]>
Commit | Line | Data |
---|---|---|
1 | /* Support routines for manipulating internal types for GDB. | |
2 | Copyright (C) 1992 Free Software Foundation, Inc. | |
3 | Contributed by Cygnus Support, using pieces from other GDB modules. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
20 | ||
21 | #include "defs.h" | |
22 | #include <string.h> | |
23 | #include "bfd.h" | |
24 | #include "symtab.h" | |
25 | #include "symfile.h" | |
26 | #include "objfiles.h" | |
27 | #include "gdbtypes.h" | |
28 | #include "expression.h" | |
29 | #include "language.h" | |
30 | #include "target.h" | |
31 | #include "value.h" | |
32 | #include "demangle.h" | |
33 | #include "complaints.h" | |
34 | ||
35 | /* These variables point to the objects | |
36 | representing the predefined C data types. */ | |
37 | ||
38 | struct type *builtin_type_void; | |
39 | struct type *builtin_type_char; | |
40 | struct type *builtin_type_short; | |
41 | struct type *builtin_type_int; | |
42 | struct type *builtin_type_long; | |
43 | struct type *builtin_type_long_long; | |
44 | struct type *builtin_type_signed_char; | |
45 | struct type *builtin_type_unsigned_char; | |
46 | struct type *builtin_type_unsigned_short; | |
47 | struct type *builtin_type_unsigned_int; | |
48 | struct type *builtin_type_unsigned_long; | |
49 | struct type *builtin_type_unsigned_long_long; | |
50 | struct type *builtin_type_float; | |
51 | struct type *builtin_type_double; | |
52 | struct type *builtin_type_long_double; | |
53 | struct type *builtin_type_complex; | |
54 | struct type *builtin_type_double_complex; | |
55 | struct type *builtin_type_string; | |
56 | ||
57 | /* Alloc a new type structure and fill it with some defaults. If | |
58 | OBJFILE is non-NULL, then allocate the space for the type structure | |
59 | in that objfile's type_obstack. */ | |
60 | ||
61 | struct type * | |
62 | alloc_type (objfile) | |
63 | struct objfile *objfile; | |
64 | { | |
65 | register struct type *type; | |
66 | ||
67 | /* Alloc the structure and start off with all fields zeroed. */ | |
68 | ||
69 | if (objfile == NULL) | |
70 | { | |
71 | type = (struct type *) xmalloc (sizeof (struct type)); | |
72 | } | |
73 | else | |
74 | { | |
75 | type = (struct type *) obstack_alloc (&objfile -> type_obstack, | |
76 | sizeof (struct type)); | |
77 | } | |
78 | memset ((char *) type, 0, sizeof (struct type)); | |
79 | ||
80 | /* Initialize the fields that might not be zero. */ | |
81 | ||
82 | TYPE_CODE (type) = TYPE_CODE_UNDEF; | |
83 | TYPE_OBJFILE (type) = objfile; | |
84 | TYPE_VPTR_FIELDNO (type) = -1; | |
85 | ||
86 | return (type); | |
87 | } | |
88 | ||
89 | /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points | |
90 | to a pointer to memory where the pointer type should be stored. | |
91 | If *TYPEPTR is zero, update it to point to the pointer type we return. | |
92 | We allocate new memory if needed. */ | |
93 | ||
94 | struct type * | |
95 | make_pointer_type (type, typeptr) | |
96 | struct type *type; | |
97 | struct type **typeptr; | |
98 | { | |
99 | register struct type *ntype; /* New type */ | |
100 | struct objfile *objfile; | |
101 | ||
102 | ntype = TYPE_POINTER_TYPE (type); | |
103 | ||
104 | if (ntype) | |
105 | if (typeptr == 0) | |
106 | return ntype; /* Don't care about alloc, and have new type. */ | |
107 | else if (*typeptr == 0) | |
108 | { | |
109 | *typeptr = ntype; /* Tracking alloc, and we have new type. */ | |
110 | return ntype; | |
111 | } | |
112 | ||
113 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
114 | { | |
115 | ntype = alloc_type (TYPE_OBJFILE (type)); | |
116 | if (typeptr) | |
117 | *typeptr = ntype; | |
118 | } | |
119 | else /* We have storage, but need to reset it. */ | |
120 | { | |
121 | ntype = *typeptr; | |
122 | objfile = TYPE_OBJFILE (ntype); | |
123 | memset ((char *) ntype, 0, sizeof (struct type)); | |
124 | TYPE_OBJFILE (ntype) = objfile; | |
125 | } | |
126 | ||
127 | TYPE_TARGET_TYPE (ntype) = type; | |
128 | TYPE_POINTER_TYPE (type) = ntype; | |
129 | ||
130 | /* FIXME! Assume the machine has only one representation for pointers! */ | |
131 | ||
132 | TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT; | |
133 | TYPE_CODE (ntype) = TYPE_CODE_PTR; | |
134 | ||
135 | /* pointers are unsigned */ | |
136 | TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED; | |
137 | ||
138 | if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */ | |
139 | TYPE_POINTER_TYPE (type) = ntype; | |
140 | ||
141 | return ntype; | |
142 | } | |
143 | ||
144 | /* Given a type TYPE, return a type of pointers to that type. | |
145 | May need to construct such a type if this is the first use. */ | |
146 | ||
147 | struct type * | |
148 | lookup_pointer_type (type) | |
149 | struct type *type; | |
150 | { | |
151 | return make_pointer_type (type, (struct type **)0); | |
152 | } | |
153 | ||
154 | /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points | |
155 | to a pointer to memory where the reference type should be stored. | |
156 | If *TYPEPTR is zero, update it to point to the reference type we return. | |
157 | We allocate new memory if needed. */ | |
158 | ||
159 | struct type * | |
160 | make_reference_type (type, typeptr) | |
161 | struct type *type; | |
162 | struct type **typeptr; | |
163 | { | |
164 | register struct type *ntype; /* New type */ | |
165 | struct objfile *objfile; | |
166 | ||
167 | ntype = TYPE_REFERENCE_TYPE (type); | |
168 | ||
169 | if (ntype) | |
170 | if (typeptr == 0) | |
171 | return ntype; /* Don't care about alloc, and have new type. */ | |
172 | else if (*typeptr == 0) | |
173 | { | |
174 | *typeptr = ntype; /* Tracking alloc, and we have new type. */ | |
175 | return ntype; | |
176 | } | |
177 | ||
178 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
179 | { | |
180 | ntype = alloc_type (TYPE_OBJFILE (type)); | |
181 | if (typeptr) | |
182 | *typeptr = ntype; | |
183 | } | |
184 | else /* We have storage, but need to reset it. */ | |
185 | { | |
186 | ntype = *typeptr; | |
187 | objfile = TYPE_OBJFILE (ntype); | |
188 | memset ((char *) ntype, 0, sizeof (struct type)); | |
189 | TYPE_OBJFILE (ntype) = objfile; | |
190 | } | |
191 | ||
192 | TYPE_TARGET_TYPE (ntype) = type; | |
193 | TYPE_REFERENCE_TYPE (type) = ntype; | |
194 | ||
195 | /* FIXME! Assume the machine has only one representation for references, | |
196 | and that it matches the (only) representation for pointers! */ | |
197 | ||
198 | TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT; | |
199 | TYPE_CODE (ntype) = TYPE_CODE_REF; | |
200 | ||
201 | if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */ | |
202 | TYPE_REFERENCE_TYPE (type) = ntype; | |
203 | ||
204 | return ntype; | |
205 | } | |
206 | ||
207 | /* Same as above, but caller doesn't care about memory allocation details. */ | |
208 | ||
209 | struct type * | |
210 | lookup_reference_type (type) | |
211 | struct type *type; | |
212 | { | |
213 | return make_reference_type (type, (struct type **)0); | |
214 | } | |
215 | ||
216 | /* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points | |
217 | to a pointer to memory where the function type should be stored. | |
218 | If *TYPEPTR is zero, update it to point to the function type we return. | |
219 | We allocate new memory if needed. */ | |
220 | ||
221 | struct type * | |
222 | make_function_type (type, typeptr) | |
223 | struct type *type; | |
224 | struct type **typeptr; | |
225 | { | |
226 | register struct type *ntype; /* New type */ | |
227 | struct objfile *objfile; | |
228 | ||
229 | ntype = TYPE_FUNCTION_TYPE (type); | |
230 | ||
231 | if (ntype) | |
232 | if (typeptr == 0) | |
233 | return ntype; /* Don't care about alloc, and have new type. */ | |
234 | else if (*typeptr == 0) | |
235 | { | |
236 | *typeptr = ntype; /* Tracking alloc, and we have new type. */ | |
237 | return ntype; | |
238 | } | |
239 | ||
240 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
241 | { | |
242 | ntype = alloc_type (TYPE_OBJFILE (type)); | |
243 | if (typeptr) | |
244 | *typeptr = ntype; | |
245 | } | |
246 | else /* We have storage, but need to reset it. */ | |
247 | { | |
248 | ntype = *typeptr; | |
249 | objfile = TYPE_OBJFILE (ntype); | |
250 | memset ((char *) ntype, 0, sizeof (struct type)); | |
251 | TYPE_OBJFILE (ntype) = objfile; | |
252 | } | |
253 | ||
254 | TYPE_TARGET_TYPE (ntype) = type; | |
255 | TYPE_FUNCTION_TYPE (type) = ntype; | |
256 | ||
257 | TYPE_LENGTH (ntype) = 1; | |
258 | TYPE_CODE (ntype) = TYPE_CODE_FUNC; | |
259 | ||
260 | if (!TYPE_FUNCTION_TYPE (type)) /* Remember it, if don't have one. */ | |
261 | TYPE_FUNCTION_TYPE (type) = ntype; | |
262 | ||
263 | return ntype; | |
264 | } | |
265 | ||
266 | ||
267 | /* Given a type TYPE, return a type of functions that return that type. | |
268 | May need to construct such a type if this is the first use. */ | |
269 | ||
270 | struct type * | |
271 | lookup_function_type (type) | |
272 | struct type *type; | |
273 | { | |
274 | return make_function_type (type, (struct type **)0); | |
275 | } | |
276 | ||
277 | /* Implement direct support for MEMBER_TYPE in GNU C++. | |
278 | May need to construct such a type if this is the first use. | |
279 | The TYPE is the type of the member. The DOMAIN is the type | |
280 | of the aggregate that the member belongs to. */ | |
281 | ||
282 | struct type * | |
283 | lookup_member_type (type, domain) | |
284 | struct type *type; | |
285 | struct type *domain; | |
286 | { | |
287 | register struct type *mtype; | |
288 | ||
289 | mtype = alloc_type (TYPE_OBJFILE (type)); | |
290 | smash_to_member_type (mtype, domain, type); | |
291 | return (mtype); | |
292 | } | |
293 | ||
294 | /* Allocate a stub method whose return type is TYPE. | |
295 | This apparently happens for speed of symbol reading, since parsing | |
296 | out the arguments to the method is cpu-intensive, the way we are doing | |
297 | it. So, we will fill in arguments later. | |
298 | This always returns a fresh type. */ | |
299 | ||
300 | struct type * | |
301 | allocate_stub_method (type) | |
302 | struct type *type; | |
303 | { | |
304 | struct type *mtype; | |
305 | ||
306 | mtype = alloc_type (TYPE_OBJFILE (type)); | |
307 | TYPE_TARGET_TYPE (mtype) = type; | |
308 | /* _DOMAIN_TYPE (mtype) = unknown yet */ | |
309 | /* _ARG_TYPES (mtype) = unknown yet */ | |
310 | TYPE_FLAGS (mtype) = TYPE_FLAG_STUB; | |
311 | TYPE_CODE (mtype) = TYPE_CODE_METHOD; | |
312 | TYPE_LENGTH (mtype) = 1; | |
313 | return (mtype); | |
314 | } | |
315 | ||
316 | /* Create a range type using either a blank type supplied in RESULT_TYPE, | |
317 | or creating a new type, inheriting the objfile from INDEX_TYPE. | |
318 | ||
319 | Indices will be of type INDEX_TYPE, and will range from LOW_BOUND to | |
320 | HIGH_BOUND, inclusive. | |
321 | ||
322 | FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make | |
323 | sure it is TYPE_CODE_UNDEF before we bash it into a range type? */ | |
324 | ||
325 | struct type * | |
326 | create_range_type (result_type, index_type, low_bound, high_bound) | |
327 | struct type *result_type; | |
328 | struct type *index_type; | |
329 | int low_bound; | |
330 | int high_bound; | |
331 | { | |
332 | if (result_type == NULL) | |
333 | { | |
334 | result_type = alloc_type (TYPE_OBJFILE (index_type)); | |
335 | } | |
336 | TYPE_CODE (result_type) = TYPE_CODE_RANGE; | |
337 | TYPE_TARGET_TYPE (result_type) = index_type; | |
338 | TYPE_LENGTH (result_type) = TYPE_LENGTH (index_type); | |
339 | TYPE_NFIELDS (result_type) = 2; | |
340 | TYPE_FIELDS (result_type) = (struct field *) | |
341 | TYPE_ALLOC (result_type, 2 * sizeof (struct field)); | |
342 | memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field)); | |
343 | TYPE_FIELD_BITPOS (result_type, 0) = low_bound; | |
344 | TYPE_FIELD_BITPOS (result_type, 1) = high_bound; | |
345 | TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */ | |
346 | TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */ | |
347 | ||
348 | return (result_type); | |
349 | } | |
350 | ||
351 | /* A lot of code assumes that the "index type" of an array/string/ | |
352 | set/bitstring is specifically a range type, though in some languages | |
353 | it can be any discrete type. */ | |
354 | ||
355 | struct type * | |
356 | force_to_range_type (type) | |
357 | struct type *type; | |
358 | { | |
359 | switch (TYPE_CODE (type)) | |
360 | { | |
361 | case TYPE_CODE_RANGE: | |
362 | return type; | |
363 | ||
364 | case TYPE_CODE_ENUM: | |
365 | { | |
366 | int low_bound = TYPE_FIELD_BITPOS (type, 0); | |
367 | int high_bound = TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); | |
368 | struct type *range_type = | |
369 | create_range_type (NULL, type, low_bound, high_bound); | |
370 | TYPE_NAME (range_type) = TYPE_NAME (range_type); | |
371 | TYPE_DUMMY_RANGE (range_type) = 1; | |
372 | return range_type; | |
373 | } | |
374 | case TYPE_CODE_BOOL: | |
375 | { | |
376 | struct type *range_type = create_range_type (NULL, type, 0, 1); | |
377 | TYPE_NAME (range_type) = TYPE_NAME (range_type); | |
378 | TYPE_DUMMY_RANGE (range_type) = 1; | |
379 | return range_type; | |
380 | } | |
381 | case TYPE_CODE_CHAR: | |
382 | { | |
383 | struct type *range_type = create_range_type (NULL, type, 0, 255); | |
384 | TYPE_NAME (range_type) = TYPE_NAME (range_type); | |
385 | TYPE_DUMMY_RANGE (range_type) = 1; | |
386 | return range_type; | |
387 | } | |
388 | default: | |
389 | { | |
390 | static struct complaint msg = | |
391 | { "array index type must be a discrete type", 0, 0}; | |
392 | complain (&msg); | |
393 | ||
394 | return create_range_type (NULL, builtin_type_int, 0, 0); | |
395 | } | |
396 | } | |
397 | } | |
398 | ||
399 | /* Create an array type using either a blank type supplied in RESULT_TYPE, | |
400 | or creating a new type, inheriting the objfile from RANGE_TYPE. | |
401 | ||
402 | Elements will be of type ELEMENT_TYPE, the indices will be of type | |
403 | RANGE_TYPE. | |
404 | ||
405 | FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make | |
406 | sure it is TYPE_CODE_UNDEF before we bash it into an array type? */ | |
407 | ||
408 | struct type * | |
409 | create_array_type (result_type, element_type, range_type) | |
410 | struct type *result_type; | |
411 | struct type *element_type; | |
412 | struct type *range_type; | |
413 | { | |
414 | int low_bound; | |
415 | int high_bound; | |
416 | ||
417 | range_type = force_to_range_type (range_type); | |
418 | if (result_type == NULL) | |
419 | { | |
420 | result_type = alloc_type (TYPE_OBJFILE (range_type)); | |
421 | } | |
422 | TYPE_CODE (result_type) = TYPE_CODE_ARRAY; | |
423 | TYPE_TARGET_TYPE (result_type) = element_type; | |
424 | low_bound = TYPE_LOW_BOUND (range_type); | |
425 | high_bound = TYPE_HIGH_BOUND (range_type); | |
426 | TYPE_LENGTH (result_type) = | |
427 | TYPE_LENGTH (element_type) * (high_bound - low_bound + 1); | |
428 | TYPE_NFIELDS (result_type) = 1; | |
429 | TYPE_FIELDS (result_type) = | |
430 | (struct field *) TYPE_ALLOC (result_type, sizeof (struct field)); | |
431 | memset (TYPE_FIELDS (result_type), 0, sizeof (struct field)); | |
432 | TYPE_FIELD_TYPE (result_type, 0) = range_type; | |
433 | TYPE_VPTR_FIELDNO (result_type) = -1; | |
434 | ||
435 | return (result_type); | |
436 | } | |
437 | ||
438 | /* Create a string type using either a blank type supplied in RESULT_TYPE, | |
439 | or creating a new type. String types are similar enough to array of | |
440 | char types that we can use create_array_type to build the basic type | |
441 | and then bash it into a string type. | |
442 | ||
443 | For fixed length strings, the range type contains 0 as the lower | |
444 | bound and the length of the string minus one as the upper bound. | |
445 | ||
446 | FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make | |
447 | sure it is TYPE_CODE_UNDEF before we bash it into a string type? */ | |
448 | ||
449 | struct type * | |
450 | create_string_type (result_type, range_type) | |
451 | struct type *result_type; | |
452 | struct type *range_type; | |
453 | { | |
454 | result_type = create_array_type (result_type, builtin_type_char, range_type); | |
455 | TYPE_CODE (result_type) = TYPE_CODE_STRING; | |
456 | return (result_type); | |
457 | } | |
458 | ||
459 | struct type * | |
460 | create_set_type (result_type, domain_type) | |
461 | struct type *result_type; | |
462 | struct type *domain_type; | |
463 | { | |
464 | int low_bound, high_bound, bit_length; | |
465 | if (result_type == NULL) | |
466 | { | |
467 | result_type = alloc_type (TYPE_OBJFILE (domain_type)); | |
468 | } | |
469 | domain_type = force_to_range_type (domain_type); | |
470 | TYPE_CODE (result_type) = TYPE_CODE_SET; | |
471 | TYPE_NFIELDS (result_type) = 1; | |
472 | TYPE_FIELDS (result_type) = (struct field *) | |
473 | TYPE_ALLOC (result_type, 1 * sizeof (struct field)); | |
474 | memset (TYPE_FIELDS (result_type), 0, sizeof (struct field)); | |
475 | TYPE_FIELD_TYPE (result_type, 0) = domain_type; | |
476 | low_bound = TYPE_LOW_BOUND (domain_type); | |
477 | high_bound = TYPE_HIGH_BOUND (domain_type); | |
478 | bit_length = high_bound - low_bound + 1; | |
479 | if (bit_length <= TARGET_CHAR_BIT) | |
480 | TYPE_LENGTH (result_type) = 1; | |
481 | else if (bit_length <= TARGET_SHORT_BIT) | |
482 | TYPE_LENGTH (result_type) = TARGET_SHORT_BIT / TARGET_CHAR_BIT; | |
483 | else | |
484 | TYPE_LENGTH (result_type) | |
485 | = ((bit_length + TARGET_INT_BIT - 1) / TARGET_INT_BIT) | |
486 | * TARGET_CHAR_BIT; | |
487 | return (result_type); | |
488 | } | |
489 | ||
490 | /* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE. | |
491 | A MEMBER is a wierd thing -- it amounts to a typed offset into | |
492 | a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't | |
493 | include the offset (that's the value of the MEMBER itself), but does | |
494 | include the structure type into which it points (for some reason). | |
495 | ||
496 | When "smashing" the type, we preserve the objfile that the | |
497 | old type pointed to, since we aren't changing where the type is actually | |
498 | allocated. */ | |
499 | ||
500 | void | |
501 | smash_to_member_type (type, domain, to_type) | |
502 | struct type *type; | |
503 | struct type *domain; | |
504 | struct type *to_type; | |
505 | { | |
506 | struct objfile *objfile; | |
507 | ||
508 | objfile = TYPE_OBJFILE (type); | |
509 | ||
510 | memset ((char *) type, 0, sizeof (struct type)); | |
511 | TYPE_OBJFILE (type) = objfile; | |
512 | TYPE_TARGET_TYPE (type) = to_type; | |
513 | TYPE_DOMAIN_TYPE (type) = domain; | |
514 | TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */ | |
515 | TYPE_CODE (type) = TYPE_CODE_MEMBER; | |
516 | } | |
517 | ||
518 | /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE. | |
519 | METHOD just means `function that gets an extra "this" argument'. | |
520 | ||
521 | When "smashing" the type, we preserve the objfile that the | |
522 | old type pointed to, since we aren't changing where the type is actually | |
523 | allocated. */ | |
524 | ||
525 | void | |
526 | smash_to_method_type (type, domain, to_type, args) | |
527 | struct type *type; | |
528 | struct type *domain; | |
529 | struct type *to_type; | |
530 | struct type **args; | |
531 | { | |
532 | struct objfile *objfile; | |
533 | ||
534 | objfile = TYPE_OBJFILE (type); | |
535 | ||
536 | memset ((char *) type, 0, sizeof (struct type)); | |
537 | TYPE_OBJFILE (type) = objfile; | |
538 | TYPE_TARGET_TYPE (type) = to_type; | |
539 | TYPE_DOMAIN_TYPE (type) = domain; | |
540 | TYPE_ARG_TYPES (type) = args; | |
541 | TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */ | |
542 | TYPE_CODE (type) = TYPE_CODE_METHOD; | |
543 | } | |
544 | ||
545 | /* Return a typename for a struct/union/enum type without "struct ", | |
546 | "union ", or "enum ". If the type has a NULL name, return NULL. */ | |
547 | ||
548 | char * | |
549 | type_name_no_tag (type) | |
550 | register const struct type *type; | |
551 | { | |
552 | if (TYPE_TAG_NAME (type) != NULL) | |
553 | return TYPE_TAG_NAME (type); | |
554 | ||
555 | /* Is there code which expects this to return the name if there is no | |
556 | tag name? My guess is that this is mainly used for C++ in cases where | |
557 | the two will always be the same. */ | |
558 | return TYPE_NAME (type); | |
559 | } | |
560 | ||
561 | /* Lookup a primitive type named NAME. | |
562 | Return zero if NAME is not a primitive type.*/ | |
563 | ||
564 | struct type * | |
565 | lookup_primitive_typename (name) | |
566 | char *name; | |
567 | { | |
568 | struct type ** const *p; | |
569 | ||
570 | for (p = current_language -> la_builtin_type_vector; *p != NULL; p++) | |
571 | { | |
572 | if (STREQ ((**p) -> name, name)) | |
573 | { | |
574 | return (**p); | |
575 | } | |
576 | } | |
577 | return (NULL); | |
578 | } | |
579 | ||
580 | /* Lookup a typedef or primitive type named NAME, | |
581 | visible in lexical block BLOCK. | |
582 | If NOERR is nonzero, return zero if NAME is not suitably defined. */ | |
583 | ||
584 | struct type * | |
585 | lookup_typename (name, block, noerr) | |
586 | char *name; | |
587 | struct block *block; | |
588 | int noerr; | |
589 | { | |
590 | register struct symbol *sym; | |
591 | register struct type *tmp; | |
592 | ||
593 | sym = lookup_symbol (name, block, VAR_NAMESPACE, 0, (struct symtab **) NULL); | |
594 | if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
595 | { | |
596 | tmp = lookup_primitive_typename (name); | |
597 | if (tmp) | |
598 | { | |
599 | return (tmp); | |
600 | } | |
601 | else if (!tmp && noerr) | |
602 | { | |
603 | return (NULL); | |
604 | } | |
605 | else | |
606 | { | |
607 | error ("No type named %s.", name); | |
608 | } | |
609 | } | |
610 | return (SYMBOL_TYPE (sym)); | |
611 | } | |
612 | ||
613 | struct type * | |
614 | lookup_unsigned_typename (name) | |
615 | char *name; | |
616 | { | |
617 | char *uns = alloca (strlen (name) + 10); | |
618 | ||
619 | strcpy (uns, "unsigned "); | |
620 | strcpy (uns + 9, name); | |
621 | return (lookup_typename (uns, (struct block *) NULL, 0)); | |
622 | } | |
623 | ||
624 | struct type * | |
625 | lookup_signed_typename (name) | |
626 | char *name; | |
627 | { | |
628 | struct type *t; | |
629 | char *uns = alloca (strlen (name) + 8); | |
630 | ||
631 | strcpy (uns, "signed "); | |
632 | strcpy (uns + 7, name); | |
633 | t = lookup_typename (uns, (struct block *) NULL, 1); | |
634 | /* If we don't find "signed FOO" just try again with plain "FOO". */ | |
635 | if (t != NULL) | |
636 | return t; | |
637 | return lookup_typename (name, (struct block *) NULL, 0); | |
638 | } | |
639 | ||
640 | /* Lookup a structure type named "struct NAME", | |
641 | visible in lexical block BLOCK. */ | |
642 | ||
643 | struct type * | |
644 | lookup_struct (name, block) | |
645 | char *name; | |
646 | struct block *block; | |
647 | { | |
648 | register struct symbol *sym; | |
649 | ||
650 | sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0, | |
651 | (struct symtab **) NULL); | |
652 | ||
653 | if (sym == NULL) | |
654 | { | |
655 | error ("No struct type named %s.", name); | |
656 | } | |
657 | if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT) | |
658 | { | |
659 | error ("This context has class, union or enum %s, not a struct.", name); | |
660 | } | |
661 | return (SYMBOL_TYPE (sym)); | |
662 | } | |
663 | ||
664 | /* Lookup a union type named "union NAME", | |
665 | visible in lexical block BLOCK. */ | |
666 | ||
667 | struct type * | |
668 | lookup_union (name, block) | |
669 | char *name; | |
670 | struct block *block; | |
671 | { | |
672 | register struct symbol *sym; | |
673 | ||
674 | sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0, | |
675 | (struct symtab **) NULL); | |
676 | ||
677 | if (sym == NULL) | |
678 | { | |
679 | error ("No union type named %s.", name); | |
680 | } | |
681 | if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_UNION) | |
682 | { | |
683 | error ("This context has class, struct or enum %s, not a union.", name); | |
684 | } | |
685 | return (SYMBOL_TYPE (sym)); | |
686 | } | |
687 | ||
688 | /* Lookup an enum type named "enum NAME", | |
689 | visible in lexical block BLOCK. */ | |
690 | ||
691 | struct type * | |
692 | lookup_enum (name, block) | |
693 | char *name; | |
694 | struct block *block; | |
695 | { | |
696 | register struct symbol *sym; | |
697 | ||
698 | sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0, | |
699 | (struct symtab **) NULL); | |
700 | if (sym == NULL) | |
701 | { | |
702 | error ("No enum type named %s.", name); | |
703 | } | |
704 | if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM) | |
705 | { | |
706 | error ("This context has class, struct or union %s, not an enum.", name); | |
707 | } | |
708 | return (SYMBOL_TYPE (sym)); | |
709 | } | |
710 | ||
711 | /* Lookup a template type named "template NAME<TYPE>", | |
712 | visible in lexical block BLOCK. */ | |
713 | ||
714 | struct type * | |
715 | lookup_template_type (name, type, block) | |
716 | char *name; | |
717 | struct type *type; | |
718 | struct block *block; | |
719 | { | |
720 | struct symbol *sym; | |
721 | char *nam = (char*) alloca(strlen(name) + strlen(type->name) + 4); | |
722 | strcpy (nam, name); | |
723 | strcat (nam, "<"); | |
724 | strcat (nam, type->name); | |
725 | strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */ | |
726 | ||
727 | sym = lookup_symbol (nam, block, VAR_NAMESPACE, 0, (struct symtab **)NULL); | |
728 | ||
729 | if (sym == NULL) | |
730 | { | |
731 | error ("No template type named %s.", name); | |
732 | } | |
733 | if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT) | |
734 | { | |
735 | error ("This context has class, union or enum %s, not a struct.", name); | |
736 | } | |
737 | return (SYMBOL_TYPE (sym)); | |
738 | } | |
739 | ||
740 | /* Given a type TYPE, lookup the type of the component of type named NAME. | |
741 | ||
742 | TYPE can be either a struct or union, or a pointer or reference to a struct or | |
743 | union. If it is a pointer or reference, its target type is automatically used. | |
744 | Thus '.' and '->' are interchangable, as specified for the definitions of the | |
745 | expression element types STRUCTOP_STRUCT and STRUCTOP_PTR. | |
746 | ||
747 | If NOERR is nonzero, return zero if NAME is not suitably defined. | |
748 | If NAME is the name of a baseclass type, return that type. */ | |
749 | ||
750 | struct type * | |
751 | lookup_struct_elt_type (type, name, noerr) | |
752 | struct type *type; | |
753 | char *name; | |
754 | int noerr; | |
755 | { | |
756 | int i; | |
757 | ||
758 | while (TYPE_CODE (type) == TYPE_CODE_PTR || | |
759 | TYPE_CODE (type) == TYPE_CODE_REF) | |
760 | type = TYPE_TARGET_TYPE (type); | |
761 | ||
762 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT && | |
763 | TYPE_CODE (type) != TYPE_CODE_UNION) | |
764 | { | |
765 | target_terminal_ours (); | |
766 | gdb_flush (gdb_stdout); | |
767 | fprintf_unfiltered (gdb_stderr, "Type "); | |
768 | type_print (type, "", gdb_stderr, -1); | |
769 | error (" is not a structure or union type."); | |
770 | } | |
771 | ||
772 | check_stub_type (type); | |
773 | ||
774 | #if 0 | |
775 | /* FIXME: This change put in by Michael seems incorrect for the case where | |
776 | the structure tag name is the same as the member name. I.E. when doing | |
777 | "ptype bell->bar" for "struct foo { int bar; int foo; } bell;" | |
778 | Disabled by fnf. */ | |
779 | { | |
780 | char *typename; | |
781 | ||
782 | typename = type_name_no_tag (type); | |
783 | if (typename != NULL && STREQ (typename, name)) | |
784 | return type; | |
785 | } | |
786 | #endif | |
787 | ||
788 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
789 | { | |
790 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
791 | ||
792 | if (t_field_name && STREQ (t_field_name, name)) | |
793 | { | |
794 | return TYPE_FIELD_TYPE (type, i); | |
795 | } | |
796 | } | |
797 | ||
798 | /* OK, it's not in this class. Recursively check the baseclasses. */ | |
799 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
800 | { | |
801 | struct type *t; | |
802 | ||
803 | t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, noerr); | |
804 | if (t != NULL) | |
805 | { | |
806 | return t; | |
807 | } | |
808 | } | |
809 | ||
810 | if (noerr) | |
811 | { | |
812 | return NULL; | |
813 | } | |
814 | ||
815 | target_terminal_ours (); | |
816 | gdb_flush (gdb_stdout); | |
817 | fprintf_unfiltered (gdb_stderr, "Type "); | |
818 | type_print (type, "", gdb_stderr, -1); | |
819 | fprintf_unfiltered (gdb_stderr, " has no component named "); | |
820 | fputs_filtered (name, gdb_stderr); | |
821 | error ("."); | |
822 | return (struct type *)-1; /* For lint */ | |
823 | } | |
824 | ||
825 | /* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE | |
826 | valid. Callers should be aware that in some cases (for example, | |
827 | the type or one of its baseclasses is a stub type and we are | |
828 | debugging a .o file), this function will not be able to find the virtual | |
829 | function table pointer, and vptr_fieldno will remain -1 and vptr_basetype | |
830 | will remain NULL. */ | |
831 | ||
832 | void | |
833 | fill_in_vptr_fieldno (type) | |
834 | struct type *type; | |
835 | { | |
836 | check_stub_type (type); | |
837 | ||
838 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
839 | { | |
840 | int i; | |
841 | ||
842 | /* We must start at zero in case the first (and only) baseclass is | |
843 | virtual (and hence we cannot share the table pointer). */ | |
844 | for (i = 0; i < TYPE_N_BASECLASSES (type); i++) | |
845 | { | |
846 | fill_in_vptr_fieldno (TYPE_BASECLASS (type, i)); | |
847 | if (TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)) >= 0) | |
848 | { | |
849 | TYPE_VPTR_FIELDNO (type) | |
850 | = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)); | |
851 | TYPE_VPTR_BASETYPE (type) | |
852 | = TYPE_VPTR_BASETYPE (TYPE_BASECLASS (type, i)); | |
853 | break; | |
854 | } | |
855 | } | |
856 | } | |
857 | } | |
858 | ||
859 | /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989. | |
860 | ||
861 | If this is a stubbed struct (i.e. declared as struct foo *), see if | |
862 | we can find a full definition in some other file. If so, copy this | |
863 | definition, so we can use it in future. There used to be a comment (but | |
864 | not any code) that if we don't find a full definition, we'd set a flag | |
865 | so we don't spend time in the future checking the same type. That would | |
866 | be a mistake, though--we might load in more symbols which contain a | |
867 | full definition for the type. | |
868 | ||
869 | This used to be coded as a macro, but I don't think it is called | |
870 | often enough to merit such treatment. */ | |
871 | ||
872 | struct complaint stub_noname_complaint = | |
873 | {"stub type has NULL name", 0, 0}; | |
874 | ||
875 | void | |
876 | check_stub_type (type) | |
877 | struct type *type; | |
878 | { | |
879 | if (TYPE_FLAGS(type) & TYPE_FLAG_STUB) | |
880 | { | |
881 | char* name = type_name_no_tag (type); | |
882 | /* FIXME: shouldn't we separately check the TYPE_NAME and the | |
883 | TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE | |
884 | as appropriate? (this code was written before TYPE_NAME and | |
885 | TYPE_TAG_NAME were separate). */ | |
886 | struct symbol *sym; | |
887 | if (name == NULL) | |
888 | { | |
889 | complain (&stub_noname_complaint); | |
890 | return; | |
891 | } | |
892 | sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0, | |
893 | (struct symtab **) NULL); | |
894 | if (sym) | |
895 | { | |
896 | memcpy ((char *)type, | |
897 | (char *)SYMBOL_TYPE(sym), | |
898 | sizeof (struct type)); | |
899 | } | |
900 | } | |
901 | ||
902 | if (TYPE_FLAGS (type) & TYPE_FLAG_TARGET_STUB) | |
903 | { | |
904 | struct type *range_type; | |
905 | ||
906 | check_stub_type (TYPE_TARGET_TYPE (type)); | |
907 | if (!(TYPE_FLAGS (TYPE_TARGET_TYPE (type)) & TYPE_FLAG_STUB) | |
908 | && TYPE_CODE (type) == TYPE_CODE_ARRAY | |
909 | && TYPE_NFIELDS (type) == 1 | |
910 | && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0)) | |
911 | == TYPE_CODE_RANGE)) | |
912 | { | |
913 | /* Now recompute the length of the array type, based on its | |
914 | number of elements and the target type's length. */ | |
915 | TYPE_LENGTH (type) = | |
916 | ((TYPE_FIELD_BITPOS (range_type, 1) | |
917 | - TYPE_FIELD_BITPOS (range_type, 0) | |
918 | + 1) | |
919 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type))); | |
920 | TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB; | |
921 | } | |
922 | } | |
923 | } | |
924 | ||
925 | /* Ugly hack to convert method stubs into method types. | |
926 | ||
927 | He ain't kiddin'. This demangles the name of the method into a string | |
928 | including argument types, parses out each argument type, generates | |
929 | a string casting a zero to that type, evaluates the string, and stuffs | |
930 | the resulting type into an argtype vector!!! Then it knows the type | |
931 | of the whole function (including argument types for overloading), | |
932 | which info used to be in the stab's but was removed to hack back | |
933 | the space required for them. */ | |
934 | ||
935 | void | |
936 | check_stub_method (type, i, j) | |
937 | struct type *type; | |
938 | int i; | |
939 | int j; | |
940 | { | |
941 | struct fn_field *f; | |
942 | char *mangled_name = gdb_mangle_name (type, i, j); | |
943 | char *demangled_name = cplus_demangle (mangled_name, | |
944 | DMGL_PARAMS | DMGL_ANSI); | |
945 | char *argtypetext, *p; | |
946 | int depth = 0, argcount = 1; | |
947 | struct type **argtypes; | |
948 | struct type *mtype; | |
949 | ||
950 | if (demangled_name == NULL) | |
951 | { | |
952 | error ("Internal: Cannot demangle mangled name `%s'.", mangled_name); | |
953 | } | |
954 | ||
955 | /* Now, read in the parameters that define this type. */ | |
956 | argtypetext = strchr (demangled_name, '(') + 1; | |
957 | p = argtypetext; | |
958 | while (*p) | |
959 | { | |
960 | if (*p == '(') | |
961 | { | |
962 | depth += 1; | |
963 | } | |
964 | else if (*p == ')') | |
965 | { | |
966 | depth -= 1; | |
967 | } | |
968 | else if (*p == ',' && depth == 0) | |
969 | { | |
970 | argcount += 1; | |
971 | } | |
972 | ||
973 | p += 1; | |
974 | } | |
975 | ||
976 | /* We need two more slots: one for the THIS pointer, and one for the | |
977 | NULL [...] or void [end of arglist]. */ | |
978 | ||
979 | argtypes = (struct type **) | |
980 | TYPE_ALLOC (type, (argcount + 2) * sizeof (struct type *)); | |
981 | p = argtypetext; | |
982 | /* FIXME: This is wrong for static member functions. */ | |
983 | argtypes[0] = lookup_pointer_type (type); | |
984 | argcount = 1; | |
985 | ||
986 | if (*p != ')') /* () means no args, skip while */ | |
987 | { | |
988 | depth = 0; | |
989 | while (*p) | |
990 | { | |
991 | if (depth <= 0 && (*p == ',' || *p == ')')) | |
992 | { | |
993 | /* Avoid parsing of ellipsis, they will be handled below. */ | |
994 | if (strncmp (argtypetext, "...", p - argtypetext) != 0) | |
995 | { | |
996 | argtypes[argcount] = | |
997 | parse_and_eval_type (argtypetext, p - argtypetext); | |
998 | argcount += 1; | |
999 | } | |
1000 | argtypetext = p + 1; | |
1001 | } | |
1002 | ||
1003 | if (*p == '(') | |
1004 | { | |
1005 | depth += 1; | |
1006 | } | |
1007 | else if (*p == ')') | |
1008 | { | |
1009 | depth -= 1; | |
1010 | } | |
1011 | ||
1012 | p += 1; | |
1013 | } | |
1014 | } | |
1015 | ||
1016 | if (p[-2] != '.') /* Not '...' */ | |
1017 | { | |
1018 | argtypes[argcount] = builtin_type_void; /* List terminator */ | |
1019 | } | |
1020 | else | |
1021 | { | |
1022 | argtypes[argcount] = NULL; /* Ellist terminator */ | |
1023 | } | |
1024 | ||
1025 | free (demangled_name); | |
1026 | ||
1027 | f = TYPE_FN_FIELDLIST1 (type, i); | |
1028 | TYPE_FN_FIELD_PHYSNAME (f, j) = mangled_name; | |
1029 | ||
1030 | /* Now update the old "stub" type into a real type. */ | |
1031 | mtype = TYPE_FN_FIELD_TYPE (f, j); | |
1032 | TYPE_DOMAIN_TYPE (mtype) = type; | |
1033 | TYPE_ARG_TYPES (mtype) = argtypes; | |
1034 | TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB; | |
1035 | TYPE_FN_FIELD_STUB (f, j) = 0; | |
1036 | } | |
1037 | ||
1038 | const struct cplus_struct_type cplus_struct_default; | |
1039 | ||
1040 | void | |
1041 | allocate_cplus_struct_type (type) | |
1042 | struct type *type; | |
1043 | { | |
1044 | if (!HAVE_CPLUS_STRUCT (type)) | |
1045 | { | |
1046 | TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *) | |
1047 | TYPE_ALLOC (type, sizeof (struct cplus_struct_type)); | |
1048 | *(TYPE_CPLUS_SPECIFIC(type)) = cplus_struct_default; | |
1049 | } | |
1050 | } | |
1051 | ||
1052 | /* Helper function to initialize the standard scalar types. | |
1053 | ||
1054 | If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy | |
1055 | of the string pointed to by name in the type_obstack for that objfile, | |
1056 | and initialize the type name to that copy. There are places (mipsread.c | |
1057 | in particular, where init_type is called with a NULL value for NAME). */ | |
1058 | ||
1059 | struct type * | |
1060 | init_type (code, length, flags, name, objfile) | |
1061 | enum type_code code; | |
1062 | int length; | |
1063 | int flags; | |
1064 | char *name; | |
1065 | struct objfile *objfile; | |
1066 | { | |
1067 | register struct type *type; | |
1068 | ||
1069 | type = alloc_type (objfile); | |
1070 | TYPE_CODE (type) = code; | |
1071 | TYPE_LENGTH (type) = length; | |
1072 | TYPE_FLAGS (type) |= flags; | |
1073 | if ((name != NULL) && (objfile != NULL)) | |
1074 | { | |
1075 | TYPE_NAME (type) = | |
1076 | obsavestring (name, strlen (name), &objfile -> type_obstack); | |
1077 | } | |
1078 | else | |
1079 | { | |
1080 | TYPE_NAME (type) = name; | |
1081 | } | |
1082 | ||
1083 | /* C++ fancies. */ | |
1084 | ||
1085 | if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION) | |
1086 | { | |
1087 | INIT_CPLUS_SPECIFIC (type); | |
1088 | } | |
1089 | return (type); | |
1090 | } | |
1091 | ||
1092 | /* Look up a fundamental type for the specified objfile. | |
1093 | May need to construct such a type if this is the first use. | |
1094 | ||
1095 | Some object file formats (ELF, COFF, etc) do not define fundamental | |
1096 | types such as "int" or "double". Others (stabs for example), do | |
1097 | define fundamental types. | |
1098 | ||
1099 | For the formats which don't provide fundamental types, gdb can create | |
1100 | such types, using defaults reasonable for the current language and | |
1101 | the current target machine. | |
1102 | ||
1103 | NOTE: This routine is obsolescent. Each debugging format reader | |
1104 | should manage it's own fundamental types, either creating them from | |
1105 | suitable defaults or reading them from the debugging information, | |
1106 | whichever is appropriate. The DWARF reader has already been | |
1107 | fixed to do this. Once the other readers are fixed, this routine | |
1108 | will go away. Also note that fundamental types should be managed | |
1109 | on a compilation unit basis in a multi-language environment, not | |
1110 | on a linkage unit basis as is done here. */ | |
1111 | ||
1112 | ||
1113 | struct type * | |
1114 | lookup_fundamental_type (objfile, typeid) | |
1115 | struct objfile *objfile; | |
1116 | int typeid; | |
1117 | { | |
1118 | register struct type **typep; | |
1119 | register int nbytes; | |
1120 | ||
1121 | if (typeid < 0 || typeid >= FT_NUM_MEMBERS) | |
1122 | { | |
1123 | error ("internal error - invalid fundamental type id %d", typeid); | |
1124 | } | |
1125 | ||
1126 | /* If this is the first time we need a fundamental type for this objfile | |
1127 | then we need to initialize the vector of type pointers. */ | |
1128 | ||
1129 | if (objfile -> fundamental_types == NULL) | |
1130 | { | |
1131 | nbytes = FT_NUM_MEMBERS * sizeof (struct type *); | |
1132 | objfile -> fundamental_types = (struct type **) | |
1133 | obstack_alloc (&objfile -> type_obstack, nbytes); | |
1134 | memset ((char *) objfile -> fundamental_types, 0, nbytes); | |
1135 | } | |
1136 | ||
1137 | /* Look for this particular type in the fundamental type vector. If one is | |
1138 | not found, create and install one appropriate for the current language. */ | |
1139 | ||
1140 | typep = objfile -> fundamental_types + typeid; | |
1141 | if (*typep == NULL) | |
1142 | { | |
1143 | *typep = create_fundamental_type (objfile, typeid); | |
1144 | } | |
1145 | ||
1146 | return (*typep); | |
1147 | } | |
1148 | ||
1149 | int | |
1150 | can_dereference (t) | |
1151 | struct type *t; | |
1152 | { | |
1153 | /* FIXME: Should we return true for references as well as pointers? */ | |
1154 | return | |
1155 | (t != NULL | |
1156 | && TYPE_CODE (t) == TYPE_CODE_PTR | |
1157 | && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID); | |
1158 | } | |
1159 | ||
1160 | #if MAINTENANCE_CMDS | |
1161 | ||
1162 | static void | |
1163 | print_bit_vector (bits, nbits) | |
1164 | B_TYPE *bits; | |
1165 | int nbits; | |
1166 | { | |
1167 | int bitno; | |
1168 | ||
1169 | for (bitno = 0; bitno < nbits; bitno++) | |
1170 | { | |
1171 | if ((bitno % 8) == 0) | |
1172 | { | |
1173 | puts_filtered (" "); | |
1174 | } | |
1175 | if (B_TST (bits, bitno)) | |
1176 | { | |
1177 | printf_filtered ("1"); | |
1178 | } | |
1179 | else | |
1180 | { | |
1181 | printf_filtered ("0"); | |
1182 | } | |
1183 | } | |
1184 | } | |
1185 | ||
1186 | /* The args list is a strange beast. It is either terminated by a NULL | |
1187 | pointer for varargs functions, or by a pointer to a TYPE_CODE_VOID | |
1188 | type for normal fixed argcount functions. (FIXME someday) | |
1189 | Also note the first arg should be the "this" pointer, we may not want to | |
1190 | include it since we may get into a infinitely recursive situation. */ | |
1191 | ||
1192 | static void | |
1193 | print_arg_types (args, spaces) | |
1194 | struct type **args; | |
1195 | int spaces; | |
1196 | { | |
1197 | if (args != NULL) | |
1198 | { | |
1199 | while (*args != NULL) | |
1200 | { | |
1201 | recursive_dump_type (*args, spaces + 2); | |
1202 | if ((*args++) -> code == TYPE_CODE_VOID) | |
1203 | { | |
1204 | break; | |
1205 | } | |
1206 | } | |
1207 | } | |
1208 | } | |
1209 | ||
1210 | static void | |
1211 | dump_fn_fieldlists (type, spaces) | |
1212 | struct type *type; | |
1213 | int spaces; | |
1214 | { | |
1215 | int method_idx; | |
1216 | int overload_idx; | |
1217 | struct fn_field *f; | |
1218 | ||
1219 | printfi_filtered (spaces, "fn_fieldlists "); | |
1220 | gdb_print_address (TYPE_FN_FIELDLISTS (type), gdb_stdout); | |
1221 | printf_filtered ("\n"); | |
1222 | for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++) | |
1223 | { | |
1224 | f = TYPE_FN_FIELDLIST1 (type, method_idx); | |
1225 | printfi_filtered (spaces + 2, "[%d] name '%s' (", | |
1226 | method_idx, | |
1227 | TYPE_FN_FIELDLIST_NAME (type, method_idx)); | |
1228 | gdb_print_address (TYPE_FN_FIELDLIST_NAME (type, method_idx), | |
1229 | gdb_stdout); | |
1230 | printf_filtered (") length %d\n", | |
1231 | TYPE_FN_FIELDLIST_LENGTH (type, method_idx)); | |
1232 | for (overload_idx = 0; | |
1233 | overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx); | |
1234 | overload_idx++) | |
1235 | { | |
1236 | printfi_filtered (spaces + 4, "[%d] physname '%s' (", | |
1237 | overload_idx, | |
1238 | TYPE_FN_FIELD_PHYSNAME (f, overload_idx)); | |
1239 | gdb_print_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx), | |
1240 | gdb_stdout); | |
1241 | printf_filtered (")\n"); | |
1242 | printfi_filtered (spaces + 8, "type "); | |
1243 | gdb_print_address (TYPE_FN_FIELD_TYPE (f, overload_idx), gdb_stdout); | |
1244 | printf_filtered ("\n"); | |
1245 | ||
1246 | recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx), | |
1247 | spaces + 8 + 2); | |
1248 | ||
1249 | printfi_filtered (spaces + 8, "args "); | |
1250 | gdb_print_address (TYPE_FN_FIELD_ARGS (f, overload_idx), gdb_stdout); | |
1251 | printf_filtered ("\n"); | |
1252 | ||
1253 | print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx), spaces); | |
1254 | printfi_filtered (spaces + 8, "fcontext "); | |
1255 | gdb_print_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx), | |
1256 | gdb_stdout); | |
1257 | printf_filtered ("\n"); | |
1258 | ||
1259 | printfi_filtered (spaces + 8, "is_const %d\n", | |
1260 | TYPE_FN_FIELD_CONST (f, overload_idx)); | |
1261 | printfi_filtered (spaces + 8, "is_volatile %d\n", | |
1262 | TYPE_FN_FIELD_VOLATILE (f, overload_idx)); | |
1263 | printfi_filtered (spaces + 8, "is_private %d\n", | |
1264 | TYPE_FN_FIELD_PRIVATE (f, overload_idx)); | |
1265 | printfi_filtered (spaces + 8, "is_protected %d\n", | |
1266 | TYPE_FN_FIELD_PROTECTED (f, overload_idx)); | |
1267 | printfi_filtered (spaces + 8, "is_stub %d\n", | |
1268 | TYPE_FN_FIELD_STUB (f, overload_idx)); | |
1269 | printfi_filtered (spaces + 8, "voffset %u\n", | |
1270 | TYPE_FN_FIELD_VOFFSET (f, overload_idx)); | |
1271 | } | |
1272 | } | |
1273 | } | |
1274 | ||
1275 | static void | |
1276 | print_cplus_stuff (type, spaces) | |
1277 | struct type *type; | |
1278 | int spaces; | |
1279 | { | |
1280 | printfi_filtered (spaces, "n_baseclasses %d\n", | |
1281 | TYPE_N_BASECLASSES (type)); | |
1282 | printfi_filtered (spaces, "nfn_fields %d\n", | |
1283 | TYPE_NFN_FIELDS (type)); | |
1284 | printfi_filtered (spaces, "nfn_fields_total %d\n", | |
1285 | TYPE_NFN_FIELDS_TOTAL (type)); | |
1286 | if (TYPE_N_BASECLASSES (type) > 0) | |
1287 | { | |
1288 | printfi_filtered (spaces, "virtual_field_bits (%d bits at *", | |
1289 | TYPE_N_BASECLASSES (type)); | |
1290 | gdb_print_address (TYPE_FIELD_VIRTUAL_BITS (type), gdb_stdout); | |
1291 | printf_filtered (")"); | |
1292 | ||
1293 | print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type), | |
1294 | TYPE_N_BASECLASSES (type)); | |
1295 | puts_filtered ("\n"); | |
1296 | } | |
1297 | if (TYPE_NFIELDS (type) > 0) | |
1298 | { | |
1299 | if (TYPE_FIELD_PRIVATE_BITS (type) != NULL) | |
1300 | { | |
1301 | printfi_filtered (spaces, "private_field_bits (%d bits at *", | |
1302 | TYPE_NFIELDS (type)); | |
1303 | gdb_print_address (TYPE_FIELD_PRIVATE_BITS (type), gdb_stdout); | |
1304 | printf_filtered (")"); | |
1305 | print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type), | |
1306 | TYPE_NFIELDS (type)); | |
1307 | puts_filtered ("\n"); | |
1308 | } | |
1309 | if (TYPE_FIELD_PROTECTED_BITS (type) != NULL) | |
1310 | { | |
1311 | printfi_filtered (spaces, "protected_field_bits (%d bits at *", | |
1312 | TYPE_NFIELDS (type)); | |
1313 | gdb_print_address (TYPE_FIELD_PROTECTED_BITS (type), gdb_stdout); | |
1314 | printf_filtered (")"); | |
1315 | print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type), | |
1316 | TYPE_NFIELDS (type)); | |
1317 | puts_filtered ("\n"); | |
1318 | } | |
1319 | } | |
1320 | if (TYPE_NFN_FIELDS (type) > 0) | |
1321 | { | |
1322 | dump_fn_fieldlists (type, spaces); | |
1323 | } | |
1324 | } | |
1325 | ||
1326 | void | |
1327 | recursive_dump_type (type, spaces) | |
1328 | struct type *type; | |
1329 | int spaces; | |
1330 | { | |
1331 | int idx; | |
1332 | ||
1333 | printfi_filtered (spaces, "type node "); | |
1334 | gdb_print_address (type, gdb_stdout); | |
1335 | printf_filtered ("\n"); | |
1336 | printfi_filtered (spaces, "name '%s' (", | |
1337 | TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>"); | |
1338 | gdb_print_address (TYPE_NAME (type), gdb_stdout); | |
1339 | printf_filtered (")\n"); | |
1340 | if (TYPE_TAG_NAME (type) != NULL) | |
1341 | { | |
1342 | printfi_filtered (spaces, "tagname '%s' (", | |
1343 | TYPE_TAG_NAME (type)); | |
1344 | gdb_print_address (TYPE_TAG_NAME (type), gdb_stdout); | |
1345 | printf_filtered (")\n"); | |
1346 | } | |
1347 | printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type)); | |
1348 | switch (TYPE_CODE (type)) | |
1349 | { | |
1350 | case TYPE_CODE_UNDEF: | |
1351 | printf_filtered ("(TYPE_CODE_UNDEF)"); | |
1352 | break; | |
1353 | case TYPE_CODE_PTR: | |
1354 | printf_filtered ("(TYPE_CODE_PTR)"); | |
1355 | break; | |
1356 | case TYPE_CODE_ARRAY: | |
1357 | printf_filtered ("(TYPE_CODE_ARRAY)"); | |
1358 | break; | |
1359 | case TYPE_CODE_STRUCT: | |
1360 | printf_filtered ("(TYPE_CODE_STRUCT)"); | |
1361 | break; | |
1362 | case TYPE_CODE_UNION: | |
1363 | printf_filtered ("(TYPE_CODE_UNION)"); | |
1364 | break; | |
1365 | case TYPE_CODE_ENUM: | |
1366 | printf_filtered ("(TYPE_CODE_ENUM)"); | |
1367 | break; | |
1368 | case TYPE_CODE_FUNC: | |
1369 | printf_filtered ("(TYPE_CODE_FUNC)"); | |
1370 | break; | |
1371 | case TYPE_CODE_INT: | |
1372 | printf_filtered ("(TYPE_CODE_INT)"); | |
1373 | break; | |
1374 | case TYPE_CODE_FLT: | |
1375 | printf_filtered ("(TYPE_CODE_FLT)"); | |
1376 | break; | |
1377 | case TYPE_CODE_VOID: | |
1378 | printf_filtered ("(TYPE_CODE_VOID)"); | |
1379 | break; | |
1380 | case TYPE_CODE_SET: | |
1381 | printf_filtered ("(TYPE_CODE_SET)"); | |
1382 | break; | |
1383 | case TYPE_CODE_RANGE: | |
1384 | printf_filtered ("(TYPE_CODE_RANGE)"); | |
1385 | break; | |
1386 | case TYPE_CODE_STRING: | |
1387 | printf_filtered ("(TYPE_CODE_STRING)"); | |
1388 | break; | |
1389 | case TYPE_CODE_ERROR: | |
1390 | printf_filtered ("(TYPE_CODE_ERROR)"); | |
1391 | break; | |
1392 | case TYPE_CODE_MEMBER: | |
1393 | printf_filtered ("(TYPE_CODE_MEMBER)"); | |
1394 | break; | |
1395 | case TYPE_CODE_METHOD: | |
1396 | printf_filtered ("(TYPE_CODE_METHOD)"); | |
1397 | break; | |
1398 | case TYPE_CODE_REF: | |
1399 | printf_filtered ("(TYPE_CODE_REF)"); | |
1400 | break; | |
1401 | case TYPE_CODE_CHAR: | |
1402 | printf_filtered ("(TYPE_CODE_CHAR)"); | |
1403 | break; | |
1404 | case TYPE_CODE_BOOL: | |
1405 | printf_filtered ("(TYPE_CODE_BOOL)"); | |
1406 | break; | |
1407 | default: | |
1408 | printf_filtered ("(UNKNOWN TYPE CODE)"); | |
1409 | break; | |
1410 | } | |
1411 | puts_filtered ("\n"); | |
1412 | printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type)); | |
1413 | printfi_filtered (spaces, "objfile "); | |
1414 | gdb_print_address (TYPE_OBJFILE (type), gdb_stdout); | |
1415 | printf_filtered ("\n"); | |
1416 | printfi_filtered (spaces, "target_type "); | |
1417 | gdb_print_address (TYPE_TARGET_TYPE (type), gdb_stdout); | |
1418 | printf_filtered ("\n"); | |
1419 | if (TYPE_TARGET_TYPE (type) != NULL) | |
1420 | { | |
1421 | recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2); | |
1422 | } | |
1423 | printfi_filtered (spaces, "pointer_type "); | |
1424 | gdb_print_address (TYPE_POINTER_TYPE (type), gdb_stdout); | |
1425 | printf_filtered ("\n"); | |
1426 | printfi_filtered (spaces, "reference_type "); | |
1427 | gdb_print_address (TYPE_REFERENCE_TYPE (type), gdb_stdout); | |
1428 | printf_filtered ("\n"); | |
1429 | printfi_filtered (spaces, "function_type "); | |
1430 | gdb_print_address (TYPE_FUNCTION_TYPE (type), gdb_stdout); | |
1431 | printf_filtered ("\n"); | |
1432 | printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type)); | |
1433 | if (TYPE_FLAGS (type) & TYPE_FLAG_UNSIGNED) | |
1434 | { | |
1435 | puts_filtered (" TYPE_FLAG_UNSIGNED"); | |
1436 | } | |
1437 | if (TYPE_FLAGS (type) & TYPE_FLAG_STUB) | |
1438 | { | |
1439 | puts_filtered (" TYPE_FLAG_STUB"); | |
1440 | } | |
1441 | puts_filtered ("\n"); | |
1442 | printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type)); | |
1443 | gdb_print_address (TYPE_FIELDS (type), gdb_stdout); | |
1444 | puts_filtered ("\n"); | |
1445 | for (idx = 0; idx < TYPE_NFIELDS (type); idx++) | |
1446 | { | |
1447 | printfi_filtered (spaces + 2, | |
1448 | "[%d] bitpos %d bitsize %d type ", | |
1449 | idx, TYPE_FIELD_BITPOS (type, idx), | |
1450 | TYPE_FIELD_BITSIZE (type, idx)); | |
1451 | gdb_print_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout); | |
1452 | printf_filtered (" name '%s' (", | |
1453 | TYPE_FIELD_NAME (type, idx) != NULL | |
1454 | ? TYPE_FIELD_NAME (type, idx) | |
1455 | : "<NULL>"); | |
1456 | gdb_print_address (TYPE_FIELD_NAME (type, idx), gdb_stdout); | |
1457 | printf_filtered (")\n"); | |
1458 | if (TYPE_FIELD_TYPE (type, idx) != NULL) | |
1459 | { | |
1460 | recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4); | |
1461 | } | |
1462 | } | |
1463 | printfi_filtered (spaces, "vptr_basetype "); | |
1464 | gdb_print_address (TYPE_VPTR_BASETYPE (type), gdb_stdout); | |
1465 | puts_filtered ("\n"); | |
1466 | if (TYPE_VPTR_BASETYPE (type) != NULL) | |
1467 | { | |
1468 | recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2); | |
1469 | } | |
1470 | printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type)); | |
1471 | switch (TYPE_CODE (type)) | |
1472 | { | |
1473 | case TYPE_CODE_METHOD: | |
1474 | case TYPE_CODE_FUNC: | |
1475 | printfi_filtered (spaces, "arg_types "); | |
1476 | gdb_print_address (TYPE_ARG_TYPES (type), gdb_stdout); | |
1477 | puts_filtered ("\n"); | |
1478 | print_arg_types (TYPE_ARG_TYPES (type), spaces); | |
1479 | break; | |
1480 | ||
1481 | case TYPE_CODE_STRUCT: | |
1482 | printfi_filtered (spaces, "cplus_stuff "); | |
1483 | gdb_print_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout); | |
1484 | puts_filtered ("\n"); | |
1485 | print_cplus_stuff (type, spaces); | |
1486 | break; | |
1487 | ||
1488 | default: | |
1489 | /* We have to pick one of the union types to be able print and test | |
1490 | the value. Pick cplus_struct_type, even though we know it isn't | |
1491 | any particular one. */ | |
1492 | printfi_filtered (spaces, "type_specific "); | |
1493 | gdb_print_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout); | |
1494 | if (TYPE_CPLUS_SPECIFIC (type) != NULL) | |
1495 | { | |
1496 | printf_filtered (" (unknown data form)"); | |
1497 | } | |
1498 | printf_filtered ("\n"); | |
1499 | break; | |
1500 | ||
1501 | } | |
1502 | } | |
1503 | ||
1504 | #endif /* MAINTENANCE_CMDS */ | |
1505 | ||
1506 | void | |
1507 | _initialize_gdbtypes () | |
1508 | { | |
1509 | builtin_type_void = | |
1510 | init_type (TYPE_CODE_VOID, 1, | |
1511 | 0, | |
1512 | "void", (struct objfile *) NULL); | |
1513 | builtin_type_char = | |
1514 | init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, | |
1515 | 0, | |
1516 | "char", (struct objfile *) NULL); | |
1517 | builtin_type_signed_char = | |
1518 | init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, | |
1519 | 0, | |
1520 | "signed char", (struct objfile *) NULL); | |
1521 | builtin_type_unsigned_char = | |
1522 | init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, | |
1523 | TYPE_FLAG_UNSIGNED, | |
1524 | "unsigned char", (struct objfile *) NULL); | |
1525 | builtin_type_short = | |
1526 | init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, | |
1527 | 0, | |
1528 | "short", (struct objfile *) NULL); | |
1529 | builtin_type_unsigned_short = | |
1530 | init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, | |
1531 | TYPE_FLAG_UNSIGNED, | |
1532 | "unsigned short", (struct objfile *) NULL); | |
1533 | builtin_type_int = | |
1534 | init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, | |
1535 | 0, | |
1536 | "int", (struct objfile *) NULL); | |
1537 | builtin_type_unsigned_int = | |
1538 | init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, | |
1539 | TYPE_FLAG_UNSIGNED, | |
1540 | "unsigned int", (struct objfile *) NULL); | |
1541 | builtin_type_long = | |
1542 | init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, | |
1543 | 0, | |
1544 | "long", (struct objfile *) NULL); | |
1545 | builtin_type_unsigned_long = | |
1546 | init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, | |
1547 | TYPE_FLAG_UNSIGNED, | |
1548 | "unsigned long", (struct objfile *) NULL); | |
1549 | builtin_type_long_long = | |
1550 | init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, | |
1551 | 0, | |
1552 | "long long", (struct objfile *) NULL); | |
1553 | builtin_type_unsigned_long_long = | |
1554 | init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, | |
1555 | TYPE_FLAG_UNSIGNED, | |
1556 | "unsigned long long", (struct objfile *) NULL); | |
1557 | builtin_type_float = | |
1558 | init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT, | |
1559 | 0, | |
1560 | "float", (struct objfile *) NULL); | |
1561 | builtin_type_double = | |
1562 | init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, | |
1563 | 0, | |
1564 | "double", (struct objfile *) NULL); | |
1565 | builtin_type_long_double = | |
1566 | init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT, | |
1567 | 0, | |
1568 | "long double", (struct objfile *) NULL); | |
1569 | builtin_type_complex = | |
1570 | init_type (TYPE_CODE_FLT, TARGET_COMPLEX_BIT / TARGET_CHAR_BIT, | |
1571 | 0, | |
1572 | "complex", (struct objfile *) NULL); | |
1573 | builtin_type_double_complex = | |
1574 | init_type (TYPE_CODE_FLT, TARGET_DOUBLE_COMPLEX_BIT / TARGET_CHAR_BIT, | |
1575 | 0, | |
1576 | "double complex", (struct objfile *) NULL); | |
1577 | builtin_type_string = | |
1578 | init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT, | |
1579 | 0, | |
1580 | "string", (struct objfile *) NULL); | |
1581 | } |