1139 | ||
1140 | /* If this is a threaded application, and we see the | |
1141 | routine "__pthread_exit", treat it as the stack root | |
1142 | for this thread. */ | |
1143 | min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc); | |
1144 | frame_symbol = find_pc_function (frame->pc); | |
1145 | ||
1146 | if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ ) | |
1147 | { | |
1148 | /* The test above for "no user function name" would defend | |
1149 | against the slim likelihood that a user might define a | |
1150 | routine named "__pthread_exit" and then try to debug it. | |
1151 | ||
1152 | If it weren't commented out, and you tried to debug the | |
1153 | pthread library itself, you'd get errors. | |
1154 | ||
1155 | So for today, we don't make that check. */ | |
1156 | frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol); | |
1157 | if (frame_symbol_name != 0) | |
1158 | { | |
1159 | if (0 == strncmp (frame_symbol_name, | |
1160 | THREAD_INITIAL_FRAME_SYMBOL, | |
1161 | THREAD_INITIAL_FRAME_SYM_LEN)) | |
1162 | { | |
1163 | /* Pretend we've reached the bottom of the stack. */ | |
1164 | return (CORE_ADDR) 0; | |
1165 | } | |
1166 | } | |
1167 | } /* End of hacky code for threads. */ | |
1168 | ||
1169 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These | |
1170 | are easy; at *sp we have a full save state strucutre which we can | |
1171 | pull the old stack pointer from. Also see frame_saved_pc for | |
1172 | code to dig a saved PC out of the save state structure. */ | |
1173 | if (pc_in_interrupt_handler (frame->pc)) | |
1174 | frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, | |
1175 | TARGET_PTR_BIT / 8); | |
1176 | #ifdef FRAME_BASE_BEFORE_SIGTRAMP | |
1177 | else if ((get_frame_type (frame) == SIGTRAMP_FRAME)) | |
1178 | { | |
1179 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
1180 | } | |
1181 | #endif | |
1182 | else | |
1183 | frame_base = frame->frame; | |
1184 | ||
1185 | /* Get frame sizes for the current frame and the frame of the | |
1186 | caller. */ | |
1187 | my_framesize = find_proc_framesize (frame->pc); | |
1188 | caller_pc = DEPRECATED_FRAME_SAVED_PC (frame); | |
1189 | ||
1190 | /* If we can't determine the caller's PC, then it's not likely we can | |
1191 | really determine anything meaningful about its frame. We'll consider | |
1192 | this to be stack bottom. */ | |
1193 | if (caller_pc == (CORE_ADDR) 0) | |
1194 | return (CORE_ADDR) 0; | |
1195 | ||
1196 | caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame)); | |
1197 | ||
1198 | /* If caller does not have a frame pointer, then its frame | |
1199 | can be found at current_frame - caller_framesize. */ | |
1200 | if (caller_framesize != -1) | |
1201 | { | |
1202 | return frame_base - caller_framesize; | |
1203 | } | |
1204 | /* Both caller and callee have frame pointers and are GCC compiled | |
1205 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
1206 | The previous frame pointer is found at the top of the current frame. */ | |
1207 | if (caller_framesize == -1 && my_framesize == -1) | |
1208 | { | |
1209 | return read_memory_integer (frame_base, TARGET_PTR_BIT / 8); | |
1210 | } | |
1211 | /* Caller has a frame pointer, but callee does not. This is a little | |
1212 | more difficult as GCC and HP C lay out locals and callee register save | |
1213 | areas very differently. | |
1214 | ||
1215 | The previous frame pointer could be in a register, or in one of | |
1216 | several areas on the stack. | |
1217 | ||
1218 | Walk from the current frame to the innermost frame examining | |
1219 | unwind descriptors to determine if %r3 ever gets saved into the | |
1220 | stack. If so return whatever value got saved into the stack. | |
1221 | If it was never saved in the stack, then the value in %r3 is still | |
1222 | valid, so use it. | |
1223 | ||
1224 | We use information from unwind descriptors to determine if %r3 | |
1225 | is saved into the stack (Entry_GR field has this information). */ | |
1226 | ||
1227 | for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next) | |
1228 | { | |
1229 | u = find_unwind_entry (tmp_frame->pc); | |
1230 | ||
1231 | if (!u) | |
1232 | { | |
1233 | /* We could find this information by examining prologues. I don't | |
1234 | think anyone has actually written any tools (not even "strip") | |
1235 | which leave them out of an executable, so maybe this is a moot | |
1236 | point. */ | |
1237 | /* ??rehrauer: Actually, it's quite possible to stepi your way into | |
1238 | code that doesn't have unwind entries. For example, stepping into | |
1239 | the dynamic linker will give you a PC that has none. Thus, I've | |
1240 | disabled this warning. */ | |
1241 | #if 0 | |
1242 | warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc); | |
1243 | #endif | |
1244 | return (CORE_ADDR) 0; | |
1245 | } | |
1246 | ||
1247 | if (u->Save_SP | |
1248 | || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME) | |
1249 | || pc_in_interrupt_handler (tmp_frame->pc)) | |
1250 | break; | |
1251 | ||
1252 | /* Entry_GR specifies the number of callee-saved general registers | |
1253 | saved in the stack. It starts at %r3, so %r3 would be 1. */ | |
1254 | if (u->Entry_GR >= 1) | |
1255 | { | |
1256 | /* The unwind entry claims that r3 is saved here. However, | |
1257 | in optimized code, GCC often doesn't actually save r3. | |
1258 | We'll discover this if we look at the prologue. */ | |
1259 | deprecated_get_frame_saved_regs (tmp_frame, &saved_regs); | |
1260 | saved_regs_frame = tmp_frame; | |
1261 | ||
1262 | /* If we have an address for r3, that's good. */ | |
1263 | if (saved_regs.regs[FP_REGNUM]) | |
1264 | break; | |
1265 | } | |
1266 | } | |
1267 | ||
1268 | if (tmp_frame) | |
1269 | { | |
1270 | /* We may have walked down the chain into a function with a frame | |
1271 | pointer. */ | |
1272 | if (u->Save_SP | |
1273 | && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME) | |
1274 | && !pc_in_interrupt_handler (tmp_frame->pc)) | |
1275 | { | |
1276 | return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8); | |
1277 | } | |
1278 | /* %r3 was saved somewhere in the stack. Dig it out. */ | |
1279 | else | |
1280 | { | |
1281 | /* Sick. | |
1282 | ||
1283 | For optimization purposes many kernels don't have the | |
1284 | callee saved registers into the save_state structure upon | |
1285 | entry into the kernel for a syscall; the optimization | |
1286 | is usually turned off if the process is being traced so | |
1287 | that the debugger can get full register state for the | |
1288 | process. | |
1289 | ||
1290 | This scheme works well except for two cases: | |
1291 | ||
1292 | * Attaching to a process when the process is in the | |
1293 | kernel performing a system call (debugger can't get | |
1294 | full register state for the inferior process since | |
1295 | the process wasn't being traced when it entered the | |
1296 | system call). | |
1297 | ||
1298 | * Register state is not complete if the system call | |
1299 | causes the process to core dump. | |
1300 | ||
1301 | ||
1302 | The following heinous code is an attempt to deal with | |
1303 | the lack of register state in a core dump. It will | |
1304 | fail miserably if the function which performs the | |
1305 | system call has a variable sized stack frame. */ | |
1306 | ||
1307 | if (tmp_frame != saved_regs_frame) | |
1308 | deprecated_get_frame_saved_regs (tmp_frame, &saved_regs); | |
1309 | ||
1310 | /* Abominable hack. */ | |
1311 | if (current_target.to_has_execution == 0 | |
1312 | && ((saved_regs.regs[FLAGS_REGNUM] | |
1313 | && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], | |
1314 | TARGET_PTR_BIT / 8) | |
1315 | & 0x2)) | |
1316 | || (saved_regs.regs[FLAGS_REGNUM] == 0 | |
1317 | && read_register (FLAGS_REGNUM) & 0x2))) | |
1318 | { | |
1319 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); | |
1320 | if (!u) | |
1321 | { | |
1322 | return read_memory_integer (saved_regs.regs[FP_REGNUM], | |
1323 | TARGET_PTR_BIT / 8); | |
1324 | } | |
1325 | else | |
1326 | { | |
1327 | return frame_base - (u->Total_frame_size << 3); | |
1328 | } | |
1329 | } | |
1330 | ||
1331 | return read_memory_integer (saved_regs.regs[FP_REGNUM], | |
1332 | TARGET_PTR_BIT / 8); | |
1333 | } | |
1334 | } | |
1335 | else | |
1336 | { | |
1337 | /* Get the innermost frame. */ | |
1338 | tmp_frame = frame; | |
1339 | while (tmp_frame->next != NULL) | |
1340 | tmp_frame = tmp_frame->next; | |
1341 | ||
1342 | if (tmp_frame != saved_regs_frame) | |
1343 | deprecated_get_frame_saved_regs (tmp_frame, &saved_regs); | |
1344 | ||
1345 | /* Abominable hack. See above. */ | |
1346 | if (current_target.to_has_execution == 0 | |
1347 | && ((saved_regs.regs[FLAGS_REGNUM] | |
1348 | && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], | |
1349 | TARGET_PTR_BIT / 8) | |
1350 | & 0x2)) | |
1351 | || (saved_regs.regs[FLAGS_REGNUM] == 0 | |
1352 | && read_register (FLAGS_REGNUM) & 0x2))) | |
1353 | { | |
1354 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); | |
1355 | if (!u) | |
1356 | { | |
1357 | return read_memory_integer (saved_regs.regs[FP_REGNUM], | |
1358 | TARGET_PTR_BIT / 8); | |
1359 | } | |
1360 | else | |
1361 | { | |
1362 | return frame_base - (u->Total_frame_size << 3); | |
1363 | } | |
1364 | } | |
1365 | ||
1366 | /* The value in %r3 was never saved into the stack (thus %r3 still | |
1367 | holds the value of the previous frame pointer). */ | |
1368 | return TARGET_READ_FP (); | |
1369 | } | |
1370 | } | |
1371 | \f | |
1372 | ||
1373 | /* To see if a frame chain is valid, see if the caller looks like it | |
1374 | was compiled with gcc. */ | |
1375 | ||
1376 | int | |
1377 | hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) | |
1378 | { | |
1379 | struct minimal_symbol *msym_us; | |
1380 | struct minimal_symbol *msym_start; | |
1381 | struct unwind_table_entry *u, *next_u = NULL; | |
1382 | struct frame_info *next; | |
1383 | ||
1384 | u = find_unwind_entry (thisframe->pc); | |
1385 | ||
1386 | if (u == NULL) | |
1387 | return 1; | |
1388 | ||
1389 | /* We can't just check that the same of msym_us is "_start", because | |
1390 | someone idiotically decided that they were going to make a Ltext_end | |
1391 | symbol with the same address. This Ltext_end symbol is totally | |
1392 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1393 | which is (legitimately, since it is in the user's namespace) | |
1394 | named Ltext_end, so we can't just ignore it. */ | |
1395 | msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe)); | |
1396 | msym_start = lookup_minimal_symbol ("_start", NULL, NULL); | |
1397 | if (msym_us | |
1398 | && msym_start | |
1399 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1400 | return 0; | |
1401 | ||
1402 | /* Grrrr. Some new idiot decided that they don't want _start for the | |
1403 | PRO configurations; $START$ calls main directly.... Deal with it. */ | |
1404 | msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); | |
1405 | if (msym_us | |
1406 | && msym_start | |
1407 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1408 | return 0; | |
1409 | ||
1410 | next = get_next_frame (thisframe); | |
1411 | if (next) | |
1412 | next_u = find_unwind_entry (next->pc); | |
1413 | ||
1414 | /* If this frame does not save SP, has no stack, isn't a stub, | |
1415 | and doesn't "call" an interrupt routine or signal handler caller, | |
1416 | then its not valid. */ | |
1417 | if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0 | |
1418 | || (thisframe->next && (get_frame_type (thisframe->next) == SIGTRAMP_FRAME)) | |
1419 | || (next_u && next_u->HP_UX_interrupt_marker)) | |
1420 | return 1; | |
1421 | ||
1422 | if (pc_in_linker_stub (thisframe->pc)) | |
1423 | return 1; | |
1424 | ||
1425 | return 0; | |
1426 | } | |
1427 | ||
1428 | /* | |
1429 | These functions deal with saving and restoring register state | |
1430 | around a function call in the inferior. They keep the stack | |
1431 | double-word aligned; eventually, on an hp700, the stack will have | |
1432 | to be aligned to a 64-byte boundary. */ | |
1433 | ||
1434 | void | |
1435 | hppa_push_dummy_frame (struct inferior_status *inf_status) | |
1436 | { | |
1437 | CORE_ADDR sp, pc, pcspace; | |
1438 | register int regnum; | |
1439 | CORE_ADDR int_buffer; | |
1440 | double freg_buffer; | |
1441 | ||
1442 | /* Oh, what a hack. If we're trying to perform an inferior call | |
1443 | while the inferior is asleep, we have to make sure to clear | |
1444 | the "in system call" bit in the flag register (the call will | |
1445 | start after the syscall returns, so we're no longer in the system | |
1446 | call!) This state is kept in "inf_status", change it there. | |
1447 | ||
1448 | We also need a number of horrid hacks to deal with lossage in the | |
1449 | PC queue registers (apparently they're not valid when the in syscall | |
1450 | bit is set). */ | |
1451 | pc = hppa_target_read_pc (inferior_ptid); | |
1452 | int_buffer = read_register (FLAGS_REGNUM); | |
1453 | if (int_buffer & 0x2) | |
1454 | { | |
1455 | unsigned int sid; | |
1456 | int_buffer &= ~0x2; | |
1457 | write_inferior_status_register (inf_status, 0, int_buffer); | |
1458 | write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0); | |
1459 | write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4); | |
1460 | sid = (pc >> 30) & 0x3; | |
1461 | if (sid == 0) | |
1462 | pcspace = read_register (SR4_REGNUM); | |
1463 | else | |
1464 | pcspace = read_register (SR4_REGNUM + 4 + sid); | |
1465 | write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace); | |
1466 | write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace); | |
1467 | } | |
1468 | else | |
1469 | pcspace = read_register (PCSQ_HEAD_REGNUM); | |
1470 | ||
1471 | /* Space for "arguments"; the RP goes in here. */ | |
1472 | sp = read_register (SP_REGNUM) + 48; | |
1473 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
1474 | ||
1475 | /* The 32bit and 64bit ABIs save the return pointer into different | |
1476 | stack slots. */ | |
1477 | if (REGISTER_SIZE == 8) | |
1478 | write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE); | |
1479 | else | |
1480 | write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE); | |
1481 | ||
1482 | int_buffer = TARGET_READ_FP (); | |
1483 | write_memory (sp, (char *) &int_buffer, REGISTER_SIZE); | |
1484 | ||
1485 | write_register (FP_REGNUM, sp); | |
1486 | ||
1487 | sp += 2 * REGISTER_SIZE; | |
1488 | ||
1489 | for (regnum = 1; regnum < 32; regnum++) | |
1490 | if (regnum != RP_REGNUM && regnum != FP_REGNUM) | |
1491 | sp = push_word (sp, read_register (regnum)); | |
1492 | ||
1493 | /* This is not necessary for the 64bit ABI. In fact it is dangerous. */ | |
1494 | if (REGISTER_SIZE != 8) | |
1495 | sp += 4; | |
1496 | ||
1497 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1498 | { | |
1499 | deprecated_read_register_bytes (REGISTER_BYTE (regnum), | |
1500 | (char *) &freg_buffer, 8); | |
1501 | sp = push_bytes (sp, (char *) &freg_buffer, 8); | |
1502 | } | |
1503 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1504 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
1505 | sp = push_word (sp, pc); | |
1506 | sp = push_word (sp, pcspace); | |
1507 | sp = push_word (sp, pc + 4); | |
1508 | sp = push_word (sp, pcspace); | |
1509 | write_register (SP_REGNUM, sp); | |
1510 | } | |
1511 | ||
1512 | static void | |
1513 | find_dummy_frame_regs (struct frame_info *frame, | |
1514 | struct frame_saved_regs *frame_saved_regs) | |
1515 | { | |
1516 | CORE_ADDR fp = frame->frame; | |
1517 | int i; | |
1518 | ||
1519 | /* The 32bit and 64bit ABIs save RP into different locations. */ | |
1520 | if (REGISTER_SIZE == 8) | |
1521 | frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3; | |
1522 | else | |
1523 | frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3; | |
1524 | ||
1525 | frame_saved_regs->regs[FP_REGNUM] = fp; | |
1526 | ||
1527 | frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE); | |
1528 | ||
1529 | for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++) | |
1530 | { | |
1531 | if (i != FP_REGNUM) | |
1532 | { | |
1533 | frame_saved_regs->regs[i] = fp; | |
1534 | fp += REGISTER_SIZE; | |
1535 | } | |
1536 | } | |
1537 | ||
1538 | /* This is not necessary or desirable for the 64bit ABI. */ | |
1539 | if (REGISTER_SIZE != 8) | |
1540 | fp += 4; | |
1541 | ||
1542 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) | |
1543 | frame_saved_regs->regs[i] = fp; | |
1544 | ||
1545 | frame_saved_regs->regs[IPSW_REGNUM] = fp; | |
1546 | frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE; | |
1547 | frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE; | |
1548 | frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE; | |
1549 | frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE; | |
1550 | frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE; | |
1551 | } | |
1552 | ||
1553 | void | |
1554 | hppa_pop_frame (void) | |
1555 | { | |
1556 | register struct frame_info *frame = get_current_frame (); | |
1557 | register CORE_ADDR fp, npc, target_pc; | |
1558 | register int regnum; | |
1559 | struct frame_saved_regs fsr; | |
1560 | double freg_buffer; | |
1561 | ||
1562 | fp = get_frame_base (frame); | |
1563 | deprecated_get_frame_saved_regs (frame, &fsr); | |
1564 | ||
1565 | #ifndef NO_PC_SPACE_QUEUE_RESTORE | |
1566 | if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ | |
1567 | restore_pc_queue (&fsr); | |
1568 | #endif | |
1569 | ||
1570 | for (regnum = 31; regnum > 0; regnum--) | |
1571 | if (fsr.regs[regnum]) | |
1572 | write_register (regnum, read_memory_integer (fsr.regs[regnum], | |
1573 | REGISTER_SIZE)); | |
1574 | ||
1575 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--) | |
1576 | if (fsr.regs[regnum]) | |
1577 | { | |
1578 | read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8); | |
1579 | deprecated_write_register_bytes (REGISTER_BYTE (regnum), | |
1580 | (char *) &freg_buffer, 8); | |
1581 | } | |
1582 | ||
1583 | if (fsr.regs[IPSW_REGNUM]) | |
1584 | write_register (IPSW_REGNUM, | |
1585 | read_memory_integer (fsr.regs[IPSW_REGNUM], | |
1586 | REGISTER_SIZE)); | |
1587 | ||
1588 | if (fsr.regs[SAR_REGNUM]) | |
1589 | write_register (SAR_REGNUM, | |
1590 | read_memory_integer (fsr.regs[SAR_REGNUM], | |
1591 | REGISTER_SIZE)); | |
1592 | ||
1593 | /* If the PC was explicitly saved, then just restore it. */ | |
1594 | if (fsr.regs[PCOQ_TAIL_REGNUM]) | |
1595 | { | |
1596 | npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], | |
1597 | REGISTER_SIZE); | |
1598 | write_register (PCOQ_TAIL_REGNUM, npc); | |
1599 | } | |
1600 | /* Else use the value in %rp to set the new PC. */ | |
1601 | else | |
1602 | { | |
1603 | npc = read_register (RP_REGNUM); | |
1604 | write_pc (npc); | |
1605 | } | |
1606 | ||
1607 | write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE)); | |
1608 | ||
1609 | if (fsr.regs[IPSW_REGNUM]) /* call dummy */ | |
1610 | write_register (SP_REGNUM, fp - 48); | |
1611 | else | |
1612 | write_register (SP_REGNUM, fp); | |
1613 | ||
1614 | /* The PC we just restored may be inside a return trampoline. If so | |
1615 | we want to restart the inferior and run it through the trampoline. | |
1616 | ||
1617 | Do this by setting a momentary breakpoint at the location the | |
1618 | trampoline returns to. | |
1619 | ||
1620 | Don't skip through the trampoline if we're popping a dummy frame. */ | |
1621 | target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; | |
1622 | if (target_pc && !fsr.regs[IPSW_REGNUM]) | |
1623 | { | |
1624 | struct symtab_and_line sal; | |
1625 | struct breakpoint *breakpoint; | |
1626 | struct cleanup *old_chain; | |
1627 | ||
1628 | /* Set up our breakpoint. Set it to be silent as the MI code | |
1629 | for "return_command" will print the frame we returned to. */ | |
1630 | sal = find_pc_line (target_pc, 0); | |
1631 | sal.pc = target_pc; | |
1632 | breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish); | |
1633 | breakpoint->silent = 1; | |
1634 | ||
1635 | /* So we can clean things up. */ | |
1636 | old_chain = make_cleanup_delete_breakpoint (breakpoint); | |
1637 | ||
1638 | /* Start up the inferior. */ | |
1639 | clear_proceed_status (); | |
1640 | proceed_to_finish = 1; | |
1641 | proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); | |
1642 | ||
1643 | /* Perform our cleanups. */ | |
1644 | do_cleanups (old_chain); | |
1645 | } | |
1646 | flush_cached_frames (); | |
1647 | } | |
1648 | ||
1649 | /* After returning to a dummy on the stack, restore the instruction | |
1650 | queue space registers. */ | |
1651 | ||
1652 | static int | |
1653 | restore_pc_queue (struct frame_saved_regs *fsr) | |
1654 | { | |
1655 | CORE_ADDR pc = read_pc (); | |
1656 | CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], | |
1657 | TARGET_PTR_BIT / 8); | |
1658 | struct target_waitstatus w; | |
1659 | int insn_count; | |
1660 | ||
1661 | /* Advance past break instruction in the call dummy. */ | |
1662 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1663 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1664 | ||
1665 | /* HPUX doesn't let us set the space registers or the space | |
1666 | registers of the PC queue through ptrace. Boo, hiss. | |
1667 | Conveniently, the call dummy has this sequence of instructions | |
1668 | after the break: | |
1669 | mtsp r21, sr0 | |
1670 | ble,n 0(sr0, r22) | |
1671 | ||
1672 | So, load up the registers and single step until we are in the | |
1673 | right place. */ | |
1674 | ||
1675 | write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], | |
1676 | REGISTER_SIZE)); | |
1677 | write_register (22, new_pc); | |
1678 | ||
1679 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1680 | { | |
1681 | /* FIXME: What if the inferior gets a signal right now? Want to | |
1682 | merge this into wait_for_inferior (as a special kind of | |
1683 | watchpoint? By setting a breakpoint at the end? Is there | |
1684 | any other choice? Is there *any* way to do this stuff with | |
1685 | ptrace() or some equivalent?). */ | |
1686 | resume (1, 0); | |
1687 | target_wait (inferior_ptid, &w); | |
1688 | ||
1689 | if (w.kind == TARGET_WAITKIND_SIGNALLED) | |
1690 | { | |
1691 | stop_signal = w.value.sig; | |
1692 | terminal_ours_for_output (); | |
1693 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", | |
1694 | target_signal_to_name (stop_signal), | |
1695 | target_signal_to_string (stop_signal)); | |
1696 | gdb_flush (gdb_stdout); | |
1697 | return 0; | |
1698 | } | |
1699 | } | |
1700 | target_terminal_ours (); | |
1701 | target_fetch_registers (-1); | |
1702 | return 1; | |
1703 | } | |
1704 | ||
1705 | ||
1706 | #ifdef PA20W_CALLING_CONVENTIONS | |
1707 | ||
1708 | /* This function pushes a stack frame with arguments as part of the | |
1709 | inferior function calling mechanism. | |
1710 | ||
1711 | This is the version for the PA64, in which later arguments appear | |
1712 | at higher addresses. (The stack always grows towards higher | |
1713 | addresses.) | |
1714 | ||
1715 | We simply allocate the appropriate amount of stack space and put | |
1716 | arguments into their proper slots. The call dummy code will copy | |
1717 | arguments into registers as needed by the ABI. | |
1718 | ||
1719 | This ABI also requires that the caller provide an argument pointer | |
1720 | to the callee, so we do that too. */ | |
1721 | ||
1722 | CORE_ADDR | |
1723 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, | |
1724 | int struct_return, CORE_ADDR struct_addr) | |
1725 | { | |
1726 | /* array of arguments' offsets */ | |
1727 | int *offset = (int *) alloca (nargs * sizeof (int)); | |
1728 | ||
1729 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1730 | word size */ | |
1731 | int *lengths = (int *) alloca (nargs * sizeof (int)); | |
1732 | ||
1733 | /* The value of SP as it was passed into this function after | |
1734 | aligning. */ | |
1735 | CORE_ADDR orig_sp = STACK_ALIGN (sp); | |
1736 | ||
1737 | /* The number of stack bytes occupied by the current argument. */ | |
1738 | int bytes_reserved; | |
1739 | ||
1740 | /* The total number of bytes reserved for the arguments. */ | |
1741 | int cum_bytes_reserved = 0; | |
1742 | ||
1743 | /* Similarly, but aligned. */ | |
1744 | int cum_bytes_aligned = 0; | |
1745 | int i; | |
1746 | ||
1747 | /* Iterate over each argument provided by the user. */ | |
1748 | for (i = 0; i < nargs; i++) | |
1749 | { | |
1750 | struct type *arg_type = VALUE_TYPE (args[i]); | |
1751 | ||
1752 | /* Integral scalar values smaller than a register are padded on | |
1753 | the left. We do this by promoting them to full-width, | |
1754 | although the ABI says to pad them with garbage. */ | |
1755 | if (is_integral_type (arg_type) | |
1756 | && TYPE_LENGTH (arg_type) < REGISTER_SIZE) | |
1757 | { | |
1758 | args[i] = value_cast ((TYPE_UNSIGNED (arg_type) | |
1759 | ? builtin_type_unsigned_long | |
1760 | : builtin_type_long), | |
1761 | args[i]); | |
1762 | arg_type = VALUE_TYPE (args[i]); | |
1763 | } | |
1764 | ||
1765 | lengths[i] = TYPE_LENGTH (arg_type); | |
1766 | ||
1767 | /* Align the size of the argument to the word size for this | |
1768 | target. */ | |
1769 | bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE; | |
1770 | ||
1771 | offset[i] = cum_bytes_reserved; | |
1772 | ||
1773 | /* Aggregates larger than eight bytes (the only types larger | |
1774 | than eight bytes we have) are aligned on a 16-byte boundary, | |
1775 | possibly padded on the right with garbage. This may leave an | |
1776 | empty word on the stack, and thus an unused register, as per | |
1777 | the ABI. */ | |
1778 | if (bytes_reserved > 8) | |
1779 | { | |
1780 | /* Round up the offset to a multiple of two slots. */ | |
1781 | int new_offset = ((offset[i] + 2*REGISTER_SIZE-1) | |
1782 | & -(2*REGISTER_SIZE)); | |
1783 | ||
1784 | /* Note the space we've wasted, if any. */ | |
1785 | bytes_reserved += new_offset - offset[i]; | |
1786 | offset[i] = new_offset; | |
1787 | } | |
1788 | ||
1789 | cum_bytes_reserved += bytes_reserved; | |
1790 | } | |
1791 | ||
1792 | /* CUM_BYTES_RESERVED already accounts for all the arguments | |
1793 | passed by the user. However, the ABIs mandate minimum stack space | |
1794 | allocations for outgoing arguments. | |
1795 | ||
1796 | The ABIs also mandate minimum stack alignments which we must | |
1797 | preserve. */ | |
1798 | cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved); | |
1799 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); | |
1800 | ||
1801 | /* Now write each of the args at the proper offset down the stack. */ | |
1802 | for (i = 0; i < nargs; i++) | |
1803 | write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
1804 | ||
1805 | /* If a structure has to be returned, set up register 28 to hold its | |
1806 | address */ | |
1807 | if (struct_return) | |
1808 | write_register (28, struct_addr); | |
1809 | ||
1810 | /* For the PA64 we must pass a pointer to the outgoing argument list. | |
1811 | The ABI mandates that the pointer should point to the first byte of | |
1812 | storage beyond the register flushback area. | |
1813 | ||
1814 | However, the call dummy expects the outgoing argument pointer to | |
1815 | be passed in register %r4. */ | |
1816 | write_register (4, orig_sp + REG_PARM_STACK_SPACE); | |
1817 | ||
1818 | /* ?!? This needs further work. We need to set up the global data | |
1819 | pointer for this procedure. This assumes the same global pointer | |
1820 | for every procedure. The call dummy expects the dp value to | |
1821 | be passed in register %r6. */ | |
1822 | write_register (6, read_register (27)); | |
1823 | ||
1824 | /* The stack will have 64 bytes of additional space for a frame marker. */ | |
1825 | return sp + 64; | |
1826 | } | |
1827 | ||
1828 | #else | |
1829 | ||
1830 | /* This function pushes a stack frame with arguments as part of the | |
1831 | inferior function calling mechanism. | |
1832 | ||
1833 | This is the version of the function for the 32-bit PA machines, in | |
1834 | which later arguments appear at lower addresses. (The stack always | |
1835 | grows towards higher addresses.) | |
1836 | ||
1837 | We simply allocate the appropriate amount of stack space and put | |
1838 | arguments into their proper slots. The call dummy code will copy | |
1839 | arguments into registers as needed by the ABI. */ | |
1840 | ||
1841 | CORE_ADDR | |
1842 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, | |
1843 | int struct_return, CORE_ADDR struct_addr) | |
1844 | { | |
1845 | /* array of arguments' offsets */ | |
1846 | int *offset = (int *) alloca (nargs * sizeof (int)); | |
1847 | ||
1848 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1849 | word size */ | |
1850 | int *lengths = (int *) alloca (nargs * sizeof (int)); | |
1851 | ||
1852 | /* The number of stack bytes occupied by the current argument. */ | |
1853 | int bytes_reserved; | |
1854 | ||
1855 | /* The total number of bytes reserved for the arguments. */ | |
1856 | int cum_bytes_reserved = 0; | |
1857 | ||
1858 | /* Similarly, but aligned. */ | |
1859 | int cum_bytes_aligned = 0; | |
1860 | int i; | |
1861 | ||
1862 | /* Iterate over each argument provided by the user. */ | |
1863 | for (i = 0; i < nargs; i++) | |
1864 | { | |
1865 | lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i])); | |
1866 | ||
1867 | /* Align the size of the argument to the word size for this | |
1868 | target. */ | |
1869 | bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE; | |
1870 | ||
1871 | offset[i] = (cum_bytes_reserved | |
1872 | + (lengths[i] > 4 ? bytes_reserved : lengths[i])); | |
1873 | ||
1874 | /* If the argument is a double word argument, then it needs to be | |
1875 | double word aligned. */ | |
1876 | if ((bytes_reserved == 2 * REGISTER_SIZE) | |
1877 | && (offset[i] % 2 * REGISTER_SIZE)) | |
1878 | { | |
1879 | int new_offset = 0; | |
1880 | /* BYTES_RESERVED is already aligned to the word, so we put | |
1881 | the argument at one word more down the stack. | |
1882 | ||
1883 | This will leave one empty word on the stack, and one unused | |
1884 | register as mandated by the ABI. */ | |
1885 | new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1) | |
1886 | & -(2 * REGISTER_SIZE)); | |
1887 | ||
1888 | if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE) | |
1889 | { | |
1890 | bytes_reserved += REGISTER_SIZE; | |
1891 | offset[i] += REGISTER_SIZE; | |
1892 | } | |
1893 | } | |
1894 | ||
1895 | cum_bytes_reserved += bytes_reserved; | |
1896 | ||
1897 | } | |
1898 | ||
1899 | /* CUM_BYTES_RESERVED already accounts for all the arguments passed | |
1900 | by the user. However, the ABI mandates minimum stack space | |
1901 | allocations for outgoing arguments. | |
1902 | ||
1903 | The ABI also mandates minimum stack alignments which we must | |
1904 | preserve. */ | |
1905 | cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved); | |
1906 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); | |
1907 | ||
1908 | /* Now write each of the args at the proper offset down the stack. | |
1909 | ?!? We need to promote values to a full register instead of skipping | |
1910 | words in the stack. */ | |
1911 | for (i = 0; i < nargs; i++) | |
1912 | write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
1913 | ||
1914 | /* If a structure has to be returned, set up register 28 to hold its | |
1915 | address */ | |
1916 | if (struct_return) | |
1917 | write_register (28, struct_addr); | |
1918 | ||
1919 | /* The stack will have 32 bytes of additional space for a frame marker. */ | |
1920 | return sp + 32; | |
1921 | } | |
1922 | ||
1923 | #endif | |
1924 | ||
1925 | /* elz: this function returns a value which is built looking at the given address. | |
1926 | It is called from call_function_by_hand, in case we need to return a | |
1927 | value which is larger than 64 bits, and it is stored in the stack rather than | |
1928 | in the registers r28 and r29 or fr4. | |
1929 | This function does the same stuff as value_being_returned in values.c, but | |
1930 | gets the value from the stack rather than from the buffer where all the | |
1931 | registers were saved when the function called completed. */ | |
1932 | struct value * | |
1933 | hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr) | |
1934 | { | |
1935 | register struct value *val; | |
1936 | ||
1937 | val = allocate_value (valtype); | |
1938 | CHECK_TYPEDEF (valtype); | |
1939 | target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype)); | |
1940 | ||
1941 | return val; | |
1942 | } | |
1943 | ||
1944 | ||
1945 | ||
1946 | /* elz: Used to lookup a symbol in the shared libraries. | |
1947 | This function calls shl_findsym, indirectly through a | |
1948 | call to __d_shl_get. __d_shl_get is in end.c, which is always | |
1949 | linked in by the hp compilers/linkers. | |
1950 | The call to shl_findsym cannot be made directly because it needs | |
1951 | to be active in target address space. | |
1952 | inputs: - minimal symbol pointer for the function we want to look up | |
1953 | - address in target space of the descriptor for the library | |
1954 | where we want to look the symbol up. | |
1955 | This address is retrieved using the | |
1956 | som_solib_get_solib_by_pc function (somsolib.c). | |
1957 | output: - real address in the library of the function. | |
1958 | note: the handle can be null, in which case shl_findsym will look for | |
1959 | the symbol in all the loaded shared libraries. | |
1960 | files to look at if you need reference on this stuff: | |
1961 | dld.c, dld_shl_findsym.c | |
1962 | end.c | |
1963 | man entry for shl_findsym */ | |
1964 | ||
1965 | CORE_ADDR | |
1966 | find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle) | |
1967 | { | |
1968 | struct symbol *get_sym, *symbol2; | |
1969 | struct minimal_symbol *buff_minsym, *msymbol; | |
1970 | struct type *ftype; | |
1971 | struct value **args; | |
1972 | struct value *funcval; | |
1973 | struct value *val; | |
1974 | ||
1975 | int x, namelen, err_value, tmp = -1; | |
1976 | CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr; | |
1977 | CORE_ADDR stub_addr; | |
1978 | ||
1979 | ||
1980 | args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */ | |
1981 | funcval = find_function_in_inferior ("__d_shl_get"); | |
1982 | get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL); | |
1983 | buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL); | |
1984 | msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL); | |
1985 | symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL); | |
1986 | endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym); | |
1987 | namelen = strlen (DEPRECATED_SYMBOL_NAME (function)); | |
1988 | value_return_addr = endo_buff_addr + namelen; | |
1989 | ftype = check_typedef (SYMBOL_TYPE (get_sym)); | |
1990 | ||
1991 | /* do alignment */ | |
1992 | if ((x = value_return_addr % 64) != 0) | |
1993 | value_return_addr = value_return_addr + 64 - x; | |
1994 | ||
1995 | errno_return_addr = value_return_addr + 64; | |
1996 | ||
1997 | ||
1998 | /* set up stuff needed by __d_shl_get in buffer in end.o */ | |
1999 | ||
2000 | target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen); | |
2001 | ||
2002 | target_write_memory (value_return_addr, (char *) &tmp, 4); | |
2003 | ||
2004 | target_write_memory (errno_return_addr, (char *) &tmp, 4); | |
2005 | ||
2006 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
2007 | (char *) &handle, 4); | |
2008 | ||
2009 | /* now prepare the arguments for the call */ | |
2010 | ||
2011 | args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12); | |
2012 | args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol)); | |
2013 | args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr); | |
2014 | args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE); | |
2015 | args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr); | |
2016 | args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr); | |
2017 | ||
2018 | /* now call the function */ | |
2019 | ||
2020 | val = call_function_by_hand (funcval, 6, args); | |
2021 | ||
2022 | /* now get the results */ | |
2023 | ||
2024 | target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value)); | |
2025 | ||
2026 | target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr)); | |
2027 | if (stub_addr <= 0) | |
2028 | error ("call to __d_shl_get failed, error code is %d", err_value); | |
2029 | ||
2030 | return (stub_addr); | |
2031 | } | |
2032 | ||
2033 | /* Cover routine for find_stub_with_shl_get to pass to catch_errors */ | |
2034 | static int | |
2035 | cover_find_stub_with_shl_get (void *args_untyped) | |
2036 | { | |
2037 | args_for_find_stub *args = args_untyped; | |
2038 | args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle); | |
2039 | return 0; | |
2040 | } | |
2041 | ||
2042 | /* Insert the specified number of args and function address | |
2043 | into a call sequence of the above form stored at DUMMYNAME. | |
2044 | ||
2045 | On the hppa we need to call the stack dummy through $$dyncall. | |
2046 | Therefore our version of FIX_CALL_DUMMY takes an extra argument, | |
2047 | real_pc, which is the location where gdb should start up the | |
2048 | inferior to do the function call. | |
2049 | ||
2050 | This has to work across several versions of hpux, bsd, osf1. It has to | |
2051 | work regardless of what compiler was used to build the inferior program. | |
2052 | It should work regardless of whether or not end.o is available. It has | |
2053 | to work even if gdb can not call into the dynamic loader in the inferior | |
2054 | to query it for symbol names and addresses. | |
2055 | ||
2056 | Yes, all those cases should work. Luckily code exists to handle most | |
2057 | of them. The complexity is in selecting exactly what scheme should | |
2058 | be used to perform the inferior call. | |
2059 | ||
2060 | At the current time this routine is known not to handle cases where | |
2061 | the program was linked with HP's compiler without including end.o. | |
2062 | ||
2063 | Please contact Jeff Law ([email protected]) before changing this code. */ | |
2064 | ||
2065 | CORE_ADDR | |
2066 | hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, | |
2067 | struct value **args, struct type *type, int gcc_p) | |
2068 | { | |
2069 | CORE_ADDR dyncall_addr; | |
2070 | struct minimal_symbol *msymbol; | |
2071 | struct minimal_symbol *trampoline; | |
2072 | int flags = read_register (FLAGS_REGNUM); | |
2073 | struct unwind_table_entry *u = NULL; | |
2074 | CORE_ADDR new_stub = 0; | |
2075 | CORE_ADDR solib_handle = 0; | |
2076 | ||
2077 | /* Nonzero if we will use GCC's PLT call routine. This routine must be | |
2078 | passed an import stub, not a PLABEL. It is also necessary to set %r19 | |
2079 | (the PIC register) before performing the call. | |
2080 | ||
2081 | If zero, then we are using __d_plt_call (HP's PLT call routine) or we | |
2082 | are calling the target directly. When using __d_plt_call we want to | |
2083 | use a PLABEL instead of an import stub. */ | |
2084 | int using_gcc_plt_call = 1; | |
2085 | ||
2086 | #ifdef GDB_TARGET_IS_HPPA_20W | |
2087 | /* We currently use completely different code for the PA2.0W inferior | |
2088 | function call sequences. This needs to be cleaned up. */ | |
2089 | { | |
2090 | CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5; | |
2091 | struct target_waitstatus w; | |
2092 | int inst1, inst2; | |
2093 | char buf[4]; | |
2094 | int status; | |
2095 | struct objfile *objfile; | |
2096 | ||
2097 | /* We can not modify the PC space queues directly, so we start | |
2098 | up the inferior and execute a couple instructions to set the | |
2099 | space queues so that they point to the call dummy in the stack. */ | |
2100 | pcsqh = read_register (PCSQ_HEAD_REGNUM); | |
2101 | sr5 = read_register (SR5_REGNUM); | |
2102 | if (1) | |
2103 | { | |
2104 | pcoqh = read_register (PCOQ_HEAD_REGNUM); | |
2105 | pcoqt = read_register (PCOQ_TAIL_REGNUM); | |
2106 | if (target_read_memory (pcoqh, buf, 4) != 0) | |
2107 | error ("Couldn't modify space queue\n"); | |
2108 | inst1 = extract_unsigned_integer (buf, 4); | |
2109 | ||
2110 | if (target_read_memory (pcoqt, buf, 4) != 0) | |
2111 | error ("Couldn't modify space queue\n"); | |
2112 | inst2 = extract_unsigned_integer (buf, 4); | |
2113 | ||
2114 | /* BVE (r1) */ | |
2115 | *((int *) buf) = 0xe820d000; | |
2116 | if (target_write_memory (pcoqh, buf, 4) != 0) | |
2117 | error ("Couldn't modify space queue\n"); | |
2118 | ||
2119 | /* NOP */ | |
2120 | *((int *) buf) = 0x08000240; | |
2121 | if (target_write_memory (pcoqt, buf, 4) != 0) | |
2122 | { | |
2123 | *((int *) buf) = inst1; | |
2124 | target_write_memory (pcoqh, buf, 4); | |
2125 | error ("Couldn't modify space queue\n"); | |
2126 | } | |
2127 | ||
2128 | write_register (1, pc); | |
2129 | ||
2130 | /* Single step twice, the BVE instruction will set the space queue | |
2131 | such that it points to the PC value written immediately above | |
2132 | (ie the call dummy). */ | |
2133 | resume (1, 0); | |
2134 | target_wait (inferior_ptid, &w); | |
2135 | resume (1, 0); | |
2136 | target_wait (inferior_ptid, &w); | |
2137 | ||
2138 | /* Restore the two instructions at the old PC locations. */ | |
2139 | *((int *) buf) = inst1; | |
2140 | target_write_memory (pcoqh, buf, 4); | |
2141 | *((int *) buf) = inst2; | |
2142 | target_write_memory (pcoqt, buf, 4); | |
2143 | } | |
2144 | ||
2145 | /* The call dummy wants the ultimate destination address initially | |
2146 | in register %r5. */ | |
2147 | write_register (5, fun); | |
2148 | ||
2149 | /* We need to see if this objfile has a different DP value than our | |
2150 | own (it could be a shared library for example). */ | |
2151 | ALL_OBJFILES (objfile) | |
2152 | { | |
2153 | struct obj_section *s; | |
2154 | obj_private_data_t *obj_private; | |
2155 | ||
2156 | /* See if FUN is in any section within this shared library. */ | |
2157 | for (s = objfile->sections; s < objfile->sections_end; s++) | |
2158 | if (s->addr <= fun && fun < s->endaddr) | |
2159 | break; | |
2160 | ||
2161 | if (s >= objfile->sections_end) | |
2162 | continue; | |
2163 | ||
2164 | obj_private = (obj_private_data_t *) objfile->obj_private; | |
2165 | ||
2166 | /* The DP value may be different for each objfile. But within an | |
2167 | objfile each function uses the same dp value. Thus we do not need | |
2168 | to grope around the opd section looking for dp values. | |
2169 | ||
2170 | ?!? This is not strictly correct since we may be in a shared library | |
2171 | and want to call back into the main program. To make that case | |
2172 | work correctly we need to set obj_private->dp for the main program's | |
2173 | objfile, then remove this conditional. */ | |
2174 | if (obj_private->dp) | |
2175 | write_register (27, obj_private->dp); | |
2176 | break; | |
2177 | } | |
2178 | return pc; | |
2179 | } | |
2180 | #endif | |
2181 | ||
2182 | #ifndef GDB_TARGET_IS_HPPA_20W | |
2183 | /* Prefer __gcc_plt_call over the HP supplied routine because | |
2184 | __gcc_plt_call works for any number of arguments. */ | |
2185 | trampoline = NULL; | |
2186 | if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL) | |
2187 | using_gcc_plt_call = 0; | |
2188 | ||
2189 | msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
2190 | if (msymbol == NULL) | |
2191 | error ("Can't find an address for $$dyncall trampoline"); | |
2192 | ||
2193 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2194 | ||
2195 | /* FUN could be a procedure label, in which case we have to get | |
2196 | its real address and the value of its GOT/DP if we plan to | |
2197 | call the routine via gcc_plt_call. */ | |
2198 | if ((fun & 0x2) && using_gcc_plt_call) | |
2199 | { | |
2200 | /* Get the GOT/DP value for the target function. It's | |
2201 | at *(fun+4). Note the call dummy is *NOT* allowed to | |
2202 | trash %r19 before calling the target function. */ | |
2203 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, | |
2204 | REGISTER_SIZE)); | |
2205 | ||
2206 | /* Now get the real address for the function we are calling, it's | |
2207 | at *fun. */ | |
2208 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, | |
2209 | TARGET_PTR_BIT / 8); | |
2210 | } | |
2211 | else | |
2212 | { | |
2213 | ||
2214 | #ifndef GDB_TARGET_IS_PA_ELF | |
2215 | /* FUN could be an export stub, the real address of a function, or | |
2216 | a PLABEL. When using gcc's PLT call routine we must call an import | |
2217 | stub rather than the export stub or real function for lazy binding | |
2218 | to work correctly | |
2219 | ||
2220 | If we are using the gcc PLT call routine, then we need to | |
2221 | get the import stub for the target function. */ | |
2222 | if (using_gcc_plt_call && som_solib_get_got_by_pc (fun)) | |
2223 | { | |
2224 | struct objfile *objfile; | |
2225 | struct minimal_symbol *funsymbol, *stub_symbol; | |
2226 | CORE_ADDR newfun = 0; | |
2227 | ||
2228 | funsymbol = lookup_minimal_symbol_by_pc (fun); | |
2229 | if (!funsymbol) | |
2230 | error ("Unable to find minimal symbol for target function.\n"); | |
2231 | ||
2232 | /* Search all the object files for an import symbol with the | |
2233 | right name. */ | |
2234 | ALL_OBJFILES (objfile) | |
2235 | { | |
2236 | stub_symbol | |
2237 | = lookup_minimal_symbol_solib_trampoline | |
2238 | (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile); | |
2239 | ||
2240 | if (!stub_symbol) | |
2241 | stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol), | |
2242 | NULL, objfile); | |
2243 | ||
2244 | /* Found a symbol with the right name. */ | |
2245 | if (stub_symbol) | |
2246 | { | |
2247 | struct unwind_table_entry *u; | |
2248 | /* It must be a shared library trampoline. */ | |
2249 | if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) | |
2250 | continue; | |
2251 | ||
2252 | /* It must also be an import stub. */ | |
2253 | u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); | |
2254 | if (u == NULL | |
2255 | || (u->stub_unwind.stub_type != IMPORT | |
2256 | #ifdef GDB_NATIVE_HPUX_11 | |
2257 | /* Sigh. The hpux 10.20 dynamic linker will blow | |
2258 | chunks if we perform a call to an unbound function | |
2259 | via the IMPORT_SHLIB stub. The hpux 11.00 dynamic | |
2260 | linker will blow chunks if we do not call the | |
2261 | unbound function via the IMPORT_SHLIB stub. | |
2262 | ||
2263 | We currently have no way to select bevahior on just | |
2264 | the target. However, we only support HPUX/SOM in | |
2265 | native mode. So we conditinalize on a native | |
2266 | #ifdef. Ugly. Ugly. Ugly */ | |
2267 | && u->stub_unwind.stub_type != IMPORT_SHLIB | |
2268 | #endif | |
2269 | )) | |
2270 | continue; | |
2271 | ||
2272 | /* OK. Looks like the correct import stub. */ | |
2273 | newfun = SYMBOL_VALUE (stub_symbol); | |
2274 | fun = newfun; | |
2275 | ||
2276 | /* If we found an IMPORT stub, then we want to stop | |
2277 | searching now. If we found an IMPORT_SHLIB, we want | |
2278 | to continue the search in the hopes that we will find | |
2279 | an IMPORT stub. */ | |
2280 | if (u->stub_unwind.stub_type == IMPORT) | |
2281 | break; | |
2282 | } | |
2283 | } | |
2284 | ||
2285 | /* Ouch. We did not find an import stub. Make an attempt to | |
2286 | do the right thing instead of just croaking. Most of the | |
2287 | time this will actually work. */ | |
2288 | if (newfun == 0) | |
2289 | write_register (19, som_solib_get_got_by_pc (fun)); | |
2290 | ||
2291 | u = find_unwind_entry (fun); | |
2292 | if (u | |
2293 | && (u->stub_unwind.stub_type == IMPORT | |
2294 | || u->stub_unwind.stub_type == IMPORT_SHLIB)) | |
2295 | trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); | |
2296 | ||
2297 | /* If we found the import stub in the shared library, then we have | |
2298 | to set %r19 before we call the stub. */ | |
2299 | if (u && u->stub_unwind.stub_type == IMPORT_SHLIB) | |
2300 | write_register (19, som_solib_get_got_by_pc (fun)); | |
2301 | } | |
2302 | #endif | |
2303 | } | |
2304 | ||
2305 | /* If we are calling into another load module then have sr4export call the | |
2306 | magic __d_plt_call routine which is linked in from end.o. | |
2307 | ||
2308 | You can't use _sr4export to make the call as the value in sp-24 will get | |
2309 | fried and you end up returning to the wrong location. You can't call the | |
2310 | target as the code to bind the PLT entry to a function can't return to a | |
2311 | stack address. | |
2312 | ||
2313 | Also, query the dynamic linker in the inferior to provide a suitable | |
2314 | PLABEL for the target function. */ | |
2315 | if (!using_gcc_plt_call) | |
2316 | { | |
2317 | CORE_ADDR new_fun; | |
2318 | ||
2319 | /* Get a handle for the shared library containing FUN. Given the | |
2320 | handle we can query the shared library for a PLABEL. */ | |
2321 | solib_handle = som_solib_get_solib_by_pc (fun); | |
2322 | ||
2323 | if (solib_handle) | |
2324 | { | |
2325 | struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun); | |
2326 | ||
2327 | trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); | |
2328 | ||
2329 | if (trampoline == NULL) | |
2330 | { | |
2331 | error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc."); | |
2332 | } | |
2333 | ||
2334 | /* This is where sr4export will jump to. */ | |
2335 | new_fun = SYMBOL_VALUE_ADDRESS (trampoline); | |
2336 | ||
2337 | /* If the function is in a shared library, then call __d_shl_get to | |
2338 | get a PLABEL for the target function. */ | |
2339 | new_stub = find_stub_with_shl_get (fmsymbol, solib_handle); | |
2340 | ||
2341 | if (new_stub == 0) | |
2342 | error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol)); | |
2343 | ||
2344 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
2345 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, | |
2346 | (struct objfile *) NULL); | |
2347 | ||
2348 | if (msymbol == NULL) | |
2349 | error ("Can't find an address for __shlib_funcptr"); | |
2350 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
2351 | (char *) &new_stub, 4); | |
2352 | ||
2353 | /* We want sr4export to call __d_plt_call, so we claim it is | |
2354 | the final target. Clear trampoline. */ | |
2355 | fun = new_fun; | |
2356 | trampoline = NULL; | |
2357 | } | |
2358 | } | |
2359 | ||
2360 | /* Store upper 21 bits of function address into ldil. fun will either be | |
2361 | the final target (most cases) or __d_plt_call when calling into a shared | |
2362 | library and __gcc_plt_call is not available. */ | |
2363 | store_unsigned_integer | |
2364 | (&dummy[FUNC_LDIL_OFFSET], | |
2365 | INSTRUCTION_SIZE, | |
2366 | deposit_21 (fun >> 11, | |
2367 | extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], | |
2368 | INSTRUCTION_SIZE))); | |
2369 | ||
2370 | /* Store lower 11 bits of function address into ldo */ | |
2371 | store_unsigned_integer | |
2372 | (&dummy[FUNC_LDO_OFFSET], | |
2373 | INSTRUCTION_SIZE, | |
2374 | deposit_14 (fun & MASK_11, | |
2375 | extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], | |
2376 | INSTRUCTION_SIZE))); | |
2377 | #ifdef SR4EXPORT_LDIL_OFFSET | |
2378 | ||
2379 | { | |
2380 | CORE_ADDR trampoline_addr; | |
2381 | ||
2382 | /* We may still need sr4export's address too. */ | |
2383 | ||
2384 | if (trampoline == NULL) | |
2385 | { | |
2386 | msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
2387 | if (msymbol == NULL) | |
2388 | error ("Can't find an address for _sr4export trampoline"); | |
2389 | ||
2390 | trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2391 | } | |
2392 | else | |
2393 | trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); | |
2394 | ||
2395 | ||
2396 | /* Store upper 21 bits of trampoline's address into ldil */ | |
2397 | store_unsigned_integer | |
2398 | (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2399 | INSTRUCTION_SIZE, | |
2400 | deposit_21 (trampoline_addr >> 11, | |
2401 | extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2402 | INSTRUCTION_SIZE))); | |
2403 | ||
2404 | /* Store lower 11 bits of trampoline's address into ldo */ | |
2405 | store_unsigned_integer | |
2406 | (&dummy[SR4EXPORT_LDO_OFFSET], | |
2407 | INSTRUCTION_SIZE, | |
2408 | deposit_14 (trampoline_addr & MASK_11, | |
2409 | extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], | |
2410 | INSTRUCTION_SIZE))); | |
2411 | } | |
2412 | #endif | |
2413 | ||
2414 | write_register (22, pc); | |
2415 | ||
2416 | /* If we are in a syscall, then we should call the stack dummy | |
2417 | directly. $$dyncall is not needed as the kernel sets up the | |
2418 | space id registers properly based on the value in %r31. In | |
2419 | fact calling $$dyncall will not work because the value in %r22 | |
2420 | will be clobbered on the syscall exit path. | |
2421 | ||
2422 | Similarly if the current PC is in a shared library. Note however, | |
2423 | this scheme won't work if the shared library isn't mapped into | |
2424 | the same space as the stack. */ | |
2425 | if (flags & 2) | |
2426 | return pc; | |
2427 | #ifndef GDB_TARGET_IS_PA_ELF | |
2428 | else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid))) | |
2429 | return pc; | |
2430 | #endif | |
2431 | else | |
2432 | return dyncall_addr; | |
2433 | #endif | |
2434 | } | |
2435 | ||
2436 | /* If the pid is in a syscall, then the FP register is not readable. | |
2437 | We'll return zero in that case, rather than attempting to read it | |
2438 | and cause a warning. */ | |
2439 | ||
2440 | CORE_ADDR | |
2441 | hppa_read_fp (int pid) | |
2442 | { | |
2443 | int flags = read_register (FLAGS_REGNUM); | |
2444 | ||
2445 | if (flags & 2) | |
2446 | { | |
2447 | return (CORE_ADDR) 0; | |
2448 | } | |
2449 | ||
2450 | /* This is the only site that may directly read_register () the FP | |
2451 | register. All others must use TARGET_READ_FP (). */ | |
2452 | return read_register (FP_REGNUM); | |
2453 | } | |
2454 | ||
2455 | CORE_ADDR | |
2456 | hppa_target_read_fp (void) | |
2457 | { | |
2458 | return hppa_read_fp (PIDGET (inferior_ptid)); | |
2459 | } | |
2460 | ||
2461 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege | |
2462 | bits. */ | |
2463 | ||
2464 | CORE_ADDR | |
2465 | hppa_target_read_pc (ptid_t ptid) | |
2466 | { | |
2467 | int flags = read_register_pid (FLAGS_REGNUM, ptid); | |
2468 | ||
2469 | /* The following test does not belong here. It is OS-specific, and belongs | |
2470 | in native code. */ | |
2471 | /* Test SS_INSYSCALL */ | |
2472 | if (flags & 2) | |
2473 | return read_register_pid (31, ptid) & ~0x3; | |
2474 | ||
2475 | return read_register_pid (PC_REGNUM, ptid) & ~0x3; | |
2476 | } | |
2477 | ||
2478 | /* Write out the PC. If currently in a syscall, then also write the new | |
2479 | PC value into %r31. */ | |
2480 | ||
2481 | void | |
2482 | hppa_target_write_pc (CORE_ADDR v, ptid_t ptid) | |
2483 | { | |
2484 | int flags = read_register_pid (FLAGS_REGNUM, ptid); | |
2485 | ||
2486 | /* The following test does not belong here. It is OS-specific, and belongs | |
2487 | in native code. */ | |
2488 | /* If in a syscall, then set %r31. Also make sure to get the | |
2489 | privilege bits set correctly. */ | |
2490 | /* Test SS_INSYSCALL */ | |
2491 | if (flags & 2) | |
2492 | write_register_pid (31, v | 0x3, ptid); | |
2493 | ||
2494 | write_register_pid (PC_REGNUM, v, ptid); | |
2495 | write_register_pid (NPC_REGNUM, v + 4, ptid); | |
2496 | } | |
2497 | ||
2498 | /* return the alignment of a type in bytes. Structures have the maximum | |
2499 | alignment required by their fields. */ | |
2500 | ||
2501 | static int | |
2502 | hppa_alignof (struct type *type) | |
2503 | { | |
2504 | int max_align, align, i; | |
2505 | CHECK_TYPEDEF (type); | |
2506 | switch (TYPE_CODE (type)) | |
2507 | { | |
2508 | case TYPE_CODE_PTR: | |
2509 | case TYPE_CODE_INT: | |
2510 | case TYPE_CODE_FLT: | |
2511 | return TYPE_LENGTH (type); | |
2512 | case TYPE_CODE_ARRAY: | |
2513 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); | |
2514 | case TYPE_CODE_STRUCT: | |
2515 | case TYPE_CODE_UNION: | |
2516 | max_align = 1; | |
2517 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
2518 | { | |
2519 | /* Bit fields have no real alignment. */ | |
2520 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
2521 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ | |
2522 | { | |
2523 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
2524 | max_align = max (max_align, align); | |
2525 | } | |
2526 | } | |
2527 | return max_align; | |
2528 | default: | |
2529 | return 4; | |
2530 | } | |
2531 | } | |
2532 | ||
2533 | /* Print the register regnum, or all registers if regnum is -1 */ | |
2534 | ||
2535 | void | |
2536 | pa_do_registers_info (int regnum, int fpregs) | |
2537 | { | |
2538 | char raw_regs[REGISTER_BYTES]; | |
2539 | int i; | |
2540 | ||
2541 | /* Make a copy of gdb's save area (may cause actual | |
2542 | reads from the target). */ | |
2543 | for (i = 0; i < NUM_REGS; i++) | |
2544 | frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i)); | |
2545 | ||
2546 | if (regnum == -1) | |
2547 | pa_print_registers (raw_regs, regnum, fpregs); | |
2548 | else if (regnum < FP4_REGNUM) | |
2549 | { | |
2550 | long reg_val[2]; | |
2551 | ||
2552 | /* Why is the value not passed through "extract_signed_integer" | |
2553 | as in "pa_print_registers" below? */ | |
2554 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
2555 | ||
2556 | if (!is_pa_2) | |
2557 | { | |
2558 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); | |
2559 | } | |
2560 | else | |
2561 | { | |
2562 | /* Fancy % formats to prevent leading zeros. */ | |
2563 | if (reg_val[0] == 0) | |
2564 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); | |
2565 | else | |
2566 | printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum), | |
2567 | reg_val[0], reg_val[1]); | |
2568 | } | |
2569 | } | |
2570 | else | |
2571 | /* Note that real floating point values only start at | |
2572 | FP4_REGNUM. FP0 and up are just status and error | |
2573 | registers, which have integral (bit) values. */ | |
2574 | pa_print_fp_reg (regnum); | |
2575 | } | |
2576 | ||
2577 | /********** new function ********************/ | |
2578 | void | |
2579 | pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream, | |
2580 | enum precision_type precision) | |
2581 | { | |
2582 | char raw_regs[REGISTER_BYTES]; | |
2583 | int i; | |
2584 | ||
2585 | /* Make a copy of gdb's save area (may cause actual | |
2586 | reads from the target). */ | |
2587 | for (i = 0; i < NUM_REGS; i++) | |
2588 | frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i)); | |
2589 | ||
2590 | if (regnum == -1) | |
2591 | pa_strcat_registers (raw_regs, regnum, fpregs, stream); | |
2592 | ||
2593 | else if (regnum < FP4_REGNUM) | |
2594 | { | |
2595 | long reg_val[2]; | |
2596 | ||
2597 | /* Why is the value not passed through "extract_signed_integer" | |
2598 | as in "pa_print_registers" below? */ | |
2599 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
2600 | ||
2601 | if (!is_pa_2) | |
2602 | { | |
2603 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]); | |
2604 | } | |
2605 | else | |
2606 | { | |
2607 | /* Fancy % formats to prevent leading zeros. */ | |
2608 | if (reg_val[0] == 0) | |
2609 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), | |
2610 | reg_val[1]); | |
2611 | else | |
2612 | fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum), | |
2613 | reg_val[0], reg_val[1]); | |
2614 | } | |
2615 | } | |
2616 | else | |
2617 | /* Note that real floating point values only start at | |
2618 | FP4_REGNUM. FP0 and up are just status and error | |
2619 | registers, which have integral (bit) values. */ | |
2620 | pa_strcat_fp_reg (regnum, stream, precision); | |
2621 | } | |
2622 | ||
2623 | /* If this is a PA2.0 machine, fetch the real 64-bit register | |
2624 | value. Otherwise use the info from gdb's saved register area. | |
2625 | ||
2626 | Note that reg_val is really expected to be an array of longs, | |
2627 | with two elements. */ | |
2628 | static void | |
2629 | pa_register_look_aside (char *raw_regs, int regnum, long *raw_val) | |
2630 | { | |
2631 | static int know_which = 0; /* False */ | |
2632 | ||
2633 | int regaddr; | |
2634 | unsigned int offset; | |
2635 | register int i; | |
2636 | int start; | |
2637 | ||
2638 | ||
2639 | char *buf = alloca (max_register_size (current_gdbarch)); | |
2640 | long long reg_val; | |
2641 | ||
2642 | if (!know_which) | |
2643 | { | |
2644 | if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION)) | |
2645 | { | |
2646 | is_pa_2 = (1 == 1); | |
2647 | } | |
2648 | ||
2649 | know_which = 1; /* True */ | |
2650 | } | |
2651 | ||
2652 | raw_val[0] = 0; | |
2653 | raw_val[1] = 0; | |
2654 | ||
2655 | if (!is_pa_2) | |
2656 | { | |
2657 | raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum)); | |
2658 | return; | |
2659 | } | |
2660 | ||
2661 | /* Code below copied from hppah-nat.c, with fixes for wide | |
2662 | registers, using different area of save_state, etc. */ | |
2663 | if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM || | |
2664 | !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE) | |
2665 | { | |
2666 | /* Use narrow regs area of save_state and default macro. */ | |
2667 | offset = U_REGS_OFFSET; | |
2668 | regaddr = register_addr (regnum, offset); | |
2669 | start = 1; | |
2670 | } | |
2671 | else | |
2672 | { | |
2673 | /* Use wide regs area, and calculate registers as 8 bytes wide. | |
2674 | ||
2675 | We'd like to do this, but current version of "C" doesn't | |
2676 | permit "offsetof": | |
2677 | ||
2678 | offset = offsetof(save_state_t, ss_wide); | |
2679 | ||
2680 | Note that to avoid "C" doing typed pointer arithmetic, we | |
2681 | have to cast away the type in our offset calculation: | |
2682 | otherwise we get an offset of 1! */ | |
2683 | ||
2684 | /* NB: save_state_t is not available before HPUX 9. | |
2685 | The ss_wide field is not available previous to HPUX 10.20, | |
2686 | so to avoid compile-time warnings, we only compile this for | |
2687 | PA 2.0 processors. This control path should only be followed | |
2688 | if we're debugging a PA 2.0 processor, so this should not cause | |
2689 | problems. */ | |
2690 | ||
2691 | /* #if the following code out so that this file can still be | |
2692 | compiled on older HPUX boxes (< 10.20) which don't have | |
2693 | this structure/structure member. */ | |
2694 | #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1 | |
2695 | save_state_t temp; | |
2696 | ||
2697 | offset = ((int) &temp.ss_wide) - ((int) &temp); | |
2698 | regaddr = offset + regnum * 8; | |
2699 | start = 0; | |
2700 | #endif | |
2701 | } | |
2702 | ||
2703 | for (i = start; i < 2; i++) | |
2704 | { | |
2705 | errno = 0; | |
2706 | raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid), | |
2707 | (PTRACE_ARG3_TYPE) regaddr, 0); | |
2708 | if (errno != 0) | |
2709 | { | |
2710 | /* Warning, not error, in case we are attached; sometimes the | |
2711 | kernel doesn't let us at the registers. */ | |
2712 | char *err = safe_strerror (errno); | |
2713 | char *msg = alloca (strlen (err) + 128); | |
2714 | sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err); | |
2715 | warning (msg); | |
2716 | goto error_exit; | |
2717 | } | |
2718 | ||
2719 | regaddr += sizeof (long); | |
2720 | } | |
2721 | ||
2722 | if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM) | |
2723 | raw_val[1] &= ~0x3; /* I think we're masking out space bits */ | |
2724 | ||
2725 | error_exit: | |
2726 | ; | |
2727 | } | |
2728 | ||
2729 | /* "Info all-reg" command */ | |
2730 | ||
2731 | static void | |
2732 | pa_print_registers (char *raw_regs, int regnum, int fpregs) | |
2733 | { | |
2734 | int i, j; | |
2735 | /* Alas, we are compiled so that "long long" is 32 bits */ | |
2736 | long raw_val[2]; | |
2737 | long long_val; | |
2738 | int rows = 48, columns = 2; | |
2739 | ||
2740 | for (i = 0; i < rows; i++) | |
2741 | { | |
2742 | for (j = 0; j < columns; j++) | |
2743 | { | |
2744 | /* We display registers in column-major order. */ | |
2745 | int regnum = i + j * rows; | |
2746 | ||
2747 | /* Q: Why is the value passed through "extract_signed_integer", | |
2748 | while above, in "pa_do_registers_info" it isn't? | |
2749 | A: ? */ | |
2750 | pa_register_look_aside (raw_regs, regnum, &raw_val[0]); | |
2751 | ||
2752 | /* Even fancier % formats to prevent leading zeros | |
2753 | and still maintain the output in columns. */ | |
2754 | if (!is_pa_2) | |
2755 | { | |
2756 | /* Being big-endian, on this machine the low bits | |
2757 | (the ones we want to look at) are in the second longword. */ | |
2758 | long_val = extract_signed_integer (&raw_val[1], 4); | |
2759 | printf_filtered ("%10.10s: %8lx ", | |
2760 | REGISTER_NAME (regnum), long_val); | |
2761 | } | |
2762 | else | |
2763 | { | |
2764 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2765 | if (raw_val[0] == 0) | |
2766 | printf_filtered ("%10.10s: %8lx ", | |
2767 | REGISTER_NAME (regnum), raw_val[1]); | |
2768 | else | |
2769 | printf_filtered ("%10.10s: %8lx%8.8lx ", | |
2770 | REGISTER_NAME (regnum), | |
2771 | raw_val[0], raw_val[1]); | |
2772 | } | |
2773 | } | |
2774 | printf_unfiltered ("\n"); | |
2775 | } | |
2776 | ||
2777 | if (fpregs) | |
2778 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ | |
2779 | pa_print_fp_reg (i); | |
2780 | } | |
2781 | ||
2782 | /************* new function ******************/ | |
2783 | static void | |
2784 | pa_strcat_registers (char *raw_regs, int regnum, int fpregs, | |
2785 | struct ui_file *stream) | |
2786 | { | |
2787 | int i, j; | |
2788 | long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */ | |
2789 | long long_val; | |
2790 | enum precision_type precision; | |
2791 | ||
2792 | precision = unspecified_precision; | |
2793 | ||
2794 | for (i = 0; i < 18; i++) | |
2795 | { | |
2796 | for (j = 0; j < 4; j++) | |
2797 | { | |
2798 | /* Q: Why is the value passed through "extract_signed_integer", | |
2799 | while above, in "pa_do_registers_info" it isn't? | |
2800 | A: ? */ | |
2801 | pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]); | |
2802 | ||
2803 | /* Even fancier % formats to prevent leading zeros | |
2804 | and still maintain the output in columns. */ | |
2805 | if (!is_pa_2) | |
2806 | { | |
2807 | /* Being big-endian, on this machine the low bits | |
2808 | (the ones we want to look at) are in the second longword. */ | |
2809 | long_val = extract_signed_integer (&raw_val[1], 4); | |
2810 | fprintf_filtered (stream, "%8.8s: %8lx ", | |
2811 | REGISTER_NAME (i + (j * 18)), long_val); | |
2812 | } | |
2813 | else | |
2814 | { | |
2815 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2816 | if (raw_val[0] == 0) | |
2817 | fprintf_filtered (stream, "%8.8s: %8lx ", | |
2818 | REGISTER_NAME (i + (j * 18)), raw_val[1]); | |
2819 | else | |
2820 | fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ", | |
2821 | REGISTER_NAME (i + (j * 18)), raw_val[0], | |
2822 | raw_val[1]); | |
2823 | } | |
2824 | } | |
2825 | fprintf_unfiltered (stream, "\n"); | |
2826 | } | |
2827 | ||
2828 | if (fpregs) | |
2829 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ | |
2830 | pa_strcat_fp_reg (i, stream, precision); | |
2831 | } | |
2832 | ||
2833 | static void | |
2834 | pa_print_fp_reg (int i) | |
2835 | { | |
2836 | char *raw_buffer = alloca (max_register_size (current_gdbarch)); | |
2837 | char *virtual_buffer = alloca (max_register_size (current_gdbarch)); | |
2838 | ||
2839 | /* Get 32bits of data. */ | |
2840 | frame_register_read (deprecated_selected_frame, i, raw_buffer); | |
2841 | ||
2842 | /* Put it in the buffer. No conversions are ever necessary. */ | |
2843 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
2844 | ||
2845 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2846 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2847 | fputs_filtered ("(single precision) ", gdb_stdout); | |
2848 | ||
2849 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0, | |
2850 | 1, 0, Val_pretty_default); | |
2851 | printf_filtered ("\n"); | |
2852 | ||
2853 | /* If "i" is even, then this register can also be a double-precision | |
2854 | FP register. Dump it out as such. */ | |
2855 | if ((i % 2) == 0) | |
2856 | { | |
2857 | /* Get the data in raw format for the 2nd half. */ | |
2858 | frame_register_read (deprecated_selected_frame, i + 1, raw_buffer); | |
2859 | ||
2860 | /* Copy it into the appropriate part of the virtual buffer. */ | |
2861 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, | |
2862 | REGISTER_RAW_SIZE (i)); | |
2863 | ||
2864 | /* Dump it as a double. */ | |
2865 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2866 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2867 | fputs_filtered ("(double precision) ", gdb_stdout); | |
2868 | ||
2869 | val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0, | |
2870 | 1, 0, Val_pretty_default); | |
2871 | printf_filtered ("\n"); | |
2872 | } | |
2873 | } | |
2874 | ||
2875 | /*************** new function ***********************/ | |
2876 | static void | |
2877 | pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision) | |
2878 | { | |
2879 | char *raw_buffer = alloca (max_register_size (current_gdbarch)); | |
2880 | char *virtual_buffer = alloca (max_register_size (current_gdbarch)); | |
2881 | ||
2882 | fputs_filtered (REGISTER_NAME (i), stream); | |
2883 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream); | |
2884 | ||
2885 | /* Get 32bits of data. */ | |
2886 | frame_register_read (deprecated_selected_frame, i, raw_buffer); | |
2887 | ||
2888 | /* Put it in the buffer. No conversions are ever necessary. */ | |
2889 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
2890 | ||
2891 | if (precision == double_precision && (i % 2) == 0) | |
2892 | { | |
2893 | ||
2894 | char *raw_buf = alloca (max_register_size (current_gdbarch)); | |
2895 | ||
2896 | /* Get the data in raw format for the 2nd half. */ | |
2897 | frame_register_read (deprecated_selected_frame, i + 1, raw_buf); | |
2898 | ||
2899 | /* Copy it into the appropriate part of the virtual buffer. */ | |
2900 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i)); | |
2901 | ||
2902 | val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0, | |
2903 | 1, 0, Val_pretty_default); | |
2904 | ||
2905 | } | |
2906 | else | |
2907 | { | |
2908 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0, | |
2909 | 1, 0, Val_pretty_default); | |
2910 | } | |
2911 | ||
2912 | } | |
2913 | ||
2914 | /* Return one if PC is in the call path of a trampoline, else return zero. | |
2915 | ||
2916 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
2917 | just shared library trampolines (import, export). */ | |
2918 | ||
2919 | int | |
2920 | hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name) | |
2921 | { | |
2922 | struct minimal_symbol *minsym; | |
2923 | struct unwind_table_entry *u; | |
2924 | static CORE_ADDR dyncall = 0; | |
2925 | static CORE_ADDR sr4export = 0; | |
2926 | ||
2927 | #ifdef GDB_TARGET_IS_HPPA_20W | |
2928 | /* PA64 has a completely different stub/trampoline scheme. Is it | |
2929 | better? Maybe. It's certainly harder to determine with any | |
2930 | certainty that we are in a stub because we can not refer to the | |
2931 | unwinders to help. | |
2932 | ||
2933 | The heuristic is simple. Try to lookup the current PC value in th | |
2934 | minimal symbol table. If that fails, then assume we are not in a | |
2935 | stub and return. | |
2936 | ||
2937 | Then see if the PC value falls within the section bounds for the | |
2938 | section containing the minimal symbol we found in the first | |
2939 | step. If it does, then assume we are not in a stub and return. | |
2940 | ||
2941 | Finally peek at the instructions to see if they look like a stub. */ | |
2942 | { | |
2943 | struct minimal_symbol *minsym; | |
2944 | asection *sec; | |
2945 | CORE_ADDR addr; | |
2946 | int insn, i; | |
2947 | ||
2948 | minsym = lookup_minimal_symbol_by_pc (pc); | |
2949 | if (! minsym) | |
2950 | return 0; | |
2951 | ||
2952 | sec = SYMBOL_BFD_SECTION (minsym); | |
2953 | ||
2954 | if (sec->vma <= pc | |
2955 | && sec->vma + sec->_cooked_size < pc) | |
2956 | return 0; | |
2957 | ||
2958 | /* We might be in a stub. Peek at the instructions. Stubs are 3 | |
2959 | instructions long. */ | |
2960 | insn = read_memory_integer (pc, 4); | |
2961 | ||
2962 | /* Find out where we think we are within the stub. */ | |
2963 | if ((insn & 0xffffc00e) == 0x53610000) | |
2964 | addr = pc; | |
2965 | else if ((insn & 0xffffffff) == 0xe820d000) | |
2966 | addr = pc - 4; | |
2967 | else if ((insn & 0xffffc00e) == 0x537b0000) | |
2968 | addr = pc - 8; | |
2969 | else | |
2970 | return 0; | |
2971 | ||
2972 | /* Now verify each insn in the range looks like a stub instruction. */ | |
2973 | insn = read_memory_integer (addr, 4); | |
2974 | if ((insn & 0xffffc00e) != 0x53610000) | |
2975 | return 0; | |
2976 | ||
2977 | /* Now verify each insn in the range looks like a stub instruction. */ | |
2978 | insn = read_memory_integer (addr + 4, 4); | |
2979 | if ((insn & 0xffffffff) != 0xe820d000) | |
2980 | return 0; | |
2981 | ||
2982 | /* Now verify each insn in the range looks like a stub instruction. */ | |
2983 | insn = read_memory_integer (addr + 8, 4); | |
2984 | if ((insn & 0xffffc00e) != 0x537b0000) | |
2985 | return 0; | |
2986 | ||
2987 | /* Looks like a stub. */ | |
2988 | return 1; | |
2989 | } | |
2990 | #endif | |
2991 | ||
2992 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
2993 | new exec file */ | |
2994 | ||
2995 | /* First see if PC is in one of the two C-library trampolines. */ | |
2996 | if (!dyncall) | |
2997 | { | |
2998 | minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
2999 | if (minsym) | |
3000 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
3001 | else | |
3002 | dyncall = -1; | |
3003 | } | |
3004 | ||
3005 | if (!sr4export) | |
3006 | { | |
3007 | minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3008 | if (minsym) | |
3009 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
3010 | else | |
3011 | sr4export = -1; | |
3012 | } | |
3013 | ||
3014 | if (pc == dyncall || pc == sr4export) | |
3015 | return 1; | |
3016 | ||
3017 | minsym = lookup_minimal_symbol_by_pc (pc); | |
3018 | if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0) | |
3019 | return 1; | |
3020 | ||
3021 | /* Get the unwind descriptor corresponding to PC, return zero | |
3022 | if no unwind was found. */ | |
3023 | u = find_unwind_entry (pc); | |
3024 | if (!u) | |
3025 | return 0; | |
3026 | ||
3027 | /* If this isn't a linker stub, then return now. */ | |
3028 | if (u->stub_unwind.stub_type == 0) | |
3029 | return 0; | |
3030 | ||
3031 | /* By definition a long-branch stub is a call stub. */ | |
3032 | if (u->stub_unwind.stub_type == LONG_BRANCH) | |
3033 | return 1; | |
3034 | ||
3035 | /* The call and return path execute the same instructions within | |
3036 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3037 | trampoline. */ | |
3038 | if (u->stub_unwind.stub_type == IMPORT) | |
3039 | return 1; | |
3040 | ||
3041 | /* Parameter relocation stubs always have a call path and may have a | |
3042 | return path. */ | |
3043 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3044 | || u->stub_unwind.stub_type == EXPORT) | |
3045 | { | |
3046 | CORE_ADDR addr; | |
3047 | ||
3048 | /* Search forward from the current PC until we hit a branch | |
3049 | or the end of the stub. */ | |
3050 | for (addr = pc; addr <= u->region_end; addr += 4) | |
3051 | { | |
3052 | unsigned long insn; | |
3053 | ||
3054 | insn = read_memory_integer (addr, 4); | |
3055 | ||
3056 | /* Does it look like a bl? If so then it's the call path, if | |
3057 | we find a bv or be first, then we're on the return path. */ | |
3058 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3059 | return 1; | |
3060 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3061 | || (insn & 0xfc000000) == 0xe0000000) | |
3062 | return 0; | |
3063 | } | |
3064 | ||
3065 | /* Should never happen. */ | |
3066 | warning ("Unable to find branch in parameter relocation stub.\n"); | |
3067 | return 0; | |
3068 | } | |
3069 | ||
3070 | /* Unknown stub type. For now, just return zero. */ | |
3071 | return 0; | |
3072 | } | |
3073 | ||
3074 | /* Return one if PC is in the return path of a trampoline, else return zero. | |
3075 | ||
3076 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
3077 | just shared library trampolines (import, export). */ | |
3078 | ||
3079 | int | |
3080 | hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name) | |
3081 | { | |
3082 | struct unwind_table_entry *u; | |
3083 | ||
3084 | /* Get the unwind descriptor corresponding to PC, return zero | |
3085 | if no unwind was found. */ | |
3086 | u = find_unwind_entry (pc); | |
3087 | if (!u) | |
3088 | return 0; | |
3089 | ||
3090 | /* If this isn't a linker stub or it's just a long branch stub, then | |
3091 | return zero. */ | |
3092 | if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) | |
3093 | return 0; | |
3094 | ||
3095 | /* The call and return path execute the same instructions within | |
3096 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3097 | trampoline. */ | |
3098 | if (u->stub_unwind.stub_type == IMPORT) | |
3099 | return 1; | |
3100 | ||
3101 | /* Parameter relocation stubs always have a call path and may have a | |
3102 | return path. */ | |
3103 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3104 | || u->stub_unwind.stub_type == EXPORT) | |
3105 | { | |
3106 | CORE_ADDR addr; | |
3107 | ||
3108 | /* Search forward from the current PC until we hit a branch | |
3109 | or the end of the stub. */ | |
3110 | for (addr = pc; addr <= u->region_end; addr += 4) | |
3111 | { | |
3112 | unsigned long insn; | |
3113 | ||
3114 | insn = read_memory_integer (addr, 4); | |
3115 | ||
3116 | /* Does it look like a bl? If so then it's the call path, if | |
3117 | we find a bv or be first, then we're on the return path. */ | |
3118 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3119 | return 0; | |
3120 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3121 | || (insn & 0xfc000000) == 0xe0000000) | |
3122 | return 1; | |
3123 | } | |
3124 | ||
3125 | /* Should never happen. */ | |
3126 | warning ("Unable to find branch in parameter relocation stub.\n"); | |
3127 | return 0; | |
3128 | } | |
3129 | ||
3130 | /* Unknown stub type. For now, just return zero. */ | |
3131 | return 0; | |
3132 | ||
3133 | } | |
3134 | ||
3135 | /* Figure out if PC is in a trampoline, and if so find out where | |
3136 | the trampoline will jump to. If not in a trampoline, return zero. | |
3137 | ||
3138 | Simple code examination probably is not a good idea since the code | |
3139 | sequences in trampolines can also appear in user code. | |
3140 | ||
3141 | We use unwinds and information from the minimal symbol table to | |
3142 | determine when we're in a trampoline. This won't work for ELF | |
3143 | (yet) since it doesn't create stub unwind entries. Whether or | |
3144 | not ELF will create stub unwinds or normal unwinds for linker | |
3145 | stubs is still being debated. | |
3146 | ||
3147 | This should handle simple calls through dyncall or sr4export, | |
3148 | long calls, argument relocation stubs, and dyncall/sr4export | |
3149 | calling an argument relocation stub. It even handles some stubs | |
3150 | used in dynamic executables. */ | |
3151 | ||
3152 | CORE_ADDR | |
3153 | hppa_skip_trampoline_code (CORE_ADDR pc) | |
3154 | { | |
3155 | long orig_pc = pc; | |
3156 | long prev_inst, curr_inst, loc; | |
3157 | static CORE_ADDR dyncall = 0; | |
3158 | static CORE_ADDR dyncall_external = 0; | |
3159 | static CORE_ADDR sr4export = 0; | |
3160 | struct minimal_symbol *msym; | |
3161 | struct unwind_table_entry *u; | |
3162 | ||
3163 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
3164 | new exec file */ | |
3165 | ||
3166 | if (!dyncall) | |
3167 | { | |
3168 | msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
3169 | if (msym) | |
3170 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
3171 | else | |
3172 | dyncall = -1; | |
3173 | } | |
3174 | ||
3175 | if (!dyncall_external) | |
3176 | { | |
3177 | msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL); | |
3178 | if (msym) | |
3179 | dyncall_external = SYMBOL_VALUE_ADDRESS (msym); | |
3180 | else | |
3181 | dyncall_external = -1; | |
3182 | } | |
3183 | ||
3184 | if (!sr4export) | |
3185 | { | |
3186 | msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3187 | if (msym) | |
3188 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
3189 | else | |
3190 | sr4export = -1; | |
3191 | } | |
3192 | ||
3193 | /* Addresses passed to dyncall may *NOT* be the actual address | |
3194 | of the function. So we may have to do something special. */ | |
3195 | if (pc == dyncall) | |
3196 | { | |
3197 | pc = (CORE_ADDR) read_register (22); | |
3198 | ||
3199 | /* If bit 30 (counting from the left) is on, then pc is the address of | |
3200 | the PLT entry for this function, not the address of the function | |
3201 | itself. Bit 31 has meaning too, but only for MPE. */ | |
3202 | if (pc & 0x2) | |
3203 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); | |
3204 | } | |
3205 | if (pc == dyncall_external) | |
3206 | { | |
3207 | pc = (CORE_ADDR) read_register (22); | |
3208 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); | |
3209 | } | |
3210 | else if (pc == sr4export) | |
3211 | pc = (CORE_ADDR) (read_register (22)); | |
3212 | ||
3213 | /* Get the unwind descriptor corresponding to PC, return zero | |
3214 | if no unwind was found. */ | |
3215 | u = find_unwind_entry (pc); | |
3216 | if (!u) | |
3217 | return 0; | |
3218 | ||
3219 | /* If this isn't a linker stub, then return now. */ | |
3220 | /* elz: attention here! (FIXME) because of a compiler/linker | |
3221 | error, some stubs which should have a non zero stub_unwind.stub_type | |
3222 | have unfortunately a value of zero. So this function would return here | |
3223 | as if we were not in a trampoline. To fix this, we go look at the partial | |
3224 | symbol information, which reports this guy as a stub. | |
3225 | (FIXME): Unfortunately, we are not that lucky: it turns out that the | |
3226 | partial symbol information is also wrong sometimes. This is because | |
3227 | when it is entered (somread.c::som_symtab_read()) it can happen that | |
3228 | if the type of the symbol (from the som) is Entry, and the symbol is | |
3229 | in a shared library, then it can also be a trampoline. This would | |
3230 | be OK, except that I believe the way they decide if we are ina shared library | |
3231 | does not work. SOOOO..., even if we have a regular function w/o trampolines | |
3232 | its minimal symbol can be assigned type mst_solib_trampoline. | |
3233 | Also, if we find that the symbol is a real stub, then we fix the unwind | |
3234 | descriptor, and define the stub type to be EXPORT. | |
3235 | Hopefully this is correct most of the times. */ | |
3236 | if (u->stub_unwind.stub_type == 0) | |
3237 | { | |
3238 | ||
3239 | /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed | |
3240 | we can delete all the code which appears between the lines */ | |
3241 | /*--------------------------------------------------------------------------*/ | |
3242 | msym = lookup_minimal_symbol_by_pc (pc); | |
3243 | ||
3244 | if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline) | |
3245 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3246 | ||
3247 | else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline) | |
3248 | { | |
3249 | struct objfile *objfile; | |
3250 | struct minimal_symbol *msymbol; | |
3251 | int function_found = 0; | |
3252 | ||
3253 | /* go look if there is another minimal symbol with the same name as | |
3254 | this one, but with type mst_text. This would happen if the msym | |
3255 | is an actual trampoline, in which case there would be another | |
3256 | symbol with the same name corresponding to the real function */ | |
3257 | ||
3258 | ALL_MSYMBOLS (objfile, msymbol) | |
3259 | { | |
3260 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
3261 | && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym))) | |
3262 | { | |
3263 | function_found = 1; | |
3264 | break; | |
3265 | } | |
3266 | } | |
3267 | ||
3268 | if (function_found) | |
3269 | /* the type of msym is correct (mst_solib_trampoline), but | |
3270 | the unwind info is wrong, so set it to the correct value */ | |
3271 | u->stub_unwind.stub_type = EXPORT; | |
3272 | else | |
3273 | /* the stub type info in the unwind is correct (this is not a | |
3274 | trampoline), but the msym type information is wrong, it | |
3275 | should be mst_text. So we need to fix the msym, and also | |
3276 | get out of this function */ | |
3277 | { | |
3278 | MSYMBOL_TYPE (msym) = mst_text; | |
3279 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3280 | } | |
3281 | } | |
3282 | ||
3283 | /*--------------------------------------------------------------------------*/ | |
3284 | } | |
3285 | ||
3286 | /* It's a stub. Search for a branch and figure out where it goes. | |
3287 | Note we have to handle multi insn branch sequences like ldil;ble. | |
3288 | Most (all?) other branches can be determined by examining the contents | |
3289 | of certain registers and the stack. */ | |
3290 | ||
3291 | loc = pc; | |
3292 | curr_inst = 0; | |
3293 | prev_inst = 0; | |
3294 | while (1) | |
3295 | { | |
3296 | /* Make sure we haven't walked outside the range of this stub. */ | |
3297 | if (u != find_unwind_entry (loc)) | |
3298 | { | |
3299 | warning ("Unable to find branch in linker stub"); | |
3300 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3301 | } | |
3302 | ||
3303 | prev_inst = curr_inst; | |
3304 | curr_inst = read_memory_integer (loc, 4); | |
3305 | ||
3306 | /* Does it look like a branch external using %r1? Then it's the | |
3307 | branch from the stub to the actual function. */ | |
3308 | if ((curr_inst & 0xffe0e000) == 0xe0202000) | |
3309 | { | |
3310 | /* Yup. See if the previous instruction loaded | |
3311 | a value into %r1. If so compute and return the jump address. */ | |
3312 | if ((prev_inst & 0xffe00000) == 0x20200000) | |
3313 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; | |
3314 | else | |
3315 | { | |
3316 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
3317 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3318 | } | |
3319 | } | |
3320 | ||
3321 | /* Does it look like a be 0(sr0,%r21)? OR | |
3322 | Does it look like a be, n 0(sr0,%r21)? OR | |
3323 | Does it look like a bve (r21)? (this is on PA2.0) | |
3324 | Does it look like a bve, n(r21)? (this is also on PA2.0) | |
3325 | That's the branch from an | |
3326 | import stub to an export stub. | |
3327 | ||
3328 | It is impossible to determine the target of the branch via | |
3329 | simple examination of instructions and/or data (consider | |
3330 | that the address in the plabel may be the address of the | |
3331 | bind-on-reference routine in the dynamic loader). | |
3332 | ||
3333 | So we have try an alternative approach. | |
3334 | ||
3335 | Get the name of the symbol at our current location; it should | |
3336 | be a stub symbol with the same name as the symbol in the | |
3337 | shared library. | |
3338 | ||
3339 | Then lookup a minimal symbol with the same name; we should | |
3340 | get the minimal symbol for the target routine in the shared | |
3341 | library as those take precedence of import/export stubs. */ | |
3342 | if ((curr_inst == 0xe2a00000) || | |
3343 | (curr_inst == 0xe2a00002) || | |
3344 | (curr_inst == 0xeaa0d000) || | |
3345 | (curr_inst == 0xeaa0d002)) | |
3346 | { | |
3347 | struct minimal_symbol *stubsym, *libsym; | |
3348 | ||
3349 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
3350 | if (stubsym == NULL) | |
3351 | { | |
3352 | warning ("Unable to find symbol for 0x%lx", loc); | |
3353 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3354 | } | |
3355 | ||
3356 | libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL); | |
3357 | if (libsym == NULL) | |
3358 | { | |
3359 | warning ("Unable to find library symbol for %s\n", | |
3360 | DEPRECATED_SYMBOL_NAME (stubsym)); | |
3361 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3362 | } | |
3363 | ||
3364 | return SYMBOL_VALUE (libsym); | |
3365 | } | |
3366 | ||
3367 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a | |
3368 | branch from the stub to the actual function. */ | |
3369 | /*elz */ | |
3370 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 | |
3371 | || (curr_inst & 0xffe0e000) == 0xe8000000 | |
3372 | || (curr_inst & 0xffe0e000) == 0xe800A000) | |
3373 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; | |
3374 | ||
3375 | /* Does it look like bv (rp)? Note this depends on the | |
3376 | current stack pointer being the same as the stack | |
3377 | pointer in the stub itself! This is a branch on from the | |
3378 | stub back to the original caller. */ | |
3379 | /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */ | |
3380 | else if ((curr_inst & 0xffe0f000) == 0xe840c000) | |
3381 | { | |
3382 | /* Yup. See if the previous instruction loaded | |
3383 | rp from sp - 8. */ | |
3384 | if (prev_inst == 0x4bc23ff1) | |
3385 | return (read_memory_integer | |
3386 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
3387 | else | |
3388 | { | |
3389 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
3390 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3391 | } | |
3392 | } | |
3393 | ||
3394 | /* elz: added this case to capture the new instruction | |
3395 | at the end of the return part of an export stub used by | |
3396 | the PA2.0: BVE, n (rp) */ | |
3397 | else if ((curr_inst & 0xffe0f000) == 0xe840d000) | |
3398 | { | |
3399 | return (read_memory_integer | |
3400 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; | |
3401 | } | |
3402 | ||
3403 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
3404 | the original caller from the stub. Used in dynamic executables. */ | |
3405 | else if (curr_inst == 0xe0400002) | |
3406 | { | |
3407 | /* The value we jump to is sitting in sp - 24. But that's | |
3408 | loaded several instructions before the be instruction. | |
3409 | I guess we could check for the previous instruction being | |
3410 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
3411 | return (read_memory_integer | |
3412 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; | |
3413 | } | |
3414 | ||
3415 | /* Haven't found the branch yet, but we're still in the stub. | |
3416 | Keep looking. */ | |
3417 | loc += 4; | |
3418 | } | |
3419 | } | |
3420 | ||
3421 | ||
3422 | /* For the given instruction (INST), return any adjustment it makes | |
3423 | to the stack pointer or zero for no adjustment. | |
3424 | ||
3425 | This only handles instructions commonly found in prologues. */ | |
3426 | ||
3427 | static int | |
3428 | prologue_inst_adjust_sp (unsigned long inst) | |
3429 | { | |
3430 | /* This must persist across calls. */ | |
3431 | static int save_high21; | |
3432 | ||
3433 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
3434 | if ((inst & 0xffffc000) == 0x37de0000) | |
3435 | return extract_14 (inst); | |
3436 | ||
3437 | /* stwm X,D(sp) */ | |
3438 | if ((inst & 0xffe00000) == 0x6fc00000) | |
3439 | return extract_14 (inst); | |
3440 | ||
3441 | /* std,ma X,D(sp) */ | |
3442 | if ((inst & 0xffe00008) == 0x73c00008) | |
3443 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); | |
3444 | ||
3445 | /* addil high21,%r1; ldo low11,(%r1),%r30) | |
3446 | save high bits in save_high21 for later use. */ | |
3447 | if ((inst & 0xffe00000) == 0x28200000) | |
3448 | { | |
3449 | save_high21 = extract_21 (inst); | |
3450 | return 0; | |
3451 | } | |
3452 | ||
3453 | if ((inst & 0xffff0000) == 0x343e0000) | |
3454 | return save_high21 + extract_14 (inst); | |
3455 | ||
3456 | /* fstws as used by the HP compilers. */ | |
3457 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
3458 | return extract_5_load (inst); | |
3459 | ||
3460 | /* No adjustment. */ | |
3461 | return 0; | |
3462 | } | |
3463 | ||
3464 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
3465 | ||
3466 | static int | |
3467 | is_branch (unsigned long inst) | |
3468 | { | |
3469 | switch (inst >> 26) | |
3470 | { | |
3471 | case 0x20: | |
3472 | case 0x21: | |
3473 | case 0x22: | |
3474 | case 0x23: | |
3475 | case 0x27: | |
3476 | case 0x28: | |
3477 | case 0x29: | |
3478 | case 0x2a: | |
3479 | case 0x2b: | |
3480 | case 0x2f: | |
3481 | case 0x30: | |
3482 | case 0x31: | |
3483 | case 0x32: | |
3484 | case 0x33: | |
3485 | case 0x38: | |
3486 | case 0x39: | |
3487 | case 0x3a: | |
3488 | case 0x3b: | |
3489 | return 1; | |
3490 | ||
3491 | default: | |
3492 | return 0; | |
3493 | } | |
3494 | } | |
3495 | ||
3496 | /* Return the register number for a GR which is saved by INST or | |
3497 | zero it INST does not save a GR. */ | |
3498 | ||
3499 | static int | |
3500 | inst_saves_gr (unsigned long inst) | |
3501 | { | |
3502 | /* Does it look like a stw? */ | |
3503 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b | |
3504 | || (inst >> 26) == 0x1f | |
3505 | || ((inst >> 26) == 0x1f | |
3506 | && ((inst >> 6) == 0xa))) | |
3507 | return extract_5R_store (inst); | |
3508 | ||
3509 | /* Does it look like a std? */ | |
3510 | if ((inst >> 26) == 0x1c | |
3511 | || ((inst >> 26) == 0x03 | |
3512 | && ((inst >> 6) & 0xf) == 0xb)) | |
3513 | return extract_5R_store (inst); | |
3514 | ||
3515 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
3516 | if ((inst >> 26) == 0x1b) | |
3517 | return extract_5R_store (inst); | |
3518 | ||
3519 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
3520 | too. */ | |
3521 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 | |
3522 | || ((inst >> 26) == 0x3 | |
3523 | && (((inst >> 6) & 0xf) == 0x8 | |
3524 | || (inst >> 6) & 0xf) == 0x9)) | |
3525 | return extract_5R_store (inst); | |
3526 | ||
3527 | return 0; | |
3528 | } | |
3529 | ||
3530 | /* Return the register number for a FR which is saved by INST or | |
3531 | zero it INST does not save a FR. | |
3532 | ||
3533 | Note we only care about full 64bit register stores (that's the only | |
3534 | kind of stores the prologue will use). | |
3535 | ||
3536 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
3537 | ||
3538 | static int | |
3539 | inst_saves_fr (unsigned long inst) | |
3540 | { | |
3541 | /* is this an FSTD ? */ | |
3542 | if ((inst & 0xfc00dfc0) == 0x2c001200) | |
3543 | return extract_5r_store (inst); | |
3544 | if ((inst & 0xfc000002) == 0x70000002) | |
3545 | return extract_5R_store (inst); | |
3546 | /* is this an FSTW ? */ | |
3547 | if ((inst & 0xfc00df80) == 0x24001200) | |
3548 | return extract_5r_store (inst); | |
3549 | if ((inst & 0xfc000002) == 0x7c000000) | |
3550 | return extract_5R_store (inst); | |
3551 | return 0; | |
3552 | } | |
3553 | ||
3554 | /* Advance PC across any function entry prologue instructions | |
3555 | to reach some "real" code. | |
3556 | ||
3557 | Use information in the unwind table to determine what exactly should | |
3558 | be in the prologue. */ | |
3559 | ||
3560 | ||
3561 | CORE_ADDR | |
3562 | skip_prologue_hard_way (CORE_ADDR pc) | |
3563 | { | |
3564 | char buf[4]; | |
3565 | CORE_ADDR orig_pc = pc; | |
3566 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
3567 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
3568 | struct unwind_table_entry *u; | |
3569 | ||
3570 | restart_gr = 0; | |
3571 | restart_fr = 0; | |
3572 | ||
3573 | restart: | |
3574 | u = find_unwind_entry (pc); | |
3575 | if (!u) | |
3576 | return pc; | |
3577 | ||
3578 | /* If we are not at the beginning of a function, then return now. */ | |
3579 | if ((pc & ~0x3) != u->region_start) | |
3580 | return pc; | |
3581 | ||
3582 | /* This is how much of a frame adjustment we need to account for. */ | |
3583 | stack_remaining = u->Total_frame_size << 3; | |
3584 | ||
3585 | /* Magic register saves we want to know about. */ | |
3586 | save_rp = u->Save_RP; | |
3587 | save_sp = u->Save_SP; | |
3588 | ||
3589 | /* An indication that args may be stored into the stack. Unfortunately | |
3590 | the HPUX compilers tend to set this in cases where no args were | |
3591 | stored too!. */ | |
3592 | args_stored = 1; | |
3593 | ||
3594 | /* Turn the Entry_GR field into a bitmask. */ | |
3595 | save_gr = 0; | |
3596 | for (i = 3; i < u->Entry_GR + 3; i++) | |
3597 | { | |
3598 | /* Frame pointer gets saved into a special location. */ | |
3599 | if (u->Save_SP && i == FP_REGNUM) | |
3600 | continue; | |
3601 | ||
3602 | save_gr |= (1 << i); | |
3603 | } | |
3604 | save_gr &= ~restart_gr; | |
3605 | ||
3606 | /* Turn the Entry_FR field into a bitmask too. */ | |
3607 | save_fr = 0; | |
3608 | for (i = 12; i < u->Entry_FR + 12; i++) | |
3609 | save_fr |= (1 << i); | |
3610 | save_fr &= ~restart_fr; | |
3611 | ||
3612 | /* Loop until we find everything of interest or hit a branch. | |
3613 | ||
3614 | For unoptimized GCC code and for any HP CC code this will never ever | |
3615 | examine any user instructions. | |
3616 | ||
3617 | For optimzied GCC code we're faced with problems. GCC will schedule | |
3618 | its prologue and make prologue instructions available for delay slot | |
3619 | filling. The end result is user code gets mixed in with the prologue | |
3620 | and a prologue instruction may be in the delay slot of the first branch | |
3621 | or call. | |
3622 | ||
3623 | Some unexpected things are expected with debugging optimized code, so | |
3624 | we allow this routine to walk past user instructions in optimized | |
3625 | GCC code. */ | |
3626 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
3627 | || args_stored) | |
3628 | { | |
3629 | unsigned int reg_num; | |
3630 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
3631 | unsigned long old_save_rp, old_save_sp, next_inst; | |
3632 | ||
3633 | /* Save copies of all the triggers so we can compare them later | |
3634 | (only for HPC). */ | |
3635 | old_save_gr = save_gr; | |
3636 | old_save_fr = save_fr; | |
3637 | old_save_rp = save_rp; | |
3638 | old_save_sp = save_sp; | |
3639 | old_stack_remaining = stack_remaining; | |
3640 | ||
3641 | status = target_read_memory (pc, buf, 4); | |
3642 | inst = extract_unsigned_integer (buf, 4); | |
3643 | ||
3644 | /* Yow! */ | |
3645 | if (status != 0) | |
3646 | return pc; | |
3647 | ||
3648 | /* Note the interesting effects of this instruction. */ | |
3649 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
3650 | ||
3651 | /* There are limited ways to store the return pointer into the | |
3652 | stack. */ | |
3653 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1) | |
3654 | save_rp = 0; | |
3655 | ||
3656 | /* These are the only ways we save SP into the stack. At this time | |
3657 | the HP compilers never bother to save SP into the stack. */ | |
3658 | if ((inst & 0xffffc000) == 0x6fc10000 | |
3659 | || (inst & 0xffffc00c) == 0x73c10008) | |
3660 | save_sp = 0; | |
3661 | ||
3662 | /* Are we loading some register with an offset from the argument | |
3663 | pointer? */ | |
3664 | if ((inst & 0xffe00000) == 0x37a00000 | |
3665 | || (inst & 0xffffffe0) == 0x081d0240) | |
3666 | { | |
3667 | pc += 4; | |
3668 | continue; | |
3669 | } | |
3670 | ||
3671 | /* Account for general and floating-point register saves. */ | |
3672 | reg_num = inst_saves_gr (inst); | |
3673 | save_gr &= ~(1 << reg_num); | |
3674 | ||
3675 | /* Ugh. Also account for argument stores into the stack. | |
3676 | Unfortunately args_stored only tells us that some arguments | |
3677 | where stored into the stack. Not how many or what kind! | |
3678 | ||
3679 | This is a kludge as on the HP compiler sets this bit and it | |
3680 | never does prologue scheduling. So once we see one, skip past | |
3681 | all of them. We have similar code for the fp arg stores below. | |
3682 | ||
3683 | FIXME. Can still die if we have a mix of GR and FR argument | |
3684 | stores! */ | |
3685 | if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) | |
3686 | { | |
3687 | while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) | |
3688 | { | |
3689 | pc += 4; | |
3690 | status = target_read_memory (pc, buf, 4); | |
3691 | inst = extract_unsigned_integer (buf, 4); | |
3692 | if (status != 0) | |
3693 | return pc; | |
3694 | reg_num = inst_saves_gr (inst); | |
3695 | } | |
3696 | args_stored = 0; | |
3697 | continue; | |
3698 | } | |
3699 | ||
3700 | reg_num = inst_saves_fr (inst); | |
3701 | save_fr &= ~(1 << reg_num); | |
3702 | ||
3703 | status = target_read_memory (pc + 4, buf, 4); | |
3704 | next_inst = extract_unsigned_integer (buf, 4); | |
3705 | ||
3706 | /* Yow! */ | |
3707 | if (status != 0) | |
3708 | return pc; | |
3709 | ||
3710 | /* We've got to be read to handle the ldo before the fp register | |
3711 | save. */ | |
3712 | if ((inst & 0xfc000000) == 0x34000000 | |
3713 | && inst_saves_fr (next_inst) >= 4 | |
3714 | && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7)) | |
3715 | { | |
3716 | /* So we drop into the code below in a reasonable state. */ | |
3717 | reg_num = inst_saves_fr (next_inst); | |
3718 | pc -= 4; | |
3719 | } | |
3720 | ||
3721 | /* Ugh. Also account for argument stores into the stack. | |
3722 | This is a kludge as on the HP compiler sets this bit and it | |
3723 | never does prologue scheduling. So once we see one, skip past | |
3724 | all of them. */ | |
3725 | if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) | |
3726 | { | |
3727 | while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) | |
3728 | { | |
3729 | pc += 8; | |
3730 | status = target_read_memory (pc, buf, 4); | |
3731 | inst = extract_unsigned_integer (buf, 4); | |
3732 | if (status != 0) | |
3733 | return pc; | |
3734 | if ((inst & 0xfc000000) != 0x34000000) | |
3735 | break; | |
3736 | status = target_read_memory (pc + 4, buf, 4); | |
3737 | next_inst = extract_unsigned_integer (buf, 4); | |
3738 | if (status != 0) | |
3739 | return pc; | |
3740 | reg_num = inst_saves_fr (next_inst); | |
3741 | } | |
3742 | args_stored = 0; | |
3743 | continue; | |
3744 | } | |
3745 | ||
3746 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
3747 | instruction is in the delay slot of the first call/branch. */ | |
3748 | if (is_branch (inst)) | |
3749 | break; | |
3750 | ||
3751 | /* What a crock. The HP compilers set args_stored even if no | |
3752 | arguments were stored into the stack (boo hiss). This could | |
3753 | cause this code to then skip a bunch of user insns (up to the | |
3754 | first branch). | |
3755 | ||
3756 | To combat this we try to identify when args_stored was bogusly | |
3757 | set and clear it. We only do this when args_stored is nonzero, | |
3758 | all other resources are accounted for, and nothing changed on | |
3759 | this pass. */ | |
3760 | if (args_stored | |
3761 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
3762 | && old_save_gr == save_gr && old_save_fr == save_fr | |
3763 | && old_save_rp == save_rp && old_save_sp == save_sp | |
3764 | && old_stack_remaining == stack_remaining) | |
3765 | break; | |
3766 | ||
3767 | /* Bump the PC. */ | |
3768 | pc += 4; | |
3769 | } | |
3770 | ||
3771 | /* We've got a tenative location for the end of the prologue. However | |
3772 | because of limitations in the unwind descriptor mechanism we may | |
3773 | have went too far into user code looking for the save of a register | |
3774 | that does not exist. So, if there registers we expected to be saved | |
3775 | but never were, mask them out and restart. | |
3776 | ||
3777 | This should only happen in optimized code, and should be very rare. */ | |
3778 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) | |
3779 | { | |
3780 | pc = orig_pc; | |
3781 | restart_gr = save_gr; | |
3782 | restart_fr = save_fr; | |
3783 | goto restart; | |
3784 | } | |
3785 | ||
3786 | return pc; | |
3787 | } | |
3788 | ||
3789 | ||
3790 | /* Return the address of the PC after the last prologue instruction if | |
3791 | we can determine it from the debug symbols. Else return zero. */ | |
3792 | ||
3793 | static CORE_ADDR | |
3794 | after_prologue (CORE_ADDR pc) | |
3795 | { | |
3796 | struct symtab_and_line sal; | |
3797 | CORE_ADDR func_addr, func_end; | |
3798 | struct symbol *f; | |
3799 | ||
3800 | /* If we can not find the symbol in the partial symbol table, then | |
3801 | there is no hope we can determine the function's start address | |
3802 | with this code. */ | |
3803 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
3804 | return 0; | |
3805 | ||
3806 | /* Get the line associated with FUNC_ADDR. */ | |
3807 | sal = find_pc_line (func_addr, 0); | |
3808 | ||
3809 | /* There are only two cases to consider. First, the end of the source line | |
3810 | is within the function bounds. In that case we return the end of the | |
3811 | source line. Second is the end of the source line extends beyond the | |
3812 | bounds of the current function. We need to use the slow code to | |
3813 | examine instructions in that case. | |
3814 | ||
3815 | Anything else is simply a bug elsewhere. Fixing it here is absolutely | |
3816 | the wrong thing to do. In fact, it should be entirely possible for this | |
3817 | function to always return zero since the slow instruction scanning code | |
3818 | is supposed to *always* work. If it does not, then it is a bug. */ | |
3819 | if (sal.end < func_end) | |
3820 | return sal.end; | |
3821 | else | |
3822 | return 0; | |
3823 | } | |
3824 | ||
3825 | /* To skip prologues, I use this predicate. Returns either PC itself | |
3826 | if the code at PC does not look like a function prologue; otherwise | |
3827 | returns an address that (if we're lucky) follows the prologue. If | |
3828 | LENIENT, then we must skip everything which is involved in setting | |
3829 | up the frame (it's OK to skip more, just so long as we don't skip | |
3830 | anything which might clobber the registers which are being saved. | |
3831 | Currently we must not skip more on the alpha, but we might the lenient | |
3832 | stuff some day. */ | |
3833 | ||
3834 | CORE_ADDR | |
3835 | hppa_skip_prologue (CORE_ADDR pc) | |
3836 | { | |
3837 | unsigned long inst; | |
3838 | int offset; | |
3839 | CORE_ADDR post_prologue_pc; | |
3840 | char buf[4]; | |
3841 | ||
3842 | /* See if we can determine the end of the prologue via the symbol table. | |
3843 | If so, then return either PC, or the PC after the prologue, whichever | |
3844 | is greater. */ | |
3845 | ||
3846 | post_prologue_pc = after_prologue (pc); | |
3847 | ||
3848 | /* If after_prologue returned a useful address, then use it. Else | |
3849 | fall back on the instruction skipping code. | |
3850 | ||
3851 | Some folks have claimed this causes problems because the breakpoint | |
3852 | may be the first instruction of the prologue. If that happens, then | |
3853 | the instruction skipping code has a bug that needs to be fixed. */ | |
3854 | if (post_prologue_pc != 0) | |
3855 | return max (pc, post_prologue_pc); | |
3856 | else | |
3857 | return (skip_prologue_hard_way (pc)); | |
3858 | } | |
3859 | ||
3860 | /* Put here the code to store, into a struct frame_saved_regs, | |
3861 | the addresses of the saved registers of frame described by FRAME_INFO. | |
3862 | This includes special registers such as pc and fp saved in special | |
3863 | ways in the stack frame. sp is even more special: | |
3864 | the address we return for it IS the sp for the next frame. */ | |
3865 | ||
3866 | void | |
3867 | hppa_frame_find_saved_regs (struct frame_info *frame_info, | |
3868 | struct frame_saved_regs *frame_saved_regs) | |
3869 | { | |
3870 | CORE_ADDR pc; | |
3871 | struct unwind_table_entry *u; | |
3872 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
3873 | int status, i, reg; | |
3874 | char buf[4]; | |
3875 | int fp_loc = -1; | |
3876 | int final_iteration; | |
3877 | ||
3878 | /* Zero out everything. */ | |
3879 | memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); | |
3880 | ||
3881 | /* Call dummy frames always look the same, so there's no need to | |
3882 | examine the dummy code to determine locations of saved registers; | |
3883 | instead, let find_dummy_frame_regs fill in the correct offsets | |
3884 | for the saved registers. */ | |
3885 | if ((frame_info->pc >= frame_info->frame | |
3886 | && frame_info->pc <= (frame_info->frame | |
3887 | /* A call dummy is sized in words, but it is | |
3888 | actually a series of instructions. Account | |
3889 | for that scaling factor. */ | |
3890 | + ((REGISTER_SIZE / INSTRUCTION_SIZE) | |
3891 | * CALL_DUMMY_LENGTH) | |
3892 | /* Similarly we have to account for 64bit | |
3893 | wide register saves. */ | |
3894 | + (32 * REGISTER_SIZE) | |
3895 | /* We always consider FP regs 8 bytes long. */ | |
3896 | + (NUM_REGS - FP0_REGNUM) * 8 | |
3897 | /* Similarly we have to account for 64bit | |
3898 | wide register saves. */ | |
3899 | + (6 * REGISTER_SIZE)))) | |
3900 | find_dummy_frame_regs (frame_info, frame_saved_regs); | |
3901 | ||
3902 | /* Interrupt handlers are special too. They lay out the register | |
3903 | state in the exact same order as the register numbers in GDB. */ | |
3904 | if (pc_in_interrupt_handler (frame_info->pc)) | |
3905 | { | |
3906 | for (i = 0; i < NUM_REGS; i++) | |
3907 | { | |
3908 | /* SP is a little special. */ | |
3909 | if (i == SP_REGNUM) | |
3910 | frame_saved_regs->regs[SP_REGNUM] | |
3911 | = read_memory_integer (frame_info->frame + SP_REGNUM * 4, | |
3912 | TARGET_PTR_BIT / 8); | |
3913 | else | |
3914 | frame_saved_regs->regs[i] = frame_info->frame + i * 4; | |
3915 | } | |
3916 | return; | |
3917 | } | |
3918 | ||
3919 | #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP | |
3920 | /* Handle signal handler callers. */ | |
3921 | if ((get_frame_type (frame_info) == SIGTRAMP_FRAME)) | |
3922 | { | |
3923 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); | |
3924 | return; | |
3925 | } | |
3926 | #endif | |
3927 | ||
3928 | /* Get the starting address of the function referred to by the PC | |
3929 | saved in frame. */ | |
3930 | pc = get_pc_function_start (frame_info->pc); | |
3931 | ||
3932 | /* Yow! */ | |
3933 | u = find_unwind_entry (pc); | |
3934 | if (!u) | |
3935 | return; | |
3936 | ||
3937 | /* This is how much of a frame adjustment we need to account for. */ | |
3938 | stack_remaining = u->Total_frame_size << 3; | |
3939 | ||
3940 | /* Magic register saves we want to know about. */ | |
3941 | save_rp = u->Save_RP; | |
3942 | save_sp = u->Save_SP; | |
3943 | ||
3944 | /* Turn the Entry_GR field into a bitmask. */ | |
3945 | save_gr = 0; | |
3946 | for (i = 3; i < u->Entry_GR + 3; i++) | |
3947 | { | |
3948 | /* Frame pointer gets saved into a special location. */ | |
3949 | if (u->Save_SP && i == FP_REGNUM) | |
3950 | continue; | |
3951 | ||
3952 | save_gr |= (1 << i); | |
3953 | } | |
3954 | ||
3955 | /* Turn the Entry_FR field into a bitmask too. */ | |
3956 | save_fr = 0; | |
3957 | for (i = 12; i < u->Entry_FR + 12; i++) | |
3958 | save_fr |= (1 << i); | |
3959 | ||
3960 | /* The frame always represents the value of %sp at entry to the | |
3961 | current function (and is thus equivalent to the "saved" stack | |
3962 | pointer. */ | |
3963 | frame_saved_regs->regs[SP_REGNUM] = frame_info->frame; | |
3964 | ||
3965 | /* Loop until we find everything of interest or hit a branch. | |
3966 | ||
3967 | For unoptimized GCC code and for any HP CC code this will never ever | |
3968 | examine any user instructions. | |
3969 | ||
3970 | For optimized GCC code we're faced with problems. GCC will schedule | |
3971 | its prologue and make prologue instructions available for delay slot | |
3972 | filling. The end result is user code gets mixed in with the prologue | |
3973 | and a prologue instruction may be in the delay slot of the first branch | |
3974 | or call. | |
3975 | ||
3976 | Some unexpected things are expected with debugging optimized code, so | |
3977 | we allow this routine to walk past user instructions in optimized | |
3978 | GCC code. */ | |
3979 | final_iteration = 0; | |
3980 | while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
3981 | && pc <= frame_info->pc) | |
3982 | { | |
3983 | status = target_read_memory (pc, buf, 4); | |
3984 | inst = extract_unsigned_integer (buf, 4); | |
3985 | ||
3986 | /* Yow! */ | |
3987 | if (status != 0) | |
3988 | return; | |
3989 | ||
3990 | /* Note the interesting effects of this instruction. */ | |
3991 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
3992 | ||
3993 | /* There are limited ways to store the return pointer into the | |
3994 | stack. */ | |
3995 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
3996 | { | |
3997 | save_rp = 0; | |
3998 | frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20; | |
3999 | } | |
4000 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ | |
4001 | { | |
4002 | save_rp = 0; | |
4003 | frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16; | |
4004 | } | |
4005 | ||
4006 | /* Note if we saved SP into the stack. This also happens to indicate | |
4007 | the location of the saved frame pointer. */ | |
4008 | if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ | |
4009 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
4010 | { | |
4011 | frame_saved_regs->regs[FP_REGNUM] = frame_info->frame; | |
4012 | save_sp = 0; | |
4013 | } | |
4014 | ||
4015 | /* Account for general and floating-point register saves. */ | |
4016 | reg = inst_saves_gr (inst); | |
4017 | if (reg >= 3 && reg <= 18 | |
4018 | && (!u->Save_SP || reg != FP_REGNUM)) | |
4019 | { | |
4020 | save_gr &= ~(1 << reg); | |
4021 | ||
4022 | /* stwm with a positive displacement is a *post modify*. */ | |
4023 | if ((inst >> 26) == 0x1b | |
4024 | && extract_14 (inst) >= 0) | |
4025 | frame_saved_regs->regs[reg] = frame_info->frame; | |
4026 | /* A std has explicit post_modify forms. */ | |
4027 | else if ((inst & 0xfc00000c0) == 0x70000008) | |
4028 | frame_saved_regs->regs[reg] = frame_info->frame; | |
4029 | else | |
4030 | { | |
4031 | CORE_ADDR offset; | |
4032 | ||
4033 | if ((inst >> 26) == 0x1c) | |
4034 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); | |
4035 | else if ((inst >> 26) == 0x03) | |
4036 | offset = low_sign_extend (inst & 0x1f, 5); | |
4037 | else | |
4038 | offset = extract_14 (inst); | |
4039 | ||
4040 | /* Handle code with and without frame pointers. */ | |
4041 | if (u->Save_SP) | |
4042 | frame_saved_regs->regs[reg] | |
4043 | = frame_info->frame + offset; | |
4044 | else | |
4045 | frame_saved_regs->regs[reg] | |
4046 | = (frame_info->frame + (u->Total_frame_size << 3) | |
4047 | + offset); | |
4048 | } | |
4049 | } | |
4050 | ||
4051 | ||
4052 | /* GCC handles callee saved FP regs a little differently. | |
4053 | ||
4054 | It emits an instruction to put the value of the start of | |
4055 | the FP store area into %r1. It then uses fstds,ma with | |
4056 | a basereg of %r1 for the stores. | |
4057 | ||
4058 | HP CC emits them at the current stack pointer modifying | |
4059 | the stack pointer as it stores each register. */ | |
4060 | ||
4061 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
4062 | if ((inst & 0xffffc000) == 0x34610000 | |
4063 | || (inst & 0xffffc000) == 0x37c10000) | |
4064 | fp_loc = extract_14 (inst); | |
4065 | ||
4066 | reg = inst_saves_fr (inst); | |
4067 | if (reg >= 12 && reg <= 21) | |
4068 | { | |
4069 | /* Note +4 braindamage below is necessary because the FP status | |
4070 | registers are internally 8 registers rather than the expected | |
4071 | 4 registers. */ | |
4072 | save_fr &= ~(1 << reg); | |
4073 | if (fp_loc == -1) | |
4074 | { | |
4075 | /* 1st HP CC FP register store. After this instruction | |
4076 | we've set enough state that the GCC and HPCC code are | |
4077 | both handled in the same manner. */ | |
4078 | frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame; | |
4079 | fp_loc = 8; | |
4080 | } | |
4081 | else | |
4082 | { | |
4083 | frame_saved_regs->regs[reg + FP0_REGNUM + 4] | |
4084 | = frame_info->frame + fp_loc; | |
4085 | fp_loc += 8; | |
4086 | } | |
4087 | } | |
4088 | ||
4089 | /* Quit if we hit any kind of branch the previous iteration. */ | |
4090 | if (final_iteration) | |
4091 | break; | |
4092 | ||
4093 | /* We want to look precisely one instruction beyond the branch | |
4094 | if we have not found everything yet. */ | |
4095 | if (is_branch (inst)) | |
4096 | final_iteration = 1; | |
4097 | ||
4098 | /* Bump the PC. */ | |
4099 | pc += 4; | |
4100 | } | |
4101 | } | |
4102 | ||
4103 | ||
4104 | /* Exception handling support for the HP-UX ANSI C++ compiler. | |
4105 | The compiler (aCC) provides a callback for exception events; | |
4106 | GDB can set a breakpoint on this callback and find out what | |
4107 | exception event has occurred. */ | |
4108 | ||
4109 | /* The name of the hook to be set to point to the callback function */ | |
4110 | static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook"; | |
4111 | /* The name of the function to be used to set the hook value */ | |
4112 | static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value"; | |
4113 | /* The name of the callback function in end.o */ | |
4114 | static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback"; | |
4115 | /* Name of function in end.o on which a break is set (called by above) */ | |
4116 | static char HP_ACC_EH_break[] = "__d_eh_break"; | |
4117 | /* Name of flag (in end.o) that enables catching throws */ | |
4118 | static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw"; | |
4119 | /* Name of flag (in end.o) that enables catching catching */ | |
4120 | static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch"; | |
4121 | /* The enum used by aCC */ | |
4122 | typedef enum | |
4123 | { | |
4124 | __EH_NOTIFY_THROW, | |
4125 | __EH_NOTIFY_CATCH | |
4126 | } | |
4127 | __eh_notification; | |
4128 | ||
4129 | /* Is exception-handling support available with this executable? */ | |
4130 | static int hp_cxx_exception_support = 0; | |
4131 | /* Has the initialize function been run? */ | |
4132 | int hp_cxx_exception_support_initialized = 0; | |
4133 | /* Similar to above, but imported from breakpoint.c -- non-target-specific */ | |
4134 | extern int exception_support_initialized; | |
4135 | /* Address of __eh_notify_hook */ | |
4136 | static CORE_ADDR eh_notify_hook_addr = 0; | |
4137 | /* Address of __d_eh_notify_callback */ | |
4138 | static CORE_ADDR eh_notify_callback_addr = 0; | |
4139 | /* Address of __d_eh_break */ | |
4140 | static CORE_ADDR eh_break_addr = 0; | |
4141 | /* Address of __d_eh_catch_catch */ | |
4142 | static CORE_ADDR eh_catch_catch_addr = 0; | |
4143 | /* Address of __d_eh_catch_throw */ | |
4144 | static CORE_ADDR eh_catch_throw_addr = 0; | |
4145 | /* Sal for __d_eh_break */ | |
4146 | static struct symtab_and_line *break_callback_sal = 0; | |
4147 | ||
4148 | /* Code in end.c expects __d_pid to be set in the inferior, | |
4149 | otherwise __d_eh_notify_callback doesn't bother to call | |
4150 | __d_eh_break! So we poke the pid into this symbol | |
4151 | ourselves. | |
4152 | 0 => success | |
4153 | 1 => failure */ | |
4154 | int | |
4155 | setup_d_pid_in_inferior (void) | |
4156 | { | |
4157 | CORE_ADDR anaddr; | |
4158 | struct minimal_symbol *msymbol; | |
4159 | char buf[4]; /* FIXME 32x64? */ | |
4160 | ||
4161 | /* Slam the pid of the process into __d_pid; failing is only a warning! */ | |
4162 | msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile); | |
4163 | if (msymbol == NULL) | |
4164 | { | |
4165 | warning ("Unable to find __d_pid symbol in object file."); | |
4166 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4167 | return 1; | |
4168 | } | |
4169 | ||
4170 | anaddr = SYMBOL_VALUE_ADDRESS (msymbol); | |
4171 | store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */ | |
4172 | if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */ | |
4173 | { | |
4174 | warning ("Unable to write __d_pid"); | |
4175 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4176 | return 1; | |
4177 | } | |
4178 | return 0; | |
4179 | } | |
4180 | ||
4181 | /* Initialize exception catchpoint support by looking for the | |
4182 | necessary hooks/callbacks in end.o, etc., and set the hook value to | |
4183 | point to the required debug function | |
4184 | ||
4185 | Return 0 => failure | |
4186 | 1 => success */ | |
4187 | ||
4188 | static int | |
4189 | initialize_hp_cxx_exception_support (void) | |
4190 | { | |
4191 | struct symtabs_and_lines sals; | |
4192 | struct cleanup *old_chain; | |
4193 | struct cleanup *canonical_strings_chain = NULL; | |
4194 | int i; | |
4195 | char *addr_start; | |
4196 | char *addr_end = NULL; | |
4197 | char **canonical = (char **) NULL; | |
4198 | int thread = -1; | |
4199 | struct symbol *sym = NULL; | |
4200 | struct minimal_symbol *msym = NULL; | |
4201 | struct objfile *objfile; | |
4202 | asection *shlib_info; | |
4203 | ||
4204 | /* Detect and disallow recursion. On HP-UX with aCC, infinite | |
4205 | recursion is a possibility because finding the hook for exception | |
4206 | callbacks involves making a call in the inferior, which means | |
4207 | re-inserting breakpoints which can re-invoke this code */ | |
4208 | ||
4209 | static int recurse = 0; | |
4210 | if (recurse > 0) | |
4211 | { | |
4212 | hp_cxx_exception_support_initialized = 0; | |
4213 | exception_support_initialized = 0; | |
4214 | return 0; | |
4215 | } | |
4216 | ||
4217 | hp_cxx_exception_support = 0; | |
4218 | ||
4219 | /* First check if we have seen any HP compiled objects; if not, | |
4220 | it is very unlikely that HP's idiosyncratic callback mechanism | |
4221 | for exception handling debug support will be available! | |
4222 | This will percolate back up to breakpoint.c, where our callers | |
4223 | will decide to try the g++ exception-handling support instead. */ | |
4224 | if (!hp_som_som_object_present) | |
4225 | return 0; | |
4226 | ||
4227 | /* We have a SOM executable with SOM debug info; find the hooks */ | |
4228 | ||
4229 | /* First look for the notify hook provided by aCC runtime libs */ | |
4230 | /* If we find this symbol, we conclude that the executable must | |
4231 | have HP aCC exception support built in. If this symbol is not | |
4232 | found, even though we're a HP SOM-SOM file, we may have been | |
4233 | built with some other compiler (not aCC). This results percolates | |
4234 | back up to our callers in breakpoint.c which can decide to | |
4235 | try the g++ style of exception support instead. | |
4236 | If this symbol is found but the other symbols we require are | |
4237 | not found, there is something weird going on, and g++ support | |
4238 | should *not* be tried as an alternative. | |
4239 | ||
4240 | ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined. | |
4241 | ASSUMPTION: HP aCC and g++ modules cannot be linked together. */ | |
4242 | ||
4243 | /* libCsup has this hook; it'll usually be non-debuggable */ | |
4244 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL); | |
4245 | if (msym) | |
4246 | { | |
4247 | eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4248 | hp_cxx_exception_support = 1; | |
4249 | } | |
4250 | else | |
4251 | { | |
4252 | warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook); | |
4253 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4254 | warning ("GDB will be unable to intercept exception events."); | |
4255 | eh_notify_hook_addr = 0; | |
4256 | hp_cxx_exception_support = 0; | |
4257 | return 0; | |
4258 | } | |
4259 | ||
4260 | /* Next look for the notify callback routine in end.o */ | |
4261 | /* This is always available in the SOM symbol dictionary if end.o is linked in */ | |
4262 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL); | |
4263 | if (msym) | |
4264 | { | |
4265 | eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4266 | hp_cxx_exception_support = 1; | |
4267 | } | |
4268 | else | |
4269 | { | |
4270 | warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback); | |
4271 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4272 | warning ("GDB will be unable to intercept exception events."); | |
4273 | eh_notify_callback_addr = 0; | |
4274 | return 0; | |
4275 | } | |
4276 | ||
4277 | #ifndef GDB_TARGET_IS_HPPA_20W | |
4278 | /* Check whether the executable is dynamically linked or archive bound */ | |
4279 | /* With an archive-bound executable we can use the raw addresses we find | |
4280 | for the callback function, etc. without modification. For an executable | |
4281 | with shared libraries, we have to do more work to find the plabel, which | |
4282 | can be the target of a call through $$dyncall from the aCC runtime support | |
4283 | library (libCsup) which is linked shared by default by aCC. */ | |
4284 | /* This test below was copied from somsolib.c/somread.c. It may not be a very | |
4285 | reliable one to test that an executable is linked shared. pai/1997-07-18 */ | |
4286 | shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$"); | |
4287 | if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0)) | |
4288 | { | |
4289 | /* The minsym we have has the local code address, but that's not the | |
4290 | plabel that can be used by an inter-load-module call. */ | |
4291 | /* Find solib handle for main image (which has end.o), and use that | |
4292 | and the min sym as arguments to __d_shl_get() (which does the equivalent | |
4293 | of shl_findsym()) to find the plabel. */ | |
4294 | ||
4295 | args_for_find_stub args; | |
4296 | static char message[] = "Error while finding exception callback hook:\n"; | |
4297 | ||
4298 | args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr); | |
4299 | args.msym = msym; | |
4300 | args.return_val = 0; | |
4301 | ||
4302 | recurse++; | |
4303 | catch_errors (cover_find_stub_with_shl_get, &args, message, | |
4304 | RETURN_MASK_ALL); | |
4305 | eh_notify_callback_addr = args.return_val; | |
4306 | recurse--; | |
4307 | ||
4308 | exception_catchpoints_are_fragile = 1; | |
4309 | ||
4310 | if (!eh_notify_callback_addr) | |
4311 | { | |
4312 | /* We can get here either if there is no plabel in the export list | |
4313 | for the main image, or if something strange happened (?) */ | |
4314 | warning ("Couldn't find a plabel (indirect function label) for the exception callback."); | |
4315 | warning ("GDB will not be able to intercept exception events."); | |
4316 | return 0; | |
4317 | } | |
4318 | } | |
4319 | else | |
4320 | exception_catchpoints_are_fragile = 0; | |
4321 | #endif | |
4322 | ||
4323 | /* Now, look for the breakpointable routine in end.o */ | |
4324 | /* This should also be available in the SOM symbol dict. if end.o linked in */ | |
4325 | msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL); | |
4326 | if (msym) | |
4327 | { | |
4328 | eh_break_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4329 | hp_cxx_exception_support = 1; | |
4330 | } | |
4331 | else | |
4332 | { | |
4333 | warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break); | |
4334 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4335 | warning ("GDB will be unable to intercept exception events."); | |
4336 | eh_break_addr = 0; | |
4337 | return 0; | |
4338 | } | |
4339 | ||
4340 | /* Next look for the catch enable flag provided in end.o */ | |
4341 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
4342 | VAR_NAMESPACE, 0, (struct symtab **) NULL); | |
4343 | if (sym) /* sometimes present in debug info */ | |
4344 | { | |
4345 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4346 | hp_cxx_exception_support = 1; | |
4347 | } | |
4348 | else | |
4349 | /* otherwise look in SOM symbol dict. */ | |
4350 | { | |
4351 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL); | |
4352 | if (msym) | |
4353 | { | |
4354 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4355 | hp_cxx_exception_support = 1; | |
4356 | } | |
4357 | else | |
4358 | { | |
4359 | warning ("Unable to enable interception of exception catches."); | |
4360 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4361 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4362 | return 0; | |
4363 | } | |
4364 | } | |
4365 | ||
4366 | /* Next look for the catch enable flag provided end.o */ | |
4367 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
4368 | VAR_NAMESPACE, 0, (struct symtab **) NULL); | |
4369 | if (sym) /* sometimes present in debug info */ | |
4370 | { | |
4371 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4372 | hp_cxx_exception_support = 1; | |
4373 | } | |
4374 | else | |
4375 | /* otherwise look in SOM symbol dict. */ | |
4376 | { | |
4377 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL); | |
4378 | if (msym) | |
4379 | { | |
4380 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4381 | hp_cxx_exception_support = 1; | |
4382 | } | |
4383 | else | |
4384 | { | |
4385 | warning ("Unable to enable interception of exception throws."); | |
4386 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4387 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4388 | return 0; | |
4389 | } | |
4390 | } | |
4391 | ||
4392 | /* Set the flags */ | |
4393 | hp_cxx_exception_support = 2; /* everything worked so far */ | |
4394 | hp_cxx_exception_support_initialized = 1; | |
4395 | exception_support_initialized = 1; | |
4396 | ||
4397 | return 1; | |
4398 | } | |
4399 | ||
4400 | /* Target operation for enabling or disabling interception of | |
4401 | exception events. | |
4402 | KIND is either EX_EVENT_THROW or EX_EVENT_CATCH | |
4403 | ENABLE is either 0 (disable) or 1 (enable). | |
4404 | Return value is NULL if no support found; | |
4405 | -1 if something went wrong, | |
4406 | or a pointer to a symtab/line struct if the breakpointable | |
4407 | address was found. */ | |
4408 | ||
4409 | struct symtab_and_line * | |
4410 | child_enable_exception_callback (enum exception_event_kind kind, int enable) | |
4411 | { | |
4412 | char buf[4]; | |
4413 | ||
4414 | if (!exception_support_initialized || !hp_cxx_exception_support_initialized) | |
4415 | if (!initialize_hp_cxx_exception_support ()) | |
4416 | return NULL; | |
4417 | ||
4418 | switch (hp_cxx_exception_support) | |
4419 | { | |
4420 | case 0: | |
4421 | /* Assuming no HP support at all */ | |
4422 | return NULL; | |
4423 | case 1: | |
4424 | /* HP support should be present, but something went wrong */ | |
4425 | return (struct symtab_and_line *) -1; /* yuck! */ | |
4426 | /* there may be other cases in the future */ | |
4427 | } | |
4428 | ||
4429 | /* Set the EH hook to point to the callback routine */ | |
4430 | store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */ | |
4431 | /* pai: (temp) FIXME should there be a pack operation first? */ | |
4432 | if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */ | |
4433 | { | |
4434 | warning ("Could not write to target memory for exception event callback."); | |
4435 | warning ("Interception of exception events may not work."); | |
4436 | return (struct symtab_and_line *) -1; | |
4437 | } | |
4438 | if (enable) | |
4439 | { | |
4440 | /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */ | |
4441 | if (PIDGET (inferior_ptid) > 0) | |
4442 | { | |
4443 | if (setup_d_pid_in_inferior ()) | |
4444 | return (struct symtab_and_line *) -1; | |
4445 | } | |
4446 | else | |
4447 | { | |
4448 | warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); | |
4449 | return (struct symtab_and_line *) -1; | |
4450 | } | |
4451 | } | |
4452 | ||
4453 | switch (kind) | |
4454 | { | |
4455 | case EX_EVENT_THROW: | |
4456 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4457 | if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */ | |
4458 | { | |
4459 | warning ("Couldn't enable exception throw interception."); | |
4460 | return (struct symtab_and_line *) -1; | |
4461 | } | |
4462 | break; | |
4463 | case EX_EVENT_CATCH: | |
4464 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4465 | if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */ | |
4466 | { | |
4467 | warning ("Couldn't enable exception catch interception."); | |
4468 | return (struct symtab_and_line *) -1; | |
4469 | } | |
4470 | break; | |
4471 | default: | |
4472 | error ("Request to enable unknown or unsupported exception event."); | |
4473 | } | |
4474 | ||
4475 | /* Copy break address into new sal struct, malloc'ing if needed. */ | |
4476 | if (!break_callback_sal) | |
4477 | { | |
4478 | break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line)); | |
4479 | } | |
4480 | init_sal (break_callback_sal); | |
4481 | break_callback_sal->symtab = NULL; | |
4482 | break_callback_sal->pc = eh_break_addr; | |
4483 | break_callback_sal->line = 0; | |
4484 | break_callback_sal->end = eh_break_addr; | |
4485 | ||
4486 | return break_callback_sal; | |
4487 | } | |
4488 | ||
4489 | /* Record some information about the current exception event */ | |
4490 | static struct exception_event_record current_ex_event; | |
4491 | /* Convenience struct */ | |
4492 | static struct symtab_and_line null_symtab_and_line = | |
4493 | {NULL, 0, 0, 0}; | |
4494 | ||
4495 | /* Report current exception event. Returns a pointer to a record | |
4496 | that describes the kind of the event, where it was thrown from, | |
4497 | and where it will be caught. More information may be reported | |
4498 | in the future */ | |
4499 | struct exception_event_record * | |
4500 | child_get_current_exception_event (void) | |
4501 | { | |
4502 | CORE_ADDR event_kind; | |
4503 | CORE_ADDR throw_addr; | |
4504 | CORE_ADDR catch_addr; | |
4505 | struct frame_info *fi, *curr_frame; | |
4506 | int level = 1; | |
4507 | ||
4508 | curr_frame = get_current_frame (); | |
4509 | if (!curr_frame) | |
4510 | return (struct exception_event_record *) NULL; | |
4511 | ||
4512 | /* Go up one frame to __d_eh_notify_callback, because at the | |
4513 | point when this code is executed, there's garbage in the | |
4514 | arguments of __d_eh_break. */ | |
4515 | fi = find_relative_frame (curr_frame, &level); | |
4516 | if (level != 0) | |
4517 | return (struct exception_event_record *) NULL; | |
4518 | ||
4519 | select_frame (fi); | |
4520 | ||
4521 | /* Read in the arguments */ | |
4522 | /* __d_eh_notify_callback() is called with 3 arguments: | |
4523 | 1. event kind catch or throw | |
4524 | 2. the target address if known | |
4525 | 3. a flag -- not sure what this is. pai/1997-07-17 */ | |
4526 | event_kind = read_register (ARG0_REGNUM); | |
4527 | catch_addr = read_register (ARG1_REGNUM); | |
4528 | ||
4529 | /* Now go down to a user frame */ | |
4530 | /* For a throw, __d_eh_break is called by | |
4531 | __d_eh_notify_callback which is called by | |
4532 | __notify_throw which is called | |
4533 | from user code. | |
4534 | For a catch, __d_eh_break is called by | |
4535 | __d_eh_notify_callback which is called by | |
4536 | <stackwalking stuff> which is called by | |
4537 | __throw__<stuff> or __rethrow_<stuff> which is called | |
4538 | from user code. */ | |
4539 | /* FIXME: Don't use such magic numbers; search for the frames */ | |
4540 | level = (event_kind == EX_EVENT_THROW) ? 3 : 4; | |
4541 | fi = find_relative_frame (curr_frame, &level); | |
4542 | if (level != 0) | |
4543 | return (struct exception_event_record *) NULL; | |
4544 | ||
4545 | select_frame (fi); | |
4546 | throw_addr = fi->pc; | |
4547 | ||
4548 | /* Go back to original (top) frame */ | |
4549 | select_frame (curr_frame); | |
4550 | ||
4551 | current_ex_event.kind = (enum exception_event_kind) event_kind; | |
4552 | current_ex_event.throw_sal = find_pc_line (throw_addr, 1); | |
4553 | current_ex_event.catch_sal = find_pc_line (catch_addr, 1); | |
4554 | ||
4555 | return ¤t_ex_event; | |
4556 | } | |
4557 | ||
4558 | /* Instead of this nasty cast, add a method pvoid() that prints out a | |
4559 | host VOID data type (remember %p isn't portable). */ | |
4560 | ||
4561 | static CORE_ADDR | |
4562 | hppa_pointer_to_address_hack (void *ptr) | |
4563 | { | |
4564 | gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr)); | |
4565 | return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr); | |
4566 | } | |
4567 | ||
4568 | static void | |
4569 | unwind_command (char *exp, int from_tty) | |
4570 | { | |
4571 | CORE_ADDR address; | |
4572 | struct unwind_table_entry *u; | |
4573 | ||
4574 | /* If we have an expression, evaluate it and use it as the address. */ | |
4575 | ||
4576 | if (exp != 0 && *exp != 0) | |
4577 | address = parse_and_eval_address (exp); | |
4578 | else | |
4579 | return; | |
4580 | ||
4581 | u = find_unwind_entry (address); | |
4582 | ||
4583 | if (!u) | |
4584 | { | |
4585 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
4586 | return; | |
4587 | } | |
4588 | ||
4589 | printf_unfiltered ("unwind_table_entry (0x%s):\n", | |
4590 | paddr_nz (hppa_pointer_to_address_hack (u))); | |
4591 | ||
4592 | printf_unfiltered ("\tregion_start = "); | |
4593 | print_address (u->region_start, gdb_stdout); | |
4594 | ||
4595 | printf_unfiltered ("\n\tregion_end = "); | |
4596 | print_address (u->region_end, gdb_stdout); | |
4597 | ||
4598 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); | |
4599 | ||
4600 | printf_unfiltered ("\n\tflags ="); | |
4601 | pif (Cannot_unwind); | |
4602 | pif (Millicode); | |
4603 | pif (Millicode_save_sr0); | |
4604 | pif (Entry_SR); | |
4605 | pif (Args_stored); | |
4606 | pif (Variable_Frame); | |
4607 | pif (Separate_Package_Body); | |
4608 | pif (Frame_Extension_Millicode); | |
4609 | pif (Stack_Overflow_Check); | |
4610 | pif (Two_Instruction_SP_Increment); | |
4611 | pif (Ada_Region); | |
4612 | pif (Save_SP); | |
4613 | pif (Save_RP); | |
4614 | pif (Save_MRP_in_frame); | |
4615 | pif (extn_ptr_defined); | |
4616 | pif (Cleanup_defined); | |
4617 | pif (MPE_XL_interrupt_marker); | |
4618 | pif (HP_UX_interrupt_marker); | |
4619 | pif (Large_frame); | |
4620 | ||
4621 | putchar_unfiltered ('\n'); | |
4622 | ||
4623 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); | |
4624 | ||
4625 | pin (Region_description); | |
4626 | pin (Entry_FR); | |
4627 | pin (Entry_GR); | |
4628 | pin (Total_frame_size); | |
4629 | } | |
4630 | ||
4631 | #ifdef PREPARE_TO_PROCEED | |
4632 | ||
4633 | /* If the user has switched threads, and there is a breakpoint | |
4634 | at the old thread's pc location, then switch to that thread | |
4635 | and return TRUE, else return FALSE and don't do a thread | |
4636 | switch (or rather, don't seem to have done a thread switch). | |
4637 | ||
4638 | Ptrace-based gdb will always return FALSE to the thread-switch | |
4639 | query, and thus also to PREPARE_TO_PROCEED. | |
4640 | ||
4641 | The important thing is whether there is a BPT instruction, | |
4642 | not how many user breakpoints there are. So we have to worry | |
4643 | about things like these: | |
4644 | ||
4645 | o Non-bp stop -- NO | |
4646 | ||
4647 | o User hits bp, no switch -- NO | |
4648 | ||
4649 | o User hits bp, switches threads -- YES | |
4650 | ||
4651 | o User hits bp, deletes bp, switches threads -- NO | |
4652 | ||
4653 | o User hits bp, deletes one of two or more bps | |
4654 | at that PC, user switches threads -- YES | |
4655 | ||
4656 | o Plus, since we're buffering events, the user may have hit a | |
4657 | breakpoint, deleted the breakpoint and then gotten another | |
4658 | hit on that same breakpoint on another thread which | |
4659 | actually hit before the delete. (FIXME in breakpoint.c | |
4660 | so that "dead" breakpoints are ignored?) -- NO | |
4661 | ||
4662 | For these reasons, we have to violate information hiding and | |
4663 | call "breakpoint_here_p". If core gdb thinks there is a bpt | |
4664 | here, that's what counts, as core gdb is the one which is | |
4665 | putting the BPT instruction in and taking it out. | |
4666 | ||
4667 | Note that this implementation is potentially redundant now that | |
4668 | default_prepare_to_proceed() has been added. | |
4669 | ||
4670 | FIXME This may not support switching threads after Ctrl-C | |
4671 | correctly. The default implementation does support this. */ | |
4672 | int | |
4673 | hppa_prepare_to_proceed (void) | |
4674 | { | |
4675 | pid_t old_thread; | |
4676 | pid_t current_thread; | |
4677 | ||
4678 | old_thread = hppa_switched_threads (PIDGET (inferior_ptid)); | |
4679 | if (old_thread != 0) | |
4680 | { | |
4681 | /* Switched over from "old_thread". Try to do | |
4682 | as little work as possible, 'cause mostly | |
4683 | we're going to switch back. */ | |
4684 | CORE_ADDR new_pc; | |
4685 | CORE_ADDR old_pc = read_pc (); | |
4686 | ||
4687 | /* Yuk, shouldn't use global to specify current | |
4688 | thread. But that's how gdb does it. */ | |
4689 | current_thread = PIDGET (inferior_ptid); | |
4690 | inferior_ptid = pid_to_ptid (old_thread); | |
4691 | ||
4692 | new_pc = read_pc (); | |
4693 | if (new_pc != old_pc /* If at same pc, no need */ | |
4694 | && breakpoint_here_p (new_pc)) | |
4695 | { | |
4696 | /* User hasn't deleted the BP. | |
4697 | Return TRUE, finishing switch to "old_thread". */ | |
4698 | flush_cached_frames (); | |
4699 | registers_changed (); | |
4700 | #if 0 | |
4701 | printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n", | |
4702 | current_thread, PIDGET (inferior_ptid)); | |
4703 | #endif | |
4704 | ||
4705 | return 1; | |
4706 | } | |
4707 | ||
4708 | /* Otherwise switch back to the user-chosen thread. */ | |
4709 | inferior_ptid = pid_to_ptid (current_thread); | |
4710 | new_pc = read_pc (); /* Re-prime register cache */ | |
4711 | } | |
4712 | ||
4713 | return 0; | |
4714 | } | |
4715 | #endif /* PREPARE_TO_PROCEED */ | |
4716 | ||
4717 | void | |
4718 | hppa_skip_permanent_breakpoint (void) | |
4719 | { | |
4720 | /* To step over a breakpoint instruction on the PA takes some | |
4721 | fiddling with the instruction address queue. | |
4722 | ||
4723 | When we stop at a breakpoint, the IA queue front (the instruction | |
4724 | we're executing now) points at the breakpoint instruction, and | |
4725 | the IA queue back (the next instruction to execute) points to | |
4726 | whatever instruction we would execute after the breakpoint, if it | |
4727 | were an ordinary instruction. This is the case even if the | |
4728 | breakpoint is in the delay slot of a branch instruction. | |
4729 | ||
4730 | Clearly, to step past the breakpoint, we need to set the queue | |
4731 | front to the back. But what do we put in the back? What | |
4732 | instruction comes after that one? Because of the branch delay | |
4733 | slot, the next insn is always at the back + 4. */ | |
4734 | write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM)); | |
4735 | write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM)); | |
4736 | ||
4737 | write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4); | |
4738 | /* We can leave the tail's space the same, since there's no jump. */ | |
4739 | } | |
4740 | ||
4741 | /* Copy the function value from VALBUF into the proper location | |
4742 | for a function return. | |
4743 | ||
4744 | Called only in the context of the "return" command. */ | |
4745 | ||
4746 | void | |
4747 | hppa_store_return_value (struct type *type, char *valbuf) | |
4748 | { | |
4749 | /* For software floating point, the return value goes into the | |
4750 | integer registers. But we do not have any flag to key this on, | |
4751 | so we always store the value into the integer registers. | |
4752 | ||
4753 | If its a float value, then we also store it into the floating | |
4754 | point registers. */ | |
4755 | deprecated_write_register_bytes (REGISTER_BYTE (28) | |
4756 | + (TYPE_LENGTH (type) > 4 | |
4757 | ? (8 - TYPE_LENGTH (type)) | |
4758 | : (4 - TYPE_LENGTH (type))), | |
4759 | valbuf, TYPE_LENGTH (type)); | |
4760 | if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT) | |
4761 | deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM), | |
4762 | valbuf, TYPE_LENGTH (type)); | |
4763 | } | |
4764 | ||
4765 | /* Copy the function's return value into VALBUF. | |
4766 | ||
4767 | This function is called only in the context of "target function calls", | |
4768 | ie. when the debugger forces a function to be called in the child, and | |
4769 | when the debugger forces a fucntion to return prematurely via the | |
4770 | "return" command. */ | |
4771 | ||
4772 | void | |
4773 | hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
4774 | { | |
4775 | if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT) | |
4776 | memcpy (valbuf, | |
4777 | (char *)regbuf + REGISTER_BYTE (FP4_REGNUM), | |
4778 | TYPE_LENGTH (type)); | |
4779 | else | |
4780 | memcpy (valbuf, | |
4781 | ((char *)regbuf | |
4782 | + REGISTER_BYTE (28) | |
4783 | + (TYPE_LENGTH (type) > 4 | |
4784 | ? (8 - TYPE_LENGTH (type)) | |
4785 | : (4 - TYPE_LENGTH (type)))), | |
4786 | TYPE_LENGTH (type)); | |
4787 | } | |
4788 | ||
4789 | int | |
4790 | hppa_reg_struct_has_addr (int gcc_p, struct type *type) | |
4791 | { | |
4792 | /* On the PA, any pass-by-value structure > 8 bytes is actually passed | |
4793 | via a pointer regardless of its type or the compiler used. */ | |
4794 | return (TYPE_LENGTH (type) > 8); | |
4795 | } | |
4796 | ||
4797 | int | |
4798 | hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs) | |
4799 | { | |
4800 | /* Stack grows upward */ | |
4801 | return (lhs > rhs); | |
4802 | } | |
4803 | ||
4804 | CORE_ADDR | |
4805 | hppa_stack_align (CORE_ADDR sp) | |
4806 | { | |
4807 | /* elz: adjust the quantity to the next highest value which is | |
4808 | 64-bit aligned. This is used in valops.c, when the sp is adjusted. | |
4809 | On hppa the sp must always be kept 64-bit aligned */ | |
4810 | return ((sp % 8) ? (sp + 7) & -8 : sp); | |
4811 | } | |
4812 | ||
4813 | int | |
4814 | hppa_pc_requires_run_before_use (CORE_ADDR pc) | |
4815 | { | |
4816 | /* Sometimes we may pluck out a minimal symbol that has a negative address. | |
4817 | ||
4818 | An example of this occurs when an a.out is linked against a foo.sl. | |
4819 | The foo.sl defines a global bar(), and the a.out declares a signature | |
4820 | for bar(). However, the a.out doesn't directly call bar(), but passes | |
4821 | its address in another call. | |
4822 | ||
4823 | If you have this scenario and attempt to "break bar" before running, | |
4824 | gdb will find a minimal symbol for bar() in the a.out. But that | |
4825 | symbol's address will be negative. What this appears to denote is | |
4826 | an index backwards from the base of the procedure linkage table (PLT) | |
4827 | into the data linkage table (DLT), the end of which is contiguous | |
4828 | with the start of the PLT. This is clearly not a valid address for | |
4829 | us to set a breakpoint on. | |
4830 | ||
4831 | Note that one must be careful in how one checks for a negative address. | |
4832 | 0xc0000000 is a legitimate address of something in a shared text | |
4833 | segment, for example. Since I don't know what the possible range | |
4834 | is of these "really, truly negative" addresses that come from the | |
4835 | minimal symbols, I'm resorting to the gross hack of checking the | |
4836 | top byte of the address for all 1's. Sigh. */ | |
4837 | ||
4838 | return (!target_has_stack && (pc & 0xFF000000)); | |
4839 | } | |
4840 | ||
4841 | int | |
4842 | hppa_instruction_nullified (void) | |
4843 | { | |
4844 | /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would | |
4845 | avoid the type cast. I'm leaving it as is for now as I'm doing | |
4846 | semi-mechanical multiarching-related changes. */ | |
4847 | const int ipsw = (int) read_register (IPSW_REGNUM); | |
4848 | const int flags = (int) read_register (FLAGS_REGNUM); | |
4849 | ||
4850 | return ((ipsw & 0x00200000) && !(flags & 0x2)); | |
4851 | } | |
4852 | ||
4853 | int | |
4854 | hppa_register_raw_size (int reg_nr) | |
4855 | { | |
4856 | /* All registers have the same size. */ | |
4857 | return REGISTER_SIZE; | |
4858 | } | |
4859 | ||
4860 | /* Index within the register vector of the first byte of the space i | |
4861 | used for register REG_NR. */ | |
4862 | ||
4863 | int | |
4864 | hppa_register_byte (int reg_nr) | |
4865 | { | |
4866 | return reg_nr * 4; | |
4867 | } | |
4868 | ||
4869 | /* Return the GDB type object for the "standard" data type of data | |
4870 | in register N. */ | |
4871 | ||
4872 | struct type * | |
4873 | hppa_register_virtual_type (int reg_nr) | |
4874 | { | |
4875 | if (reg_nr < FP4_REGNUM) | |
4876 | return builtin_type_int; | |
4877 | else | |
4878 | return builtin_type_float; | |
4879 | } | |
4880 | ||
4881 | /* Store the address of the place in which to copy the structure the | |
4882 | subroutine will return. This is called from call_function. */ | |
4883 | ||
4884 | void | |
4885 | hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
4886 | { | |
4887 | write_register (28, addr); | |
4888 | } | |
4889 | ||
4890 | CORE_ADDR | |
4891 | hppa_extract_struct_value_address (char *regbuf) | |
4892 | { | |
4893 | /* Extract from an array REGBUF containing the (raw) register state | |
4894 | the address in which a function should return its structure value, | |
4895 | as a CORE_ADDR (or an expression that can be used as one). */ | |
4896 | /* FIXME: brobecker 2002-12-26. | |
4897 | The current implementation is historical, but we should eventually | |
4898 | implement it in a more robust manner as it relies on the fact that | |
4899 | the address size is equal to the size of an int* _on the host_... | |
4900 | One possible implementation that crossed my mind is to use | |
4901 | extract_address. */ | |
4902 | return (*(int *)(regbuf + REGISTER_BYTE (28))); | |
4903 | } | |
4904 | ||
4905 | /* Return True if REGNUM is not a register available to the user | |
4906 | through ptrace(). */ | |
4907 | ||
4908 | int | |
4909 | hppa_cannot_store_register (int regnum) | |
4910 | { | |
4911 | return (regnum == 0 | |
4912 | || regnum == PCSQ_HEAD_REGNUM | |
4913 | || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM) | |
4914 | || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM)); | |
4915 | ||
4916 | } | |
4917 | ||
4918 | CORE_ADDR | |
4919 | hppa_frame_args_address (struct frame_info *fi) | |
4920 | { | |
4921 | return fi->frame; | |
4922 | } | |
4923 | ||
4924 | CORE_ADDR | |
4925 | hppa_frame_locals_address (struct frame_info *fi) | |
4926 | { | |
4927 | return fi->frame; | |
4928 | } | |
4929 | ||
4930 | int | |
4931 | hppa_frame_num_args (struct frame_info *frame) | |
4932 | { | |
4933 | /* We can't tell how many args there are now that the C compiler delays | |
4934 | popping them. */ | |
4935 | return -1; | |
4936 | } | |
4937 | ||
4938 | CORE_ADDR | |
4939 | hppa_smash_text_address (CORE_ADDR addr) | |
4940 | { | |
4941 | /* The low two bits of the PC on the PA contain the privilege level. | |
4942 | Some genius implementing a (non-GCC) compiler apparently decided | |
4943 | this means that "addresses" in a text section therefore include a | |
4944 | privilege level, and thus symbol tables should contain these bits. | |
4945 | This seems like a bonehead thing to do--anyway, it seems to work | |
4946 | for our purposes to just ignore those bits. */ | |
4947 | ||
4948 | return (addr &= ~0x3); | |
4949 | } | |
4950 | ||
4951 | static struct gdbarch * | |
4952 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
4953 | { | |
4954 | struct gdbarch *gdbarch; | |
4955 | ||
4956 | /* Try to determine the ABI of the object we are loading. */ | |
4957 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) | |
4958 | { | |
4959 | /* If it's a SOM file, assume it's HP/UX SOM. */ | |
4960 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
4961 | info.osabi = GDB_OSABI_HPUX_SOM; | |
4962 | } | |
4963 | ||
4964 | /* find a candidate among the list of pre-declared architectures. */ | |
4965 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
4966 | if (arches != NULL) | |
4967 | return (arches->gdbarch); | |
4968 | ||
4969 | /* If none found, then allocate and initialize one. */ | |
4970 | gdbarch = gdbarch_alloc (&info, NULL); | |
4971 | ||
4972 | /* Hook in ABI-specific overrides, if they have been registered. */ | |
4973 | gdbarch_init_osabi (info, gdbarch); | |
4974 | ||
4975 | set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr); | |
4976 | set_gdbarch_function_start_offset (gdbarch, 0); | |
4977 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); | |
4978 | set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code); | |
4979 | set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline); | |
4980 | set_gdbarch_in_solib_return_trampoline (gdbarch, | |
4981 | hppa_in_solib_return_trampoline); | |
4982 | set_gdbarch_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call); | |
4983 | set_gdbarch_inner_than (gdbarch, hppa_inner_than); | |
4984 | set_gdbarch_stack_align (gdbarch, hppa_stack_align); | |
4985 | set_gdbarch_extra_stack_alignment_needed (gdbarch, 0); | |
4986 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
4987 | set_gdbarch_register_size (gdbarch, 4); | |
4988 | set_gdbarch_num_regs (gdbarch, hppa_num_regs); | |
4989 | set_gdbarch_fp_regnum (gdbarch, 3); | |
4990 | set_gdbarch_sp_regnum (gdbarch, 30); | |
4991 | set_gdbarch_fp0_regnum (gdbarch, 64); | |
4992 | set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM); | |
4993 | set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM); | |
4994 | set_gdbarch_register_raw_size (gdbarch, hppa_register_raw_size); | |
4995 | set_gdbarch_register_bytes (gdbarch, hppa_num_regs * 4); | |
4996 | set_gdbarch_register_byte (gdbarch, hppa_register_byte); | |
4997 | set_gdbarch_register_virtual_size (gdbarch, hppa_register_raw_size); | |
4998 | set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4); | |
4999 | set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8); | |
5000 | set_gdbarch_register_virtual_type (gdbarch, hppa_register_virtual_type); | |
5001 | set_gdbarch_store_struct_return (gdbarch, hppa_store_struct_return); | |
5002 | set_gdbarch_deprecated_extract_return_value (gdbarch, | |
5003 | hppa_extract_return_value); | |
5004 | set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention); | |
5005 | set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value); | |
5006 | set_gdbarch_deprecated_extract_struct_value_address | |
5007 | (gdbarch, hppa_extract_struct_value_address); | |
5008 | set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register); | |
5009 | set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info); | |
5010 | set_gdbarch_frame_chain (gdbarch, hppa_frame_chain); | |
5011 | set_gdbarch_frame_chain_valid (gdbarch, hppa_frame_chain_valid); | |
5012 | set_gdbarch_frameless_function_invocation | |
5013 | (gdbarch, hppa_frameless_function_invocation); | |
5014 | set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc); | |
5015 | set_gdbarch_frame_args_address (gdbarch, hppa_frame_args_address); | |
5016 | set_gdbarch_frame_locals_address (gdbarch, hppa_frame_locals_address); | |
5017 | set_gdbarch_frame_num_args (gdbarch, hppa_frame_num_args); | |
5018 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
5019 | /* set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame); */ | |
5020 | set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame); | |
5021 | set_gdbarch_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28); | |
5022 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
5023 | /* set_gdbarch_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */ | |
5024 | set_gdbarch_push_arguments (gdbarch, hppa_push_arguments); | |
5025 | set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address); | |
5026 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
5027 | set_gdbarch_read_pc (gdbarch, hppa_target_read_pc); | |
5028 | set_gdbarch_write_pc (gdbarch, hppa_target_write_pc); | |
5029 | set_gdbarch_read_fp (gdbarch, hppa_target_read_fp); | |
5030 | ||
5031 | return gdbarch; | |
5032 | } | |
5033 | ||
5034 | static void | |
5035 | hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
5036 | { | |
5037 | /* Nothing to print for the moment. */ | |
5038 | } | |
5039 | ||
5040 | void | |
5041 | _initialize_hppa_tdep (void) | |
5042 | { | |
5043 | struct cmd_list_element *c; | |
5044 | void break_at_finish_command (char *arg, int from_tty); | |
5045 | void tbreak_at_finish_command (char *arg, int from_tty); | |
5046 | void break_at_finish_at_depth_command (char *arg, int from_tty); | |
5047 | ||
5048 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); | |
5049 | tm_print_insn = print_insn_hppa; | |
5050 | ||
5051 | add_cmd ("unwind", class_maintenance, unwind_command, | |
5052 | "Print unwind table entry at given address.", | |
5053 | &maintenanceprintlist); | |
5054 | ||
5055 | deprecate_cmd (add_com ("xbreak", class_breakpoint, | |
5056 | break_at_finish_command, | |
5057 | concat ("Set breakpoint at procedure exit. \n\ | |
5058 | Argument may be function name, or \"*\" and an address.\n\ | |
5059 | If function is specified, break at end of code for that function.\n\ | |
5060 | If an address is specified, break at the end of the function that contains \n\ | |
5061 | that exact address.\n", | |
5062 | "With no arg, uses current execution address of selected stack frame.\n\ | |
5063 | This is useful for breaking on return to a stack frame.\n\ | |
5064 | \n\ | |
5065 | Multiple breakpoints at one place are permitted, and useful if conditional.\n\ | |
5066 | \n\ | |
5067 | Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL); | |
5068 | deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL); | |
5069 | deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL); | |
5070 | deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL); | |
5071 | deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL); | |
5072 | ||
5073 | deprecate_cmd (c = add_com ("txbreak", class_breakpoint, | |
5074 | tbreak_at_finish_command, | |
5075 | "Set temporary breakpoint at procedure exit. Either there should\n\ | |
5076 | be no argument or the argument must be a depth.\n"), NULL); | |
5077 | set_cmd_completer (c, location_completer); | |
5078 | ||
5079 | if (xdb_commands) | |
5080 | deprecate_cmd (add_com ("bx", class_breakpoint, | |
5081 | break_at_finish_at_depth_command, | |
5082 | "Set breakpoint at procedure exit. Either there should\n\ | |
5083 | be no argument or the argument must be a depth.\n"), NULL); | |
5084 | } | |
5085 |